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PREFACE

Purpose of This Book

By the simple act of starting to read this book, you have ex-
pressed your interest in the idea that IBM’s  MVS1  oper-
ating system is amenable to a discipline of performance
management. Now that you’re hooked, we’ll attempt in
these pages to define that discipline, to build on that inter-
est and turn it into a solid commitment, and to describe
and illustrate the means of implementing MVS perfor-
mance management.
On the other hand, this book is neither an introduction to MVS
structure and  function2 nor a  treatise on MVS system pro-
gramming. No knowledge of MVS internals is assumed or re-
quired for understanding. We deal with MVS’s external controls
and with the workloads found in most MVS installations. Some
knowledge of application programming is useful.

What is Performance Management?
MVS is an operating system of great functional richness and corre-
spondingly great complexity. Much of that complexity is devoted to
routines that seek to manage the allocation of resources to work-

xi

1 “IBM” is a registered trademark of the International Business Machines
Corporation. “MVS” (the name is a trademark of the International Busi-
ness Machines Corporation) was originally a short name for an IBM oper-
ating system, “OS/VS2: MVS,” meaning “Operating System/Virtual Storage
2: Multiple Virtual Storage.” MVS currently exists in several variants:
MVS System Product Version 1 (MVS/370), MVS System Product Version
2 (MVS/XA), MVS System Product Versions 3 through 5 (MVS/ESA), and
now OS/390. Except as noted, the content of this book applies in general
to all recent and current MVS levels, although its principal focus is on
MVS/ESA Version 5 and OS/390. Versions 1 and 2 are obsolete and no lon-
ger supported by IBM. The name OS/VS2 is rarely seen today.

2 Another book in this series, MVS: Concepts and Facilities, by Robert H. John-
son, meets the need for such a work exceptionally well.



loads according to the expressed desires of the installation’s man-
agement. These desires are expressed to the system through nu-
merous parameters that control parts of MVS’s operation, and
through decisions affecting the hardware configuration.
MVS performance management may be defined briefly as:

• acquiring the knowledge necessary to specify MVS control
parameters and to make configuration choices

• translating service objectives into appropriate control pa-
rameters and a suitable physical configuration

• monitoring and measuring the system to verify compliance
with service objectives and to assess the efficiency and ef-
fectiveness of the system

• dealing (with appropriate timeliness) with incidents of per
formance that is inefficient, ineffective, or inadequate to meet
service objectives

The definition will be refined and elaborated throughout the
course of the text.

Audience
Those whose jobs include accountability for MVS performance
are the primary audience for this book. Many others (the direct
users of system services above all) are affected by the perfor-
mance of the operating system and its workloads, and should de-
rive some benefit from this book. Some of those include:

• operations production specialists

• operations managers

• “help desk” staff

• MIS application developers

• MIS managers

• MVS system programmers

• CICS system programmers

• IMS system programmers

xii Preface



• technical support managers

• managers of end-user organizations

• capacity planners

• resource usage accounting and chargeback staff

Overall Approach
It is easy to be put off by the sheer size and complexity of MVS
and to conclude that the most effective management strategy
is that of leaving the system “as received” until specific prob-
lems arise, and then solving them in turn. This book ex-
presses a different approach: MVS responds well to informed
planning, and installation policies can be implemented
through MVS’s control mechanisms. Our purpose is to demys-
tify those mechanisms and show how MVS can become a
well-behaved managed system. Adding to the motivation, MVS
in its default form is simply not suitable for production use. Ini-
tial performance management actions are necessary to prevent
the initial production experience from being a bad one. Even
though the control of workload performance has been simplified
in Version 5, the default settings (now in the form of a service
definition) remain inappropriate for production use.
Irrational fear of MVS’s complexity is to be avoided, but wary re-
spect for that complexity is necessary. The redeeming quality of
most of the actions recommended in this book is that, if done as
recommended, they are reversible should problems arise. Those
actions that require more care and planning are so identified.

Organization
In the first chapter, we examine the history of MVS, from prede-
cessor systems through MVS/ESA (Enterprise Systems Archi-
tecture) Version 4.
Chapter 2 looks at the period of decline suffered by MVS in the
early ’90s and the significant initiatives IBM began with the
April 1994 announcement. These new initiatives have restored
MVS to its leading role. We’ll examine the Version 5 and OS/390
changes in detail. Emphasis in these sections will be on develop-
ments important to control and performance management. The
history ends with some speculation about the future of MVS.

Preface xiii



Chapter 3 examines the physical resources managed by MVS.
These include the physical elements of the computing system:
CPUs, storage, and input/output (I/O) devices, with emphasis on
direct access storage devices (DASD).

In Chapter 4, the actual working objects of MVS are considered.
These are the virtual resources, which stand in for and rename
physical resources, and the logical resources, which serve as the
control focus for MVS’s resource management functions.

We next consider the workloads managed by MVS. In Chapter 5,
the workloads are classified and characterized according to their
patterns of resource use and their performance management chal-
lenges. This chapter also introduces service level agreements, a
key part of planning and managing service delivery.

Chapter 6 is an overview of the older central mechanism that
controls how resources are allocated to units of work in MVS,
the System Resources Manger, SRM. As of MVS/ESA Version 5,
SRM in its old form is now known as compatibility mode. The de-
tails of compatibility mode operation may be found in Appen-
dixes A and B.

The replacement for compatibility mode, Workload Manager
goal mode, is described in detail in Chapter 7.

In Chapter 8, we examine performance problems, how they mani-
fest themselves, and the kind of information that will be needed to
expose such problems and their causes. The special performance
problems encountered in client-server and other distributed appli-
cation architectures are described and contrasted with those char-
acteristic of more conventional systems.

We turn in Chapter 9 to a discussion of monitoring and mea-
surement methods, considering the specific need for, and contri-
bution of, each type of measurement technique in facilitating or
simplifying performance management. Chapter 9 also includes
the details of DASD modeling introduced in Chapter 3.

In Chapter 10, we apply all the foregoing material in covering
the solution of performance problems, both chronic and acute.
The emphasis in this chapter is on dealing with applications
and subsystems, jobs and TSO users as they are, rather than as
we wish them to be.
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Chapter 11 pursues that ideal, considering the often controver-
sial subject of application tuning. The specialized application of
monitoring tools to this task can often be more effective in re-
lieving system problems than the most concerted and protracted
“system” tuning efforts.

Chapter 12 is an attempt to summarize the insights gained by
an examination of the past and then to look beyond tomorrow’s
problems and extrapolate about ten years out into the future,
with emphasis on the role of MVS or its successor, OS/390.

Appendixes A and B describe the controlling parameters of MVS
in compatibility mode. In general, these influence the operation of
SRM and appear in members of SYS1.PARMLIB. Other parame-
ters controlling MVS’s subsystems exist in other data sets, and
some of the parameters having occasional use still hide in the dark
recesses of control blocks and need to be adjusted when necessary
through SUPERZAP or a similar mechanism. In these appendixes
we suggest a set of standard parameters going beyond the
IBM-supplied defaults. Some configuration guidelines are given in
these chapters, and a comprehensive example of the parameter
sets concludes Appendix B.

The book concludes with an extensive glossary of MVS and per-
formance management terms. New terms are generally itali-
cized at the point of first use. If a definition is not contextually
obvious, it should be found in the glossary. Other stylistic con-
ventions include:

• names of hardware instructions and their assembly lan-
guage operation codes are shown in SMALL CAPITALS (LPSW
or LOAD PROGRAM STATUS WORD)

• macro-instruction names are shown in UPPER-CASE
ITALICS (RESERVE macro)

• system data objects and states are shown in UPPER CASE
(RESERVE of a device, ENQ lockout)

• examples of card-image control statements are shown in
UPPER-CASE MONOSPACE SANS-SERIF BOLD
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Motivation

For four years or more, before I was initially approached by Jay
Ranade to write a book on MVS performance management, I
had speculated about such a possibility. The speculation began
when I first became responsible for the MVS portion of Candle
Corporation’s old Fall Performance Seminars. It occurred to me
that a solid 14 hours of lecture and supporting materials might
form the nucleus of a book. In the intervening years, I wrote sev-
eral series of MVS articles for the Candle Computer Report and
observed the emergence of MVS/XA, the 3090 (and its follow-on
models, later designated as Enterprise System/3090) and ex-
panded storage, DB2, and the announcements of Systems Appli-
cation Architecture and Enterprise Systems Architecture. The
original edition of MVS Performance Management was the out-
come of that time of readiness for such a book.
With the success of the original edition, it was natural to con-
sider writing a next book, perhaps on a different subject. How-
ever, the evolution of MVS continued, bringing more change, in
the September 1990 announcement of System/390 and Version 4
of MVS/SP (ESA/390), than in any prior announcement. Another
huge set of announcements followed a year later, with more
since that time. The ESA/390 edition of MVS Performance Man-
agement recognized that MVS changed dramatically, with new
performance management problems and solutions, and radically
different system structures.
Another need addressed in that edition was the requirement for
chapter review questions, to accommodate the needs of educa-
tors who wish to use the book for teaching. I was flattered when
I was asked for such additions, and I was happy to oblige them,
as well as the many readers who provided helpful suggestions
for additions or changes. There is not a “teacher’s edition” with
answers to the chapter questions. The questions are intended to
have no “right answers” but rather to provoke investigation, re-
flection, and analysis. If successful, the questions will help the
readers become activists for sound performance management.
As much as MVS evolved in the early ’90s, there came a period of
stagnation peaking in 1993, as IBM showed its first operating loss
and the “mainframe is dead” hysteria became deafening. Fortu-
nately, IBM was working on new initiatives during the bad times,
and history was made again on April 6, 1994—one day short of the
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thirtieth anniversary of the System/360 announcement. MVS Ver-
sion 5 and all that came with it have reinvigorated MVS as the
platform of choice for enterprise computing.
Since the changes were so great, it became evident that a third
iteration of MVS Performance Management was needed. Other
demands on my time and the desire to wait for a bit of experi-
ence with goal mode dictated the timing of this edition.
As MVS systems have become more affordable (OS/390 is now
viable on a rather overgrown personal computer), the base of ex-
perienced MVS system programmers has been stretched thin to
match the demand. System programmers’ lives become more
complicated as they respond to conflicting inputs about the care
and feeding of MVS. Some say, “MVS is so fiendishly compli-
cated that you should leave it alone …. You need special knowl-
edge to change SRM parameters …. Trust us to guide you ….
MVS defaults are OK ….”
Others (usually technical support managers) demand that the sys-
tem be made to perform well as workloads change, and demand an
explanation of each episode of poor performance. Certainly (they
say) the knowledge necessary to manage MVS well, and to know
why it’s not well when it’s not, should be sufficient to take on as
simple a job as setting up a sound service policy.

Personal Biases and Matters of Style
MVS, its predecessors, and its successors are IBM-developed
control programs intended to run on IBM systems. Several
other manufacturers produce systems that are capable of sup-
porting various levels of MVS, and manufacturers other than
IBM have produced operating systems that are compatible with
MVS in some respects. To the extent that the observations and
advice in this book are valid for MVS and System/390
look-alikes, I am pleased to be of some assistance. However, my
own experience and knowledge are focused on MVS and the sys-
tems for which it was developed. I make no claim of accuracy or
insight for similar but not identical environments.
My own accuracy and insight are limited, in any event. All I
promise is to discuss the lessons of my experience and to give
advice that has worked in most cases. Neither I nor the pub-
lisher can in any way claim that the observations and advice
contained in these pages are universally applicable. Before you
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commit hardware, software, or human resources to implement
any of the ideas presented in these pages, make sure that your
situation matches that of the given example or scenario in all
crucial respects, or that you have made due allowances for es-
sential differences.
Writing style has received unusual attention in recent years, es-
pecially in one specific area: pronouns. To the greatest extent
possible, I have tried to avoid the use of gender-specific pro-
nouns. When the syntax gets too convoluted, I use the masculine
form with its traditional generic connotation, at the risk of im-
perfect political correctness.

Trademarks and Registered Trademarks
This book could be cluttered with footnotes at the first mention
of each term that is a trademark or registered trademark if each
citation were to be given in full. Instead, I give full credit here to
the commercial and intellectual property of the trademark holders
whose products are mentioned in this book, and I apologize to
those whose trademarks might have been inadvertently omitted.
IBM now routinely shows many trademark notices in announce-
ments, presentations, and other materials relating to MVS and
to other systems and environments as well. Many of the names
now claimed as common-law trademarks may eventually be-
come registered trademarks. Here is a reasonably complete list:

Registered trademarks of the International Business Machines
Corporation: AIX®, IBM®, Image/Plus®, Micro Channel®, Multi-
ple Virtual Storage/Enterprise Systems Architecture®, Multiple
Virtual Storage/Extended Architecture®, NetView®, OS/2®, Per-
sonal System/2®, and PS/2®.

Trademarks of the International Business Machines Corpora-
tion: ACF/VTAM™, CICS™, CICS/ESA™, CICS/MVS™, CICS
OS/2™, CICS/VSE™, Data Propagator™, DATABASE 2™, DB2™,
DFSMS™, ECKD™, Enterprise Systems Architecture™, Enter-
prise Systems Architecture/370™, Enterprise Systems Architec-
ture/390™, Enterprise Systems Connection Architecture™, Enter-
prise System/3090™, Enterprise System/9000™, ES/3090™,
ES/3090-9000T™, ES/9000™, ESA/370™, ESA/390™,
ESCON™, IMS/ESA™, Hardware Configuration Definition™,
Hiperbatch™, Hiperspace™, MVS™, MVS/DFP™, MVS/ESA™,
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MVS/SP™, MVS/System Product™, MVS/XA™, OS/390™, Proces-
sor Resource/Systems Manager™, PR/SM™, QMF™, SAA™,
Sysplex™, System/360™, System/370™, System/390™, Systems
Application Architecture™, SystemView™, S/390™, VM™,
VM/ESA™, VSE/ESA™, VTAM™.
Candle Corporation’s trademark product names are mentioned in
the text. These trademarks include OMEGAMON®, EPILOG®,
DEXAN®, and DELTAMON®. The logotype is also a regis-
tered trademark.
Boole and Babbage’s RESOLVE and CMF; Computer Associates’
CA-LOOK, CA-EXAMINE, CA-ACF2, and CA-TopSecret; Land-
mark’s The Monitor for MVS (TMON/MVS); and SAS Institute’s SAS
are other commercial software packages mentioned in the text whose
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Chapter

1
MVS History and Evolution

A 30-year-old programmer may run jobs today under OS/3901

that are older than he or she is. While MVS is a modern operat-
ing system—even state-of-the-art in many ways—it is a direct
descendant of the first release of Operating System/360 in 1966.
To a large extent, the problem program environment of MVS/ESA
or OS/390 remains that of “OS.”

We recount the history of MVS to help us understand its mecha-
nisms and the biases implicit in them. We do this here not only
to illustrate IBM’s continual flow of improvement and innova-
tion,2 but also to note when and how constraints and limitations
appeared in the MVS environment and how later changes over-
came those difficulties.

The matter-of-fact appearance and subsequent relief of con-
straints is a natural consequence of the stair-step process of de-
livering improvements in hardware and in the many coordi-
nated elements of supporting software. Yet, as many of MVS’s
shortcomings have appeared and been recognized by system pro-
grammers, a common reaction has been to institutionalize the
deficiencies and the actions taken in response to them. In a

1

1 Since Release 1 of OS/390 (March 1996), “MVS” is just a synonym for the cen-
tral operating system part of OS/390. However, in this edition we use the
more familiar term except when explicitly speaking of OS/390.

2 IBM does not develop, test, and ship operating system improvements merely
for the good of its customers. Major changes in MVS usually appear for IBM’s
strategic business purposes, such as to support new hardware products.



fast-moving field, this reaction can have the effect of unneces-
sarily perpetuating the effect of a temporary shortcoming. In
this chapter, we attempt to identify such episodes of the birth of
legends, or at least the lagging acceptance of good news.

1.1. Predecessor Systems
In this section, we look at the systems that preceded MVS, and the
early releases of MVS that differed significantly from today’s systems.

1.1.1. OS/360 MVT
MVT was the ultimate version of OS/360. The promises made when
System/360 was announced on April 7, 1964 were kept in MVT to
the extent that reality allowed. The original storage estimate—that
a full-function multiprogramming operating system could exist in
64K bytes—seems ludicrous today. The original assertion—that work
could compete freely for the real storage resource without the prob-
lem of fragmentation or the need for storage preallocation—never
came to pass. MVT had to be modified drastically to accommodate
two developments in the environment—multiprocessing and time
sharing—and even the most devoted “OS bigot” would have to ad-
mit that MVT did not handle those developments very well.
Despite all of its growing pains, MVT supported the growth of
the high-end System/360 and early System/370 hardware sys-
tems for over ten years and defined an application programming
interface still supported in today’s MVS. Indeed, a version of
MVT to support IBM’s 3031, 3032, and 3033 was released as late
as 1978. The following concepts were introduced or made com-
mercially successful in OS/360 including MVT:

• Multiprogramming3 of independent work units without the
need for fixed partitioning of storage

• Multitasking

• Multiprocessing using shared main storage, directed by a
single control program

• Device-independent data management without the restric-
tions of a limited “file system”

• Late binding of resources to work units

2 MVS Performance Management
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• I/O resource management across multiple users

• Main storage management across multiple work units

• Preemptive multiprogramming dispatching with priority queuing

• Dispatching priority adaptation to workload behavior

• Time sharing in a full-function operating system environ-
ment with full access to that environment

1.1.2. SVS
As unlikely as it might seem today, “virtual storage” was re-
garded as a radical development in the early 1970s. During the
development of DOS/VS, the low-end operating system for Sys-
tem/370, a proposal for optional support of virtual storage was
seriously considered. Those with greater vision prevailed, so no
system called “DOS/almost-VS” was released.4 Systems of interme-
diate size were supported by OS/VS1 (based on MFT). At the high
end of the 370 line, the plan was two-pronged: A minimal extension
to MVT would be released first, followed a year or two later by the
system that the dynamic address translation hardware was meant
for—a system to become known as MVS.
The original minimal extension to MVT was announced as OS/VS2
Release 1, or SVM, for “Single Virtual Memory.” Soon after, the name
was changed from SVM to SVS, for “Single Virtual Storage,” when it
became clear that the System/370 Models 155 and 1655 were to be the
last IBM systems with magnetic core memory, and that Models 158
and 168 signaled the changeover to semiconductor main storage.
SVS used virtual storage to solve (to a limited extent) the out-
standing problem of MVT—storage fragmentation. Within the
bounds of a single 16-megabyte address space, all SVS systems
became equal in [virtual] storage size, if not in performance. In-
dividual jobs ran in regions as in MVT, and the regions repre-
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such compromise; each has a mandatory “swap file.”

5 The Models 155 and 165 were the last 370s built with magnetic core memo-
ries. They were supported by the VS operating systems only when equipped
with an expensive hardware extension called the “DAT box.” DAT is an acro-
nym for Dynamic Address Translation, the essential element needed to sup-
port virtual storage.



sented real boundaries and constraints—the subdividing of a
still-precious span of storage to accommodate a balanced work-
load such that all fit without waste. In SVS, TSO still ran in
multiuser regions, and each session’s storage was wholly swapped
out and in at the start and end of each terminal wait. Little if any
overcommitment of real storage was attempted.

1.1.3. OS/VS2 Release 2, 3, …, 3.6, 3.7, …
The early releases of MVS from 1973 to 1975 were, frankly, excit-
ing. MVS was described at that time much as MVS/XA was later
described in its infancy, as a “special” system for very large con-
figurations needing its special capabilities. With the immediate
need for support of virtual storage covered by SVS, the evolution
to MVS could be allowed to proceed with cooperation and feed-
back between IBM and the first MVS users. (When IBM cured
MVS’s early growing pains, the restraint gave way to a deter-
mined selling effort, but the early words of caution had had their
effect—SVS survived far too long.) During those early years of
MVS, a number of constraints began to appear. Although the
constraints eventually were understood and overcome, they had
an influence in the MVS environment long after they were no
longer current problems, and the descriptions of the constraints
became generalized and divorced from their origins. These per-
vasive “legends” included:

• “Paging ‘just happens’ in MVS.” Global least-recently-used
(LRU) management of real storage replacement was used in
SVS and the first MVS release. Consequently, demand paging
occurred everywhere in the system, limiting the ability to ex-
ploit fast CPUs given the limited amount of very expensive real
storage in the early MVS machines. This problem was amelio-
rated with the availability of storage isolation in MVS/SE2, and
with the dramatic increase in basic and optional real storage
sizes available for more recent systems. However, there re-
mains a persistent belief that paging is an uncontrollable
phenomenon in MVS, and workloads are often managed as if
real storage is severely limited, whether it is or not. Misman-
agement of paging had another expression: Systems were not
fully loaded to avoid incurring excessive paging delay, instead
of benefitting from simple SRM controls that managed the
paging rate in a fully loaded system.
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• “TSO swapping is not handled well in MVS.” In early MVS,
the pages of inactive TSO users were left in real storage, subject to
ordinary page stealing (as noted above). It soon became clear that
LRU page stealing was too inefficient to handle the reassignment
of large numbers of idle frames. TSO swapping was introduced in
one of the early variants of VS2 Release 3. The hardware and
software approaches to swapping and their controlling algo-
rithms have been one of the most frequently changed (and
usually improved) areas of MVS over the years.

• “TSO and other interactive workloads don’t work well
together in MVS.” The utilization of page data sets, caused
by TSO swapping and the large number of page faults result-
ing from rigorous swap trim, was so high that paging re-
sponse time for non-TSO workloads often became unaccept-
able. Even though the numerous changes in TSO swapping al-
gorithms over the years yielded significant relief as early as
1981, it has remained an enduring legend in MVS that TSO
and other subsystems, such as CICS or IMS, don’t coexist well.
Solving the mixed-workload problem was an essential prerequi-
site to the effective use of large configurations, and the means of
solving the problem has been available for years.

• “MVS needs too much real storage.” The original real storage
estimates for MVS were far too optimistic; the 16-megabyte
limit on real storage was in jeopardy before a new technology
replacement for System/370 would become available.6 A jury-
rigged solution became available when the real storage limit
was extended by a factor of 4 in late 3033s and the original
(System/370) version of the 3081. What appeared to be a long-
term solution came with the MVS/XA announcement of 31-bit
(2-gigabyte) real and virtual addressing. By 1989, however, the
2-gigabyte virtual storage limit was routinely touched, the
2-gigabyte real storage limit was only 2 bits away, and the
need for increased real storage was being met, albeit with un-
even success, by the use of expanded storage. This particular
legend may remain viable for some time whenever MVS’s use
of storage is measured against that of systems with less com-
prehensive architectures.
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In discussing these legends, we’ve had to jump around MVS’s
history a bit. We return now to a more orderly review of succes-
sive major changes in MVS.

1.1.4. System Extensions (MVS/SE)
In March of 1978, MVS came to a turning point. The first imple-
mentation of MVS System Extensions (MVS/SE1) was announced.
Nine years earlier, IBM had announced the “unbundling” of hard-
ware and software. Control programs required for the operation of
IBM systems were classified as “system control programming” (SCP)
and were provided at no charge.

MVS/SE became the first IBM operating system for which a fee
was charged, and the first to require hardware features beyond
those in the System/370 base instruction set. Beginning with
SE1, an increasing number of MVS software algorithms have
been placed in microcode, leading both to increased efficiency
and to a “moving target” for other manufacturers attempting to
duplicate the MVS hardware environment.

The IBM 3033 with System Extensions was the first generally
available IBM system to benefit from an approach to system de-
sign based on the active consideration of operating system needs
and optimization opportunities. (A less rigorous hardware-soft-
ware design approach, seemingly with some isolation between
engineers and programmers, had been characteristic of System/360.)
An additional benefit to IBM was the beginning of what has
since become substantial annual revenue from the licensing of
system software products.

The success of the 3033 with MVS/SE1 led to two MVS software
developments, one a dead end for the no-fee MVS System Control
Program, and the other the forerunner of the licensed-for-a-fee
succession of MVS offerings that continues today.

The evolution of “free” MVS stopped with Release 3.8 in 1979. Al-
though MVS 3.8 is thoroughly out of date today, it is in the public
domain and still in circulation. It is used to support hardware
configurations not capable of exploiting the microcode-assisted
features of current levels of MVS, and continued to be the “base,”
at least theoretically, over which MVS releases through Version 3
were installed. Thus it is that an RMF report for an MVS/SP Ver-
sion 3 release still said “3.8” in its heading. The announcement of
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3.8 made it clear that there was to be no future functional en-
hancement of a no-fee MVS.
MVS 3.8 was finally laid to rest with the availability of MVS/ESA
SP Version 4. MVS/ESA beginning with Version 4 is not built on a
3.8 base.
The other development that followed the success of MVS/SE1
was the announcement of SE2 in August 1979. In addition to
more microcode assistance, SE2 introduced most of MVS’s SRM
controls for storage isolation, dispatching priorities, and domains’
contention indexes. Those controls survived virtually unchanged
until the release of MVS/ESA SP Version 4.2.

1.2. MVS As We Know It Today
MVS/SE2 set the pattern for MVS as it exists today. Successive
MVS releases have followed in the same mold, with growing de-
pendency on microcode.

1.2.1. MVS System Product Version 1 (MVS/SP)

MVS/SP1
On June 11, 1980, MVS packaging, nomenclature, and direction
were changed once again. Two releases of a new kind of software
called “MVS System Product” (MVS/SP) were announced. What
was then called SP1 was functionally little more than a repackaging
of SE2. As part of the repackaging, the complex “SU” (selectable
units) scheme for MVS distribution was abandoned. MVS distribu-
tion with SUs had begun in 1976, when real storage constraint was
at its worst, and was based on the idea that “optional” parts of the
MVS nucleus could be left out when not needed, thus saving fixed
virtual storage and thereby real storage. Eventually, some priced
enhancements to “free” MVS were shipped as SUs; unpriced SUs
continued for such additions as device support.
SP1 provided support for a significant assortment of new hardware,
including:

• the 3033 Extensions feature, providing hardware support for
cross-memory services, making possible the “horizontal expan-
sion” of the MVS control program with acceptable performance

• 3375 and 3380 direct access storage devices (DASD)
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• Data Streaming Channels to support the new, higher data
transfer rates of the 3375 and 3380, as well as the Speed
Matching Buffer for support of the new devices on proces-
sors whose channels could not be (or were not) upgraded

MVS/SP2
The second of the two releases announced in June 1980 was
MVS/System Product Release 2, MVS/SP2. SP2 exploited the
cross-memory addressing mechanism introduced in SP1 by in-
troducing the notion of “horizontal growth” in MVS. As the need
grew for enhanced function and durability in the MVS environ-
ment, more operating system code became necessary. At the
same time, the encroachment of nucleus and common area code
and data on each address space’s private area became increas-
ingly unacceptable.
Cross-memory services made it possible, with insignificant over-
head, to pare off portions of the operating system and place them
in their own independent address spaces. Code and associated
data could be removed from the commonly addressed area, thus
relieving the constraint on virtual storage addressability in the
private area. A section on virtual storage constraint relief (VSCR)
became a common feature of IBM announcements, dating from the
SP2 announcement and continuing through the latest MVS/ESA
announcements. It is also possible that when IBM changed global
data areas into private areas, a change in keeping with current
“software engineering” notions, MVS became somewhat less com-
plex in its potential data flows, if more complex in structure.

Global Resource Serialization (GRS). The first services to ben-
efit from this restructuring technique were the enqueue/dequeue
(ENQ/DEQ) routines and console services. The ENQ/DEQ restruc-
ture made it possible for IBM to address a problem of long stand-
ing. Multisystem configurations connected through shared DASD
suffered from unpredictable and often severe degradation caused
by ENQ’s use of the volume RESERVE function to ensure integrity
of data sets shared across systems.
Although some non-IBM solutions to this problem were available,
they relied on a designated shared device to maintain global ENQ
data. IBM’s planners and developers were motivated to provide an
all-IBM solution to the global data-sharing problem, substituting
the potentially higher performance of channel-to-channel adapters
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for the conspicuously shared device. Because of the encroachment
of IBM-supplied code on the users’ code and data area (the “private
area”) and the potentially large size of a global enqueue manager,
the solution had to wait until cross-memory services became avail-
able in MVS/SP2.

The new service and its address space were known as GRS, for
Global Resource Serialization. Even in non-shared systems, all
ENQ and DEQ requests, as well as all related control blocks and
data areas, are respectively executed through, and resident in,
the GRS address space. In shared DASD systems, RESERVEs
may be “demoted” to a new class of ENQ with a scope of SYS-
TEMS. Data-sharing information is passed, along with a token
denoting control, among systems connected by a “ring” of chan-
nel-to-channel (CTC) adapters.7

The CTC ring introduced some new potential performance prob-
lems. In the original SP2 implementation, restarting a broken
ring was very difficult. Instead of reducing shared DASD delay,
SP2 GRS could increase it, either when the ring was broken or
when a slower system held the token for an excessively long
time. The latter source of delay was not to be overcome until
MVS/ESA Version 4 became available.

Some non-IBM global enqueue managers employ a “star” configu-
ration instead of a ring. If the shared device is cached DASD or a
solid-state device, the performance of such a subsystem can be
comparable to that of global GRS at its best, and less susceptible
than GRS to delay caused by a software problem in a single sys-
tem. With the availability of the coupling facility as a suitably fast
shared device, IBM adopted the star configuration for GRS in a
parallel sysplex as an alternative to the ring in OS/390 Release 2.

CONSOLE. Another service address space introduced in SP2 was
CONSOLE. CONSOLE provided the base for a continuing series of
enhancements to the handling of the operator message stream,
thus dealing with another key impediment to MVS’s ongoing
growth. Efficient processing of the console message stream is a
prerequisite for automating the console functions and for even-
tually attempting unattended MVS system operation, a slowly
emerging trend in large data centers.
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Circumstances (the announcement of SP3 in November of 1980
and the short time span between the availability dates for SP2
and SP3) made SP2 something of a shadow release. Very few
customers installed it, preferring to wait for the more obvious
benefits of SP3. This development worked to the benefit of both
IBM and its customers, since the initial GRS implementation’s
fragility and lack of recoverability were unacceptable to many
MVS customers. As happened in many instances of legend for-
mation, GRS continues to have a somewhat tarnished reputa-
tion in spite of continual rounds of improvement.

MVS/SP3
November of 1980 brought another crop of major advances in
the world of MVS. The major hardware announcement was
the first 3081, later redesignated as the 3081D. To support the
new capabilities of the 3081, as well as those of the 3033s
(which had been further enhanced with a new feature called
3033 Extensions), a new release of MVS was announced, known
at that time as MVS/SP Release 3, or SP3.
SP3 (still installed “over” MVS 3.8) brought many far-reaching
changes. A year later, after MVS/XA was announced, it became
clear that some of these new capabilities were in the nature of
“positioning” for XA, but SP3 also became the definitive surviv-
ing version of MVS/370. The new functions and support in SP3
included:

• 3081 support

• 3033 Extensions support, highlights of which (and of the
3081) included queuing channels and the I/O suspend/re-
sume feature, which provided the basis for seldom-ending
channel programs (SECP). Both of these hardware exten-
sions facilitated the offload of high-priority processor cycles
to the I/O subsystem, foreshadowing the much more signifi-
cant I/O overhead reduction that accompanied Extended Ar-
chitecture and MVS/XA. Another element of the new hard-
ware was very efficient support of cross-memory services.

• Extended swap. As MVS evolved, TSO swapping and its
management were revised often. The original VS2-3 version
imposed unacceptable loads on the paging subsystem as the
pages held by idle address spaces were stolen. Physical swap-
ping made management of the swap paging load somewhat
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more efficient, and the introduction of the swap data set (at
first only a single one on most systems) brought a modest
amount of page data set relief. As real storage sizes began to
increase, the introduction of logical swap in SE1 unloaded
the page (and swap) data sets still more, but only when the
real storage resource was already underutilized.

With all of these changes, it was still not wise to mix a TSO
workload with a multiuser online system, such as CICS, on
the same MVS system, because the appearance of real stor-
age constraint led to the joint degeneration of both TSO
and CICS response time. Single-task subsystems such as
CICS are much more profoundly affected by paging delay
than TSO, so even storage isolation was not very effective
in shielding interactive subsystems from the long response
time delays associated with heavily loaded page data sets.
A new approach to solving the paging problem was needed.

Other manufacturers attempted to deal with paging per-
formance problems by using fast solid-state paging devices.
These devices first appeared to the system as IBM 2305-2 fixed-
head files (also known as “drums” because they performed very
much like genuine drums with a single cylindrical recording
surface and one head per track). IBM had stopped making
2305s, and the solid-state devices (SSDs) filled the gap with
better performance and reliability. Eventually, the storage ca-
pacity increased, the simulated device became the IBM 3380,
and some provisions were made for nonvolatile storage. In light
of subsequent developments, it becomes clear that any long-
term success of the SSD approach would have inhibited migra-
tion to the 3090s with expanded storage.

IBM’s paging solution was an algorithmic invention. The na-
ture of TSO swapping was changed, making the speed of mass
data transfer much more significant than that of fast single-
page retrieval.Before extended swap, the set of pages swapped out
did not match the swap-in group, or swap group. Changed (but
not necessarily recently referenced) pages were written out, while
recently referenced (but not necessarily changed) pages were
swapped in. The profound invention in extended swap was to
recognize that a swap group with the same population for
swap-in as for swap-out could be moved intact via blocked I/O.
Even though more pages were moved, the blocking reduced
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the overall swap-in time. The introduction of extended swap
had several benefits to IBM:

¤ The local page data sets could be significantly unloaded
by moving swap groups to and from swap data sets. This
in turn meant that demand paging response time would
improve, facilitating the efficient combining of work-
loads on larger systems.

¤ The swap data sets could be placed on 3380s with their
3-megabytes-per-second data transfer rate. Solid-state
devices provided little added benefit in this application
because data transfer time (rather than page-finding
time) for the first time dominated the swap-in delay. The
3380 offered a faster data transfer rate than the
first-generation solid-state devices.

¤ Use of storage isolation along with extended swap elimi-
nated more than half of TSO page faults and thus made
consistent sub-second response time possible for TSO, lead-
ing to improved user productivity. Storage-constrained sys-
tems could then achieve higher levels of CPU utilization,
as an inhibition on servicing latent demand was eased.

¤ In systems without swap data sets, contiguous-slot allo-
cation, a new approach to constructing paging channel
programs, brought “blocked”8 paging I/O to local page
data sets. Since most of the device-busy time on the pag-
ing devices was related to per-page overhead, contigu-
ous-slot made the benefits of extended swap available
on systems with “locals-only” paging configurations. Be-
cause the size of a block on a 3380 was larger than the
swap set size of 12 slots, efficiency was potentially higher
than with swap data sets. Two factors held back the
full adoption of locals-only: the need for storage isola-
tion of TSO along with locals-only was not appreciated
at first by IBM’s advice-givers, and the initial imple-
mentation of contiguous-slot was flawed.

¤ Most important for IBM’s large systems strategy, the
value of “drums” or their solid-state replacements was
largely negated in the TSO environment.
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• A special form of Virtual I/O (VIO) known as Virtual Fetch
was implemented as a set of MVS primitives and used in a
new release of IMS. Virtual Fetch helped reduce IMS de-
lays due to repeated loading of nonreenterable9 programs.

• Although it was introduced in SP1, extended real addressing
above 16 megabytes was not well used before SP3 became
available. As SP3 could support many more TSO users and
more VIO than prior releases, the added storage was used as
a reservoir of pageable frames, thus avoiding paging I/O. Real
storage sizes through 64 megabytes were eventually sup-
ported in SP3, although little benefit could be derived from
real storage sizes in excess of 32 megabytes.
SP3 was the last major release of MVS/370, although it
eventually acquired a different name. Seven modification
levels of SP3 were shipped, providing new device support
and new releases of the two alternative MVS job entry sub-
systems, JES2 and JES3. MVS/370 was withdrawn from
marketing on December 31, 1991, with withdrawal of sup-
port scheduled for a year later.

1.2.2. MVS System Product Version 2 (MVS/XA)

MVS/SP 2.1.0 and MVS/370 Redesignation
Less than a year after the SP3 announcement, IBM dropped an
even bigger shoe. The 3081 was revealed as a machine with a
dual personality. In addition to the System/370 instruction set
(augmented with a great deal of specialized MVS microcode),
the 3081 also had another mode of operation: System/370 Ex-
tended Architecture, “XA.”
For years it had been apparent to IBM’s product and marketing
planners that System/370 and MVS on System/370 had archi-
tectural limits that could no longer be tolerated. The limits in-
cluded only 16 megabytes of virtual addressability, no more
than 30 high-speed channels, central processor complexes with
no more than two CPUs,10 real storage limited to 16, and even-

MVS History and Evolution 13

9 The term “reentrant” is sometimes used as a synonym for “reenterable.” “Re-
entrant,” and related barbarisms such as “reentrancy,” should be avoided, re-
gardless of common usage, since “reentrant” (a word whose only merit is a
smaller number of syllables) has the plain meaning of “a program that re-enters
itself”—in other words, a loop! The essence of the correct term, reenterability, is
the suffix -ility, correctly suggesting the ability to be re-entered or reactivated
while a previous activation had not yet concluded.



tually 64, megabytes, and an I/O subsystem that made continual
disruptive demands on the CPU and the operating system to
drive I/O and deal with the ensuing interrupts. Carryovers from
System/360 defined many of the 370’s limitations. A new system
architecture was needed, but the customers dependent on the
System/370 and its operating systems could not be expected to
convert their applications to a new hardware and operating sys-
tem architecture.
From its inception, XA had two principal objectives: to overcome
the architectural limitations of System/370, and yet to allow the
vast majority of System/370 programs to run without change.
MVS/SP 2.1.0 accomplished both these purposes, but brought
some often-confusing retroactive changes in nomenclature. The
new operating system was called “MVS System Product Version
2.” The prior version was obviously Version 1, although it had
never been called that before. SP3 became known as SP1.3; its
third modification level was, for example, SP1.3.2. (Versions and
releases are numbered from 1; modification levels begin at 0.)
SP2.1.0 was functionally equivalent to SP1.3.0. As part of estab-
lishing the change of direction attendant to the release of a new
operating system, the operating system was split into two co-
requisite parts. SP2.1.0 proper was only the Base Control Pro-
gram, or BCP. The collection of “Data Facility” products, devel-
oped in IBM’s Santa Teresa Laboratory in San Jose, California,
was gathered together as one product and merged with the for-
merly “free” data management portion of the operating sys-
tem and sold as Data Facility Product/XA, or DFP/XA. A
DFP/370 was announced shortly thereafter. The BCP/DFP
structure became standard in MVS, although nomenclature
changed once again when the basic DFP functions were later
repackaged as DFSMSdfp. IBM later followed the same pat-
tern in creating another broad-function licensed program: sev-
eral network control, debugging, and measurement products were
gathered together as the first version of NetView.
In most cases the conversion to MVS/XA appeared to be less dis-
ruptive than the move from SP1 to SP3. The easy conversion in

14 MVS Performance Management

10 Although the architecture of MVS/370 could theoretically have supported up
to 16 processors, no System/370 processor complex exceeded a two-way config-
uration because of engineering constraints in the basic designs. MVS/370’s de-
sign allowed for only two-way MP. Could n-way MP have been made to work
on MVS/370? Many operating system changes would have been necessary, and
the testing effort alone could have made a lifetime career.



terms of system programmer effort was often followed by a nasty
shock when the production workload was moved to the new XA
system. The surprise was reminiscent of the one experienced
when an SVS system was converted to MVS. XA is built on a
much larger scale than that of MVS/370, similar to the relation-
ship of MVS to SVS. A workload requiring 16 megabytes of real
storage on MVS/370 might need 18–20 megabytes under XA. Stor-
age increment sizes on the first 3081s were 8 MB, so an upgrade to
24 MB was required. The real-storage shock wore off in time as
later machines were announced with larger minimum and maxi-
mum sizes, at a smaller cost increment per megabyte.

Subsequent SP2.1 Releases
Following at regular intervals after SP2.1.0 came several addi-
tional XA announcements:

• SP2.1.1 added support for cache DASD controllers.

• SP2.1.2 brought a revised Auxiliary Storage Manager that
removed inefficiencies introduced with SP1.3.0. The same
changes were also made available for retrofit to MVS/370,
SP1.3.1 and above.

• SP2.1.3 added support for the 3090-200 and expanded
storage. Interim packages (an echo of SUs) added to the
SP2.1.3 base supported vector processors on the 3090s
and a set of availability enhancements, on a mutually ex-
clusive basis.

• SP2.1.5 added support for the 3090-400.

• SP2.1.7 integrated the interim packages based on SP2.1.3
and introduced significant dispatcher improvements.

MVS/SP2.2.0 and 2.2.1
MVS/XA evolution continued with two releases of “SP2.2”: SP2.2.0
and SP2.2.1. They differed only in that 2.2.0 had a new JES2 com-
ponent, while 2.2.1 included a new level of JES3. Changes intro-
duced in the 2.2 level of XA include a vastly simplified system cus-
tomization procedure, removal of miscellaneous functional con-
straints dating back to the first release of OS/360, and a new kind
of data object called Data in Virtual (DIV). DIV has the potential of
providing efficient support for very large data base applications
with sparse reference patterns. DIV is supported by a new kind of
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VSAM data set called a Linear Data Set, which is also used di-
rectly by IBM’s relational data base subsystem, DB2. The VSAM
Linear Data set support is in the Data Facility Product (DFP) and
the DIV function built on it is in the Base Control Program.

MVS/SP2.2.3
On June 20, 1989, IBM announced the last release of MVS/XA,
JES2 and JES3 versions of MVS/SP2.2.3. These releases were
equivalent to SP2.2, except that they operated with the Data Facil-
ity Product of MVS/ESA, DFP 3.1, and a subset of its system-man-
aged storage features. The purpose of these final releases was to
allow installations with an inventory of ESA-capable systems to
migrate to MVS/ESA while allowing older XA-only systems to co-
exist in the same data center.
MVS/XA was eventually dropped from IBM’s product line, and
MVS Version 2 service was discontinued on September 30, 1995.

1.2.3. Enterprise Systems Architecture and MVS/ESA
On February 16, 1988, IBM announced a series of far-reaching exten-
sions to MVS. A new hardware architecture, Enterprise Systems Ar-
chitecture (ESA), was announced, along with a new version (Version
3) of the MVS System Product. The 3090 family of processors was
redesignated the ES/3090; new top models of the 4381 (90E, 91E, and
92E) became compatible with ESA and were announced as ES/4381s.
ESA is an evolutionary extension of XA. New extensions to data
addressing introduce the idea of data spaces which are addressed
using an additional kind of register and object-oriented tokens.
Data spaces are data-only counterparts of address spaces that en-
able application programs and subsystems to address essentially
unlimited amounts of data. The introduction of data spaces in
ESA seems to represent the end of at least one aspect of Von Neu-
mann architecture in the systems that originated with System/360.
One basic characteristic of a Von Neumann architecture (named
for John Von Neumann, an early pioneer of computer designs) is
the equivalence of programs and data. A program could branch to
any arbitrary address subject to boundary constraints, and the hard-
ware would dutifully attempt to execute the bit strings found there
as “instructions.” Such potentially harmful operation is not possi-
ble when data is segregated from code in a data space.
MVS/ESA also includes the notion of hiperspaces (high perfor-
mance [data] spaces) that can substitute an area of expanded or
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auxiliary storage for a data set in pursuit of a prime ESA objective:
avoiding input/output activity on the critical performance path.

Version 3 of MVS/SP went through a series of releases ending with
SP 3.1.3. The second release, with the curious designation of 3.1.0e
(that’s “little e”), introduced the Version 3 Data Facility Product, now
termed DFP/ESA, along with the delivery of hiperspace support.

DFP/ESA brought a major change in data management, Data Facility
Storage Management System, or DFSMS. Until then, little had changed
since OS/360 Release 1 in the way data sets were allocated on physical
devices. For direct access storage devices (DASD) especially, knowledge
of physical device characteristics was needed to ensure efficient use of
space and satisfactory performance. This knowledge was required of
each TSO user and every application programmer coding Job Control
Language statements. With system-managed storage (SMS), the usual
name for DFSMS, the need for special knowledge is restricted to one or
a few storage administrator(s) whose task it is to create a series of class
definitions for data sets.These classes are then in turn used (usually im-
plicitly) by those creating data sets; the information relating to specific
devices or physical characteristics can be omitted. DFSMS through its
class structure can handle such matters as retention and archiving, as-
signing selected data sets to high-performance or high-integrity devices,
and controlled use of device pools according to installation policy.

A “toleration mode” of DFSMS was retrofitted to DFP/XA so
that migration to ESA would not be hindered.

IBM announced significant extensions to MVS/ESA and ES/3090s
in October of 1989. New “J” and “JH” models of the 3090 featured
reduced cycle times and larger maximum storage sizes. PR/SM11

in the new models supported VM/XA in a logical partition, as well
as a rudimentary form of dynamic storage reconfiguration.

In MVS/ESA, new facilities were announced for I/O avoidance, espe-
cially in heavy production batch environments. A new function
called Hiperbatch™ could place sequential and VSAM data sets in
hiperspaces to reduce I/O delay. The new I/O avoidance measures
were available in general without the need to rewrite programs or
even to restructure complex JCL streams. A hardware feature called
Move Page is a prerequisite for Hiperbatch, first supported in the
operating system by an enhancement to MVS/ESA Version 3.
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1.2.4. System/390, ESA/390, and MVS/SP Version 4
IBM further increased the pace of change on September 5, 1990.
In a huge announcement package, IBM announced (among many
other new products) a new line of processors, a new processor ar-
chitecture, a new framework for system management, significant
new connectivity functions and options, and new versions of each
principal mainframe operating system, including the first two re-
leases of Version 4 of MVS.

System/390 and ES/9000
The new architecture, ESA/390, was embodied in three new series of
processors, collectively designated as ES/9000. The three processor
families were somewhat uneven in new features and encompassed a
performance range of over 100 to 1, with processor instruction execu-
tion rates ranging from less than 2 MIPS12 to over 220 MIPS.
All of the new processors could be (optionally) configured to in-
clude the new Enterprise System CONnection (ESCON) channels.
The most homogeneous of the three families was the middle one;
these were air-cooled mainframes similar in overall configuration to
the IBM 4381 processors that they replaced. These “air-frame” IBM
9121 processors were vastly more powerful than their predecessors.
The rack-mounted entry-level machines (denoted 9221s) included updated
9370s and an all-new Model 170 with a deferred delivery date. Many of
the new features (such as the ESA/390 instruction set) were also deferred.
The high-end water-cooled machines (9021s) fell into two sub-cat-
egories. The first ones available mirrored the ES/3090J series in
internal design and relative power, from the 330 and 340 uni-
processors up to the four-way 620 and the six-way 720. Shorter
cycle times provided a modest performance improvement over
similarly configured Js. No five-way was announced.
The second group of top models initially announced included the 820
four-way and the 900 six-way. (An 860 five-way was announced in April
1991.) These three models were not warmed-over 3090Js; they were of a
new design with significantly improved concurrency and bandwidth,but

18 MVS Performance Management

12 MIPS is an acronym for “million[s of] instructions per second,” a measure of pro-
cessor power that is deservedly derided by everyone, who nonetheless all end up
using it under protest. Variables that can affect the accuracy of MIPS rate compar-
isons include the architectural approach to the processor design (as in RISC vs.
CISC), the degree of parallelism built into the processor, the workload mix used or
modeled to make the comparison, the I/O capacity and bandwidth of the processor
complex, and the design, hierarchy, and bandwidth of processor storage.



their initial delivery dates were a year off. We’ll refer sometimes to these
models as “advanced-design” 9021s, later designated by IBM as the
“520-based”9021s. (The 520 was the uniprocessor version of this genera-
tion of systems, announced some time after the larger models.)

SP 4.1
Following a familiar pattern, IBM limited the new content of the
first release of Version 4. Much was new in SP 4.1, but hardly
enough in itself to merit the designation as a new version. How-
ever, the introduction of ESCON channels is the type of hardware
innovation that has always been accompanied by an MVS version
change. High-speed serial channels, implemented with glass fiber
cable connections, can revolutionize data center designs and
make possible the connection of multiple MVS systems in a new
aggregate called a sysplex (SYStem comPLEX). Indeed, the com-
bination of the hardware change and the full set of Version 4 soft-
ware changes in SP 4.1 and SP 4.2 constituted a new generation
of IBM mainframes.
MVS/ESA SP 4.1 was a transitional release. It provided the new base
of Version 4, exorcizing the ghost of MVS 3.8. It also introduced a new
console subsystem as a prerequisite to the full implementation of
sysplex. A new inter-system communication protocol based on ESCON
was included, making possible improvements in GRS and timer syn-
chronization among the individual systems of a sysplex. A final new
feature was a Hardware Configuration Definition (HCD) process su-
perseding the MVSCP process introduced in SP 2.2.

1.2.5. MVS/ESA SP4.2
MVS/ESA SP4.2 brought a larger number of significant changes
than any previous MVS release. A brief list included:

• APPC/MVS for cooperative or distributed applications and
subsystems.
This new type of address space and communication mecha-
nism was used at initial availability by JES, CICS, IMS, and
DB2. There is a strong indication that more IBM subsystems
will trade old structures and connectivities for APPC/MVS as
future releases appear.

• Dynamic Reconfiguration Management built on the
Hardware Configuration Definition introduced in SP 4.1.
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(A “wishlist” favorite dating back to OS/360 Release 1 was
the ability to change device configurations without an IPL.)

• PR/SM Automatic Reconfiguration Support, by means
of which an MVS system in a “standby” partition can take
over the storage and devices of a failing production parti-
tion, given the appropriate programming support to “lis-
ten” to the “heartbeat” of the production partition.

• Console Integration completed a line of development be-
gun in SP 4.1, by using the hardware console for MVS ini-
tialization and thereby eliminating the need for a dedi-
cated local terminal control unit. The operating console
could be a TSO/E terminal.

• Numerous SRM changes were implemented:
¤ Many parameters were removed or changed.
¤ Parameters were introduced to permit better control of

access to expanded storage.
¤ New algorithms were implemented to improve real stor-

age control for “problem” (numerically intensive) work-
loads and others.

• DFP 3.3 support of Dynamic Reconfiguration Management
provided the link from device reconfiguration to use of that
updated information in making allocation choices.

1.2.6. ESA/390, 1991 and 1992 announcements
Just a year after the massive September 1990 announcement,
IBM again produced a (slightly smaller) September Spectacular.
The principal thrust of the announcement was hardware; seven
new processors were announced along with a triple-density 3390
Model 3 and a new intermediate DASD subsystem, the 9340. Also
announced were increased connection distances for all ESCON
channels and increased data transfer rates (from 10 megabytes
per second to 17 megabytes per second) on (only) the 520-based
9021s. The previous three models of that design (9021-820 four-
way MP, 9021-860 five-way MP, and 9021-900 six-way MP) were
augmented by a full selection of additional processor configura-
tions: uniprocessor, dyadic, triadic, and a two-way multiprocessor.
Added to the 9121 “air-frame” family were three new multi-
processors: a two-way, a three-way, and a four-way.
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All of the ES/9000s from the Model 170 on up supported a new
hardware feature called Subsystem Storage Protection, as well
as several less significant enhancements. Subsystem Storage
Protection provides the equivalent of individual storage protec-
tion keys for individual programs within a subsystem address
space. The feature was initially supported in CICS/ESA.

New hardware pushed out the old, as the ES/3090 E and S mod-
els and all 3380 models were withdrawn from marketing.

MVS/ESA was enhanced for the new announcement, although
the MVS announcement, of MVS/ESA SP 4.2.2, was made sev-
eral weeks earlier. SP 4.2.2 is required for support of Subsystem
Storage Protection, as well as enhancements in programming
and operations support of APPC/MVS.

An announcement in February 1992 introduced two more air-cooled
ES/9000s: a low-entry air-cooled frame model, the 9121-190, and
the first rack-mounted model with more than one processor, the
9221-200. Like the models introduced earlier, the 190 and 200
were fully capable MVS/ESA systems, especially when teamed
with the IBM 9340 DASD subsystem.

1.3. Extrapolation
The story of MVS evolution through Version 5 and beyond con-
tinues in the next chapter.

1.4. Chapter Questions
1. List five strengths and five weaknesses of MVS that be-

came evident in mid-1993.

2. Concentrate on the weaknesses. State how each of these weak-
nesses might have tended to make installations abandon MVS.

3. How might each of these weaknesses have been overcome
by changes in MVS? If any of your weaknesses has no cure,
set it aside as an essential weakness of MVS.

4. For the strengths you listed in question 1, how may each be
made even more beneficial to the acceptance and long-term
growth of MVS?

5. How can effective performance management increase the
strengths and mitigate the weaknesses of MVS?
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Chapter

2
The Fall and Rise of MVS

MVS fell on hard times in the early 1990s. In fact, the very via-
bility of MVS and the platform on which it ran became question-
able. How did IBM’s cash cow become diseased, and how did it
come back from the brink of death?

2.1. Continued Evolution—More of the Same
We left the history and evolution of MVS in the last chapter with
the spectacular announcement in September 1992 of MVS/ESA SP
4.2 and other associated products. That was followed in February
1993 by the announcement of IBM’s biggest “iron” ever—the 711-
based ES/9000 9021s. In contrast with the trickle-down announce-
ment style often employed in the past, IBM this time announced a
comprehensive range of new technology processors, from the 711
uniprocessor up to the 8-way 982.
Unfortunately for IBM, “bigger, better, faster”—and more ex-
pensive—didn’t seem to be what the marketplace was waiting
for. That year, 1993, turned out to be the pivot point of IBM’s for-
tunes. Revenue and earnings plunged, and IBM was finally
moved to go outside its ranks for a new CEO—Lou Gerstner. Af-
ter a bleak period of downsizing and reorganizations, IBM now
appears to be on its way back. In this chapter we look at the
MVS part of that turnaround.
Certainly not all of IBM’s problems that peaked in 1993 were as-
sociated with MVS and its hardware platforms. However, it may
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be instructive to consider the forces that were acting on that
marketplace at that time. Understanding what happened to the
mainframe marketplace in 1993 might lead to a better apprecia-
tion of more recent IBM announcements.

2.2. What Went Wrong
It’s hard to come up with all the reasons for the decline of the
mainframe. Maybe the most important was the distrust of accu-
mulated centralized proprietary power. Perhaps administrators
were falling behind in upgrading obsolete processors, thereby
establishing fat targets for those advocating alternative plat-
forms. However, there were less abstract economic pressures.

2.2.1. Forces acting on MVS
External forces that contributed to the perception of an MVS de-
cline included:

• The rise of personal computers
Early personal computers were often regarded as insignifi-
cant toys. However, the third generation of IBM-compati-
ble PCs, built around the Intel 80386 chip, made it possible
for PCs to manage memory in the tens of megabytes and in
turn made Microsoft Windows a viable commercial operat-
ing environment.
Continuing evolution has increased speeds and capacities,
and driven prices down at a dizzying pace. At this writing,
a 150 megahertz Pentium® processor sells for about $450.
A recent newspaper had a typical advertisement for 16
megabytes of 60-nanosecond EDO DRAM for $99, and a 1.2
gigabyte hard drive for $139.1

IBM failed to develop a coherent strategy for marketing
commercially capable PCs and integrating them with what
IBM planners always regarded as the mainstream product
lines. Expensive IBM systems such as Series 1 and the
8100 were pushed aside as the PC became capable of doing
the same tasks at a fraction of the price. The first 80386
machine did not come from IBM, but from the upstart
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Compaq. IBM’s efforts went from failure to failure—the
PCJr, PS/2 and MicroChannel, and early releases of OS/2.
When IBM finally produced a viable version of OS/2—Ver-
sion 3 (“Warp”), Microsoft had already moved on to Win-
dows 95 and Warp could not offer compatibility in either
the user interface or the internal programmer’s interfaces.
IBM’s PC fortunes are not yet fully determined since the
field is so fast-moving, but a visible strategy might help.
Such a strategy, especially one delineating the relationship
between MVS and PCs, seems to be evolving with the addi-
tion of enterprise server capabilities in OS/390.

• Local area networks
Once PCs became accepted as “serious” machines, it fol-
lowed that virtually all the data belonging to a department
or a small establishment could be stored on a few high-ca-
pacity disk drives on a small number of PCs, connected by
inexpensive telephone-grade wiring to other PCs for use
throughout the business. The local area network (LAN)
evolved rapidly from such a loose association to a struc-
tured and managed aggregate whose server systems ran
under control of specialized network operating systems
(NOSs).
The communications capabilities of PCs and NOSs were
initially incompatible with the mainframe’s SNA network.
Thus it took a long time and required considerable innova-
tion for mainframes to become players in local area net-
working.

• Standardization of UNIX
UNIX is an operating system of the same generation as
MVS. However, it was developed originally by AT&T’s Bell
Telephone Laboratories as a streamlined control program
for electronic telephone switching equipment, instead of as
a commercial product for general-purpose computers.
AT&T did encourage the latter use by making UNIX and
its companion programming language, C, available to uni-
versities for teaching and experimentation purposes.
With no acquisition cost and easy portability to any number
of hardware platforms, UNIX became the everyday operating
system and C the most common programming language in
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many universities. However, given the combination of an
operating system with available source code, a complemen-
tary programming language close to the hardware, and the
nature of the university community, the development of
variant versions of UNIX was inevitable. When it became
apparent that those variants were mutually incompatible,
standardization became an important goal along the path
to commercial viability for UNIX. After an extended period
of standards rivalry among different factions, a consensus
emerged, standards were approved, and UNIX became per-
ceived as the “open” system—as opposed to MVS as the ar-
chetypal “proprietary” system.

• RAID

During the 1980s, the reliability of disk storage devices did
not grow as rapidly as their capacity. An intrinsic failure
rate of (for example) one hard error per year per gigabyte
became unacceptable as storage capacities grew to the tens
of gigabytes.

A group of researchers at the University of California at
Berkeley proposed an alternative: instead of challenging
the hardware technology to deliver acceptably high intrin-
sic reliability, they would accept the inevitability of failures
and use a combination of additional hardware along with
software to deal with them. The combined technology they
proposed was known generically as RAID, for Redundant
Arrays of Inexpensive Disks.2 At least six variations were
proposed, each with different tradeoffs among speed, ca-
pacity, and error recovery. The most commonly imple-
mented RAID implementation is known as RAID-5, which
includes rotating redundant parity to allow reconstruction
of data should any single disk drive fail.

Once it became feasible to imbed the RAID logic in inex-
pensive disk controllers, a flood of RAID implementations
made its way into the UNIX and PC marketplaces. It soon
became commonplace for network servers to incorporate
such RAID subsystems.
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• The Internet

The explosive growth of the Internet was fueled by the suc-
cess of the World Wide Web (WWW). The “network of net-
works” had been around as long as MVS but had been im-
portant only in limited markets, until WWW provided the
first link in organized access for casual users. Commercial
products oriented to WWW now come out weekly, and ev-
eryone who wants one can now have a Web Page.

Until late 1995, MVS and the Internet seemed to be
strangers to each other.

• IBM’s proprietary imperative

The common theme of the foregoing items is openness of
interfaces; the theme for IBM and notably MVS for most of
its life was proprietary interfaces, closed to all but IBM and
those who were favored as IBM’s partners. Where the
world had ASCII, MVS had EBCDIC. When the standard
for local area network connections was Ethernet, IBM of-
fered token-ring. When the near-universal standard for
network communications was TCP/IP, IBM offered SNA.

IBM’s preference for proprietary interfaces made it easy
for proponents of “open systems” to deride MVS as being
out of step.

• The application development backlog

Jokes abound on the subject of programs so old the source
code had disappeared. As businesses grew and evolved, ap-
plication users placed heavy demands on the application
owners to add and change functions and to update the user
interfaces of these applications. New concerns such as
achieving readiness for the year 2000 increased the pres-
sure on the application development resources, and there
were always newly conceived application projects as well.
The aggregate effect was a growing backlog of application
development projects such that the deployment of a new
application often takes two years or more after the require-
ments have been articulated.

In fast-moving businesses, such an implementation delay
is unacceptable. A common consequence is that those in
need of an application may take matters into their own
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hands—often by putting the essence of the application on a
PC or UNIX system.

2.2.2. MVS in the bunker
Let’s now summarize the problems of MVS as of 1993:

• A perception that MVS was closed and proprietary and
therefore out of step and obsolete

• Vigorous competition from UNIX systems and rapidly
evolving PCs, alone and in networks

• Non-participation in emerging trends

• Hardware that was expensive in many ways: acquisition
cost, space, energy consumption, …

• A diminishing lead in raw power

• Systems management complexity in areas such as installa-
tion and customization as well as disparate configuration,
measurement, and tuning approaches across the system
and its subsystems

• A slowing of IBM’s pace of announcements, leading to a
questioning of IBM’s commitment to continuing success of
large systems

• Limits to growth within a single MVS image

• Confusion about grandiose IBM initiatives such as SAA
and SystemView

2.3. A Recipe for Turnaround

As IBM’s mainframe fortunes hit bottom in 1993, IBM was well
along in preparing its response. The turnaround was signaled
by a blockbuster announcement on April 6, 1994—one day short
of the 30th anniversary of the System/360 announcement. Be-
fore we go through the content of that announcement, let’s re-
view what the objectives of IBM’s plan might have been.
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2.3.1. Likely objectives for the 1994 announcement
• Solve the absolute and relative cost problems

One of the attractive justifications for the movement to
“dump the mainframe” was that just about any alternative
solution, especially to a hardware configuration that was
two or three generations obsolete, was less costly. A frac-
tion of those who took such a course discovered enough vir-
tue in an alternative platform to remain committed to their
choice.3

To preclude continued losses of this type, IBM needed to
make the superficial cost comparisons more favorable be-
fore the alternative platforms became more competitive on
their merits irrespective of price.

• Put Humpty Dumpty back together
When OS/360 reached the marketplace in 1965, it was
complete, including all access methods and the compilers
necessary to build applications. (Subsystems such as CICS
and IMS were never part of the operating system.) After
the Consent Decree of 1969, IBM’s June 23, 1969
“unbundling” announcement, along with IBM’s organiza-
tional evolution, led to the MVS of 1993 existing in a multi-
tude of separate pieces that were (in theory) merged only
when a customer installed them.
This problem was not solved in the 1994 announcement
but was addressed in subsequent announcements.

• Bring space and energy requirements up to date
Part of the forbidding atmosphere of the mainframe data
center was the need for special environmental arrange-
ments: space, distance limitations, raised floors, special
power, special air conditioning, and, most special of all,
chilled water and its unique problems and requirements.
In addition to the cost of the infrastructure necessary to
support a large mainframe, the cost of energy itself is a sig-
nificant expense.
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• Focus system management on availability and service de-
livery of key applications and workloads

As earlier editions of this book recounted, system manage-
ment in MVS was organized around the measurement of
system resource delivery to workloads. It took additional
products to look at the workloads themselves. These prod-
ucts proliferated and evolved over time to become indis-
pensable. However, the information revealed by these per-
formance monitors had to be fed back manually to the op-
erating system; correcting application and subsystem per-
formance problems was complex and difficult.

• Simplify (a lot!) how work is defined and managed

Managing an MVS-based system always seems to require a
large number of overhead staff people. There are operators
and their management, JCL analysis specialists to manage
production batch workloads, help desk staff to assist
on-line users, and a whole array of system programming
and analysis specialties to be staffed—“real” system pro-
grammers who write code to extend and modify system
function, performance and capacity specialists, specialists
in the arcane language of SMP-E to manage system compo-
nent and program product installation, ….

If the management of the system could be made sim-
pler—allowing a single operator to watch over multiple
MVS images, for instance—the cost of running an MVS in-
stallation could be brought down. If the need for exhaus-
tive SMP-E analysis prior to installing any new or up-
graded programs could be reduced drastically, currency
would improve. There are many such simplification oppor-
tunities, and all of them needed to be examined and evalu-
ated if MVS were to continue as an economically competi-
tive operating environment.

• Include SMS and application subsystems in overall system
management approach

Managing the optimal use of storage devices to accommo-
date an enterprise’s data was viewed as a separate spe-
cialty. The introduction of DFSMS and its competitors
made the job more efficient, but it still required and devel-
oped a separate set of skills. Similarly, a layer of specialists
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grew around CICS, JES2 and JES3, IMS, DB2, VTAM, and
their non-IBM counterparts. Each segment of this labor
force became isolated in its specialty; workload balancing
could not be attempted without extensive retraining in-
vestment.

Simplifying the job of subsystem management and foster-
ing the development of portable skills was another key
need for the future health of MVS.

• Implement a solid client-server development environment
for developers, testers, and end-users

Part of the reason for the application development backlog
was the absence of an integrated environment for develop-
ment of engineered client-server applications based on
MVS as the server. All of MVS’s strengths can be focused
on file and data-base serving but business-critical applica-
tions demand more than function-based servers. They re-
quire closely coupled client-server applications in which
the server “knows” the client and vice versa.

The development environment of MVS until very recently
supported only MVS-based terminals as user interfaces.
PC-based graphical user interfaces (GUIs) did not inte-
grate with applications on MVS. An integrating solution
was needed.

2.3.2. The April 1994 announcement
The IBM announcements of April 6, 1994 provided the first
round of comprehensive responses to the intrinsic and perceived
problems of mainframes. In a huge, rich package, these were the
highlights:

• New hardware technology—a midrange processor complex
built on Complementary Metal-Oxide Semiconductor
(CMOS) technology. At one-fourth to one-third the speed of
high-end machines, CMOS could not at that time fully re-
place the faster but hotter-running and more complex bipo-
lar technology where maximum single-engine speed was
needed.

• A new architectural element—the Coupling Facility, an in-
dependent processor complex without channels but with
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high-speed fiber-optic links which could be connected to
multiple processor complexes supporting MVS images.

• A new multiprocessing architecture—parallel-coupled, in
which application data is shared across up to (initially) 32
MVS images by means of ESCON channels and directors,
and utilizing the Coupling Facility to ensure the integrity
of the shared data. The multisystem configuration is called
a parallel sysplex. Various software subsystems, notably
CICS Version 4, were announced as “enabled” for parallel
sysplex exploitation, and planned future enablement was
announced for others.

• A new version of MVS—MVS/ESA SP Version 5, support-
ing the Coupling Facility and providing the operating sys-
tem support for the parallel sysplex. A part of Version 5 is a
new mode of operation for the System Resources Manager
(SRM): goal mode, provided by a new Workload Manager
(WLM) component. Chapter 7 describes WLM goal mode in
detail.

• A new package solution—the Parallel Sysplex Offering, of-
ten known by the name of its core hardware as the Parallel
Transaction Server (PTS). PTS (the IBM 9672 models E
and P) is a single-box parallel sysplex, containing from one
to eight CMOS processor complexes,4 each a 2-way (dyadic)
to 6-way tightly coupled single-sided multiprocessor. At
least one of the CECs (or an LPAR within a CEC) needs to
be configured as a coupling facility.

The offering also included, at a comprehensive discounted
price, all the software needed to establish an MVS parallel
sysplex with CICS and the IMS Data Base Manager.

• A 10-way high-end system, the ES/9000 9X2.

• A separate CMOS Coupling Facility, the IBM 9674.

IBM added to the volume of the announcement and introduced
some confusion by announcing the unrelated PowerParallel
UNIX machines on the same day. This announcement package
became known as IBM’s “parallel announcement.”
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A great deal of instant analysis followed the announcement and
the subsequent delivery of the PTS. Even though IBM speakers
made numerous presentations pointing out the expected in-
creases in CMOS speed, various pundits suggested that the new
hardware was unsuitable for all but the most trivial of work-
loads. When the experiences of early users proved to be other-
wise, the CMOS machines gained more respect.

2.3.3. Subsequent announcements
Following the April 1994 announcements, IBM continued to in-
vest in the MVS marketplace, completing the response to the se-
ries of negative forces that existed in 1993. Some high points of
those announcements:

• The 9672 (E/P) Parallel Transaction Server was re-an-
nounced as a separate machine, not just as part of the Par-
allel Sysplex Offering. There was wide recognition that the
PTS was in fact a general-purpose machine even though
IBM attempted to position it to favor its specific design tar-
get of high-volume simple transaction processing. It turned
out that such a machine was well-suited to handle most
batch and TSO workloads excluding those that were
heavily CPU-intensive with single tasks.

• IBM renewed the name of its first DASD product, introduc-
ing RAMAC, a high-end RAID subsystem with a small foot-
print. A double-capacity RAMAC II was introduced in a
later announcement.

• In September 1994, IBM announced the Parallel Enter-
prise Server, a new packaging of the 9672. The new models
were designated as Model R. A single CEC was packaged in
a very small cabinet. Initially, the R models used the same
CECs as those in the PTS. Subsequent announcements in
1995 introduced the R2 and R3 models, with CPU speeds
twice those of the original PTS, and larger CEC configura-
tions, up to a 10-way. The 10-way RX3 has roughly the
same processing power as the ES/3090 600J. Only the R
models survive in the product line; multiple-CEC configu-
rations may be built by bolting single-CEC models to-
gether.
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• The evolution of MVS continued with the announcements
of SP 5.2 and MVS/ESA SP 5.2.2. Key developments in
these releases were the more complete integration of
OpenEdition MVS, introduced in SP 4.3, along with en-
hancements to broaden the reach of MVS further into the
enterprise. Additions for client-server application develop-
ment, support of the Open Systems Adapter, UNIX XPG4
branding of OpenEdition, extensions to permit MVS to act
as a LAN file server, all contributed to the repositioning of
MVS as a broadly based open server. SP 5.2.2 also includes
significant advances in dispatching and control of execut-
able work units, reducing CPU contention and increasing
the accountability of work units to the processes that cre-
ated them. Some of these advances were necessitated by
the need to provide full support of UNIX process structures
in OpenEdition; regardless, they contribute to the flexibil-
ity of MVS’s operating environment.

• The existence of MVS as a product (or at least a product
name) came to an end with the March 1996 shipment of
OS/390 Release 1. IBM completed its response to the list of
MVS’s deficiencies by re-integrating what had become a se-
ries of 30 or more disparate products into a base layer of
function along with several optional layers. All of the com-
ponents (now termed “elements”) are integrated and tested
together as a system. Formerly priced elements are now in-
cluded in the base. Painstaking analysis of new release
content can be bypassed with a simple replacement instal-
lation procedure.
OS/390 prices are significantly less than those of the for-
mer MVS and associated products, and the release sched-
ule is fixed at twice a year.

2.3.4. Another “September Spectacular”
Continuing the tradition of recent years, IBM put together an-
other big announcement package on September 10, 1996. High-
lights included:

• A new version of the Parallel Enterprise Server, called
Generation 3, or G3. Since IBM used both Rx2 and Rx3 des-
ignations for the second generation, the 14 G3 models
ranging from uniprocessors to 10-ways are known as Rx4s.
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Model designations are RA4 and R14 uniprocessors, RB4
and R24 dyadics, RC4 and R34 triadics, R44 through R94
(where the middle digit is the number of processors), and
two ten-ways, the RX4 and the more powerful RY4.
The larger versions of these systems can replace ES/9000s
as powerful as the Model 900, the largest of the 520-based
systems, with the savings in space and environmentals
that are characteristic of CMOS processors. They also can
include an integrated cryptographic feature implemented
through a CMOS coprocessor.
With this new CMOS generation, the speed advantage of
bipolar implementations exists in only the latest systems.
It seems to be a safe prediction that the CMOS speeds
would surpass bipolar speeds within two or three more
years.

• A different new version of the CMOS technology called
Multiprise 2000 Servers. There are 13 models in this
range. Seven of them are uniprocessors and there are two
two-ways, two three-ways, a four-way and a five-way. The
hardware configurations include processor storage of up to
four gigabytes and a full range of optional features includ-
ing the cryptographic coprocessor. The lower models of the
range are more likely to be used as VM or VSE systems,
but they can be configured with OS/390.
The Multiprise 2000 systems are intended to be uncompli-
cated stand-alone configurations. They are not capable of
connection to an external coupling facility and thus cannot
be part of a parallel sysplex (except by using the test-mode
ICMF code in a logical partition). Innovative packaging of
mirrored SCSI-based hard drives with cache memory
carved out of processor storage provide an “internal disk”
facility with high performance and capacity of up to 288
gigabytes. A top-of-the-line model with five engines and
288 GB of DASD covers less than one square meter (about
10 square feet) of floor space.
These systems are offered as an easy entry to the Sys-
tem/390 server world through a series of Enterprise Server
Offering (ESO) packages. These combine pre-configured
hardware and software (VM/ESA, VSE/ESA, or OS/390)
along with IBM services.
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• RAMAC 3 and the IBM announcement of four products
made by Storage Technology Corporation (STK) but now
marketed by IBM with some IBM-manufactured content.
These are the RAMAC Scaleable Array Storage (STK Ko-
diak), a new model of the RAMAC Virtual Array Storage
(STK Iceberg), and the RAMAC Electronic Array Storage
(STK Arctic Fox).
RAMAC 3 has approximately twice the capacity and up to
twice the performance of RAMAC 2. The subsystem can
connect to a 3990 Model 6 controller or can include a new
9390 controller which is the equivalent of one or two 3990s
in about half the space of a single 3990.

• Completion of the X/Open XPG4 UNIX test suite and
award of UNIX 95 Profile Brand Certification to OS/390
(as of Release 2) by X/Open Company, Ltd. This recogni-
tion, announced September 30, 1996, completes the jour-
ney started with the first release of OpenEdition MVS. Few
believed at that time that it was IBM’s goal for MVS to be-
come in all senses a UNIX system, but now it is just that.

• OS/390 Releases 2 and 3. As promised in the initial OS/390
announcement, Release 2 was available at the end of Sep-
tember 1996 and Release 3 is to be available late in March
1997. Performance-related content in Release 2 includes
Coupling Facility policy enhancements and GRS connectiv-
ity using the Coupling Facility with a “star” configuration
as an alternative to the GRS ring configuration available
to date.
Release 3 continues to exploit the parallel sysplex and
Workload Manager, with additional parts of the system en-
abled for load sharing and improved resource manage-
ment. These include TSO, which now benefits from VTAM
generic resources, allowing each LOGON to be directed to
the system in the sysplex with the lowest workload.
APPC/MVS work requests can be balanced across systems
on a session basis, again by exploiting VTAM generic re-
sources and WLM.
The Workload Manager in Release 3 is enhanced to provide
generic resource support for TSO and APPC/MVS, and to
add DB2 stored SQL procedure support. Another new ca-
pability, “adaptive resource management,” adds sys-
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tem-wide and goal-oriented I/O priority management, ad-
dress space management services providing dynamic man-
agement of application server address spaces, and manage-
ment of individual work units within server address spaces
based on business unit definitions. The latter capability
eliminates the need to set goals for server address spaces.
A final change in Release 3 is to provide UNIX kernel ser-
vices at all times. The UNIX subsystem is now started con-
currently with the Base Control Program.

• SmartBatch for OS/390. This separately priced product is a
successor to the BatchPipes offering. It extends the previ-
ous capabilities to include splitting batch jobs into parallel
work units that can run across images of a parallel sysplex.
It also includes a dynamic workload balancing capability
for batch in a parallel sysplex.

• Sysplex Timer Model 2. This new model of the Sysplex
Timer adds fiber-optic connectivity to increase the distance
between processors and the timers. Through the use of ca-
bling and connection features, a timer (or preferably a pair
of timers) can be connected to up to 32 systems, the current
limit for a parallel sysplex.

• Virtual Tape. This new subsystem combines tape car-
tridges and disk storage to project virtual devices and vol-
umes. The full capacity of tape volumes can be exploited by
combining logical volumes on a physical volume. The inter-
mediate disk storage enables quick “remounting” of a data
set that will eventually be stored permanently on tape, but
which might be required in a job step just after the one in
which it had been written.

2.4. Extrapolation
IBM’s Chairman, Lou Gerstner, has been speaking often about
“network-centric computing,” in which high-bandwidth connec-
tions are exploited to deliver data, as complex as full-motion
video, as required, to user work stations, with the necessary pro-
grams and subsystems residing on servers. (In today’s environ-
ment the programs, as Java applets, would be downloaded along
with the data.) The usual means of connection would be a public
network connecting to an organized server facility such as the
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World Wide Web. This type of connection could also exist in pri-
vate networks.
This form of server-biased client-server computing is an ideal
application for OS/390. MVS and its hardware platforms have
the capability for high-speed multiple concurrent data trans-
fer that will be the essence of such services. As MVS in OS/390
continues to adopt and integrate open communication stan-
dards, it will have no difficulty adapting to new connectivity
options such as cable modems, direct-broadcast satellite,
ADSL,5 and ISDN (Integrated Services Digital Network).
In more traditional settings, the cost comparison between MVS
and alternative platforms is much more nearly equal now, and
likely to improve more as IBM’s CMOS production increases
with further improvements in price-performance. As OS/390
takes hold, the potential to reduce staff or to divert system pro-
gramming staff to non-overhead functions can be realized.
Parallel sysplex will take off as well, once potential cost savings
become well known; the potential efficiency of the architecture
is realized; and maximum enablement of subsystems in OS/390
and widespread conversion from older versions of MVS to
OS/390 is achieved. The use of Workload Manager goal mode
will spread as soon as the instant mythology that grew up
around it is debunked and CIOs start realizing that the man-
agement of workload service levels is indeed as simple as WLM
promises.
With the obstacles to MVS growth and proliferation removed,
IBM can turn its marketing efforts back to fostering the devel-
opment of new OS/390 sites. A concerted effort to reach the uni-
versities has been needed for some time. MVS is an old operat-
ing system, but at the same time a thoroughly modern one, and
very suitable for study in university curricula.
For a while it has been fashionable to denigrate the main-
frame and to celebrate its departure from an establishment.
(In most cases the displaced “mainframe” is a hopelessly obso-
lete 4341 or 3083 that today could be replaced by a P/390
PC-based MVS machine or an R/390 RISC/6000-based MVS
machine.) This author believes that the fashion will change as
the mainframe changes. Indeed the short-term results of the
1994 and subsequent announcements appear to be very posi-
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tive. IBM’s mainframe MIPS shipments grew by 40 percent in
1994 and were exceeded in 1995 by further growth of 60 per-
cent—and IBM’s stock price responded in similar fashion.

2.5. Summary

MVS has been a remarkably successful operating system. It has
kept up with and responded to numerous generations of technol-
ogy, architecture, and processors through more than a quarter
century of evolution. Capabilities and attributes not dreamed of
by its original designers have been integrated in its structure,
and its reliability now approaches the ideal of continuous opera-
tion.

However, a once-substantial body of opinion holds that MVS is
now obsolete, and that MVS systems can (and should) be re-
placed by some kind of assemblage of open systems in cli-
ent-server configurations. What those advancing suggestions
don’t say is how all of the resource management functions of
MVS can be accomplished in a network with no hub. The ap-
proach of more concentrated server environments, typified by
the move to network-centric computing, will create greater need
for bandwidth, concurrency, and resource management—all
MVS strong points.

On the other hand, the requirements of today’s environment
are different and more demanding than those of a few years
ago. IBM has devoted the resources to the appropriate and
more or less timely enhancement of the MVS hardware and
software environment. Continued successful competition for
resources, which are limited even in IBM’s laboratories, de-
pends on the commitment that IBM’s customers invest in the
MVS environment. IBM seems to have concluded already that
the demand for MVS remains strong, making a prodigious in-
vestment in OS/390. OS/390 has advanced beyond mere re-
packaging; Release 3 represents significant functional en-
hancement and simplification.

The [mis]perception that MVS is a difficult system to manage
efficiently and effectively must be overcome if commitment to
MVS is to be preserved and strengthened. Successful perfor-
mance management is a necessary step in overcoming that per-
ception and showing the value of MVS.
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2.6. Chapter Questions
1. List five strengths and five weaknesses of MVS (pre-OS/390)

that have become [more] visible in today’s environment.
2. Concentrate on the weaknesses. State how each of these

weaknesses tends to make installations abandon MVS.
3. How might each of these weaknesses be overcome by

changes in MVS? If any of your weaknesses has no cure, set
it aside as an essential weakness of MVS.

4. For the strengths you listed in question 1, how may each be
made even more beneficial to the acceptance and long-term
growth of MVS?

5. To what extent has your installation adopted the recent
changes in MVS, including OS/390, Workload Manager
goal mode, parallel sysplex, OpenEdition, and current lev-
els of subsystems? If you have moved ahead, what has been
the effect on the distribution of human resources in the
data center? If you have not, why not?
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Chapter

3
Physical Resources

MVS has no work of its own to do. Everything it does, it does on
behalf of the workloads that run under its control. What, then,
does it do? MVS manages resources and the access of work-
loads to them. Of course, an operating system does far more by
providing services and handling exceptional conditions, including
error recovery. In our concern for the performance management as-
pect of MVS, we’ll ignore those functions for the most part. In this
chapter we examine the physical (hardware) resources that MVS
manages.
The end result of MVS’s management of workloads is the inter-
action of those workloads with the physical resources of the sys-
tem. We shall examine those resources and some of the difficul-
ties workloads can encounter in trying to use them. In doing so,
we will become aware of the need for the more abstract kinds of
resources—virtual and logical—that MVS creates and supports
in order to manage the physical resources.

3.1. CPU or Processor
Every program executes some instructions. The essence of a
work unit such as a batch job, CICS transaction, or TSO com-
mand is the set of instructions to be executed. The work unit be-
gins when the first instruction is executed, and ends (normally)
when it executes a final instruction to return control to the oper-
ating system or the subsystem under which it runs.
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MVS chooses a work unit to receive access to the CPU and dis-
patches it by executing a LOAD PROGRAM STATUS WORD (LPSW)
instruction with the address of the first instruction of the work
unit specified in the program status word (PSW) to be loaded. In
the case of a subsystem like CICS, MVS dispatches the subsys-
tem, and the subsystem’s own internal dispatcher selects an in-
ternally known work unit to be given control of the CPU. Di-
rectly or indirectly, a productive work unit begins using a CPU
by executing instructions.

To be useful, however, any program needs more than just the
CPU. It must communicate in some way with the outside world,
and ultimately with the human being who is using it. It usually
needs data from some device in the input/output configuration
or from some other work unit in the operating system environ-
ment. It may need some information known to the operating
system, such as the time or date. Finally, it almost always re-
quires working virtual storage, in addition to the storage needed
for the program itself. (A well-written program in MVS does not
alter its own storage. This discipline is the basic criterion for
reenterability, an attribute identifying a program of which a sin-
gle copy may be used by more than one work unit at a time.)

Each of these requirements is satisfied by some kind of interac-
tion, outside of the current instruction stream, which is handled
by MVS. A program usually requests an MVS service by issuing
the SUPERVISOR CALL (SVC) or PROGRAM CALL (PC) instruction.
Each of these instructions causes a change in the flow of control
and causes an MVS service routine to be executed. When an
SVC-invoked service routine completes its work, and upon the
occurrence of certain other interruptions, the MVS dispatcher
may get another opportunity to choose the next work unit to be
dispatched (by performing the same operation as at initial dis-
patching, but with a restart address denoting the instruction
following the SVC), and thus to receive more CPU service. (The
dispatcher does not get to make the choice of who is to get the
CPU next if an MVS service routine returns control of the CPU
directly to its invoker, as is the case for PC-invoked services.)
Many of the service requests (such as for an unbuffered I/O op-
eration) cannot be completed immediately, so the requesting
work unit is placed in a WAIT state pending completion of the
request. The dispatcher is invoked again to ensure that the CPU
does not go idle if any other work unit is ready to run.
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I/O operations take hundreds to thousands of times as long as
CPU instructions to complete, and the execution of I/O opera-
tions does not require the CPU except at initiation and comple-
tion. A substantial opportunity exists during an I/O WAIT pe-
riod to dispatch a different unit of work and keep the CPU as
busy as possible. (We have just defined multiprogramming. Of
course, there is also the little matter of deciding which work unit
gets to use the CPU at each such opportunity.)
The simple proposition of putting work into the CPU and letting
it run to completion becomes complex in a modern
multiprogramming operating system. MVS must have a way of
knowing which work units are ready to receive service and
which are waiting for the completion of some activity asyn-
chronous with the CPU. The operating system must also deter-
mine, each time that the dispatcher has a chance to choose a
work unit, which one is the most appropriate to dispatch next.
This kind of decision is made hundreds or thousands of times
per second. The lists of different kinds of work, and the rules for
choosing the next dispatchable unit of work, are the objects and
parameters of CPU performance management.
Before CPU management can be fully covered, an understand-
ing of CPU configurations is necessary. We shall look now at the
various types of CPU configurations supported by MVS. The
treatment is in roughly historical order.

3.1.1. Uniprocessors
The simplest CPU configuration is the uniprocessor. As the
name denotes, there is one PSW, one set of registers, one set of
input/output connections, and one active instruction stream.
Thus there is no simultaneity in processing, except what
might go on beneath the “Principles of Operation” interface.
Fast uniprocessors, beginning with the IBM System/360
Model 91 and continuing through most current large systems,
have always had some level of overlap in their operation, such
as between the instruction fetch operation and the execution
of those instructions. What distinguishes a uniprocessor from
a multiprocessor is the single set of architecturally defined re-
sources, as opposed to those included in the engineering em-
bodiment of the architecture.
MVS in a uniprocessor does not need to do those extra things we
will see to be necessary in a multiprocessing environment. Thus
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the throughput of a fast uniprocessor (assuming no constraint
in other resources) can be higher than that of a multiprocessor
built to the same architecture, using the same basic technology,
and processing instructions at the same overall rate.

Uniprocessors under a given machine architecture can become
faster in only two ways: (1) the basic technology (typified by ma-
chine cycle time) gets faster, and (2) the engineering designs get
to be more efficient. An example of the latter might be to reduce
the number of cycles needed to execute a commonly used in-
struction. The historical trend in uniprocessor speed improve-
ment is about 15 to 20 percent per year. Unfortunately, the his-
torical trend in demand for CPU cycles shows an increase of 30
to 50 percent per year. The gap is bridged by the use of
multiprocessor configurations.

3.1.2. Multiprocessors
The word “multiprocessor” covers many different kinds of sys-
tem configurations. IBM has employed the term “loosely cou-
pled” multiprocessing to describe a JES3 configuration, in which
several MVS CECs1 are interconnected through chan-
nel-to-channel adapters. One might also extend the definition to
encompass JES2 multiaccess SPOOL—CECs interconnected
with shared DASD—and even more tenuously interconnected
configurations.

Here, however, we shall use a more restrictive definition of
multiprocessing—the kind originally named tightly coupled
multiprocessing, or TCMP. In TCMP, at least two “processors”
similar to uniprocessors share the same real storage and are
controlled by a single copy of an operating system such as MVS.
Another name for this configuration is symmetric
multiprocessing or SMP, putting emphasis on the equal access
by each processor to all of the non-processor functions of the
complex. In the following discussion, we will see instances of
asymmetric MP as well.
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System/360 Model 65MP
IBM’s first production MP system of interest in the evolution to
MVS was the MP65, a system using two System 360 Model 65s,
modified to include some essential MP functions and “bolted to-
gether” via an “MP box” to operate under the control of a modi-
fied version of OS/360 MVT.
What are those MP functions? In a two-way MP system, each
processor knows of only one other. If some significant event oc-
curs that one processor does not know about, there is only one
other processor that might be responsible. It may appear suffi-
cient in two-way systems such as the MP65 to provide a simple
“shoulder tap” instruction, so that each processor can cause an
interrupt to the other. In practice, however, the inter-processor
signaling mechanism is also a convenient alternative to normal
operating system communication conventions, and the proces-
sor may issue a shoulder tap directed to itself. The SIGNAL
PROCESSOR (SIGP) instruction introduced the notion of pro-
cessor address, so that the interrupted CPU can learn the iden-
tity of the interrupter.
In every System/360-, System/370-, or System/390-based MP
system, each processor must have its own copy of the byte ad-
dress range 0–4095. This “low storage” area had unique archi-
tecturally designated functions in System/360: All old and new
PSWs, the Channel Address Word (CAW), Channel Status Word
(CSW), Interval Timer (obsolete since System/370), and Ma-
chine Check Logout Area are all assigned fixed addresses in low
storage. Many of those functions continued in System/370, and
later in Extended Architecture (XA) and in Enterprise Systems
Architecture (ESA).
To maintain the independent operation of each processor, each
needs its own image of the first 4K of low storage. This need is
met through the addition of a new register, the prefix register, to
each CPU, and of two new instructions. These two instructions
were the first in the System/360 instruction set to break the
solid bond between the addresses that programs use and the
physically fixed order of an array of some storage (memory) de-
vice. SET PREFIX designates an address (divisible by 4096) in ab-
solute storage2 that will subsequently be known as real byte 0
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for the current processor. The address translation covers real bytes
0–4095. The reciprocal translation is also done. Real storage refer-
ences to the prefix page are translated to absolute page 0.
STORE PREFIX stores the address from the prefix register in the
word of main storage denoted by its operand address.

System/370 Multiprocessors
In contrast with MVT, MVS was designed with multiprocessing
support included from “day one.” Access to unique but
unsharable system resources was serialized through several
software locks. (MP65 support had only one lock, thus spending
proportionally more of its time than MVS “under lock,” appear-
ing at those times like a uniprocessor. The indifferent MP per-
formance of the MP65, in the range of 1.6 to 1.7 times that of a
UP, led to another pernicious legend—that MPs were intrinsi-
cally inefficient. MP efficiency has increased steadily since that
time through engineering refinement, technology advances, and
software improvements.) System/370 (and thus MVS/370) was
still limited to two-way MP. Although prefixing, SIGP, and the
MVS/370 locking structure could handle up to 16 CPUs, the Sys-
tem/370 engineering designs and the channel subsystem could
not accommodate more than two.

Early System/370 MPs. The first System/370 MPs were the Sys-
tem/370 Models 158MP and 168MP. The 158MP employed cy-
cle-stealing internal channels, while the 168MP had external
channels. In each case, each set of channels was associated with
a single CPU, eventually (in an early MVS enhancement) becom-
ing known as a channel set and supported by a system availabil-
ity feature known as channel set switching. Such a feature was
necessary because many I/O control units (for instance, the IBM
3705 communications processor) could be attached to only one
channel. If a CPU failed, its uniquely attached devices became
unreachable by the operating system, and the availability bene-
fit of the MP hardware was diminished. Channel set switching
allowed devices attached to only one channel set and with
unique device addresses to be reached from either CPU, keeping
the system up and running instead of requiring an IPL when a
CPU failed. Such devices were said to be asymmetrically3 at-
tached.
Considerations of channel set switching are typical of the pains-
taking configuration analysis and specification necessitated by
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the architectural bonds among CPUs, channels, I/O control
units, and devices in System/360 and System/370. In our consid-
eration of the CPU resource, it is sufficient to note that
MVS/370 was barely able to cope with two CPUs and their chan-
nels. XA, with its independent channel subsystem, was needed
to simplify the connections and thus make MP beyond two-way
feasible.

Succeeding the 158MP and 168MP were MP versions of the
3031 and 3033. In all of the System/370 MPs, an essential char-
acteristic was reconfigurability. Each CPU, with its channels,
could operate as an independent system under a separate con-
trol program (physically partitioned mode), or they could be
combined as an MP under a single control program. The “MP
box” that joined the CPUs performed an active function in single
image (MP) mode, handling prefixing, timer synchronization,
and inter-processor signaling. In partitioned mode, its function
was limited to handling the apportionment of main storage.

The MP configuration provided added CPU capacity with a sin-
gle control program, configuration flexibility, and availability.
These advantages came at the cost of expensive MP features on
both CPUs, additional switching features on I/O controllers, and
the “MP box,” which provided no functions of its own. Sys-
tem/370 multiprocessing provided no added I/O addressing ca-
pacity because of the limitations of symmetrical attachment,
but when the number of channels and their aggregate data
transfer rates were a system throughput limitation, MP sys-
tems, with a full complement of channels and sufficient control
units, provided some relief from that constraint.

System/370 Attached Processors. In an effort to provide some
of the benefits of an MP configuration at a lower price, IBM de-
veloped a type of processor complex called an attached processor
(AP). In an AP (made available on the 158, 168, and 3033), there
are two processors, but they are not partitionable. In most of the
AP configurations, the secondary processor (the APU) has no
channels, but the final version of the 3033 AP did have channels

46 MVS Performance Management

3 Symmetrical attachment uses the two-channel switch feature of an I/O control
unit or the string switching feature of some I/O devices to make the control
unit address (and thus the addresses of the attached devices) the same on
each channel set of an MP. With more complex switching options, alternative
(symmetrical) paths could be provided on each channel set. Asymmetric con-
nection results when these features are not used or are unavailable.



associated with the APU. (We shall consider the AP in its origi-
nal concept, without channels.)
The AP configuration had virtually no availability advantage
but did provide added processor power for workloads that were
CPU-intensive with less-than-typical I/O needs. When APs were
installed for general-purpose use, it soon became clear that I/O
was a significant bottleneck. The APU could not issue the START
I/O FAST (SIOF) instruction. The I/O supervisor (IOS) on the APU
had to SIGP to the CPU to initiate the I/O. System/370 architec-
ture required that the (main) CPU take all of the I/O interrupts.
In today’s terms, the AP was inherently incapable of being a
“balanced system.”

Dyadic and Triadic Processors, and Beyond …
Recall that the 3081 was initially announced as a System/370.
In that context, its configuration was yet another
multiprocessor variation. The new term was dyadic,4 denoting
two processors in a single box with two associated channel sets.
The System/370 appearance of the 3081 was similar to that of a
3033 AP with channels on the APU: an “MP” that was not sepa-
rable into two uniprocessors, but with a full MP complement of
channels organized as two channel sets, permitting symmetrical
configurations to be moved intact from 3033 MPs.
When the (true) Extended Architecture nature of the 3081 was
made known, the overly complex System/370 structure could be
swept aside. There were simply two CPUs, each equally capable
of using the independent channel subsystem. The association of
channels with CPUs was discarded, and there was no reason
why a third or fourth CPU could not be added to the dyadic con-
figuration. Such an addition was made in the generation follow-
ing that of the 3081 in the 3090-300E. Conceptually, the triadic
is no different from a dyadic. These are all examples of one-sided
multiprocessors, configurations that can’t be physically parti-
tioned.
One-sided MP configurations continued to evolve in the ES/9000
and the 9672. A maximum ES/9000 711-series side is now a 5-way
(in the 9X2), and the 9672 RX3 and RX4 are 10-way CECs.

Physical Resources 47

4 Webster’s New Collegiate Dictionary defines “dyad” as “1: PAIR specif: two in-
dividuals (as husband and wife) maintaining a sociologically significant rela-
tionship 2: a meiotic chromosome after separation of the two homologous
members of a tetrad….”



Dual Processors
In the intermediate range of processors smaller in capacity than
the 3081, another multi-CPU variation appeared. The largest
models of the IBM 4381 were dual processors. They were similar
in concept to dyadics, but the channels were associated with
CPUs, as are System/370 channel sets, and were cycle-stealing
(“integrated”) channels. The XA requirement of independence (of
channels from CPUs) was met with additional microcode, sug-
gesting potential inefficiency of the 4381 design in XA mode. The
ESA models of the 4381 continued the “integrated channels” ap-
proach. The air-cooled frame (9121) models of ES/9000 went well
beyond the 4381 in supporting the System/390 architecture with
separate channel processors.5 Indeed, the 9121 design resembles
that of the IBM 3090 more than it does that of the 4381.

3084 and 3090 Multiprocessors
Prior to the announcement of the 3081, the biggest MVS sys-
tems were always “full” MPs. They had two CPUs and two chan-
nel sets, and were partitionable into two independent
quasi-uniprocessors. With the 3081, such an arrangement was
not possible, since the dyadic already had two CPUs and two
channel sets. After XA was announced, it became possible to an-
nounce the 3084. A 3081 was one side of a 3084; the other side
was originally a spectacularly expensive “upgrade kit,” but
eventually two 3081KXs could be fused into a 3084QX. (Perhaps
as important, they could be unfused as well. Many installations
made successful and non-disruptive migrations from MVS/370
to MVS/XA by exploiting the ability to partition the 3084 into
two 3081-equivalents.)

The designs of successor systems built on the two-sided model of
the 3084. The 3090-280E, S, and J and the 3090-250S and J
were basic MPs like the 3033MP, composed of two partitionable
“sides,” each equivalent to a 3090-180E, S, or J or 3090-150S or
J, respectively. The 3090-400 and later the 400E, 500E, and
600E (and their S-series and J-series counterparts) were com-
posites of dyadics and triadics, as indicated by their model num-
bers. The 3090-380S or J was a composite of a uniprocessor and
a dyadic.
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Each two-sided system retains the physical partitionability of
the 3084, but that becomes a less important attribute with
PR/SM . Similar in purpose to Amdahl Corporation’s Multiple
Domain Facility (MDF) and Hitachi Data Systems’ Multiple
Logical Processor Facility (MLPF), PR/SM allows logical parti-
tioning of a processor complex into as many as ten independent
system “images” per side. Thus a hardware configuration can
support multiple operating systems running concurrently with-
out the need for physical partitioning or a software hypervisor
such as VM/ESA.

ES/9000 Configurations
There are three major model series in the ES/9000. The 9122
models are relatively small, rack-mounted configurations, ei-
ther uniprocessors or dyadics. The mid-range models are the
9121s. The most recent models are denoted as “511-based,” con-
sisting of 10 models ranging from uniprocessors to 4-way MPs.
Topping the ES/9000s are the 711-based 9021s. These comprise
the third generation of 9021s, supplanting the 340-based and
520-based earlier models. In this series there are 12 models
ranging from the 711 uniprocessor to the 10-way MP 9X2 model.
(There are choices within the range between one and two sides
with the same number of processors.)

The IBM 9672
The original E- and P-models of the 9672 (the Parallel Transac-
tion Server, PTS) were part of the Parallel Sysplex Offering but
they do not need to be run as a parallel sysplex. In the Parallel
Enterprise Server (PES) R-models, each is a single processor
complex or CEC, ranging from a uniprocessor to a 10-way. A PTS
contains from one to eight CECs, each originally a 2-way to a
6-way. PTS configurations can also be based on the R-model
CECs, thus accommodating as many as 80 CPUs in a cabinet
the size of a basic 4341.

3.1.3. Sysplex and Parallel Sysplex
In MVS Version 4, IBM began promoting the idea of a
sysplex—a loose confederation of systems united through a sin-
gle console message stream as well as through the multisystem
capabilities of the job entry subsystems. In the same time frame,
multisystem configurations of IMS and CICS grew in popular-
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ity, with the CICS implementation being denoted a “CICSplex.”
These implementations moved in the direction of a single sys-
tem image across multiple MVS systems, but didn’t quite get
there.
With MVS Version 5, IBM began supporting another distinct
multiprocessing architecture. This architecture, the parallel
sysplex, went beyond the basic sysplex by adding the coupling
facility and all that it made possible. A parallel sysplex is more
loosely coupled than traditional tightly coupled MPs, but consid-
erably more tightly coupled than what exists in JES complexes
or CICSplexes. Since specific hardware is required to implement
a parallel sysplex, it is rightly viewed as a new generation of
system architecture.
In contrast with other MP architectures, a parallel sysplex con-
tains multiple copies or images of the operating system, up to 32
on separate hardware configurations as of OS/390 Release 1.
However, there are several unifying programs—including the
global workload manager, GRS, XCF, console support, and the
coupling facility code, that provide a comprehensive implemen-
tation of a single image.

Why was Parallel Sysplex Needed?
Very simply put, those responsible for an installation that grows
beyond the bounds of a single multiprocessing system incur a
significant burden of complexity in considering how to accom-
modate that growth. The choices are not easy. Suppose the back-
logged and anticipated growth is 50 percent of the current ca-
pacity. Here are some possible choices:

• Acquire another large system, about 75 percent as power-
ful as the current one. If possible, reconfigure both to be of
approximately equal capacity. Operate them in a basic
sysplex configuration to secure some limited single-image
benefits. The extra capacity is needed to accommodate the
overhead of two-system operation and to deal with possible
additional latent demand that cannot easily be estimated
in a highly constrained system.

• Determine what work can be moved to non-MVS platforms
and acquire some number of small systems to take on that
work. It’s likely the growth crisis will reappear in a couple
of years.
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• Dump the mainframe and distribute everything to small
systems. The cost will be staggering.

The problem of growth may be characterized in two areas:
scalability and granularity. If an architecture is scaleable, the
addition of each increment of capacity has (nearly) equal effect.
Granularity means that the increment of growth is conveniently
small each time that growth is needed.

Conventional MP architectures are not scaleable beyond the
maximum the vendor implements: an ES/9000 9X2 would not
benefit enough from adding an eleventh processor (if it could be
done) to justify the cost. The scalability has improved through
the process of invention and design refinement from a level of
two up to 10 in the IBM implementations, and to 12 in the case
of Hitachi Data Systems. Even if a breakthrough in MP effi-
ciency were to be realized and the architectural limit of 16 were
to become feasible, the limit is eventually reached and one can
go no further.

Although scalability is a characteristic problem at the high end,
granularity is more of a problem at the low end. Smaller instal-
lations cannot afford to procure excess capacity beyond current
needs, so a small increment of capacity is very desirable.

Parallel sysplex addresses both these concerns. Because the de-
gree of coupling is much less than in multiprocessors, a parallel
sysplex approaches linear scalability. Adding the twentieth sys-
tem to the sysplex adds almost as much capacity as adding the
second. As for granularity, if a small increment of growth is
needed, a single 9672 3-way can be upgraded to a 4-way. If a
large increment is needed, one can add three or four
9672-RX4s—or even an ES/9000 9021-9X2.

In addition to the 9672, ES/9000s based on the 511 or 711
uniprocessors can be equipped with the necessary coupling
links and the microcode to support the coupling facility and
therefore can be part of a parallel sysplex.

Elements of a Parallel Sysplex
As shown in Figure 3-1, parallel sysplex is more than just a num-
ber of MVS images tied together through a coupling facility. It
also is a means of sharing data reliably across multiple MVS im-
ages. The means of that sharing depends on several elements:
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• ESCON channels and ESCON directors to provide the data
paths between each image and all the devices to be shared.

• One or more (to preclude a single point of failure) coupling
facilities and the high-speed fiber coupling links connect-
ing them to each MVS image

• Access methods or subsystems that are aware of parallel
sysplex data sharing and the coupling facility, and use the
coupling facilities at a minimum to control the integrity of
the shared data. They may also further exploit the cou-
pling facilities to cache other control data or to use a cou-
pling facility as a shared I/O cache.

The parallel sysplex appears to remove growth constraints and
increase the amount of hardware that a given staffing level can
manage effectively. Once those responsible for a parallel sysplex
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understand the value of making all the systems look the same
(“cloning”) additional benefits can be realized:

• simplification of system and product installation and
maintenance

• immediate benefits of system-managed load balancing

• continuous operation with the ability to perform mainte-
nance on any image without shutting down the others

3.1.4. CPU—Summary
In every MVS system image, regardless of the CPU configura-
tion, there is only one dispatching queue. Whenever an MVS
routine that exits via the dispatcher completes execution, the
dispatcher is invoked on that CPU. In Chapter 4 we’ll examine
dispatching priority and its control, as well as the elements that
make up the dispatching queue.

3.2. Real Storage
In many of the older CPU configurations, it was nearly impossi-
ble in practice to use all of the CPU power productively. The bot-
tleneck most likely to have inhibited full CPU productivity was
that of insufficient real storage.
Real storage in MVS is organized into page frames of 4096 bytes
each. Programs in MVS refer not to real storage, but to virtual
storage addresses. (An exception occurs in the input/output sub-
system: I/O data addresses are absolute, and access method rou-
tines translate virtual addresses to absolute addresses as part
of channel program construction.) Hardware translates the vir-
tual references to real addresses through dynamic address
translation. MVS manages real storage on the basis of demand;
the Real Storage Manager assigns frames from an available
frame queue (AFQ) when they are needed. Frames are reas-
signed (stolen) when the AFQ length falls below a threshold, or
when a need for frames cannot be met from the current AFQ.
Associated with each page frame are three indicators used by
MVS. The reference bit is set by hardware whenever an instruc-
tion “touches” any byte in the page, whether as code or data. The
change bit is similarly set by hardware when instruction execu-
tion causes so much as a bit in the page to change. An MVS rou-
tine examines the reference bit periodically, resetting it when-
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ever it is found to be on. The information conveyed by the refer-
ence bit is used to set the value of the third indicator, a 1-byte
counter called the Unreferenced Interval Count (UIC). When the
UIC update routine turns off the reference bit, the UIC of the
page is set to 0. If the reference bit is still off from a previous up-
date, the count is increased by the number of real seconds since
the last update, to the maximum of 255.
UIC is used as a criterion to select which frames are in use and
which are not, so that idle frames may be reassigned to fill more
urgent needs. The change bit is used to determine if a currently
valid backup copy of the page exists on the DASD that forms the
paging subsystem (auxiliary storage). If so, the frame can be
“stolen” with impunity. Otherwise, a backup copy must be sent
to either expanded storage or auxiliary storage before the frame
may be reassigned.
To understand the great importance of carefully planned real
storage management in MVS, consider some of its uses:

• Residence for pages of the system with virtual addresses
the same as their real addresses (“V=R”).

• Residence for pages of programs that need to run in V=R
mode. V=R programs and system routines were prevalent
in the early days of SVS and MVS. As fear of the unknown
diminished, dynamic address translation was recognized
as innocuous (if not beneficial), and V=R strictures were re-
moved as code was rewritten from the MVT base.

• Residence for fixed pages. Pages are fixed (removed uncon-
ditionally from eligibility for reassignment) because ad-
dresses within them must be invariant across I/O opera-
tions that work with real addresses and usually take a long
time to complete. The short-term page fixing associated
with I/O need not be expensive in real storage. Only buffers
associated with an I/O currently in progress need be fixed.
Pages are also fixed for other reasons. To enhance perfor-
mance in one part of the system, usually at the expense of
performance elsewhere, pages may be long-term fixed. Un-
less done with great care and with full analysis of the pro-
cess whose pages are to be fixed, including its other re-
source needs, such page fixing often produces little benefit
at considerable cost. The use of storage isolation or the
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adaptive management performed by the Working Set Man-
ager or Workload Manager are more appropriate tech-
niques for this purpose.

• Residence for system data. The control blocks and data
queues through which MVS manages resources are in this
category. Some are fixed, but many simply remain resident
because of their high activity.

• Residence for the working sets of active address spaces.
“Working set” is a difficult term to define, because it varies
depending on the time span of interest. In any time inter-
val of interest, it is the amount of real storage (usually de-
noted in pages) a program needs to complete the current
activity without adding another page frame. At the lowest
(instruction) level, this amount is often a single frame, but
one might imagine a worst case in which eight frames are
needed. A single TSO transaction may need 50–200
frames.
“Working set” is a concept that maps well to the behavior of
a single program. Most programs have the property called
locality of reference—instructions executed later are not
far in virtual storage from those executed earlier, and the
data they access lie within a small span of virtual ad-
dresses. Consequently, they make reference to only a few
real page frames as well.
As subsystems such as CICS, serving many online users,
became the norm in MVS, the working set concept became
less useful. Growing use of client-server designs built on
APPC/MVS, Open Edition, or other frameworks will rein-
force this trend in the case of server address spaces. Suc-
cessive requests are likely to be unrelated, so there is little
continuity of virtual or real storage reference from instant
to instant.
Consequently, we cannot speak of a “working set” for a
CICS subsystem in the strict sense. Rather, we regard the
working set for such a subsystem as the number of pages it
needs to have bound to real storage frames to avoid sus-
taining a damaging page fault rate. This is not a crisp defi-
nition, but rather one element in a series of tradeoffs be-
tween the (resource or dollar) cost of providing service and
the effect of a particular level of service on the larger busi-
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ness. In a later chapter we’ll discuss storage isolation, an
MVS service that allows such storage binding to be se-
lected and controlled, and Working Set Management, an
SRM function that achieves most of the benefits of stor-
age isolation without the use of external controls.

• Residence for the working sets of inactive address spaces.
As MVS evolved, there were several time periods in which
the focus of interest swung between saving real storage
and exploiting it, between using the paging subsystem
heavily and avoiding its use, and between throughput and
response time. MVS today retains traces of the extremes of
those swings—in default parameters that oppose each
other, and in basic mechanisms that are equally in conflict.
It appears that real storage constraint (at least in today’s
ES/9000s and parallel servers) is not a current problem, so
that the mechanisms encouraging real storage residency
for inactive address spaces, as well as for inactive pages of
active address spaces and system data areas, are now dom-
inant.
This use of real storage began in MVS/SE1 with the intro-
duction of logical swapping. In that time frame, 168MPs
with 16 megabytes of real storage started to become avail-
able. The full real storage complement was often more than
the system could use, and the chronic problem of TSO’s
paging conflicting with the response time needs of other
workloads was solved by exploiting the surplus real stor-
age to maintain inactive TSO users in real storage.

3.2.1. MVS/370 and the “16-megabyte line”
In System/370, 16 megabytes was the architectural upper limit
of both virtual and real storage addressing. As the 3033 re-
placed the 168 at the high end of the line, and as MVS’s internal
constraints were gradually eliminated, systems started to be-
come unbalanced again, this time with real storage in short sup-
ply. The problem was particularly acute in 3033MPs. Two
16-megabyte 3033 uniprocessors (UPs) could be made into a
symmetrical MP limited to only 16 megabytes, leading to a dras-
tic real storage shortage. The difficulty was temporarily over-
come with the “extended addressing” feature on the 3033 which
used a previously reserved bit in a dynamic address translation
table entry to double the size of real storage to a maximum of 32
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megabytes. (Use of another such bit stretched the limit to 64
megabytes in later CPUs.)

Easing the real storage constraint led to a new class of problem
in MVS/370: Which pages could go to page frames in the ex-
tended addressing range? In System/370, the channel command
word (CCW) format was limited to a 24-bit real address, so nor-
mal I/O access methods could not exploit real storage “above the
line.” (The operating system made use of the Indirect Data Ad-
dress Word [IDAW] to address upper real storage, so paging I/O
could exploit extended addressing.) Consequently, MVS/370 be-
ginning with SP1.1 had to move pages from frames above 16
megabytes to frames below the line when those frames con-
tained buffers for active I/O. This added system overhead, prom-
inently reported in monitoring programs such as RMF, became
significant as systems were loaded to full capacity with TSO us-
ers and interactive subsystems. As with many other System/370
growth limits, the partial benefit of added real storage became
more complete only with Extended Architecture.

3.2.2. Real storage in MVS/XA and MVS/ESA
In System/370 Extended Architecture and Enterprise Systems
Architecture (and therefore in MVS/XA and MVS/ESA), the real
storage limit was extended to 2 gigabytes. The XA compatibility
goals required that System/370 channel programs operate un-
changed in XA mode. However, System/360 and System/370
channel command words are limited to real data addresses of 24
bits. XA and ESA thus have two CCW formats; the original
24-bit CCW is denoted format 0, and the newer 31-bit version is
called format 1.

Several MVS/XA and MVS/ESA access methods, as imple-
mented in the Data Facility Product (DFP) portion of the operat-
ing system, have already been re-implemented to create format
1 channel programs, and more have followed. Therefore, the cor-
responding I/O operations are not restricted in the real storage
areas used for input or output. Antique MVT or MVS/370 pro-
grams that build their own CCWs still need to place those chan-
nel programs and buffers below 16 megabytes (real), or the oper-
ating system must move pages above and below “the line” as
MVS/370 had to do.
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3.2.3. Central storage and expanded storage
As we consider the uses of real storage, it becomes clear that
much of it is occupied by relatively inactive pages. The alterna-
tive, to place those pages on auxiliary storage, leads to signifi-
cant delay from the paging subsystem when those pages are
needed later. However, the demand for such standby storage in-
creases greatly as CPUs grow more powerful and become capa-
ble of supporting much larger workloads.
When System/360 was first announced, and even when Sys-
tem/370 was first announced, the storage limit of 16 megabytes
seemed more than generous. However, with the explosion of
growth facilitated by MVS, soon it became clear that 16 mega-
bytes was not enough. When XA was announced, the 2-gigabyte
real storage limit was welcomed, but with fewer predictions of
its being excessive.
To provide a means of accommodating inactive pages without
the reactivation delay of auxiliary storage or the cost of “real”
storage, a new solution was devised for the 3090 line and even-
tually added to the CPU architecture in Enterprise Systems Ar-
chitecture (ESA).
The solution is called expanded storage (ES). Once again, the in-
troduction of a new element added complexity and caused no-
menclature to be changed. IBM stopped using the term “real
storage” and has substituted processor storage for it. In systems
with expanded storage, processor storage is now divided into
central storage and expanded storage. Central storage is, of course,
what we used to call real storage.
Expanded storage is not accessible to the I/O subsystem6 or to
ordinary instructions in the CPU and is addressable only as
pages, not as bytes. Expanded storage is large and fast. Sizes of
up to 8 gigabytes are already available. In the IBM
ES/9000-9021s, where expanded storage is implemented differ-
ently from central storage, it performs at about half the speed of
central storage. In the IBM ES/9000 Model 9121s and the IBM
9672 Parallel Servers, a single increment of up to 8 GB of pro-
cessor storage is divided between central storage (with a maxi-
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mum of 2 GB per LPAR) and expanded storage. The same ap-
proach is used in some non-IBM processors. In systems with
partitionable storage of less than 2 GB, the use of expanded
storage should be justified on the basis of functional need. How-
ever, some of the real storage management functions of
MVS/ESA tend to be more efficient when expanded storage is
available. A close choice should be resolved in favor of more ex-
panded storage when there is a significant swappable workload.
For systems with more than 2 GB of storage, the use of ex-
panded storage or logical partitioning are the only ways to get
the full benefit of all the installed storage.
The only expanded storage operations supported are “page in”
and “page out,” instructions to transfer pages synchronously be-
tween expanded and central storage. (A MOVE PAGE instruction
with a wider choice of operands and with considerably better per-
formance is supported on 3090J models, ES/9000s, IBM’s CMOS
machines, and current machines from other vendors. It is a prereq-
uisite for use of some MVS/ESA facilities.)
In MVS/XA and MVS/ESA, expanded storage is managed by
the Real Storage Manager (RSM) with guidance from the Sys-
tem Resources Manager (SRM). In contrast, VM/SP manages
expanded storage as a fast paging device, and VM/ESA simply
apportions expanded storage to virtual machines to use as the
operating systems in those machines direct. MVS/ESA adds
hiperspace services providing additional direct and explicit
access to expanded storage by application programs and sub-
systems.
Expanded storage meets the need for standby storage of inac-
tive address spaces or of individual pages without devoting
full-function central storage to that purpose. Consequently, the
central storage resource can grow at a slower rate than previ-
ously, and the 2-gigabyte limit is therefore safe for a few more
years. The architectural limit of expanded storage is 232 pages,
or 1.76 x 1013 bytes (16 terabytes). It is with and because of ex-
panded storage that chronic real storage shortage in XA and
ESA is being called “a thing of the past.” Of course, not all MVS
systems have expanded storage.
MVS/ESA’s options for replacing I/O operations with the use
of processor storage may well bring back real storage con-
straint unless careful planning (including having a generous
amount of processor storage for contingencies) is done. The
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widespread use of “multiple image” options, such as IBM’s
PR/SM, HDS’s MLPF, and Amdahl’s MDF, will further engen-
der processor storage constraint.

We will therefore consider the problems of real storage con-
straint in detail throughout this book.

3.2.4. The MVS/ESA storage hierarchy
It’s sometimes useful to picture the various levels of real storage
in an MVS/ESA system as forming a pyramidal hierarchy,7 with
the fastest and most expensive form of storage at the top and the
least expensive and slowest form at the bottom. There is much to
learn from considering the ways in which data moves between
levels in the hierarchy. Figure 3-2 shows the levels and the move-
ment paths.
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L1
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L3

L4

L5

L6

L7

Highest Unit Cost
Highest Speed High-speed Buffer

Central Storage

Expanded Storage or
Coupling Facility

Storage

Primary DASD or
Auxiliary Storage

(HSM ML1)
Migrated DASD

Mass Storage
Subsystem

(Tape Robot)

Offline TapeLargest
Capacity

“Fat” (Slow) DASD

7 The notation used is consistent with that of commonly seen representations of
storage hierarchies, but the names of levels and examples are arbitrary.



Central storage (L2) is addressable to the level of a single byte
by instructions and is associated with the CPU and its
high-speed buffer (HSB).8 Central storage is also the source and
destination of I/O to and from the channel subsystem.
Expanded storage is not addressable from ordinary instructions
and is managed by the operating system in full pages (4096
bytes) only. Expanded storage may be slower than central stor-
age (but much faster than any I/O device) and cheaper than cen-
tral storage (but more expensive than a channel-attached stor-
age device). It therefore has a natural position as the third level
(L3) of a storage hierarchy, following the processor high-speed
buffer (L1) and central storage (L2), but preceding channel-at-
tached devices (L4 and below). At a parallel position is the struc-
ture storage in a coupling facility. Depending on the implemen-
tation, coupling facility storage may be slightly slower than ex-
panded storage but still within the same order of magnitude.
Data movement between L1 and L2 is managed transparently by
hardware. All other movement between levels of the hierarchy is
done by the operating system. Movement between L2 and L3 (ex-
panded storage) is called page movement, and takes the place of
paging and swapping using auxiliary storage (L4) in systems lack-
ing expanded storage. Movement to and from L3 coupling facility
storage is initiated by specialized instructions in the System/390
instruction set as augmented for parallel sysplex.
Movement from L3 (expanded storage) to L4 is called migration
and requires L2 storage as a temporary holding location be-
cause I/O cannot take place except to and from central storage.
There is no movement from L4 to L3. Movement between other
lower levels also requires I/O and thus uses L2 as an intermedi-
ary. An exception exists when the physical medium can be
transported (as between L6 and L7).
The prior discussion suggests that L2 (central storage) is the
busiest level of the storage hierarchy. This is so, and the assur-
ance of an adequate supply of central storage is the essence of
real storage management. In a well-managed MVS system with
a mixed workload, there are two mechanisms working to ensure
availability of central storage as it is needed:
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• Swapping moves a whole inactive or less-preferred address
space from central storage to expanded storage, or to auxil-
iary storage if expanded storage is not available. What was
swapped out will eventually be swapped in when the ad-
dress space is ready to run and MVS’s controls allow it
back in. About 50 to 500 frames of central storage are freed
by a typical swap-out.

• Page stealing moves a few pages at a time from central
storage to expanded storage, or to auxiliary storage if ex-
panded storage is not available. In earlier versions of
MVS, what was paged out would eventually be paged in,
one page at a time, as reference was made to pages not cur-
rently in central storage. About 10 to 50 frames of central
storage were freed by a cycle of page stealing, with the
pages normally coming from several address spaces.

Since MVS/ESA SP 4.2, page stealing and the resolution of
page faults have become more efficient with blocking of
both page-outs and page-ins.

It can be seen that swapping is more efficient than page stealing
as a means of replenishing the AFQ, if the swappable address
spaces are available. Systems with only nonswappable work
(such as dedicated production CICS systems) cannot enjoy the
benefits of swapping and therefore require somewhat higher
levels of central storage than systems running mostly batch and
TSO or a mixed workload.

3.3. Input/Output Resources

We turn now from real storage as a source of performance prob-
lems to the second most likely source in MVS/370, and probably
the main tunable problem in XA and ESA. That source is ineffi-
ciency, contention, or a simple lack of resource in the I/O subsys-
tem. MVS/ESA has several mechanisms designed to lessen vul-
nerability to I/O contention and delay, but a substantial number
of MVS systems today do experience I/O problems.

Several kinds of I/O-related delay affect MVS workloads:

• Direct delay in waiting for I/O completion. Such “active
I/O” delay is often a sign of inefficient I/O: too few buffers,
extended use of the DASD SEARCH command, fragmenta-
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tion of data on devices, or failure to use more efficient alter-
natives to conventional I/O.

• Delay waiting for access to devices. “Queued I/O” delay is
most often caused by poorly planned sharing of direct ac-
cess devices, either between systems, between workloads,
or within a single workload.
If one of the workloads sharing a device is much more im-
portant to the installation’s business than the others, its
data sets may need to be moved to a device less susceptible
to contention. Such “I/O tuning” should take place in con-
junction with responding to a service discrepancy for the
workload, rather than being based on a search for “prob-
lem” devices. Often, devices that look “troublesome” on the
basis of utilization or queue length are serving workloads
designed for just such efficient I/O, or workloads with less
stringent service needs, and are not causing unacceptable
levels of delay to more important workloads.

• CPU delay caused by the I/O. CPU cycles are used to set up
each I/O and to deal with the hardware interrupt that
marks its end. In certain processors, such as the IBM 4381
family, the channel subsystem is not wholly separate from
the CPU. In such “integrated” or “cycle-stealing” channel
configurations, CPU cycles are not available while the
channel is accessing storage. Cycle-stealing channels are
not found in today’s systems.
Regardless of whether CPU cycles are stolen to use for the
I/O operation itself, “front-end” and “back-end” activities
occur at the highest dispatching priority in MVS (global
SRBs) and thereby interfere with CPU access for all work-
loads. A general goal of minimizing the number of avoid-
able I/O operations is one of the few MVS performance
management absolutes.

We shall divide I/O into several classes and concentrate on only
a few of them:

• Source/sink devices. These are devices that bring simple in-
put to the system, take output from the system, or both.
Printers and card readers and punches are examples. These
used to be called unit record devices, the unit being a card or
a line of print. Today’s printers scarcely fit in this mold, be-

Physical Resources 63



ing high-speed, all-points-addressable page printers; very
few systems now have card I/O. Locally attached terminals
fall into this category as well, but we choose to regard them
as communications devices because of the human user.
Source/sink devices are usually managed by the Job Entry
Subsystem (JES) and are rarely a source of system perfor-
mance problems.

• Console devices. These are (usually) locally attached devices
for use by the operations staff, and are limited to terminals
and printers. Variations today include pseudo-devices man-
aged by automated operations packages, personal computers
emulating consoles, and systems with only remote consoles,
following the trend to unattended operation. We shall again
dismiss or ignore the performance problems of console devices
only because such problems are rare and of little general inter-
est. The system service address space (CONSOLE) that drives
consoles runs at a very high dispatching priority; console per-
formance problems are either a symptom of a very sick system
or indicative of a hardware or configuration problem.

• Communications devices. Terminals, printers attached to ter-
minal control units, and devices masquerading as these are
in this class. Many people regard the terminals they work
with as “the computer.” In many systems, response time at
the terminal is the essence of the service level agreement. We
will touch on only a few aspects of communications devices in
this book, since our focus is on MVS, not networks. We will
consider MVS’s telecommunications access methods (VTAM
and TCP/IP) and the ways in which their problems affecting
response time may be managed. Problems affecting the por-
tions of the network outboard of the processor complex are
beyond the scope of this book.

• Secondary storage devices. Here resides the data9 that justi-
fies the term data processing. We call direct access storage
devices (DASD or disks) and tapes “secondary storage” to dis-
tinguish them from processor storage, but the terms are usu-
ally implicit. Optical and magneto-optical storage devices are
also in this category. When a system programmer complains
about a “storage shortage,” processor storage is usually
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meant. When an MIS manager uses the term, it is almost al-
ways secondary storage that is in short supply. (It was easier
in the old days, when processor storage was called “memory.”)
Our consideration of the I/O subsystem focuses on secondary
storage for several reasons:
¤ It’s where the money is (Willie Sutton’s Rule). In many

installations, the “DASD farm” is comparable in cost to
the processor complex. Because each device is rather ex-
pensive but unspectacular, it is often more difficult to
upgrade secondary storage than to get a new CPU.

¤ It’s where the data is. The value of what resides on sec-
ondary storage far exceeds the value of the medium or
the supporting hardware. It’s not expensive to acquire
raw computing power. Today’s personal computers can
serve individual users for prices comparable to those of
“dumb” terminals. Why, then, connect them to a large
central system? The data is the reason. The value of a
centralized system derives from the value added by the
sharing and centralized management of the data re-
source.

¤ It’s where the problems are. Because data has value de-
pending in part on the complexity of its use, conflicts are
inevitable. Picture an enterprise in which all employees
and many customers are online to all of the business’s
data. The need for controls and discipline is apparent.
Problems that can arise are those of access control, integ-
rity, and performance. We will examine the resulting per-
formance problems in detail in later chapters.

¤ It’s where the labor is. The next manifestation of a
“black hole” for human labor—akin to “every person a
telephone operator,” solved in the early decades of the
20th century with the introduction of automated tele-
phone exchanges—is “everybody into storage manage-
ment.” Storage management is an error-prone, un-
der-recognized, and labor-intensive business. Until “sys-
tem-managed storage” with DFSMS in MVS/ESA ma-
tures into a comprehensive automated system, the need
for people and data processing efforts to be devoted to
managing the data resource will continue to grow with
the size, complexity, and importance of the resource it-
self.

Physical Resources 65



• Auxiliary storage devices. Part of secondary storage is set aside
for system purposes. Examples include the devices housing
page data sets and the JES SPOOL and checkpoint data sets.
Because problems surrounding these devices, particularly
those used for paging, can have profound effects on system
performance, we consider auxiliary storage apart from the rest
of secondary storage.

3.3.1. IBM’s I/O architecture
In systems that can run MVS, several different hardware ele-
ments together constitute the I/O subsystem. We examine each
of them in turn, from the CPU outward to the device.

CPUs
In System/360, I/O involved the CPU a great deal. The original
START I/O (SIO) instruction, for instance, did not release the CPU
(complete execution) until the path through the channel, control
unit, device controller, and device had been secured. Only then
could an independent channel operate concurrently with the
CPU. As CPU speeds grew rapidly, with I/O speeds trailing be-
hind, relatively more CPU time would be spent waiting for I/O
connections to be established. This same pattern was repeated
at the channel level.
Beginning with the replacement of the START I/O instruction by
START I/O FAST [RELEASE] in System/370, the trend of develop-
ment from System/360 through System/370 to XA and ESA was
to push I/O activity outward from the CPU and the channels, ty-
ing up hardware in the processor complex only when it was nec-
essary for information transfer.
In Extended Architecture and Enterprise Systems Architecture,
the CPU’s role in initiating I/O is diminished, and the CPU im-
pact of I/O completion is reduced as well. I/O path selection is
done by the channel subsystem, so a complex section of MVS’s
I/O Supervisor (IOS) code is not needed. Restarting channel pro-
grams that have not been able to run is also a function of the
channel subsystem, thus eliminating much I/O exception-han-
dling code.
I/O interrupt control in XA and ESA has a finer structure than in
System/370, so each CPU in a CEC can be disabled for such inter-
rupts entirely or enabled only for selected classes of interrupts. In
systems sustaining high I/O interrupt rates, a new instruction,
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TEST PENDING INTERRUPT (TPI), allows a CPU to stay in I/O inter-
rupt handling code to “pick off” the next candidate interrupt in-
stead of allowing the interrupt to disrupt some other process.

The XA and ESA approach to the CPU’s role in I/O setup is to
“throw it over the wall” to the I/O subsystem. Upon completion
of the I/O, a CPU is again involved to deal with the conse-
quences of completion.

Channels and the Channel Subsystem
The invention of the I/O channel in the mid-1950s was one of the
key developments that made today’s operating systems possible.
Before the time of the IBM 709, I/O was executed as an instruc-
tion in the CPU. The notion of wait state was equivalent to the
idea of an idle system. With the I/O channel (and later with sev-
eral channels), the formerly longest-running instructions (the
I/O instructions) were transformed into simple control opera-
tions to manage the channel. The channel did the I/O “dirty
work.” While I/O proceeded in the channel, the CPU did not
have to wait for the I/O operation but could execute other in-
structions that were not dependent on the I/O in progress. When
the overlapped instructions were in a different program, what
we now call multiprogramming was the result.

A channel is an independent processor, often as powerful as a CPU.
It has read/write access to the same [central] storage as the CPU.
The channel responds to a small set of instructions that control its
operation. One of those instructions, START I/O or START I/O FAST, di-
rects the channel to perform a series of activities:

• Obtain from known places the address of the beginning of a
channel program and the identity of the I/O device to be se-
lected.

• Establish the connection to the device.

• Process the control words that constitute the channel pro-
gram. These channel control words (CCWs) specify the op-
eration to be performed (read, write, or nondata “control”)
and the address and length of the data or control informa-
tion to be transferred.

• Handle exceptional conditions that might arise during exe-
cution of the channel program.

Physical Resources 67



• Signal the CPU when the channel program has completed
execution.

The details differ from System/360 through ESA. As processing
power has dropped in cost and increased in speed, more of the
detail work is done by the channels and less by the CPU. In turn,
intelligence and function have migrated further outward—to
the control units and device clusters.

During the transition from System/360 to System/370, channels
were expensive and few in number, even on large systems. Func-
tional enhancements such as disconnected command chaining
(DCC), rotational position sensing (RPS), and block multiplexing
provided ways to increase channel productivity. During opera-
tions that did not involve the transfer of data, the channel could
be disconnected from the control unit.

The control unit and device, acting on their own, would complete
the operation (such as a seek to a different cylinder) and then re-
connect to the channel. While one or more devices were execut-
ing disconnected commands, another could use the same chan-
nel path to transfer data. Block multiplexing was the co-requi-
site feature needed to keep track of multiple disconnected
high-speed operations.10

The throughput benefits of block multiplexing, DCC, and RPS
were realized, but at the expense of considerable performance
degradation for less-busy devices when the channel paths were
kept busy by active devices. In XA and ESA, the portion of
DASD I/O time potentially spent waiting for channels to recon-
nect is reduced by the dynamic path reconnect feature, which al-
lows the completion of an I/O operation on any channel con-
nected to the device.

In System/370, reconnection could take place only on the ini-
tially selected path, leading to significant delay when that path
was kept busy by other devices. XA and ESA eliminate most
path delay, with support for up to four data paths per device
adding to the benefits of dynamic path reconnect.
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System/390 and ESCON
With the announcement of System/390 and the ESA/390 archi-
tecture, IBM introduced a new kind of channel, Enterprise Sys-
tem Connection, ESCON. Compared with bus-and-tag channels,
ESCON channels use a different data transfer discipline (serial
instead of parallel), a different connection medium (glass fiber
instead of copper), a different form of energy to carry the signal
(modulated light instead of electrical pulses), and different con-
nection topology (hub-and-spoke through an ESCON Director
rather than point-to-point). ESCON channels and their associ-
ated auxiliary devices make possible greatly extended distances
between processor complexes and devices, and much higher
data transfer rates than with bus-and-tag connections.
Already available are ESCON data transfer rates of 17 mega-
bytes per second. Maximum ESCON distances (using ESCON
Directors) vary by type of connection: up to 60 kilometers for
channel-to-channel connections, 43 kilometers for IBM 3172
and 3174 communication controllers, 23 kilometers for some
magnetic tape controllers, and 17 kilometers for some DASD
control units.
These increased distances, compared with the limit of 400 feet
(122 meters) for parallel channels in data streaming mode,
make for nothing less than revolutionary changes in data center
design and layout. Instead of being restricted to a single floor or
adjacent stories of a single building, a sysplex with its “locally”
attached devices can span a campus, a downtown area, or an en-
tire metropolitan region.

Control Units
A control unit (also known as a storage director or sometimes a
storage controller for disk devices) is needed to synchronize I/O
operations between channel and device, to handle routine error
recovery, to translate I/O requests conveyed in CCWs into orders
that devices can execute, and to handle path selection and the
establishment of data transfer connections. These functions
were handled in the past by dedicated hardware with all logic
hard-wired in the circuits, much like CPUs of the past. As mic-
rocoded CPUs and channels became the norm, so did microcoded
control units.
The cost of semiconductor storage continued to decline in the
1980s, and it became possible for IBM to introduce a new class of
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control unit for high-speed disk devices, one that had storage as
well as logic. The first such device for general-purpose systems
was the IBM 3880 with the speed matching buffer (SMB) fea-
ture. SMB made it possible to hold a track’s worth of 3380 data
in a storage director, allowing the 3380 with its 3.0-mega-
bytes-per-second data transfer rate to function on standard Sys-
tem/370 channels rated at 1.5 megabytes per second. SMB was a
transitional feature, needed only until 3-MB/s “data streaming”
channels came into general use.
The next way in which storage was used in disk control units
came in the initial generation of cache control units. In these de-
vices the storage was used not just to buffer between differing
device and channel speeds, but to enhance the performance of
disk devices. The IBM 3880 Model 11 was optimized as a paging
subsystem, permitting obsolescent 3350 devices to function with
greatly reduced apparent rotational delay and at effective data
transfer rates greater than that offered by the device. Its com-
panion Model 13 enhanced the response time of 3380s used for
general data.
The first-generation cached IBM 3880 Models 11 and 13 were
superseded by the Models 21 and 23, offering more cache stor-
age at lower cost per megabyte and other improvements. The
next generation of cache devices arrived with the IBM 3990
Model 3, offering very large cache sizes as well as four-path sup-
port. The 3990-3 also performs a speed-matching function (oppo-
site in sense to that of the Speed Matching Buffer) along with its
cache function; data can be transferred to and from cache stor-
age at 4.5 megabytes per second or more on channels supporting
such data rates. It is likely that this approach will become the
norm for increasing channel speeds. Device characteristics
(other than average access time, gigabytes per cubic foot, square
feet of floor space per gigabyte, and cost per gigabyte) are be-
coming less important than cache capacity and cache data
transfer rate.

Device Controllers
Some devices require an additional level of control. Most disk
devices, for instance, are organized into strings, with a string
controller needed to mediate the connections between devices
and control units, and to translate the native physical charac-
teristics of the device into the architecturally specified
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count-key-data (CKD) format used with all MVS-supported
DASD. The controller’s logic is shared among all the devices in a
string, but is not associated with any single device in the string.
A common misconception is easy to understand, however. Be-
cause the string controller is often packaged with the initial de-
vice or cluster of devices on a string, some special preference is
incorrectly attributed to the “head of string” device.
Because the string controller is needed for the full duration of
data transfer operations (including SEARCH), a bottleneck can
develop at this place on the I/O path. Just as multiple channel
connections to multiple storage directors reduce bottlenecks at
the inboard part of the I/O path, so multiple connections be-
tween devices and controllers can reduce the obstacle at the out-
board interface as well.
IBM was not the first with such connections; other manufactur-
ers’ versions of 3350s had a feature usually known as dual port,
providing two independent data transfer paths per string of de-
vices. IBM supported two data transfer paths per pair of de-
vices11 on its 3375, and later two transfer paths per cluster of
four devices on its initial 3380 model AA4. IBM eventually pro-
vided true dual port capability on its second-generation 3380
models AD4 and AE4. IBM’s third-generation 3380s, models
AJ4 and AK4, extended connection capabilities to four paths
when used with IBM 3990 Model 2 or 3 control units. The same
kind of connection is supported on the successor to the 3380, the
IBM 3390, as well as on the IBM 9340 DASD subsystem.
The 9340, first announced in 1991, improved upon older genera-
tions of DASD in several ways. Its 9343-D04 Storage Controller
connects to four ESCON channels and contains 2 megabytes of
buffer storage. A 9343-C04 is also buffered and connects to four
parallel channels. The buffer is required to reconcile differing
data transfer rates for the device and the channel, and to imple-
ment nonsynchronous DASD, a storage subsystem design previ-
ously available only with cached control units, in which succes-
sive steps in a series of I/O operations need not be accomplished
in strict lockstep with the passage of specific data blocks and
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gaps on a spinning platter. Instead, the buffer allows connect
time to the channel to be minimized by managing SEARCH as a
[channel] disconnected operation between the storage controller
and the device. It also buffers data transfer to and from the de-
vice, thus avoiding RPS miss.

Devices
There is no “standard” DASD in today’s systems. IBM 3380s,
now dropped from marketing and withdrawn from the IBM
product line, were replaced by 3390s. The 3390 and the newer
9340 subsystem has been displaced in the IBM product line by
yet newer devices such as RAMAC, providing RAID benefits
along with 3390-compatible virtual geometry. Other devices
based on small form factors, massive caching, RAID, and
nonsynchronous protocol are available from other vendors in-
cluding Storage Technology (Storage Tek or StorTek)12, EMC,
Hitachi (HDS), and Amdahl/Fujitsu. Freedom from device geom-
etry considerations beckons as well, with implementations
much like the Integrated Drive Electronics (IDE) designs now
common in personal computers. A page-oriented device ad-
dressed by page number much like expanded storage is within
the capabilities of today’s technology.

However, device geometry is still with us, and we must consider
it as a necessary part of performance management. All current
devices share the same general track format. Data on a 3380
track, for instance, is organized into 32-byte cells. There are
1499 such cells to a track, excluding track control information.
For each record on the track, 15 cells are used for the count field
and its gap, and 7 cells for the gap preceding the optional key
field. Twelve bytes of ECC (error-correcting code) are added to
each key field, if present, and to each data field. Each of these
areas occupies some number of full 32-byte cells. Simple calcula-
tions show that each unkeyed record has an overhead of 492
bytes. (IBM’s 3390 and 9345 share a similar but not identical
data format, with 34-byte cells as well as a larger aggregate for
additional error correction. The number of cells per track is
greater in the 3390 than in the 9345.)
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A consequence of this track layout is that small physical records
(blocks) are extremely inefficient on any such device. Space uti-
lization efficiency of 80 percent or more is attained only with
blocks of at least 2000 bytes. Eighty-byte blocks, still common in
many installations as a legacy of punched cards, use only about
14 percent of the maximum capacity of a 3380 track. Space inef-
ficiency is also speed inefficiency; while each 80-byte record
moves at 3 megabytes per second, the 83 records on a track can’t
be transferred in less than a full device rotation of 16.56 milli-
seconds. The maximum effective data transfer rate for a series
of 80-byte physical records is thus just 392K bytes per second.
The following table shows the characteristics of various direct
access storage devices. Note that the effects of hardware com-
pression, cache control units, or device or cache loading are not
reflected in the table. A brief discussion of these considerations
may be found in Chapter 9. Newer subsystems including IBM
RAMAC, RAMAC II, RAMAC 3, EMC Symmetrix, and Storage
Tek Iceberg (IBM RAMAC Virtual Array) and Kodiak (IBM
RAMAC Scalable Array) also are not included in the table since
these devices are so heavily dependent on caching and virtual
device mapping. All of these devices outperform the older ones,
but the physical characteristics of the base devices become
nearly irrelevant when subsystem storage and logic add so
much value to the basic physical configuration.

DASD Device Characteristics
Device Type ➜ 3390-1 3390-3 9345-2

bytes per track 56,664 56,664 46,456

tracks per cylinder 15 15 15

cylinders per device 1113 3339 2156

MB per actuator 946 2838 1502

uncached transfer, MB/s 4.2 4.2 4.4

rotation time, ms 14.2 14.2 11.2

latency, ms 7.1 7.1 5.6

minimum seek, ms 1.5 1.5 1.5

average seek, ms 9.5 15 11

maximum seek, ms 18 33 20
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DASD Device Characteristics
Device Type ➜ 3390-1 3390-3 9345-2

maximum paths 4 4 4

80-byte blocks/track 78 78 67

800-byte blocks/track 54 54 45

4096-byte blocks/track 12 12 10

8192-byte blocks/track 6 6 5

16,384-byte blocks/track 3 3 2

There is a change in packing efficiency across device types as
block size increases. The 3380 had an advantage over the 3390
for small block sizes, whereas the 3390 passes the 3380 at 800
bytes and the 9345, even with a smaller gross track size, pulls
even with the 3380 at the very important 4K block size.

3.3.2. Modeling I/O operations
Understanding I/O operations can be aided through modeling. An
analytic model of a typical I/O operation for a conventional device
(not an advanced storage processor) is relatively easy to construct,
given the published facts about devices and their connections to
systems. The technique is described in Chapter 9.

3.4. Summary
We have reviewed the physical resources to be managed by
MVS, with particular emphasis on CPUs or processors, real stor-
age (both central and expanded), and DASD input/output re-
sources. In the next chapter, we’ll look at how MVS organizes
these resources into objects and structures that it will then
manage.

3.5. Chapter Questions
1. Review the hardware configuration of your MVS system[s].

Trace its evolution over the past two years. Has the balance
between CPU power and storage size improved or declined
in that time?

2. How has the availability of logical partitioning affected
your installation? Did your assessment of the CPU-storage
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balance in your answer to question 1 reflect the full extent
to which your installation uses or will use logical partition-
ing? Does your answer change with this consideration
added?

3. If you were going to plan a data center installation today,
how would the availability of ESCON channels affect its
layout and its disaster recovery plan and arrangements?

4. Do you have any chronic I/O response time problems in
your installation? Based on the device characteristics pre-
sented in this chapter, is there a simple hardware solution
to this kind of problem? What would it take in terms of cost
and inconvenience to improve system performance? Can
you balance that cost against potential savings?

5. Estimate the amount of DASD space wasted in your instal-
lation because of block sizes that are too low. Can you relate
low block sizes to performance problems as well?
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Chapter

4
Virtual and Logical Resources

Things are seldom what they seem
Skim milk masquerades as cream

—W. S. Gilbert

Little Buttercup must have been an MVS designer. In MVS sys-
tems, things are often not what they seem. Let’s consider a sim-
ple assembly language program that will read a sequential text
data set, change all occurrences of the characters “extended
storage” to “expanded storage,” and write it back in place. As
this program executes, the objects it deals with are hidden from
direct view by a number of control functions, translations, and
indirect references.
We refer to the direct translations or mappings as virtual counter-
parts of real objects, while the control functions, composite struc-
tures, and indirect namings define logical resources. These are not
firm distinctions or standard terms. They may prove useful in un-
derstanding the pervasive nature of renaming in MVS.

4.1. Virtual Resources
In our hypothetical program, the initial need is to acquire a
quantity of storage for buffers, work areas, control information,
and save areas for general registers and other status informa-
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tion. The storage is virtual and is acquired from the private area
of the current address space.1 If, say, 64K bytes is required, a
GETMAIN or STORAGE macro-instruction in the source pro-
gram is translated by the assembler to several instructions that
place parameters in registers and then issue the SUPERVISOR
CALL (SVC) instruction to invoke the appropriate service routine
of MVS. That routine, part of the Virtual Storage Manager com-
ponent of MVS, will allocate a 64K block of virtual storage from
the private area and return its starting address to the program.

No real resources have been given to the program yet. The first in-
struction in the program that attempts to store data in the ac-
quired storage will cause an address-translation exception,2 a type
of hardware-defined program check. The page fault interrupt
caused by that exception will eventually be passed back to the
Real Storage Manager of MVS, so that a page frame (real) in
central storage, initialized to binary zeros, may be assigned to
the page (virtual). This process will occur up to 16 times as the
program’s instructions are executed and “touch” (make refer-
ence to) each page in the acquired space.

All of this activity is transparent to the programmer and not im-
portant to an understanding of the program’s logic. However, it
is clearly relevant if we wish to understand the performance of
the program and of the system in which the program runs.

We’ll return to this example when we examine logical resources
in the second part of this chapter.

4.1.1. Calling something by another name
Resources in MVS are made virtual (“virtualized”) so that the
same set of objects and addresses may be used in many address
spaces concurrently, independent of the physical resources that
will ultimately be used. Another benefit of virtualization is that
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1 The address space is little more than what the name denotes: a linear space of
contiguous byte addresses in which a unit of MVS work executes. An essential
attribute of an address space is its size, the total amount of storage that may
be allocated implicitly (as by causing a program to be loaded) or explicitly, by
requesting storage through the GETMAIN or STORAGE service. Each address
space is divided into a common area, shared with all other address spaces,
and a private area, unique for each address space.

2 An attempt to read data from this area of storage would make no sense; noth-
ing has been put there yet. If such an attempt were to be made, the same
page fault would take place. In this case, servicing the page fault causes a
central storage frame full of binary zeros to be assigned to the page.



the virtual resources can have standardized attributes (such as
the range of usable addresses), regardless of the amount of
physical resource available. Because most workloads other than
batch jobs do not demand service continuously, most virtual re-
sources are not needed full-time. Thus a scarce real resource
may be shared among many virtual entities, with performance
often approaching that of a 100 percent real system. This bene-
fit becomes very significant when the virtual resource is of much
greater aggregate size than the supporting real resource.

Storage is the best known of these virtualized resources, but ex-
ternal data may be made virtual using the Virtual Input-Output
(VIO) service or through the exploitation of hiperspaces in
MVS/ESA for storage of performance-critical data objects di-
rectly in expanded storage.

IBM’s 3850 Mass Storage Subsystem (MSS) was installed in
many early MVS systems. The virtualized entity in the case of
MSS was an entire IBM 3330 or 3330-11 device, simulated with
a combination of a 3330 or 3350 real device and the data con-
tained on one or more strips of magnetic tape, rolled up in car-
tridges when idle, stored in a honeycomb-like repository, and
brought to the read-write mechanism by robotic arms. This kind
of virtualization has recently reappeared in two forms: the IBM
RAMAC Virtual Storage Array (formerly known as Storage
Tek’s Iceberg) virtualizes disk volumes in a large array of small
disks; the IBM Magstar 3494 Virtual Tape Server virtualizes
tape volumes using a combination of physical tapes and inter-
mediate disk storage.

With logical partitioning implemented by IBM’s PR/SM feature
or Hitachi Data Systems’ (HDS) MLPF (or as separate domains
with Amdahl’s Multiple Domain Facility), whole systems are
virtualized. With PR/SM in LPAR (logically partitioned) mode, a
single CPU complex (or “side” of a multiprocessor) can look like
as many as ten separate virtual instances in the 711-based
ES/9000 9021s, with each CPU in a multi-engine configuration
having up to ten “logical” appearances.3 Each virtual instance or
system is independently initialized (IPL’d) and has a defined
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3 The treatment of CPUs in PR/SM, MLPF, and MDF is a classical virtual treat-
ment, but IBM and HDS choose to call the virtual CPUs logical partitions.
Amdahl calls them domains. The distinction may be useful; use of these terms
helps to distinguish these hardware virtualizations from those provided with
software assistance by VM.



complement of central storage, optional expanded storage, and
channel paths.
IBM’s Virtual Machine (VM) family of operating systems
virtualizes systems through software—also making use of spe-
cialized hardware features that were forerunners of PR/SM, or
of PR/SM itself—in the various levels of System/370 or Sys-
tem/390.4 Each user of a VM system can be presented with the
appearance of a complete System/360, System/370, or Sys-
tem/390 hardware configuration, ranging from a basic model to
an ESA system, depending on the VM variant and the requested
options. Although VM systems, most notably VM/ESA, can sup-
port “guest” operating systems, including MVS/ESA, within vir-
tual machines, the typical VM end user does not start up arbi-
trary systems, but uses program development tools and other
application interfaces built on CMS (Conversational Monitor
System5) as a time-sharing user.

4.2. Physical backing of virtual resources
Virtual resources are useful abstract entities, but to get work
done they must be backed up by appropriate real resources at
the time of use. It is a major purpose of operating systems such
as MVS to manage the real resources and to control assignment
of those resources to the virtual objects and work units that the
operating system supports.

4.2.1. Virtual storage and the paging subsystem
Because the aggregate size of virtual storage in a typical MVS
system is very large compared with the size of the real storage
resource, the data in virtual storage pages must be stored
somewhere else when real (central) storage frames are not
available. A moderately large system might have 800 active
address spaces, requiring an average of about 175 pages each.
The 140,000 page frames (560 megabytes) needed to “map” all
of this virtual storage to real storage are not found in any but
very large systems. Even when that much storage is available,
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4 VM/ESA uses the PR/SM hardware to support multiple preferred virtual guest
operating systems; such use is mutually exclusive with LPAR mode.

5 This incarnation of CMS is based distantly on the original Cambridge Monitor
System, a simple single-user operating system very similar to PC-DOS in
power and ease of use. CP/67, the forerunner of VM/370 and VM/ESA, was
originally intended to be a simple “hypervisor” providing multiple CMS virtual
machines to time-sharing users.



it would be extravagant to install it just to support such a
workload. Experience shows that 80 to 90 percent of interac-
tive users are idle at any given time. Real storage of 30,000 to
40,000 frames should be sufficient to support the workload
with acceptable response time.
Pages not currently mapped to real storage must be kept else-
where. In systems with expanded storage, processor storage is
divided into central storage, similar in concept to the older undi-
vided real storage, in which instructions and data may be ac-
cessed by the CPU, and expanded storage, which holds data not
accessible to the CPU except as page-sized objects to be ex-
changed to and from frames of central storage. In such systems,
expanded storage is the first choice for storage of pages not cur-
rently needed by the CPU but likely to be needed soon.
Normally each frame of real (central) storage may be mapped to
a virtual page of one address space’s private area or to a page of
the common area, or be kept on the available frame queue as a
candidate for future assignment. However, a facility introduced
in MVS/ESA SP 5.2 allows a page in any set of private areas to
be mapped to the same frame. This facility, originally known as
captured storage, was later renamed as the shared page facility.
Using shared pages, common information may appear in many
address spaces at (possibly) different virtual addresses using
only one set of page frames. If a program changes the content of
a shared page, the change is captured on a new frame in the ad-
dress space making the change. The shared page is not changed.
With or without expanded storage, all pages of all virtual stor-
age in an MVS system must at least potentially be backed by
slots of auxiliary storage. Each slot is the size of a page (4096
bytes), and MVS’s Auxiliary Storage Manager manages the as-
signment of pages to slots and initiates the input/output opera-
tions needed to move pages between central and auxiliary stor-
age. This resource is organized into page (or paging) data sets.
Collectively, the set of page data sets, along with any optional
swap data sets, is known as the paging subsystem.
Before large real storage sizes (and the use of expanded storage)
became common in MVS systems, the paging subsystem was of-
ten the single most critical performance management challenge
in MVS. Factors to be considered included number, size, and
placement of page data sets, the degree of interference from and
to other I/O, the use (and then the number) of swap data sets,
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the size of real storage, and the interaction of MVS’s internal
workload management controls with paging performance.

IBM speakers at user-group meetings would often suggest that
the days of storage constraint were at an end, and that tuning
the paging subsystem may be of even less importance in the fu-
ture. Acknowledging that there is now a trend away from real
storage constraint, nevertheless we recognize in this book that
not all systems are the latest, that not all budgets are the most
generous, and that those who pay for and use MVS systems are
very ingenious in devising ways to exploit the real storage re-
source. We also note that OS/390 has the capability of enabling a
new generation of applications implemented in a storage-rich
environment. Whatever temporary ease there may be in real
storage may well become constraint again as those new applica-
tions come into full production and maturity. In short, we will
assume that optimizing paging subsystem performance to con-
trol paging delay remains a worthwhile concern.

Virtual Storage in MVS/370
We begin looking at virtual storage by considering MVS/370, ob-
solete though it is. The layout of MVS/XA and MVS/ESA is eas-
ier to understand with that background.

The layout of virtual storage in an MVS/370 system is shown in
Figure 4-1. Each address space is 16 megabytes and includes all
of the MVS nucleus, common storage area (CSA), link pack area
(LPA), and system queue area (SQA). The remaining space, be-
low a 64-kilobyte segment boundary defining the limit of the sys-
tem area and above the segment boundary defining the nucleus,
is the private area. From that area is deducted the local system
queue area (LSQA), containing control information (such as
page-translation tables) required by the address space.

What is left is the available area for the real business of the ad-
dress space. This area was originally to have been guaranteed to
be no less than 8 megabytes. In many MVS/370 systems, it was
less than 6 megabytes. For a program package to be portable
across most MVS/370 systems, it must fit into the smallest
available private area in any of those systems. The phenomenon
of limited virtual storage leading to program design compro-
mises was dubbed “virtual storage constraint.” Successful efforts
to roll back the system area boundary and make more private
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area available were and continue to be announced by IBM as
virtual storage constraint relief or VSCR.

Splitting Large Programs Across Address Spaces. Many pro-
grams, particularly subsystems like IBM’s Customer Informa-
tion Control System (CICS) and Information Management Sys-
tem (IMS), frequently cannot fit in the limited confines of a sin-
gle address space. The MVS versions of IMS (IMS/VS) are de-
signed to use at least two address spaces, a Control Region and
one or more Message Processing Regions.6 More recent versions
of IMS can use additional address spaces to manage data base
I/O and recovery management functions.
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Figure 4-1. MVS/370 Virtual Storage Layout.

6 The “region” designation is a leftover from MVT and SVS. Each such region is
actually an independent address space.



CICS is less formally structured than IMS.7 Multiple address
spaces in CICS may each perform a full range of functions with
little or no intercommunication, or they may be organized into
specialized terminal-owning, resource-owning, and applica-
tion-owning address spaces. Again harking back to MVT termi-
nology, the structuring of CICS into multiple cooperating ad-
dress spaces is known as Multiple Region Operation, or MRO.

Inter-address Space Communication. Programs that commu-
nicate across multiple address spaces do so through a variety of
means. The earliest one used, before cross-memory services
(CMS)8 became available in hardware, was an indirect discipline
involving the scheduling of dispatchable work units to run in the
target address spaces. These work units, service request blocks
(SRBs), are preferred by the dispatcher above all tasks in the ad-
dress space when they are selected for dispatching.9 The task in the
address space that asked for the service needs to wait for the
SRB’s completion, often signaled by a complementary SRB
scheduled in the caller’s address space by the server.
Asynchronous cross-memory communication via SRBs has sev-
eral drawbacks. The use of SRBs involves extra overhead and
potential delay. The SCHEDULE macro’s SUPERVISOR CALL (used
to create SRBs) can be issued only by an address space running in
authorized state, and any data required for communication needs
to be passed in common storage so that both communicating ad-
dress spaces can have addressability to it. This use of CSA contrib-
utes to the very virtual storage constraint that the communication
across address spaces attempts to relieve.
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7 The informal structure of CICS appears to be becoming less so in the
MVS/ESA releases of CICS since Version 3. These versions exploit MVS/ESA
features such as data spaces, make use of the MVS dispatcher, and incorpo-
rate multitasking internal structures to ensure that they can take full advan-
tage of multiprocessor configurations.

8 This CMS has nothing to do with the CMS of VM/370. Some writers prefer to
use “XMS” to denote cross-memory services, but this choice has been pre-
-empted; “CMS” has been institutionalized as an MVS lock name. The term
“cross-memory” itself is another throwback to MVS prehistory. Because the
original name of MVS was MVM, for Multiple Virtual Memories, terms like
“memory create” and “cross-memory” are deeply ingrained in the internal lit-
erature of MVS (for instance, the comments embedded within the source code)
instead of more accurate and less confusing terms referring to address spaces.

9 At least they were prior to SP 5.2. A new class of dispatchable unit called cli-
ent SRBs were introduced then, providing the opportunity to run service code
with the low overhead of SRBs, but with the dispatching priority of the invok-
ing task. Also in that release, some SRBs become preemptible, thus allowing
more opportunity for the dispatcher to choose waiting work units.



With the support of CMS hardware by MVS/SP Version 1, a
much more efficient means of communication became available.
After required control structures had been set up, an address
space could transfer control synchronously to another address
space, resuming operation following the synchronous return. No
supervisor services are needed after initialization. Data can be
moved directly between address spaces known to each other,
and the address spaces need not run in the authorized state.
The “horizontal splitting” made possible and efficient by using
CMS helped MVS/370 to remain viable long after its 16-mega-
byte virtual addressing capability had become inadequate.

4.2.2. Virtual storage in MVS/XA and MVS/ESA
The virtual storage layout of MVS/XA and MVS/ESA is shown
in Figure 4-2. Note that data spaces, described below, are avail-
able only in ESA.
A major objective of System/370 Extended Architecture (XA) was
substantial VSCR. Certainly this was a possibility; the virtual ad-
dress range of XA is 128 times as large as that of MVS/370. How-
ever, many key subsystems did not make use of the private area
above the 16-megabyte “line” for years after the original release of
MVS/XA. VSCR came from the operating system itself as more
system address spaces were split out of nucleus functions. The his-
torical details are provided in Chapter 1.
Another part of XA’s VSCR was the system’s use of the “ex-
tended” areas “above the line.” As soon as major parts of the op-
erating system could be rewritten to exploit 31-bit addressing
and reside above 16 megabytes, those parts could be moved from
Nucleus to Extended Nucleus, or from PLPA to EPLPA. Because
of the long history of MVS, which has led to many dependencies
on system data remaining where it had “always” been, and the
important goal of release-to-release compatibility, this was a
protracted process and still continues in MVS/ESA.
In Enterprise Systems Architecture (ESA), another hardware
change makes new forms of addressing growth possible. Sixteen
access registers (ARs) correspond to the 16 general registers. For
each general register used as a base register,10 a new addressing
mode uses its paired access register to supply indirectly a
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cannot be a base register.



pointer to an individual segment table origin. Thus data (but
not executable instructions) may be found in a separate address
space. That address space may be specified as a data-only ad-
dress space, or data space. A data space’s segment table does not
include the common area’s segments, so it provides a full 2-giga-
byte address span for private data, and up to 15 of them (one per
access register other than AR0) may be active in support of an
address space at any time.

Using data spaces, subsystems may be restructured to gain
new levels of performance (by minimizing the need to store ac-
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tive data on external devices) and integrity (by separating code
from data).

Hiperspaces in MVS/ESA
Another mechanism in MVS/ESA to save input/output opera-
tions is the high-performance space, or hiperspace.11 Note that
hiperspaces are not shown on the virtual storage layout illustra-
tion. Hiperspaces reside outside the virtual addressing struc-
ture, although each hiperspace is visualized as a byte space of
up to 2 gigabytes in size, but with an addressing granularity of a
page (4096 bytes). The data within a hiperspace may be exam-
ined or manipulated only when it is brought into an address
space or a data space by operations analogous to data set READ
and WRITE.
The performance advantage of a hiperspace is achieved by ma-
terializing a “data set” in it and letting the paging subsystem do
the I/O for only those portions that are read or written. A
high-performance type of hiperspace is defined to reside only in
expanded storage, and is called ESO, for Expanded Storage
Only. More mundane hiperspaces may reside in a combination
of expanded and auxiliary storage. Hiperspaces never reside in
central storage. For response-critical applications requiring
very large data structures with low access density, hiperspaces
can provide nearly unlimited definable storage. Unlike data
spaces, which are limited to 15 active at any time by the number
of base/access register pairs, the number of simultaneously ac-
tive hiperspaces is limited only by address space limits in the
SMF exit IEFUSI. The maximum combined size of data spaces
and hiperspaces owned within an address space is 2 124 − mega-
bytes; the maximum number of such objects is 2 132 − . The
IEFUSI exit may be used to set limits lower than these defaults.
Since application programs need to be conceived, designed, and
implemented to take advantage of such potential, it may be
some time before the potential of hiperspaces is fully realized.
More likely, subsystems such as the MVS/ESA Storage Manage-
ment Subsystem (SMS) will take the lead by using hiperspaces
to automatically stage performance-critical data sets to ex-
panded storage at the time of need. This is already done for data
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11 Hiperspaces do not depend on access registers or on any other unique hard-
ware features of ESA. They are an example of system improvements imple-
mented only in ESA since IBM has withdrawn support of XA.



sets defined as Partitioned Data Set–Extended, or PDSEs. When
the MSR (milliseconds response) of the SMS storage class defin-
ing a PDSE is of a value indicating the always-cache category,
up to 256 megabytes of hiperspace is used as the working copy of
the data set. (PDSE directories are always maintained in data
spaces.)

4.3. Logical Resources
We can now return to the example that opened this chapter. We
have a simple program to assemble, link-edit, and execute. We’ll
just submit it as a batch job through TSO and wait for the re-
sults.…
Uh-oh! Unfortunately we have overlooked an essential part of
the picture in blithely assuming that our example program has
begun executing as if by magic. We must dig deeper to under-
stand first, how the job gets “into” MVS and eligible for execu-
tion; and second, how the MVS dispatcher gets an opportunity to
dispatch the work unit in which the program will run and how it
decides which address space to dispatch whenever it gains con-
trol.

4.3.1. Logical storage resources
As described in the next chapter, the job entry subsystem (JES2
or JES3) controls access to the set of executing jobs by means of
a set of queues called initiators. The initiators are started and
stopped through operator commands, although automation fa-
cilities are often used to issue those commands based on sched-
ules or demand. Each initiator serves one or more job classes,
and the job class of a job is specified in the JCL for the job, sub-
ject to amendment that the JES may exert through program ex-
tensions called exits.
The process by which the executable work unit begins execution
is a bit complex, but let’s concentrate on the logical resources
that stand in the way of getting the work done. Once a job gets
though the JES queue and is ready to be started, it passes
through a classification process, usually on the basis of the job
class, that assigns it to a performance group (if the system is not
in Workload Manager goal mode) or to a service class in the case
of running in goal mode. Performance groups and service classes
are logical resources based on similar need for resources or simi-
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lar need for service, respectively. The discussion must split here
between the approaches taken in connection with these two logi-
cal resources.

Access to Storage Resources in Compatibility Mode
Compatibility mode is shorthand for “not goal mode,” covering
the operation of the System Resources Manager (SRM) in every
release since SE2 in 1978 through the current versions in the
specifically chosen compatibility mode. In compatibility mode,
there is a logical resource that controls access to storage,
multiprogramming level (MPL).

MPL management. MPL is controlled in turn at two levels. At
the global level, the system determines through a series of pa-
rameter evaluations whether the current overall MPL12 is opti-
mal or requires adjustment upward or downward. Below that
level, the MPL is distributed through another class of logical re-
source, domains. Each performance group may be divided into
operational periods in which the specific operational parameters
for a work unit are provided based on the amount of resources
already consumed by the work unit. One of those parameters is
a number identifying a specific domain.

The domain itself can be shared across multiple periods of mul-
tiple performance groups and is a logical resource controlling
access to a subset of the multiprogramming set. Prior to SP 4.2
the MPL within a domain was made up of swappable address
spaces only, with an option to include nonswappables in the
count. As of 4.2 nonswappables are always included, with no op-
tion to do otherwise. We’ll consider the SP 4.3 treatment only.

It becomes obvious at this point that the level of abstraction is
very high. If we ask the question “Can this job be allowed to run
or will it be swapped out immediately?”13 we must pass through
the following steps:

• it is classified into a performance group

• the domain specified in the first or only period of the per-
formance group is identified
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multiprogramming set.
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• the in-target of the domain is compared with the number of
swapped-in address spaces in the domain

• if the in-target exceeds the current MPL, the address space
is allowed to execute, otherwise it will be swapped out

The target MPL for a domain as of SP 4.3 varies between speci-
fied upper and lower limits, controlled through an intermediate
variable, contention index, as determined by an additional pa-
rameter based on service rate.14 There is usually a gap between
the current MPL and the in-target, allowing an additional ad-
dress space to begin execution. However, careless specification
of domain MPL constraints (e.g., by not accounting for
nonswappable address spaces in systems beginning with SP 4.2,
or by setting unrealistically low upper constraints) can close the
gap and force undesirable swap-outs. The details may be found
in Appendix B.

Access to Storage Resources in Goal Mode
The domain structure, even though simplified in SP 4.2 and fur-
ther adjusted in 4.3, proved to be too abstract and too er-
ror-prone as a means of obtaining optimum performance for key
workloads. In Workload Manager goal mode the structure is
swept aside completely. Instead, control of access to the storage
resource is used to manage work in service classes according to
their goals. MPL is distributed to service class periods as it was
to domains, but Workload Manager hides the process and does
not materialize the MPL logical resource. The adjustment of the
global MPL continues to be based on measurable values like the
global UIC, but the logical resource of MPL is not a visible part
of goal mode.

4.3.2. Logical CPU resources
Once our little job has been allowed to start and is swapped in, it
is ready to receive CPU service. We now look at how access to
the CPU is controlled.

Dispatching Priority
Dispatching priority is the logical resource guarding access to
the CPU. How are the dispatching priorities established and
how does the dispatcher use them?
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This has been one of the busiest areas of evolution in MVS. In
more innocent times at the dawn of the OS/360 area, it was very
simple. The JOB or EXEC statement allowed the specification of
priority through a simple parameter: DPRTY=(n1,n2). The numer-
ical values of n1 and n2 range from 0 through 15, with (15,15)
representing the highest possible priority and (0,0) the lowest.
The two-part specification mapped to a single priority value
ranging from 0 to 255, as (n1 x 15) + n2. Since in those early
days jobs were handed in as decks of cards, it was easy for an op-
erator or production control person to screen the JCL and
change those priorities that appeared to be unjustifiably high.

As TSO and automated job-submission tools began to take hold,
this system broke down. A job could be submitted directly to the
job queue and no one would see it until it began execution. Some
external means of controlling dispatching priorities was needed,
and the earlier implementations of SRM began to address the
problem.

SRM Priorities from SE2 to SP 4.3
We’ll skip over some details of evolution and look at the final re-
sult prior to MVS Version 5. The SRM from 1978 to 1994 (and
Version 5 and OS/390 in SRM Compatibility Mode) allowed the
assignment of dispatching priorities through a mapping from
the basic 0–255 range to a subset, split into bands and subdi-
vided within each band. Instead of the priorities being subject to
contention among users via JCL, they could be controlled cen-
trally through parameters specified by system programmers in
their role as system administrators. Work units (jobs, TSO ses-
sions, and started tasks) could be classified according to various
criteria to performance groups which in turn contained priority
specifications. The details of the priority specifications and
other aspects of the earlier SRM may be found in Appendixes A
and B.

Problems in Dispatching Priority Control
Each time the MVS dispatcher runs, it follows a simple rule: dis-
patch the highest priority ready task of the highest priority
ready address space. The rule sounds fair, but it begs the ques-
tion of how the queue order is determined. Dispatching priority
has 255 distinct levels; in practice a maximum of 160 levels is
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managed by SRM but those 160 come down to only 70 distinct
specifications.

Because of the limited number of priority choices, there will usu-
ally be some number of address spaces of equal nominal priority.
A means is needed first to resolve the question of which address
space of those at equal priority should next be dispatched. A se-
ries of evolutionary changes have led to the latest implementa-
tion, called the fair access algorithm, which seeks to equalize the
selection opportunity among address spaces of equal priority.15

In other words, something like the old “rotate” algorithm is
back, but it is not externally visible.

The larger question remains: how is priority determined? Very
simply, SRM (in compatibility mode) does what you tell it to do.
The carefully layed out numerical dispatching priorities trans-
late to a queue order, usually with subqueues of equals at sev-
eral positions in the main queue.. With very little adjustment,
the order is static but the various address spaces cycle in and
out of readiness to run. In MVS systems since 2.1.2, only the
ready address spaces are visible to the dispatcher.

The problem lies in the rationale used to set up the priorities. It
is classical resource management. The CPU resource is doled
out according to the priority ordering in the logical space of dis-
patching priorities. However, the priorities are set up in order to
manage the performance of workloads.

We now come upon the main deficiency of resource-oriented re-
source management: within MVS there is no measurement of
workload performance and no feedback of workload perfor-
mance deficiencies to the mechanism responsible for setting up
dispatching priorities. The measurement and feedback, when
done at all, are external to the operating system, the former by
various performance monitoring programs, the latter through
human intervention.

Workload-oriented management of resource allocation in MVS
prior to version 5 is indirect, labor-intensive, and uncertain. If a
workload is not performing adequately and the business priori-
ties of the installation determine that improvement should be
attempted, it is first necessary to determine what will help. Sim-
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ply increasing that workload’s dispatching priority may not help
if CPU-access delay is not a significant problem—and doing so
may introduce delay for other workloads.
Many who attempted such tuning became wary of change and
acted only when the most severe problems appeared. A change
in methodology was necessary for many reasons.

Dispatching Priority in MVS/ESA Version 5 and OS/390
With the arrival of Workload Manager goal mode in MVS Ver-
sion 5, the opportunity exists to replace resource-oriented re-
source management with workload-oriented resource manage-
ment. Dispatching priority is no longer externalized, but it is
used internally by the SRM as one tool in a set of tools that man-
age workload performance by controlling access to resources. In
goal mode, the logical resource of dispatching priority no longer
exists. However, the latest version of the dispatcher algorithms
described above is retained in goal mode. Indeed, the changes
were implemented in anticipation of goal mode.16

Our discussion of goal mode appears in Chapter 7.

4.3.3. Logical I/O resources
Going back once again to the example that introduced this chap-
ter, our simple editing program has finally commenced execu-
tion. It has established its environment by acquiring its own
working virtual storage; it has saved the caller’s registers; and it
is now ready to get to work. Remember, we were going to read a
text file, look for a particular character string, replace the string
with another of the same length, and write the changed infor-
mation back to its original location.
To perform a data-editing operation that is very simple to do in
a high-level language, our assembly language programmer
must deal with a formidable series of structures interposed be-
tween the program and the data “out there” on a device.
Data recorded on a track of today’s DASD, such as the IBM
3390, is written as a series of fixed-length cells, regardless of the
data organization we see at a higher level. The cell size for
3380s is 32 bytes, and it is 34 bytes for 3390s or 9345s. The de-
vice is at its most efficient if all the cells on the track are written
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at once; only one instance of overhead is needed if only one phys-
ical record is written per track.

Physical record? What happened to cells?

The cells are not visible to the operating system. A virtual struc-
ture is superimposed on the track organization by microcode in
the device, string controller, and storage director. It is at this
level that the most recent storage processor subsystems and the
SCSI-based inboard DASD of the Multiprise 2000 series, the
P/390, and the R/390 meet the past systems. They all present
the same virtualization of “conventional” devices as seen by the
I/O subsystem. The virtual picture is that of a count-key-data
(CKD) device, differing only in quantitative physical details
from the first DASD on System/360. In the CKD architecture,
each track is organized into physical records, and these records
correspond to the data moved by a single READ or WRITE CCW.
Thus the discussion on block size at the end of Chapter 3 really
should have been preceded by a discussion of the virtualized
data structure. However, it’s easier to accept the notion of CKD
as a hardware architecture and ignore the underlying details.
When it’s desirable to understand why the capacity falls off so
dramatically at small block sizes in some implementations, the
details become important.

Data Organization on DASD
MVS supports several logical organizations of the data con-
tained in the physical records of I/O devices. Of interest in the
current example is the physical sequential organization. In this
type of data set organization (DSORG), the operating system,
through an access method, recognizes that the data exists in or-
der, and that a request for the “next” block or record does not re-
quire positioning information.

Data Sets
The aggregate of data which is commonly called a file in the jar-
gon of other systems is known as a data set17 in MVS. The data
set in our example is a sequential data set, and our program will
read and update it by means of the queued sequential access
method, or QSAM.
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The data set is the fundamental unit of data management in
MVS. It corresponds to a label entry (known as a data set control
block, or DSCB) in the area of each disk volume that is reserved
for such entries. Most permanent data sets are also cata-
logued;18 such a data set can be found and retrieved by name
only, without having to know which volume it is on.

Late Binding
The previous discussion may have seemed a bit vague, but it
was meant to be. MVS has a deliberate amount of vagueness
built in. In systems less sophisticated than MVS, a file might be
found in a directory of a specific disk device, and all of its attrib-
utes would be either implicit or specified directly in its directory
entry. A strength of MVS is the idea of late binding; data set at-
tributes may be specified or amended at the time of use. This is
accomplished by a multiple level of specification. In the case of a
batch job, the chain of specification begins with the job control
language for the job step in which the program will be executed.
In turn, data set information is specified in the following layers:

• DD Statement. The DD, or data definition, JCL statement
has a name specified in the program. (In the interactive
TSO environment, an ALLOCATE command is the coun-
terpart of the DD statement, and the term file name is
used as a synonym for DD name as a tag to denote the pro-
gram’s view of the data set.) The idea of the DD was the
key innovation of late binding. A program needs to have
some way of identifying the data it will use or create, but if
a data set name is embedded in a program, the program
will have little general usefulness. The DD provides a layer
of insulation. The program refers to a constant DD name,
but the DD or ALLOCATE can name any data set meeting
the needs of the program. The data set’s attributes may be
specified at the time of its creation, and some of those at-
tributes can be amended at each time of use.

• Data Set Control Block (DSCB). For a pre-existing data
set, the DSCB (a more complete version of the file label in ear-
lier systems) records the attributes with which the data set was
created or last updated. Some of these attributes (such as the
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data set organization) cannot be overridden by DD specifica-
tions or from within the program; others, such as the physical
record size (known in MVS as block size), can be overridden.

• Data Control Block (DCB). The DCB is both an MVS
control block and the macro-instruction that generates it.
In a program before it’s compiled or assembled, the DCB
contains, at minimum, the view of the data set required for
the successful resolution by a compiler or assembler of ref-
erences to it within the program. Those references to the
DCB are as targets of I/O macros or corresponding
higher-level statements within the program. In our exam-
ple, we would expect these macros to be OPEN, GET,
PUTX, and CLOSE.

• OPEN Macro. Once the program is loaded and executing,
OPENing a DCB binds dynamically the program’s view of
a data set to the real data set. In the original concept of
OS/360, OPEN would complete the fields of the DCB, dy-
namically load the appropriate access method modules,
create or update the DSCB for a data set on a direct access
device, acquire storage for buffers, and, for a sequential
data set to be used for queued input or update, “prime” the
buffers in anticipation of the first GET request.

This set of functions has been resilient over the years. The only
major difference in an MVS/ESA system of today is that the ac-
cess method code does not need to be physically loaded; it is
likely to be already resident in the pageable link pack area
(PLPA). As ESA’s new capabilities are exploited, this too may
come full circle. It may become more appropriate to load, on de-
mand, some access method modules from libraries maintained
in data spaces by the Library Lookaside Facility than to take up
virtual storage for them in PLPA.
An even more flexible set of late-binding primitives was intro-
duced as a matter of necessity when TSO was added to MVT.
The added set of services is dynamic allocation.19 With dynamic
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allocation, a data set name and its attributes can be elicited in-
teractively from the terminal user, placed in a DCB by invoking
dynamic allocation services, and allocated to the TSO session.
The DCB can then be OPENed, and the data set created, or oth-
erwise manipulated, without the need for even a DD name as a
fixed external reference.

SYSIN, SYSOUT, and Terminal Processing
Most batch jobs and many subsystems produce printed output.
A DD statement as simple as
//SYSPRINT DD SYSOUT=A

and corresponding program statements such as
…

PUT PRINTIT
… …
PRINTIT DCB …DDNAME=SYSPRINT,…
…

direct the desired output to the job entry subsystem (JES; either
JES2 or JES3) to place on its “Class A” queue for output. The de-
tails of how it will be printed are left to the JES. SYSOUT pro-
cessing is an extreme example of late binding.

If the same program is run in TSO, the user probably won’t want
printed output, but would expect the program output to be dis-
played on the terminal. Without a program change, the TSO
user need only enter a statement in TSO Command Language
to create the association between the internal file name and the
external data set, which in this case is a data stream directed to
the terminal. The user would enter:

alloc f(sysprint) da(*) reus 20

or accept the same allocation, found by default in most TSO
LOGON procedures, to direct SYSPRINT output to the terminal.

The job entry subsystem can manage input streams as well as
output streams. Batch jobs can obtain control information or
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low-volume data input from the JCL itself; the method of doing
this is to use the “DD *” or “DD DATA” option:

//SYSIN DD DATA

This command will associate what follows that statement in the
JCL data set with the SYSIN DD name. The input ends when
the MVS reader-interpreter encounters an input record begin-
ning with the characters “/*.” The TSO counterpart for input
from the terminal is:

alloc f(sysin) da(*) reus

4.3.4. Other logical resources in MVS
A data set OPENed for output is an example of a serially reus-
able resource (SRR), so named because many work units can use
such a resource, but only one work unit can use it at a time. There
are many other such resources in MVS. Depending on the nature
of the SRR, various kinds of damage may result if several work
units (tasks or SRBs) attempt to use one concurrently. A mecha-
nism is needed to protect SRRs from such damage.
At least two such mechanisms are available. For SRRs that are
used frequently and have fast service times, hardware-assisted
locks are used. An example is the SALLOC lock, used to ensure
that only a single process is allocating virtual storage at a time.
Locks are generally used by “system programs,” i.e., those that
call on or provide low-level services.
For more ordinary resources, the GRS (Global Resource Serial-
ization) address space in MVS provides ENQ (enqueue) and
DEQ (dequeue) services, invoked by similarly named macro-in-
structions and their generated SUPERVISOR CALLs. Like locks,
ENQs and DEQs are usually concealed by higher-level services.
When a data set is OPENed, for instance, the OPEN service rou-
tine will issue an ENQ against a major resource name of SYSDSN
and a minor name identical to the 44-character data set name. The
ENQ macro will specify the EXCLUSIVE attribute if the data set
is to be used for output or update, or SHARED if the intent is input
only. If a task requests an ENQ when another task has an EX-
CLUSIVE ENQ for the same resource, the requesting task will be
notified of the condition in a return code or will wait until the re-
source is available.21

Contention for real resources is held off by the ENQ/DEQ mech-
anisms. Instead, contention is transferred to the logical objects
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represented by ENQ resource names. When programs are
sloppy in either securing or releasing ENQs, contention between
address spaces can arise. One of the most frequently seen per-
formance-killing conditions in the TSO environment is “ENQ
lockout.” Because it is possible to secure some but not all re-
sources needed for a program, tasks that do not release ENQs if
not all are available can “fight” with other tasks and cause sys-
tem productivity to suffer. As we’ll see in Chapter 9, perfor-
mance monitors can detect such slowdowns and often offer a
means to cancel the address space holding the blocking ENQ.

4.4. Summary
MVS operates through virtual and logical resources to:

• protect critical system information from damage

• facilitate resource sharing

• insulate system users and program designers from the
complexity of the real system resources

• project an appearance of resources better suited to the
needs of an operating system, its subsystems, and its work-
loads than the bare hardware can do

The cost of these protections and flexibilities is system over-
head. The overhead is usually far outweighed by achieving the
ability to make effective use of a vast array of system resources.
The performance management challenge is to understand the
nature of the resources and to be able to look beyond them to
solve underlying problems.

4.5. Chapter Questions
1. Does your MVS system have a virtual storage constraint?

Why? Create a no-cost plan to eliminate the constraint or
show why that is not possible.

2. Determine how extensively central storage is overcommit-
ted in your MVS/ESA system. How much is backed by ex-
panded storage and how much by auxiliary storage?
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3. Of the DASD problems in your system, which are caused by
contention and which are resource exhaustion problems?

4. How do DASD resource management practices contribute
to performance problems in your installation? What
changes would be most effective in eliminating them?

5. How often does your system experience ENQueue lock-
outs? Why? What can you do to prevent them?
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Chapter

5
Workloads and Service Levels

MVS workloads consist of five principal categories of address
spaces and a sixth category that might be considered a phantom
address space:

• Batch jobs—the common workload of earlier operating sys-
tems. The normal purpose of a batch job is to perform some
data transformation task without human interaction dur-
ing its execution. In the past, a batch job came into the sys-
tem on punched cards, and its output left the system on
printed paper, on cards, or on both. In today’s systems, the
input, output, and persistent data are all likely to be on
DASD. A job normally does not run continuously but starts
and ends, leaving behind some change in the data left in
the system, or creating output data that leaves the system.

Although a job may be divided into individual steps, the job
as a whole is usually thought of as a single transaction
with a single purpose. The name of the job is specified as
the first identifier or token on the “JOB card,” the first
80-byte punched-card image that constitutes the job. The
remainder of the job control language (JCL) that defines
the job may be supplied wholly or partly through one or
more catalogued procedures contained in libraries known
to the job entry subsystem (JES).

• Started tasks—address spaces that provide some kind of
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operating system or subsystem function. Started tasks
(called “system tasks” in MVS’s predecessor systems) nor-
mally run continuously. The name derives from the usual
means of activating these address spaces. The START op-
erator command invokes a catalogued procedure. The pro-
gram executed by the procedure remains active in the sys-
tem until shut down by another operator command or until
the system is shut down. The name associated with the
started task may be specified in the START command but
is typically the name of the catalogued procedure.

• TSO sessions—the system-level means of enabling users at
terminals to gain access to most of MVS’s functions in the
same manner as a batch job, but with an increasing num-
ber of TSO-specific productivity tools as well. A TSO ses-
sion starts at LOGON and ends at LOGOFF, but a session
may comprise many unrelated transactions. The name of a
TSO session is the user-id specified in the LOGON com-
mand.

• APPC/MVS transaction processors—a general-purpose
type of MVS address space, which can potentially have
properties characteristic of each of the three older work-
load types, although considerations for TSO will in most
cases be applicable to APPC/MVS.

• OpenEdition MVS Sessions—another kind of com-
mand-driven interactive session, in which MVS presents
the user with a UNIX command shell and executes pro-
grams in a UNIX environment. As an MVS workload it is
much like TSO; however, UNIX program structures are dif-
ferent enough from standard MVS structures to require
some special handling.

• Enclaves—this is the phantom work unit, not associated
with an address space. The first subsystem to exploit en-
claves is DB2’s Distributed Data Facility, DDF. Enclaves al-
low individual transactions to be managed with their own
dispatching priorities, classified through the DDF subsys-
tem through workload manager when in goal mode or
through the ICS in compatibility mode.

We’ll consider each of these work unit types in turn, characteriz-
ing the resource usage pattern and performance demands of
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each. We might, however, find a different classification useful as
well. Another way of regarding MVS workloads is to look at two
less precise categories:

• Subsystems—address spaces (or related sets thereof) that
serve the needs of other workloads or directly support their
end users at terminals. IBM’s DB2, IMS, CICS and Open-
Edition MVS are such subsystems. VTAM is at once a sub-
system on its own and a server to other subsystems. Sub-
systems are usually started tasks, but they sometimes
masquerade as batch jobs.

• Individual address space workloads—ordinary batch jobs,
TSO or OpenEdition terminal sessions, or APPC/MVS
transactions. In a loose sense, these are the direct end-us-
ers of the system, as distinguished from those served indi-
rectly through subsystems.

5.1. Batch
A batch job comes into the system by one of several different
means, each of which leads to its placement on a job queue. Each
job on the job queue is in a job class and has a selection priority.
The selection priority affects a job’s placement only within its
own class on the queue.
Removing jobs from the queue and placing them into execution
is done by the job entry subsystem (JES). Two such subsystems
exist, JES2 and JES3.1 They differ in details of job management
and in the services they provide, but both perform the same ba-
sic functions with respect to job selection and initiation. The
JES also manages SYSIN and SYSOUT, standard data streams
for job input and output. SYSIN forms part of the job queue
along with the statements in Job Control Language (JCL) that
define the job. SYSOUT collectively constitutes the output
queue. The term SPOOL2 is applied to the collection of JES
queues. SYSIN is usually associated with the images of 80-col-
umn punched cards, and SYSOUT is usually destined for print-
ers, although other options are available.
The image from which many terms describing MVS job entry
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and scheduling services are derived is that of a card reader
whose input is transcribed to the job queue. There are few if any
card readers in today’s MVS systems, but a common means of
placing jobs on the queue is to direct the card images that con-
stitute a job to a SYSOUT facility called an internal reader. A
START command to the internal reader moves its contents to
the job queue.

5.1.1. Types of batch
In many MVS installations, batch comprises two distinct work-
loads. The more traditional kind of batch is production or sched-
uled batch, standard jobs or series of jobs that perform work es-
sential to the business that the installation serves. The other is
non-production or unscheduled batch. This type of batch repre-
sents test runs of production jobs, test versions of subsystems
that normally run as started tasks, work submitted by TSO us-
ers for almost any conceivable purpose, system maintenance
tasks—in short, anything that can run in MVS as a batch job
other than production. In some installations, the latter group is
further subdivided into classifications like unscheduled produc-
tion and nonproduction.
Scheduled production batch may seem boring—the same jobs
running the same programs every day, week, or month—but it is
often the lifeblood of the enterprise.
The importance of production batch is such that whole pro-
duction control departments exist to watch it, to help it, to re-
start it after problems occur, and generally to escort its jobs
and output safely through the system to the ultimate user.
Production batch workloads are usually very predictable in
timing, dependencies, and resource requirements. Also, pro-
duction batch typically runs during the hours when online
service either is suspended or has low demand. Thus, system
operators and performance management personnel are not
usually concerned with acute contention problems or other
symptoms of unpredictability in the production batch work-
load, except when the production workload is the victim of
some other workload’s bad habits.
In contrast, nonproduction batch often does intrude on other
workloads, and its management may influence profoundly the
performance of the online subsystems or of production batch.
The burden of exercising that management has in the past
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fallen heavily on the system’s operators, unless the system pro-
grammers and service planners designed a resilient and respon-
sive set of system parameters and operational procedures to
manage the batch workload.
Starting with MVS Version 5, the intrusive problems associated
with unscheduled batch can be overcome with considerably less
effort through the use of Workload Manager goal mode. Details
may be found in Chapter 7.

5.1.2. Job classes and initiators
Batch jobs enter an MVS system through JES-controlled queue
servers called initiators. Each initiator occupies and serves a
single address space. An initiator is assigned to one or more job
classes; the classes are in the order specified in the initiator’s
JES definition. The dequeuing of jobs is sequential by class or-
der whenever an initiator is idle, and by priority order within a
class. For example, if an initiator is “open” for (serving) classes
B, J, X, and T in that order, a job in class B with selection priority
of 1 (the lowest) will be selected ahead of a job in class J with a
priority of 15 (the highest). The priority in this case (a JES pa-
rameter) has nothing whatever to do with dispatching priority
(an MVS parameter).

Job Classing Schemes
Job classes may be assigned for various reasons. Because classes in-
teract with initiators, the classing scheme and the number of initia-
tors and their class assignments must be considered together.

Serialization Approach. In some instances, production jobs
must be run in a strict sequential order. The simplest method for
ensuring such processing is to place all such jobs in a single
class, to start exactly one initiator for that class, and to make
sure that the JES reader processes each sequential stream of
jobs in the correct order. A common technique to guarantee that
order is to place the JCL for the entire jobstream in a sequential
data set or in a member of a partitioned data set, and to start an
internal reader with the desired set of jobs as its input, thus
placing the jobstream on the job queue.
One or more unique job classes may correspond to one-class ini-
tiators for managing production batch jobs. Such a rigid struc-
ture is not responsive to even the relatively slow rate of change
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possible in a real-world workload or to the need for adjusting pa-
rameters or dealing with recovery situations. Large data centers
with extensive batch production work rely on more flexible control
schemes. An extensive example of such a scheme is the job-de-
pendent scheduling feature of JES3, in which jobs are held until
released by the successful completion of a designated predecessor.
A supplementary IBM-licensed program is available to provide
some of the same capability in a JES2 installation. Independent
vendors also offer production batch control packages.

Statically sequenced batch jobstreams are not the last word in
dependency scheduling. Many modern production systems do
not use canned JCL at all, but include JCL generators to build
and submit3 successor jobs when predecessor jobs reach the ear-
liest point at which all dependencies are satisfied. Such systems
allow more sensitive dependency control than that available in
JCL. To take full advantage of large multiprocessor systems,
they may also permit “fork” and support “join” of parallel
threads. Since scheduling systems can enforce sequential sched-
uling and also support multiple parallel jobs, reserved classes
and initiators for production batch jobs may not be necessary.

Operator Involvement. Another basis for setting up classes reflects
the degree of operator involvement needed for a job in its execution
stage. By placing a job in a “hold-for-setup” class, the submitter is re-
lieved of the need for the TYPRUN=HOLD or TYPRUN=JCLHOLD parameter
in JCL. JES holds the job automatically, but most installations still
require SETUP or MESSAGE JCL statements for quick and accur-
ate determination of the job’s setup needs.

The most usual example of setup is tape retrieval and mounting.
As the use of automated tape libraries and very-large-capacity
online storage devices grows, the need for this kind of hold pro-
cessing will diminish. The Storage Management Subsystem
([DF]SMS) of MVS/ESA contributes in two ways to the reduc-
tion of tape setup jobs. First, by making better use of different
generations of DASD, DFSMS might use lower-performance
DASD, such as last year’s model, for data sets that formerly
might have resided on tape. Second, many tape jobs are backups
of key DASD or archives of disused data sets. SMS, by using
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DASD for near-term archives and making backups and archive
jobs more selective and efficient, will minimize the need for tape.
A remaining use for an automatically held job class is to allow
submission of jobs that are to be explicitly held, irrespective of
resource availability, and run at a later time, perhaps to take ad-
vantage of a favorable off-shift billing policy.

Service Expectations. If job classes need not be related to produc-
tion job status or dependencies or to setup requirements except in
unusual cases, what is an appropriate basis for establishing job
classes? A common choice is to relate classes to service expecta-
tions. In many cases, expected levels or rates of resource consump-
tion are included in the determination of classes. A possible scheme
including resource requirements and service expectations, as well
as production status and setup needs, might be:

Class CPU sec. Priority Comment, other attributes

A any low default class
B 0–2 high production class
C 2–20 high production class
D 20–120 high production class
E 120–600 high production class
F over 600 high production class
G 0–2 high systematic class
H 2–20 high systematic class
I 20–120 normal systematic class
J 120–600 normal systematic class
K over 600 normal systematic class
L 0–2 high same as G with setup required
M 2–20 high same as H with setup required
N 20–120 normal same as I with setup required
O 120–600 normal same as J with setup required
P over 600 normal same as K with setup required
Q over 120 normal long-running nonproduction jobs
R over 120 normal same as Q with setup
S any normal guaranteed serialization (single INIT)
T any normal same as S with setup
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Class CPU sec. Priority Comment, other attributes

U any normal defer to next shift
V any normal same as U with setup
9 any high emergency priority

In this scheme, each job submitted is expected to have the
TIME= parameter specified on the JOB statement, except for
classes S–V and 9. JES, SMF, and SUBMIT exits4 check for this
entry and substitute the appropriate “systematic” job class, ac-
cording to the time specified and the presence or absence of the
/*SETUP statement or its JES3 equivalent. The absence of the
TIME parameter (or a class exempt from TIME checking) leads
to a default assignment of class A, a low-priority class. Special
classes Q through V may be specified in JCL and cannot be al-
tered by the exits. Class 9 may be specified only by designated
“authorized” users whose credentials are checked by exits in
conjunction with the installation’s resource-access-control sys-
tem. Finally, the production job classes are selected by exits ac-
cording to the TIME parameter, in conjunction with distin-
guished USER names or account numbers.

5.1.3. Batch performance considerations
The performance characteristics of batch jobs are examined
here based on the “normal” pattern of batch. That is, a job is not
a never-ending address space simulating a started task. A nor-
mal batch job is a voracious consumer of MVS resources, accept-
ing CPU and I/O service and using real storage until the pur-
pose of the job is done. It may wait for the availability of re-
sources it needs or for services it requires, but there is no limit
to the rate at which it can consume service other than that im-
posed by the hardware and the operating system.
Once a job enters a JES input queue, there are several factors that
can delay both its initiation and its execution. These factors include:

• No initiator is open to the job’s class.

• The open initiators are serving other classes specified
ahead of this job’s class.
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• Other jobs may have higher selection priorities within the
class.

• The job has requested the allocation of devices or data sets
that are not available, and the JES is not screening for al-
location dependencies. In JES3 systems, allocations may
be checked before job initiation. If this option is not se-
lected in JES3, and in all JES2 systems, a job may be
started and immediately go into “allocation recovery,” with
MVS’s allocation recovery function prompting the operator
to substitute available devices for unavailable ones. This is
a decision the operator is unlikely to be prepared for, so the
job fails on a time-out or by explicit operator option.

• JES3 is not allowing new jobs, or this job in particular, to start.

• Prior to MVS Version 5, or in compatibility mode, the SRM
has reduced the system’s multiprogramming level (MPL),
this job’s domain has had its target MPL reduced, and its
swap recommendation value (RV) is among the lowest in
the domain. The job is thus unilaterally swapped out, and
“SRM Delay (MPL)” may become a significant execution
state5 for the job. The same kind of delay can exist in Work-
load Manager goal mode, except that the MPL constraints
are associated with service class intervals rather than with
domains, and Workload Manager adjusts the MPL distri-
bution based on service criteria (goals) rather than on re-
source-oriented parameters.

• The job’s dispatching priority may be low, and the CPU is
at or near saturation. Time spent waiting for the CPU may
become a significant execution state for the job.

• The job may use resources in such a way as to cause signifi-
cant operator intervention delays. Placing intermediate
data sets on tape rather than on DASD (or, even better, on
VIO), for instance, may lead to excessive delay for tape
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and TSO response time is unaffected, that is very likely a desirable outcome.



mounts. Such data sets are too often used in large linked
jobstreams to pass data from job step to job step or from job
to job.

• The job uses I/O devices inefficiently. Inappropriate block
sizes, multiple data sets on the same device, and frag-
mented data sets with long SEEKs between extents may
all lead to “active I/O” becoming a significant execution
state for the job. Applications that perform I/O to repeat-
edly reread unchanging data, instead of using virtual stor-
age in the address space or in data spaces (in MVS/ESA
systems) to retain that data, are simply wasting I/O when
a more appropriate resource is readily available.

• The job may use shareable I/O devices that are already in use
by other address spaces. I/O queuing may thus become a sig-
nificant execution state for the job. If the devices are shared
with another system, the queuing due to inter-system conten-
tion appears as “RESERVE delay” in MVS/370. In an
MVS/XA or MVS/ESA system, inter-system device contention
appears to be the same as genuine active I/O time, because
the queuing and redriving of the I/O is handled by the I/O
subsystem. The impact of queuing on the same system can be
altered if I/O priority is specified for the job independent of
dispatching priority, but the contention is only displaced
somewhat to other work, not eliminated.

• The job suffers from significant real storage contention. A
sloppy storage reference pattern in conjunction with some
level of central (real) storage constraint may cause page-in
delay to become a significant execution state for the job.
Real storage contention (page-in delay) can be a highly
variable factor in determining the elapsed time of a job.
When the job is run at an otherwise idle time, there may be
virtually no page-in delay. On the other hand, if the job is
run at a prime-shift peak time, page stealing may repeat-
edly strip the job’s address space of all but the most re-
cently used page frames and lead to very long aggregate
page-in delay. The increased paging rate should trigger
MPL reduction, leading to unilateral swapping; otherwise
the increased activity on the local page data sets leads to
slower paging response times and a general slowdown of
the system. This picture changes substantially with the
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SRM improvements in MVS/ESA SP 4.2. The Working Set
Manager component of the SRM makes it less likely that
central storage constraint leads to unproductive thrash-
ing.6

We’ve seen that the number of initiators, along with the selec-
tion and order of the classes they serve, is a more significant de-
lay factor than selection priority. Selection priority is specified
by the PRTY parameter on the JOB statement or in the sepa-
rate PRIORITY statement. It is usually destructive to orderly
system management to allow users to specify job selection prior-
ity. JES parameters provide for the adjustment of selection pri-
ority as jobs age on the selection queue. If control of access to the
job classes (as by exits or automation facilities) is sound, such
management of selection priority is very effective.

Initiators as a Resource
In JES2 environments, initiators are set up in the JES2 parame-
ters and may be altered by operator action. JES3 may alter initia-
tor settings on its own, according to the policies represented in its
parameters as they interact with the workload. We will disregard
such dynamic adjustments in discussing initiators. We shall re-
gard initiators as specific (named) resources, one of which must be
acquired by each batch job before it may proceed.
In JES2, each initiator may be set to one or more classes, up to
the full complement of 36 possible classes.7 The number of de-
fined initiators (including both “active” and “drained” ones) may
range from zero up to the maximum number of address spaces
allowed for the current IPL, less the total of started tasks and
logged-on TSO users.

Delay Caused by Initiator Settings
Since an initiator is coterminous with an address space, it
serves only one job at a time. The interplay between jobs waiting
for execution and the availability of initiators is a crucial factor
in determining the length of “on-queue” delay for a job. A tacti-
cal position that may have had some value in the past may in-
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crease this delay. That position is the avoidance of “over-initia-
tion,” defined simply as admitting more batch jobs to the system
than real storage can accommodate.
In the earliest MVS systems, the physical swapping load re-
quired to manage a large number of batch jobs through a
smaller MPL had a severe impact on the performance of TSO
and online subsystems. Since that time, the “extended swap” al-
gorithm along with “contiguous-slot” blocked swap paging was
introduced in MVS/SP 1.3.0, significant improvements in pag-
ing and swapping were shipped in subsequent MVS/370,
MVS/XA, and MVS/ESA releases; and installed and maximum
real storage sizes have increased dramatically. Over-initiation is
now a disease with few symptoms. In fact, it is more often an in-
dicator of good system health.

The Need for Over-initiation
Under-initiation is a far greater source of inefficiency than
over-initiation. Once jobs are in the system, they are managed
by the System Resources Manager. The SRM can select jobs to
be swapped in or out to ensure maximum throughput, as well as
to respond to the installation’s priorities. Workload Manager
goal mode since Version 5 uses the same mechanisms but makes
its decisions primarily on the basis of workload service targets
and business priorities. The SRM responds dynamically to load
balancing opportunities. For instance, it might swap in a few
more batch jobs when 30 TSO users go to a meeting, and swap
the jobs (or their successors) back out when the TSO users re-
turn. This opportunity is lost if a stingy initiator configuration
is selected to avoid “over-initiation” at peak load time. A great
deal of system capacity can be wasted in a mixed-workload sys-
tem when jobs reside out of reach on the job queue rather than
close at hand in processor storage or on page data sets.
It is necessary, of course, to ensure that the swapped-out jobs result-
ing from planned over-initiation are not holding specific resources
needed for other work. The pre-initiation allocation screening done
by JES3 eliminates this problem to a large extent, and real-time
monitoring of ENQueue contention can detect such problems and
facilitate corrective or (future) preventive action.

Initiator Classes
Because of the great variability of workloads and installation
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service policies, it is impossible to prescribe an “ideal” initiator
line-up. Let’s study a hypothetical example based on the job
classes listed in the table starting on page 108. We’ll state some
facts, assumptions, observations, and rules and indicate how a
selection of 20 initiators might support them. We assume that
the relative priority specification applies to both selection prior-
ity and dispatching priority.

• Classes B–H, L, M, and 9 are shown as “high” priority.

• Class A is “low” priority.

• All other classes are “normal” priority.

• No initiators for classes U and V may be active on prime shift.

• Classes D–F, I–K, and N–R have substantial resource re-
quirements. Capacity studies at our example installation
indicate that only four jobs in these classes should be ac-
tive at any given time on prime shift. Up to seven jobs may
be run off-shift.

• Only one initiator may be active at any time for classes S
and T. Batch jobs requiring serialization07IS
lization;of batch jobs are in these classes until the
jobstreams are brought up to date with dynamic job sub-
mission into classes with open initiators.

• Classes B, C, G, H, L, and M are the classes accounting for
the bulk of jobs. They should be accommodated with mini-
mum delay. Ten times as many “0–2” jobs run as “2–20,”
but the “2–20” jobs may be slightly more important than
the shorter ones. Average execution times for “2–20” jobs
are five times as long as those for “0–2” jobs.
If the number of short jobs submitted per hour is 100, the
number of longer jobs per hour is about one-tenth of that fig-
ure, or 10. Execution time for short jobs is 100 relative time
units, and for longer jobs, 50 such units. Execution resources
are tied up twice as long for short jobs as for longer ones, so
we conclude that the shortest jobs need twice as much prefer-
ence for initiators as the next longer running class.

• Production jobs rank ahead of nonproduction jobs with oth-
erwise identical attributes.

• Setup is irrelevant once a job is released.
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In the initiator setup shown below, all class S jobs are selected
by initiator 5 before that initiator (and only that initiator) can
select a top-priority class T job. Note that no initiators are de-
fined for subsystems such as IMS or CICS; these are best run as
started tasks. Additional initiators or classes may be needed for
IMS batch message processing jobs (BMPs).

Waiting times in queue by class may be studied with a tool
such as the historical component of Candle’s OMEGAMON II
for MVS, and adjustments to the number of initiators open to
a given class and the order of classes served by each initiator
can be made if service targets are not consistently met. Other
vendors, including BGS Systems and Computer Associates,
offer products to model initiator queuing based on SMF data.

Sample Initiator Settings

No. Classes Status Workload Type
1 9DEFINJOQRKPBCGHLMA Active Prime shift heavy batch
2 9EFDINJOQRKPBCGHLM Active Prime shift heavy batch
3 9FEDINJOQRKPBCGHLM Active Prime shift heavy batch
4 9DEFINJOQRKPCBHGML Active Prime shift heavy batch
5 9STCBHGML Active Serialized classes S, T
6 9BCGHLMA Active High-priority batch
7 9BCLMGH Active High-priority batch
8 9BCGHLM Active High-priority batch
9 9BCLMGH Active High-priority batch
10 9BCGHLMA Active High-priority batch
11 9BCLMGH Active High-priority batch
12 9BCGHLM Active High-priority batch
13 9BCLMHG Active High-priority batch
14 9CBHGMLA Active High-priority batch
15 9CBMLHG Active High-priority batch
16 9CBHGML Active High-priority batch
17 9CBMLHG Active High-priority batch
18 RKPBCGHLMA Drained Off-shift deferred
19 9VUEFDINJOQRKPBCGHLMA Drained Off-shift deferred
20 9UVFEDINJOQRKPBCGHLMA Drained Off-shift deferred

Analysis of a data center’s needs or experience may lead to con-
clusions about initiator lineups that do not resemble the sugges-
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tions given above.8 However, many systems end up with excess
effective initiator capacity, so it is difficult to test queueing
model predictions or new ideas with rigor. If initiator delay is
seen as a bottleneck, a series of carefully tracked incremental
changes, with periods of measurement and stabilization be-
tween changes, can lead to improvement in a short time.
It’s almost impossible to have a problem due to “too many” open
initiators unless many jobs all vie for the same data set.
Hiperbatch was introduced to deal with this problem. Another
facility that may be useful in improving the performance of
batch is MVS BatchPipes, a separately priced add-on to
MVS/ESA beginning with Version 4. BatchPipes can bring
about a dramatic reduction in the elapsed times of linked series
of jobs, known as suites. Considerations for using BatchPipes in-
clude:

• The sequence of jobs in a suite is rigidly structured and the
jobs always execute in a predefined order. The sequence may
have several parallel paths and may or may not converge.

• Data is passed from earlier jobs to later ones by means of
transient data sets—data sets that are created in a job and
read and deleted by a subsequent job. Data that must be
retained may be copied from a transient data set to a per-
manent one by an auxiliary job.

Given these prerequisites, what BatchPipes does is to allow the
transient data sets to be replaced by pipes, queues resident in
data spaces that allow the writing and the reading to proceed
concurrently as jobs that formerly had to execute sequentially
now execute in parallel. JCL changes are needed to change the
data sets to pipes, and the impact of parallelization on other
work and on initiator settings must be analyzed and dealt with.
The potential benefit of BatchPipes is enormous if a problem job
suite’s elapsed time can be reduced below some critical duration.
However, there is a substantial cost in analysis and modification ef-
fort to achieve those benefits. The approach taken by

Workloads and Service Levels 115

8 Indeed, many would suggest a simpler configuration. This is one of those ar-
eas in which historical accretion can lead to unwelcome results. Frequent re-
view of batch queue delays is needed, often leading to adjustments of the initi-
ator line-up. Initiator settings can interact with Workload Manager goal mode;
excessive queuing can be seen directly as missed batch turnaround goals. For
alternative views, the author recommends studies by H. Pat Artis and news-
letter articles by Cheryl Watson.



BatchPipes—virtualizing transient data sets as data queues— may
evolve further and eventually yield benefits with less need for human
effort.9

Batch can be a challenging workload to manage, and what MVS
contributes to that management may solve only a small number
of problems. Application tuning, even re-engineering, presents
rich opportunities to exploit the strengths of MVS and avoid or
undo the follies of naive programmers. Given well-written pro-
grams in well-structured jobs, proper attention to the business
needs of the installation as reflected in the goal mode service
policies can create a system environment that deals effectively
with just about anything the initiators will allow to run.

5.2. Started Tasks
In the progression from MVT to SVS to MVS/370, and through
MVS/XA to MVS/ESA, a dramatic growth area has been the ex-
plosion in the number of started tasks. This trend matched the
evolution of IBM’s high-end operating system from a batch-dom-
inated workload to an online, interactive system vital to the
business of the enterprise. It is no accident that a recent step in
the progression that started with System/360 and Operating
System/360 was named “Enterprise System/390.”
The address spaces that run as started tasks in MVS do several
different kinds of work:

• provide subsystem services to batch jobs and TSO users.
The job entry subsystem (JES2 or JES3) and systems for
managing the archiving and recall of data sets, such as
IBM’s DFSMShsm, are examples.

• manage terminal networks in support of TSO users or
transaction-processing subsystems. The VTAM (Virtual
Telecommunications Access Method) address space is a
current example.

• provide data base subsystem services for appropriately
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connected address spaces or terminal users of other sub-
system address spaces. The several address spaces that
provide DB2 services are in this category, as are several
data base subsystems offered by non-IBM vendors, such as
Computer Associates’ IDMS, as well as the data base por-
tion of IBM’s IMS/VS.

• support users at terminals with transaction-processing ser-
vices. IBM’s IMS/ESA and CICS/ESA, as well as TP (telepro-
cessing) monitors from other vendors, are such subsystems.
Some of them, such as IMS, have integrated (yet optional)
data baseta base facilities, while others have more or less
complex file systems as part of the basic offering.

Complex interactions among such subsystems are not un-
common. In a single system, DB2 might serve IMS-sup-
ported and CICS-supported terminals, TSO users through
QMF, and batch jobs executing static SQL applications. At
the same time, IMS users and CICS users, as well as spe-
cially structured batch jobs called Batch Message Proces-
sors (BMPs), make use of data bases provided by
IMS/ESA’s Data Language/I (DL/I). Finally, CICS users
may access data bases defined through VSAM data sets.

Still more complexity is found when products of multiple
vendors, as well as home-grown subsystems, are added to
the mix.

• provide services usually thought of as part of the operating
system. In previous systems and earlier levels of MVS,
these services were part of the operating system’s nucleus
or did not exist. The WLM, GRS, ALLOCAS, CONSOLE,
CATALOG, SMS, APPC, ASCH, OMVS, IOSAS, VLF, and
LLA address spaces are examples. Many of these are not
really started tasks; they are not launched by START com-
mands but rather are address spaces created as part of sys-
tem initialization.

In Chapters 1 and 2 we traced the evolution of MVS to its
current structure. Cross-memory services made “horizon-
tal splitting” possible, and the exhaustion of available vir-
tual storage through the growth of MVS complexity and
services made it necessary. The trend continues through
MVS/ESA and OS/390.
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• provide special access control and data management ser-
vices. ACF2 and Top Secret, from Computer Associates,
and IBM’s RACF and DFHSM are such programs. The
storage management subsystem (SMS) of MVS/ESA is em-
bodied in several such address spaces. As system-managed
storage evolves, the differing needs of the several parts of
SMS will almost certainly lead to its splitting into addi-
tional specialized address spaces.

• receive and process measurement data for the system and
its workloads. IBM’s Resource Measurement Facility
(RMF) and Systems Management Facility (SMF) are the
best known of such data collectors. RMF data is captured,
collected, and developed in the MVS nucleus, then har-
vested and passed to SMF by the RMF started task. SMF
data is created by numerous sources and funneled to buff-
ers, then collected and written out by the SMF started
task.

• collect and display (or store) performance, availability, and
other data about the system and its workloads. Perfor-
mance monitors, such as Candle’s OMEGAMON II for
MVS, Landmark’s The Monitor (TMON) for MVS, and
IBM’s RMF Monitor III, are in this category.

5.2.1. Started tasks—performance considerations
Unlike batch jobs, started tasks are rarely nonstop consumers of
resources, nor do they normally “complete” execution unless
commanded to do so. Most started tasks spend the bulk of their
lifetimes in the WAIT state, depending on the occurrence of
some external event (I/O, timer interrupt, or supervisor call) to
trigger a burst of activity, and then go back to sleep.
Other started tasks are driven by the demands of MVS work-
loads through cross-memory services, via either SRB scheduling
or cross-memory PROGRAM CALLs. After initialization of the
started task, subsequent CPU use flows as part of the re-
quester’s instruction stream, is at the dispatching priority of
the requester, and is charged to the address space requesting
service. The started tasks that act as subsystems have mini-
mal intrinsic resource needs but simply reflect the aggregate
demand of their end-users.
Many started tasks are key components of the operating system.
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As such, they have high dispatching priorities set by MVS, and
may have special immunity from page stealing. Unless unusual
workload conflicts cause unanticipated problems, these address
spaces rarely have, and can rarely cause, performance problems.

Dependencies
Started tasks on which other workloads depend for service must
be more favored in MVS than the address spaces that depend on
them. Otherwise, the dependent address spaces and their end-us-
ers will suffer multiple delays. Consider, for instance, a CICS ser-
vice that serves 1000 terminals. There might be a CICS termi-
nal-owning region (TOR), two application-owning regions (AORs),
and three resource-owning regions (RORs) communicating
through cross-memory services to process transactions.
The CICS subsystem depends on other started tasks for necessary
services. If the installation is in transition from older data base ar-
chitecture to a relational data base, both IMS-DB and DB2 (or
equivalents from non-IBM vendors) may be present. VTAM is
needed to manage the terminal network. IBM’s RACF or Com-
puter Associates’ CA-ACF2 might be used to provide LOGON se-
curity and to control individual users’ access to transactions.
When a CICS transaction needs a service provided by one of the
non-CICS address spaces, CICS requests it, and the transaction
waits until the server signals an end to the WAIT by issuing a
POST SUPERVISOR CALL. Any delay in the server address space,
including that caused by the CICS address spaces as they serve
other transactions, affects only those transactions waiting for
the outside service. On the other hand, if a CICS address space
suffers a delay, perhaps to wait for a page fault to be resolved, all
transactions will be delayed.
The balancing between internal delays and external delays, be-
tween holdups to individual transactions and delays to the
whole subsystem, is a complex part of MVS performance man-
agement. In this example, as in general, it is essential to have a
good understanding of the service targets, the actual degree to
which those targets are met, and the nature of the delays caus-
ing targets to be missed in order to conduct a sound perfor-
mance management strategy.

Storage Considerations
There are few MVS systems with absolutely no storage con-
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straint. Consequently, the need for and use of virtual and real
storage by started tasks must be analyzed and understood along
with such need and use in the rest of the system.
To protect an address space from paging delay, the usual method
prior to Version 5 was to use storage isolation—specifying a tar-
get frame count in an address space—to protect it from page
stealing. The target may be adjusted based on the paging rate
sustained by the address space. Storage isolation is described in
greater detail in Appendix B. Its use is less necessary and less
effective in systems with expanded storage.
The mechanisms and protections of storage isolation are pro-
vided in Workload Manager goal mode without the need or the
means for explicit specification of such protection. Instead, a
work unit that is suffering from storage delay and which is
deemed of sufficient importance to merit assistance will be
given a dynamically determined “storage protection” based on
its current working set behavior.
Started tasks that provide critical and frequently requested ser-
vices for the rest of the system must deliver their services in the
least time possible. The Global Resources Serialization (GRS)
address space is a good example. It runs at high dispatching pri-
ority, equal to that of the “master” address space (but ranking
after it),10 and prior to Version 5 it had a default pseudo-specifi-
cation of storage isolation that protects an increasing number of
its frames from page stealing whenever a page fault is encoun-
tered.
As we move from the unquestionably “important” started tasks
to those whose services have intrinsically longer service times
and are requested less frequently, protection from paging delay
is less necessary. Even if a CICS terminal-owning region suffers
two page faults per transaction, not more than a tenth of a sec-
ond will be added to each transaction’s response time. If the ser-
vice target is a 2-second response time and it is now 3 seconds,
paging in the TOR is unlikely to be the most promising tuning
target.

CPU Considerations
Dispatching priority specification mechanisms in compatibility
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mode are discussed in Chapter 6. For now, let’s simply examine
the order in which different address spaces should have access
to the CPU. There are some simple rules that we can derive from
the nature of each type of started task. First, remember that the
dispatching priorities of several address spaces are out of reach;
they are set by the operating system and can’t be changed. In an
MVS/ESA SP 4.2 system, these include the MASTER, RASP,
GRS, DUMPSRV, CONSOLE, SMF, SMS, APPC, ASCH, IOSAS,
XCFAS, and CATALOG address spaces.11 Because the others
can be changed, we must understand the range of possible
changes and the reasons for making each selection.

If we suppose that there is such an ideal as a “well-ordered
CPU,” a measure of that order is that high-priority started tasks
are essential to other work, that they are needed frequently,
that they have short service times, and that they rarely use re-
sources subject to contention, so they rarely encounter delays.
As priority for access to the CPU declines, each of these attrib-
utes moves toward its opposite extreme. Since we wish to plan
such an ordering, we should look for these characteristics and
arrange our priorities accordingly.

The top priorities are assigned to those auxiliary address spaces
of the operating system for which dispatching priority may be
assigned: WLM, PCAUTH, ALLOCAS, VLF, LLA, and TRACE,
with SMS added as appropriate. Because most of the activities
of these address spaces are invoked through cross-memory PRO-
GRAM CALLs,12 dispatching priority is of significance only during
initialization and recovery, and for those remaining services still
invoked through SUPERVISOR CALLs. In Workload Manager goal
mode a few of these started tasks are assigned to the built-in
service class SYSTEM, which has an automatic assignment of
top dispatching priority; the others are assigned to SYSSTC, the
next-ranking service class.

The next layer of started tasks includes those required for per-
formance and availability monitoring of the operating system.
Those monitors that sample or observe the execution states of
other address spaces, particularly in order to measure CPU de-
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lay, must do so from the vantage point of higher dispatching pri-
ority for accurate results.
Following performance monitors in rank are enabling subsys-
tems. The VTAM address space must be higher in priority than
its users, and JES must be “above” address spaces that make
use of its services. With JES2, these are all batch jobs and TSO
transactions other than the shortest-running ones. JES3 has a
more dynamic role to play in TSO systems, so its priority should
be above that of all TSO work. Ranking about equal with TSO is
the Terminal Control Address Space (TCAS), used only for TSO
LOGON. These two layers of started tasks may be assigned
(through a special procedure described in Chapter 7) to the sec-
ond special service class in goal mode, SYSSTC, and are given a
dispatching priority just below that of the SYSTEM class.
Finally, having gotten through all of the “overhead” started
tasks, we get to those that actually do some work. IMS, CICS,
and DB2 subsystems are at this level of priority. Again, those
acting as servers to other address spaces must, in general, rank
higher in priority than the users of those services. Thus the IMS
Control Region is higher in priority than its Message Pro-
cessing regions, and the DB2MSTR address space is at higher
priority than those it serves. This must be so even though most
DB2 services are provided through cross-memory calls. In Work-
load Manager goal mode, the server address spaces may also be
assigned to the SYSSTC service class.
At the bottom of the ladder are test counterparts of the produc-
tion subsystems—started tasks, but not of crucial importance to
the main purpose for which the system is installed. Also low in
priority are started tasks that are not performance-critical. Mis-
cellaneous data collectors such as the RMF (writer) address
space are in this category.

5.3. TSO
TSO (Time Sharing Option) became available in 1969 as an op-
tional part of MVT. The option was a large one; a batch-only op-
erating system had to be extensively modified to accommodate a
very different type of workload. Because several TSO users had
to be accommodated in a single MVT region, a form of swapping
had to be added. Because the data set needs of TSO users could
not be predicted in advance, dynamic allocation was a necessity.
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An efficient terminal access method was needed, and TCAM was
the initial response.
TSO was not a notable success in MVT for a number of reasons:

• Terminals were expensive and slow.

• TSO response time in MVT was intrinsically slow.

• The alterations to MVT in support of TSO were extensive
and unreliable, resulting in a system that could no longer
be trusted to run the backbone batch workload and could
not support a useful number of terminal users.

• IBM offered a superior time-sharing alternative in CP/67,
the predecessor of VM/370, with CMS. At the time that
TSO was struggling to define itself, CP/CMS was becoming
a mature system supporting far more terminals for an
equivalent configuration.

From this unpromising beginning, TSO’s reputation continued
to suffer through later releases of MVT and into the first few re-
leases of MVS. TSO in MVS is no longer an “option,” but the
name was retained. TSO’s problems in early MVS were covered
in Chapter 1. Let’s look now at the reasons for TSO’s good repu-
tation and widespread acceptance and use in more recent ver-
sions of MVS:

• TSO was designed into the basic structure of MVS, not
grafted on as an afterthought. MVS was also designed for
high integrity; more recent versions have been made suit-
able for continuous operation. Consequently, MVS with
TSO is far more reliable than was MVT without TSO.

• VTAM was far more efficient and capable than TCAM at
managing large terminal networks.

• Terminals for TSO evolved rapidly from converted type-
writers to alphanumeric CRT devices in IBM’s 3270 line,
with color and graphics being added and prices declining
almost as rapidly. A TSO user today might use a personal
computer, equipped with any one of several connectivity
adapters or a software emulator, as a terminal. Such a ter-
minal might support four simultaneously connected ses-
sions, each emulating a full-function IBM 3179 or 3194,
with full native PC functions available as well. Connection
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of such an intelligent workstation or of an ordinary “dumb
terminal” to MVS through a multisession extension to
VTAM can provide access to a practically unlimited num-
ber of TSO or other sessions.

• More sophisticated interfaces than the primitive TSO
line-oriented commands became available, increasing the
functional richness and productivity of TSO. The most suc-
cessful of these is IBM’s ISPF (Interactive System Produc-
tivity Facility), which has become so standard an interface
that IBM has made it a basic element of OS/390.

• Most important, MVS became capable of running TSO
well. The introduction of logical swapping was followed by
improvements in paging and swapping and the increase in
real storage sizes found on MVS systems. These develop-
ments eventually overcame TSO’s appetite for storage.13

Because TSO is a basic part of MVS, every performance im-
provement in MVS has benefited TSO as well.

5.3.1. TSO as a workload
Each interaction of a TSO user with MVS is known as a transac-
tion. Transactions are distributed in size, most of them being
short, or trivial. A trivial transaction typically executes a few
thousand to about one hundred thousand instructions. It may
call for some small number of I/O operations in addition to the
terminal I/O that initiates it, and it may make reference to some
20 to 200 frames of real storage.
A TSO service is usually judged by the speed and consistency of
its response time to trivial transactions. In recent years, behav-
ioral research has suggested that response times under one-half
second increase the productivity of TSO users, perhaps by
changing the pattern of transactions they enter. Other research
indicates that consistency of response time is perhaps a more
significant factor.
Longer-running TSO transactions may call on complex MVS
services or may do far more I/Os than trivial ones. Experienced
TSO users tend to realize when a transaction is likely to make
heavy resource demands, and they are prepared to wait several
seconds for response.
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Another class of TSO users is likely to make more stringent de-
mands and be less tolerant of response delays. These users may
be using TSO as a gateway to DB2 through the Query Manage-
ment Facility (QMF), or using it to access one of several
fourth-generation language facilities (4GLs). These users are
not knowledgable about TSO or MVS, and they are insulated by
their application interface from an understanding of how com-
plex their requests are. Such a workload is a great challenge to
manage well, often requiring the performance analyst to exer-
cise persuasive skills on the ad hoc application programmers
while educating them in the realities of MVS performance.
Chapter 11 provides some suggestions for dealing with such
workloads and those responsible for them.

5.3.2. Transaction profiles
Typical TSO transactions spend most of their time waiting to
use the CPU, waiting for page fault resolution, or waiting for the
completion of physical swap-in. If a significant portion of trans-
action time is spent using the CPU, waiting for the SRM to allow
a swap-in, for I/O completion, or for ENQ conflicts, either the
transaction is unusual or the system requires tuning.

A complicating factor in characterizing the TSO workload is a
consequence of TSO’s generality. In contrast with more rigidly
structured terminal-based systems like CICS or the CMS com-
ponent of VM/ESA, the TSO environment allows virtually any
program that can operate in the MVS environment to be in-
voked in TSO via the CALL command or some variant thereof. If
the invoked program simply performs some action and exits, no
unusual behavior is evident. However, if the program does what
would have been unit-record I/O if it ran in batch, the standard
SYSIN DD name is allocated to the terminal, as is SYSPRINT.

Since input records are not ready and waiting for the program,
the terminal user needs to enter the input. The “think time” as
well as the input entry time appears to MVS as active time
rather than idle time. With output to the terminal as
SYSPRINT, output will be sent to the terminal until the screen
is full, at which time three asterisks (“***”) appear at the bottom
of the screen and the TSO session is placed in the Terminal Out-
put Wait state. This state, too, is considered as active time (even
though the user is not attempting to do anything) and is indis-
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tinguishable from a genuine problem-related execution state
with the same designation.
Systems in which many TSO users use the CALL command to
invoke what are in effect batch programs will appear to have
poor and variable trivial response time; in fact, the only problem
is corruption of the reported numbers. In Chapters 9 and 10
we’ll see how to interpret such numbers and how to correct them
for reporting.

5.3.3. Storage considerations
In MVS systems with constrained real storage, paging delay
dominates TSO transaction time. A series of actions may be
taken to lessen this delay. These will be described in later chap-
ters in the context of the SRM in both compatibility mode and
goal mode.
A stable level of TSO storage delay may suddenly increase. A
frequent cause of such an occurrence is the installation of a new
release of a frequently used TSO facility such as ISPF. In such
an installation, the new version is placed in a LINKLIST library,
and the modules of the old version in the pageable link pack
area (PLPA) are renamed. In MVS/XA systems with the
LINKLIST Lookaside Area (LLA) and in MVS/ESA with the ex-
tended Library Lookaside Area, I/O increase may be insignifi-
cant, but the working set (active frame count) of each TSO user
might increase by an average of 15–30 frames.

5.3.4. I/O considerations
Because TSO is an online window to all of MVS’s capabilities,
and because batch jobs can be translated easily and exactly to
TSO CLISTs or EXECs, almost any degree of I/O intensity
might be encountered in a TSO transaction. It may be pre-
sumed, however, that I/O-dominated TSO transactions are atyp-
ical. If a group of TSO users do tend to be heavy I/O consumers,
it might be appropriate to segregate them, manage them, and
measure them apart from others with a differently distributed
execution profile. SRM provides such mechanisms and they will
be described in later chapters.
An indirect and hard-to-see form of I/O delay can occur in
TSO systems, largely as a result of carelessness. Every sys-
tem programmer should real ize that TSO is a pro-
gram-fetch-intensive environment. If there are five TSO
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transactions per second, there are probably 10–20 LINK,
LOAD, ATTACH, or XCTL SVCs executed by TSO transactions
or on behalf of them by TSO application platforms like ISPF.
If 95 percent of the TSO fetch activity is resolved from the
PLPA, there is no significant TSO I/O impact. However, at
many installations TSO LOGON procedures become modified
for one reason or another. A common procedure is to use a
STEPLIB DD statement in the newly modified LOGON proce-
dure, to keep the new code out of the LINKLIST libraries until
it is proven by use. If the STEPLIB is temporarily used for
such a purpose, a reasonable tradeoff has occurred. If the
STEPLIB is left in effect, the system will suffer.
A STEPLIB is efficient for batch jobs or for a started task sub-
system, where all (or at least most) of the program modules to be
fetched will be found in the STEPLIB. It may also be efficient for
a constrained or closed application system built on TSO. It will
be grossly inefficient, however, for an unconstrained TSO ser-
vice, because each fetch operation will cause the entire STEP-
LIB directory to be searched, to no one’s benefit, if the module is
in PLPA but not in the STEPLIB.

5.3.5. CPU considerations
CPU delay tends to dominate TSO transaction times in sys-
tems without storage constraint. Usually, this situation is in-
nocuous: “The CPU is the last bottleneck.” Excessive or incon-
sistent CPU delay is almost always caused by deviation from
the scheme of “well-ordered” dispatching priorities we exam-
ined in the discussion of started tasks in this chapter. Again,
we examine in Chapters 6 and 7 the methods by which TSO
transactions may be placed appropriately in dispatching pri-
ority order, and we show how to apply those methods in Chap-
ters 9 and 11.

5.4. APPC/MVS
APPC/MVS is a robust implementation of program-to-program
communication in the MVS environment. IBM describes it as “a
VTAM application that extends APPC support to the MVS/ESA
operating system.”14 APPC, in turn, is a particular implementa-
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tion of the SNA (Systems Network Architecture) LU 6.2 proto-
col.15

Pursuing the alphabet soup further, but only to the point at
which we can move to a discussion of MVS performance man-
agement for the APPC/MVS workload, we note that LU 6.2 is
the SNA logical unit meant to handle communications between
application programs, whether on the same platform or across a
network. An earlier implementation of APPC/VTAM did not
support all of the LU 6.2 protocol. APPC/MVS does.
From a programmer’s point of view, APPC/MVS provides a set of
services, callable from a program, to support communication
with other programs using SNA protocols. There is no inherent
structure—applications can conform to the client-server model
or communicate in a less structured peer-to-peer arrangement.
As a system workload to be managed, APPC/MVS includes MVS
address spaces, members in SYS1.PARMLIB, operator com-
mands, reporting functions in RMF and SMF, and a need for the
full range of workload management attention, including perfor-
mance management.
Its support structure in MVS is complex and makes use of nu-
merous existing MVS facilities as well as some new ones. Sub-
systems and applications built on APPC/MVS have no limita-
tions corresponding to those of TSO. A subset of APPC/MVS fa-
cilities is portable and equivalent to the CPIC (Common Pro-
gramming Interface for Communications) definition of SAA. An
application written to those interfaces is portable across the
SAA platforms, including OS/400 on the IBM AS/400, AIX/6000
on the IBM RS/6000, and OS/2 Presentation Manager or Work-
place Shell on personal computers.
The APPC/MVS environment is controlled by two started task
address spaces, APPC and a transaction scheduler usually
named ASCH.16 It also requires an appropriate level of ACF
VTAM to accommodate LU definitions as well as to supply com-
munication services to programs on nonlocal nodes. The APPC
address space provides session-level management and turns
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transaction scheduling over to the scheduler address space.
ASCH, in turn, creates and assigns class attributes to the trans-
action-processing address spaces (TPs). These TP address
spaces form the APPC/MVS workload to be managed.
Given the great flexibility inherent in the APPC/MVS structure
as well as a general lack of experience with APPC/MVS work-
loads, it is difficult to describe the resource needs or workload
management aspects of this workload. However, the essence of
the facility is communication initiated by people. Good response
time is therefore important. To a first approximation,
APPC/MVS address spaces should be managed like TSO work-
loads, with each transaction class managed commensurate with
business needs. When a client-server structure is established
using APPC/MVS facilities, server address spaces should as
usual be preferred over clients.
As in any discussion of service, the experience at the installation
is the best source of characterization data. Consult RMF or CMF
Workload Activity Reports to determine if there is a large num-
ber of transaction completions in an interval. If so, a TSO-like
model is appropriate. If not, dig deeper into what the APPC
transaction processor is doing; if it’s a persistent server session
it should be treated like any other server address space such as
a CICS application-owning region.
There is a pronounced resemblance between CICS as a subsys-
tem and alternative subsystem structures that can be built us-
ing APPC/MVS. CICS’s vulnerability to paging delays and stor-
age integrity violations is being overcome by internal restruc-
turing as well as by the availability of Subsystem Storage Pro-
tection since MVS/ESA SP 4.2.2. However, APPC/MVS is an-
other factor in CICS’s future, and inter-system communication
based on APPC/MVS may be implemented within CICS. This
may be a first step in a restructuring of CICS as a more resilient
subsystem. As further evidence of IBM’s commitment to
APPC/MVS, OS/390 Release 3 includes APPC/MVS extensions
for generic LOGON and workload balancing, as well as for dis-
tributed transaction processing.

5.5. OpenEdition MVS
As of MVS/ESA SP 4.3, MVS was further extended in an unprec-
edented direction. Through a series of incremental releases and
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using bits and pieces from TSO and APPC/MVS as well as a
great deal of new code, IBM erected a complete UNIX structure
fully integrated with MVS. As of OS/390 Release 1, OpenEdition
MVS complied with all the principal UNIX standards and
achieved XPG4 branding; with Release 2 it has gained full
UNIX certification. In other words, MVS is not a system with a
UNIX interface grafted on. To all intents and purposes, MVS is
UNIX, while still being all that MVS has been.

OpenEdition MVS (OE) is a subsystem that supports users at
terminal sessions, much like TSO. It is also a subsystem in
which a process in a terminal session can create an independent
additional process in another address space, much as can be
done through the base facilities of APPC/MVS. Its sessions can
access MVS data sets as well as files in a fully-realized UNIX hi-
erarchical file system (HFS), supported by DFSMS. The vendors
of data base subsystems such as Oracle and Sybase, usually
thought of as UNIX-centered, have announced versions for the
OE environment. In short, OE presents the full range of perfor-
mance management problems and opportunities as found else-
where in MVS.

A good starting point for managing OE sessions is to treat the
terminal sessions the same as TSO and the subsidiary address
spaces (“forked children”) like batch. When experience is accu-
mulated, adjustments can be made. In Workload Manager goal
mode the performance requirements can be directly stated as
goals, so little adjustment should be needed.

5.6. Enclaves

In a subsystem like DB2’s Distributed Data Facility (DDF),
where work requests of differing business importance can arrive
from multiple sources, it’s difficult to manage all the work units
appropriately given only a single address space’s dispatching
priority. With all work requests treated equally, the less impor-
tant ones might be treated too well, or the more urgent transac-
tions could be denied needed resources. Enclaves solve the prob-
lem by giving the external work classification system—either
the goal mode policy or the ICS in compatibility mode—a chance
to “see” each work unit and assign it to a service class or perfor-
mance group.
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5.7. Business Value and Service Level Agreements

All of the workloads that run in MVS use system resources and
contend for them. There must be some rational basis for decid-
ing which workload should receive preference in resolving con-
tention. The essential element in making such decisions is busi-
ness value. A secondary consideration is the intrinsic nature of
the workload. If we reflect on the latter, we can see that it still
comes down to business value. For instance, if we assert that
sub-second TSO response time is good for the productivity of the
users, we are saying that such productivity is good for the busi-
ness and worth the cost of achieving it. However, is it worth
more than providing two-second response time for Accounts Re-
ceivable users of CICS? Is sub-second TSO response time more
important to the business than ensuring that printed output is
“in the bin” within 30 minutes of job completion? Clearly, it de-
pends on the business and the set of tasks that constitute the
MVS aggregate workload.

The performance need of each workload has two dimensions—a
numerical target and a relative business importance. Estab-
lishing a service level agreement is a process of establishing
each workload’s desired performance and then assigning rela-
tive business priorities across all of the workloads. Generally,
setting the numerical targets tends to be easy while setting the
priorities can be a hair-raising exercise in organizational poli-
tics and ego clashes. The only advice the author can offer is to
develop a good plan to specify when and to whom to escalate un-
resolved conflicts.

Once the targets (goals) and priorities are worked out, it should
be possible to set up MVS so that the required performance lev-
els are achieved. This was a very difficult process prior to the
availability of Workload Manager goal mode in MVS/ESA SP
5.1. In goal mode it is straightforward and direct.

5.8. Summary

In this chapter we have examined the workloads of MVS, the
ways in which they are brought into execution, and their de-
pendencies and vulnerabilities. We have also taken an overview
look at the motivating factors behind performance management
activities.

Workloads and Service Levels 131



5.9. Chapter Questions
1. Review the set of initiator settings for the batch workload

on your system. Is it facilitating efficient operation or limit-
ing it? Has it been adjusted to keep up with hardware up-
grades?

2. Is batch (and long-running TSO) managed with an objec-
tive of avoiding “over-initiation”? If so, examine the justifi-
cation for this approach. What measurements would you
need to determine whether this strategy is wasting CPU
cycles by holding them back from a workload?

3. Chart or list in order the dispatching priorities in your sys-
tem. How closely do they approach the ideal of the “well-or-
dered CPU”? What changes would bring the system closer
to that condition?

4. How many batch jobs in your system are really started
tasks in disguise? Why are they not run as started tasks? If
there are functional reasons (not just an arbitrary choice),
what needs to be changed to allow them to run as STCs?

5. Is there a rivalry between MVS and UNIX advocates in
your installation? Is UNIX as cost-effective as MVS? If not,
and it probably won’t be, can OpenEdition MVS improve
the use of human and computing resources by offering an
alternative platform for UNIX users? If there appears to be
potential, prepare a plan.
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Chapter

6
MVS in SRM Compatibility Mode

“When I use a word,” Humpty Dumpty said, in rather a
scornful tone, “it means just what I choose it to
mean—neither more nor less.”

—Lewis Carroll

The MVS component that manages the distribution of system
resources to workloads is the System Resources Manager, SRM.
This chapter introduces SRM’s concepts and terminology. We’ll
cover the basics of time concepts, service units, service rates,
swap controls, and working set management. Because the prin-
cipal focus of this edition is workload manager goal mode, fur-
ther details may be found in Appendixes A and B.

Of necessity, we must explore the concepts and parameters of
the SRM as they were prior to the availability of Workload Man-
ager goal mode. Understanding the complexity of the “old way”
is a useful step in exploring the benefits of the current SRM de-
sign. Many of the original concepts do survive, although often in
altered form.

When we speak of compatibility mode, we use the term in a
broad sense to refer to the SRM as it was in MVS/ESA SP 4.3.
However, there were specific changes for compatibility mode in
Version 5, so we’ll point those out explicitly in the discussion.
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6.1. SRM—Using Part of the System to Manage Itself

MVS, even in compatibility mode, may be unique among operat-
ing systems in the extent to which it uses part of the system’s re-
sources to manage the rest of those resources. It almost cer-
tainly was one of the first to do so. MVS may also be unique in
the subtlety of many of its concepts—and the obscurity of the
language that describes them in compatibility mode.

SRM was in the past often described as having two priorities:
the first, to allocate resources to workloads in accordance with
installation directives; the second, to maximize throughput of
the system consistent with the first priority. In that brief de-
scription is the key to the core of MVS performance manage-
ment in compatibility mode. Accurate translation of the instal-
lation’s priorities to language (in the IPS, OPT, and ICS) that
the SRM “understands” ensures that MVS (as directed by SRM)
will operate in accordance with those priorities. Failure to do so
may lead to unpleasant surprises. In the absence of correct guid-
ance to SRM about workloads, control of the system will be dom-
inated by SRM’s second priority, that of maximizing throughput.
The throughput priority objective is served more completely by
a set of functions that were new in MVS/ESA SP 4.2. These
functions, collectively termed the Working Set Manager, aid
throughput by optimizing use of central storage, thus minimiz-
ing “nonproductive” use of CPU time for initiating and manag-
ing paging.

6.1.1. The danger of defaults
In new MVS systems especially, it is all too easy to be over-
whelmed by the sheer volume of work needed to get the system
functioning at all, and to push aside performance management
considerations. This (perhaps unintentional) choice appears
sound because everything appears to be working well at first.
Until there is contention for one or more resources, MVS will ap-
pear to have few performance problems, and all workloads will
receive adequate, if sometimes erratic, service. But as soon as a
chronic constraint appears, MVS’s throughput-oriented default
controls take over, often to the detriment of response-critical
workloads. The system thus has an intractable dual personal-
ity—reasonably well-behaved when there is no constraint, and
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to all appearances arbitrarily harming work units when there is
a constraint.

IBM recognized this problem in SP 4.2 and later releases by in-
cluding in the SRM the capability of detecting and responding to
the indications of real (central) storage shortage. This capability
of the Working Set Manager operates without external controls
and avoids the unproductive use of CPU cycles to manage exces-
sive page movement.

Other defaults do survive, with sometimes counterproductive ef-
fect. It’s not necessary to live with them. With some knowledge
of SRM and how it is directed, the system programmer or perfor-
mance analyst may conduct simple experiments aimed at im-
proving the performance of key workloads.1 These experiments
are easy to assess and safely reversible, yet few bother to try
them. The sheer size of MVS intimidates the prospective perfor-
mance specialist—and so another MVS system continues to run
under the control of IBM’s defaults.

In many systems that have numerous provisions for adjustment,
the defaults might be good enough to accept for a while. However,
IBM’s defaults for MVS throughput management are in many
cases based on arbitrary limits, on extraneous considerations such
as the speed of the CPU, or on unconstrained laboratory measure-
ments. They are not related to the management of real workloads,
nor are they based on typical configurations.

Although the defaults as of SP 4.2 were in general more appro-
priate, there is an additional complication of defaults when mi-
grating from an earlier MVS release to MVS/ESA SP 4.2 or
later. No one is foolish enough today to expect a system running
with out-of-the-box defaults to perform optimally. However, it is
reasonable to expect that IBM defaults will not undo carefully
implemented performance management actions. If we also be-
lieve, based on past experience, that SRM controls are compati-
ble from release to release, we can experience some severe de-
fault shocks.

The problem arises from the diagnose and ignore phenomenon.
When some OPT controls were “retired” in SP 3.1.3, it would
have been catastrophic for the entire OPT to be rejected simply
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because it contained a now-obsolete parameter. Instead, the old
parameters were recognized, syntax-checked, and then ignored
or discarded. If an otherwise correct OPT contained, for in-
stance, the obsolete specification

PAGERT2=(300,390)

it was accepted and the parameter ignored. If the parameter
was written incorrectly, as in

PAGERT3=(300,390)

the syntax error was “diagnosed” (detected) and the OPT rejected.
In SP 4.2, some additional OPT parameters received this treat-
ment, while many parameters in the IPS became diagnose and
ignore candidates. What was left after all of the ignoring may
not have been enough to reflect the installation’s resource allo-
cation and workload management policies completely, and this
is where the defaults, including some newer ones, come into
play. The only way to avoid this trap is to ensure that those poli-
cies are translated to the correct current parameters.

6.1.2. Management approach
To “tame” MVS is an exercise in several parts. These are sum-
marized below as if they were sequential steps, but of course
they are not. Many overlapping cycles of activity can be involved
in establishing initial performance management and in its on-
going adjustment and refinement.
The authoritative reference source for descriptions of SRM pa-
rameter sets and their values is the book MVS/ESA Initializa-
tion and Tuning Reference,2 published by IBM in individual edi-
tions for each major version of MVS, and amended for each new
release of the operating system.
The steps in approximate order are:

• Make a preliminary determination of the workload mix [to
be] supported by the system, and establish an order of im-
portance corresponding to the business priorities discussed
in the preceding chapter. Make sure to distinguish between
absolute importance and relative importance. It’s very rare
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that absolute preference for one workload over another is
necessary.
Distinguish if appropriate between preference in times of
normal operation and preference in times of severe re-
source constraint. For instance if the aggregate workload
runs split between two processor complexes and one fails,
key elements of the combined workload may have to run on
the remaining system. In such a constrained situation, con-
siderations of end-user productivity may have to be sacri-
ficed to those of keeping the business running.

• Create an initial service level target for each major work-
load on the system, based on prior experience or the stated
requirements or expectations of the system’s users. Gary
King’s “Workload Characterization”3 methodology is a good
starting point for predicting the performance characteris-
tics and resource needs of each type of workload.

• Ensure that the system’s hardware configuration is ap-
proximately adequate for the projected full workload.
Again, King’s “Workload Characterization” provides good
guidance. King’s “Processor Storage Estimation” is a more
detailed look at the storage requirements by workload
type.

• Reconcile the hardware configuration with the service ex-
pectations, and make adjustments as needed.

• Create a set of global SRM controls in an IEAOPTxx4 mem-
ber of SYS1.PARMLIB so that SRM’s ability to vary the
multiprogramming level (MPL) of the system will be used
effectively to control paging delay of critical workloads by
in turn controlling the page fault rate. This important con-
trol, as well as others in the “OPT” member, are described
in Appendix B.
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In systems with expanded storage, a parallel step corre-
sponding to setting up MPL control is to prioritize the need
of each workload for expanded storage and to create appro-
priate OPT entries and matching IPS parameters to imple-
ment a management strategy.
With the ability as of SP 4.2 to control access to expanded
storage on an individual workload basis, both MPL control
and expanded storage management must be evaluated and
implemented for each workload segment.

• Divide the overall workload of the system into distinct per-
formance groups; first on the basis of similar types (batch,
TSO, subsystem) of address spaces; and second, according
to priorities established for the various workload constitu-
ents. Establish how TSO, APPC/MVS, OpenEdition, and
batch may be expected to break down into short, medium,
and long transactions. For each division of these swappable
workloads and for each of the nonswappable address
spaces, lay out the order of dispatching priorities from the
top down, according to the principle of the “well-ordered
CPU” discussed in the preceding chapter.
In an MVS/ESA system at the SP 4.2 level or later, each
distinct kind of workload should also be in its own domain,
associated with the performance group period definition.
In prior levels of MVS, this association did not have to be
one-for-one, especially for nonswappable work. This is no
longer true.
Translating these general judgments into the precise lan-
guage needed for an Installation Performance Specifica-
tion (IPS) is discussed in Appendixes A and B.

• Once the workloads are associated with performance
groups, make sure that the system enforces that associa-
tion. Do this by creating an Installation Control Specifica-
tion (ICS), another member (IEAICSxx ) of
SYS1.PARMLIB. The ICS is described in Appendix B.

• Create an overall system parameter set (IEASYSxx)5 de-
noting the new ICS, IPS, and OPT, along with all the other
parameters required to bring up an MVS system. This in-
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nocuous-sounding step is absolutely essential as of MVS
Version 5. Prior to Version 5, omitting the ICS, IPS, and
OPT parameters from IEASYS00 simply resulted in selec-
tion of the default -00 version of each parameter set. In
Version 5, omitting the entries from IEASYS00 results in
the system initializing in Workload Manager goal
mode—even if you’re not ready for goal mode.

• Bring the system up with the new parameters. This may
not be a simple matter if it is attempted all at once. Since
the OPT, IPS, and ICS may be set and reset at will, always
keep a proven older version of each of these
SYS1.PARMLIB members as the –00 version, making and
proving all changes in a member with a different suffix.
When all members are functioning as planned, suitable re-
naming can be done. Conflict will be minimized if changes
are made in the order OPT first, then IPS, then ICS.

• Measure the performance of the system and its workloads
with tools that can measure service attainment against
targets and identify the nature of bottlenecks if they are
present. IBM’s RMF Monitor I,6 by itself or as interpreted
by IBM’s Service Level Reporter (SLR) and its successor
Enterprise Performance Data Manager/MVS (EPDM),
Computer Associates’ MICS, or Merrill’s MXG, is one such
source; Candle’s OMEGAMON II for MVS is another; and
other vendors offer similar monitors and reporting pro-
grams as well.

SMF is a general data repository, receiving data about CICS
transaction response times, and collecting batch job data.
Subsystems like SLR or EPDM, MICS, and MXG format, an-
alyze, interpret, and present SMF-based information.

• Continue the cycle of refining and adjusting the system pa-
rameters until all service targets are comfortably and reli-
ably attained. If doing so proves impossible, targets may need
to be changed, or configuration changes (such as readjusting
storage allocation across LPARs) may be necessary.

• Continue to revise and adjust the service targets until the
service delivered by the data center matches what the
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management of the enterprise (your “customer”) wants,
needs, and is willing to pay for.

• Maintain communication with your customers to ensure
mutual understanding of current and future needs and ca-
pabilities, and monitor the system continually to avoid sur-
prises for yourself or for your customers.

This appears to be, and is, a long and ugly process. We’ll wander
around for a while in the terminology of SRM and then, at the
end of the chapter, explain what’s wrong with this procedure and
the model that underlies it.

6.2. Introduction to SRM Concepts
The SRM is complex and often appears to be in conflict with it-
self. It evolved to its final form from the first days of MVS with
continuous additions and few if any deletions. Exceptions to this
process of accretion occurred with MVS/SP 3.1.3 and again on a
larger scale with MVS/ESA SP 4.2. Both of these eliminated
controls, and SP 4.2 introduced new controls along with making
some long-overdue sweeping deletions. To study the SRM, we
need to break down its functions and perhaps oversimplify.
The SRM controls several aspects of MVS, including:

• assigning and dynamically altering dispatching priorities

• controlling page stealing, including protecting pages of fa-
vored address spaces from page stealing

• determining which page frames are eligible to be moved to
expanded storage

• keeping track of how the CPU resource is used, detecting
wasteful use for excessive page movement and acting to op-
timize the use of central storage

• responding when TSO transactions end, by determining
whether the address space will be swapped out to auxiliary
storage or retained in processor storage

• changing the multiprogramming level by swapping ad-
dress spaces into and out of real (central) storage

• determining which tape drive is picked when an allocation
request does not specify a device number
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• determining which DASD is selected to satisfy nonspecific
allocation requests

These are all essentially simple actions; the complexity is in how
SRM gathers the information on which its decisions are based,
and the specification of the values that guide those decisions. All
of these topics will be covered except the last, which is some-
what beyond the book’s intended scope.

6.3. SRM Terms and Concepts
To explore SRM and break down its complexity, we need first to ac-
quire its vocabulary. The documentation of SRM uses what appear
to be common words to describe concepts, actions, and parameters.
Some of these words have uncommon meanings or interpretations
in the context of SRM. In this section, we’ll explore SRM terms and
highlight special meanings as appropriate.

6.3.1. Time in SRM
Various measures of time are used in SRM. Most of these mea-
sures are various intervals of normal clock time, but there are
others whose basic unit is adjusted to represent ticks of a clock
that runs faster as CPU speed increases. Some times encoun-
tered in performance management are:

• SRM measurement sampling interval (RM1)—an adjusted
time based on the SRM second, described below

• time unit—a subdivision of the SRM second

• SRM measurement summarization interval (RM2)—a
clock time interval, but not the same in all systems. It var-
ies in duration according to CPU power, and is less than 2
seconds for most MVS/ESA-capable CPUs.

• transaction “response” (completion) time—a clock time
(real-time) interval from the time SRM recognizes the start
of a transaction to the time recognized as the end of the
transaction. 7 Note that transaction completion times are
not necessarily response times. If transaction completion is
signaled to SRM after the end of each terminal interaction,
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the difference is negligible. In TSO systems with (old)
non-TSO programs invoked via the CALL command, the
difference can be great.

• resident-time—the time an address space spends swapped
in during the current swapped-in interval, executing, wait-
ing (involuntarily) for a resource, or in a voluntary wait not
designated as “long” (short wait).

• out-time—the time an address space spends swapped out
in the current swapped-out interval while the current
transaction is ready to run (also known as “out and
ready”).

• long-wait-time—time spent swapped out in the current
swapped-out interval while not ready to run (“out and
waiting”).
An address space is swapped out in this state when a WAIT
macro with the LONG operand is specified, an STIMER of
more than two seconds is issued, or a “detected [long] wait”
occurs. The SRM detects an “unplanned” long wait when a
voluntary short wait exceeds two seconds or eight SRM
seconds, whichever is less.

• active-time—sum of all resident-time and out-time for a
transaction.

• transaction-elapsed-time—sum of all active-time and
long-wait-time for a transaction.

SRM Seconds
It is a reasonable goal that the impact of SRM overhead be ap-
proximately equal across different processor models. Also, the
timing of SRM decisions should in most cases be based on the
ticks of the CPU’s cycle time, rather than on those of a wall
clock. Accordingly, most internal SRM timed events occur on the
basis of the SRM second. The SRM second was equal to a second
of common wall clock time when MVS ran on the IBM Sys-
tem/370 Model 155-II, a long time ago.
For other CPU models, the size of the SRM second is adjusted to
represent the time needed to execute approximately the same
number of nominal instructions as ran on the 155-II in one sec-
ond. For IBM systems capable of running MVS/ESA, the SRM
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second ranges from about one-third of a second down to less
than a seventieth of a second. Consequently, SRM collects the
resource information on which its decisions will be based at an
interval ranging from less than one to about 70 times per second
as CPU speed increases. Note that the duration of an SRM sec-
ond does not depend on the number of processors in a
multiengine complex or on the allocation of CPU resources
across logical partitions.
A table in the Initialization and Tuning Guide provides SRM sec-
ond values for IBM processors. Other vendors supply routine MVS
system modifications to enter the values for their processors.

Time Units
On slower systems, in which the SRM second may be a time in-
terval perceptible by a person, it might be inappropriate to alter
dispatching priorities at intervals as large as one or more SRM
seconds. SRM provides a way to subdivide the SRM second into
up to ten time units. Using this capability, time slicing can oper-
ate at an interval smaller than that which a human can per-
ceive—at the cost of additional overhead. The processor speeds
of current systems make use of this parameter almost unneces-
sary.

6.3.2. Service and service units
When a transaction runs in MVS, it uses the basic resources of
the system: instructions in the CPU, page frames of central stor-
age, and I/O operations. Because systems differ widely in their
ability to provide these resources to workloads, standardized
measures are defined to facilitate management of both system
resources and workloads.
The standardized measures are service units, defined separately
for CPU, central storage, and I/O activity including JES SPOOL
transfers. The CPU component is further divided into two parts,
for TCB time and SRB time.

CPU and SRB Service Units
CPU service is accumulated in two different modes, each repre-
senting a separate count of service units. The unqualified “CPU”
service is that received in TCB mode. TCB is a Task Control
Block, the usual unit of dispatchable CPU work. Other service is
received indirectly in SRB mode. SRB is a Service Request

MVS in SRM Compatibility Mode 143



Block, the means by which authorized programs can request
MVS services.
Global SRBs are dispatched ahead of local SRBs and all TCBs;
local SRBs are dispatched ahead of TCBs in each address space.
This treatment has changed as of MVS/ESA SP 5.2.0 with the
introduction of dispatching enclaves, preemptible SRBs, and cli-
ent SRBs. The new types of SRBs accumulate processor service
as “CPU,” not as “SRB” time. The time is charged to the address
spaces on whose behalf the SRB runs: the home address space
for preemptible SRBs, the client address space for client SRBs,
and the owner’s address space (e.g., DDF) for enclaves.8 On the
other hand, nonpreemptible SRBs are charged to the requesting
address space.
A CPU (or SRB) service unit is an interval of CPU time differing
by processor architecture and engineering generation, by basic
CPU model, by number of processors,9 and by system environ-
ment. In early MVS systems, a service unit was defined as
10,000 instructions. The measure today is in terms of a specified
number of service units per second of execution time, or its re-
ciprocal. A second yields from about 80 to over 3000 service
units, depending on CPU model. A service unit, then, ranges be-
tween about 300 and 12,000 microseconds of CPU service.

I/O Service Units
There are two alternative measures for I/O (IOC) service units.
In all MVS/370 systems, and by default in XA or ESA systems,
each EXCP10 is counted as an I/O service unit. (In XA and ESA,
EXCPs are replaced by a count of I/O blocks transferred, a more
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10 EXCP stands for EXecute Channel Program, a basic unit of work presented to
the MVS I/O Supervisor (IOS), and is also the name of a low-level I/O
macro-instruction supplied with MVS. EXCP is used as a last resort when
standard access methods lack necessary function or ultimate performance.
EXCP has often been thought of as an interface upon which access methods
are built. This was never strictly true, and it became clearly false when VSAM
and later IMS (OSAM), the JESs, and DB2 supplied their own “I/O drivers.”



consistent and inclusive measure.) The second option in XA and
ESA, specified by the IOSRVC parameter in the IPS, is to count
connect-time, divided by a constant of 0.0083 to make the count
roughly equal to that of blocks for half-track records on 3380s.
Regardless of which IOSRVC option is chosen, the number of
JES SPOOL blocks transferred is added to the IOC total for the
JES address space.
Counting EXCPs or blocks gives fewer service units for efficient
programs with large I/O block sizes. Even though data bases
have become commonplace, much MVS I/O is sequential, and
many block sizes are far below optimum. On the other hand,
counting connect-time ignores the added disruption of ineffi-
cient I/O (other than properly penalizing long SEARCHes), and
ignores VIO transfers as well as the CPU overhead associated
with each I/O operation. It also devalues I/Os serviced as hits by
cache controllers or nonsynchronous DASD subsystems. (If all
controllers are cache controllers, there is an appropriate penalty
for misses.)
Counting connect time might be the right choice in large
multi-engine systems with abundant real storage, but continu-
ity with measurements from MVS/370 systems is lost, if that
consideration is still valid. On the other hand, Workload Man-
ager goal mode uses only COUNT. Hence the selection is not ob-
vious.11

Main Storage Occupancy (MSO) Service Units
MSO service units are accumulated for central storage held
while CPU cycles are being used. The basic unit of measure is a
page frame held for one CPU (TCB) service unit. To make MSO
roughly commensurate with CPU service units, the raw number
is divided by 50 to yield MSO service units. Storage used by
cross-memory reference is charged to the target address space
(but note that such address spaces do not accumulate CPU ser-
vice units when accessed in cross-memory mode). MSO service
does not reflect expanded storage occupancy.
MVS does not take page frames away from an address space un-
less asked (as with a PAGE OUT SVC) or until the available frame
queue is depleted. Therefore MSO does not indicate demand for or
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use of storage service. For the other classes of service, the number
of service units represents actual demand for and use of service.
For MSO, this is not so, and the absence of expanded storage ser-
vice or SRB time in the calculation makes MSO even less useful
and relevant.

Let’s examine the contrary nature of MSO service units as a
measure of service demand. Consider a batch job step that exe-
cutes a single program with a total of 3 megabytes (3,145,728
bytes) of virtual storage used from beginning to end. At any time
during execution, the program has a true working set of 200K
(204,800) bytes, but the entire 3 megabytes is obtained (via
GETMAIN) and initialized at the beginning of execution and is
not freed until the step ends. The job requires 768 virtual pages,
but its 200K true working set needs only 50 central storage
frames at a time. Suppose also that the job takes 10 seconds of
CPU (TCB) time on an IBM ES/9000 9121-621. Thus the 10 sec-
onds of TCB time is about 14,600 CPU service units.

If the job is run in the dead of night, it will acquire 768 frames
and keep them until completion. It then uses 768 X 14,600 / 50 =
224,256 MSO service units. The same job run on a fully loaded
system at 10:30 a.m. will tend to have its excess frames stolen
and will run at close to its true working set. If the average cen-
tral storage it holds is a little more than its rock-bottom work-
ing set, say 250K bytes or 62.5 page frames, its MSO service
will then be 62.5 X 14,600 / 50 = 18,250 service units. Note that
the CPU service units are indeed commensurate with the MSO
service units, but only in the case of storage constraint.

One pursuing a rational performance management approach
would tend to run the job at night when resources are more
freely available, but someone looking at the reported service
units might conclude that less resource is consumed by running
the job during the day. The measurements may lead to a coun-
terproductive response.

It should now be clear that using MSO to make performance
management decisions can lead to inappropriate results. The
use of MSO is even more disastrous if reported service consump-
tion is used for cost recovery (chargeback). In this case, those
submitting deferrable jobs will be discouraged from following
good habits by simply comparing bills for different runs of simi-
lar or identical jobs at different times.
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Service Definition Coefficients (SDCs)
We’ve seen that the raw MSO service units should be sup-
pressed or at least deeply discounted. In systems with con-
strained I/O resources, we might want I/O activity to count more
heavily in performance management decisions. Such flexibility
is available. To move from raw service units to the service that
the SRM uses in various algorithms involves an additional scale
factor for each category of service. These factors are specified in
the IPS12 as service definition coefficients, and each ranges from
0.0 to 99.9 (or 0.0000 to 99.9999 for MSO only as of SP 3.1.3).
Thus service is the sum of the four service unit calculations, with
each one first being multiplied by its respective service defini-
tion coefficient. This scaled and weighted measure of service is
also denominated in service units, and we will mean this kind of
service unit in the rest of the SRM discussion, unless otherwise
noted. Note that the very same structure continues to be used in
Workload Manager goal mode, both for reporting and for pacing
transactions through service class periods. The raw CPU service
number (including SRB time), expressed as a rate, SUs per sec-
ond, is also used in goal mode for defining and managing re-
source groups.

It can be tempting for those in charge of resource accounting
and chargeback to use weighted service units as a measure of
resource consumption. As results are evaluated, they might
wish to alter the SDCs in pursuit of consistent billing. However,
some users may still continue to receive bills or usage reports
that they dispute on the basis of inconsistent charges, while the
SRM is denied the use of stable SDCs that allow it to control the
system properly.

Altering the SDCs for purposes unrelated to performance man-
agement is dangerous and unnecessary. It’s unnecessary be-
cause the raw components of service are reported in SMF re-
cords for each type of workload, or may be calculated by dividing
each component by its SDC at the time of data collection. This
may then be multiplied by any appropriate factor for billing pur-
poses. The SDCs are readily available in RMF or CMF workload
records in SMF.

We might even conclude that SDC alteration (for cost recovery
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reasons) is foolish, since the degree to which a resource is con-
strained (the basis for performance management decisions) has
little correlation with its marginal cost.
On the other hand, altering SDCs to compensate for resource
constraint in performance management can be prudent and use-
ful. However, it should be done with the greatest caution and as
infrequently as possible, since small SDC changes can produce
significant changes in system behavior. It may be very desirable
to shut down the volatile and contrary effect of MSO service
units by setting a very small or zero MSO SDC.13 Even such a
beneficial change should be done once, followed by a relatively
long period of measurement and evaluation before another
change is contemplated.

6.3.3. Service rates
Several SRM algorithms depend on the service rate received by
a workload. We define service rate as the service received by a
workload in a particular time interval, divided by the length of
the time interval. The unit of service rate is service units per
second. Let’s examine some typical examples to understand the
rationale for the various ways in which service rates are calcu-
lated.

• A batch job has received some service and is now swapped
out by the SRM to allow another job to be swapped in. As
the job “ages” in the swapped-out state, we would like it to
become increasingly eligible for swap-in.

• A TSO transaction is swapped out because it has entered a
WAIT state while an archived data set is being retrieved.
When the WAIT is satisfied, we would like the session to be
just as eligible for swap-in as it was at swap-out time. As it
stays swapped out but ready for swap-in, we would like its
swap-in eligibility to increase.

• When an address space is swapped in, it may accept or ab-
sorb service at a high rate. Using only this high absorption
rate to determine swap eligibility might result in unstable
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sequences of swapping in and out. We wish to take account
of the swapped-out time, during which no service was re-
ceived, as well.

Given these goals, we define various types of service rates as fol-
lows:

• The count of service units is reset to zero and service starts
accumulating at each swap-in time. (Overall service is ac-
cumulated for a job or TSO transaction in other accumula-
tors. We are concerned here only with service rate as used
by SRM.) This count of service units is the numerator or
dividend for the service rate calculation.

• For a swapped-in address space, the denominator or divi-
sor is the sum of the most recent out-time and the current
resident-time, or the time spent in the current transaction,
whichever is less. The service rate will thus start at zero
(because the service unit count is reset) and increase until
the out-time becomes insignificant compared to the resi-
dent-time. Defining absorption rate as a service rate with
the out-time disregarded, we see that the service rate ap-
proaches the absorption rate (if constant) for a swapped-in
interval, over time.

• For a swapped-out address space, the denominator or divisor
is the sum of the just-completed resident interval and the
current out interval. Service rate will start at the value just
prior to swap-out and decline linearly over time. Note that
long-wait-time is not used in the service rate calculation.

6.3.4. The “workload” scale (obsolete)
The word “workload” had a peculiar and unintuitive meaning in
MVS prior to SP 4.2. Fortunately that term was restored to its
plain meaning in 4.2, so the Workload Manager didn’t have to
have some other name. The details of the old “workload” scale
and everything that flowed from it are preserved for antiquari-
ans in prior editions of this book.

6.4. New Solutions in MVS/ESA SP 4.2
Concepts that are difficult to explain and parameters and con-
trols that are difficult to use often turn out to be essentially
flawed. IBM has recognized this aspect of some of the controls
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that drove the SRM, and eliminated some of the most difficult,
replacing them with simpler controls and a more sophisticated
mechanism with no controls at all.
The WKL scale, along with everything based on it, is gone. This in-
cludes OBJs, DOBJs, AOBJs, and the load balancers. Let’s look at the
replacement controls and how they correspond to the former ones.

DSRV and ASRV
Instead of allowing the service rates received by the address
spaces in a domain to drive the contention index through the in-
termediary of an OBJ, two new, more direct, controls were intro-
duced, replacing DOBJ and AOBJ:

• DSRV—specified as high and low service rates for the aggre-
gate of all address spaces in the domain, as in

DSRV=(5000,50000)
When the aggregate service rate is within the DSRV limits,
the contention index for the domain varies between 1 and
100 according to the formula:

ContentionIndex =100
DSRV -Service Rate

DSRV -D
× high

high SRVlow

Service rates below the minimum result in higher conten-
tion indices, up to a maximum of exactly 655.35 at zero ser-
vice. Service rates above the maximum lead to contention
indices between zero and one.

• ASRV—specified the same way as DSRV, except that the service
rate is the average across ready address spaces in the domain.

Load Balancing and the Working Set Manager
The purposes of CPU load balancing and I/O load balancing
were already addressed by other existing controls. Storage load
balancing is replaced by something new.
SP 4.2 includes a set of functions called the Working Set Man-
ager (WSM). WSM is an elegant and comprehensive solution to
the problem of detecting the indications of central storage con-
straint and eliminating its harmful consequences. Because
WSM optimizes the content of central storage and thus de-
creases wasteful use of CPU cycles, CPU loading might some-
times appear to decline, but the amount of productive work the
CPU is doing should not decrease.
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WSM detects excessive paging or page movement by distin-
guishing between productive CPU time (usually captured as
SRB or TCB time in address spaces) and unproductive time (no-
tably SRB time in MASTER). Unproductive time is spent man-
aging paging and includes the CPU cycles for inbound page
movement from expanded storage.WSM can cause new types of
swap-outs when a high level of unproductive time is being accu-
mulated. WSM also invokes preferential page stealing from
heavy users of central storage. Swapping and preferential page
stealing are used as alternatives in some cases to allow greater
flexibility in responding to central storage constraint.
Associated with WSM is block paging, used increasingly in recent
MVS/ESA releases to avoid the repeated disruption of servicing
multiple page faults in groups of pages stolen at identical UICs.
WSM recognizes several categories of address spaces. It does not
take any action with respect to nonswappable address spaces or
those that are storage-isolated, because preferential page steal-
ing and swapping are its methods used to achieve optimal stor-
age use. Of the swappable address spaces that are not stor-
age-isolated, some may be monitored, of which a subset may be
managed. The rest are neither monitored nor managed.
When the ratio of unproductive CPU time to total time for the sys-
tem as a whole is below some threshold (in the neighborhood of 5
percent), WSM is idle, except for tracking the CPU time ratio.
When the system-wide ratio exceeds the threshold, WSM selects
address spaces for monitoring, based on their paging and page
movement rates. For monitored address spaces, WSM calculates a
recommendation value based on a measure of the “cost” (in system
resources) of swap-in that can override the recommendation value
used for deciding whether a swap-in is due. To prevent undue de-
lays caused by continual bypassing of address spaces, TSO/E users
will be swapped in, regardless of the cost, after 30 seconds of
out-time, and other address spaces after 10 minutes. Also, implicit
block paging from expanded storage is turned on for monitored ad-
dress spaces, and WSM collects additional data relating to block
paging success. If criteria of success are not achieved, implicit
block paging may be discontinued.14
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As a monitored address space receives service, WSM tracks its
paging against its frame count, dividing the frame count range
into four regions as shown in Figure 6-1.

• OK region—above some frame count, adding frames does
not materially reduce paging rate.

• Paging region—above a lower frame count but below the
OK threshold, adding frames reduces paging rate linearly.

• Thrashing region—above a still lower frame count but be-
low the paging threshold, adding frames does not materi-
ally reduce a high paging or page movement rate.

• Error region—the range of frame counts below the thrash-
ing threshold.

When monitoring is in effect and the level of system resources
devoted to paging continues to be excessive, a monitored ad-
dress space will become managed. WSM chooses the monitored
address with the highest ratio of paging CPU to total CPU as a
function of allocated central storage frames. What WSM does in
such a case is to impose an implicit dynamic central-storage-iso-
lation maximum working set. The goal of management is to en-
sure that managed address spaces do not waste their time pag-
ing. If possible, enough frames are allocated to keep managed
address spaces in the paging range, taking frames from those in
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the OK range, above the dynamic target. If CPU resources are
limited as well, a managed address space will be swapped out to
improve central storage utilization.
These WSM actions replace and go well beyond storage load bal-
ancing, with an automatic mechanism requiring no external
specification and basing its actions on actual address space be-
havior at times of resource constraint. The same mechanisms
are used in Workload Manager goal mode although the objective
of optimizing storage utilization is subordinate to that of man-
aging workload performance to goals.

Swap Recommendation Values
The idea of swap recommendation value survives to and beyond
MVS/ESA SP 4.2. Because there are no OBJs, there is no way to
make address spaces in a domain have different RVs given
equal service rates. Instead, SRM once again makes workload
management decisions influenced by system resource use. For
instance, SRM calculates a “cost” associated with swapping each
address space in or out. We may simplify by regarding the cost
as some function of the address space’s swap group size—the
number of pages to be swapped in or out.
The swap RV is a number between -999 and +998. Swapped-in
address spaces have RVs ranging from 100 (just after swap-in)
to 0 (when just enough service has been received to equal the
cost of a swap-out) and down toward -999 as additional service is
received. An address space that is swapped out and ready to be
swapped back in starts with an RV of 0, which increases with
time. When the RV passes 100, the address space is eligible for
swap-in. A low value (less than 10 and down to 0.1) for an OPT
parameter, SWAPRSF, increases the rate at which RV for a
swapped-out address space increases. A higher value of SWAPRSF,
to a maximum of 100, retards the increase of RV and discour-
ages exchange swapping. (Exchange swapping is discussed more
fully in Appendix B.)

6.5. Changes in Version 5 Compatibility Mode
IBM cleaned out some dangerous deadwood and made a few im-
provements in compatibility mode for MVS Version 5:

• The APGRNG parameter, used to set the range of dispatch-
ing priorities to be managed by SRM, allowed an incom-
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plete range to be specified. This had the potential of allow-
ing high priorities to be given away and left uncontrolled.
The parameter is removed in Version 5 compatibility mode,
and all dispatching priorities are owned by SRM. A conse-
quence is that an installation with the maximum value of
APGRNG set to less than 15 is exposed to poor perfor-
mance for any jobs which had specified an unmanaged
high priority.

• The default special storage isolation for GRS is removed

• Multiple performance group periods are supported for
non-swappable work.

Other changes that touch on matters not discussed in this over-
view are detailed in Appendix B.

6.6. The Basic Flaw in the SRM Model
The numerous steps in the process of managing the perfor-
mance of workloads and the absence of computer assistance at
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critical steps in the process make it clear that the process and
its underlying model is itself flawed. Consider the flowchart in
Figure 6.2.
The crucial step, getting from the workload management strat-
egy to a set of simple statements that can be rendered into the
driving parameters of SRM, is mysterious and uncertain. The
wizard (or some other form of supernatural intervention) might
very well help. Also, the measurements are not part of MVS and
the feedback steps are manual and outside the scope of
SRM—at the very point at which computer measurement and
analysis would help, they are external to the system.
As far as SRM without the Workload Manager is concerned, it
meets the objectives of its name: it manages system resources. It
knows nothing about workloads. That’s not good enough, and
that’s why something better was needed. SRM with Workload
Manager in goal mode covers more of the flow chart with the full
power of the System/390.

6.7. Summary
In this chapter, we’ve examined some basic SRM concepts, in-
cluding how common notions of time are given special meaning
in an SRM context. We’ve also examined service units, service
rates, and the way that service rates affect swapping decisions
in MVS/ESA SP 4.2 and later releases.

6.8. Chapter Questions
1. Look at RMF or CMF Workload Activity Reports for your

system at a peak time of day when all workloads are run-
ning well. How much of the service to your key workloads is
due to MSO service units?

2. Repeat the procedure of question 1 for an off-peak time of
day and compare the relative contribution of MSO for the
same workloads at the two times. How much use is made of
the service unit totals in your installation? Does the vari-
ability of MSO contribute to inappropriate decisions?

3. Calculate the peak-hour service rates for your most impor-
tant workloads with MSO included and recalculate them
without MSO. Save these numbers; they will be needed af-
ter you finish reading Chapter 7.
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4. If you are using a pre-SP 4.2 system, examine the OBJs in
your IPS to determine the range of service rates in them.
Then compare those service rates with the service rates
you found by examining the Workload Activity Reports. Are
they consistent? How should the rates in the OBJs be ad-
justed? (The same consistency test may be applied to ser-
vice rates in ASRVs or DSRVs.) In a 4.2 system, look at the
service rates received by the domains and compare them
with the rates reported in the Workload Activity Report.
Are the domains operating within their specified service
rate limits at peak hours? How should the IPS be changed
to make this so?

5. Have you taken any actions to defend your system against
central storage constraint? How should they be changed
given the presence in SP 4.2 of the Working Set Manager?
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Chapter

7
The Workload Manager in Goal Mode

Even though the System Resources Manager was revolutionary
in its time, SRM did little to help performance analysts and sys-
tem programmers manage the performance of real workloads. It
wasn’t SRM’s fault. SRM did a very good job of doing just what
its name connotes—managing the distribution of system re-
sources to workloads according to the cryptic directives in its
controlling parameter sets. The original SRM designers did not
take on the challenge of managing workload performance. Even-
tually, however, they did recognize the workload management
problem and introduced a new mode of operation for the SRM.
MVS Version 5 introduced the Workload Manager and a new ap-
proach in workload performance management.

7.1. SRM and the Workload Management Problem
We begin looking at Workload Manager through the familiar
technique of reviewing what came before it. The fundamental
problem of attempting to use SRM to manage the performance
of workloads is that SRM didn’t do anything to achieve that end.
Consider these observations regarding workload performance
management in MVS:

• MVS is a system that runs well when fully loaded
At least it can run fully loaded. However, performance may
suffer if the work is homogeneous. For instance, if the en-
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tire aggregate workload on a uniprocessor is short-running
CICS transactions of equal business importance, signifi-
cant internal CPU queuing appears in CICS at about 70 to
75 percent CPU utilization.
When there is other work that can meet its business objec-
tives with a lower dispatching priority than that of CICS,
and that work does not cause contention for resources used
by CICS, it is possible to fill the system with such low-pri-
ority work without significant impact on the more impor-
tant workload.

• It’s thus best to load the system with different kinds of
work
An assortment of work with complementary resource us-
age patterns and little intrinsic contention allows full use
of all resources. This idea was perceived by IBM’s engi-
neers back in the ’50s when they invented the I/O channel
and made multiprogramming possible.

• Tuning trade-offs are possible with a mix of work
“Know who your Loved Ones are… and always have someone
else to kick around!”1 The opposite case, that of an aggregate
workload that is homogeneous in type and execution characteris-
tics and of uniform importance to the business, cannot be tuned!
Of course, such a workload can be optimized within its environ-
ment but tuning—solving short-term performance problems by
redistributing resources—requires winners and losers.

• Each kind of work has a service target
Whether you have formal service level targets or agree-
ments or none at all, those who make up a user community
have expectations for service: response times for interac-
tive environments and turnaround time for batch (includ-
ing printed output to its delivery point). Committed targets
provide an objective basis for evaluation, but the unstated
targets based on user expectation alone are as real as for-
mally committed ones. A further benefit of having commit-
ted targets is to have an answer to the question, “How do
you know when you’re doing well enough?” There is value
in knowing when all targets are being met, so that tuning
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effort may be turned to the potentially more rewarding
task of identifying applications that are performing poorly
for intrinsic reasons, and tuning them.

• Most work runs well in MVS with little tuning

The default MVS system will run a mixture of work such as
TSO, CICS, and batch with respectable performance—un-
til a resource shortage, particularly a central storage short-
age, arises. At that point the default system behavior can
produce unanticipated and inconsistent results. Basic sys-
tem tuning can soften the default behavior and make it
more predictable.

• There are losers—some work needs special handling

There is a class of work known as numerically intensive
computing or NIC. This work, usually found in scientific or
engineering disciplines, typically has both high CPU de-
mand and a widespread and variable “footprint” in central
storage. The typical form of special handling is to isolate
the NIC work in special job classes that are allowed to run
at hours when the ill-behaved programs cannot cause sig-
nificant damage to more response-time-oriented work.

When NIC is an important workload, this shunting aside of
problem jobs may no longer be acceptable. Instead, there is
a severe challenge to the support staff to manage the sys-
tem so that the NIC work runs reasonably well without
damaging online service. Unfortunately, MVS in the past
provided no tools to deal with such a balancing act. This
problem went unsolved until the introduction of Working
Set Management in MVS/ESA SP 4.2.

However, Working Set Management as implemented in SP
4.2 solves only part of the problem. It does well at optimiz-
ing the use of central storage, managing unproductive use
of the CPU to acceptable levels, and ensuring that ill-be-
haved address spaces will receive some level of service. Un-
fortunately, the Working Set Management approach, when
guided by these objectives, does not help the ill-behaved
work unit that is also important. It would take the changed
point of view that came with goal mode to allow Working
Set Management to reach its full potential.
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• The system must be managed to meet the targets
The task is simply to allocate resources to the various
kinds of work units in the system in such a way that each
workload’s performance targets will be met. The tools at
hand include the hardware configuration, SRM’s control-
ling parameters, initiator settings, and the tuning parame-
ters of the subsystems such as IMS and CICS.
If SRM did perfectly all that it can do, there is no guarantee
that workloads would meet their service targets, unless the
driving parameters of SRM, by some lucky accident, were so
well matched to the workload characteristics, the system con-
figuration, and the required service levels and business priori-
ties that the service levels were met consistently over time.

• Too many good things are optional
With its large number of external parameters, SRM is
overly dependent on the experience level of those in charge.
Almost everything added to SRM over the years, with the
notable exception of Working Set Management, required
research, analysis, and the will to take a risk and try some-
thing new in order for its benefits to be realized.

• The system knows nothing about workloads
Workload management has been indirect at best. It is un-
reasonable to expect SRM to do more than its name indi-
cates. SRM does not know workloads and their needs, and
no small change could have given it that knowledge.

7.2. Introducing the Workload Manager
The IBM response to the complexity of workload service man-
agement was to go well beyond the resource-oriented manage-
ment done by SRM and change the orientation to that of defin-
ing service goals and managing the system so that the goals
were met if they could be.

7.2.1. Why was it needed?
Two powerful needs are met by Workload Manager.2 The first is
the need for a response to the limitations of prior SRM imple-
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mentations, summarized above. The second and perhaps the
driving need from an IBM justification point of view, was the re-
quirement to simplify the management of the parallel sysplex.
Without a global workload manager across the sysplex, the com-
plexity of service delivery management across many independent
MVS images could have rendered parallel sysplex unacceptable.

7.2.2. Prototypes for Success
The best inventions make use of, and often redirect, the successes
of the past. Some ideas that carried forward into WLM include:

• algorithmic adjustment of system resource controls
based on measurement: As reflected in Working Set
Management, this approach proved very successful. It was
redirected in two ways: by adding management to service
goals to the original resource-oriented goals of the storage
management algorithms, and by broadening the approach
to extend to the management of other resources.

• controls that work automatically without external
parameters: This too was a lesson of Working Set Man-
agement. It was extended to cover all the resources that
SRM deals with. In goal mode, there are no parameters,
just policies.

• tuning based on execution-state analysis: The data
collected by performance monitors like RMF Monitor III,
OMEGAMON II for MVS, and similar products provides a
basis for what Candle Corporation has long referred to as
“The Logical Tuning Approach”—a simple set of steps
based on service targets and execution-state data:
¤ determine if there’s a problem (if not, come back later)
¤ identify the source of delay3

¤ if possible, take the delaying resource away from the un-
delayed unworthy address space(s) and make it avail-
able to the Loved One in pain

The transmutation of this process was to make the data
collection standard, continuous, and efficient, by integrat-
ing the measurements into the lowest-level parts of MVS.
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• service level agreements: IBM transformed this exter-
nal service management tool into the prime control over
the management of system resources.

7.2.3. How it Works
Workload Manager needs the following elements in order to succeed:

• a service policy that classifies work according to installa-
tion-defined criteria into service classes that reflect the ser-
vice requirement (goal) for each subdivision of the aggre-
gate workload. The service policy also includes, for each
service class (or performance period of a multiperiod ser-
vice class) an importance level reflecting the installation’s
priority for that subset of the work. The service classes are
aggregated into workloads for reporting and resource ac-
counting. Report classes provide additional granularity or
alternative structures in reporting and resource tracking.

• MVS services to collect data that allow WLM to assess
whether each service class period’s goal is being met. Peri-
odically, WLM compares the actual performance against goal
and calculates a performance index or PI. The PI is a normal-
ized measure of the extent to which the goal is being met.
Values greater than 1 represent goals not met; a value less
than 1 represents a performance better than the goal, and a
value of exactly 1 means that the goal is exactly met. This in-
formation allows the analysis routines to determine which
address spaces need help, and which are doing well enough
so that they might become donors of resources.

• MVS services to collect data that characterizes the execu-
tion and delay states of each executing unit of work. Later
decisions depend on this information, to identify the delays
that might be reducible if additional resources were to be
made available to work units through the corresponding
address spaces—and to avoid trying to help where no help
is needed.

• a set of MVS services to change the operating conditions of
work units by adjusting the availability of resources to ad-
dress spaces such that as many goals as possible are met,
starting with the most important work and moving down
to the least important. The crucial, sophisticated algo-
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rithms are found here. Advanced techniques such as his-
torical and projective modeling are used, extending the al-
gorithmic analysis and cost-benefit tradeoff analysis done
in Working Set Management. Actions and results are
tracked, and unproductive choices may be reversed and
temporarily removed from consideration on behalf of a par-
ticular work unit.

Workload Manager manages all the resources that were previ-
ously manipulated through SRM parameters, including dis-
patching priority, storage isolation or protection, swapping, and
page stealing. Beginning with OS/390 Release 3, WLM also reor-
ders the IOS queues—the queues of I/O requests waiting for
busy devices—as another means of attempting to meet goals.
Because these system “knobs” are under WLM control, they are
not available to be set by programmers. For descriptions of page
stealing and swapping that remain reasonably valid in goal
mode, see Appendixes A and B. References to SRM-initiated ac-
tions should be disregarded in favor of the goal-oriented actions
described in this chapter.

7.3. Creating the Service Definition

In contrast with compatibility mode’s three sets of SRM param-
eters in SYS1.PARMLIB, all of the control information for goal
mode is in one place.4 The name of the data set isn’t important;
it is an XCF Couple Data Set and is not an editable plain text
file. There is a specific interface to it through the ISPF dialog in-
voked through a REXX EXEC called IWMARIN0, available to any-
one for browsing the service definition.5 Loading the service def-
inition to the couple data set or activating a policy should re-
quire authorization, of course. The operational details are left to
the system programmer.6
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7.3.1. Service definitions and service policies
There is exactly one service definition in a sysplex’s Workload
Manager Couple Data Set, made up of at least one service policy.
Only one service policy may be active at a time. The definition
and its policies may be exported and imported, and since
MVS/ESA SP 5.2.2 there has been an IBM-supported Applica-
tion Programming Interface (API) to the service definition. Al-
though no one has announced exploitation of the API to date, its
existence facilitates the development of tools that can query and
manipulate the policy, or perhaps provide alternative user inter-
faces for definition.
Creating a new definition is not a straightforward process at
first glance. The ISPF application will not permit anything to be
defined if the objects to which it makes reference are not already
defined. It turns out that one can simply work in the order of the
primary menu that appears after the “create new definition” se-
lection is made7. A possible order of tasks would then be:

1. Set the service definition coefficients.
Although the defaults of CPU=10.0, SRB=10.0, IOC=5.0, and
MSO=3.0 are carried forward from compatibility mode, there is
good reason to change the values. Chapter 6 detailed why MSO
should be set to 0. If there is no reason to preserve continuity of
coefficients, the simplest setting for the other coefficients is to
make them all equal to 1.0. By doing so you can avoid encounter-
ing excessively large service accumulations and service rates on
larger systems. There is also a specific goal-mode-related reason
for doing so: the service rates used in defining resource groups
are unweighted CPU (TCB) and SRB service rates. The unity co-
efficients put ordinary service rates on the same footing as re-
source groups’ service rates.

2. Name the service policy and provide a text description.
That’s all there is to this step. Content will be added by the sub-
sequent steps.

3. Name the workloads and describe them.
Every work unit that enters the system must go into exactly one
service class, which is in turn associated with a single workload.
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Within that constraint, workloads may be structured in many
ways. The two usual possibilities are to group by subsystem type
(e.g., all CICS transactions in one workload and all batch jobs in
another) or by business organization, with, for instance, all CICS
Accounts Payable transactions as well as the batch check-writing
jobs in the same workload. Bear in mind that each work unit may
also be classified to a single optional report class, so a second orga-
nizing scheme may be created for reporting purposes.

4. Name, describe, and define any needed resource groups.
The idea of resource groups is somewhat contrary to the idea of
goal-oriented workload performance management. However, it’s
important in some installations to limit the amount of service re-
ceived by a workload. In some installations as well it may be part
of a service agreement or a contractual obligation to guarantee the
minimum amount of service to be received by a workload.
A resource group is used to manage (limit or guarantee) the ser-
vice received by one or more service classes. Each service class
may be associated with at most one resource group. The unit for
the maximum and minimum specifications is unweighted CPU
service units, consumed in both TCB and SRB modes, for all sys-
tems in the sysplex that are running in goal mode. Because
transactions in subsystems such as IMS and CICS are not di-
rectly associated with CPU service, resource groups may not be
specified for service classes to which such work units have been
classified. However, resource groups may be applied to the ser-
vice classes representing the address spaces which serve the
transaction workload. In other words, resource groups may be
associated only with service classes populated by address
spaces, not with abstract transaction workloads. There may be a
maximum of 32 resource groups in a service definition.
The maximum service rate specification of a resource group has
a simple effect, and only on the service class(es) associated with
the resource group. If the aggregate service rate received by the
address spaces in the service classes tied to the resource group
is exceeded, SRM takes action to “throttle” the service received
by those address spaces, across the entire sysplex. The mecha-
nisms employed include swapping (if possible), dispatching pri-
ority adjustment, and “capping,” a form of time slicing that in-
tersperses slices of nondispatchable time with those of
dispatchable time. Exceeding the maximum service rate may
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cause the service class’s goal to be missed. This condition is
noted in the reporting information for the service class. There is
no default value for the maximum service rate.

When a minimum service rate exceeding the default value of
zero is specified for a resource group, it may or may not be
reached. As IBM says in MVS Planning: Workload Management,

If a service class with a goal is assigned to a resource
group with a minimum specified, and there is insuffi-
cient work, the goal may be overachieved.…

The minimum is guaranteed if sufficient work exists, and
other work’s goals are not impacted. WLM gives more re-
source to meet the minimum capacity, even if all work in
the resource group is achieving its goals. If there is a re-
source group defined for a service class with a discretion-
ary goal, workload management achieves the minimum
as long as the goals of work running in any other service
class are not impacted. If other performance goals are
impacted, then workload management does not maintain
the minimum.

It is not completely clear from the foregoing that work with a
nondiscretionary goal and an excessive minimum resource
group will not cause other goals to be missed. If you choose to es-
tablish a minimum service rate in a resource group, understand
the possible consequences and make the minimum rate as low
as possible. Another possible unintended consequence is that
“promotion” of discretionary work and overachievement of goals
may create inappropriate expectations for the performance of
affected workloads.

5. Name, describe, and define the service classes.

Service classes contain goals and name-references to workloads
and (optional) resource groups. Multiple periods may be defined
for a service class. In this case, the duration of each period other
than the last must be specified; the unit is total (weighted) ser-
vice units.

Considerations for setting goals appear below. Work is placed in
a service class as work units arrive, through the operation of
classification rules.
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Although up to 255 service classes8 may be defined, the number
active at any time should be limited. IBM’s usual recommenda-
tion is to keep the active total under 25.

6. Name, describe, and define classification groups.
Many classification rules depend on sets of generic or enumer-
ated names, to allow precise selection of which particular work
units go to which service classes. Instead of defining a rule for
each name of such a set, a name group of the appropriate type
allows the rule to be defined once, referencing the name group
instead of a name. Depending on the subsystem type, a group
can contain names based on connection type, logical unit (LU),
net ID, package name, plan name, subsystem instance, transac-
tion class, transaction name, or user ID. Although name groups
are not needed, defining a set of names as an object and refer-
ring to it by its name can reduce clutter in the classification
rules and is in some cases more efficient than requiring numer-
ous single-name match tests.

7. Name, describe, and define classification rules.
This must be done for each active subsystem and optionally for
subsets of work units within each subsystem. Since OS/390 Re-
lease 1, the supported subsystems are: ASCH, CICS, DB2, DDF, IMS,
JES, OMVS, SOM, STC, and TSO. The variables or name types on which
rules can be defined vary from subsystem to subsystem. Valid rule
types for each subsystem are shown in the following table.

Subsystem

Code Rule Type AS
CH

CI
CS

DB
2

DD
F

IM
S

JE
S

O
M

V
S SO

M

ST
C

TS
O

AI Accounting Information X X X X X X X
CI Correlation Information X X
CN Collection Name X X
CT Connection Type X X
CTG Connection Type Group X X
LU LU Name X X X X
LUG LU Name Group X X X X
NET Net ID X X X
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Subsystem

Code Rule Type AS
CH

CI
CS

DB
2

DD
F

IM
S

JE
S

O
M

VS

SO
M

ST
C

TS
O

NETG Net ID Group X X X
PK Package Name X X
PKG Package Name Group X X
PN Plan Name X X
SI Subsystem Instance X X X X
SIG Subsystem Instance Group X X X X
SPM Subsystem Parameter X
TC Transaction Class X X X
TCG Transaction Class Group X X X
TN Transaction Name X X X X X
TNG Transaction Name Group X X X X X
UI UserID X X X X X X X
UIG UserID Group X X X X X X X

Note that the “SPM” rule type and only that type is used exclu-
sively for the SOM subsystem type. The design permits any sub-
system to use that type but no other has done so to date.
In contrast with the fixed order of rule evaluation performed in
the ICS of compatibility mode, the order of rule evaluation in
goal mode classification can be specified explicitly. The only ex-
ception is subsystem type; it always comes first.
Each of the rule types provides the test value or values (in the
case of a group rule type) for a series of comparisons in the order
specified in the classification rules for the subsystem type. Rules
form a tree structure with the root at the subsystem default and
are defined with numerical levels. At a given level there can be
different rule types; however, a given rule type may exist only
once in each branch. Once a rule produces a match, succeeding
rules at the same level are ignored.
The last successful match in a hierarchy sequence concludes the
process and the corresponding class is assigned. A report class
may be assigned at a different level, either higher or lower, in
the hierarchy than the service class.
Each subsystem type except for STC should be defined with at
least a subsystem default service class. The STC subsystem re-
quires a different approach to definition so that selected STCs
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may be directed to special system-defined service classes. The
first example below shows the special treatment for setting up
the STC subsystem.

Special considerations for the STC subsystem. This example
shows how the STC subsystem could be classified. Details
may differ but the essential elements are the omission of a
default service class and the level-1 catchall at the end of the
rule set. This treatment is necessary to accomplish the fol-

lowing specific goals:

• The deliberate omission of a default service class ensures
that system address spaces such as GRS will not be classi-
fied. Doing so avoids having these address spaces taken out
of the special SYSTEM service class. (See section 7.3.2 for
a discussion of the system-specified service classes.)

• The first rule allows specific started tasks to be assigned to
the second system-defined name, SYSSTC. This is done by
having a blank specification for both service class and re-
port class in the first transaction-name-group rule.

• Provide for a service class with an intermediate goal for
important but not highest-priority STCs. Explicitly named
address spaces in the second name group are assigned to
SCVMED.

• Make sure that unspecified STCs do not receive an
undeservedly favorable goal by allowing them to fall
through to SCDISCR, presumably a service class with a
discretionary goal.

The only drawback of this kind of classification is the need to re-
view the name lists periodically to make sure that newly added
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Subsystem Type . . . . . . . : STC
Description . . . . . . . . . All started tasks

-------Qualifier------------- -------Class--------
Type Name Start Service Report

DEFAULTS: ________ ________
1 TNG STC_HI ___ ________ ________
1 TNG STC_MED ___ SCVMED__ ________
1 TN * ___ SCDISCR_ ________



STCs or those whose importance or use has changed are in the
appropriate lists.

Classification of non-STC subsystems. The example below il-
lustrates the use of classification rules for a transaction-based
subsystem type, in this case CICS at Version 4 or later. (The sub-
system is a set of CICS transactions, not the set of address
spaces that provides service to the workload.)
In this oversimplified example, CICS transactions that do not
match any of the specific rules are assigned to service class

CICSSC3 and report class CICSOTHR. These are any transactions
not associated with a user-ID in the name lists APC or PURCH,
since those are the only first-level rules. All transactions from the
APC users go to service class CICSSC1. Those in the transac-
tion-name-group VENDOR go to report class VENDOR. In the
transaction-name-group GOVT, all transactions go to the report
class TAXES, except those entering through CICS subsystem name
CICSEXP; those are assigned to report class EXPRESS.
In the second user-ID group, note that the subsystem’s default service
class is explicitly assigned to the second transaction-name-group.
In a real CICS or IMS transaction processing workload,9 it is
very desirable to segregate transactions of similar importance
and performance profile into separate service classes. To make
sure that WLM’s adjustment of access to resources affects only
the “deserving” transactions, those transactions of each service
class should also be segregated in separate server address

170 MVS Performance Management

Subsystem Type . . . . . . . : CICS
Description . . . . . . . . . CICS subsystem

-------Class--------
Service Report

DEFAULTS: CICSSC3 CICSOTHR
1 UIG APC CICSSC1 ACCTPAYC
2 TNG VENDOR ________ VENDOR
2 TNG GOVT ________ TAXES
3 SI CICSEXP ________ EXPRESS
1 UIG PURCH CICSSC2 PURCHASE
2 TNG VENDORA ________ A_LIST
2 TNG VENDORB CICSSC3_ B_LIST

9 Transactions are classified only if the subsystems are at the appropriate Workload
Manager-enabled release levels; CICS Version 4 or later, IMS Version 5 or later.



spaces (AORs or MPRs) that are consistent with the service
classes.
Such a breakdown is needed to avoid the “free ride” phenome-
non. Suppose (in the example above) that the high-priority
transactions in CICSSC1 are in the same AOR as the low-prior-
ity transactions in CICSSC3. If the APC-submitted transactions
are performing slower than goal, WLM might increase the dis-
patching priority or storage protection of the serving AOR ad-
dress space. As a result, the VENDORB transactions would ben-
efit from the improved resource availability. WLM would be
powerless to treat that workload as a resource donor because of
the high-performance transactions being served by the same ad-
dress space. If the transactions classified into CICSSC1,
CICSSC2, and CICSSC3 were respectively in different AORs,
the resources could be directed only to the service class that
needed help, and the less important workload’s server TOR
could then become a resource donor.

7.3.2. The default service policy
SYSTEM and SYSSTC are special service classes with “system
goals” having high fixed dispatching priorities. Together with
SYSOTHER, a service class with a discretionary goal, they com-
prise the underlying wired-in, default service policy. The favorable
service classes are always active and should always be in use for
the key address spaces that constitute the MVS infrastructure.
SYSOTHER should normally never be seen, but it may appear if a
previously unused subsystem is activated. For instance the first
time that OpenEdition is fired up, OMVS address spaces may
show up as SYSOTHER to the dismay of the users.
If work units show up in SYSOTHER, that should be a signal to
update the active service policy and add appropriate classifica-
tion rules and service classes for the newly active workload.
There have been reports that some sites have operated “success-
fully” with no defined service policy.10 Doing so is somewhat like
running MVS in compatibility mode with no IPS or OPT. In fact,
one way of ending up in goal mode with no service definition is
to bring up a system in Version 5 or OS/390 without an IPS=xx
parameter in the IEASYS00 member of SYS1.PARMLIB.11 The
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10 The “success” was based on having a generous excess of resources.
11 The meaning of omitting this parameter changed in Version 5. Through Ver-

sion 4, it meant “use IEAIPS00, the default.” Starting with Version 5, it means



system will run reasonably well until there is a resource con-
straint. At that point there will be unpredictable degradation of
seemingly random work units as the discretionary address
spaces are swapped out, dropped to bottom dispatching priori-
ties, or capped.
It’s much better to create even the most rudimentary service
definition. A good head start, well beyond rudimentary, may be
found in recent CMG Proceedings (UKCMG 1996 and CMG
1996) in the form of Cheryl Watson’s “Quickstart” Service Pol-
icy.12 Cheryl has kindly provided permission to present the sum-
mary charts of her paper at the end of this chapter. The ratio-
nale for her recommendations and further details may be found
in her paper or in her newsletter.
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“initialize the system in goal mode.”
12 The quickstart policy was originally published in Cheryl Watson’s Tuning Let-

ter.



7.3.3. Setting goals

Response Time Goals
The response time goal, whether it is an average or a value at a
percentile, is measured against internal response time only. If at
some future time WLM could become capable of including con-
sideration of network response time, it is unlikely that the same
goal definition would apply in that case.
When choosing which kind of response time goal to use, some
advice-givers seem to ignore an obvious consideration—what is
the nature of the workload? Instead, they tend to rank the types
of goals, regarding the goal of response time at a percentile as
just a more stringent variation of the average response time
goal. In fact it usually is not.
For example, consider a response time distribution such as that
shown in Figure 7-1. It is a good approximation to a normal dis-
tribution with a mean of 0.85 second and a standard deviation of
0.3 second. This is the kind of distribution for which “average re-
sponse time” has a valid meaning. A normal distribution is de-
scribed completely by two parameters, mean and standard devi-
ation, usually denoted as µ (mu) and σ (sigma). (The vertical
scale is irrelevant.)
In a normal distribution, percentile values may be calculated
from the parameters. The 90th percentile is approximated by
µ+σ, the 95th by µ+2σ, and the 98th by µ+3σ. This sounds easy,
but unfortunately it’s too good to be true. Consider a couple of
characteristics of the normal distribution:

• both upward and downward deviations from the mean are
equally likely

• small deviations are much more likely than larger ones
A moment’s thought makes it clear that the normal distribution
may be a good model for the distribution of 11-year-old boys’
shoe sizes, or the heights of adult females, but is a thoroughly
inappropriate model for transaction response times. Typical
TSO, APPC, CICS, IMS, or OpenEdition transactions may be
characterized by the following observations:

• Transactions are not uniform in their resource demand.
The widest variability shows up in unstructured environ-
ments such as TSO, the least for specific groups of transac-
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tions in a carefully managed transaction manager environ-
ment such as IMS or CICS.

• For each type of transaction there is a lower limit to re-
sponse time, consisting of the CPU execution time
needed when there is no delay of any kind. The CPU can-
not go any faster.

• Each class of delay persists for at least a nonzero minimum
time. For instance the minimum resolution time for a page
fault is determined by the kind of storage on which the page
resides and the path length through the various MVS re-
source managers needed for the particular resolution actions.

• Some delays can occur more than once in the lifetime of a
transaction, and others can persist for multiples of the
minimum time.

• The probability of each delay is variable, subject to a large
number of factors random with respect to the transaction.

Populations of transactions with these characteristics do not fall
into any of the common statistical distribution models. Figure
7-2 represents such a distribution for composite transaction pro-
files. The combination of intrinsic variability, one-sided varia-
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tion, and the quasi-discrete nature of many delay factors makes
it necessary to fall back on nonparametric statistics. In effect we
are reduced to sorting completion times into bins, each repre-
senting a small range of time, and counting the contents of the
bins at some summarization interval. If we then plot the run-
ning sum of the bins starting with the first interval, normalizing
the count axis to 100 percent13, we can read off response time at
a percentile, without calculating misleading statistics like the
mean and meaningless numbers like the “sample standard devi-
ation.”14 This is the basis of the process used for percentile cal-
culations within Workload Manager.
Choosing which kind of response time goal to use should take
into account the characteristics of the workload.
The nonparametric model is general, safe, and appropriate even
in the rare case of a workload that fits the normal distribution.
In the case of such a workload, it’s important to recognize the re-
lationships between the mean and percentiles that may be of in-
terest. Since the normal distribution is symmetric, the mean is
also the median—the 50th percentile. An average response time
goal is thus roughly equivalent to the same response time at the
50th percentile. To get to the 90th percentile, the mean must be
augmented by the standard deviation. In the case of Figure 7-1,
an average response time goal of .85 second is equivalent to a
goal of about 1.15 seconds at the 90th percentile.
For non-normal distributions, no such relationship exists. One
should create a cumulative frequency distribution plot to establish
the 85th or 90th percentile response time—or just ask the users
what response time they perceive as “typical.” It will usually be
somewhere around the 85th percentile of their experience.
The response time definition is a little different for batch jobs. It
includes time spent on reader queues. Although that variant
seems intuitively sound, the queue time for deliberately held
jobs can corrupt the response time numbers. On the other hand,
excessive time on nonheld queues can provide a direct indica-
tion of a need to revise initiator settings. Batch jobs that are
likely to be held should not have response time goals—at least
not the same goals as jobs that are not likely to be held. If the
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14 Means and standard deviations are valid and useful in the analysis of quanti-

tative data that is stable and unimodal. Utilization data for homogeneous
time intervals is such an example.



classification for batch is done on the basis of job classes, held
and nonheld classes should go into different service classes. It’s
also not effective to have a response time goal in a service class
[period] with a low rate of transaction completions—fewer than
about one per minute. The better alternative for such work units
is to use a velocity goal, as described in the next section.

If the nonheld batch jobs follow a common pattern, with far
more short-running jobs than long-running ones, a single ser-
vice class with multiple periods might work. The first period
might have a duration of 10,000 service units with a response
time goal of 1 minute for 80 percent of transactions. Second pe-
riod could be 50,000 service units at a response time of 10 min-
utes for 80 percent, and the final period could have a velocity
goal of 10 percent. Importance levels would be dependent on
business priorities. If the work likely to fall into last period is of
very low business importance, a discretionary goal might be ap-
propriate.

7.3.4. Velocity goals
Velocity goals should be used for unending started tasks with a
lower performance requirement than those in the SYSTEM or
SYSSTC service classes (see §7.3.2), for long-running batch, and
for other address spaces not easily tied to response time mea-
surements. Velocity seems simple: express as a percentage just
the amount of time spent using the CPU, divided by the sum of
that time and all the delays for CPU and storage. “Storage” de-
lays include MPL, paging, and swapping delays.

In OS/390 Release 3, I/O queue delay (IOSQ plus PEND) is
added to the denominator, and I/O active time (connect plus dis-
connect) is added to both numerator and denominator. Since I/O
time can be a considerable part of total time, the Release 3
changes may have a significant effect on observed velocities.
When going to OS/390 Release 3 or later, it may be necessary to
adjust existing velocity settings depending on new observa-
tions.15 It is also important to recognize that both connect and
disconnect time are tunable components of I/O activity, but

176 MVS Performance Management

15 To ease the transition to goal-oriented management of I/O priority, the en-
hanced definition of velocity and the reordering of IOS queues is an option in
OS/390 Release 3. The option is selected on the ISPF panel on which the ser-
vice definition coefficients are specified. The default value of the option is OFF.



Workload Manager does not address these components. I/O
analysis and tuning is covered in Chapter 9.
It is easy to set velocity goals that are unattainable, so it might be
prudent to get an idea of what velocities are likely to be attained.
The RMF Workload Activity Report in RMF Version 5 shows veloc-
ities by performance group and domain for systems running in
compatibility mode. Other performance measurement products
can provide similar information. If a particular workload running
satisfactorily at a peak time shows an attained velocity of 40 per-
cent, that value (or five to ten percent less) might be a good choice
for the corresponding goal in goal mode. Setting a more demanding
goal might be unwise. A demanding velocity goal might be 70 per-
cent; ordinary batch might do acceptably well at 10 or 15 percent.
Velocity steps of less than 10 percent between different goals
might turn out to be meaningless.
Note that the idea of velocity and how it is defined may change
yet again in subsequent releases of OS/390. As always, make
sure to review IBM announcements and the latest updates to
the IBM documentation covering WLM before establishing a
new service definition.

7.3.5. Discretionary work
The discretionary “goal” is not really a goal; it’s the absence of a
goal. The plain meaning of “discretionary” is “subject to discre-
tion or choice.” In other words, WLM is free to choose whether to
run discretionary work units or not, and if it runs such work,
which of those work units to choose. If we recall the underlying
imperatives of SRM, the practical effect is that discretionary
work will be run to the limit of available resources. In goal mode,
that imperative is tempered by the additional concern that all
goals that can be met will be met.
When there are sufficient available resources (beyond those nec-
essary to meet all goals) over a reasonably long interval, all dis-
cretionary work will run in no particular order and without re-
producible performance. If sufficient resources are not available,
the completion times for some discretionary work may be se-
verely elongated in no particular pattern.
The discretionary classification has one unique benefit: multiple
discretionary work units run in a single mean-time-to-wait group.
Within that group, dispatching priority order is determined by the
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average interval between voluntary waits (e.g., for I/O comple-
tions). Those address spaces with the shortest wait intervals have
the highest priority within the group. This arrangement yields
maximum throughput with a mixture of discretionary work of dif-
ferent balance between CPU and I/O content.
Deciding which work goes into service classes with discretion-
ary treatment depends on these considerations:

• What work units fall into the genuinely discretionary cate-
gory given the current system constraints? If there is a cate-
gory of batch work, test subsystems, and last-period
TSO/APPC/OMVS work for which there is no business value
associated with undelayed service, these are the candidates.
Even so, it might be more orderly to run some of the work at a
low velocity (five percent or less) and lowest importance.

• What portion of the system or sysplex resources are con-
sumed by the entire aggregate workload? If central storage
is unconstrained and less than 80 percent of the CPU is
consumed, then placing 25 percent of the workload in the
discretionary category might be perfectly all right. All the
work would be processed without undue delay.
As the committed resource level or degree of resource con-
straint increases, the amount of work in discretionary
should be reduced. More critical judgment of business im-
portance might be necessary—or there might be a suffi-
cient level of service complaints to guide the decisions.
WLM is unduly constrained if there is no discretionary
work. A reasonable minimum level might be 5 to 10 per-
cent of total delivered service units at peak time.

After a period of experience, the division between truly discre-
tionary work and work with very humble goals might become
more apparent. It might be amazing to see how previously un-
known business goals can suddenly surface.

7.3.6. Choosing importance levels
There are five importance levels, designated from 1 (highest) to
5 (lowest). The importance specification provides a previ-
ously-unavailable second dimension in performance manage-
ment. It’s no longer necessary to specify an unrealistically high
dispatching priority to make sure that an important workload is
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not affected by other work. Importance comes into play only
when a goal is not being met.
It’s entirely reasonable to have a service class period with a goal
of one second response time at the 85th percentile and impor-
tance 4, while another has a goal of 5 second response time at
the 90th percentile with importance 2. As long as all the goals at
higher importance levels are met, WLM will strive to meet the
one-second goal. However, if the importance 2 goal is not being
met, and the work at importance 4 has a resource that can help,
meeting its goal may be sacrificed so that the higher-importance
goal can be met.
In short, pick importance levels to create an order in which goals
will be sacrificed as resources become constrained. This order
should closely approximate actual importance to the business or
institution. A high importance level will not improve performance
beyond what the goal requires, but will ensure that the goal is met
more frequently than it would be with a lower importance.

7.4. Measurement and Monitoring
One hidden advantage of goal mode is that most of the data that
would need to be collected for performance monitoring is al-
ready collected by the system. Because WLM at this time does
not explore the details of ENQueue delays, or of I/O delays at the
device level, such information would need to be collected by a
comprehensive performance monitor. Chapter 9 covers mea-
surement and prediction in any MVS environment, with empha-
sis on goal mode. However it is much more nearly true in goal
mode than in compatibility mode that performance monitoring
of workloads can revert to a standby capability rather than be-
ing the center of systems management. Instead, the focus of per-
formance monitoring and systems management can shift back
to a concern for availability—of the hardware, the network, the
connections, and the applications. Effort formerly spent trying
to solve the puzzle of workload performance management with
the compatibility mode SRM can be applied, with greater return
on investment, to the tuning of key applications.

7.5. Cautions, Limitations, and Extrapolations
Managing the performance of MVS workloads in goal mode is so
easy that one may be tempted to ask “Is that all there is?” For
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those who feel that there is some loss of control in going to goal
mode, we might point out that the resources are all still there,
but managing them has become less of a front-line system pro-
grammer activity and more indirect. For those who insist on un-
derstanding what SRM does at a low level, WLM can upon re-
quest write a very detailed set of SMF records, grouped as Type
99. The documentation of these records provides a good guide to
the decision process within WLM.

One peculiar reservation about going to goal mode is a conse-
quence of indiscriminate reporting of irrelevant data. If you’ve
been reporting trivia like paging rates and CPU utilizations, and
those who receive the reports watch those numbers, it might be
hard to explain why you’re not reporting them any more after go-
ing to goal mode. Recommendation: focus reporting on the attain-
ment (or non-attainment) of service targets rather than on the de-
tails of resource utilization or activity rates—before beginning the
transition to goal mode. (This data should still be available for ca-
pacity tracking and planning, but just not distributed to those who
have no business need for such information.)

Recognizing that control of dispatching priority, MPL, and storage
protection is indirect might lead some SRM control fanatics into
an unfortunate attempt to actually control these values by warp-
ing the service policy. Such distortion might take the form of overly
precise goals, e.g., 1 second response time at the 87th percentile
and 1.2 second response time at the 91st percentile for different
service classes in the same policy. Tightly clustered velocities are
another indication of an attempt to ask too much of WLM.

Another potential trouble opportunity is the desire to map an IPS to
a policy without the kind of business analysis the task requires.
While there might be a rough correspondence between performance
groups and service classes, there is little that can carry over be-
tween the specifications in the IPS and the goals in a service pol-
icy.16 It should be easier to go back to the analysis of needs, expecta-
tions, and business priorities than to attempt to divine what the
goals might have been that led to the values in a particular IPS.
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mance groups can have a relationship to service classes. The value of the
PERFORM= parameter of JCL is added to the set of classification rules.



Problems with WLM
Two kinds of problems have been reported by some early users.
(These problems are not the same as bugs; presumably WLM is
working as designed in these cases.)
The first of these is more properly a problem of an under-config-
ured paging subsystem. The scenario is:

• An important transaction processing workload with a strin-
gent response time goal has been running at peak capacity
for some time. Because there is some central storage con-
straint, WLM has assisted the server address space(s) with
storage protection for the current working set.

• The majority of the users of the subsystem become inactive for
a protracted period of time. Perhaps there is a long “all hands”
meeting—or everybody goes to lunch at the same time.

• While the users are inactive or there is a very long interval
between transaction arrivals, the current working set de-
clines, storage delay declines, and the need for storage pro-
tection passes. Unused frames are stolen, and (assuming
there is no expanded storage or only a small amount of it)
the pages end up on auxiliary storage.

• When the next transactions arrive, the working set of the
server address space(s) is restored through a succession of
page faults. Response time is unacceptably poor until the
working set is reconstituted.

This “problem” endures because there is little or no expanded
storage in the configuration and is exacerbated by an anemic
auxiliary storage configuration. It can be avoided (or at least the
effect can be minimized) if the paging subsystem were to be
made more robust. The benefit of dynamic management of cen-
tral storage allocation far outweighs the minor inconvenience of
occasional delayed response time—if it is truly occasional. If the
workload (assumed here to be CICS) has a very low transaction
rate but business needs require consistently good response time,
one possible solution might be to place that set of transactions
in a pair of AORs on separate small MVS images, perhaps in
LPARs, with a generous amount of central storage and no com-
peting work. A simpler and more permanent solution might be
for Workload Manager to correlate the rate of removal of storage
protection inversely with importance.
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The second problem is similar in some ways to the first. It too is a
consequence of dynamic resource management replacing static man-
agement. However, it may be more nearly an intrinsic WLM behavior
than a problem with some other subsystem. This scenario is:

• A batch service class with a low velocity goal, perhaps 15
percent, has several jobs running on third shift. Through
contention with other work, the velocity goal for one job is not
achieved until its dispatching priority is raised significantly.

• The service class “dries up” with the high-priority job as
the last one to complete. WLM leaves the dispatching pri-
ority for the service class where it was.

• Some hours later, during first shift, another job comes into
the empty service class. The job runs at the retained dis-
patching priority, now inappropriately high, and other
work is impacted until the dispatching priorities are cor-
rected by WLM.

As unlikely as this sequence of events might be, some do worry
about it. One possible solution might be to run an unending syn-
thetic job in the service class, one with a low demand for service, to
ensure that the service class never goes empty, and that the re-
quired velocity is always achieved. However, it’s more likely to be-
lieve that IBM may reconsider the wisdom of leaving dispatching
priorities for empty service classes at their last level.

Limitations of WLM
In contrast with the common advice “If it ain’t broke don’t fix it,”
WLM can’t fix what it don’t know is broke. Network and JES de-
lays (other than the input queue time) are completely outside its
view, and ENQueue and most I/O delays are classified by WLM
as “unknown.” WLM has no control of the resources that might
be managed to deal with such delays.

Most serious performance problems just happen to be in those ar-
eas. Managing CPU and storage delay just happens to have claimed
a disproportionate share of tuning attention in the past because
MVS managed these areas so badly. With Workload Manager in
goal mode, these areas can now be left safely under the system’s
control, and performance management efforts can now be directed
to the significant problems that formerly had to be pushed aside.
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Therefore, performance measurement and monitoring might
change emphasis but will remain just as necessary as before—and
some of the real problems of applications may be solved.

Extrapolation
Although it might take some time before the role of WLM is
broadened to take over comprehensive management of the initi-
ators, the I/O subsystem, or the network, it might be possible for
WLM to do some of the job relatively soon. It appears to be likely
that WLM could soon become involved in managing ENQueue
delay and adjusting the line-up of initiators within specified
limits, based on policy and demand.
WLM can be expected to take on most mundane aspects of MVS
performance management that can be readily measured and for
which simple algorithmic methods can be devised.
The really good problems will be left for human beings to dis-
cover, characterize, analyze, and solve, with the assistance of
ever-more-advanced performance and systems management
software products.

7.6. Cheryl Watson’s “Quickstart” Service Policy
Cheryl Watson, the president of Watson & Walker, Inc. has given
permission for the recommendations of her “Quickstart” service
policy to be included here.17 The following tables are adapted
from the summary charts in her paper.

7.6.1. Workloads, service classes, and goals
In the three tables that follow, the format, order, and some of the
names have been changed from those in Ms. Watson’s paper.
Any errors thus introduced are the sole responsibility of the au-
thor.

Workloa
d

Service
Class

Period Import-
ance

Goal Type Value Per- ce
ntile

[SYSTEM]a system
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Workloa
d

Service
Class

Period Import-
ance

Goal Type Value Per- ce
ntile

[SYSSTC] system
[SYSOTHER] discretionary

ONLINEb ONLPROD 1 velocity 50
ONLINE ONLTEST 5 velocity 10
STC STCMED 3 velocity 30
STC STCLO discretionary
TSO TSOPRD 1 2 response time .5 s 80

2 3 response time 2.0 s 80
3 5 response timec 10.0 s 50

PRDBAT PRDBATHI 2 velocity 30
PRDBAT PRDBATLO discretionary
ONLINE OLPRODHI 1 response time .5 s 80
ONLINE OLPRODMD 2 response time 3.0 s 80
ONLINE OLPRODLO 3 response time 10.0 s 50
TSTBAT TSTBATHI 3 response time 10 m 90
TSTBAT TSTBATMD 4 response time 30 m 80
TSTBAT TSTBATLO discretionary
OMVS OMVS 1 3 response time 1.0 s 80

2 4 velocity 30
ASCH ASCH 1 3 response time 1.0 s 80

2 4 velocity 30

Notes:
a. The three bracketed service classes are system-defined.
b. The ONLPRD and ONLTST service classes contain the server address spaces; the

OLPRODHI, -MD, and -LO classes contain the transactions of the WLM-enabled
subsystems, CICS 4.1 or later, IMS 5.1 or later, or other similarly enabled sub-
systems.

c. For low completion rates, a velocity goal of 30 or 35% may be preferable.

7.6.2. Classification rules
Subsystem Rule Type Name or List Name Service Class

TSO default TSOPRD
STC TNG STCHI (omitted) for SYSSTC
STC TNG STCMD STCMED
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Subsystem Rule Type Name or List Name Service Class

STC TNG ONLPRD ONLPROD
STC TNG ONLTST ONLTEST
STC TN * STCLO
JES default PRDBATLO
JES TCG PRDBATHI PRDBATHI
JES TCG TSTBATHI TSTBATHI
JES TCG TSTBATMD TSTBATMD
JES TCG TSTBATLO TSTBATLO
ASCH default ASCH
OMVS default OMVS
CICS or IMS default OLPRODLO
CICS or IMS TNG OLTPHI OLPRODHI
CICS or IMS TNG OLTPMD OLPRODMD

7.6.3. Classification groups
Group Name Type Content

STCHI TNG VTAM, JESn,TSO, RMF, APPC,ASCH,OMVS kernel,
performance monitors and automation packages

STCMD TNG schedulers, print subsystems, OMVS dæmons
ONLPRD TNG CICS*, IMS*, DB2*, other online system servers
ONLTST TNG test address spaces for online subsystems
PRDBATHI TCG production batch job classes
TSTBATHI TCG urgent non-production batch classes
TSTBATMD TCG important non-production batch classes
TSTBATLO TCG routine non-production batch classes
OLTPHI TNG high-importance, fast-response CICS or IMS transac-

tions
OLTPMD TNG CICS or IMS transaction not qualifying for OLTPHI but

with more than routine business importance
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7.7. Summary
Workload Manager in goal mode brings a new level of automa-
tion to workload performance management in the MVS environ-
ment. Tasks that were difficult to perform at all in compatibility
mode are now done behind the scenes by new extensions to the
SRM. All it costs is a small increment of CPU time which is usu-
ally exceeded in magnitude by increased throughput from the
hardware configuration. Complex directives in the form of SRM
parameters are replaced by simple statements of the required
level of workload performance and business importance.
These changes have the potential to relieve system programmers
and performance management specialists of difficult and unre-
warding tasks and free them to become as effective as possible in
dealing with the problems of today and tomorrow. These include
the performance and availability management of large heteroge-
neous enterprise configurations and networks, the availability and
performance of the network, the performance problems of connec-
tivity with the Internet and other server destinations, the unique
problems of MVS as a large-scale server system, and the opportu-
nity to improve the performance of key applications.

7.8. Chapter Questions
1. If you are already operating in goal mode, what do you ex-

pect to gain from it? If not, give three reasons (other than
not being on Version 5 or later) for your choice. Analyze
those reasons based on what you’ve learned in this chapter.
Are they still defensible?

2. Name the five most important and the three least impor-
tant segments of work on your MVS systems.

3. For the five most important workload segments, state the
performance requirements that are justified by the busi-
ness importance of each workload segment.

4. Are there any “generally accepted” performance require-
ments in your installation that are not justified by an eco-
nomic or business reason?

5. Finally, create a service policy implementing the research
of the three previous questions. If there turn out to be ser-
vice classes defining distinct portions of a transaction-pro-
cessing workload, indicate what changes may be needed in
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the relationships between transactions and address spaces.
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Chapter

8
Introduction to Performance Problems

8.1. Initial Example

Suppose that you are running a program to calculate π to 90,000 dec-
imal places, and you need the results in one hour to gain an entry in
Grumbick’s New! Book of World Computer Records. On your fastest
uniprocessor that can run MVS, the program requires 43 minutes of
CPU time and will complete in about 49 minutes if it is the only
nonsystem workload. However, under normal system loading condi-
tions, the elapsed execution time is no better than 72 minutes.

The mission fails. There is an unacceptable mismatch among ob-
jectives, program, the computational problem, and the available
resources. In such a case, “the problem” may be viewed in vari-
ous ways:

• First, and most simple, the constraints may be too strin-
gent. Often a rough estimate becomes a firm requirement
simply because no refinement to the estimate was avail-
able before the project gained momentum. There might
have been an excessive safety factor in this part of a prob-
lem definition—perhaps the record to be broken is only
60,000 decimal places in an hour and a half.

• Scheduling may be inappropriate. The job may be too
CPU-intensive to be suitable to run on prime shift. At 3
a.m., the job may complete well within the target.
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• Contention may be responsible. The elongation of elapsed
time might be due to contention with other work, even
off-shift. If the job is given a more favorable goal, perhaps
with a higher velocity, other work in the system will suffer,
but there is some chance that the target elapsed time will
be achieved.

• The program may be poorly designed or implemented. If
the numerical approach embodied in the program is ame-
nable to multitasking or to vectorization, adding to the
CPU resource (with a multi-engine processor complex or a
vector processor, or both) may be effective. Some of today’s
compilers can generate programs that take advantage of
multiprocessors or vector processing features. By exploit-
ing multitasking or vectorizable content, the impossible
might become easy.

Batch jobs more conventional than the example might be
good candidates for parallel splitting. The job might be
split into a suite of jobs or, using the facilities of IBM’s
SmartBatch or similar products, into a set of pseudo-jobs
that still retain their original structure. Besides making it
possible to execute steps in parallel, this approach makes it
possible to use the BatchPipes facility to eliminate the cre-
ation of intermediate data sets.

• The fundamental algorithm or design embodied in the pro-
gram may be flawed. The greatest improvement in execu-
tion time is often associated with rethinking the funda-
mental design of an application program. In the case of a
compute-intensive problem like the one we’re considering,
even a small change in the numerical algorithm might
cause the calculation to converge much faster and thus
have a profound effect on requirements for computing re-
sources.

8.2. Types of Performance Problems

Even though the foregoing was an oversimplified and contrived
example, note one key element: The way we recognized a “per-
formance problem” was to note that a workload failed to
achieve its service goal. Without that distinguishing factor,
we tend to fall into a vague search for improvement, without
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knowing when to stop. Such a lack of focus makes for frustrated
performance analysts and a system unresponsive to legitimate
performance problems. Establishing performance targets and
assessing actual performance against those targets provides a
rational basis for performance management activities. As-
sessing measurements can take place in real time for interac-
tive workloads and key unattended workloads, or after the fact
for ordinary batch workloads. Performance monitors capable of
making such measurements and more will be discussed in
Chapter 9.

We now examine, in a more abstract way, the kinds of problems
we’ve touched on so far:

• Unrealistically ambitious service expectations. To
give a common example, attempting to achieve 1.5-second
CICS response time at the 90th percentile may be unrea-
sonable if most transactions are more than ordinarily com-
plex. A typical user of the application’s transactions may
require 30 or 40 seconds of think time and data-entry time
to fill a complex screen. Response time is thus a minor com-
ponent of task service time. Sizing a system to provide re-
quested but unjustified performance at initial activation of
an application system may be a waste of money if the re-
sponse time turns out to be 50 percent better than what is
needed to meet the service requirement of the using de-
partment.

Attainment against properly planned and structured ser-
vice targets may be measured, and exceptions may be
made visible in real time or after the fact. What is to be
done with such information? One approach is to simply re-
port the results, taking action to correct “anomalies” only
when the delivered service in a reporting period has be-
come overtly unacceptable.

The approach we characterize in these pages as perfor-
mance management is more activist. If those in charge of
providing the service have a level of self-measurement
more stringent than the commitment to the end-users of
the service, response time anomalies can be detected before
the customers notice them. If, in addition, the service pro-
viders have diagnostic and repair tools to allow corrections
to be made in real time, there need be very few reportable
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service deviations. Goal mode with Workload Manager pro-
vides an opportunity to set goals that represent a bit of
overachievement, so that when a “real” target is missed
WLM will already be trying to improve the performance of
that workload.

• Poor scheduling. Often an installation has no service tar-
get for unscheduled batch and no incentives (or disincen-
tives) to condition the expectations or behavior of the users
bringing batch jobs into the system. Consequently, batch jobs
varying wildly in resource requirements, setup need, conten-
tion potential, and business value compete freely. If some
scheduling rules or preferences (including incentives to avoid
contention and substantial financial or budget incentives to
wait longer for results) were to be made known to the submit-
ters of the jobs, enough people might alter their behavior to
result in a substantial reduction of resource utilization on
prime shift. Moving “heavy” batch off-shift can help to hold
off a planned upgrade in capacity.

• Avoidable contention. Although end-users or applica-
tion owners can rearrange work to avoid contention that
they are warned of in advance, most resource contention is
not visible until an unanticipated service level problem ap-
pears. Resolving such problems involves many paths and is
often a principal activity of those responsible for perfor-
mance management.

• Poor implementation or installation choices. An ap-
plication program may have an inspired design and be
written flawlessly. It may then be installed for production
by someone who is careless or uninformed about the capa-
bilities and services to be found in an MVS environment.
As simple a mistake as placing a large card-image file in an
unblocked sequential data set may create avoidable stress
on a device, a string of devices, a storage director, a chan-
nel, and one or more CPUs. Because program residency
takes longer than it should, real storage may be excessively
utilized as well.
In the OS/390 or MVS/ESA environment, failure to under-
stand and make effective use of BatchPipes or its successor
SmartBatch, shared pages, data spaces, hiperspaces, and
Data in Virtual, as well as the more prosaic VIO and buff-
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ering options available since the beginning of MVS, can re-
sult in inefficient and wasteful use of system resources.

• Flawed basic design or application architecture.
Even though poor follow-through in installation can lead to
inefficiency, it takes an inherently flawed design to make a
program spectacularly deficient. Stories abound of inept
program designs. A typical pattern is that an application
program survives long beyond its originally expected life
span, and that the conditions of its execution change
enough to make it run poorly.
Sometimes an increase in volume alone is enough. Sorting
algorithms, in particular, are very sensitive to volume. A
correct choice for sorting 100 items may be hopelessly inef-
ficient for 100,000. However, the high-volume sorting algo-
rithm may require the execution of so much setup code
that its overhead is unacceptable for a frequently invoked
in-line sort of a few hundred items. A “one size fits all” opti-
mal sort is very unlikely.
A scale-up problem should be suspected when a previously
acceptable application program starts missing its service
targets chronically, especially when a gradual increase in
its input volume has occurred. Confirmation may be gained
by doing a “reasonableness check” on the gross activity of
the suspect program. Is the increase in run time propor-
tionally greater than the increase in input volume and out-
put volume? Is much more intermediate I/O done with only
a small increase in volume? Does CPU consumption or real
storage requirement jump, again more than proportionally
to the volume increase?
In such cases, time devoted to digging up long-forgotten
source code and reanalyzing the fit of the application to to-
day’s hardware may be well spent.

8.2.1. Capacity planning and performance management
When workloads and consequent hardware resource use grow
over time, the management of such concerns is usually consid-
ered to be purely a matter for capacity planners. However, if the
design of a principal application is of the kind just described, the
hardware may be slated for an expensive upgrade before it is re-
ally necessary. More-than-proportional increases in run times of
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key applications should cause those applications to be reexam-
ined as part of the upgrade justification process.

8.3. Resource Contention
To a great extent, performance problems originating in a lack of
capacity are simple to solve. Add more capacity, or improve the
underlying program to relieve the lack of capacity, and the prob-
lem is gone, or at least postponed.
Much more challenging problems are possible. They occur when
multiple workloads need concurrent access to specific system re-
sources. The delay in transaction completion caused by resource
shortage might be a form of simple elongation: If 40 minutes of
CPU time is required to complete a job that required 20 minutes
before a volume increase, the job’s run time will extend by little
more than 20 minutes.
If, however, there is contention with other workloads for the
CPU resource, the additional queueing delay may be many
times the elongation due to additional resource use. If the re-
source in contention is DASD, an even greater delay may be in-
troduced in all contending workloads, depending on the amount
of actuator movement (seeking) added to the I/O time of each.
If a resource contention problem is known to exist, the measures
needed to deal with it are different from those used to diagnose
and solve resource exhaustion problems.

8.3.1. Workload assignment
In a multisystem environment, inappropriate workload assign-
ment choices may lead to avoidable contention. For example, in
systems with shared DASD, in which GRS or an equivalent is not
managing cross-system ENQueues, an exclusive ENQ request
causes a RESERVE to be placed on the volume containing the data
set. If other data sets on the volume are required by a system other
than the one from which the RESERVE was issued, access is blocked
for the duration of the RESERVE. This kind of problem should van-
ish as parallel sysplex comes into common use.
Such denial of access can cause long delays if an interactive sub-
system or set of users needs an affected data set. The original
reason for creating the potential contention might have been an
attempt to separate TSO users maintaining an IMS subsystem
from the production system providing the IMS service. If any
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data set used by a TSO user is on a volume needed for produc-
tion, delays caused by RESERVEs are possible.
Even if GRS or an equivalent facility is used to eliminate most
RESERVEs, activity on the “off-side” system(s) can cause delays
on the production system. To get a complete picture of shared
DASD contention requires merging usage data from all sharing
systems. Predictive modeling is badly flawed if such a complete
picture is not input to the model.
As has been the case for many kinds of problems in the past, this
one too may be solved eventually. If the systems in contention
are in a parallel sysplex, the type of data set may determine
whether there is going to be contention delay. Access methods
that are enabled for data sharing will hold the scope of conten-
tion down to the lowest possible level—typically a single record.

8.3.2. Workload scheduling
Sometimes workloads damage each other so much through con-
tention that they cannot coexist. A daily transaction analysis and
validation batch job operating on an online system’s data base
might cause the devices serving the application to become so busy
that acceptable response times are not possible. Daily backups of
critical disk volumes are in the same category. An efficient utility
program performing data backups will drive its devices at nearly
100 percent utilization. Something must be done to keep these nec-
essary batch jobs from destroying the performance of the interac-
tive application. What alternatives are available?

• If there is a daily, naturally inactive period of sufficient dura-
tion to accommodate the daily jobs with enough spare time to
handle at least one rerun of the longest-running job, a simple
scheduling approach may do. Such an interval is usually
known as the “batch window.” Performance management ac-
tion, including real-time monitoring of production batch com-
pletion times, and close capacity-planning tracking are needed
to ensure that the time constraints are always safely met.

• Many online applications must be available virtually all
the time. Less antagonistic and less resource-intensive ap-
proaches to backup and auxiliary batch operations are nec-
essary. Volume backups might be done on a weekly basis
instead of daily, supplemented by incremental daily back-
ups of only changed data sets. New DASD subsystem capa-
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bilities such as Concurrent Copy and Remote Copy ease
the pain by not tying up system resources to make
point-in-time copies of data sets or volumes. Validation and
adjustment might be done against transaction logs, with
an exception set of amending transactions being generated
for entry through a less intensive path than batch. A per-
sonal computer might be used in terminal-emulation mode
to drive simple transactions at a relaxed rate.

• As the use of RAID devices takes hold, the need for back-
ups may change to be more oriented to the business cycle
and less to the fear of unrecoverable data loss.

• Eventually, applications might well need to be designed for
continuous operation, generating parallel data streams for
backup, and performing validation and amendment in con-
current processes. Today’s large multiprocessing systems
are capable of dealing with such applications easily, al-
though the software is not quite as ready as the hardware.

8.3.3. Accommodating contention
One of the problems pointed out earlier is that without service
targets, performance management has no endpoint. Approaches
that focus on data about resources and infer the possibility of
contention for those resources might lead to numerous “correc-
tive” actions to reduce service time, utilization, queue length, or
the appearance of contention. Without input from a work-
load-oriented point of view, such adjustments may be unneces-
sary at best. A balanced viewpoint is essential. Starting with the
workload view, the prime justification for a “tuning” or “re-
source-balancing” action would be a failure to meet a service
target, or a clear trend indicating that such a failure is immi-
nent. This is the approach at the center of Workload Manager.
Based on such evidence, an investigation of specific resources
tied to the threatened service level can lead to the solution of a
real problem.

8.4. Special Problems of Client-server Applications
Chapter 11 covers performance considerations for client-server
applications in some detail. Client-server is becoming a mun-
dane fact of life today and IBM has taken to referring to the
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OS/390 hardware platforms as “servers” or “enterprise servers.”
Client-server can show some unique problems. Just to cite one
example, consider the splitting of former “dumb terminal” appli-
cations to put the control of the user interface on the client sys-
tem, typically a PC work station.

The problem goes something like this: suppose that the former
user interface code is not neatly isolated, or that there are nu-
merous small functional routines that constitute the user inter-
face implementation. In the predecessor application, the flow of
control between the mainline code and the user interface code,
through standard program linkages, is innocuous. There’s no
problem if it takes 300 CALLs to build a screen.

Now consider what happens when those 300 CALLs become
DCE Remote Procedure Calls (RPCs). Each instance of the link-
age now represents a line turnaround, an RPC directory search,
and all the necessary protocol stacking and destacking, and
character set translations, as well as the basic interceptor code
that “catches” the CALL and turns it into an RPC, and the corre-
sponding code that receives the RPC and presents it to the
called program as if it were an ordinary CALL.

If the user interface protocols were simplified and lifted to a higher
level, perhaps the 300 CALLs could be reduced to a dozen or fewer.
With no change in the function of the client-server application, ser-
vice could be improved, and resources could be saved.

Other considerations for such applications may be found in
Chapter 11.

8.5. Summary

In this chapter, we have attempted to identify several typical
ways in which workloads can fail to meet their service targets.
We’ve also suggested ways to monitor the workloads and mea-
sure their performance, as well as performance factors related
to system resources. The discussion is by no means complete,
and the “war stories” of how performance problems manifest
themselves have no limit. In the next chapter, we’ll examine
measurement and monitoring methods and tools.
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8.6. Chapter Questions
1. Investigate the performance problems in your system.

Classify them according to the types discussed in this chap-
ter. Does the exercise of classifying the problems contribute
to your understanding of them? Does it suggest solutions?

2. Does your installation have service level agreements? How
closely do your reported results match what is required? Do
you expect that user satisfaction will erode if performance
declines but still stays within the committed levels?

3. How do your site’s DASD management policies relate to
problems of contention? Are volumes owned by the data
center or by the using department? If the latter is the case,
why is it so?

Introduction to Performance Problems 197



Chapter

9
Measurement and Prediction

Any performance management action is initiated based on a de-
cision—by someone—that action is necessary. The decision is in
turn based on objective information placed in a subjective con-
text appropriate to the needs of the business:

• Is a customer complaining of poor service?

• Has any condition occurred in the last 24 hours that re-
quires corrective action?

• CICS response time is not acceptable for users in Accounts
Receivable. How extensive is the problem and what is the
appropriate action to take?

• Has a short-term tuning action introduced a new problem?

• Can this system accommodate 50 more TSO users?

• What is the most effective way to spend my hardware up-
grade budget this year?

All of these determinations require information in order to be
made effectively and efficiently. There are two basic sources of
such information: measurement and modeling.
Measurement takes place at many levels within MVS and is
concerned with a wide variety of data. Resource data may be col-
lected to learn the extent of CPU, channel, and device utilization
over various time intervals. Activity rates in the system are
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gathered, analyzed, and displayed or stored. Workload data of
many varieties may be measured in various ways. In MVS since
Version 5, the Workload Manager collects much of the data that
was formerly collected only by external measurement products.
Vendors of those products, in turn, have taken the opportunity
to reduce their impact on system performance by using the
WLM measurement data made available through an IBM-sup-
ported Application Programmer Interface (API), supplementing
it with data that they collect for analyses beyond WLM’s scope.
Measurement data will suffice to answer most questions and
provide support for most day-to-day decisions in performance
management. When the question concerns future expectations
or seeks to understand processes for which measurement data is
impossible to obtain (or just not available with the current set of
tools), modeling may be the appropriate discipline to use.
Modeling falls into two major categories, similar in spirit to the
principal schools of stock market analysis. Analytic modeling,
through an understanding of the way in which a system works,
seeks to create a mathematical model whose behavior mimics
that of the system. Analytic modeling resembles the “fundamen-
tal” approach to market analysis. Stochastic modeling, like
“technical” stock market analysis, looks at behavior patterns
and examines and projects those patterns, largely independent
of internal considerations.
We now examine various approaches to performance manage-
ment and to measurement, summarize the kinds of decisions
aided by each kind of measurement, and then illustrate one as-
pect of analytic modeling technique by developing a piecewise
analytic model of DASD I/O. However, a full discussion of ana-
lytic modeling, as well as any consideration of stochastic model-
ing, is beyond the intended scope of this book.

9.1. Approaches to Performance Management
Differences of approach are common in performance manage-
ment. They derive from differences among tools and the vendors
who supply most of the tools, as well as the background and ex-
perience of individual practitioners.
The way in which data processing relates to the overall business
has an effect as well. Data processing may be relatively new in
an establishment and its advocates untrusted by senior manag-
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ers. In such an environment, capacity planners must constantly
struggle to justify both today’s DP budget and the essential rela-
tionship between business growth and DP capacity growth.
They must also work to persuade a skeptical or hostile audience
that growing dependency on DP leads to ever more stringent ex-
pectations for performance and availability, and a correspond-
ing growth in the need for performance management tools.
In such an environment, tracking and accounting for resource us-
age is a daily concern, so it is natural that performance manage-
ment is approached from the perspective of resource use and its
cost distribution. The early history of performance management
took place in a time when the cost of hardware per transaction was
much greater than it is today, so the resource-oriented point of
view is well entrenched for historically valid reasons.

9.1.1. Resource-oriented performance management
When looking at resources, how is a performance problem identi-
fied? When a pattern of satisfactory operation has been estab-
lished and key measurements taken, any deviation from history is
suspect and might signify an abnormal condition. For example, if
the CPU is usually about 75 percent busy at 2:00 p.m., for utiliza-
tion to drop suddenly to 50 percent might mean almost any-
thing—but not that the CPU has instantly become more powerful!
If such a deviation from normal operation is detected in real time,
further data may be gathered and possible causes and conse-
quences might be determined, depending on the tools available.
The implicit assumption of resource-oriented methods is, “If the
numbers look good, the system looks good.” Which numbers?
Ideally, the critical numbers should be determined by each in-
stallation according to its own measurements. What often hap-
pens, however, is that less experienced system programmers
and performance analysts seek out help from others, requesting
advice in the form of questions like:

• How busy should the CPU be?

• What’s a good paging rate for a ES/9000-962?

• How high can device and path utilization go on a DB2 data
base on RAMAC 3?

As the numbers become detached from the experience and ex-
pectations for which they were appropriate, they degenerate
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into mere “rules of thumb.” At this point, a system might well be
measured against someone else’s operating limits, and for a dif-
ferent kind of workload. Depending on such methodology often
produces results that reinforce the atmosphere of distrust
touched on above.

The resource-oriented approach is inadequate because it pro-
motes a focus on measures of resource activity rather than on
the service achieved on behalf of key workloads. Resource data
in the Workload Manager era now reverts to the purpose for
which it is far better suited—tracking and accounting for the
use of system resources.

9.1.2. Workload-oriented performance management
Even though inferences about workload performance factors
can be drawn from resource measurements, it is difficult. A per-
formance management methodology built on resource measure-
ments is uncertain and often too dependent on archived re-
source usage data to be useful in solving an acute problem. A
more direct approach is necessary and is made possible by per-
formance monitors that view the resources of the system from
the perspective of its workloads, or the workloads from each
other’s viewpoint. Workload Manager does a comprehensive job
of collecting state data for CPU and storage, but it does not col-
lect state data for ENQueue and network delays, nor does it col-
lect contention data in any direct sense.

As of OS/390 Release 3, Workload Manager collects I/O compo-
nent data, consisting of the four customary components of I/O:
IOSQ, PEND, CONN, and DISC. This data is collected at the de-
vice level but is immediately aggregated to address spaces. Con-
sequently, device-related analysis requires independent data
collection—unless IBM, perhaps in a later OS/390 release,
makes the raw data (before aggregation) available at an API.

Most measurement and management tools operate by sampling
the execution states of the workload(s) of interest. For conten-
tion analysis, samples that suggest contention delays may be
pursued further, to discover the identity of the current resource
holder. The accumulation of sampled data provides a pattern de-
scribing how often the workload is found in each state. We look
now at how such information can help to solve problems.
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Execution-State Analysis
To determine how to deal with a missed service target, a
straightforward problem-solving approach will attempt first to
identify the problem’s cause. Typical causes include:

• A hardware component may be degraded or operating
poorly. A performance-enhancing feature such as a
high-speed buffer might be disabled, a CPU or some stor-
age could be offline, or a path to a high-use I/O device
might be inoperative.

• Available resources are insufficient to permit the service level
to be met. Application data volume might have increased sud-
denly or over time, causing greater resource need.

• Changes in the application program, the system environ-
ment, or the amount or distribution of stored data might
have introduced inefficiency in the way the application ex-
ecutes. The introduction of extra SEEKs into frequently exe-
cuted uncached I/O operations (as in the case of a ran-
domly accessed data set that grows into widely separated
multiple extents) might cause unacceptable increases in
run times or transaction response times.

• Growing demand for nonspecific system resources such as
storage or CPU cycles could cause delays while waiting to
gain access to sufficient resources to complete a work unit.

• Another workload might be using a specific resource (usu-
ally an I/O device) needed by the workload that is failing to
meet its service target. Contention for an I/O device will
elongate the elapsed time for all competing address spaces.
If a data set is needed by both the Loved One and the
source of contention, and the contention source has exclu-
sive access, the affected workload will receive no service
until the ENQueue bottleneck is broken.

The first of these possible causes might be diagnosed by a very
complete resource availability monitor. The second might be
spotted after the fact by analysis of SMF or RMF resource data.
The others are virtually impossible to diagnose without execu-
tion-state analysis or direct contention analysis, or both.
In a workload-oriented methodology, the focus is first on creat-
ing service targets, then on measuring their attainment, and fi-
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nally on taking corrective action when targets are missed. The
measurement and management actions can be done directly and
invisibly by Workload Manager, or, when goal mode is not active,
through the use of suitable performance monitoring tools and a
logical tuning approach.
The key emphasis in a workload-oriented methodology is on ser-
vice measurement. Once a deviation from a service target is
identified, investigation can proceed with resource-based tools,
or with more modern tools based on the decomposition of trans-
action times into their execution-state components.
Using resource-oriented methods to diagnose problems is indi-
rect and uncertain, but a product opportunity has materialized
to take advantage of these very characteristics. Several vendors
offer “expert systems” to evaluate resource data and “diagnose”
whatever problems might be represented in the data.
If resource data were all that was available, this approach might
be the best possible. Consider the massive investment in early
supercomputers used for weather forecasting, particularly for
predicting storm tracks. A mass of temperature, pressure, and
wind velocity readings rimming the Gulf of Mexico and the Ca-
ribbean might have been combined to give an imprecise predic-
tion of a hurricane’s time and location of landfall. The program-
ming of such computers represented the “expert systems” of
their day.
Of course, all we need to do today is use the detailed observa-
tions from weather satellites to extrapolate the directly ob-
served storm track and velocity. The availability of direct obser-
vation makes the tedious “expert” analysis of indirect data un-
necessary. Likewise, workload-oriented performance measure-
ment tools make it possible to diagnose workload problems di-
rectly and rapidly.
The most successful example of the workload-oriented technique,
carried through from measurement to management of workload
performance to goals, is Workload Manager in goal mode.

9.2. Classifying Measurement Tools
There are several ways to classify performance measurement
products. One frequently used division is between real-time
monitors, which present data as they collect it, and data collec-
tors or historical monitors, which store data for future use. In
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some measurement products, both approaches are taken; some
data is immediately available, while data representing past con-
ditions is stored.

9.2.1. Real-time monitors vs. data collectors
How does one choose? While it is certainly true that a creeping
increase in response time may be diagnosed by a series of
real-time measurements, why bother? A data collector with a
workload-problem-oriented reporting program can present the
history of the problem in summary or graphical form, guiding
the analyst to a solution that is not unduly influenced by instan-
taneous perturbations.
On the other hand, a problem such as a sudden increase in alloca-
tion of the Common Service Area (CSA) must be revealed and un-
derstood promptly. Action must be taken to find the cause and sta-
bilize CSA use before the system “crashes” when a crucial function
cannot obtain needed CSA. A real-time monitor with a constantly
active “alert” capability provides the best way to become aware of
such a problem. Because simple awareness is not enough, a more
complete real-time monitor would provide additional functions to
identify the holder of CSA accounting for the most allocation or for
the most rapid rate of allocation growth,1 as well as some means of
freeing a CSA block in an emergency.
A real-time monitor tends to be primarily oriented to basic concerns
affecting the availability of the hardware and software configuration.
It is not per se a performance monitor. The exhaustion of CSA is an
availability problem, not a performance problem. Typically, a
real-time performance monitor will also evaluate service data and
emit an alert if a critical response-time or elapsed-time service
level is in jeopardy. It may also include a facility to decompose
those times into their component parts, so that the most likely
cause of a service anomaly may be quickly identified.
As capable as real-time monitors may be, they are not the best
choice for the more deliberative job of correcting subsystem or
application performance problems. Such service anomalies
tend to be chronic or cyclical. An anomaly does not arrive on
the scene as a full-fledged crisis some fine day, and it does not
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politely stay visible until someone is looking at the display of a
real-time monitor.
A data collector has advantages as a measurement tool for per-
formance management. Only the collector portion need run at
high dispatching priority, to ensure accurate CPU-delay mea-
surements. (In MVS as of Version 5, even this intrusion on use-
ful work is unnecessary. WLM collects state data continuously.)
The data analysis and display portion can run as a batch job or
as a TSO command or CALLed program, or as an independent
APPC/MVS transaction processor. A client-server design could
allow the reporter to reside on a different platform from the
MVS system being monitored. If the data is stored online in a
form the reporter can query directly, the reporter’s immediacy
can be close to that of a real-time product.
If instead the standard MVS System Management Facility
(SMF) is used as the data repository, there can be less overhead
attributable to the collector.2 However, reporting must be de-
ferred until the SMF data is dumped and processed. With the
availability of the System Logger in SP 5.2.2 and OS/390, SMF
processing and access to the data may entail less delay.
Another facility, the Sysplex Data Server, is part of RMF since
Version 5.1. The Sysplex Data Server can coordinate RMF data
from all systems in a sysplex, and includes a set of services to
permit other products or programs to have similar access to all
types of SMF data. The data provided in the resulting RMF dis-
plays is not long-term historical data but the more instanta-
neous data characteristic of Monitor II.
There are other benefits of routing performance measurement
data through SMF. Writing out the data is automatic, through
facilities provided with the operating system and designed for
continuous operation. There are also several complementary
products available for data analysis and presentation. These in-
clude IBM’s Service Level Reporter (SLR) and its successor En-
terprise Performance Data Manager/MVS (EPDM), and SAS In-
stitute’s Statistical Analysis System (SAS®), as well as
higher-level data base and reporting packages built on SAS.
(These include Computer Associates’ MICS® and Merrill Con-
sultants’ MXG.®)
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9.2.2. Measurement techniques
Another basis for classifying measurement products is accord-
ing to whether data is obtained by sampling, by direct access to
existing summary information, or by intercepting events. All of
these methods are commonly used. IBM’s Resource Measure-
ment Facility (RMF) is primarily a sampling system. In
MVS/370, RMF obtained data about I/O devices by sampling the
states of devices as reflected in data areas of the operating sys-
tem. In MVS/XA and MVS/ESA, however, the channel subsys-
tem includes architecturally defined measurement interfaces,
so what once had to be sampled can now be “harvested” using
supported interfaces. In Candle Corporation’s OMEGAMON II
for MVS for example, the I/O data is taken from the channel
measurement blocks, execution-state data for address spaces is
sampled to the extent that WLM data needs augmentation, and
CPU usage data is based on the accumulators updated by MVS
at every dispatcher transition and on WLM’s low-overhead col-
lection.

Transaction-oriented measurement systems attempt to capture
data relating to each transaction of interest. To do this, they are
event-driven, capturing and buffering the key data for each
transaction and moving it to a logging facility as quickly as pos-
sible. Data composition, reduction, and analysis are done at a
later time.

MVS includes a “hidden” set of data collection facilities most
commonly used by the Generalized Trace Facility (GTF). Dis-
tributed throughout MVS system code are numerous implanted
MONITOR CALL (MC) instructions. Each such instruction has
within it a 4-bit monitor class field. Normally, the MC is a
“no-op.” An authorized program may load appropriate control
register settings to activate the MONITOR EVENT facility and
designate active monitor classes. Then an MC designating one of
the selected classes, when executed, causes a program check. Con-
trol is then routed through a specialized second-level interrupt
handler to code that will eventually log some data associated with
the monitored event.

MONITOR CALL is a disruptive instruction to use. Each time
the program check occurs, the system undergoes the
flow-of-control disruption of a status switch and spends a por-
tion of the subsequent processing time disabled for all inter-
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rupts on all processors of the complex. The processing time for
the interrupt is tacked on to the TCB or SRB time of the pro-
gram incurring the interrupt.
Consequently, the use of GTF is considered abnormal; most instal-
lations require special authorization to allow its use, and then only
for limited time intervals. Granted, GTF is very accurate and can
collect data that is available no other way; it is simply incompati-
ble with production operation of an MVS system, and its high over-
head causes inflation of reported CPU times throughout the sys-
tem. A performance monitoring program gathering data by means
of MONITOR CALL obviously should not operate continuously in a
production system. Selective and limited use of MONITOR CALL can
be effective if the event-related data it gathers is useful and avail-
able no other way.
Depending on what information is required, composites of these
basic techniques are common. For instance, RMF accumulates
TSO response-time data through each collection interval by
event-driven capture of transaction completions but discards
the individual transaction data. In RMF, the individual transac-
tion data is lost by the accumulation process. Candle Corpora-
tion’s OMEGAMON II for MVS can “reach over” into RMF’s ac-
cumulators and display quasi-current values for TSO response
time. Legent’s (now CA’s) TSOMON starts with the same basic
transaction completion data as RMF, but by capturing it without
aggregation, TSOMON can later display much more detailed in-
formation about TSO response time by user subset or by trans-
action identity. (The need for such information diminishes with
the response time distribution information available directly
from WLM data.)

9.2.3. Resource measurement
We’ll look briefly at IBM offerings for resource measurement,
followed by a look at those offered by other vendors.

IBM Offerings

Resource Measurement Facility (RMF). Although basic mea-
surement data at the workload level is available from SMF, it is
usually necessary to have an overview of how the system is per-
forming as well. Understanding the relationship between sys-
tem capacity and workload is made possible using data collected
by RMF and written to SMF data sets in the form of records in
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the type range of 70 through 79. RMF evolved from a no-charge
facility, MF/1, that was part of SVS and early MVS. RMF reports
on CPU, channel, and device utilizations; system activity rates;
and the distribution of service by performance group or domain
(in compatibility mode) and by service class and report class in
goal mode.
Using RMF data, estimates of workload delay factors may be in-
ferred as well. Delays for swapping, IOS queuing, paging, and
CPU queuing may be calculated from RMF data. Information to
quantify these delays is not provided directly in RMF reports,
but rather derived through mathematical and statistical manip-
ulation according to implicit or explicit models of system and
workload behavior.

Independent Vendor Offerings
A number of independent software vendors produce re-
source-oriented performance monitors. They include Candle’s
OMEGAMON II for MVS, Boole & Babbage’s Resolve Plus,
Computer Associates’ CA-LOOK, and Landmark’s The Monitor
(TMON) for MVS. These products also include features to moni-
tor hardware availability and configuration elements, as well as
some measures of service, delay, and contention. The historical
component of Candle’s OMEGAMON II for MVS (and each of its
counterparts in other vendors’ offerings) draws on both resource
data (in turn “harvesting” data from RMF) and execution-state
data as described below.
Value is added by such products. Landmark’s TMON for MVS
and Candle’s OMEGAMON II for MVS provide views of many
performance-related values in MVS, arranged in task-oriented
screens with advanced navigation capabilities, going well be-
yond the rudimentary displays of RMF.
For example, RMF Monitor II provides high UIC numbers for
the system and for address spaces. In systems with substantial
storage isolation, such numbers provide a misleading view of
page age and no information about reference patterns. The
third-party offerings provide more detailed views of the page
ages in address spaces and in the system, by age category and
even by specific UIC values, perhaps going so far as to show UIC
per page frame as well as an overall pattern of page age for all
the virtual pages in the address space. Such information can
help to detect incorrect storage isolation settings and to identify
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storage reference “hot spots” when tuning an address space to
improve efficiency or minimize system impact.

9.2.4. Workload-oriented measurement
Workload performance problems are most effectively diagnosed
using tools that examine the workloads and expose contention,
bottlenecks, and tuning opportunities.

Execution-State Analysis
The basic technique of workload-oriented measurement is exe-
cution-state analysis. By examining the state of each address
space of interest at regular intervals (sampling), a frequency
distribution of execution states may be constructed, as shown in
simplified form in Figure 9-1.
The ranking of execution states can be used to characterize the
problems (if any) associated with the workload. If the address
space of interest is not meeting its service target and “using
CPU” is the dominant state, the appropriate “cure” might be a
more powerful CPU or a more efficient program.
Dominant states like “waiting for CPU,” “swapped out for MPL,”
or “waiting for paging” represent resource shortages as seen by
the address space. Such delays might be viewed as contention,
but the workload in contention would be identified as “anything
else.” In such a case, the classical tuning tradeoffs are exercised:
If other, less important work is meeting its service goals (or has
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none), system parameter changes (or the Workload Manager in
goal mode) can adjust dispatching priority, domain constraints
or contention index, or quantity of storage isolation, thus redis-
tributing resources. If such tradeoffs are not available, a hard-
ware upgrade might be needed.
If the Loved One spends much of its time waiting for an I/O de-
vice or for an ENQueue resource, a contention problem with a
specific workload is a likely cause. More investigation is needed
to see if the contention arises from within the critical workload,
or if it is caused by another address space or the aggregate of
many address spaces, such as TSO users.

IBM Offerings. IBM’s Resource Measurement Facility (RMF) in-
cludes an independent set of functions known as Monitor III.
Another name for Monitor III is the Workload Delay Monitor, the
name of an earlier IBM Research Division internal tool, ideas
from which were included in the design for Monitor III. Monitor
III depends on a separate data collector address space called
RMFGAT. A reporter called RMFWDM is invoked as a TSO com-
mand and is used to display the data collected by RMFGAT, both
in real time and with some capability to study past periods.
Monitor III supports a concept called workflow, defined as “us-
ing” (a resource or set of resources) divided by the sum of “using”
and “delayed” (for the same resource or aggregate). If a TSO
workload is idle 80 percent of the time, absorbing CPU cycles 5
percent of the time, and waiting for some resource 15 percent of
the time, the workflow of that workload is 5

5 15+
or 25 percent.

Note the resemblance between the notion of workflow to that of
velocity as used in goal mode. The differences are that velocity
can include in its definition delays not necessarily related to the
resource being used, and that workflow is usually viewed for a
single type of resource at a time.
Workflow is applied to both workload and resources in Monitor
III, and the methodology suggested by the product documenta-
tion favors high workflow. Since the epitome of high workflow is
a CPU loop, this view of the world is not accurate for all cases.
In addition to workflow, Monitor III shows how a workload’s
time is spent. Time is broken into processor use, processor delay,
storage delay, and I/O delay. Other states are lumped as “other”
or “unknown.” Finer breakdowns are available for I/O delay,
identifying the devices causing the most delay to a workload.
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This brief description of Monitor III is necessarily incomplete.
The appropriate IBM publications provide full information.

Independent Vendor Offerings. Candle Corporation offers a
technology called variously degradation analysis, bottleneck
analysis, and execution-state analysis in OMEGAMON II for
MVS. The same techniques are used in other Candle products
supporting the IMS and CICS subsystems. Data is collected by
sampling the states of address spaces and supplemented by the
CPU time accumulation kept in MVS data areas. The accumu-
lated data is presented in real time, and collected for historical
analysis as well. OMEGAMON II for MVS can also write its his-
torical data to SMF, either alone or in parallel with writing to its
proprietary data store.

Candle’s analysis is somewhat more complete than that of RMF
Monitor III, reporting on time spent using or waiting for each
I/O device, on each specific ENQueue delay, and on numerous
other execution states.

Other vendors, including Landmark and Boole & Babbage, also
provide some form of execution-state analysis in their MVS
monitoring products.

Direct Contention Analysis
When a favored workload is delayed because another workload is
using a needed resource, knowing the details of execution states is
not enough to unclog the bottleneck. Using resource data to sup-
plement execution-state data helps a bit but can be misleading.
For instance, if CICSA has spent 35 percent of its active time in
the past 15 minutes waiting for volume DATA77 on device 03B7, it
is naive and ineffective to simply consult an RMF Monitor III re-
port to see who the other users of the device are.

The users accounting for the most time may not be causing the
interference; it may come from CICSA itself. It may come from
another address space using the device synchronously with
CICSA, because it is driven by service requests from CICSA. A
very small percentage of device utilization may account for a
large measure of contention. While it is almost certainly true
that one of the listed users of the device is the culprit, the
ranked list does not always guide the analyst to the true source
of contention.
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What is needed in this case is a different kind of tool. A sam-
pling execution-state monitor can be extended to perform a
deeper kind of analysis when delay states are found. If such a
monitor finds queued I/O delay for CICSA, the monitor goes be-
yond simply identifying and counting the delay state. A conten-
tion analyzer will examine other information available in the
system to determine which address space is using the device in
contention at the time the delayed address space needs it. By ac-
cumulating counts for each such occurrence, the monitor can
produce a ranked listing of contending address spaces. A simpli-
fied view of direct contention analysis is presented in Figure
9-2.

IBM Offerings. RMF Monitor III collects true contention infor-
mation for CPU contention only. For other resources in conten-
tion, Monitor III shows what might be termed coincident usage
data. In the case of DASD contention, Monitor III shows a rank-
ing of the address spaces using a device in contention without
determining whether their use was in fact in contention with the
workload of interest.

Measurement and Prediction 213

J E S 2

C I C S 1 A
BAT U G LY

J E S 2
C I C S 1 A
BAT U G LY

C o n t e n t i o n

N o n c o n t e n t i o n

C P U S T I PAG Q I O A I O C P W PAG C P W A I O Q I O C P U A I O M P L E N Q C P U C P W Q I OA I O

Contention Analysis of Job BATGOOD

Summary of Contention

Figure 9-2. Direct Contention Analysis.



Independent Vendor Offerings. Candle Corporation’s
OMEGAMON II for MVS includes a true contention analysis ca-
pability known as Impact Analysis. Impact Analysis, first made
available in Candle’s OMEGAMON for CICS, can produce
ranked reports of contention against single address spaces, per-
formance groups, or arbitrary workloads. The contention is at-
tributed to address spaces or performance groups. The latter can
be broken down to address spaces within performance groups.
The resources in contention can be displayed as well, with op-
tional detail down to device numbers (with volume serial num-
bers) or individual ENQueue names.

9.2.5. Change monitoring
Large computer systems are inherently stable with reproduc-
ible behavior. Unless something breaks or changes, a given
workload will run today as it did yesterday. To identify causes of
changed workload performance, some vendors offer tools that
capture change activity in the system.

If a sudden change in performance of a key workload is observed
from day to day or (typically) between a Friday and the follow-
ing Monday, it is very likely that something has changed in its
environment. Possibilities include:

• Hardware—a CPU or channel path may be offline, or stor-
age (central or expanded) may be different than it was at
the previous IPL. While this might have been a far-fetched
possibility in the past, a production partition in a logically
partitioned system (IBM’s PR/SM LPAR, HDS’s MLPF, or
Amdahl’s MDF) can be changed all too easily during “test
time” and not necessarily restored to normal before produc-
tion resumes.

• Software configuration—MVS system parameters may
have changed through IPL or operator action, JES initia-
tors may be in a different configuration than they should
be, or key data sets may have been moved or may have
gone to secondary allocation with a gap between extents
causing longer-than-usual SEEKs.

• Software—the possibilities are widespread.

• Application—the possibilities are even greater.
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• Volume—transaction volume may have changed suddenly
because of business changes not communicated to the data
center staff.

Not all of these changes are detected by commercial change
monitors. The available queries and reports should be exam-
ined, and the possibility of other changes should be considered
as well.

9.2.6. A balanced methodology
A performance analyst can find value in any of the tools de-
scribed above. A common pitfall to avoid is the Carpenter’s Fal-
lacy—if the only tool at hand is a hammer, every problem looks
like a nail. For a performance management methodology to be
complete, it must include a variety of tools to address each kind
of problem typically encountered:

• Undocumented or unexpected change: Before wasting
time going through a laborious process to determine the
cause of a sudden change in performance, first use any
means available to rule out a change in some factor that
could affect the workload’s computing environment.

• Resource exhaustion: Detecting resource exhaustion is
an essential complement to capacity management. This
condition is revealed by resource monitoring tools in con-
junction with statistical analysis and graphical trending
packages. Execution-state analysis tools can improve the
accuracy of capacity projections by breaking down the re-
sponse time (or elapsed time) trend for the workloads of
concern into resource usage and delay components.

• Mismanaged workloads: A workload performing poorly is
identified first by monitoring some measure of its service,
such as response time. When a service exception is detected,
execution-state data can then be used to determine the na-
ture of the delay. Dominant states like “waiting for CPU” or
“swapped by SRM—MPL” indicate that the workload might
be mistuned in the system, and that a tuning opportunity ex-
ists. Such a determination is best done using smoothed his-
torical data rather than real-time data. In the case of goal
mode, this kind of mismanagement is typified by an inappro-
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priately unfavorable goal or, in a constrained system, an im-
portance level that is too low.

• Chronic contention: Continuing the methodology above,
if the dominant state of the workload is one indicating con-
tention, such as “queued I/O” or “waiting for ENQueue,”
tuning may be of little benefit. Instead, the workload
should be monitored by a direct contention analyzer at pre-
viously characterized times of vulnerability. Once the con-
tending workload is identified, it should be easy to decide
how to eliminate or minimize the contention.

• Acute contention: Service analysis in real time can also
be used to trigger the investigation of contention. It is less
likely that system parameter errors will lead to a sudden
erosion of performance than that some other workload is
causing acute contention. For this reason, contention anal-
ysis is the technique of choice in the event of acute perfor-
mance degradation, with execution-state analysis a sec-
ondary tool.

Practical examples of problem solving based on using these
techniques and tools will be found in the last two chapters.

9.3. One Kind of Modeling

Modeling is a key tool of capacity planning. It is not widely used
in diagnosing or resolving system or workload performance
problems. Accordingly, a full discussion of modeling techniques
and tools is not included in this chapter. However, we will con-
sider an ad hoc approach to modeling DASD I/O, since it is very
simple to implement with a calculator or a spreadsheet pro-
gram, and can lead to useful insights about DASD performance
factors. Another simplified modeling approach, popularized by
Peter Denning and Jeffrey Buzen and used in several commer-
cial modeling products, is Operational Analysis, an algebraic
subset of queueing theory.3

An analytic model of a typical DASD I/O operation is relatively
easy to construct, given the published facts about devices and
their connections to systems, and measured data from perfor-
mance monitors. Unfortunately, two factors work against apply-
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ing this technique to the more sophisticated storage processor
subsystems that are so widely used today:

• performance numbers just don’t mean what they meant be-
fore. For instance, in a RAID 5 subsystem, a single I/O re-
quest may require data transfer to or from several differ-
ent devices. For a READ, some of those transfers may be
cached and others not cached.

• where data is readily measurable by the manufacturer, it
may not be released. An example is protocol times, which
tend to be the dominant component of I/O elapsed time in
high-performance subsystems.

Consequently, the devices shown in the model results are not
the most current. However, the techniques are described to a
level which will allow the reader to apply the model to any de-
vice for which the numbers are published or measurable.

The first step in constructing such a model is to decompose the
time span of the I/O operation into its component steps and to
assert or derive a formula describing each component. Such a
breakdown for a DASD READ or WRITE is shown in Figure 9-3.

When the formulæ include quasi-independent variables such as
path busy or device busy, or assumptions such as the choice of a
queueing model, the model should be evaluated for each mean-
ingful value of such parameters. Predictions of overall service
times or response times should then be checked or calibrated
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against actual experience and the model refined until it is valid
for significant cases.
A significant pitfall in DASD modeling is to assume that the num-
bers reported for device and path utilization for a single system
characterize the device or path, even though the device is shared
across multiple physical, logical, or virtual systems. Especially
when device queueing is to be calculated, only overall device utili-
zation (from all sharing systems) is an accurate input.
Let us assume that we will find a block size of 4096 bytes useful
for further analysis. We analyze a READ operation as follows.

9.3.1. T1, UCBBSY delay
MVS will not attempt an I/O operation if the device is already
known to be busy executing an I/O operation initiated by the
current system. This condition is indicated by the “on” condition
of a bit symbolically named UCBBSY in the device’s Unit Con-
trol Block (UCB, a logical resource that MVS uses to represent
the device). The operation is placed on a queue associated with
the UCB until the previous I/O is completed.
UCBBSY delay cannot be represented by a simple formula. It is
entirely dependent on the type, rate, and duration of the com-
peting I/O activity on the device. Most authors assume that the
competing I/O is independent of the operation being analyzed,
and that the device has an exponential distribution of service
times. These assumptions define an M/M/1 queueing model.
Using that model, the expected value of the queueing delay is

T =
S B
1-B1

d d

d

⋅

where
T1 is the name we assign to this component.
Sd is the expected value of device service time.
Bd is the mean device busy fraction of time.

The M/M/1 assumptions do not hold up if competing activity is
not independent, or if the service time distribution is more de-
terministic than an exponential distribution. Consider, for in-
stance, a case in which a data set is being copied, block by block,
to another data set on the same device. M/M/1 can be thrown out
because its assumption of independence does not apply. The de-
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lay can be calculated without resort to queueing theory and rep-
resents a worst-case example of synchronous delay.
As another exception to M/M/1, consider a dedicated paging vol-
ume responding only to single page faults. In this case, the
M/M/1 model is too pessimistic, since the device service times
are likely to be very consistent or deterministic, rather than ex-
ponentially distributed. In this case, another model, M/D/1, is
more appropriate, and yields half the queueing delay of M/M/1.

Algorithm: In the cases presented later in this chapter, M/D/1 is
used for the first two cases, representing near-idle and nominally
loaded devices, while M/M/1 is used for the remaining cases of heavy
loading and heavy loading with application-related perturbations.

9.3.2. T2, initial path delay
We continue to assume that the CPU time component of I/O ser-
vice time is negligible. The next opportunity for delay, after the
device itself is found not to be busy from the current system, co-
mes about when the selected path is busy as a result of another
I/O operation. In MVS/ESA (or MVS/XA), the START
SUBCHANNEL instruction always succeeds and the dynamic
channel subsystem hardware tries and retries all defined and
available paths until the I/O actually begins. When the
path-busy condition can be attributed to busy control units, the
queuing in XA takes place at the level of a logical control unit or
logical path, a symbolic entity managed by the channel subsystem.
This delay is known as pending (PEND) time in XA and ESA I/O
reports.
Initial delay due to device controller (head of string) contention
appears at this stage of the I/O operation, as does device delay
due to use by another system (shared DASD contention). Esti-
mating shared DASD delay requires knowledge of device activ-
ity due to all connected systems, and follows the same models as
T1 above.
However, since T2 is usually insignificant, other than for shared
DASD, it can be estimated according to a simple formula for sin-
gle-path devices:

T =
B S

22
p p⋅

where
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T2 is the name we assign to this component.

Bp is the fraction of time that the path is busy, interpreted
as a probability.

Sp is the expected value of a burst of path service time.

The probability-weighted service time burst is halved because
the current demand for service is random with respect to the
previous path activity. For a typical 3390 case, T2 is less than
half a millisecond.

With multiple paths, we have no simple estimator of the
path-busy probability like the single path-busy fraction. If we
regard Bp as a probability and the activity of multiple paths as
independent, we can raise Bp in the formula above to a power
representing the number of paths available for the I/O opera-
tion. It may be seen that T2 is negligible for an I/O device using
two or more paths.

Algorithm: The single-path formula is used for solid-state de-
vices. For the DASD examples, all of which have four-path con-
nections, the formula used is

T = .5 S B2
4⋅ ⋅p p

where Sp is the mean path service burst time and Bp is the mean
underlying or residual path utilization.

9.3.3. T3, initial CONNECT period (protocol)
Once the path is secured, CCWs specifying positioning actions
are transferred to the control unit and then to the device con-
troller for execution. During this time, path selection microcode
in the storage director and device controller is executed, and dy-
namic allegiances are created between the channel and the stor-
age director. The time used for all this intercommunication is
known as protocol time and varies from device to device, from
connection option to connection option, and even from microcode
level to microcode level, but is typically one-half to 3 millisec-
onds. Protocol time for some control units is divided into two
subcomponents, overlapped and unoverlapped. Unoverlapped
protocol requires connect time that becomes visible as part of
the device service time; overlapped protocol can be executed
during device disconnect time but does contribute to the
path-busy component.
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We assume overlapped protocol of 0.5 millisecond and
unoverlapped protocol of 1 millisecond for 9343s or 3990s con-
trolling uncached 3380s or 3390s. For cached 3380s and 3990s
the overlapped value rises to 1 ms. We use 0.5 ms each for
unoverlapped and overlapped protocol of solid-state devices.
The manufacturers of solid-state devices typically state an “ac-
cess time” of about 0.3 millisecond. This value is in addition to
protocol. We also use an access time of 0.1 millisecond for a miss,
and 0.5 millisecond for a hit in cache devices, the latter in addi-
tion to the base control unit protocol.

Algorithm: The foregoing protocol estimates are the author’s
alone, but they are based on published numbers for previous
generations of controllers modified by the expectation of im-
provement in microprocessor cycle times and bandwidths.

9.3.4. T4, disconnect for SEEK
When actuator motion is required, a SEEK CYLINDER device or-
der is executed. During the time of motion, only the device is ac-
tive, and the rest of the path is disconnected. (The allegiances
established at path selection are retained, so that additional
protocol time is not needed for the subsequent reconnect.) SEEK
times are published for each device, but again, they must be in-
terpreted according to the pattern of I/O activity in progress. For
example, reading a half-track-blocked unfragmented sequential
data set on a 3380 will require a repeated pattern of 30 no-move-
ment SEEKs followed by a one-cylinder seek. If another data set
is active on the device, however, this pattern will be broken up
by SEEKs between the active data areas.

Device Minimum Average Maximum Typical

3380xJx 2 ms 12 ms 21 ms 3.6 ms
3380xK4 2 16 29 4.8
3390-1 1.5 9.5 18 2.85
3390-2 1.5 12.5 23 3.75
3390-3 1.5 15 33 4.5
9345-x1x 1.5 10 16 3.0
9345-x2x 1.5 11 20 3.3
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Published “average SEEK” times represent seeking across
one-third of the cylinders on the device. However, IBM has pub-
lished measured results for typical application mixes, showing
that a 30 percent incidence of “average SEEKs” is a good approxi-
mation to the mixture of no-movement SEEKs, minimum SEEKs,
and average SEEKs experienced in those workloads. The table
shows minimum, maximum, average, and typical SEEK times for a
selection of IBM devices.
SEEK time is not present for fixed-head devices such as the IBM
2305, for solid-state devices such as the IBM RAMAC Electronic
Array, and for READ hits on cache devices. For READ misses, the
operation proceeds as for uncached DASD, with the details of
the particular hardware determining whether data transfer to
the channel is in parallel with cache staging or done as a subse-
quent operation.
Performance characteristics of WRITEs to cached devices are more
highly dependent on hardware variations. If the cache is managed
in the “store-in” manner, or if a separate integrity-write area of stor-
age (IBM calls this NVS for non-volatile storage) is provided, WRITE
hits are performed without a disconnect, followed by later asyn-
chronous updating of the backing store device. With “store-through”
cache management, the WRITE is not completed (the device remains
busy) until the DASD is updated. In most cache designs, WRITE
misses are equivalent to uncached WRITEs, but more responsive op-
tions are possible with nonvolatile buffering storage.
SEEK delay on DASD can be minimized with planning, and with
subsequent tuning actions (when justified) because of delay to a
key workload. For instance, several data sets required at the
same time should not be on the same device if good response
time is required. (We call this situation, when successive I/O to
the same device are a consequence of the placement of data sets
serving an application, synchronous contention.) In more com-
plex data structures, multiple areas of a direct access data set or
data base might be separated across volumes. Allocations of
space on DASD should be compact; frequent routine mainte-
nance using defragmentation utilities can hold down seeking
due to the use of multiple extents as data sets grow.
When numerous small, active data sets with a high
read-to-write ratio fill a high-capacity device, great benefit can
come from attaching that device to a cached control unit. SEEK
and latency delay is cut dramatically, and RPS miss is virtually
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eliminated if it would have been a significant time component in
the uncached configuration. As the price of memory declines, the
use of cache has become far more general, approaching the uni-
versal on newer subsystems.

9.3.5. T5, latency
Disk storage devices are not truly direct access or random ac-
cess. There is an element of sequential delay while waiting for
data on a track. The time spent waiting for the first byte of de-
sired data (in fact the count field preceding the target record) to
appear under the read head is called latency. Finding the correct
record is done with a combination of SEEK and SET SECTOR, de-
vice orders established by separate CCWs. In most current de-
vice and control unit combinations, both of these commands are
fetched together and communicated to the device as a combined
device order. With newer control units that support the ECKD
(Extended Count-Key-Data) set of commands, a combined oper-
ation called LOCATE RECORD may be used with the same effect.
With SEEK completed, latency begins. Plainly, the latency delay
ranges from zero to the time taken for a full rotation of the disk.
After the specified sector (circumferential or rotational position) is
at the heads, the path must be reestablished so that the record
may be located and the data transfer initiated. (The possible addi-
tional delays of the reconnect, also dependent on device rotation
time as one factor, are covered under T6 below.)
As may be seen in the modeled results, latency delay is usually
the largest component of device service time. Considerable engi-
neering investment has been made in an effort to minimize or
eliminate latency delay. The following table shows typical la-
tency numbers for devices that are commonly uncached. For
cached devices and newer integrated subsystems including the
various versions of RAMACs and EMC’s Symmetrix, latency is
reduced in two ways—through the near-universal use of cache
and through use of more advanced devices with ever-smaller di-
ameters and faster rotation times.

Device Rotation Time Nominal Latency

3380 (all) 16.56 ms 8.28 ms
3390-1,2,3 14.2 7.1

Measurement and Prediction 223



9345 (all) 11.2 5.6

An early engineering triumph over latency delay was achieved at
high cost on the now-obsolete IBM 2305-2. Latency was reduced by
use of a multiple requesting feature included with the device and its
IBM 2835 control unit. The device appeared to MVS as a cluster of
eight devices with successive addresses, and each such address or
exposure could be driven independently. If requests are independent
of each other (as for page-ins),4 I/O delay may be reduced because
the order of reconnect, and hence of I/O completion, is determined
by the circumferential order of the desired data on the disk surface.
An adaptation of the multiple exposure approach was used with the
IBM 3880 Model 11 cached paging subsystem (another obsolete de-
vice), permitting multiple requests to be sent to the subsystem and
letting hits be completed while misses were being serviced from the
backing DASD.
Solid-state and cache devices eliminate or reduce latency much
as they remove SEEK delay: No motion means no delay.

Algorithm: The simple half-rotation latency algorithm is used
for uncached DASD. It is multiplied by the complement of the hit
ratio for cached DASD, and is zero for solid-state.

9.3.6. T6, RPS miss (reconnect) delay
Disconnected Command Chaining (DCC) was introduced along
with block multiplexor channels and the IBM 2314 DASD in the
late ’60s. Its purpose was to increase the beneficial utilization of
scarce and expensive channels and control units by allowing the
active path elements to be freed while slow, device-specific oper-
ations could proceed on their own. SEEK was an obvious first
candidate.
The latency period, half a rotation on average, was a connected
operation; SEARCH requires the entire path from channel to de-
vice. When the SEARCH was satisfied, data transfer proceeded
with no further delay. Why, then, was an extension of DCC
needed? Remember that channels were expensive at that time
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page fault that requires a page-in from auxiliary storage is again unrelated to
its predecessor. There are just far fewer of them.



and that SEARCH required the channel. Suppose that the discon-
nect continued after the SEEK was completed, extending into a
device-specific simple operation to detect a particular angular
position. Reconnect could then take place, followed by a
much-reduced SEARCH (still required to establish orientation for
the following READ) and then the data transfer operation. The
new function Rotational Position Sensing (RPS) was introduced,
but along with it came an unwanted new phenomenon.
The saga of RPS and RPS miss thus began when DCC was ex-
tended to include not only SEEK, but latency as well. A new de-
vice order, SET SECTOR, was added to the channel programs of
standard access methods. The argument of the SET SECTOR or-
der was calculated so as to allow reconnect to take place a few
milliseconds before the data passed under the read/write head.
DCC for SEEK was unconditionally helpful. When the SEEK was
completed and the device was ready for reconnect, no further de-
lay was possible; the device waited patiently for the path, and
the subsequent SEARCH and data transfer were then executed.
In the case of the RPS reconnect, however, the timing was criti-
cal; a missed reconnect (for instance if the path was busy when
rconnect was attempted) meant that the next try could come
only after a full rotation of the device.
RPS did succeed in improving the effective data transfer rates of
channels and storage directors. Beneficial utilization went up;
overall usage went down. The price for the improvement, how-
ever, was the creation of a new kind of performance degradation.
If we make the queueing-theory leap of faith, that the average
path utilization (Up) over some interval is a good approximation to
the probability that the path will be busy at some time of interest,
we see that the probability of an RPS miss is equal to that utiliza-
tion, and that the magnitude of the miss is exactly one rotation pe-
riod. Subsequent misses are possible, with probabilities given by
successive powers of Up. This seems simple enough.
But it isn’t. The path utilization of interest is not the entire utili-
zation, but rather what Tom Beretvas calls residual path busy
(RPB)—path busy with the activity of the device being analyzed
discounted or removed. In the formulæ for RPS miss, Bp is in all
cases RPB, given by the formula

B =
U -U

1-Up
p d

d
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where Up is the path utilization and Ud is that part of the path
utilization due to the current device. It may be seen that RPB is
zero for a device on a dedicated path, reminding us that devices
on dedicated paths cannot experience RPS miss.
The formula for the simple case of RPS miss on a single path is thus

M =R (B +B +.. . )e d p p⋅ 2

where Me is the expected value of RPS miss, Rd is the device rota-
tion period, and Bp is residual path busy. In closed form, the for-
mula is precisely the M/M/1 queueing formula for delay in a
queue to a single server with exponentially distributed service
time Rd and utilization Bp:

M =
R B

1-Be
d p

p

⋅

In MVS/370, path elements could appear to be busier with respect
to a given device than indicated by overall utilizations; multiple
paths in MVS/370 improved availability at a cost in performance.
An effective path busy correction (increasing the apparent path uti-
lization to account for the performance loss caused by multiple
paths) was needed in addition to the residual path busy correction.
The net effect in MVS/370 was that RPS miss (a function of effec-
tive path utilization) became a source of significant I/O perfor-
mance degradation, and a prime problem to be solved in the pro-
cess of I/O performance analysis and tuning.
With Extended Architecture, the beginning of a solution was at
hand. First, the 3380, with dynamic pathing, was announced,
before the XA announcement. The 3380-AA4 was initially an-
nounced as a device that offered only Dynamic Path Selection.
This feature seemed at first (before XA) indistinguishable in
practice from String Switching, available on the IBM 3350 and a
source of performance degradation as the price of an improve-
ment in availability.
When XA was announced, the full dynamic pathing capability
was revealed, and the shrewd analysts who recommended
3380-A04s (without dynamic pathing) were considerably embar-
rassed. Dynamic Path Reconnect (the other part of dynamic
pathing) exploited two paths at first, cutting RPS miss drasti-
cally. (The probability of the first miss was now roughly compa-
rable to that of the second miss in MVS/370.) With the 3990 con-
trol units and attached 3390s or 3380 J and K models, four
paths are supported, nearly eliminating RPS miss at moderate

226 MVS Performance Management



path utilizations. Four-path operation also is supported on the
downsized and lower-priced IBM 9345 DASD with the 9343-C04
or -D04 Storage Controller, and on all of the more recent devices
including the entire RAMAC family.
Contemporaneous developments also reduced the magnitude of
the RPS miss problem. Devices that do not disconnect from the
path have no reconnect problems; solid-state devices, and cache
devices encountering hits, do not disconnect. Channels are now
relatively cheap, fast, and abundant, so there is less need to
multiplex on individual channels. With the 3990 or the inte-
grated control unit of the 9340 or the RAMAC subsystem, indi-
vidual control units are less expensive as well. Four-path logical
control units (LCUs) reduce RPS miss to insignificance, and a
new generation of DASD and control units can now use local
storage to complete the job.
As we view the rise and fall of RPS miss, we might wonder: Is RPS
needed any more? Are average channel utilizations now low
enough and four-path connections now common enough to render
connected SEARCHes a nonproblem? Can further improvements in
outboard intelligence render connected SEARCHes unnecessary?
Can a device (and possibly its head of string) handle a new kind of
SEARCH and data transfer without rotational delay beyond nomi-
nal latency? Can read-head buffering eliminate some part of la-
tency as well? On the other hand, does the growing use of cache
control units and four-path connections provide another way to
render RPS miss a curiosity of the past?
If the next generation is one that avoids RPS miss, its initial
device was Storage Technology Corporation’s 8380RQ, a
3380-class device with actuator-level buffering (ALB™). The
device featured a single track-size buffer which started to fill
as soon as SEEK was complete. Latency was the only rotational
delay. SET SECTOR took on the character of SEEK: the device
waited for the first time the path was available, then data
transfer proceeded without need for synchronization. Because
the buffer was limited to a single track, multitrack operations
(as for block paging) could suffer a second latency delay, or the
microcode might have suppressed buffering for multitrack op-
erations. A second track buffer could have made sequential ex-
change buffering possible.
Track buffering was good, but buffer storage in the control unit
is better. The ALB device was still limited to synchronous data
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transfer after the first track. With a local buffer in the control
unit, the IBM 3990 and 9343 controllers finally allowed the data
to wait for the path. The buffer storage is not cache. It is man-
aged on a simple LRU basis and yields several benefits:

• it eliminates RPS miss by allowing immediate data trans-
fer from device to the buffer regardless of whether the
channel is busy

• it allows data transfer from the device to the control unit to
proceed independently of data transfer from control unit to
channel

• it allows data transfer to the channel at the full data rate
supported by the channel and control unit regardless of the
device speed

These characteristics, as well as some command sequence and
protocol considerations, define nonsynchronous DASD. The
nonsynchronous attribute has become a standard part of de-
vices since its first appearance.

Algorithm: The definitive model for a process such as RPS
miss in a four-path environment is the computationally
complex M/M/4 queueing model. A slightly more pessimistic
but much simpler representation is available with the as-
sumption that mean path utilization (always adjusted as re-
sidual path busy) is a probability of finding the path busy,
and that the probabilities associated with each of the four
paths are independent. With this assumption, the simple
formula is

T =(1-H) R B6
4⋅ ⋅d p

where H is the cache hit ratio (zero for uncached cases), Rd is the
device rotation time, and Bp is the mean residual path busy for
the four paths.
However, for the devices and control units that might now be
considered current the discussion is irrelevant. RPS miss is
gone, and we can drop it from the model. T6 is so close to zero
that we ignore it in each case we consider.

9.3.7. T7, SEARCH and data transfer
Once reconnect is achieved, the remainder of the I/O opera-
tion is dependent only on the physical characteristics of the
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device. For solid-state devices and for cache READ hits, a mini-
mal access delay is followed by data transfer at the rated de-
vice-to-channel speed. Thus our 4096-byte transfer will take
1.37 milliseconds at 3 megabytes per second or 0.91 millisec-
ond at 4.5 megabytes per second. For ESCON channels trans-
ferring data at the original 10 MB/s rate or the enhanced 17
MB/s rate, the data transfer is 0.41 ms or 0.24 ms, respec-
tively. Access delay is already included in the protocol delay
(T3).

Algorithm: On “real” DASD, SEARCH time must be added. If we
note that ten 4096-byte records can be contained on a 3380
track, it seems right simply to assume that finding and transfer-
ring one of them takes no more than one-tenth of a device rota-
tion period, or 1.66 milliseconds. The SEARCH time is absorbed
in this approximation. Similarly, for 3390s, which can contain 12
4K records per track, the 14.2-ms rotation time is divided by 12,
giving a page transfer time of 1.18 milliseconds. For 9345s, the
computation is 11.2 ms (rotation) divided by 10 records per
track, giving 1.12 ms per page.
For solid-state devices and cache hits, the computation is more
direct, as noted above.

9.3.8. Analysis of modeling results
We’ll now examine the results of putting together the compo-
nents of DASD I/O response time under various conditions of ac-
tivity, overhead, and interference.
To define a case for modeling, it is necessary to assume a target
level for both device and path utilization. Usually one of these
elements (most frequently the path) will require assuming an
underlying utilization level in order to reach the target. If the
model is being used to analyze a real system, measurement data
can supply precise starting values.
The modeled quantities T2 through T7, and finally T1, are then
calculated and accumulated to arrive at estimated response
times. Throughput values and effective data transfer rates can
then be computed.
Several cases of single-page (4096 bytes) READs on various de-
vices in MVS/ESA environments are examined below. XA envi-
ronments are equivalent to ESA in this context.
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The first case represents best-case performance. No competing
device activity is assumed, and the entire path to the device is
assumed to be only 10 percent busy from other devices. Al-
though not necessary to this case, all devices except solid-state
are assumed to have four-path connections. (No I/O rate ap-
pears in Case 1; these are response times for isolated I/Os on
idle devices.)
Let’s examine these results more closely to understand the con-
tribution of each component to response time. Figure 9-4 shows
those components for a selection of devices and modes.
Note that SEEK and latency predominate for uncached DASD,
while protocol and the combination of SEARCH and data trans-
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fer are the main components for cached devices, and are the
only components for solid-state devices.
The conditions in the “Notes” column apply as well to the corre-
sponding lines in each of the other cases.

Case 1—Unconstrained Device Performance

Device Director Response
Time

Notes

3380J 3990-2 14.9 ms 4-path base case

3380K 3990-2 16.5 Longer SEEK time

3380K 3990-3 3.9 90% hit ratio

9345-B12 9343-C04 11.0

9345-B22 9343-D04 11.3

3390-1 3990-2 12.2

3390-1 3990-3 1.8 95% hit ratio, 17 MB/s ESCON

3390-2 3990-2 13.1

3390-2 3990-3 2.5 90% hit ratio

3390-3 3990-2 13.9

3390-3 3990-3 3.2 85% hit ratio

SSD n/a 2.2 3 MB/s

SSD n/a 1.8 4.5 MB/s

The second case represents “normal” device and path loading
according to commonly accepted rules of thumb. Because we
are assuming uniform block size and minimal seeking, it is
appropriate to use the M/D/1 queueing formula to estimate
device queueing delay. Device utilization is held to the
rule-of-thumb limit of 30 percent. Total path utilization is
held to the common System/370 guideline of 30 percent. Path
utilization for cache and solid-state devices is 50 percent. All
uncached DASD cases assume four-path operation.
We won’t take a detailed look at Case 2, since the same effects
are present in exaggerated form in Case 3.
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Case 2—Moderately Loaded Devices
Device Director I/O Rate RT Data Rate

3380J 3990-2 21.4 /sec 17.1 ms 88 KB/sec
3380K 3990-3 90.4 4.0 370
9345-B12 9343-C04 29.3 12.4 120
9345-B22 9343-D04 28.5 12.8 117
3390-1 3990-2 26.0 14.0 106
3390-1 3990-3 166.6 2.2 683
3390-2 3990-2 24.1 15.1 99
3390-2 3990-3 123.5 3.0 506
3390-3 3990-2 22.7 16.0 93
3390-3 3990-3 96.0 3.8 393
SSD (3.0) n/a 129.1 2.8 529
SSD (4.5) n/a 163.6 2.2 670

The next case represents heavier loading of devices and paths.
We assume the devices to be 50 percent utilized, but with expo-
nentially distributed arrival rates and service times. M/M/1
queueing is thus assumed. Total path utilization is assumed to
be 40 percent for DASD and 80 percent for cache and solid-state
devices.

Case 3—Heavily Loaded Devices
Device Director I/O Rate RT Data Rate

3380J 3990-2 35.6 28.1 146
3380K 3990-3 140.8 7.1 577
9345-B12 9343-C04 48.9 20.5 200
9345-B22 9343-D04 47.5 21.1 194
3390-1 3990-2 42.9 23.3 176
3390-1 3990-3 255.0 3.9 1044
3390-2 3990-2 39.9 25.1 163
3390-2 3990-3 193.3 5.2 792
3390-3 3990-2 37.6 26.6 154
3390-3 3990-3 138.7 7.2 568
SSD (3.0) n/a 201.4 5.0 825
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Case 3—Heavily Loaded Devices
Device Director I/O Rate RT Data Rate

SSD (4.5) n/a 256.1 3.9 1049

Let’s see now how the details have changed compared with
those of Case 1. Figure 9-5 shows the component breakdown of
device response time under heavy load.
Device queueing (T1) has become the largest component, equal to

all the other constituents of response time. Even under these
load conditions, cached DASD (even with a relatively low 85 per-
cent READ hit ratio) and solid-state devices deliver response
times of less than 10 milliseconds.

In the three preceding examples, we see the expected progression of
degradation with increasing I/O rate and throughput. However, it’s
not a great illumination. From unloaded to heavily loaded, response
time more or less doubles, mostly due to queueing. As we drive the
devices into heavier loads yet, we can expect to see yet another dou-
bling of response time when utilization approaches 75 percent.
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But everyone has seen much worse performance than that. Are
the modeled results wrong?

No, but the cases are incomplete. We need to add two more cases,
reflecting the susceptibility of uncached DASD to “arm stealing”
and the susceptibility of all the modeled devices to contention
from workloads on other systems. The first additional case as-
sumes that 80 percent of I/Os are corrupted by the addition of an
extra “average” SEEK, typical of experience where a single data
set is split across discontiguous extents, or when an application
incurs “synchronous delay” because of placement of multiple
data sets on a volume. Note that solid-state devices are com-
pletely unaffected by this scenario and that cached DASD with
high hit ratios are only slightly affected.

Case 4—Heavily Loaded plus Synchronous Delay
Device Director I/O Rate RT Data Rate

3380J 3990-2 23.5 /s 42.5 ms 96 KB/s
3380K 3990-2 19.6 51.2 80
3380K 3990-3 98.9 10.1 405
9345-B12 9343-C04 30.6 32.7 125
9345-B22 9343-D04 29.1 34.4 119
3390-1 3990-2 28.6 34.9 117
3390-1 3990-3 179.2 5.6 734
3390-2 3990-2 24.9 40.1 102
3390-2 3990-3 129.4 7.7 530
3390-3 3990-2 22.5 44.4 92
3390-3 3990-3 97.5 10.3 399
SSD n/a 201.4 5.0 825
SSD n/a 256.1 3.9 1049

In the final case, we add to our scenario the type of perturbation
experienced frequently when DASD is shared between systems.
Shared DASD contention once was dominated by device RE-
SERVEs: The device was tied up by the other system for a relatively
long duration. The increasing use of GRS and functionally similar
packages has diminished the number and duration of RESERVEs
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dramatically, but active I/O from a busier source of I/O requests
can cause numerous periods of elongated PEND time; the system
without an active channel program must wait for the one that has
the device. If the I/O from the other system is of long duration
(such as a search of a partitioned data set directory), the delay can
be just as disruptive as RESERVE delay used to be.
In this case, we assume that one I/O per thousand must wait for 10
additional seconds as a result of shared DASD bursts of activity. If
this duration of disruption seems excessive, just think of it as a
1-second delay 10 times as often. The averages will be the same,
but the variability will be reduced by a factor of 10.

Case 5—Case 4 plus Shared DASD Contention
Device Director I/O Rate RT Data Rate

3380J 3990-2 16.0 /s 62.6 ms 65 KB/s
3380K 3990-2 14.1 71.2 58
3380K 3990-3 31.3 32.0 128
9345-B12 9343-C04 19.0 52.7 78
9345-B22 9343-D04 18.4 54.4 75
3390-1 3990-2 18.2 54.9 75
3390-1 3990-3 39.6 25.3 162
3390-2 3990-2 16.6 60.1 68
3390-2 3990-3 36.5 27.4 150
3390-3 3990-2 15.5 64.4 64
3390-3 3990-3 33.5 29.9 137
SSD n/a 40.6 24.7 166
SSD n/a 42.2 23.7 173

Note the uniformly hideous response times and diminished
throughput, even for solid-state or cached devices which are oth-
erwise resistant to increasingly stringent I/O activity. The sta-
tistics in the tables do not reflect the true nature of the shared
DASD contention problem. It is not the degraded average re-
sponse time that is so troublesome; it is its variability that
translates to poor application service.

9.3.9. Conclusions from modeling
A few observations can be made from these modeled results:
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• Cache and solid-state devices suffer far less response-time
degradation with increasing load than do pure DASD, even
with much higher I/O loads.

• Buffered data transfer, characteristic of nonsynchronous
DASD, helps to stabilize response times under heavy load,
even without caching.

9.4. Summary of Measurement and Modeling

A key need in understanding and implementing MVS perfor-
mance management is to be familiar with readily available tools
for measuring all aspects of system and workload performance.
Whichever tools are at hand are often used only occasionally,
when acute problems occur. In the confrontational environment
often encountered by performance analysts, learning a tool “un-
der the gun” is not a good career choice.

If service level targets are agreed upon by data center and user
management, measurement to those targets is the first necessary
step. (The importance of service targets cannot be overemphasized.
If you’re aiming at nothing, that’s what you’ll hit.) While the tar-
gets are being met, using an historical execution-state analysis
tool can help the analyst understand impending constraints and
assist in refining capacity projections to the extent of determining
when CPU or storage upgrades are needed.

When targets cease to be met consistently, the type of incident
determines the time span of the tool to be used. A gradual and
consistent erosion is usually best analyzed with an historical
tool. Sudden loss of a target, on the other hand, should be diag-
nosed with a real-time monitor. (Such a sudden change in per-
formance should be examined with a change monitor as well. A
system or application does not wake up and call in sick. If per-
formance changes, something has changed in some other factor:
hardware, system software, application software, volume, sys-
tem parameters, etc.)

Modeling is usually used to aid in capacity planning. An ad hoc
form of analytic modeling can be used to make performance pre-
dictions or choices, or to analyze DASD performance when
DASD represents a significant bottleneck.
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9.5. Chapter Questions
1. Review the use of measurement and monitoring tools in

your installation. Do you have appropriate tools to deal
with each class of problem examined in this chapter?

2. Describe the steps you would follow to determine the cause
of a sudden loss of performance in the most important
workload in your system. How would the availability of
other tools aid in your diagnosis?

3. Do you make regular use of the tools you have? If not, are
you planning to learn how to use the tools in a prob-
lem-solving context?

4. Examine RMF device activity and related reports for repre-
sentative DASD in your system. Can you find the data (in
the device, LCU, and channel reports) to follow the compos-
ite modeling methodology in this chapter? Plug in the num-
bers and examine the results. Do the modeled service times
and response times match the measured ones?

5. For devices not tracking to the model, determine what fac-
tors might contribute to the anomalies. (Hint: Look at
shared DASD contention.)
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Chapter

10
Solving Performance Problems

So far, we have examined MVS’s resources and the factors that
affect the performance of workloads. In the previous chapter we
looked at ways to monitor resources and workloads and to model
the behavior of conventional DASD I/O. We thus have the means
to identify service problems. In this chapter we will consider
ways to anticipate and prevent performance problems, and de-
fine further the steps that may be taken to solve problems found
by monitoring.

10.1. Lost Opportunities

At many installations, MVS is received and installed in
preconfigured offerings. These have been known by such names
as IPO, MVS Express, CBDPO, and CBIPO. The newer service
or system replacement offerings from OS/390 (preconfigured
CD-ROM for R/390 and P/390 systems, ServerPac, and CBDPO)
continue in the same vein. While these offerings simplify greatly
the process of installing MVS and keeping it current, they nec-
essarily bring with them a highly constrained hardware envi-
ronment. Getting MVS “up and running” is reduced to restoring
two or three DASD volumes and then IPLing from one of them.
Those volumes include all of the MVS parameter, procedure, and
load libraries; JES SPOOL space and the JES2 CHKPT data
set; page data sets; SYS1.LOGREC; and SMF data sets.
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In a new MVS system, proving the viability and basic function-
ality of the system and merging applications with it are activi-
ties that correctly receive higher priority than adjusting the sys-
tem for good performance. It is easy to take the position that ad-
justments can wait until the workload has built up and the first
problems appear.
IBM is not responsible for early inattention to performance
management. Spelled out in the online and printed documenta-
tion for IPO and its successors including OS/390 are explicit and
frequent admonitions to distribute the key system and subsys-
tem data sets across multiple paths and volumes. The harried
system programmer, however, remains too busy with functional
issues to be concerned with reading such publications, let alone
responding to their prescriptions. In practice, therefore, perfor-
mance problems tend to appear as the production workload is
applied.

10.1.1. A typical scenario
Consider the appearance and evolution of “paging problems” in
a typical mixed-workload new MVS/ESA system that has no ex-
panded storage, running in Workload Manager compatibility
mode. There is a gradual build-up of TSO users and the batch
jobs that they submit. At the same time, more and more users
log on to CICS and soon produce a significant transaction rate.
What happens all too frequently is that at some time during the
build-up, CICS response time starts suffering and TSO users be-
gin to experience intermittent long delays.
What’s happening is that MVS’s default real storage manage-
ment strategy is being allowed to run without installation-spe-
cific control. That strategy has these elements:

• As the multiprogramming level (MPL) increases, the work-
ing set of active address spaces (initially just the aggregate
of allocated frames) increases, depleting the available
frame queue (AFQ). When the AFQ goes below 150 frames,
page stealing commences.

• MPL will increase until any one of these defaults is
crossed: The average system-wide high UIC becomes less
than 4, the CPU is fully utilized and at least one address
space has not been dispatched during an SRM RM2 inter-
val, 82 percent of central storage with real address below
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16 megabytes is fixed, or 66 percent of all central storage is
fixed.

• Another influence leading to depletion of the AFQ is MVS’s
moderate default bias in favor of logical swapping. TSO us-
ers idle for up to five seconds will be logically swapped.
Even though the AFQ may be empty, logically swapped ad-
dress spaces will not become eligible for physical swaps un-
til a logical swap duration exceeds the system think time,
plus a release-dependent “grace period.”1

• Similarly, MPL will not be reduced until the system-wide
high UIC is less than 2, or 88 percent of central storage
with real address below 16 megabytes is fixed, or 72 per-
cent of all central storage is fixed.

• Address spaces (other than TSO users in a rapid succes-
sion of trivial transactions) will be subject to delay from
page fault processing, caused by subsequent reference to
pages previously stolen.

What’s wrong here? Nothing! MVS is acting correctly in accor-
dance with the low-level, resource-oriented view of compatibil-
ity mode, and is doing exactly what its default parameters tell it
to do. There are two complementary mechanisms to control the
available frame queue. The micro-level control, page stealing,
operates without the need for direction and is always active.
Macro-level control is done by MPL adjustment. However, the
MPL adjustment mechanism is to all intents and purposes crip-
pled by default. More precisely, it is not responsive to any con-
trol variable related directly to real storage constraint. Com-
pounding the potential for problems, the default control of logi-
cal swap eligibility is strongly influenced only by UIC (if less
than 30) and only weakly controlled by the amount of storage al-
ready allocated.

As pointed out in Appendix B, RCCPTRT is the OPT parameter
most appropriate for MPL adjustment, but it is shipped dis-
abled. Simply beginning to use this parameter can overcome
most initial “paging problems.” In this chapter we’ll describe
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setup activities that should prevent these kinds of avoidable
performance problems.
Note that with expanded storage, the system is much more ca-
pable of defending itself from paging delay. However, there are
still default pitfalls: pages of address spaces with different im-
portance to the installation go to expanded storage without pri-
ority differences, and expanded storage can be depleted leading
to unpredictable and disruptive periods of migration. Paging de-
lay then hits the system “out of nowhere,” affecting all work-
loads as pages move from expanded into central and then back
out to auxiliary storage. The effect of central storage depletion is
an increased page movement rate to and from expanded storage.
The symptom of such an increase, even without increased pag-
ing to and from auxiliary storage, is an increase in unproductive
CPU utilization. This increase in turn triggers the Working Set
Manager of the SRM to take action against specific address
spaces to hold down the paging rate or make more effective use
of central storage.
The foregoing horror story recitation should help to strengthen
the commitment of anybody with doubts about the worth of go-
ing to goal mode. All of these considerations and pitfalls about
managing paging and MPL vanish in goal mode; all goal mode
needs is an approximately correct service policy and adequate
storage and paging configurations.

10.1.2. Consequences of neglect
While it is possible to recover after the fact from most perfor-
mance problems, being constantly in “react mode” takes its toll.
For most performance anomalies, the threshold of notice is
much lower for the direct users of the system than it is for those
managing it. As response time of a key workload becomes occa-
sionally unacceptable and then consistently substandard, there
will already have been a flow of complaints from the most aware
(and probably the best informed) of the users. If the data center
staff is doing nothing to monitor the quality and consistency of
delivered service, the complaints come as a surprise, and the
credibility of both those reporting the problem and those ac-
cused of causing it comes into question.
As the complaints mount, they will tend to be escalated to
higher levels of management. In many cases, the ego-involve-
ment and ad hominem character of the dialogue worsens until
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issues reach executive levels. Only then might a decision be
made to conduct an “objective” investigation and create a plan to
solve the current problem. The task force (the formation of
which is a very likely development) may call in a consultant or
rely on the hardware vendor’s marketing support staff for ad-
vice. There is little doubt that money will be spent, and that the
data center staff will have a solution imposed on them that fur-
ther attacks their credibility.

It doesn’t have to be this way. The critical failing that led to this
sorry sequence of events was failure to monitor delivered service
for quality and consistency. In many installations, more is spent
on resource usage accounting systems that capture usage data
and apportion costs to the users than on performance monitors
and staff to ensure consistent user satisfaction.

In an installation where customer2 satisfaction is a genuine
goal, the cost of tools to measure, track, and report on service
and to help solve problems rapidly is paid willingly. In turn, the
cost of such tools is more than paid back by eliminating the ad
hoc emergency measures put together for dealing with problems
that are ignored until they have escalated.

At the risk of belaboring the obvious, the ugly scenario is
much less likely to occur if Workload Manager goal mode is
operational on all the MVS systems with significant busi-
ness-critical workloads.

10.1.3. A better way
With a proactive attitude regarding performance management,
a data center staff can expect a cooperative relationship with its
customers, rather than the all-too-frequent adversarial one.
When the data center and those it serves agree on the volume of
demand, on performance targets, on the methods of measure-
ment and reporting, and on the quality of service shown by those
measurements, the benefits can be considerable. The data cen-
ter staff gains a reserve of credibility and can use that credibil-
ity to obtain well-thought-out business volume planning infor-
mation. The resulting data center capacity plans and their em-
bodiment in hardware come far closer to what is optimal for the
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business than plans developed in a grudging atmosphere of mu-
tual distrust.

10.1.4. Picking up the pieces
Although it is more difficult to repair a reputation than to build
one in the first place, such a step is essential when organizing
the performance management function in an installation that
has not had one in the past. Where there is not sufficient mutual
trust to elicit agreement on service targets, the repair process
may take even longer. A strategy that has worked is for the data
center staff to begin publishing (to management in general)
frank reports of the data center’s own targets and attainment of
those targets. After a few months of such unilateral perfor-
mance reporting, the results take on the character of de facto
service targets. When the customers begin holding the data cen-
ter to its own published targets rather than to some vague and
subjective measure of acceptable service, the barriers begin to
come down. In a goal mode environment, this process is akin to
operating at first with something like Cheryl Watson’s
Quickstart Service Policy, where the goals are set arbitrarily by
the data center staff—at first.
The fragile measure of trust built after some time in this remedial
mode must be reinforced by a consistent orientation to providing
acceptable service and accepting, and being responsive to, every
objectively provable complaint from a customer. By now it should
be obvious that monitoring and measuring with the appropriate
tools is an indispensable part of such a program.

10.1.5. How problems arise
Computing systems, especially MVS systems, are generally sta-
ble and determinate. Hardware components rarely fail, and the
system’s hardware behavior is unlikely to change without ap-
parent cause. Somewhat more often, an MVS system software
component goes wrong, based on an exceptional input or a rare
combination of values. Operating system defects usually lead to
ABENDs rather than to performance anomalies. Similarly, sub-
system and application program defects usually lead to func-
tional failures.
How, then, do performance problems arise? If not random fac-
tors or out-of-the-way program bugs, what will cause a produc-
tion job to complete within 25 minutes on Tuesday just as it did
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the thirty previous runs, and then take 2 hours to complete on
Wednesday? Why should TSO trivial response time, previously
stable at half a second, increase to 2 seconds some Monday
morning?
The answer is usually unremarkable: Something has changed.
Perhaps it was the workload. However, the operations produc-
tion control staff will know if there is an exceptional increase in
volume for a key application, and an unplanned sudden increase
in the number of logged-on TSO users is hardly likely.

What Changed?
If we can rule out workload change or random influence as the
likely cause of a performance problem, we must conclude that
something changed in hardware, software, operating system pa-
rameters, or the operating environment of the affected workload.
Most installations have more or less structured change manage-
ment systems. Such systems tend to concentrate on keeping track
of change plans based on what people say, and do not include a
means of verifying that an asserted change really occurred.
Access control systems such as IBM’s RACF and Computer As-
sociates’ Top Secret and ACF2, with logging options active, can
keep track of access for update to key data sets. However, they
do not intervene in hardware changes, nor can most systems
bear the overhead of their logging accesses to all potentially
troublesome data sets.
A change monitor may provide additional valuable information.
These programs record and detect status and change informa-
tion about various hardware, operating system, and data set ele-
ments, enabling them to subsequently report on what changed
within a time frame.
The combination of change management systems, access control
systems, and change monitors can provide the information
needed to identify the factors that cause performance changes.

10.2. Configuring for Performance
The proactive approach to performance management begins
with configuring the hardware and its workloads. Stability de-
pends on being sure that unplanned changes or unforeseen con-
sequences of planned changes can be identified rapidly using
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the approaches suggested above. The following topics spell out
other actions to be taken in advance of problems appearing.

10.2.1. Complementary workloads
One of the common mistakes made in setting up MVS systems is
to assume that different kinds of workloads together on one sys-
tem will inevitably interfere with each other. In the interest of
preventing such interference, some choose to set up one-dimen-
sional systems with, for instance, one or more systems running
only a CICS workload and all TSO on another system.

If the CICS-only system is also production-only, it’s difficult to
derive full benefit from the CPU resource. CICS internal
queueing will cause considerable delay to transactions ranking
low on CICS’s internal dispatching queue, at the level of about
70 percent uniprocessor utilization. If the system is a
multiprocessor, a highly subdivided CICS MRO system is
needed in order to take full advantage of all processors.

Suppose, however, that we had loaded the system with CICS to a
level of 60 percent CPU utilization (representing CICS and
MVS overhead, monitors, and necessary supporting subsys-
tems), then added batch to fully load the CPU. If the batch is
well behaved (that is, if it does not make unusual demands for
real storage, perform inefficient I/O, or interfere with CICS’s I/O
devices or ENQueue names), CICS performance should be close
to what it could be in a one-dimensional system loaded to about
70 percent CPU utilization.

If there is a clear hierarchy of importance and time urgency in
the overall array of MVS work in a data center, it should be pos-
sible to load each system to a level just short of that at which in-
ternal queueing causes perceptible delay in the highest-urgency
workload, then to bring the system up to nearly 100 percent uti-
lization with low-urgency work. When doing this, it is important
to recognize contention possibilities, taking steps to avoid inher-
ent contention in advance and monitoring key workloads’ per-
formance to detect operational contention.

A contention pitfall, related to the idea of setting up one-dimen-
sional systems, is the belief that a development subsystem
should be isolated from its corresponding production subsystem
to the extent of placing each on its own system or LPAR. While
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there can be justification for such separation based on integrity
considerations, there is often a severe performance penalty.
If the entire production environment were duplicated on the
secondary system, there would be little potential for interfer-
ence. In practice, however, some libraries are left on the produc-
tion system, with shared access from the development system.
Since the purpose of the development system is to bring about
change in the production environment, it is almost inevitable
that library updates can tie up production libraries. Even if the
production libraries themselves are not updated, updates on the
same volume can cause performance degradation due to exces-
sive SEEK activity as well as periods of RESERVE delay during
updates of volume-specific information. If, on the other hand,
production and development run on the same system, mem-
ber-level updates are much less disruptive, and the impact of de-
velopment I/O activity is much easier to measure and deal with.
Once again, if workloads are split across systems, make sure the
split is as complete as possible.
Relief for such contention problems is much more easily
achieved if the systems are configured in a parallel sysplex. As
the remaining access methods become enabled for data sharing,
fewer instances of one system delaying another will be likely.

10.2.2. How much real storage?
With Gary King’s Workload Characterization and Processor
Storage Estimation methodology available in various forms
from IBM, SHARE, GUIDE, and CMG,3 there is enough guid-
ance on establishing a correct real storage configuration. King’s
methodology is clear and simple, and should be used routinely to
check and track workloads against configurations.
The essence of King’s approach is a combination of measure-
ment, engineering analysis, and economic analysis. RMF mea-
surements supply workload-specific values for various catego-
ries of storage use. For measurement accuracy and repeatability,
central storage in each system must be placed in a slight state of
constraint to ensure that page stealing works to keep measured
frame counts close to true working sets. The measured results
supply the intermediate points on a series of graphs that depict
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a miss-ratio or hit-ratio curve for each storage use category. Ex-
treme values are based on “all or none” assumptions for storage
availability.

King then asks the reader to choose the degree of I/O avoidance
desired for each category, suggesting that goodness lies on the
flat (near-horizontal) part of the curve in each case. Based on
such a choice, he goes on to build up a table of required processor
storage for categories including the system, subsystem address
spaces, active address spaces, idle address spaces, load libraries,
and data sets. Summing across the table and adding a safety
factor leads to a total of required processor storage to accommo-
date the current or planned workload. The final choice in King’s
process is to select the balance between central and expanded
storage based on economic considerations, trading a cost incre-
ment against the CPU time needed to move pages.4

One way of looking at central storage without expanded storage
is simple: There should be enough real storage to allow the CPU
to become fully utilized with acceptably low paging delay in all
key workloads. When expanded storage is available, the criteria
are a bit more complex:

• The total amount of central and expanded storage should
be sufficient to allow all processors to become fully utilized
with the desired workload distribution, with little or no
page migration to auxiliary storage. Sufficient central stor-
age should be installed (or configured, in a logically parti-
tioned system) to keep the swapping initiated by the
Working Set Manager from reaching any workload having
marginal performance against its target.

• To exploit the I/O avoidance capabilities of an MVS/ESA
system, the amount of expanded storage should be suffi-
cient to accommodate all current and projected needs for
ESO (expanded-storage-only) hiperspaces, in addition to
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the amount needed as above to prevent unacceptably high
page migration. When pages of ESO hiperspaces can be
cast out, “enough” means enough expanded storage so that
the I/O time required to replace cast-out pages does not
threaten service targets.

• For TSO and batch workloads, in which many or most
(TSO) address spaces are idle at any given time, relatively
less central storage and more expanded storage are
needed. Nonswappable subsystem workloads such as CICS
have in the past derived little direct benefit from expanded
storage other than the reduction of paging delay. In
MVS/ESA, placing VSAM buffers and data tables in
hiperspace, and using LLA and other VLF data spaces can
provide substantial indirect benefits from expanded stor-
age. CICS/ESA (CICS since Version 3) exploits further the
ESA environment.

When PR/SM, MLPF, or MDF is active, each logical partition or
MDF domain must have adequate real storage, particularly cen-
tral storage. Even if storage could be reallocated dynamically
down to the level of a single megabyte (as it can be on some
ES/9000s and newer 9672 models with PR/SM), there must be
enough to satisfy the peak demand with some reserve available
to support reconfiguration. One benefit of multiple-image op-
tions is that any system image may have precisely the amount
of storage it needs at the moment. A corollary is that the overall
system should always be somewhat overconfigured for storage
in order to be responsive to changes in workload needs.

There is no damage done if real storage is slightly in excess of
these needs, and there is a loss of apparent CPU capacity if
there is insufficient real storage. It would be prudent always to
round both central and expanded storage estimates to the next
higher optional increment size.

Yet another view of storage need is based on the ratio of “mega-
bytes to MIPS.” In past days, having 3 megabytes of real storage
per MIPS was a common guideline. When the IBM 3084-QX
with 128 megabytes became available, the ratio could go up as
high as 7 to 1. A 3090-200 was about as powerful as a 3084-QX,
so 128 megabytes would seem to have been a normal real stor-
age configuration for a Model 200. The only problem was that
the original 3090-200 came with only 64 megabytes of central
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storage, so expanded storage had to be added to ensure the best
opportunity to load the CPU. Central-storage-intensive work-
loads such as CICS caused high page movement rates on such
systems. That problem was not solved until central storage sizes
were increased on the 3090 E models, and increased further in
succeeding generations.

10.2.3. Paging subsystem without expanded storage
In an MVS system without expanded storage, the paging sub-
system must have sufficient capacity and responsiveness to
avoid becoming a system bottleneck and thus keeping work-
loads from meeting their service targets. Capacity and respon-
siveness are interrelated. Depending on loading and
model-to-model variations, 3390 paging devices can deliver sin-
gle-page response times of from 15 to 30 milliseconds. When
used in a locals-only configuration (without swap data sets), oc-
casional delays waiting for swap I/O (at 42 milliseconds of data
transfer time per burst) are traded off for improved average re-
sponsiveness based on a larger number of local page data sets.
Estimating system paging rates is covered in King’s Workload
Characterization, cited earlier. Setting up an initial paging con-
figuration based on estimated paging rates is derived from Tom
Beretvas’s modeling (also presented frequently at conferences
and described in IBM Technical Bulletins), supported by exten-
sive measurement data. A basic guideline is that a 9345 (for ex-
ample) in MVS/ESA can sustain between 29 and 41 page-ins per
second. For simplicity, we assume a capacity of 35 page-ins per
second per 9345 page data set.5 We also assume that a 9345 can
handle the swap requirements of about 150 TSO users, thus dis-
counting the number of page data sets by one for each 150 TSO
users when calculating paging capacity. (See Appendix B for a
more detailed view of paging device limits for a variety of device
types.)
The page-in rates are precisely the values to be set as upper lim-
its in the compatibility mode OPT parameter RCCPTRT. The
lower limit should be 75–80 percent of the upper limit.

Example: A large MVS system has 300 TSO users enter-
ing about 15 transactions per second. They each incur
about 4 page faults per transaction. There are 5 CICS ad-
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dress spaces, each with an acceptable page-in rate of 2 per
second, and 1 batch swap per second with 14 page faults
per batch swap. Miscellaneous paging is 5 VIO page faults
per second and 10 page faults per second from other sources.
Total page-in rate is accumulated from these elements:

15 X 4 = 60 (TSO)
5 X 2 = 10 (CICS)

14 (Batch)
5 (VIO)

10 (Other)
99 (Total)

At 35 page-ins per second per 9345 local page data set, we
need five local page data sets, three for paging and two more
to cover the swap activity of 300 TSO users. The batch swap-
ping is absorbed by this configuration without a need for
more data sets. RCCPTRT might be set at (84,105).

Caution: The story is not yet complete. In compatibility mode,
TSO and production CICS address spaces require storage isola-
tion to function properly in this environment, without expanded
storage. (See Appendix B for other considerations on storage iso-
lation in compatibility mode with expanded storage.) Not more
than one page data set should be on a path. PLPA and CSA page
data sets are needed as well, and a duplex page data set could be
used to back up the common-area page data sets to ensure maxi-
mum availability. The duplex should be separated from PLPA
and CSA by unit, string, storage director, and channel group to
the greatest extent possible. If the PLPA and CSA page data sets
are on a fault-tolerant device such as RAMAC or another RAID
subsystem, the need for a duplex page data set is almost nil.
Page data set size is important too. Assume that swapping re-
quires 120 frames per TSO user, and that 1500–2000 frames are
needed per production CICS, 200 frames per concurrent batch
job, and about 200 frames per system address space. (More pre-
cise estimates appear in King’s Workload Characterization.)
The whole requirement should then be quadrupled, since the
benefits of contiguous-slot allocation begin to disappear at
about 25 percent slot occupancy per data set and are severely
curtailed at 35 percent.
In systems prior to MVS/ESA, a page data set was limited to
65,400 slots, so a number of data sets can be estimated from slot
requirements. (MVS/ESA permits full-volume page data sets on
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any supported device; the benefit is more in enabling a device to
be easily reserved for paging than in creating one huge page
data set. The latter choice may be of some use with a large sur-
plus of expanded storage.) The number of required page data
sets based on assumed paging rates and that based on slot re-
quirements should be compared and the larger number selected.

Swap Data Sets
Swap data sets are now a footnote in MVS history. They are ob-
solete, and their use is counterproductive in the vast majority of
today’s MVS systems. A system with no TSO workload and in-
significant batch has no need for swap data sets. A system with
nothing but TSO and batch also has no need for swap data sets.
The only potential candidates for swap data sets are systems
with a mixed workload and a significant level of real storage
constraint.
Although swap data sets are never truly required, in some un-
usual configurations they might be of some benefit. Two such
far-fetched exceptions are:

• The system is very constrained for real storage, and
solid-state devices (SSDs) are being used for paging. Since
there is no block paging benefit with solid-state devices,
swap data sets on DASD can divert a load that might oth-
erwise cause the solid-state device to overflow paging to
DASD. With an adequate solid-state configuration, swap
data sets are not necessary. Using the quantities assumed
in the example above, 144 additional megabytes of SSD
would be needed to support 300 swapped-out users.

• A key workload might have such a pathologically random
storage reference pattern that storage isolation is of no help.
In the presence of a substantial swappable workload, fast
and consistent paging response time requires the use of swap
data sets, as well as an isolated cluster of paging volumes or
enough solid-state paging capacity to avoid spill.

When swap data sets are used, TSO storage isolation is a must
to complete the job of unloading the local page data sets. To min-
imize the time spent waiting for a subsequent swap-in I/O while
holding a partial working set, provide enough swap data sets to
accommodate the approximate 90th percentile swap-group size,
on separate paths to ensure full I/O concurrency.
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Related Considerations

Storage Isolation. As indicated above, storage isolation is an in-
tegral part of real storage management in compatibility mode,
especially without expanded storage, with or without swap data
sets. There are several ways to use this powerful tool:

• TSO first and second periods: Specify PWSS=(sgs,*),
where sgs is the desired swap group size. The purpose of
this specification is to eliminate up to 60 percent of TSO
page faults by including recently referenced pages in the
swap-in group. In turn, page data set I/Os are reduced,
thus improving demand page response times. The cost (in
added data transfer time for swapping) is negligible.
To estimate the proper value for sgs, observe the real stor-
age frame counts for TSO address spaces in the first and
second periods at a time of peak usage,6 using a tool like
Candle’s OMEGAMON II for MVS or RMF Monitor II. Es-
timate the smallest value exceeding about 90 percent of
the address spaces’ frame counts. Round this count up to
the next higher multiple of the swap set size for your sys-
tem. (Local page data sets on 3380s and 9345s have a
pseudo-swap set size of 30 slots. Those on 3390s or devices
that emulate the 3390 geometry can block pages up to 36 at
a time. Swap data sets always use a 12-slot swap set, re-
gardless of device type.)
Tune sgs (and verify that storage isolation is beneficial) by
observing execution states for the workload. (OMEGA-
MON II for MVS is an appropriate tool. RMF Monitor III
does not distinguish between swap page-in delay and
nonswap private page-in delay.) If PRIVATE PAGE-IN
WAIT is significantly greater than SWAP PAGE-IN WAIT,
increase sgs. If SWAP PAGE-IN WAIT is significantly greater
than PRIVATE PAGE-IN WAIT, decrease sgs.

• Production subsystems: In the single performance pe-
riod definition for a nonswappable subsystem, specify
PWSS=(min,*) and PPGRTR=(ok,high), where min is your
estimate of the minimum frame count needed in the ad-
dress space to provide basic functions without incurring a
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page fault, ok is a tolerable page fault rate, and high is the
maximum acceptable page fault rate for the address space.
The purpose of this specification is to eliminate a large num-
ber of page faults by retaining recently referenced pages in
the address space. The cost (of limiting page stealing in these
address spaces) is seen as added page stealing and conse-
quent page faulting in unprotected address spaces.

• Unfavored swappable address spaces: Specify PWSS=
(0,max), where max is the frame count above which you
want preferred page stealing to take place. This “negative
storage isolation” may be helpful if the preferred workload
on the system has an erratic storage reference pattern
such that normal storage isolation is ineffective, or if the
less preferred workload has an unusually large virtual
storage requirement but a much smaller working set over
some interval like 1 to 2 seconds. Do not use negative stor-
age isolation for swappable address spaces in MVS/ESA as
of SP 4.2; the Working Set Manager does a more sensitive
and effective job of limiting the storage impact of such ad-
dress spaces at times of constraint.

Logical Swap Controls. The default controls favor logical swap-
ping unless the UIC is consistently less than 20. There is a dis-
cussion of various strategies for changing the logical swap con-
trols in Appendix B.

10.2.4. Paging configurations with expanded storage
Expanded storage changes MVS systems significantly. As-
suming a sufficient amount of expanded storage, its principal ef-
fect is to eliminate direct dependency on page data sets. Enough
auxiliary storage slots must still be available to avoid running
afoul of auxiliary storage shortage thresholds,7 but performance
becomes a secondary consideration in establishing the paging
set-up. In an MVS/ESA system, one full-volume local page data
set might seem to be sufficient—assuming there are few occur-
rences of SVC dumps. On the other hand, normal operation is
not guaranteed. When a system dump is being written, a single
page data set can be an intolerable bottleneck. Cheryl Watson
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has recommended a minimum of seven page data sets to ensure
that there is acceptably low system impact from SVC dumps.8

Caution: Make sure that RCCPTRT reflects the capabilities of
the actual paging subsystem, with possible derating to reflect
some level of page migration. The only time the paging subsys-
tem will be called upon to any great degree is when expanded
storage is fully utilized. It is important, therefore, to track ex-
panded storage occupancy and migration rate over time to
guard against unwelcome surprises.

The balance of central to expanded storage is reflected in the
page movement rate. When this value exceeds about 500 pages
per second (in and out) per processor, central storage has be-
come constrained. Other than a central storage capacity up-
grade, two moves that can help are to reduce the number of fixed
pages and to cut back on logical swapping.

However, the Working Set Manager in MVS/ESA SP 4.2 and
later MVS releases detects the increase in unproductive CPU
time that indicates central storage constraint and takes steps to
protect the system from further degradation. The page move-
ment rate then becomes a somewhat controlled value and thus
is not a valid indicator of constraint once the Working Set Man-
ager becomes active. It might be useful from a capacity planning
viewpoint to track the growth of page movement rate when
there are no swaps due to WSM intervention, regarding the old
500 pages per second per processor guideline as an approximate
threshold of concern.

Migration of pages from expanded storage to auxiliary storage
is disruptive (requiring use of the CPU and central storage at a
time of system stress). Migration that brings the CPU to satura-
tion is a sign of desperately overloaded expanded storage. This
condition is very likely to appear in MVS/ESA systems as ESO
hiperspaces and high-performance (I/O avoidance) options of
DFSMS and of the base control program come into wide use. As
ESA use grows and matures, a capacity planner would do well to
track migration age over time and yell loudly for help when the
highest criteria age threshold (1500 by default for ESCTVIO
and ESCTBDS) is crossed consistently.
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10.2.5. Shared DASD considerations
A given amount of DASD contention has a greater impact in a
shared DASD environment than on a single system. Channels,
control units, and device controllers have more work to do and
are therefore busy longer. GRS or equivalent facilities also work
harder with an increased level of cross-system ENQueues. As-
sessing DASD delay in a shared environment is considerably
more difficult than on a single-image system.

When there is a choice of keeping related workloads together or
splitting them across systems, the effects of coupling through
shared DASD should be a key factor in making the decision. Three
developing trends complicate the picture. The ease of creating
multiple system images with PR/SM-LPAR, MLPF, or MDF may
increase the incidence of shared DASD problems. The sysplex ca-
pabilities introduced with MVS/ESA SP 4.1 facilitate clustering
multiple systems and system images and perhaps obscure the
practical difficulties associated with shared DASD. On the other
hand, as system-managed storage in MVS/ESA unfolds, a solution
to data sharing may become part of the picture.

Until enterprises make a firm commitment to parallel sysplex and
all heavily used access methods are enabled for data sharing, the
use of active DASD sharing should be avoided as much as possible.
Placing applications on systems so as to maximize data clustering
on individual system images and minimize active sharing can help
reduce the impact of shared DASD contention.

10.2.6. Use of PLPA and LLA to reduce I/O
The pageable link pack area (PLPA) is a classical MVS tradeoff.
Placing modules in PLPA eliminates I/O and program fetch pro-
cessing by allowing only a single copy of a shareable module to
serve all requesters. The price of this convenience is use of vir-
tual storage in commonly addressed storage. As virtual storage
constraint below 16 MB increased, taking modules out of PLPA
became a necessary activity, especially in MVS/370. In MVS/XA
and later in MVS/ESA, the Extended PLPA (above 16 MB) re-
gains the PLPA benefit while easing the virtual storage con-
straint in the lower addressing range. As more modules become
capable of running in EPLPA, ESA systems will again realize
the full benefit of sharing reenterable load modules.
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When the major benefit of placing a module in PLPA is I/O
avoidance rather than module sharing, MVS/ESA makes an-
other option available. The ESA Library Lookaside Area places
modules in a data space, making functions provided by such
modules available without I/O and without compromising the
size of the common area below 16 MB. LLA is slightly slower
than PLPA (because Program Fetch is involved), but
nonreenterable executable modules are also eligible for inclu-
sion in LLA; they cannot be in PLPA.
Modules that are heavily used by multiple swappable address
spaces such as TSO are good PLPA candidates. Those loaded infre-
quently by nonswappable address spaces could better be placed in
LLA. The reduction made possible in [E]PLPA size can then be
added to the [extended] private area for all address spaces.

10.2.7. MVS/ESA options to avoid I/O

Library Lookaside
The Library Lookaside Area in ESA provides a way to trade vir-
tual storage in a data space (and its backing expanded or auxil-
iary storage) for the I/O of program fetch. In MVS/XA, “LLA”
stood for LINKLIST Lookaside Area, a more limited function
that eliminated only directory I/O.

VLF
The ESA LLA function is built on a lower-level function, the Vir-
tual Lookaside Facility (VLF), that can use data spaces to contain
whole, or parts of, selected libraries not restricted to load module
libraries. In TSO, for instance, ISPF panel libraries and command
procedure (CLIST) and REXX (EXEC) libraries can be managed
by VLF to trade virtual storage in a data space for I/O.

Data in Virtual
MVS/XA and MVS/ESA both support Data in Virtual, a set of
primitive functions enabling an application program to manage
a large random-access data aggregate as an object embodied in
a VSAM Linear Data Set. Only the referenced pages of such an
object are brought into virtual storage. Bytes of the mapped
pages can be accessed and changed in normal program execu-
tion without regard to the need for updating. On request or at
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the time the connection to the DIV object is terminated, only the
changed pages are written back to the linear data set.

DIV is somewhat difficult to use because the assembly language
primitive functions are not readily available in high-level lan-
guages. The potential benefits may be realized eventually as DIV
merges with hiperspaces (a related concept) and as subsystems,
languages, and application packages exploit the DIV benefits.

Hiperspaces
The DIV experience of limited usage should not have been re-
peated with hiperspaces. IBM provided a broad spectrum of ini-
tial support for hiperspaces in critical subsystems, ranging from
direct use for VSAM buffers and CICS data tables to accessible
high-level language primitives called data windowing services.
The lower-level representation of hiperspaces as objects akin to data
spaces should have encouraged system programmers and those con-
structing major application packages to experiment with
hiperspaces much more readily than they did with DIV.
Hiperspaces also are part of the storage hierarchy of system-man-
aged storage.

In a first step, this option is implemented for PDSEs (Parti-
tioned Data Set—Extended), supported by DFSMS as the even-
tual replacement for ordinary partitioned data sets. Part of the
specification for such a data set is the MSR or millisecond re-
sponse time requirement, usually used to make decisions relat-
ing to dynamic caching. However, a PDSE with a sufficiently low
MSR may be placed in a hiperspace.

The Hiperbatch facility made available first in MVS/SP 3.1.3 is
another such use of hiperspaces. Based on prespecified eligibil-
ity criteria under management of DLF (Data Lookaside Facil-
ity), QSAM or sequentially accessed VSAM data sets may be
placed in hiperspaces to avoid repeated reading in batch
jobstreams. Hiperbatch can provide great benefit in improving
the performance of ancient batch applications.

The backlog of new application programs waiting to be designed
and written is enormous, and development cycles are long. Per-
haps by 2000, major applications designed ab initio to make ef-
fective use of hiperspaces will realize the full data addressing
and performance potential of MVS/ESA.
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In the short term, the expected benefits of hiperspaces have not
been realized except in IBM-provided exploitation. One possible
reason is that there are alternatives to many of the uses of
hiperspaces—private area buffering is often more effective than
hiperspace buffering. It also would seem that application devel-
opers have been too busy looking at portable applications and
conversion to client-server to focus on MVS/ESA-specific facili-
ties such as hiperspaces. It’s even more certain that developers
of commercial applications hold back even more on picking up
platform-specific performance enhancers.

10.2.8. Avoidable I/O contention
While many instances of I/O contention are found and corrected
in the process of resolving service anomalies in workloads,
many, especially those within an application family, can and
should be anticipated and prevented before the fact. In design-
ing applications and planning their installation for production,
a simple time-line plot can show the planned pattern of use for
each data set or data base. In this way, possible sources of con-
flict can be flagged, leading to an optimal data set placement
pattern for the application.
Data set growth and volume fragmentation should be tracked
for key applications, particularly those with critical timing win-
dows or real-time response targets and heavy I/O content.
Again, while it is possible to detect and correct sudden increases
in SEEK delay after overt service problems appear, routine stor-
age management actions should reveal the impending problem
before service is affected.
The promise of system-managed storage is that many of these
considerations will eventually be handled automatically—if
DFSMS is properly instructed with a well-designed class struc-
ture. Data placement decisions, made in the initial implementa-
tion of DFSMS only at allocation time, might eventually be af-
fected by feedback from performance monitoring during the en-
tire life of data objects.
To the extent that DFSMS does not support such feedback, the
storage management task for the installation must continue to
include performance assessment of key workloads. Some DASD
management tools are available, including Candle Corporation’s
OMEGAMON II for SMS and Boole & Babbage’s DASD Advisor.
Their main orientation is to the resource view rather than the
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workload view, but the Candle product does provide some appli-
cation-based grouping capabilities.
It is important for the users of such systems to realize that the
object of “DASD tuning” is not merely to create “homogenized”
RMF device reports. If every I/O request is processed with the
same response time, workloads with modest DASD performance
requirements will be too well served, and those that are re-
sponse-time sensitive will do badly. The perspective is key:
DASD tuning (beyond cleaning up fragmentation and conten-
tion) is justified only on behalf of workloads.

10.2.9. Path contention
As the number of channels available and installed on systems
increases, and as four-path DASD subsystems become common-
place, path-loading considerations fade in significance. Again,
system-managed storage could eventually take note of path re-
sponse times in placing data sets with a fast response time re-
quirement. If system performance depends on multiple I/O
paths, it is also important that the necessary paths be moni-
tored for continuous availability.

10.2.10. Using cache control units
Cache controllers provide significant value in systems that are
heavily dependent on random-access I/O with a significant
re-reference pattern. More than likely, the applications are rela-
tively old and transaction volumes have increased to the point
that using cache controllers is the only readily available means
of meeting response-time requirements.
The current generation of cache controllers, typified by the IBM
3990 Model 3, the RAMAC subsystems, and EMC’s Symmetrix
line, has features that reduce the need for laborious planning and
validation to decide which data should be cached. However, overt
planning is still needed. For caches such as those in the 3990, sys-
tem-managed storage will ultimately allow a “management by ob-
jectives” approach to classifying data according to its performance
requirements. With the full power of SMS, that variety of cache
will be used to its potential with minimal day-to-day human in-
volvement. In the newer subsystems, the cache is properly charac-
terized as “massive” and all data will be routinely cached.
More advanced features of new cache controllers provide spe-
cific targeted benefits for sorting programs and for elements of
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designated data base subsystems. Little experience with such
facilities has been published to date.

As more applications are reimplemented to exploit data spaces
and hiperspaces, the need in such applications for cache devices
is likely to be reduced, in exchange for greater dependency on
expanded storage. The large caches, available at relatively low
cost, will then promote a more general improvement in I/O re-
sponsiveness. A more cynical view is that the advent of such
large cache subsystems will provide justification for yet more
procrastination in updating truly hideous application designs.

10.3. Resource Exhaustion
There comes a time in most systems’ lives when upgrades ap-
pear to be inevitable. Storage or CPU might be fully utilized, or
queueing for CPU or I/O devices has put service targets in jeop-
ardy. To go ahead and order more hardware at this point seems
natural. However, the system may not be out of capacity at this
time. Reprioritizing the workload may buy valuable time.

10.3.1. Forestalling the inevitable
The CPU is running at close to 100 percent utilization through
first shift; is the system out of capacity? If there is excess capacity
at off-prime times, and if a portion of the workload has a service re-
quirement that can stand delay, more high-priority work can be
added to the system until CPU queueing compromises service tar-
gets. Only when that occurs is more capacity needed.

How much planning is needed to keep up with workload
growth? If an installation’s processors are not at the growth
limit for a vendor’s product family, most upgrades take less than
a day to install and little lead time. In the case of the IBM pro-
cessor product line, many upgrade paths are possible. Some in-
volve simply adding an additional processor to a frame capable
of accepting it. Others may require extensive parts swapping or
the addition of a frame or a new power controller.

When a new physical “box” is needed, floor space and environ-
mental considerations can intrude. When a single-sided proces-
sor becomes physically partitionable (two-sided) in an upgrade,
a large increment of floor space, as well as more installation
time, is necessary.
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These considerations have been turned upside-down by the
availability of high-end CMOS-based systems and the use of
parallel sysplex. The cost of an upgrade has been reduced; it is
simply a matter of plugging in a few cards which are inexpen-
sive enough to be within the data center manager’s discretion-
ary spending authority. When the box (such as a 9672-RY4) is
fully populated, another can be bolted alongside it and the pro-
cessor and memory cards balanced between the old and new
boxes. If the configuration is operated as a parallel sysplex, add-
ing another system remains more disruptive than upgrading a
processor complex, but far less disruptive than adding a system
in a classical shared DASD environment. If the MVS images of
the parallel sysplex are clones of each other and share system
volumes to the greatest extent possible, adding another system
is hardly disruptive at all.

In a large installation with many processor complexes, backup
systems can often absorb the workload of a system being up-
graded. Shops that haven’t yet grown to that level require more
care to avoid outages associated with upgrades. Sometimes it is
possible to schedule preparatory activity on several successive
weekends; more aggregate time is needed for the upgrade, but
with less disruption.

10.3.2. Tuning for efficiency
As processor complex capacity becomes exhausted, it is more im-
portant than ever to ensure efficiency. Although the constant
emphasis in this book is on workload-oriented performance
management, at this point our focus switches from tuning work-
loads to tuning the system. Success based on either approach is
usually beneficial at both levels.

Measures that generally help the system and all workloads
without negative consequences include:

• making sure that block sizes for sequential and parti-
tioned data sets are as large as the maximums supported
on the devices

• making maximum effective use of PLPA to eliminate re-
dundant program loading and to reduce the working-set
sizes of address spaces, especially TSO
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• making maximum effective use of LLA in MVS/ESA to mini-
mize directory searching and reduce program loading times

• eliminating the use of STEPLIBs for all but carefully re-
stricted test or preproduction applications

• making sure that heavily used or shared data sets are
monitored to prevent wasteful seeking across multiple ex-
tents. In ESA beginning with SP 3.1.3, use facilities such
as Hiperbatch and batch local shared resources to avoid
I/O when possible

• in compatibility mode, acting to prevent logical swapping
from dominating constrained real storage, forcing unneces-
sary page stealing

• also in compatibility mode, adjusting the OPT MPL con-
trols to ensure maximum resource utilization without
wasteful swap-in delay (when real storage is sufficient)
and without requiring manual intervention to control the
size of the multiprogramming set

The last two measures are meaningful in systems without ex-
panded storage or in systems where significant workloads have
been excluded from expanded storage through the criteria age
parameters in the OPT. They also are completely unnecessary in
goal mode.

10.4. Resource Contention

When contention analysis is an available tool for diagnosing
performance problems, it is easy to fall victim to the Carpenter’s
Fallacy. Not all performance problems are contention problems.
As we’ve seen, there are some genuine instances of resource ex-
haustion, and there are all too many examples of poorly de-
signed or implemented applications that create their own effi-
ciency problems. We’ll limit our discussion of contention to in-
stances of contention for a named, specific resource such as a
data set, volume, or ENQueue resource name.

In this section, we identify some key contention scenarios and
suggest ways to avoid them, or to deal with them when they do
come up.
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10.4.1. Prevention
Suppose that three CICS address spaces (order entry, order ful-
fillment, and accounts receivable) in an MRO subsystem are set
up so that all are in use at the same time, and that they each use
the same VSAM customer information file (CIF) for query, veri-
fication, and occasional update. Each address space processes a
different set of transactions, with different dependent files on
the same volume as the CIF being updated, as well as on other
volumes. Suppose further that all CICSs have been just barely
meeting their response-time targets.
With strong forebodings of impending disaster, we now plan to ex-
pand the geographical service area of this system such that the
transaction rate can be expected to double. It seems prudent to act
now to avoid the problems which seem certain to come. Using or
collecting execution-state analysis data for each of the address
spaces, we could determine if there is already a concentration of
contention-delay states such as “waiting for queued I/O” or “wait-
ing for ENQ.”9 If such states show up, it is almost certain that they
will increase dramatically with volume growth.
If I/O contention already exists, it is most likely to appear on the
central data volume containing the CIF. Contention within the
CICS subsystem may be relieved by splitting the subsidiary
files to other volumes; however, the possibility of causing con-
tention with another workload should be a consideration in se-
lecting the target volume. Exercising advanced options such as
shared buffering or placing the buffers in a hiperspace in an
MVS/ESA environment, especially for the CIF, can help to avoid
the I/O that is the source of contention.

10.4.2. Avoidance
How can we avoid creating new contention without leaving re-
sources idle? What we need to find are complementary or com-
patible workloads. If two workloads need access to the same re-
sources but at different times of the day, there is no harm in al-
lowing the sharing. If they both need the same resources at the
same time, they will be in harmful contention unless the shar-
ing can be promoted to a hardware resource level that has ac-
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ceptably low impact on performance. From best to worst, the lev-
els would include:

• data in DIV or hiperspace, as in Hiperbatch

• data replicated for each using subsystem

• shared buffering (global or local shared resources), includ-
ing buffering within the coupling facility of a parallel
sysplex

• cached, same system or shared in a parallel sysplex

• shared DASD, cached, different systems

• uncached, same system

• shared DASD, uncached, different systems, with global
ENQueue management

• shared DASD, uncached, different systems, with no global
ENQueue management

10.4.3. Detection in real time
As with any approach to diagnosing a problem, contention anal-
ysis starts with identifying a condition that requires investiga-
tion or possible action. A real-time monitor such as Candle’s
OMEGAMON II for MVS can issue a visual alert or display a
warning message when there is an ENQueue lock-out or a de-
vice not responding or with abnormally high service time. As
we’ve already noted, such warnings are little more than false
alarms if the workloads affected by such conditions are not suffi-
ciently important to merit operator attention. A real-time moni-
tor with workload awareness can issue exception messages
against the response time or elapsed time of specified critical
workloads, most effectively using the history of the particular
workload as the basis for the threshold.
When a workload exception appears, the person investigating the
problem can use the probing features of the monitoring program to
display the execution-state profile of the workload and its direct
contention sources. If the monitor does not collect contention data,
it may maintain a history of workload activities and resource use
that might provide less direct evidence of contention.
Knowing (or strongly suspecting) the identity of the delaying re-
source and the workload causing the contention, if there is one,
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the analyst can now decide whether to take action, and if so,
which actions could eliminate or minimize the contention.

10.4.4. Solutions
Let’s review what can be done about a contention problem:

• Tolerate It—If service is acceptable for the moment, track
the execution states of the workload over time, looking for
a sudden rise in a contention-delay state, at which time ac-
tion will be necessary.

• Accommodate It—With data set contention, take action to
promote the data in contention to a faster device, or to exer-
cise buffering or caching options that can reduce the conten-
tion impact. When there is CPU or storage contention, a
short-running program causing degradation to a subsystem
might be “accelerated” by placing it in a more favorable per-
formance group or service class. Ultimately, application re-
work may be necessary to cut contention impact to the mini-
mum. Batch jobs that cause CPU contention usually do so by
causing a high rate of SRB activity to service I/O completions.
The appropriate solution in such a case is to eliminate or
minimize the disruptive I/O, usually by increasing block
sizes. In the case of batch, the cost of licensing BatchPipes or
SmartBatch may be justified if the CPU contention atten-
dant to high I/O rates can be minimized.

• Avoid by Workload Scheduling—If the service schedule
for one of the workloads in contention can be changed to
eliminate the contention, take the opportunity. This ap-
proach may be useful if a production batch job interferes
with an online service. As the “batch window” shrinks
with the growth of extended online service hours, this op-
tion becomes difficult to implement.

• Avoid by Replication—If data sets in contention are
read-only, making multiple copies can eliminate contention.
The price paid is a new need to synchronize the copies. This
option is unnecessary in a parallel sysplex if the access
method is enabled for data sharing.

• Avoid by Sharing—Options such as shared buffering and
caching serve the same purpose as replication without the
administrative burden. If load module libraries are the ob-
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jects subject to contention, the use of PLPA or the
MVS/ESA LLA can eliminate most contention. Objections
to placing unauthorized application modules in the
LINKLIST were overcome early in MVS/XA when APF au-
thorization of LINKLIST libraries could be made selective
rather than universal. (This change enables eliminating
STEPLIBs for production applications.)

• Avoid by Movement—If device contention (queued I/O) is
the main problem, move data sets to decouple the workloads
in contention. This action is effective even if the device con-
tention is self-contention within the same workload.

• Avoid by Rearrangement—A CICS workload may have
been split across address spaces in MVS/370 because of vir-
tual storage constraint. Now, in MVS/ESA, the same con-
figuration is used because of habit or inertia, even though
the constraint is no longer a problem. Reconsolidating an
unnecessary MRO or resplitting according to a minimum
contention pattern may cut out enough contention to main-
tain consistent service.

• Avoid by Rewriting—The last remedy considered in
most installations is to reimplement the application to
eliminate sources of contention. A new data base design us-
ing options available in relational systems may completely
bypass the source of contention.

10.5. Summary
Solving performance problems is often difficult and time con-
suming. It is also intellectually challenging and very satisfying
when successful. Doing the job well is aided greatly by proper
preparation and placement in a supportive environment con-
taining these elements:

• suitable tools, especially execution-state and contention
monitors

• well-defined service targets

• freedom to make changes in system control parameters

• a performance management job description, evaluation
policy, and management structure that recognize cumula-
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tive success and support the risk-taking necessary to solve
problems caused by the actions or inactions of others

• a capacity-planning and hardware acquisition function in
the installation that strikes an optimum balance among
projection of past experience, forecasting of future loading,
timely acquisition of new technology, serving the perfor-
mance expectations of customers, and deriving full eco-
nomic benefit from capital assets

Even though every practitioner develops an individual ap-
proach, each such person should take pains to remain
open-minded about different approaches. He or she must keep
current with developments in operating systems and subsys-
tems, hardware, monitoring software, and behavioral studies
about human interactions with computer systems. Today’s sys-
tems do not respond well to yesterday’s management tech-
niques.
And that’s not all! It’s also necessary to know a few more practi-
cal things: what the principal applications do, and how the cus-
tomers view the service of which those in the data center are so
proud.
When the performance analyst has proper preparation, knowl-
edge, good tools, support, operational discretion, and an open
mind, no performance problem should long remain a mystery.
Whether it can be fixed may depend on other considerations.
We’ll look at some of them in the next chapter.

10.6. Chapter Questions
1. What is the performance management methodology in

your installation? Is it proactive or reactive, work-
load-based or resource-based, after-the-fact or real-time? Is
application performance part of the system performance
charter?

2. Based on the material in this chapter, can you revise your
answer to question 1 with confidence? What new tech-
niques can you add to your methodology?

3. Examine your paging configuration based on the example
discussed in this chapter. If you are using swap data sets,
see if you can state the justification for doing so. Prepare a
plan to revise the paging configuration as suggested
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herein, and to measure system and workload performance
before and after the change. Try it.

4. Look at the system tuning suggestions made in this chap-
ter. Evaluate your system against each of the areas cov-
ered. Create a plan to implement any of the suggestions
that appear productive for your system.

5. Look at your principal application workloads. For each of
them, evaluate two propositions.
a. “I/O avoidance will help the application.”
b. “I/O avoidance will help other applications or the system.”
Create an appropriate action plan, but read Chapter 11 first.
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Chapter

11
Application Performance Management

In many installations, the last area to be influenced by the data
center’s performance staff is the set of production application
programs that to a great extent justify the existence of the data
center. Those responsible for such programs are in departments
with names like Management Information Systems or Applica-
tions Development.
Typically, these departments are separate from the data center
organization through the director or vice-president level of man-
agement, so sharing of common goals and cooperation do not
arise naturally out of organizational proximity.

11.1. Open-Shop Workloads
As urgently as production application programs need perform-
ance analysis and optimization, nonproduction or “open shop”
batch and TSO may need such attention even more. A machine
whose basic workload is administrative and nontechnical must
be managed very carefully if it is also to accommodate such ap-
plications as engineering design, scientific data reduction and
analysis, or econometric modeling.
Typically, those who create and run such programs never finish
them—they never really become production programs. They are
tweaked here and there, adjusted to different cases of interest,
or run with more or less data or for more or fewer iterations.
More than most “commercial” programs, these numerically in-
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tensive computing (NIC) applications can be disruptive to sys-
tems. This is especially true if they are written by professional
engineers, scientists, or statisticians who happen to be amateur
programmers. (A common end-user response to news of a hard-
ware upgrade or operating system improvement in handling of
NIC programs is “Good, now we can run bigger cases.”)
CPU utilization is not the problem; it’s easy to manage dispatching
priority properly. Rather, numerically intensive programs can put
tremendous stress on the processor storage resource when they ex-
hibit poorly planned storage reference patterns. The techniques
mentioned under “virtual storage” later in this chapter can be
tried (or suggested to the program owners). Programs that are just
big, even if well written, are inherently disruptive. The blocked
paging enhancements and the rest of Working Set Management
introduced with MVS/ESA SP 4.2 showed dramatic improvements
in mixed-workload systems. The extensions to Working Set Man-
agement and the introduction of Workload Manager goal mode in
MVS/ESA Version 5 make it even more likely that these workloads
can be effectively tamed.

11.2. Application Performance Vulnerabilities
Almost any performance management action taken by the data
center staff can be undone by implementation or installation
choices for applications. It is unlikely that anyone gets up one
fine day and says, “I’m going to mess up the CICS production
system.” What’s more likely is something like one of the follow-
ing:

• A “portable” packaged application is installed without ex-
amining the data definitions and JCL and adapting them
to installation standards.

• A new program has been written, compiled, and installed
with unchanged default parameters for I/O and storage
use—defaults that may last have been examined in 1978.

• An unoptimized prototype has been placed in production.

• A new production program has been “promoted” without
removing debugging code (completely).

• A new version of a production jobstream has been installed
via STEPLIB.
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• Input or transaction volume has grown to the extent that
formerly efficient code has become inefficient today.

• An obsolete policy of volume ownership has forced inappro-
priate DASD volume sharing, creating inescapable conten-
tion among related applications.

• A similarly obsolete policy of application affinities has cre-
ated a CICS MRO configuration that makes it impossible
for goal mode to properly manage the performance of im-
portant transactions without giving undeserving, less im-
portant transactions a free ride.

• An upgraded system environment has failed to deliver its
potential throughput or performance improvement be-
cause the new facilities cannot be used by old programs
without change.

• An upgrade was ordered and installed without sufficient
analysis to expose and deal with secondary constraints that
remained hidden until a primary constraint was relieved. La-
tent demand associated with an application area may serve
to expose the weakness in the new configuration.

It is clear that these circumstances involve no malicious intent;
some of them represent lack of care in areas that don’t appear
(to the application programmer) to be important. Most, however,
are simple instances of the application developers not having
“system” knowledge that the systems or performance staff
thinks of as self-evident.
A system programmer can hardly avoid staying current with
hardware or operating system developments. Application pro-
grammers are much more attuned to the target areas of their
applications and do not normally receive detailed information
on new system developments or capabilities. Organizational
separation contributes to the lack of information flow.

11.2.1. Vendor application packages
If an applications group depends heavily on vendor-supplied ap-
plication packages, it is almost inevitable that those packages
have attributes that contribute strongly to inefficiency:

• They are designed to be portable across many levels of sys-
tem environment, so that packaging, data set and data
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base definitions, and use of system services tend to be at a
“least common denominator” level.

• They are implemented to satisfy functional needs primar-
ily, and are not particularly optimized for performance.

• They are designed to be reliable and therefore are not im-
plemented to assume the risk of using relatively new and
untried features.

• They are designed for generality and therefore are not opti-
mal for a particular installation’s needs.

11.2.2. Turf wars
Data center performance analysts or specialists are usually
staff people in their own departments. They are even more orga-
nizationally remote from applications developers. To be effective
in getting the applications staff to change JCL, options, sched-
ules, or even code, the performance person cannot rely on orga-
nizational authority. A person in such a position must cultivate
the art of using influence—getting others to take action because
they perceive it to be in their best interest, not because someone
in authority said so.

Effectiveness in building and using influence is based on trust,
credibility, and respect. Techniques that help to build and reha-
bilitate a data center’s reputation with its customers in general
are just as necessary and effective when trying to get only a few
of them to accept recommended changes.

11.3. Internal Inefficiency

It’s hard to tell when an application program is effective. Noth-
ing a performance monitor can measure can tell if the program
is solving the right business problem.

Efficiency is another matter. An inefficient program stands out
as different in its resource utilization pattern, and more so when
delay states in the execution profiles are examined as well. Such
programs often corrupt other work in the system with avoidable
contention. In the next few pages, we’ll look at factors that con-
tribute to inefficiency, adding recommendations for improve-
ment when the cure is not evident from stating the cause.
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11.3.1. CPU delay
Contention for the CPU resource is managed through the dis-
patching priority mechanism as administered by the MVS dis-
patcher. With Workload Manager goal mode, it’s no longer neces-
sary to go through the dreary exercise of laying out a dispatch-
ing priority order. The dynamic interaction of workloads, goals,
and levels of importance determine the current order of dis-
patching priorities.
Systematic granting of access to the CPU in accordance with the
priority scheme is upset by use of the CPU at high priority on be-
half of operating system functions. Usually the service burst on be-
half of paging or I/O is short, so low activity rates are not harmful.
As activity rates increase, the likelihood of the CPU being busy
when an important workload is ready for CPU service increases,
lengthening response time by incurring CPU delay.
The trend toward multiengine configurations has reduced the
significance of “waiting for CPU” as a cause of delay in key
workloads. The trend toward logical partitioning of processor
complexes works the other way, making the CPUs appear less
powerful and sometimes setting an absolute limit on the CPU
fraction allocated to a partition. Regardless of the configuration,
if the CPU resource is anything less than overloaded, CPU delay
can be directed away from time-sensitive key workloads
through tuning efforts.
The absolute magnitude of typical CPU delay is much smaller
than that of I/O delay or real storage delay. It might be consid-
ered a sign of good performance management when the CPU
has become the “last bottleneck.”

11.3.2. CPU use
If CPU delay is not significant in the total set of execution
states, simply using the CPU might be. There is no limit to the
inefficiency that can be put in a program. Ignoring the full
power of the System/390 instruction set, choosing the wrong
data format, leaving invariant code in inner loops, using inter-
pretive techniques when a compiled alternative exists, choosing
an inefficient algorithm for an iterative procedure—all these
and more are seen over and over by performance analysts trying
to account for excessive CPU consumption, especially in a new
or changed application.
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Specifics include:

• using “roll-your-own” sorting routines instead of using effi-
cient standard sort algorithms or advanced data base tech-
niques that reduce the need for sorting.

• ignoring standard optimization techniques, such as remov-
ing invariant code from inner loops, using early-decision
logic optimized to path frequency, and “unrolling” function
calls within inner loops. Although advanced compilers can
do some of these things automatically, “efficient” assembly
language programs must be hand-optimized.
The sheer volume of assembly language source code, the
difficulty of imposing structure on existing unstructured
code, and the considerable egos of many assembly lan-
guage programmers make it unlikely that such techniques
will be applied to many programs written in that language.
Growing popularity of C and C++ as all-purpose program-
ming languages make attention to compiler optimization
(and the programming habits that can negate optimiza-
tion) all-important. A plus for C and C++ is that compilers
for those languages in the MVS/ESA environment tend to
be of recent design; a minus is that the compiler itself may
suffer from the design compromises of portability.

• failing to use efficient in-line-code alternatives to expen-
sive CALLs on library routines or system services.

• failing to recognize vectorizable algorithms and to use vec-
tor processors when available.

• failing to recognize program sections that can run in paral-
lel and to exploit multiengine configurations.

• using inefficient and disruptive techniques such as sched-
uling SRBs in order to communicate across address spaces,
instead of using cross-memory services.

• failing to follow through to production on programs devel-
oped according to a modular discipline. When such pro-
grams are promoted to a production status, linkage code
that externalizes the modular design should be removed;
the program should be “collapsed” to an “encapsulated” state
once it is ready for production.
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Using object-oriented languages and design techniques has the po-
tential to produce efficient programs, but only if the initial design
models are created with efficiency as a basic requirement. Those
popularizing this technology tend to emphasize reliability and re-
usability of code, leading to inexpensive and rapid application de-
velopment. Performance is not on their list, even though it could be
if the cost-oriented focus could be broadened.

11.3.3. Virtual storage
As the migration to MVS/ESA proceeds, virtual storage limita-
tions will become relics of the past as the full power of data
spaces and hiperspaces is exploited. However, the availability of
essentially unlimited virtual storage increases the likelihood that
some improper programming practices will cause problems in
the management of real storage, as we’ll see next.

11.3.4. Real (central) storage
In a virtual storage operating system, real storage is a hidden
resource. Application programmers in particular have no way of
explicitly manipulating central storage. The use of central stor-
age is governed indirectly, by the interactions of workloads and
by coding practices within programs.
The demand for central storage is difficult to estimate. Even us-
age is hard to understand. For instance, a job may take 130
frames of central storage when the system is lightly loaded, but
only 75 frames when storage is heavily in demand. Which is the
correct characteristic number? What amount, if any, should the
user be charged for?
An answer can be found in the concept of working set, intro-
duced by Peter Denning early in the history of virtual storage
environments. An operational definition of working set in to-
day’s MVS terms is “the minimum number of central storage
frames needed by an address space to accomplish its purpose
without incurring excessive paging delay.”
This definition is very flexible. If the paging mechanism is
faster, the working set can be smaller. If the “acceptable” level of
paging delay can be increased, the working set can be smaller.
A program’s working set may increase if the data to be most fre-
quently used is spread out over an unnecessarily large number
of pages or if a large data area is sequentially searched for a
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data item, rather than finding it directly using an index or hash-
ing mechanism. The efficient opposites of these inefficient prac-
tices are called locality of reference and validity of reference, re-
spectively.

Program design principles for good real storage performance
were examined within IBM when virtual storage operating sys-
tems were first being explored. A product of that research was a
set of three simple rules:

• Design for good locality of reference. Ensure that data
to be used together or closely in time is close together (on
the same page or on a minimal set of pages) in virtual stor-
age. Equally, ensure that data that will not be needed to-
gether is not grouped or ordered according to a little-used
property so as to rule out locality for data that is related by
more frequent use. More virtual storage may be needed
overall, but less central storage should be needed at any
given time.

• Design for good validity of reference. Ensure that
each data reference moves the process substantially closer
to the desired result, rather than simply ruling out an un-
interesting data element or “touching” a data element
when no immediate use will be made of it. A search
through a linked list that fits on one page may be accept-
able; one that wanders over 200 pages may on average
cause up to 100 page faults before a hit is found. Creating
an index or hash table to map such a data structure can
concentrate the searching on one or two active pages and
then might cause one page fault when the correct locality
of the desired data element is found.

A second type of validity violation occurs when a large data
area is initialized by preloading data values in anticipation
of possible future need for some subset of the data ele-
ments.

• Design for minimum working-set size. In some cases,
this means minimizing virtual storage occupancy, as when
compact forms of data storage are chosen over uncom-
pacted forms. In other cases, there is little effect on virtual
size, for instance from ensuring page alignment of control
sections and related data areas. In still other cases, virtual
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storage use will be increased, as when a common data table
is replicated for use in several different contexts. The main
contributor to minimum working-set size is locality of ref-
erence, discussed above.

These three guidelines help programmers create applications
that make effective use of the central storage resource. It is im-
portant for those programmers to “unlearn” one dangerous
habit: regarding addressable storage (virtual storage) as the ex-
pensive resource. A spread-out program with good locality of ref-
erence in each of its parts may be a much more efficient user of
real storage than one that is laboriously woven together in a
minimum of virtual storage. Programs do not wait for virtual
storage, and no one pays for it—it’s real storage that’s the real
resource that has cost and performance.

The principles of good design for a virtual storage environment
are violated frequently. Some examples:

• Wrong-way tables: When all of the data for an applica-
tion subsystem fits in a few pages of storage, the layout of
data tables is not a matter of great concern. Suppose, how-
ever, that the volume handled by the subsystem has ex-
panded to the point where data tables take up 500 pages. If
the tables are organized functionally (all “A’s” followed by
all “B’s,” etc.) and referenced randomly by a common index
value, a particular transaction or thread may touch 60 or
70 pages. In violating “locality of reference,” “minimum
working-set size” is violated as well. If, on the other hand,
the data tables are “turned sideways” so that each transac-
tion’s or user’s data is contiguous, the storage reference
pattern is significantly improved. Correcting locality will
reduce the working set.

• Inefficient search logic: In pioneering programs in the
System/360 era like the FORTRAN H compiler, chained
searching of large dict ionary structures was a
state-of-the-art technique. In a static real memory envi-
ronment, chained searching can be very efficient, com-
pared to simple linear searching. In a virtual storage en-
vironment, however, it’s poison.

Chained searching is the classic violation of “validity of ref-
erence.” Binary searches or other hashing algorithms are
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faster for large tables and use less real storage. Linear
searches remain very efficient for small tables.

• Wrong-way arrays: A classical problem in translating
programs from FORTRAN to PL/I was the need to under-
stand the difference in array storage layout.1 The original
basis for this need was to deal with esoteric considerations
like converting EQUIVALENCE in FORTRAN to overlay
defining in PL/I.

A much more practical need exists in virtual storage systems.
Regardless of the programming language, an array has a nat-
ural storage order. If a program uses the elements of that ar-
ray in some order other than its natural order, its working set
will be larger than necessary. As in the case of wrong-way ta-
bles, changing the order of array references (or of array defi-
nition) to make the most frequent reference pattern the natu-
ral array storage order will serve to minimize working-set
size. Especially with vector processors, establishing correct
array reference order is a “magic” optimization technique
with no negative consequences.

To localize the effects of programs with inefficient storage refer-
ence patterns, the technique of negative storage isolation de-
scribed in Appendix B may be used in compatibility mode, but
only for nonswappable workloads. The MVS/ESA Working Set
Manager does the job much better for swappable address spaces,
and goal mode manages storage protection dynamically in the
context of managing workload performance to goal.

Of course, negative storage isolation must be fitted to the prob-
lem at hand. A program calculating eigenvalues without the use
of sparse matrix techniques may have a 1-second working set of
10,000 pages and a 10-second working set of 60,000 pages. Spec-
ifying an ordinary level of negative storage isolation like
PWSS=(0,2000) might cause such a program to page-fault contin-
uously and never complete. A more appropriate storage isolation of
PWSS=(0,10500) for such an address space might cause a mod-
est paging-delay elongation of the job while freeing the rest of
the system from page stealing.
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11.3.5. I/O
The final hardware resource to consider is input and output. We
restrict the discussion to the I/O to and from the storage subsys-
tem as opposed to that between a program and the human(s) it
serves. As important as that interface is, it accounts for rela-
tively little resource consumption. I/O involving DASD and tape
is the principal component of elapsed time in most batch jobs
and a major contributor to response time in interactive applica-
tions and subsystems.

All of our accumulated data processing experience has been re-
inforcing another wrong message: “I/O is cheap. Save CPU and
storage by doing I/O.” There was a time when this might have
been good advice. Certainly before the advent of virtual storage
there was no defensible way to read a file as small as a mega-
byte into working storage, change what needed to be changed,
and write back only the changed parts. Doing that for a file en-
compassing tens or hundreds of megabytes was out of the ques-
tion. Most application programs were set up to process such files
sequentially. If a master file of insurance policies was to be up-
dated, the updates would be sorted in the same order as the
master, and master and update would be sequentially merged to
form the new master file. If a million records had to be read and
a million written to update 2000 records, so be it. Minimum
CPU and minimum storage were used to do the job.

In today’s world, however, we recognize the wasteful nature of
such processing. It makes much more sense to organize that
data as a data base, inserting or changing records in response to
the individual transactions as they arrive, with I/O only to the
affected parts of the file (data base). Such an approach also
keeps the data available to multiple users instead of locking out
the whole file, as will happen during a sequential update.

With MVS/ESA, there are new techniques available for avoiding
I/O. Data accessed through the channel subsystem moves slowly
compared to data moving within levels L1 through L3 of the
storage hierarchy described in Chapter 3. The fastest chan-
nel-attached solid-state device takes 15 times longer to move a
page of data to central storage than moving the same data from
expanded storage. When access time (to find the data) and chan-
nel-control unit protocol times are added in, the ratio can ap-
proach 50 to 1.
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To avoid having I/O time become a significant bottleneck in ap-
plication response time, consider these new rules for the ‘90s:

• Recognize that passing a file across a program more than
once is usually wasteful and unnecessary.

• Think of DASD as “backing store” for virtual storage or
hiperspace. Data manipulation should be done in storage
rather than as I/O.

• Do the minimum necessary I/O to bring only required data
into processor storage.

• Do I/O to put away changed data to keep it safe (commit)
and when finished with it.

• Don’t use DASD as a sequential medium unless all of the
data in the file is needed in every execution of the program,
or the file is so small that the overhead of locating the de-
sired data item is greater than that of reading the file.

• Even if the data is organized for direct or keyed access, avoid
other DASD I/O to the greatest extent possible by using
hiperspace buffering or VSAM local shared resources.

• Reserve sequential file processing for uncritical applica-
tions—until they can be changed.

A collective name for the set of I/O avoidance techniques in
MVS/ESA is data-in-memory.

Unavoidable I/O
As important as I/O avoidance is, much I/O activity remains in
MVS/ESA systems. Here are some suggestions for minimizing
the impact:

Sequential Data Sets: Experts, including Siebo Friesenborg of
IBM and Dr. H. W. (Barry) Merrill of Merrill Consultants, have
been saying for years that small block sizes for sequential data sets
are inefficient. Consider the consequences of small block sizes:

• Inefficient device space utilization: Especially on IBM 3380s
and other devices with a similar underlying track format, data
bytes per track decline dramatically with small block size.2
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• Reduced data transfer rate: This is a direct consequence of
reduced track capacity and fixed rotational speed, and
leads to elongated response time per logical record.

• Disruptive CPU overhead: The high I/O rate associated with
small block sizes causes at least two state switches per I/O,
with increased CPU time disabled for interrupts and under
lock. Every other address space in the system pays the
price of increased CPU delay.

• Increased storage occupancy: With lower effective data trans-
fer speed, programs take longer to run, increasing central
storage use.

Merrill has recommended consistent use of the maximum block
size supported on the device. With such block sizes, all four of
the factors cited above take on their most efficient values.
When sequential data sets are managed with generous buffer-
ing and optimal (maximum) block sizes, data transfer is usually
overlapped with processing, so the slow speed of DASD does not
significantly influence processing speeds.

Randomly Accessed Data: Randomly accessed data sets and
data bases present a different challenge. In a transaction-pro-
cessing environment, there is no way for the transaction to “do
something else” while the I/O necessary to complete a transac-
tion proceeds. When I/O predominates in such an application or
subsystem, performance improvement can come only from
avoiding I/O or making it faster.
I/O can be avoided by application design or redesign. Many ap-
plications fail to make full use of available virtual storage, per-
forming I/O to repeatedly read small tables or other data areas
instead of bringing them into virtual storage once and letting
SRM and RSM manage the data. Such practices are common in
“portable” applications that must run in several different oper-
ating system environments of differing storage architectures
and sizes. When larger data aggregates (external data sets or
data bases) are involved, basic design principles like validity of
reference are just as effective in avoiding explicit I/O as they are
in avoiding paging.
If there is significant re-reference activity in the aggregate of
data used by an application, the use of cache controllers can
bring about significant I/O response-time improvement. As
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cache devices mature and grow in maximum cache sizes, restric-
tive cache planning considerations ease; often whole DASD sub-
systems are cached.
If data has a very concentrated reference pattern, and in appli-
cations with extremely stringent response-time targets, pure
solid-state devices offer ultimate response time for channel-at-
tached DASD. As SSDs have become obsolete for improving the
performance of paging subsystems, they have found new uses as
conventional I/O devices to solve special performance problems.
More extensive redesign of applications will bring about further
improvements as the applications move fully into the MVS/ESA
environment, making effective use of data spaces (overcoming
virtual storage limitations), hiperspaces (for scratch pad and
large temporary data aggregates), and Data in Virtual (for large
permanent data aggregates with sparse reference patterns).
IBM’s DB2 relational data base system, and applications built on
it, can take full advantage of many of ESA’s new storage options.

11.4. Internal Contention
In the previous section we looked at efficiency of application pro-
grams and systems independent of contention. When there is
contention, we must determine whether it is caused externally
or internally. External contention is found by methods described
in Chapter 11. Tools such as Impact Analysis, found in some
products of Candle Corporation, will also reveal self-contention,
usually for I/O devices.
Self-contention is often found in applications or subsystems when
multiple data sets are on the same device. A frequent cause of
such data set placement is a DASD management policy based on
“volume ownership.” The trend to system-managed storage sub-
stitutes a much less restrictive volume pooling concept and al-
lows the specification of desired performance characteristics as
part of data set definition. As such subsystems evolve to include
workload performance data in their criteria for data placement
and continued residence, I/O device contention should migrate
to the least important workloads on the system, subject to the
capabilities of the configuration.
Another cause of self-contention, this time for the CPU, is a pro-
gram organized with multiple tasks or multiple communicating
address spaces running in a system without enough CPUs to sup-
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port the level of simultaneity designed into the program. There is
no contention if the internal multiprogramming is of functions not
usually invoked concurrently. When there is active internal CPU
contention, most performance monitors can’t reveal it, since execu-
tion states are determined for the whole address space rather than
for tasks, and the “waiting for CPU” execution state is subordinate
to “using CPU.”

11.5. Why Applications Run Poorly
Clinging to outdated assumptions about relative cost of re-
sources and being insufficiently aware of the operating system’s
mechanisms lead to inefficiency and create problem applica-
tions. If the misconceptions about values are institutionalized in
a chargeback system, more than technical rethinking will be
needed to overcome the damage already done. We’ll now exam-
ine some factors, both technical and “technopolitical,” that can
lead to unsatisfactory service or squandering of resources.

11.5.1. “The dead hand of the past”
Precedent and tradition are good guides in many areas of life.
However, they are not a suitable basis for application design. To
do something “the way it’s always been done” is to guarantee
that past performance sets an upper limit on future perfor-
mance. What was appropriate for yesterday’s technology could
be not the best choice for today’s. Even though it is unlikely, it
would be a good investment to consider re-engineering applica-
tions that predate the availability of MVS/ESA.

11.5.2. Choosing the wrong tools
Depending on precedent is understandable. It’s comfortable. When
precedent is not a factor, the choice of the wrong tool or tech-
nique is more likely to be a consequence of limited experi-
ence—simply not knowing. A commonly encountered area for
such bad choices is the selection of a sorting algorithm. Many
such algorithms exist, and their performance characteristics are
quantified in standard reference books, usually in terms of a
fixed initialization overhead plus a function defining the pro-
cessing cost per record at different volumes. Depending on a fa-
miliar sorting routine that is economical for 5000 records may
be disastrous when the application volume scales up to 50,000
records at a time.
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In the specific case of sorting, the design question that ought to
be asked is whether sorting is necessary at all. When the re-
cords are large and the keys small, it might be preferable to
build as many indexes over the natural sequence set of the data
as there are orders of access. Especially if a data-in-memory ap-
proach is being used, the order of the sequence set should be
chosen to maximize locality of reference.
Courses in algorithm design in today’s Computer Science curric-
ula focus on tradeoffs—for instance the tradeoff between execu-
tion time and space, both in processor storage and in secondary
storage. Perhaps application designers could use a refresher
course to learn how to apply such criteria.

11.5.3. Distrust of new goodies
Some of IBM’s early MVS products looked good on paper, but
failed in the marketplace, mostly because of unacceptably poor
performance. A case in point was VSPC, a subsystem designed
to offer personal computing, with APL and other languages, to
multiple users. It was supposed to be a high-performance alter-
native to TSO at a time when TSO had a reputation for poor per-
formance. VSPC was designed to be “bullet-proof” in that it
made minimal use of MVS’s interfaces. In particular, demand
paging was not trusted. Instead, VSPC made heavy use of forced
page-outs and requested page-ins.
One peril of such a design is that the designers must guess
right, not only at the time of conceiving the design but for the
full lifetime of the product. Another difficulty is that such a de-
sign cannot take advantage of improvements in the operating
system in the areas that were perceived as shaky at the time of
design decisions.
Fear of the unknown has led application vendors to avoid support-
ing 31-bit addressing, to stick to private paging and swapping
schemes, and to persist in rereading small data sets in applications
artificially constrained to design points better suited to first-gener-
ation personal computers than to today’s MVS systems.3

The I/O avoidance possibilities in MVS/ESA can bring about
revolutionary improvements in application program perfor-
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mance, capacity, functional completeness, and operational flexi-
bility. The advent of distributed relational data base systems
used in client-server application architectures can concentrate
volatile data near the point of use, thus reducing workload and
time pressure at central sites. Such benefits are available, but
only if the new capabilities are learned and accepted by design-
ers of new applications.

11.5.4. Misuse of new goodies
If avoiding an unfamiliar new feature can result in delaying its
benefits to a community of users, rushing headlong into its use
may give it such a bad reputation that it may never again be used.
Early experience with a feature as old as Virtual Input/Output
(VIO) was in many cases so negative that VIO was summarily ex-
cluded from many installations. VIO had controls, but only indirect
ones. Now, with system-managed storage in DFSMS, VIO can be
controlled precisely, and the implementation of VIO now makes use
of expanded storage when it is otherwise unused. Use of expanded
storage for VIO can be controlled in compatibility mode at the indi-
vidual workload level using the criteria table entries described in
Appendix B. However, it’s a safe bet that the installations that
were burned by VIO in the early days will not quickly open it up
with DFSMS and expanded storage.
IBM has made a considerable effort, with specifically targeted
publications, to get application programmers to use the ex-
tended addressing capabilities of MVS/ESA directly in new pro-
grams. The bewildering array of extended addressing options
[data spaces, hiperspaces, Data in Virtual (DIV), DIV
hiperspaces, data windowing services], with each in several
variations, makes it important to study the choices and the nu-
ances of use before electing to use one of these techniques.
There is no doubt that these functions work. The operating sys-
tem and its subsystems make use of them with great success.
They are available to be used by anyone who takes the time to
learn how to do so. In contrast, the learning curve is much less
steep using the integrated development environments (IDEs)
supplied with many PC program development tools. They pro-
mote object-oriented techniques, and include powerful debug-
ging and tracing tools. The emerging integrated client-server
development tools in OS/390 should have many of the same
characteristics.
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11.5.5. Perils of portability
Another force acting to retard exploitation of new operating sys-
tem capabilities is the desire to create “portable applications.”
The dream is as old as the first successful high-level language,
FORTRAN—over 30 years. If an application were to be written
in that subset of FORTRAN that is portable across many differ-
ent hardware architectures, system implementations, and oper-
ating systems, it would have to be written only once! Think of
the profits!

Unfortunately, the lowest common denominator of a supposedly
standard and machine-independent language is very low in-
deed. Any feature that is an implementor’s extension goes first.
Features that depend on the word size, character code, or collat-
ing sequence also must go. What is left might be reasonably use-
ful for pure computational activity near the core of the lan-
guage, but any communication with the outside world is se-
verely crippled.

Thus it was that over 15 years ago, a popular finite-element
modeling package included a program in FORTRAN to sort its
control-card-image input “deck” to prepare for execution of cer-
tain procedures. The sorting was done one character at a time,
with no assumptions about the collating sequence. Each charac-
ter occupied a full-word FORTRAN variable. That sort step was
so slow that it was the longest-running job step in jobs that
lasted less than 20 minutes on an IBM 3033MP. Simply replac-
ing that program with a skeleton PL/I program that invoked the
standard SORT/MERGE package reduced the step run times to
insignificance.

The vendor of the package did not care about the performance of
the sort step, because most users of the package applied it to
very large model cases that ran in hours, not minutes. The pack-
age ran (and still runs) on many different computers. The only
victims of portability were the engineers who tried to run small
models and incurred disproportionately large data processing
charges. According to recent reports, that control statement
sorting routine remains today as it was 10 years ago.

A package designed for portability or broad applicability has in-
evitable built-in compromises:

• little or no use of advanced system services
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• minimal use of advanced data definition choices

• one-size-fits-all algorithms, even in sensitive areas like sorting

• “least common denominator” parameters such as block size

• volume assumptions that may be very wrong for you

• limited tuning or customization opportunities

• an “easy install” procedure that makes it necessary to dig
for what customizing options there might be

New waves of portability are rolling over us today. IBM’s Sys-
tems Application Architecture (SAA), SAP AG’s SAP R/3, and of-
ferings from other vendors point to a future in which many ap-
plications will run very much alike, but not necessarily equally
well, on machines of dissimilar architecture and widely differing
size.
What can the application programmer do to avoid mediocrity in
applications he or she installs or maintains? The first need is to
be involved early in the procurement cycle, before a purchase de-
cision acquires unstoppable momentum. It’s good to have a list
of stringent performance requirements, including specific needs
for tuning guidance in the target environment and the set of op-
erating system features to be supported. No matter how porta-
ble an application might be, the vendor is likely to make accom-
modations for specific operating environments in the finished
package if it is clear that sales depend on a proper fit.

11.5.6. Prototyping tools
Many installations have what might be regarded as prototyping
tools—program language packages that enhance productivity of
the end-user-as-programmer at the expense of code efficiency or
system resource use. Fourth-generation languages, “expert sys-
tem” packages, languages like APL and interpreted Basic, QMF,
even TSO CLISTs are in this category. The proper use of such
packages is to empower those who are not professional program-
mers to solve occasional problems using the computer.
When “occasional” slides over to “frequent” and then to “contin-
ual,” it is time to consider whether the wrong tool is being used.
A CLIST running at 2 percent of the efficiency of a compiled pro-
gram may be acceptable if used once a day—but if two hundred
TSO users have copies of the “neat gadget” and use it ten times a
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day each, the aggregate cost (although very hard to spot) be-
comes substantial. With a working prototype satisfying the
functional requirement, any capable application programmer can
write a program to do the job at far less cost. At the very least, it
could be converted to a REXX EXEC with a significant perfor-
mance gain. Opportunities must be sought out, because these
sources of inefficiency tend to be well hidden.

11.5.7. Faster is not necessarily better
The development and wide availability of tools for Com-
puter-Aided Software Engineering (CASE) leads to a new kind
of problem. When everyone recognized that a programming de-
velopment project was large, much time and effort were put into
design. The passage of time allowed early design flaws to be
caught and corrected. By the time coding began, everyone on the
project had internalized the concept of the project and was able
to work well toward a common goal.
With CASE making coding easy, there is a strong temptation to
rush into coding before the design has matured and before all of
the developers are “on board.” The unspoken principle seems to
be: “There’s not enough time to do it right, but always enough
time to do it over.”
In an environment where coding is easy, there is more reason
than ever to proceed slowly during the conceptualization phase
of a project. The design can be made much more nearly perfect
before coding begins.

11.5.8. Leaving the stitches in
After the coding is done and the application system is built, it
may turn out to be a poor performer. One possible cause is that
the main concern in early building is ease of debugging, rather
than best performance. As unlikely as it sounds, production ap-
plications are often delivered with debugging code left in (al-
though it might be disabled), or the modularity that was a good
idea at the coding level shows up as operational inefficiency. In-
struction-trace studies of MVS systems in the past have shown
heavy biases in favor of linkage instructions and GETMAIN
SVCs. Logical and computational function take a back seat to
simply getting around the address space and acquiring storage
to do useful work.
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We might call this implementation practice “leaving the stitches
in.” There is no inherent conflict between enjoying the imple-
mentation benefits of modularity from design to debug, yet
achieving efficient seamlessness in production. The goal of elim-
inating the stitches should be a mandatory part of the design
and implementation process.

11.6. Application Design Choices

When one has the luxury of designing a new application from
the start, it’s possible to make design choices in the interest of
good performance. Some suggestions follow.

11.6.1. Get to the essence
As a designer reviews the high-level objectives for an application,
it can be useful to “step back” and reflect on its overall purpose. Is
the primary focus to provide information to online users? Is it to
produce reports for management according to a prescribed format?
What data is to be accepted? Stored? Combined? Changed? How?

Keeping the high-level concept in mind may help the designer to
make correct decisions affecting resource utilization. Recog-
nizing the most frequent processing path might help her or him
to decide what the sequence-set order of a data set should be.

11.6.2. Design for good real storage behavior
Follow the three rules cited above to make locality of reference,
validity of reference, and minimum working-set size key guide-
lines for the design. Here are some supporting suggestions:

• Make sure that the natural data order coincides with the
most frequent processing order.

• Balance the resource cost of indexing against the costs of
sorting and searching.

• Revisit locality of reference after structured design is done.

• Balance the cost of data area initialization (a major viola-
tion of validity of reference) against whatever increase not
initializing (or initializing as needed) might bring in
per-item processing cost.
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11.6.3. Use top-down design
Postpone the flood of detail in the design stage by employing
well-known techniques for delaying low-level decisions. Ensure
that the design is both effective and correct by using two related
techniques:

• walkthroughs to validate high-level design

• inspections to validate low-level design and remove defects
or errors in carrying the concept down to the level of design
that determines what is to be coded

11.6.4. Make performance part of the design criteria
For many years, Dr. Connie U. Smith has been teaching and
writing about a discipline called Software Performance Engi-
neering. Her work is well-represented in the Proceedings of
CMG conferences over the years. The ideas suggested below are
in the spirit of Dr. Smith’s work:

• Choose algorithms based on largest expected volumes.

• Choose data layouts to optimize fully loaded performance.

• Anticipate full operating system functionality. When a new
release of the operating system can be expected on-site be-
fore the completion of a project, learn about the “new good-
ies” and include their use in the design, especially if the
payoff is substantial.

• Analyze data reference patterns to avoid contention. If I/O
avoidance techniques are used aggressively, the common
problem of I/O contention, both intra-application and
inter-application, can be minimized. If such techniques are
not used (for instance, because of a temporary shortage of
expanded storage), I/O pattern analysis in advance can
save frenzied tuning effort after installation.

• Optimize inner loops at the design level. Recognize which
routines will be most active in the normal running of the
application and take special pains to avoid placing invari-
ant computations in such areas, and to avoid performing I/O
from within those active spots. If only sparing use can be
made of I/O avoidance techniques, focus on the hot spots.

• Always keep the cost of I/O in mind.
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11.7. Ideas for Application Implementation

11.7.1. Use proven techniques
There is a host of well-known implementation techniques (many
of them rooted in design methodology) that have produced out-
standing results in eliminating errors and preserving schedules.
Some of these are:

• Choose an object-oriented approach to reduce data coupling.
If the selected implementation language does not support
object orientation, use the concepts to the greatest extent
possible within the limitations of the language.

• Avoid wasted effort by choosing a top-down implementa-
tion methodology. Top-down implementation minimizes
what is written only to be thrown away later. A user of this
methodology first creates the outer functional shell, fully
populated by functionless stub modules or segments. The
stubs are then fleshed out with function. There is no “scaf-
folding” temporary code to be discarded.
An additional advantage is that the product itself can be the
base for demonstration prototypes, providing not only “look
and feel” simulation but genuine responses where they are al-
ready implemented.

• Use the proven technique of code inspection to improve the
possibility of early defect removal and save future mainte-
nance costs.

• Match top-down implementation with top-down testing of
a growing functional base. Keep the testing focus on the
overall project goals after modular function has been veri-
fied by unit testing.

11.7.2. Remove the stitches
• Make code segments source INCLUDEs, not CSECTs.

• Remove debugging code before putting an application in
production.

• Use the most comprehensive efficiency optimizations
available from compilers, including placement of code units
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in-line. Take any options available to eliminate linkage
code.

However, be suspicious of “optimizations” that purport to
save storage. What is most likely being saved is virtual
storage, a resource with no cost. Unless the compiler is new
enough to provide effective optimization of real storage
use, what you might get is well-folded code with a bad ref-
erence pattern, rather than code that minimizes the work-
ing set.

11.7.3. Perform volume testing in a realistic environment
• Use divergent thinkers to create test cases. This might be

the perfect assignment for the lunatic hacker or the person
who drives others crazy with “what-if” questions. The test-
ing assignment should be simply to use the limits of the
specifications to create cases that might break the applica-
tion.

• Use performance monitors to characterize execution and
delay states and to find sources of contention and execu-
tion-time hot spots during volume testing. Application pro-
grammers should be familiar with the entire set of perfor-
mance management tools installed at the data center and
use them to seek out areas for improvement in the finished
product. Some of these tools are primarily marketed to op-
erations groups and system programmers, although they
can be of great value in understanding how an application
spends its running time.

11.8. Considerations for Client-Server Applications
Client-server4 is one of today’s hot trends. It’s not as hot as it
was in 1993 or 1994, because the World Wide Web and Java are
getting the ink in airline magazines now, but it still has some of
the trappings of a fad:

• Unqualified “advocates” seek to force decisions to imple-
ment client-server applications on the basis of anecdotal
evidence from stories in general-interest publications or
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trade press articles that often are little more than vendors’
press releases.

• CIOs and other executives have frequently regarded cli-
ent-server systems as a less expensive alternative to the
presumed excessive costs of mainframes. The mainframes
in those cases are invariably several generations obsolete
and it might be argued that grasping the torch of cli-
ent-server acts as a diversion from the executives’ failure
to pursue plans to keep the hardware current.

• The rise of personal computers and local area networks has
led to a desire to have the LANs tap into the mainframe’s
mission-critical data. While ad hoc data serving is not true
client-server, the evolution to engineered client-server ap-
plications is an obvious next step.

If the fad issues and the acts of front-runners and camp-follow-
ers can be set aside, we find that client-server is a legitimate
way to structure applications. The client-server architecture
simply recognizes that different platforms have different
strengths. Small systems (typically personal computers) are
good at providing an accessible user interface, handling data in-
put validation, and executing guided dialogues with the user.
Larger systems (typically large UNIX servers but increasingly
MVS systems either in native MVS mode or OpenEdition) are
tireless engines for storing and moving large amounts of data
with integrity and stable performance over a wide range of de-
mand conditions.

11.8.1. What is a client-server application?
One of the problems of pinning down client-server discussions is
the difficulty of identifying just what client-server is. Consider a
local area network in which some number of personal computers
(referred to in the literature as clients) are connected to one or
more server systems, and through less direct network connec-
tions to additional servers. The servers provide print queue ser-
vices to those clients without attached printers, as well as access
to files and selected applications that reside on server storage
devices.
Although such a configuration has clients and servers and con-
nections between them, it lacks one essential element of what
this author regards as a client-server application: knowledge. In
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an engineered client-server application, the client knows the
server and communicates with it in the restricted vocabulary of
a particular application; the server knows its clients and consid-
ers client actions to be an extension of the server-resident appli-
cation. A frequent technique used in structuring client-server
applications is to use the Open Systems Foundation’s Distrib-
uted Computing Environment (DCE), in particular its Remote
Procedure Call (RPC) protocol to integrate functions on the cli-
ent and server platforms and to distribute them or consolidate
them as appropriate.
Although client-server is good at optimizing the use of each plat-
form in an application design (and there may be more than two
levels—three-level designs are very common5), doing so is ex-
pensive. The RPC protocol is far more complex than a simple
reference to another program in the caller’s environment, and
references to logic and data are executed over a network. Conse-
quently, it is extremely unlikely that client-server performance
will ever be better than performance of the same application im-
plemented entirely on either the client platform or on (one of)
the server platform(s).
The technical performance management challenge of cli-
ent-server is to ensure that performance is as good as possible
and that response time is consistent. The larger challenge is to
contain and manage the often wildly optimistic expectations for
client-server in performance, capacity, and cost.

11.8.2. Client-Server: The Customers
Client-server applications’ end-users may not be experienced
users of centrally supported applications. In many cases the ap-
plication has taken shape on personal computers and has been
lifted up to a centralized server because it has become more im-
portant to the enterprise. On the other hand, other client-server
customers may have been accustomed to using a main-
frame-based application with PCs as terminal emulators; now
some functions of the application may have been distributed to
the PCs and perhaps the platform has changed as well. In such
currents of change, the users’ expectations may be very con-
fused. They may expect all the good attributes of the client plat-
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form, the power and stability of the server platform, and the op-
erational simplicity of a single-platform application.
The management of those users may have been persuaded by “ad-
vocates” that the cost of client-server would be less than that of
predecessor systems. They may have been encouraged to overlook
little details like backup, recovery, security, synchronization,
backup lines, adequate configuration, training…. They may also
have had unrealistic expectations about the schedule to develop
and deploy client-server as well as to optimize its performance.
It may not be the responsibility of the performance person to con-
dition the users’ expectations in all these areas. However, applica-
tion owners and user management alike may be under severe
pressure to complete the schedule. The performance person is off
the hook—until the application is deployed and, more likely than
not, fails to meet its performance targets. The importance of proto-
types, pilot deployment, controlled scale-up, and immediate at-
tacking of early-stage problems cannot be overstated.
If the server is OS/390, Workload Manager goal mode can help
in meeting the server’s portion of the performance targets. The
network and the client platforms, as well as any intermediate
servers, must be managed by more conventional, resource-ori-
ented techniques. In an OS/390 environment, products such as
IBM’s ADSM provide a solid solution to the LAN and distrib-
uted client backup problem.

11.8.3. Client-server: the application
As suggested above, many client-server applications are
adapted or converted from former applications—to “harden” an
application originally spread out on uncoordinated PCs, or to
“downsize” an application that has reached the end of its useful
life on a back-level mainframe. The latter is often termed a “leg-
acy” application. Typically, part of the conversion effort in the
case of downsizing a legacy application is to upgrade its user in-
terface. In the case of “upsizing” a PC-based application the
more usual concern is to harden the data base subsystem.
Regardless of the origin of a converted client-server application,
certain requirements are clear: changes in the business since
original must be considered, new expectations and the wishlist
must be respected, and an overall improvement in perceived
function and performance must be seen from Day One.
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For a client-server application begun as a new project, from
scratch, the design job must be done exhaustively at all levels,
and expectations must be managed carefully to avoid disap-
pointment and eventual project failure.
In any case there are basic decisions to be made:

• Is it stand-alone or does it exist in a coordinated suite of
applications?

• Does it rely on “middleware” or an “application framework”
such as IBM’s MQ Series or SAP AG’s SAP R/3?

• What is the distribution of application data? Under what
conditions does data migrate from a server to the next level
down? What are the conditions that cause a data item to be
refreshed from a guaranteed source. How much of the data
is valid for a long period of time, how much is transac-
tion-dependent, and what intermediate categories are
there?

• Can the network traffic be estimated? Is there a plan to
model and then prototype the data flows to get an early
idea about possible bottlenecks?

• Is the deployment plan staged with enough time between
stages to respond to early problems?

11.8.4. Client-server: the server
Here is where “hardware is cheap” applies—the server is often
not the most expensive part of the configuration. The server
platform must be robust, stable, capable of high data through-
put rates, and able to handle all anticipated formats and proto-
cols (Does this sound like MVS?)
Ensure enough capacity in the server. DASD storage and mem-
ory will be in short supply as the transaction rate builds up.
CPU is usually not hit as hard.

11.8.5. Client-server: the client
If a new system is being deployed, it’s important to be careful in
selecting the client hardware. Usually these are ordinary PCs
with modest performance requirements. (The latter is not as
true if the client system is used for other purposes than a single
application.) Quantity discounts and on-site service agreements
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should be available. If the purchase is a large one, it may be
worthwhile to buy memory and hard disks from a wholesale
supplier or even from the manufacturer. Enough spares should
be procured to take care of anticipated needs for urgent replace-
ments—but not to cram a warehouse with rapidly-depreciating
hardware.

Take care to match the hardware, particularly the display and
video subsystem, with the most demanding frequently-used
mode of the application. For instance if full-page graphics in
“portrait” orientation are to be displayed, the smallest accept-
able monitor for casual viewing is the 17-inch diagonal size. If
10-point text is to be read on the same display, 20-inch monitors
at a screen resolution of 1280 x 1024 (horizontal by vertical) pix-
els or better should be specified. Just to compound the require-
ment, a video subsystem capable of driving the display at a ver-
tical refresh rate of at least 76 hertz is necessary to avoid screen
flicker and the eyestrain it produces.

On the other hand, 17-inch monitors are expensive and 20-inch
monitors are two to three times as costly. If the specifications
call for full-page views and the budget can’t pay for large moni-
tors, it may be possible to change the specifications and view

Choose the client operating environment based on the experi-
ence of most users—most OSs (Windows NT, Windows 95, OS/2,
Macintosh) offer equivalent, sufficient services. Training ex-
penses can end up higher than anticipated if the client operat-
ing system is unfamiliar to most of the users.

11.8.6. Client-server: connections
This area continues to change rapidly. In the United States, the
boundaries among telephone companies, cable television suppli-
ers, and Internet service providers have become very fluid. For-
merly established territorial boundaries among different suppli-
ers are routinely crossed. New technologies such as fiber and
two-way cable offer giant leaps in bandwidth, enough to invali-
date commonly-given advice about minimizing data traffic. The
same forces (and others) affect the network environment else-
where, more or less in the same way depending on the local gov-
ernment’s degree of activism, advocacy, or intervention.
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So, it is difficult to give advice in this area. If there is not sufficient
skill and knowledge in communications associated with the cli-
ent-server implementation project, hire the expertise.

Regardless of the kind of connections chosen, use them as effi-
ciently as possible. Data compression is reliable and inexpensive
to use. Error correction should be built in to the communication
hardware.

If the communication medium includes public links, consider
carefully the need for encryption. The cost is low and the poten-
tial for damage to the enterprise is great if it’s not used.

11.8.7. Hypothetical Performance Example
Figure 11-1 shows hypothetical mainframe transactions termi-
nal-based contrasted with their client-server equivalents to il-
lustrate some points of performance concern. Effective line
speeds for the client-server examples are assumed to be about
one-fourth of the terminal line speeds. Example (a) is a basic
CICS query and response. Example (b) is a host-driven conver-
sational transaction, showing extra line interactions and a sec-
ond host I/O block. Example (c) is the client-server counterpart
to (a), showing the extra response time components. Example (d)
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Figure 11-1. Time Lines For Various Transaction Types.



represents the rare case when a transaction can be serviced en-
tirely on the client machine. It’s really fast.
Example (e) is the counterpart to (b), where the conversation is
server-based. Extra line turnarounds elongate the response
time significantly. Finally, example (f) shows how response time
can be cut by doing most of the prompting on the client machine.
It also illustrates some possibility for overlap of transaction
completion and updating on the server.
We can see from these examples that superior performance is
achieved in client-server only when trips to the server can be
avoided. Conversational interactions between client and server
are particularly time consuming. Applications that exploit all of
the hardware capability of the client platform can provide the
best possible combination of function and performance.

11.8.8. Client-server: performance management
Performance management in client-server environments must
consider all of the old performance factors along with a few new
ones, in new and different combinations. A quick analysis makes
it clear that we would deceive ourselves by monitoring just the
servers; the network is an essential part of the system. If the
business depends on certain client machines to be up and run-
ning, the monitoring must extend to them, but perhaps simply
at the “heartbeat” level of gross availability.
Solving performance problems in client-server is complicated by
the distribution of the application and by the possible multiplic-
ity of connection types. It’s therefore prudent to start as early in
the process as possible, analyzing performance from the first
prototype stages and adding data points as deployment pro-
ceeds to the pilot level. If the projected trend of performance ap-
pears to be unacceptable, action should be taken at the pilot
stage. A well-drawn schedule will have “hold points” to allow
further deployment to be delayed while early problems are over-
come; the alternative is massive dissatisfaction, an abandoned
project, and gross waste of resources and time.

11.8.9. Client-server: capacity planning
This topic may be an oxymoron. For an established client-server
system, the usual reaction to unacceptable performance is to
add a server. It’s probably a less expensive action than even a
minimal performance consulting contract. It’s only after a few

Application Performance Management 301



rounds of such instinctive action without much benefit that the
consultant is called in, only to discover that the network can’t
handle the traffic.

On the one hand, the conventional need for capacity plan-
ning—dealing with big machines that have large floor space and
environmental needs, as well as long procurement lead times, is
becoming less necessary. However, those old machines were run
fully loaded and it was relatively easy to know which part of the
configuration needed help. Client-server is different, unless the
server is MVS. Then, all of the knowledge we already have of
MVS systems can be brought to bear on creating appropriate ca-
pacity plans for the servers. The undemanding needs of clients
will usually be less of a problem.

Other aspects of client-server, including training costs, disaster
recovery, backup, currency, and synchronization concerns, are
beyond the scope of the performance management theme of this
book. They must be addressed, but this should be done in the
context of a more comprehensive view of enterprise computing
operations and economics.

11.9. Practical Approaches to Cooperation

The organizational tensions that often exist between the data cen-
ter and the applications staff are not eased when a performance an-
alyst makes a vague “suggestion” that a particular application pro-
gram is the cause of poor response time, as opposed to something in
the way the system is managed. The more detailed the analysis, the
more specific the recommendation can be, and the more likely that
it will be accepted. Results of execution-state analysis and direct
contention analysis can be easily understood by application devel-
opers or subsystem maintainers, and corrective responses are
clearly suggested by the kind of information presented.

It can be difficult for someone without specific responsibility for
an area to make credible recommendations for change in that
area. A cool, factual, limited, and respectful approach is much
more likely to be successful than the kind of emotional and con-
frontational scene often engendered by a service crisis. This ad-
vice may sound obvious and superficial, but ego involvement can
often drive people out of control, particularly when solid facts
are not available when required.
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Therefore, get the facts! When a manager rages that Accounts
Receivable came up late for the last two days, the last thing
needed is confirmation that the problem did indeed occur. What
is required to defuse the situation is a clear explanation of why
the batch update was late (what caused it?) and a credible plan
to avoid it in the future. (Credibility is compromised already be-
cause the problem should have been identified and headed off
the day before.)
Workload-oriented data collection tools, preferably with conten-
tion analysis capabilities, are essential for this task. Real-time
alerts based on overdue production batch could have made reme-
dial action possible within whatever buffer might have been avail-
able. It takes far more factual data, credibility, and presentation
skill to calm down an irate manager than to put a plan and pro-
cedure in place to deal with late batch jobs.

11.10. Summing Up
How much is it worth to practice successful performance man-
agement in MVS? Hardware acquisition can be avoided or de-
ferred; performance can be made acceptable and consistent. The
new challenges of client-server and network-centric computing
can be dealt with in a straightforward way, building on the
strengths of a polished methodology. Perhaps most important,
though, the human resources formerly devoted to creating use-
less reports, making accusations, and finding fault can be di-
rected to productive tasks.

11.11. Chapter Questions
1. Identify the “top 10” applications in your installation. What

was the basis of your selection? Go back and make sure it’s
on the basis of importance to the business or enterprise.

2. Now name your five most troublesome applications. What
kind of trouble do they cause? Are they all on the “top 10”
list? Rework the list to identify the worst five of the top 10.
Now eliminate any whose users (customers) are completely
satisfied with current and projected performance and cost.
Redo the list to include the worst performers of the top 10
which are perceived as problem areas today.
If you can’t come up with any examples meeting all crite-
ria, look for any parts of your workload about which there
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are complaints. If you still can’t find any, you may have
that rarest of systems with no performance problems.
Make some up by projecting credible significant growth in
volume or complexity.

3. Develop an ideal action plan to overcome the problems of
the applications you listed in response to question 2. Iden-
tify who is responsible for each item. An ideal plan costs no
real money and shows self-evident value at each stage to
each participant.

4. If ideal (no-cost) plans are not possible, identify the addi-
tional resources with the minimum cost necessary to deal
with all five problem areas. How did you arrive at your esti-
mates? What measurements and analysis make you sure?
What else would you prefer to have?

5. Now sell your plan, organizing it as a set of tasks for each
decision maker and affected individual or department.
Selling it can be easier if you stress your involvement and
willingness to work with the responsible individuals to find
optimal solutions.
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Chapter

12
Summing Up and Looking Ahead

12.1. The MVS Journey—How Much Farther to Go?
When OS/360 was announced in 1964, no one could have fore-
seen what was to come. One megabyte of processor storage was
seen as “huge,” processor cycle times were measured in micro-
seconds, and a “large” storage device capacity was less than 50
megabytes. Today, run-of-the-mill personal computers exceed
those figures by orders of magnitude.
Yet System/360 and OS/360 changed the world of computing
and redefined the term “operating system.” Although other sub-
stantial operating systems have been implemented since 1964,
they have been influenced one way or another by OS/360 and its
progeny. In some cases, the influence is direct. OS/2, for in-
stance, shares many concepts with MVS.
In other cases, the influence is one of aversion. The Macintosh
operating system attempts to be sophisticated and simple at the
same time. Virtually all the terminology of MacOS seems to be
invented to differ from that of MVS. Of course, the archetype of
the anti-IBM operating system is UNIX.
In the twenty-first century, operating system games must end.
The set of common services expected of any operating system
must be offered by a descendant of today’s MVS, in a way that is
compatible with other offerings, both from IBM and its competi-
tors. The underlying internal structures will provide the differ-

305



entiation across different implementations. OpenEdition MVS
is a good start in this direction.

Good ideas that have evolved in other arenas, such as
plug-and-play and graphical user interfaces, should be seen in
the enterprise computing world as well. To the extent that the
computing model of the future is network-centric, the network
must be made invisible—i.e., such a well-integrated part of the
computing environment that one is not aware of network con-
nections or cryptically coded IP addresses. Instead, the user at-
tempting to connect to a remote server simply would need a
name, like today’s ubiquitous “www.anything.com.”

The power and capacity of today’s hardware and the expectation of
continued improvement in price/performance and raw power
makes it imperative to revise some of the underlying beliefs of
data processing. It makes no sense whatever to require human be-
ings to perform tasks that can be done equally well or better by
programs. It is indefensible for a vendor to provide a hardware de-
vice that is not self-revealing and self-installing when connected to
a system with a well-defined plug-and-play interface.

It follows that an operating system and the hardware it runs on
must facilitate and support automatic detection and installation
of an attached and ready device that is not already known to the
system. (The exception is to permit devices to be logically dis-
connected when service actions are required.) Continuous oper-
ation is a given; nondisruptive servicing is a given.

None of these initiatives require invention but simply adaptation
of what is already commonplace in contemporary systems. The
most pressing need is for standardization of the attachment inter-
face at a high enough level that it might last for 30 years or more.

12.2. The Ideal Large System

Some time around the year 2010, we might expect to see enter-
prise computing running on hardware that is as much smaller
than today’s MVS CMOS machines as those machines compared
to their ECL bipolar predecessors. The new hardware would be
20–100 times faster and 100 times larger in memory capacity
than today’s systems—and it would cost less than one-tenth as
much in today’s currency. Online storage would be a nonmoving
technology such as holographic images with capacity of a few
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terabytes and an access time of a millisecond, and backing de-
vices in the petabyte or even exabyte range.
The hub server would be connected to its users by fiber-optic or
wireless connections with effective data rates of 100–1000
megabytes per second. The operating system would provide a
graphical user interface which could be enriched or replaced by
a different interface at a work station. Information would travel
between server and clients in object-oriented, device- and inter-
face-independent form, possibly derived from today’s HTML and
Sun Microsystems’ Java.
The code resident on each client work station would be propa-
gated from the hub server at times of inactivity. Similarly, distri-
bution of maintenance from the vendor to the customer would
occur in the same manner. Since the transmission is such cases
is primarily one-way, media such as satellite broadcast might be
useful in this area.
As capacity and bandwidth increase, the need for intermediate
servers would diminish; simple two-level models would suffice
except when span of control is a significant manageability issue.
The user interface of the work station would be presented on a
thin panel device (possibly flexible and portable) with resolution
exceeding 1600 by 1280 pixels at whatever screen size is conve-
nient. Keyboards will still exist, but will be supplemented by
voice communication for most command and noncritical data
entry functions. Local data storage in the work station might be
needed to support alternate GUIs, and if off-network operation
is likely, but bandwidth and capacity in the server and network
diminish the value of client data caching.
Continued evolution of the user interface and adoption of para-
digms like bookmarks and cutting out clippings will cause paper
output of nonarchival documents to diminish greatly. Legal
changes may make further reduction of paper output possible,
as technology makes it possible to create unalterable permanent
records in electronically viewable form, with alternatives to cur-
rent facsimile (fax) systems capable of high-resolution color
transmission. Text management including font management
would be integrated deep in the operating system, instead of be-
ing relegated to a printing subsystem.
The user’s screen device would show full-motion video in lifelike
color; holographic projection devices will render three-dimen-
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sional images. Application programming would evolve from to-
day’s object-oriented and visual methods, with the addition of
transparent global optimization capabilities to ensure that the
gains in processor power are not squandered by inefficient pro-
grams.

12.3. How Does MVS Meet the Ideal?
MVS, as embodied in the early releases of OS/390, is moving in
the right direction but still has a long way to go. The re-integra-
tion of much of the operating system is a good start; next should
come the rationalization and integration of subsystems such as
DB2 , CICS, and JES.
Adding hardware interfaces for painless reconfiguration should
be within today’s capabilities; revising the instruction set and
structure to exploit terabyte memory sizes might be more chal-
lenging. The existing MVS real memory structure is not the
problem. Real memory can be hidden. Revealing a new structure
for MVS virtual memory will be an appropriate step by 2001,
the twentieth anniversary of the announcement of MVS/XA. An
evolution from today’s parallel sysplex might provide a path to a
higher-level cellular architecture.
The next challenge for MVS will be the integration of graphical
user interfaces into the operating system. In this case, there is
little technical challenge but a great paradigm shift is needed.
An early bad decision by IBM was that of clinging to proprietary
EBCDIC instead of ASCII as the internal character set. As
UNICODE becomes an accepted standard, IBM has another
chance to join the world and remove an objection to a choice of
IBM as the system vendor.

12.4. The Ultimate Wish List
I wish IBM would continue the evolution of MVS in the positive
direction begun in OS/390.
I wish that the intrinsic capacity, performance, and price-perfor-
mance of the future MVS platform will make performance man-
agement concerns simply those of ensuring that adequate ca-
pacity is available. Of course, that means that the self-manage-
ment and self-optimization of MVS performance will grow well
beyond what is in today’s Workload Manager.
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I wish that the functional capabilities of MVS and its subsys-
tems will be so well integrated that users in the future will
think only of interacting with their data, not with the operating
system or its obscure subsystems.
Now, Dear Reader, what is your wish?
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Appendix

A
SRM in Compatibility Mode—Concepts

A.1. Application to Workloads

The concepts developed in Chapter 6 are of little use by them-
selves. In this appendix we examine the interaction of those
ideas with the work that runs (as address spaces) in an MVS
system. In compatibility mode,1 address spaces are organized by
the SRM in two ways:

• A performance group defines many operational parameters
associated with each address space, including its dispatch-
ing priority and storage isolation. The performance group
definition also identifies which domain will be in control of
each of its address spaces at any time.

• A domain defines a group of address spaces to be managed
for swapping according to specific rules as directed by
SRM, to control system loading and apportion resources.
The domain definition may also denote a set of criteria (de-
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fined in the OPT) that determine expanded storage eligi-
bility for the pages of each address space in the domain.

A.2. Performance Groups
Each address space in MVS is assigned to a performance group,
either explicitly or implicitly. Control performance groups (those
defined in the IPS) exist for the purpose of allowing SRM to
manage the attributes of address spaces. These include:

• domain

• dispatching priority and I/O priority

• storage isolation

• performance period control
Each of these attributes is examined in detail in this appen-
dix. The last attribute might remind us that each perfor-
mance group is defined as one or more (up to eight) perfor-
mance periods, so that treatment may change as transactions
age. A nonswappable address space assigned to a multiperiod
performance group always stays in the first period. Documen-
tation for MVS/ESA SP Version 5 (Conversion Notebook)
states that nonswappables may pass through multiple perfor-
mance periods, but the OS/390 Initialization and Tuning Ref-
erence does not say so. (If an address space becomes
nonswappable during execution, it stays in whatever period it
was in at the time of transition.) For swappable address
spaces, service or time accumulation determines the passage
from period to period; a new transaction always starts in the
first period.

A.3. Service Intervals
SRM bases some of its actions on the amount of service an ad-
dress space receives during some period of residency. All of these
decisions are related to swapping, so the values discussed below
apply only to swappable address spaces.

A.3.1. ENQueue residence value (ERV)
ERV is a means of ensuring that an address space holding an
ENQueue on a resource for which there is current contention is
protected from being swapped out during a specified interval.
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ERV is measured in CPU (TCB only) service units, has a default
value of 500, and is specified in the OPT. This parameter sur-
vives from the earliest days of MVS. It has been updated as of
the introduction of enclaves to include those work units, defin-
ing the interval during which they execute at the privileged dis-
patching priority (PVLDP). Address spaces within their ERV
service durations execute with PVLDP as well.

A.3.2. Performance periods
SRM can manage swappable transactions differently at each
stage of aging. The measure of that aging is usually accumu-
lated service, and the means of changing management parame-
ters is the passage from one performance period to the next. The
DUR parameter gives the duration of each performance period
except the last in a performance group, and is usually measured
in total service units (SUs). A rarely specified UNT=R parame-
ter in the performance period definition allows DUR to be mea-
sured in wall-clock seconds instead of service units. UNT=S (for
Service) is the default and need not be specified.
TSO performance period DURs usually range from a few hun-
dred SUs in the first period to several thousand in the
next-to-last (third or fourth) period. (The last period is always
unbounded, and DUR may not be specified.) A typical batch first
period might be 5000 service units; the second period might be
20,000 to 50,000, if three periods are used.
The use of performance periods sometimes becomes a perplexing
part of MVS performance management. If periods are used only to
recognize different types of batch and TSO transactions, there is
little complexity. A simple clustering analysis of completion statis-
tics for a representative sample of transactions might show a few
natural clusters of transaction sizes. If 81 percent of TSO transac-
tions have 200 service units or fewer, and very few end in 200 to
400 service units, it seems reasonable to set the duration of first
period to some value between 200 and 400. The same rationale can
be used to establish groupings of batch job durations and set up
two or three batch performance periods for unscheduled batch.
(Production batch may not require the same treatment;
multiperiod performance groups may not facilitate consistent
turnaround times and instead serve to stretch out longer jobs.)
When performance periods are used for other purposes than
supporting the natural divisions of transactions, the subject be-
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comes complex and works against efficient operation. It may be
very comforting to report that 85 percent of TSO transactions
are “trivial” and therefore complete in first period. It is plain
silly to require this to be so. The work will be what it will be. The
purpose of performance management should be to handle the re-
ceived workload efficiently and effectively subject to the needs
of the business, not to warp it into something else. Of course, if
“natural” efficiency and effectiveness are consistent with busi-
ness reality, so much the better.

A.4. Domains
Each address space is assigned to one domain at any time. If an
explicit assignment is omitted in the performance period defini-
tion, a default assignment of domain 1 is made for ordinary ad-
dress spaces and domain 0 for privileged address spaces. Privi-
leged address spaces include initiators, LOGONs, VTAM’s Ter-
minal Control Address Space (TCAS), and those with an active
program named in the Program Properties Table (PPT) with the
PRIVILEGED attribute.
Each domain (other than domain 0) is defined in the IPS. Al-
though only the domain number must be specified, two addi-
tional kinds of information are usually supplied: constraints
and a means of setting the contention index. An additional pa-
rameter designating a set of expanded storage eligibility crite-
ria may be added as well.

A.4.1. Constraints
Domain constraints define the range of allowable MPLs for a do-
main and are specified as a lower limit (minMPL) and an upper
limit (maxMPL) in the range of 0 through 999. The limits may
be equal. The current MPL of a domain includes both swappable
and nonswappable address spaces.
When the upper and lower domain constraints are equal, con-
trol of the domain’s MPL has been denied to SRM. Con-
straints of (0,999), on the other hand, allow full SRM control.
The default, however, is (1,999). A nonzero minMPL may be
specified to ensure minimum swap-in delay for TSO users or
swappable subsystem address spaces. A restrictive maxMPL
allows the installation to limit the impact of resource-inten-
sive or contention-prone jobs.
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Prior to MVS/ESA SP 4.2, there was little benefit in having
more than about ten domains.2 Swap management based on
intra-domain contention became ineffective when work was
split in domains matching performance groups, and SRM over-
head was very slightly increased.

As of SP 4.2, there are new, much better, reasons for having ad-
ditional domains. Because there are no longer OBJs in perfor-
mance period definitions, there is no equivalent to associating
multiple performance periods on different OBJs with a single
domain. Each such workload segment now needs a different do-
main. Additional domains are also needed to specify expanded
storage criteria for individual nonswappable address spaces,
and to differentiate among different swappable workloads in
their eligibility for access to expanded storage.

TSO is usually an important swappable workload. Typically,
there is a separate domain for each of the first one or two perfor-
mance periods, and another covering the last period or two. A
typical specification for a domain associated with a TSO first pe-
riod is to set the minMPL equal to about one-fifth of the number
of logged-on users expected at an average peak period. The
first-period maxMPL might be set to the approximate number of
TSO address spaces that could be accommodated in real storage,
assuming that batch MPLs are driven to their minimum values.
(If more specific information about TSO working set is not avail-
able, a working set of 100 page frames per TSO address space
might be assumed for this calculation.) Such a maximum might
be needed to deal with the aftermath of a TSO stall condition
such as an ENQ lockout of a commonly used shared data set.

An APPC/MVS workload serving many users in individual
transaction processor (TP) address spaces has similar charac-
teristics to TSO. Its domains should also have minMPLs ade-
quate to minimize avoidable swap-in delay. A similar treatment
applies to “batch” domains serving an interactive workload like
CADAM.

Other domain MPLs should be defined to be as close to their de-
fault wide-open values as possible. In other words, trust SRM! If
SRM is allowed to adjust the system-wide MPL based on appro-
priate criteria, distinctions among domains can be made by se-
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lecting differing service-rate ranges for setting each domain’s
contention index. It may be difficult to get it right, and it may be
somewhat intimidating to yield control to SRM if one has not
done so before, but the alternative is to remain continually in-
volved in trimming and adjusting inflexible domain constraints
in order to keep current with workload changes. Choosing this
course is not a good career decision.

A.4.2. Contention indexes since SP 4.2
In SP 4.2, the ASRV and DSRV parameters became the only
means of setting the domain’s contention index. 3 In each case a
pair of service rates establishes the points corresponding to con-
tention indices of 1 (at the high service rate) and 100 (at the low
service rate). A simple linear interpolation of the current service
rate gives the current contention index. Out-of-range service
rates give contention indices less than 1 or greater than 100, to
a maximum of 655.35 at zero service rate and a minimum of 0 at
infinite service rate.
To make a domain’s MPL dependent on its total received service,
use DSRV. There should be a substantial difference between the
low and high values. The lower the high value, the lower the
contention index for a given in-range service rate will be, and
the more likely the MPL will go to its minimum. The higher the
low value, the higher the contention index for a given in-range
service rate will be, and the more probable it will be for the MPL
to go to its maximum. ASRV works the same way, except that
the average service rate (DSRV divided by the Ready User Aver-
age, RUA) is used in the determination.
Here are some examples of possible domain MPL control param-
eters for various workloads:

• First-period TSO for 300 logged-on users:
DMN=4,CNSTR=(60,120),FIXCIDX=115

Up to 60 ready users should experience no MPL delay as
they enter new transactions. Additional users, up to the
maximum of 120, will be swapped in as they become ready.
Such a large number is unlikely except after relief of a stall
condition.
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• Second-period TSO and first-period batch:
DMN=9,CNSTR=(9,50),ASRV=(2000,10000)

The average service rate should fall between the ASRV
limits, allowing MPL adjustment. The minMPL of 9 should
allow transition without swap of the approximately 15 per-
cent of transactions that go past first period, and allow 2–3
batch jobs to start.

• Third-period TSO and second-period batch:
DMN=33,CNSTR=(0,20),DSRV=(3000,30000)

This domain has a potentially high impact, even from a
single address space. The MPL is allowed to go to zero
when system loading forces an MPL reduction. Specifiying
30,000 as an upper service limit ensures that this domain
will have a low contention index when a few address spaces
are resident. On the other hand, when there is no conten-
tion, as many as 20 jobs or long-running TSO transactions
are allowed in central storage.

• Nonswappable domain:
DMN=15

• Swapout domain:
DMN=13,CNSTR=(0,0)

• Low-priority batch:
DMN=6,CNSTR=(0,40),DSRV=(0,20K)

• High-priority batch:
DMN=10,CNSTR=(0,30),DSRV=200K,500K)

Note in the last two cases that the high-priority domain has a
lower constraint range than the low-priority domain. The DSRV
range is what controls contention index, not the constraints.

A.5. MPL Adjustment
The principal reason for swapping out an address space in MVS
is to ensure that sufficient central (real) storage is available to
service page faults and swap-ins. Swapping may be regarded as
the macro control of the available frame queue. Page stealing is
the micro control. Since swapping can be less disruptive and
more efficient than page stealing, a goal of performance man-
agement should be to minimize the incidence of page stealing.
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Swapping affects only one address space at a time; page stealing
may cause deferred damage to many address spaces as page
faults later occur. However, stealing very old pages may be the
least disruptive choice at many times. The choice of which mech-
anism to encourage is complex at best.

IBM recognized that independent control of page stealing and
swapping can lead to uneven performance. In MVS/ESA, and es-
pecially since SP 4.2, the control of paging and swapping is
highly integrated, and further integrated with the operation of
the Working Set Manager (WSM). In general, the only reason
for pages to be moved out of central storage is because the sys-
tem can operate better with them otherwise assigned. (There
are a few rare exceptions such as swap-outs to handle or prepare
for various kinds of reconfiguration.)

All stolen pages, swap trims, and swap working sets stay in cen-
tral storage until the frames are needed. When that need exists
(as determined by the exhaustion of the Available Frame
Queue), the SRM determines how to meet the need. If the aver-
age system page age (UIC) is relatively high (above about 200
seconds), page stealing is the mechanism of choice. Address
spaces selected for management by WSM come first in selection
for stealing, along with those storage-isolated address spaces
holding frames above the maximum protected threshold. Ordi-
nary page stealing then proceeds if frames are still needed.

In systems with lower UICs, a generic activity called pushout
supplies the needed frames. Pushout is the process of moving
blocks of pages from central storage to the next lower level in
the hierarchy, either expanded storage or auxiliary. Pages hav-
ing both equal UICs and adjacent virtual addresses move as
blocks.4 When a swappable address space is left after this pro-
cess with only its primary working set (or its swap group if it
was to be a direct swap to auxiliary storage), a swap-out takes
place the next time that the same address space is asked to do-
nate pages to the needy.

In a system with expanded storage, there is little need to choose
between swapping and page stealing unless the amount of ex-
panded storage is inadequate to meet the needs of all workloads.
With such a constraint, selected pages of particular workloads
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may be excluded from expanded storage, either absolutely or
contingent on a shortage of expanded storage frames.5 The ex-
cluded workloads are then managed (for MPL control) exactly as
if expanded storage was not present.

If the system has a significant swappable interactive workload
(such as TSO), most swap-outs are of inactive address spaces.
Physical swap-outs will eventually occur (in systems without
expanded storage) when the criteria for logical swap are not
met. With expanded storage, physical swap-outs go to expanded
storage as central storage frames are needed, or to auxiliary
storage (again only when the frames are needed and after trim-
ming has reduced the swap group to a manageable size) when
the relation between migration age and workload-related crite-
ria (specified in the OPT and selected by domain) indicates that
expanded storage should be bypassed.

SRM initiates swap-outs or swap-ins of active address spaces
when its system measurements indicate that at least one con-
trolled variable is out of the desired range.6 By computing sev-
eral measures of system activity each SRM second (RM1) and
summarizing them at a longer interval (RM2), SRM decides how
to adjust the system-wide multiprogramming level (MPL) and
recalculates the target MPLs of each domain. The single target
MPL of prior MVS releases was replaced in SP 4.2 by two tar-
gets. The in-target (ITRG) MPL is the minimum number of ad-
dress spaces to be resident under conditions of resource con-
straint. The out-target (OTRG) MPL is the maximum number of
address spaces to be allowed in central storage when there is
not a resource constraint. The various MPL numbers for a do-
main in SP 4.2 or later MVS systems follow the sequence:

low constraint (minMPL)
≤

in-target
≤
current MPL

≤
out-target
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≤
high constraint (maxMPL)

SRM recalculates in- and out-target MPLs for the domains,
based on current domain MPLs and contention indices. The set
of targets is one of the inputs to the Swap Analysis process that
is at the heart of SRM-directed swapping.
Swap Analysis also regulates swap-ins, both those initiated by
SRM’s resource management actions and those needed to reacti-
vate previously inactive address spaces. Active address spaces
swapped out by SRM and newly ready address spaces, swapped
out when inactive, all compete for admission to the
multiprogramming set. Each competes only in its own domain,
so the more important initial Swap Analysis decisions deal with
domains.

A.5.1. The Swap Analysis cycle
Swap7 Analysis is initiated each SRM second, at the completion
of each swap-out, and whenever a swapped-out TSO address
space becomes ready8 (i.e., the user hits ENTER). At each acti-
vation, the following actions take place, subject to the usual cau-
tion that IBM does not guarantee not to change MVS (and Swap
Analysis in particular) at each release or even with each main-
tenance update:

• Swap Analysis retries swap-ins previously deferred for
lack of frames.

• It then swaps out address spaces in each domain currently
exceeding its out-target. Enough address spaces are chosen
(those with the lowest RVs) to make the current MPL in
the domain equal to the out-target. The unilaterally
swapped address spaces are retained in central storage un-
til their frames are needed. (Pushout is deferred.)

• If an address space holding an ENQueue is swapped out,
Swap Analysis swaps it in. If its domain’s current MPL is
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at its out-target, the domain’s swapped-in address space
with the lowest RV is swapped out to maintain the do-
main’s MPL. The swap-in is an ENQueue swap-in, with or
without an ENQueue exchange swap-out.

• Swap Analysis swaps in address spaces in each domain
having at least one out-and-ready address space, and cur-
rently at an MPL less than its in-target, up to the number
needed to restore the in-target for each domain.

• If there is remaining out-and-ready work, at least one do-
main’s MPL is below its out-target, and if there are re-
maining central storage frames, additional swap-ins are
performed, beginning with the domain having the highest
contention index and swapping in one address space per
domain until the available and discretionary frames are
gone.9 A swap-in in this case may simply mean moving an
address space to the dispatching queue from the queue of
“logical out-and-ready” address spaces in processor storage
swap; in such a case no frames are needed.

• As its last priority, for each domain (in the same order)
with both an out-and-ready address space with an RV
greater than 100 and a swapped-in address space with an
RV less than 100, Swap Analysis performs an exchange
swap, interchanging the highest-ranking “out” and low-
est-ranking “in” address spaces.

A.5.2. Implications of Swap Analysis
The foregoing synopsis of Swap Analysis suggests some perfor-
mance management implications:

• The primary attention given to swap-in fails may supply
an explanation for swap-in delay, even in domains with
generous minMPLs. If this condition is seen frequently,
SRM’s MPL controls in the OPT could be adjusted to re-
duce the system-wide MPL, thus increasing the supply of
available frames. This problem was nearly eliminated with
the introduction of Working Set Manager in SP 4.2. As
with several other SRM algorithms, SRM must not be de-
nied the discretion to reduce MPL, so most minMPLs
should be kept low—zero or one.
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• Unilateral swap-outs inhibit unilateral swap-ins in other
domains until at least the next Swap Analysis cycle. If
MPL targets change too frequently (causing a disruptively
high level of unilateral swapping), perhaps overly sensitive
controls, such as too narrow a range of service rates in an
ASRV or DSRV, are to blame. Also, breaking a workload
into several similar domains with small MPLs may lead to
more frequent unilateral swap-outs. Consolidating do-
mains with similar workloads could prove more stable.

A.5.3. Types of swapping
In discussing Swap Analysis, we touched on several types of
swaps. We’ll review those now and list other types as well.

A.5.4. Unilateral swapping
This is the type of swapping initiated at frequent intervals by
SRM so as to move the MPL of each domain toward its current
in- or out-target MPL. By controlling each domain’s MPL, the
overall MPL is controlled, and in turn the measurable factors
(such as page fault rate) used to control MPL are themselves
controlled. In this way, SRM’s MPL adjustment actions consti-
tute a classical negative feedback control system, something
like a thermostat controlling a heating or cooling system based
on a temperature measurement, in turn controlling the temper-
ature in the monitored space. When unilateral swapping of ad-
dress spaces that are not performance-critical occurs, and when
that swapping is controlled by the page fault rate, less page
stealing and consequent page faulting is likely to occur in other
workloads.
Response-oriented workloads such as short TSO transactions
should not normally be unilaterally swapped out. On the other
hand, a batch job may be unilaterally swapped many times be-
fore completion. As long as batch turnaround-time targets are
safely met, unilateral batch swapping is a sign of sound installa-
tion control of SRM’s workload management.
The absence of such swapping (in a system with a sizable
swappable workload and some degree of storage constraint) may
indicate a system likely to incur a great deal of demand paging
delay. Such behavior may be caused by the presence of one or
more domains with overly high minMPLs. Again, demand pag-
ing (page stealing followed by page faulting) is the less efficient
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way to maintain the available frame queue when system MPL
control through batch swapping is an available alternative.

A.5.5. Exchange swapping
The purpose of exchange swapping is to allow several batch jobs
in a chronically “overloaded” domain to have nearly equal ser-
vice rates on average over a reasonable time frame. Without ex-
change swapping, the elapsed time of a short-running batch job
may be at the mercy of a longer-running job in the same domain
that happened to have been initiated first.

An exchange swap will occur on an otherwise unproductive
Swap Analysis cycle only if the following conditions are met:

• A domain is exactly at its (nonzero) out-target MPL.

• At least one address space in the domain is
“out-and-ready.”

• At least one resident address space in the domain has a
swap RV of less than 100, indicating that it has received
enough service to justify the cost of a swap-out.

• The swap RV of an “out-and-ready” address space is
greater than 100, meaning that it has been out long
enough to justify the cost of a swap-in.

Such a series of conditions is rarely met, yet exchange swapping
was so feared in the early days of MVS that extraordinary mea-
sures were taken to prevent it.

The factors making exchange swaps undesirable in the past no
longer exist, and the original rationale for allowing them still
holds. In installations with significant batch or long-running
TSO workloads, encouraging exchange swapping can result in
more uniform completion times for such transactions.

Often stringent service targets exist for unscheduled batch, yet
resource constraints dictate a restricted MPL for all or part of
the batch workload. The use of a low SWAPRSF (less than 10)
can, by encouraging exchange swaps, ensure a consistent degree
of elongation and less variability in turnaround time for
short-running jobs, regardless of the arrival order of large and
small jobs in the multiprogramming set.
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A.5.6. Swapping of inactive address spaces
As we saw in Chapter 1, much of the evolution of MVS involved
changes in the swapping of inactive address spaces, particularly
TSO address spaces. Let’s look at the progress and decision
points of such a swap in today’s MVS:

• The inactive condition is detected by SRM. The TERMI-
NAL WAIT SYSEVENT (usually for input, sometimes for
output) may have been issued by the TSO Terminal Moni-
tor Program (TMP), a program may have issued the WAIT
macro-instruction with the LONG operand, or an ordinary
WAIT may have continued past the detected wait thresh-
old. The threshold is 2 seconds or 8 SRM seconds, which-
ever is greater. The former threshold is effective in all but
the slowest systems. The 2-second value may be altered as
described in Appendix B.

The distinction between terminal waits and other types of inac-
tive address spaces will be important in the subsequent decision
process.

• The address space is prepared for swap-out. First, it is
quiesced, ensuring that all pending I/O is complete. Next,
pages not in the working set are trimmed. (Swap trim is
a special form of page stealing from the address space
about to be swapped out.) A few trimmed pages may be
unchanged if they are backed by valid copies on auxiliary
storage. The unchanged trimmed pages are added di-
rectly to the available frame queue (AFQ) in systems
without expanded storage.

Trim may take place in stages to hold down the system im-
pact of a large address space being swapped out. An OPT
parameter, MCCMAXSW, establishes the maximum num-
ber of pages to be moved out at once. Its default value is
512 pages, or 2 megabytes.

The working set includes pages with the hardware refer-
ence bit on, fixed pages, and the local system queue area
(LSQA) of the address space. This “strict” working set is
“enriched” for TSO address spaces by the addition of pages
with UIC of zero, and of additional pages as the sys-
tem-wide high UIC increases.
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For systems with expanded storage, the working set is bro-
ken into primary and secondary subsets. The primary
working set includes LSQA, fixed pages, and one page from
each segment in the address space. The secondary working
set is all other working-set pages. Pages not in the working
set will be trimmed in theory but not necessarily moved
out of central storage unless their frames are needed and
no more likely source of those frames is available.
With expanded storage, trimmed pages are evaluated
against a criterion for movement to expanded storage. The
few unchanged pages are released to the available frame
queue. The changed trimmed pages normally will be
placed on a queue for movement to expanded storage,
grouped in blocks according to UIC and virtual address.
They are moved out if and when central storage frames
are needed to replenish the available frame queue. With-
out expanded storage, the pages are scheduled for
[blocked] page-out to auxiliary storage. Again, these
frames are added to the AFQ once they are successfully
backed in expanded or auxiliary storage.

• The eligibility for logical swap is evaluated next. For TSO
terminal waits, if the recent think time of the address
space is less than the current system think time thresh-
old,10 the address space is eligible for a logical swap. Other
inactive address spaces are eligible for logical swap if the
current system think time is 5 seconds or more.

• If the address space is eligible for logical swap, the logical
swap decision is then made, according to the system’s abil-
ity to accept a logical swap at this time. If the system-wide
high UIC is not less than one-half the UIC lower limit for
think time adjustment (LSCTUCTL), the logical swap will
proceed. The address space is then dropped from the dis-
patcher’s true-ready queue, and other control block adjust-
ments are made to indicate that the address space is
“OUT–LOGICAL.”

• If logical swap is not selected, and expanded storage is
lacking, or if the workload is excluded from expanded stor-
age, a physical swap to auxiliary storage begins.
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• With expanded storage, address spaces that will not be log-
ically swapped are evaluated for direct swap to expanded
storage. The OPT parameter ESCTSWWS(2) specifies a
default criteria age for the working sets of TSO address
spaces in terminal WAITs. ESCTSWWS(0) sets the default
for swaps of privileged address spaces, and ESCTSWWS(1)
determines the default criterion for all other swaps.11 For
other than terminal wait swaps, the swap to expanded
storage (known generically along with logical swaps in cen-
tral storage as a processor storage swap) will be selected if
the sum of the current expanded storage migration age
(MA) and the system-wide high UIC exceeds the criterion.
For terminal wait swaps, the address space’s think time is
added to the criteria age before the comparison is made.
The working-set pages of an address space selected for a
processor storage swap to expanded storage are placed on
the FIFO queue of pages (we’ll call this the pending-out
queue) to be moved out when real storage frames are
needed. The entire trimmed working set will be moved out
together, after all trimmed pages have been moved in
UIC-grouped stages as pages are needed.

• If expanded storage is lacking, or if the criteria-age test for
expanded storage swap eligibility fails, the trimmed work-
ing set is moved together to swap data sets if they are pres-
ent, or to local page data sets, using the contiguous-slot al-
location algorithm, if possible. Again, this movement oc-
curs only when the frames are the next candidates to re-
plenish the available frame queue.

At this point the address space is either logically swapped in
central storage, physically swapped on auxiliary storage, moved
out to expanded storage, or awaiting such movement. Let us as-
sume that the processor storage swap to expanded storage pro-
ceeds. We can now drop from consideration the direct swap to
auxiliary storage. Nothing more happens in that case until the
address space becomes ready for swap-in.

• A logical swap in central storage stays there until the expi-
ration of the system think time. (In MVS releases prior to

SRM in Compatibility Mode—Concepts 325

11 This OPT parameter and related ones can have index values ranging from 0
to 99, with the ESCRTABX(n) parameter on the DMN statement in the IPS
designating one of the alternate criteria sets.



SP 2.1.7, an arbitrary 15-second “grace period” was added
on to this interval. The grace period in current releases is 2
seconds.) At this time the logical swap fails, and the ad-
dress space now receives the same treatment that it would
have had if it had failed the test for logical swap at the out-
set.

• An address space swapped to expanded storage stays
there until it is swapped back in, unless migration
reaches it. Migration takes place in stages, with the sec-
ondary working set being moved first, in groups of pages
according to the device type of the local page data sets.
Finally, the primary working set is moved to the swap
data set(s), if present. If there is no swap data set or no
available swap set, the primary working set goes to local
page data sets.
The impact on system and workload performance of ex-
panded storage migration can be considerable; each mi-
grated block of pages requires central storage to accom-
modate the move-in from expanded storage. The central
storage frames are kept for the duration of the subse-
quent physical I/O to auxiliary storage as well. Since mi-
gration (a symptom of expanded storage constraint) may
occur when central storage also is constrained, this
added storage demand with migration can cause a sharp
degradation in the performance of workloads sensitive to
paging delay. A temporary cure for disruptive migration
is to increase the values of the OPT parameters (those
named ESCTxxxx) that control expanded storage eligi-
bility; the long-term cure is to increase installed ex-
panded storage. In systems capable of logical partition-
ing, this increase may be accomplished by reapportion-
ing expanded storage across partitions.
Another option became available with MVS/ESA SP 4.2:
selective increase of the expanded storage selection crite-
ria, thus restricting the use of expanded storage to the
most important workloads. Details are presented in Ap-
pendix B.

• Some time later, the address space becomes ready. (In the
usual case of TSO, the terminal user has pressed ENTER.) A
logically swapped address space still in central storage is ac-
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tivated by queue manipulation, which reverses the actions
taken at the time of swap-out. A similar reinstatement takes
place for an address space on the pushout queue.

• An address space that has been physically swapped out
may be in expanded storage, in auxiliary storage, or in
transition between the two owing to migration. In each
case, the swap-in is unilateral according to the Swap Anal-
ysis procedure described previously. Until Swap Analysis
permits the swap-in, the address space is counted as
out-and-ready. Migration from expanded storage to auxil-
iary storage (through central storage) may still take place
during the out-and-ready period.

The progress of a swap is complex. Obviously, the best case for
performance is the successful logical swap in central storage, or
the unfulfilled processor storage swap to expanded storage.
When response-critical address spaces are physically swapped
to auxiliary storage or (worse) migrated from expanded to auxil-
iary storage, they are subject to both I/O delays and possible de-
lay for SRM MPL adjustment. Much tuning activity can be de-
voted to overcoming both kinds of swap delay.

A.5.7. Miscellaneous swaps
Several other types of swaps can occur in MVS. Normally, they
are all very infrequent and have no effect on performance. Two
types triggered by storage shortages, however, may indicate se-
rious resource imbalance problems. The types of miscellaneous
swaps are:

• Request Swap—An authorized program has directed
that an address space be swapped out or in. A common use
for the requested swap-in is to bring in an address space to
cancel the current job, session, or started task.

• Transition Swap—MVS requires that V=R job steps or
nonswappable programs be allocated frames in preferred,
nonreconfigurable storage. These swaps may be frequent
in logically partitioned systems, since even so prosaic an
activity as a tape mount causes the requesting address
space to become nonswappable. An IBM maintenance up-
date reduced the frequency of such MOUNT-related swaps.
A transition swap causes such an address space to be
swapped out just before the V=R or nonswappable status is
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fully established. When it is subsequently swapped into
the appropriate kind of storage, the status is made effec-
tive.

• Auxiliary Storage Shortage Swap—Auxiliary storage
must not be allowed to run out. When its usage exceeds a
threshold as described in Appendix B, SRM directs that the
address space acquiring frames at the highest rate be
swapped out, and causes prominent operator messages to
be displayed. At this time, address space creation is inhib-
ited, and the system can rapidly “dry up.” The condition is
easily relieved by PAGEADDing an additional local page
data set. When an installation experiences this condition,
corrective action is easy to implement, but frequent occur-
rences need analysis and prevention.

• Real Storage Shortage Swap—Much like the previous
case, this kind of swap is triggered when thresholds for
central storage use are exceeded. When a threshold is ex-
ceeded, address space creation and swap-ins are inhibited,
and directed swap-outs are initiated of swappable address
spaces holding the largest number of frames. This condi-
tion is not as easy to relieve as the auxiliary storage short-
age. Frequent occurrence (more often than once a week) of
a real storage shortage condition may indicate exhaustion
of the central storage capacity. The thresholds are OPT pa-
rameters (MCCFXEPR and MCCFXTPR); in systems with
a high but stable level of page fixing, the thresholds may
need to be adjusted.

Managing swapping in systems with significant batch and TSO
workloads is challenging and often difficult.

A.6. Storage Isolation
Storage isolation is a means of altering the sometimes inap-
propriately democratic process of page stealing, designating
some frames of some address spaces as exempt from stealing.
It came into existence in an informal way in the MVS/SE1
time frame with a popular system modification or ZAP known
at the time as fencing. An address space’s working set could be
explicitly defined in this way, designating a number of frames
that would be exempt from page stealing (“fenced off ”) under
normal circumstances.
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In MVS/SE2, fencing was formalized and externalized as stor-
age isolation. Four new IPS parameters were introduced, pro-
viding several useful control options.

A further use for storage isolation was found when extended
swap was introduced, first in an Installed User Program (IUP)
and later as part of MVS/SP 1.3. Because the minimum pro-
tected working set is preserved across swaps, specifying storage
isolation for TSO address spaces above the true working set
leads to “enrichment” of the swap-in working set (known as the
swap group). The balance between swap paging delay and de-
mand paging delay may be adjusted by varying storage isolation
until an optimum point is found. The tradeoff is not linear, be-
cause swap paging is more efficient than demand paging.
Adding five or ten pages to the swap group might increase
swap-in delay by less than 20 milliseconds but prevent three or
four page faults, each taking 30 to 50 milliseconds to resolve.

In systems with expanded storage, storage isolation is applied to
the sum of frames in central and expanded storage, and does not
inhibit page stealing to expanded storage. Such page stealing
and subsequent page fault page-in is normally fast enough
(20–50 microseconds each way) to disregard. The main value of
storage isolation in systems with expanded storage is to prevent
migration of pages belonging to the address space from ex-
panded to auxiliary storage.

A.6.1. Storage isolation parameters
Each storage isolation parameter is specified as a value pair,
with the first value less than or equal to the second. The upper
value for frame counts may be specified as “*” to denote the max-
imum available value: 32,767 in MVS/370 and MVS/XA, 2 131 −
in MVS/ESA. The parameters are:

• CWSS=(low,high)—specifying the range of protected frame
counts for the common area, including PLPA, EPLPA, CSA,
and ECSA. CWSS is a global IPS parameter, and must pre-
cede the first domain definition in the IPS.

• CPGRT=(low,high)—specifying the range of acceptable
page-in rates for the common area, in auxiliary pages per
real-time second. CPGRT is also a global IPS parameter,
preceding domain definitions in the IPS.
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• PWSS=(low,high)—specifying the range of protected
frames for an address space. PWSS appears in the perfor-
mance group period definition.

• PPGRTR=(low,high)—specifying the acceptable paging rate
for an address space in auxiliary page-ins per resident sec-
ond. PPGRTR appears in the performance group period defi-
nition. An obsolete but still accepted PPGRT parameter de-
notes page-ins per execution-time second for ordinary ad-
dress spaces but was equivalent to PPGRTR for address
spaces in cross-memory mode. PPGRT should not be used.

Each frame-count parameter interacts with its corresponding
page-in rate parameter. The protected frame count at any time
is called the target. The target starts at the low frame-count
value and is increased in steps when the page-in rate exceeds
the upper page-in rate value until the upper frame-count value
is reached. The reverse takes place when the page-in rate is less
than the lower value.

Considerations relating to storage isolation include:

• Specifying a maximum frame-count value implies that any
frames held by an address space (or the common area in
the case of CWSS) in excess of that count are preferred for
page stealing. Therefore, the maximum should usually be
“*” unless every address space in the performance group is
nonessential. In the case of an “unloved” address space, a
restrictive maximum PWSS will guarantee preferred page
stealing, possibly shielding preferred address spaces from
stealing. (This technique is sometimes called negative stor-
age isolation.) The maximum value for CWSS should al-
ways be “*.” Negative storage isolation for swappable ad-
dress spaces should not be used since any storage isolation
suppresses the operation of the Working Set Manager.

• Storage isolation does little good in systems with expanded
storage, for workloads not explicitly excluded from ex-
panded storage. It serves only to defer migration, not page
stealing. Consequently, storage isolation in systems with
expanded storage should be specif ied only for
nonswappable address spaces (preferably as negative stor-
age isolation on the unloved ones), and to define the swap
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group sizes for TSO workloads barred from expanded stor-
age.

• As in any regulated system, there should be enough of a
neutral range between each set of upper and lower limits
(as for page-in rates) to permit periods of stable operation
without adjustment. A series of measurement experiments
is the best way to determine appropriate ranges. A sug-
gested starting point is to estimate the maximum value
and then make the minimum about 80 percent of the maxi-
mum.

• Storage isolation for first-period TSO (and usually sec-
ond-period as well) is not subject to page-in-rate-based ad-
justment, since the time in short transactions is insuffi-
cient to allow a page-in rate to be calculated. The form of
storage isolation for TSO initial performance periods is
usually specified as

PWSS=(144,*)

where “144” is a typical value with IBM 3390 or RAMAC II
or equivalent paging devices, providing some enhancement
of the swap group size if the observed typical frame count
for first-period transactions is about 140–150 frames. A
short period of observation with a performance monitor
can show the actual frame counts for TSO transactions at
an installation.

TSO storage isolation is of limited value in systems with ex-
panded storage unless the TSO workload is barred from ex-
panded storage. In that situation, and in systems with no ex-
panded storage at all, TSO storage isolation of response-critical
performance periods is the closest thing to tuning magic avail-
able in MVS. A trivial increase in swap I/O time returns a
many-fold reduction in page-in delay. Storage isolation for TSO
is most critically needed when no swap data sets are in use (the
preferred configuration) to ensure a minimum of sin-
gle-page-movement I/O.

A.7. Dispatching Priorities
We have looked at SRM’s role in controlling swapping and page
stealing. Its other major function is the control of dispatching
priorities. In a default MVS system, SRM does not do this. Spe-
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cific actions must be taken to wrest control of dispatching priori-
ties from the users and subsystem suppliers, and place it firmly
with SRM.
Dispatching priority in MVS exists as 256 distinct levels, rang-
ing from hexadecimal 00 to FF. Address spaces are associated
with dispatching priorities. Global SRBs are dispatched above
priority X’FF’. Without SRM control, an address space can be
assigned a dispatching priority directly through the DPRTY
JCL parameter or through a corresponding TSO LOGON op-
tion. A JCL example that might be found in the default JCL for
JES2 is DPRTY=(15,14), equal to X’FE’, a priority so high that vir-
tually nothing can get a higher one. Allowing such individual,
uncoordinated control for each batch job, started task, and TSO
or APPC/MVS session is likely to make the operating system’s
behavior inconsistent if not unpredictable.
As early as the time of MVS/SE1, it was recognized that central
control of dispatching priority was essential if MVS was to be a
trustworthy and consistent production operating system. The
first such control in MVS was a rather tentative automatic pri-
ority group (APG) covering a narrow subset of dispatching prior-
ities. In SE2 and since, APG was superseded by the ability to
give SRM control of all dispatching priorities, and to make 160
of the 256 possible priorities available to address spaces.
Dispatching algorithms have evolved as well. To avoid confusion,
we shall consider only the capabilities as of MVS/SP 2.1.7 and
later. These were not changed through MVS/ESA SP 4.2.2. Chap-
ter 4 touches on new changes to dispatching algorithms in support
of goal mode and references a CMG paper that gives full details.

A.7.1. Translation
The system used to denote dispatching priorities under SRM con-
trol is different from the simple (0–15,0–15) scale used in the JCL
DPRTY parameter. Through Version 4, an IPS parameter called
APGRNG specified the range of priorities to be “owned” by SRM.
Each value may be in the range 0–15; the lower may equal the
upper. To prevent address spaces from claiming the top priorities,
the upper value should be 15. To allow the full range of 160 priori-
ties (organized as ten groups of 16) to be under SRM control, the
lower value must be no greater than 6. Two views were common
for APGRNG: Minimalists argued for APGRNG=(6-15) or (5-15);
advocates of full control and ease of interpretation favored (0-15).
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In Version 5 compatibility mode, the dispute ends: the parameter
is dropped and (0-15) is always used.

A.7.2. SRM dispatching priority groups
As specified in the IPS, dispatching priorities are organized in
ten sets of 16 levels. Each set corresponds to the first hexadeci-
mal digit of a priority designation. Within each set, there is a
two-way division; the upper six levels of the set are individually
specifiable as fixed priorities, while the lower ten levels in the
set form a mean-time-to-wait group.
Dispatching priority is designated by the “DP” parameter or
variations thereof. If a particular priority set is designated as
“s,” fixed priorities are specified as DP=Fs4 (highest) through
DP=Fs0 to DP=Fs (the lowest fixed priority),12 and the
mean-time-to-wait group of the set as DP=Ms. The overall pat-
tern looks like this:

SRM Priority “Real” Priority Rank
F94 X’9F’ Highest
F93 X’9E’ …
… … …
F90 X’9B’ …
F9 X’9A’ Lowest of the high
M9 X’90’–X’99’ Highest MTTW
… … …
F5 X’5A’ About in the middle
… … …
F04 X’0F’ Highest of the low
… … …
F00 X’0B’ …
F0 X’0A’ Lowest fixed priority
M0 X’00’–X’09’ Dead last

A.7.3. Algorithms
A fixed dispatching priority places an address space on the dis-
patching queue in a position relative to those of address spaces
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with higher or lower dispatching priorities. Within a given dis-
patching priority, address spaces are in a FIFO subqueue, or-
dered dynamically according to the sequence in which they most
recently became dispatchable. (An inactive or nondispatchable
address space is removed from this true-ready queue and added
to the end of the subqueue for the specific priority when it again
becomes dispatchable.)
The mean-time-to-wait (MTTW) algorithm divides each MTTW
group into ten distinct fixed levels according to the average time
between WAITs in each address space. Those with short inter-
vals between WAITs (usually for I/O completion) will have
higher priorities; those with long stretches of CPU use without
intervening I/O activity have lower priorities. The priorities are
reset frequently, at the interval of an SRM second, so a program
with a changing pattern of CPU-to-I/O activity balance is man-
aged properly at each stage in its execution. MTTW faithfully
performs the “I/O-bound high, CPU-bound low” allocation of dis-
patching priorities that was so hard to manage in MVT, and
does it automatically according to the changing demands of each
address space.
All of this benefit of MTTW can be lost, however, if multiple ad-
dress spaces are not free to compete with each other in a single
MTTW group. Even so, MTTW may still fail if the wait time in-
terval used by SRM to assign priorities is not well matched to
the behavior of the address spaces. In Appendix B, we’ll see how
to use a performance monitor to observe MTTW operation and
correct it if necessary.

A.7.4. Adjustment
SRM has several ways to adjust dispatching priority for an ad-
dress space. For swappable address spaces, in which preference
is to be given to short-running transactions, the progression
through performance periods is the means of making significant
changes in dispatching priority at each period change. A TSO
performance group may start out with DP=F63 in the first pe-
riod, move to DP=F61 in the second period, and then to DP=M5
in later periods.
For nonswappable workloads, there is no progression through
performance periods, so adjustment is ordinarily limited to that
available through MTTW or according to the fair access han-
dling of fixed dispatching priorities or for each MTTW slot. If, for
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instance, there are several CICS application-owning address
spaces at the same fixed priority, they will tend to have equal ef-
fective priorities, although the address spaces with more fre-
quent WAITs will tend to have lower effective priorities.
Suppose, however, that activity alone does not determine impor-
tance. In this case, the final SRM dispatching priority adjust-
ment mechanism may be needed. That is time slicing, used to
periodically alter the dispatching priorities of address spaces in
one or more performance groups.

A.7.5. Time slicing
For systems with conflicting CPU-intensive workloads, time
slicing may be used to apportion favored access to the CPU re-
source. Another common use of time slicing is to restrict the im-
pact of address spaces, normally having high priority and widely
varying CPU demands, on the rest of the system. Notorious ex-
amples include JES2, JES3, and DFSMShsm (HSM, IBM’s Hi-
erarchical Storage Manager).
Returning to our original view of time slicing, consider a system
with two independent CICS subsystems, each serving a differ-
ent group of users two time zones apart.13 Each of them needs
equal preference for the CPU for 40 percent of the time. Two
performance groups of TSO users in the first period need such
preference 10 percent of the time, and no workload is to be pre-
ferred the remaining 10 percent of the time.
With time slicing, we can designate a normal DP for each of the
three competing workloads and a higher TSDP for the favored pe-
riod. We also need to specify a time-slicing pattern, TSPTRN, to se-
lect each time-slice group for the appropriate number of time
slices, in order. The skeleton IPS entries might look like this:

TSPTRN=(1,2,1,2,3,1,2,1,2,*) /* TIME SLICING PATTERN */
…
PGN=5,(TSGRP=1,DP=F62,TSDP=F63,… /* CICS1 */
PGN=6,(TSGRP=2,DP=F62,TSDP=F63,… /* CICS2 */
PGN=8,(TSGRP=3,DP=F62,TSDP=F63,… /* TSO1 */
PGN=10,(TSGRP=3,DP=F62,TSDP=F63,… /* TSO2 */
PGN=14,(DP=F62,... /* OTHER WORKLOAD (NO TSDP) */

The TSO address spaces will be preferred only once per ten SRM
seconds and will compete equally for the CPU another SRM sec-
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ond in ten. On fast systems this is no problem, but on a rela-
tively slow CPU, such as an IBM ES/9000 9221-130, there may
be a perceptible irregularity in TSO response time. To avoid this
problem, the parameter

TUNIT=5
might be placed ahead of the TSPTRN line in the IPS, thus per-
forming the time slicing five times per SRM second.
Time slicing is a special solution to a specific problem of other-
wise unmanageable workloads. It has an overhead cost, particu-
larly if TUNIT is used, and should be tried only after other ap-
proaches have failed.

A.7.6. Layout
A sample layout of dispatching priorities is shown in the follow-
ing table.

DP Name Description
FF *MASTER* Predetermined priority
FF GRS Predetermined priority
FF TRACE Predetermined priority
FF PCAUTH Predetermined priority
FF DUMPSRV Predetermined priority
FF CONSOLE Predetermined priority
FF ALLOCAS Predetermined priority
FF RASP Predetermined priority
FF XCFAS Predetermined priority
FF SMF Predetermined priority
FF IOSAS Predetermined priority
FF CATALOG Predetermined priority
F94 Reserved for emergencies
F92 Real-time monitor (not VTAM session)
F84 Historical monitor
F82 VTAM Network manager
F80 VTAM monitor
M8 System address spaces (SMS, ASCH, etc.)
F74 DB2 subsystem monitor
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DP Name Description
F72 DB2 IRLM
F71 CICS monitor
F70 Primary CICS terminal-owning region
F64 DB2 MSTR
F62 DB2 DBM1
F60 LLA,VLF LLA and VLF housekeeping
F6 Hot APPC/MVS transactions
F54 Primary TSO, period 1
F52 Secondary TSO, period 1
F51 APPC/MVS E-mail transactions
F50 DB2 DIST
F44 JES2 JES2 TSDP
F43 CICS application/resource regions
F42 DFSMShsm HSM TSDP
F40 RMF RMF writer address space
F34 Primary TSO, period 2
F33 Default TSO, period 1
F30 JES2 JES2 base priority
M3 Primary TSO, period 3
F24 Secondary CICS TOR
F22 Secondary CICS other address spaces
M2 Secondary TSO, period 3
M2 Default TSO, period 2
M2 Preferred batch
M2 Production batch, period 1
M1 Last-period TSO/batch, default STCs
F04 Configuration/change monitor
F02 DFHSM DFHSM base priority
F0 “Bottom feeder” problem jobs
M0 “Sponges” to measure CPU reserve

Creating such a layout helps to ensure that SRM (and the per-
son in charge of directing SRM) is in control of dispatching pri-
orities and that the priorities in the IPS reflect the installation’s
workload priorities. In creating a dispatching priority layout,
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the suggestions made in Chapter 5 relating to the ideal of a
“well-ordered CPU” should be reviewed. Remember that certain
system address spaces have predetermined dispatching priori-
ties, and that server address spaces usually need to be above
their users in priority. Most monitors need to rank above the
workloads they scrutinize to give accurate measurements of uti-
lizations and delays. In the sample, the MVS/ESA address
spaces whose priorities are predetermined are shown in order.
We assume that the system supports production TSO, CICS
(with DB2), and a somewhat less important IMS service. JES2
and HSM are time-sliced to ensure that response-critical ad-
dress spaces may be dispatched with minimum delay. Setting up
an order of priority for access to the CPU may also be helpful in
establishing a similar ordering for access to expanded storage.
In other words, it makes little sense for an address space fa-
vored for CPU access to be paged and swapped to and from aux-
iliary storage. In Appendix B, we’ll put all these considerations
together.

A.8. Summary
We have introduced numerous SRM terms and, in passing, some
representative parameters as well. With this preparation, we
can move on to Appendix B, presenting SRM parameters in a
more structured manner.

A.9. Questions
1. Examine the RMF Workload Activity report or an equiva-

lent source to determine the percentage TSO transaction
completion distribution by performance period in your sys-
tem. Is the pattern what you expected? What changes
would you make?

2. Using whatever tools you have available, obtain a transac-
tion-level sample of a busy TSO hour. GTF SRM trace is
one way to obtain the necessary data. You should create a
tabulated list of service units for completed transactions.
Using a tool such SAS PROC UNIVARIATE, create a cu-
mulative frequency distribution plot or table. You may now
look for the natural break points or flat spots in the distri-
bution. How do they compare with the performance period
definitions? What needs to be done to reconcile the natural
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workload pattern with the way you’ve been managing the
workload?

3. Examine the domain constraints in your MVS system. How
many address spaces will be in the multiprogramming set
if all domains have at least as many address spaces ready
as their minMPLs? How does that number compare with
the maximum MPL through the busiest hour for which you
have RMF data? Should your minMPLs be lower?

4. Again looking at the domain constraints, do the maxMPLs
restrict the system from becoming fully utilized when only
a single workload is active? Is such a possibility likely?
How should you change the domain definitions to allow full
utilization in any workload distribution while making sure
that important workloads are favored? Use the full capabil-
ities of ASRV and DSRV to define your policy to SRM.

5. Do your dispatching priorities reflect both the intrinsic re-
lationships between workloads and the relative importance
of each workload to the enterprise? What adjustments are
needed?
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Appendix

B
SRM (Compatibility Mode) Parameters

B.1. OPT Parameters

Successful MVS performance management entails far more
than merely selecting the right values for SRM controls. Numer-
ous other PARMLIB parameters are important in determining
how a system runs. The physical configuration and its interac-
tion with the workload is still the key fundamental factor influ-
encing system performance and throughput. But no matter how
much effort goes into perfecting the system’s configuration and
set-up, applications and application programs designed without
an appreciation of performance factors can undo it all.

On the other hand, the SRM parameters remain very accessible
and can have a significant effect on system performance, workload
performance, and throughput, even to the extent of compensating
for configuration and application deficiencies. For that reason, but
always with the awareness that we’re looking at only part of the
picture, we now look at the SRM controls in detail.

The IEAOPTxx (OPT) member of SYS1.PARMLIB defines
global controls for SRM. In general, OPT parameters affect SRM
algorithms directly, and workloads indirectly, through the oper-
ation of the algorithms. To set OPT parameters correctly is not
merely a tuning action in response to some crisis. It is a neces-
sary part of reconciling the system resources to the needs of the
workloads. We’ll consider these parameters in logical groupings,
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in approximate order of importance. Extended discussions of re-
lated performance management actions are inserted along with
the discussion of the parameters involved.

B.1.1. Expanded storage selection criteria
Expanded storage, when present or defined in the configuration,
is a key critical resource in MVS/ESA systems. New capabilities
as of MVS/ESA SP 4.2 facilitated precise management of the
paging use of this resource.
Pages are selected for move-out to expanded storage based on
the interaction of the expanded storage migration age, and in
some cases the system-wide high UIC, with a set of criteria in
the Criteria Age Table (CAT). There are (as of SP 4.2) seven dif-
ferent categories of pages enumerated in the CAT; six of them
are further divided into workload categories specified with
FORTRAN-style subscripts in the OPT.
The default subscript values, carried over with some minor
changes from pre-SP 4.2 releases, are:

0—in paging decisions, nonswappable or privileged address
spaces, or common-area pages; privileged address spaces
only in swapping and expanded storage decisions.

2—in paging decisions, APPC/MVS or TSO address spaces;
in swapping and expanded storage decisions, TSO or
APPC/MVS sessions in long, detected, or terminal
waits.

1—for pages of address spaces in neither category 0 nor
category 2— usually batch.

SP 4.2 introduced the capability to specify additional subscripts,
dropped some parameters that proved to be unnecessary, and added
VIO and hiperspace pages to the candidates for management by
workload category. The subscripts (or index values) 3–99 are speci-
fied on the ESCTxxxx parameters in the OPT. They are linked to
workloads with the ESCRTABX parameter on the DMN state-
ment[s] in the IPS. Address spaces in domains for which the index
value has not been specified will be covered by the defaults shown
above, according to address space classification. If a partial set of pa-
rameters is specified for an index value, the missing ones are filled
in by the defaults. On the other hand, if an index is specified in the
IPS that is not defined at all in the OPT, all pages in that domain
will be treated as if an index of 1 had been specified.
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A page will be sent to expanded storage if the current migration
age (for expanded storage as a whole) exceeds the address
space’s (or common area’s) criteria [sic]1 age for the class of page
being considered. For swap trim and non-terminal-wait swap
working-set pages, the migration age is augmented by the cur-
rent system-wide high UIC. For terminal-wait working-set
pages, the UIC correction applies, and the address space’s think
time is added to the criteria age as well.
The defaults for the initial set of expanded storage controls ap-
peared to have been selected before appreciable production experi-
ence had been acquired. When migration age got down to the max-
imum criteria age in the default CAT, 100 seconds, migration
might already have reached disruptively high levels. When the
ESCTVIO and ESCTBDS controls were added in enhancements to
MVS/SP 2.2.0 and MVS/SP 3.1.0, respectively, they were both set
at a more aggressive default of 900 seconds. The defaults finally
were realigned in MVS/ESA SP 4.2 to significantly higher values.
The expanded storage controls are described in Chapter 3 of Ini-
tialization and Tuning Guide, and enumerated in Initialization
and Tuning Reference. The default settings are appropriate for
systems with adequate expanded storage. (In such a system, mi-
gration age is rarely less than 1000 seconds.) Following a discus-
sion of general approach below, we’ll look at each parameter, its
default settings, and suggested changes from defaults.

Setting up Criteria Age Table entries
Even if you have adequate expanded storage for today’s needs,
there may come a time when you don’t. It’s necessary to create a
“triage” plan to determine who wins and who loses when the de-
mand exceeds the supply.
The easiest way to make an initial difference is to focus on two
“magic numbers,” 32,766 and 32,767. The first one is the “last
choice” designation. If, for instance, you define

ESCTSWWS(13)=32766

then whatever address spaces pass through a performance
group to a domain with ESCRTABX=13 specified will be swapped to
expanded storage only when the migration age exceeds 32,766
seconds, or when the free availability of frames allows migration
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age to be disregarded. Migration age is ignored whenever the
number of available expanded storage frames exceeds a thresh-
old that is several (four to five) times the value of MCCAECOK,
a parameter described on page 348.
To bar a class of pages from ever going to expanded storage, use
the second magic number, 32,767. Since the migration age can
never exceed this value and the exception for available frames is
not considered in this one case, the pages will go only to auxil-
iary storage. Remember, a page goes to expanded storage only if
the current migration age is higher than the applicable criteria
age. The basic policy is modified by examining the UIC (in the
case of page steals) and the last think time for the address space
(in the case of swap-outs). For other than swaps based on re-
source shortages, transition swaps, and request swaps, pages
are not moved to expanded storage unless the central storage
frames are needed to replenish the available frame queue.
Once you’ve ruled out the workloads to be barred, set priorities
for assignment of other pages to expanded storage. Determine
the approximate critical migration age2 of your system. Plot the
migration rate against the migration age through a varied sam-
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ple of observations, as shown in Figure B-1. The critical migra-
tion age corresponds to the “knee of the curve.” There should be
a knee. The criteria ages for workloads that are not perfor-
mance-critical should be set well above the critical migration
age. Other workloads can have lower criteria ages in inverse or-
der of importance. (The more important the workload segment,
the lower the criteria age can and should be.) The defaults will
be instructive in setting these levels.

Now add ESCRTABX parameters to the appropriate domains to
activate the criteria age settings. The system should then be
measured over a representative peak period. The effect of estab-
lishing selective criteria table entries should be to move the
knee of the curve to the left (as seen on the graph), to make the
knee less distinct, and to limit the maximum migration rate.
Make any criteria age table adjustments necessary to secure
this result. Continue measuring and adjusting until there is an
acceptable balance between workload response time and migra-
tion rate under all load conditions.

B.1.2. Expanded storage criteria parameters
Each of the parameters described in this section may assume a
value from 0 to 32,767. In each case, a value of 32,767 bars the
corresponding page from eligibility for movement to expanded
storage. Each parameter other than ESCTVF, ESCTBDS, and
ESCTVIO requires a subscript or index value ranging from 0–99
and enclosed in parentheses. For ESCTBDS and ESCTVIO, the
index is optional and in the range 3–99. By using index values of
3–99, criteria ages may be set to deal with specific workload
management needs. It’s prudent to leave the default values “as
is” until a compelling reason to change a default becomes evi-
dent.

ESCTSTC, stolen pages
Pages stolen from active address spaces are likely to be needed
again a short time later. Thus, this category should have the
lowest criteria age for each workload class. The defaults are in
line with this suggestion:

ESCTSTC(0)=100
ESCTSTC(1)=250
ESCTSTC(2)=250
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A page of this class will go to expanded storage when the follow-
ing relationship is true:

migration age> criteria age

ESCTSWTC, swap trim pages
Pages stolen from address spaces just before swap-out are less
likely than ordinary stolen pages to be needed again after
swap-in. The defaults reflect the difference:

ESCTSWTC(0)=450
ESCTSWTC(1)=450
ESCTSWTC(2)=350

A page of this class will go to expanded storage when the follow-
ing slightly more complex relationship is true:

UIC + migration age > criteria age

ESCTSWWS, swap working set
The pages moved out to expanded storage in a swap-out have, in
general, already been passed over for logical swap and have
aged for some time in central storage until the frames are
needed. In many cases, particularly for numerically intensive
workloads with large working sets, swapping to auxiliary stor-
age may be an acceptable or even preferable alternative. Espe-
cially for batch jobs, the I/O delay of a swap-in from AUX is fully
overlapped with other processing and the effective CPU path
length may be shorter than that for a swap-in from expanded
storage. The defaults in OS/390 Release 1 are:

ESCTSWWS(0)=450
ESCTSWWS(1)=450
ESCTSWWS(2)=350

Selection for movement to expanded storage for this class of
page depends on the truth of the relationship:

UIC + migration age - think time> criteria age
The think-time term drops out for nonwait-state swaps, such as
exchange and unilateral swaps.

It may be advisable to increase the value for ESCTSWWS(1) to
3600 (one hour) or more if expanded storage is in short supply, es-
pecially if central storage is also limited. Doing so will ensure that
unilateral swaps of nonproduction batch jobs and late-period TSO
go to expanded storage only if migration is very unlikely.
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ESCTPOC, explicitly paged-out pages
Pages enter this category as the target of an explicit PAGEOUT
request to MVS. A program doing this kind of explicit real stor-
age management has “decided” that the page is not currently
needed, and the defaults support this position:

ESCTPOC(0)=1200
ESCTPOC(1)=1200
ESCTPOC(2)=1200

Selection for movement to expanded storage for this class of
page is according to the truth of the same simple relationship
that applies to stolen pages:

migration age> criteria age

ESCTBDS, hiperspace pages
When this parameter is specified without a subscript, it sets a
global default for all hiperspace pages in the system. Pages of
ESO hiperspaces are not migrated but “cast out,” later causing
“misses” when access is attempted. The address space owning
such a hiperspace needs to provide recovery for these misses, re-
trieving the data from another source, usually DASD.
When a subscript in the range 3–99 is added, the parameter de-
fines an alternative criteria age that may be associated with the
address spaces of one or more domains. The default value for
ESCTBDS is 1500 seconds, and the eligibility relationship is the
same as for stolen pages. Setting the criteria age to a lower
value for essential workloads such as production CICS may en-
sure effective use of expanded storage for such applications as
hiperspace buffering for VSAM local shared resources.

ESCTVIO, VIO swap-out pages
This parameter is similar in all respects to ESCTBDS, except
that it applies to Virtual I/O (VIO) pages. It has the same de-
fault value of 1500 seconds.

ESCTVF, Virtual Fetch pages
Virtual Fetch is a system service used to improve program fetch
time for programs, particularly non-reenterable ones. It is, to
date, used only on behalf of IMS/VS or IMS/ESA. For systems on
which IMS is a principal workload, the low default criteria age
of 100 ensures responsive Virtual Fetch performance. Where
IMS is a secondary workload, but Virtual Fetch is used (perhaps
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for compatibility with another system), the value for this pa-
rameter should be increased in inverse proportion to the value
of the workload. No subscript is allowed for this parameter; all
Virtual Fetch pages are affected equally.

Real Storage Frame Thresholds
The two parameters presented in this section, both added in
MVS/ESA SP 4.2, “externalize” the thresholds the SRM uses to
manage the available frame queues in expanded storage and
central storage, respectively. The low (“LO”) value of each pa-
rameter translates to the threshold at which migration or steal-
ing commences; the upper threshold is the “OK” value at which
frame replacement stops.
The thresholds are not rigidly fixed. In systems without ex-
panded storage or with substantial swap activity from auxiliary
storage, MCCAFCOK (the high threshold of MCCAFCTH) is ad-
justed before a swap-in to ensure that page stealing secures
enough frames to accommodate the entire swap group plus a
buffer above the current value of MCCAFCLO. Various other
factors cause adjustment of both of the LO and OK thresholds as
system requirements dictate.

MCCAECTH, expanded storage frame thresholds
MCCAECTH specifies the starting point for management of the
expanded storage available frame queue. It is specified as a
value pair, with the second value (MCCAECOK) not less than
the first (MCCAECLO), and both in the range 1–32,767. The de-
fault is (150,300).
When the number of free frames falls below MCCAECLO, both
cast-out of discardable hiperspace pages and migration proceed
until MCCAECOK frames are available. The targets are ad-
justed dynamically to anticipate unusual demands and prevent
immediate re-invocation of migration.
Migration may be viewed as a progression around a circular queue
of all expanded storage frames, started and stopped as the thresh-
olds dictate, but always resuming at the frame just beyond the last
stopping point. In a simplistic view of the process, each frame is
identified as “new” or “not new.” When the migration routine
reaches a “new” frame, it removes the attribute and passes over
the frame. The next time the frame is reached, it is recognized as
not new and thus eligible for migration, unless protected by stor-
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age isolation or covered by some other exception condition. Migra-
tion age is the time needed to reach the average frame a second
time. This simple process is in contrast with page stealing, in
which UIC provides a quantitative measure of page age. There is
no UIC for expanded storage frames.
Migration is considerably more complex owing to the associa-
tions of swap groups and other blocks of frames, but the picture
described above is a useful approximation.
You may wish to change the thresholds for the expanded storage
frame queue to deal with some special need. If you do, make sure
to maintain a substantial gap (the default is 150 frames) between
the high and low thresholds. Not doing so may lead to increased
overhead as the migration routine is invoked more frequently.

MCCAFCTH, central storage frame thresholds
MCCAFCTH specifies the starting point for management of the
central storage available frame queue. It is specified as a value
pair, with the second value not less than the first, and both in
the range 1–32,767. The default is (150,300).
When the number of free frames falls below MCCAFCLO, a
page stealing cycle commences and proceeds until MCCAFCOK
is reached. The targets are adjusted dynamically to anticipate
unusual demands such as large swap-ins and prevent immedi-
ate re-invocation of the stealing process.

B.1.3. Central storage management details
In the highly integrated central storage management environ-
ment of MVS/ESA SP 4.2 and its successor releases, it’s neces-
sary to go back to the demand factors to get a good understand-
ing of page assignment, reassignment, and swapping. The two
principal demand factors are page faults and swap-ins.
When a page fault occurs, page movement or a page-in is not needed
for a first-time fault on a newly obtained page. Otherwise, the page
fault requires both that the page be moved from its current location
and that one or more frames be assigned for it. Since all page-ins
from auxiliary storage and some move-ins from expanded storage
are blocked, the need for multiple frames is common.
In much the same way, swap-ins may or may not require addi-
tional frames. Processor storage swaps (including logical swaps)
in central storage need no frames. A swap-in from expanded
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storage needs enough frames for the primary working set, while
a swap-in from auxiliary needs frames for the full swap group.

Where do the frames come from? The simplest case is to take the
frame or frames (in the case of a blocked page-in) needed to resolve
a page fault from the address space itself. This occurs if the
Working Set Manager is managing the address space, which at the
moment holds more frames than its managed target. In more ordi-
nary cases, frames come from the available frame queue.

When the AVQLOW condition is signaled to SRM by RSM (Real
Storage Manager), a process to replenish the frames begins. In
addition to the ordinary case of the frame count going below
MCCAFCLO, RSM will call for AFQ replenishment in anticipa-
tion of a large demand for frames, such as a swap-in. The pro-
cess has several mutually exclusive choices. In the order listed
below, each choice is more disruptive to system operation and
impedes workloads more than the preceding one.

In each case, the process stops as soon as the current OK thresh-
old (which may be adjusted based on the number of frames
needed) is reached or passed. Pages stolen from an address
space, at equal UICs and from adjacent virtual pages, are
grouped in blocks in anticipation of blocked page-in. Details of
the algorithm are not relevant, are proprietary, and are subject
to change in any case. The order of selection is not authoritative
but is assumed based on analysis, IBM presentations, and the
observations of colleagues. Not too much significance should be
put on the placement of a given step. The essential point of the
discussion is the progression from clearly surplus frames to
those whose loss can cause workload delays.

• If the system-wide average high UIC is more than about
200, page stealing is the choice, following these steps:

¤ The Working Set Manager may have established steal
targets for address spaces it is managing. The frames
that can be safely stolen are taken first.

¤ Storage-isolated address spaces with central storage
frames above their maximum PWSS values are pre-
ferred for stealing next. The full excess is taken from
each address space in turn, stopping when the steal re-
quest is satisfied.
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¤ The system-wide high UIC is set as the starting point
steal criterion for ordinary page stealing. The steal rou-
tine visits each address space in order and then con-
cludes with the common area. For each address space
having at least one frame at or above3 the current steal
criterion, up to four or ten frames at or above the crite-
rion UIC are taken. More frames are taken when the
current steal criterion UIC is high; fewer when it is low.

The number of frames taken from an address space may
be increased beyond the four or ten. If a single address
space has a larger number of frames at the current steal
criterion, and they are at sequentially contiguous vir-
tual addresses, they are all taken, even going beyond the
number needed to complete the current steal require-
ment. The pages related by common UIC and adjacent
virtual addresses constitute the unit of implicitly
blocked page stealing. When the number of such pages is
greater than the maximum burst size4 on the paging de-
vice, multiple bursts are written in parallel by ASM,
making this kind of page stealing look very much like a
partial swap-out. If the stealing goes to expanded stor-
age, the blocking information is retained through migra-
tion so that block faulting from auxiliary storage can be
effective. Efficiency and parallelism are the keys to re-
taining acceptable system performance while accommo-
dating numerically intensive workloads.

When a page fault causes a page in the block to be brought
in, all succeeding pages in the block are eligible to be
brought in, up to the current AFQ count. For best opera-
tion of the blocked page fault mechanism, a sufficiently
large number of free frames must be available, so the val-
ues of MCCAFCTH may have to be increased. If the appli-
cation program has declared a page reference pattern for
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explicit block paging, the pages may be at discontiguous
addresses and the entire block is eligible for block faulting,
regardless of which page incurred the fault.

¤ After all address spaces are considered for stealing at
the current criterion UIC, the common area is treated
the same way.

¤ If the required number of frames has not yet been ob-
tained after a complete pass, the criterion is reduced by
one and the process repeated for address spaces and the
common area. The looping behavior continues until the
steal request is satisfied. Since the stealing began at a
high UIC, which is usually correlated with a large num-
ber of eligible frames, the dire consequences of stealing
down to zero UIC are unlikely. They are discussed below
in connection with page stealing when UIC starts off at
a low value.

• The next frames to be taken are those from address spaces
(one at a time) designated for processor storage swap but
not yet moved out to expanded storage. The few unchanged
frames in this situation are immediately moved to the
available frame queue, and the changed pages are moved
in blocks to expanded storage, stopping when the steal re-
quest is satisfied. The address space is not swapped unless
frames are needed after it is trimmed down to its strict
working set or to the number of frames specified by
MCCMAXSW in the OPT.
Within this group of address spaces, those swapped for
purposes of MPL adjustment (unilateral, ENQueue ex-
change, and exchange swaps) are selected first. They have
been removed from the multiprogramming set, while “logi-
cally swapped” address spaces are eligible for immediate
re-entry to the multiprogramming set.

• If the AFQ is not yet fully replenished, the page-stealing
procedure described in the first step is now executed, but
now it is more likely to continue until the pass at UIC=0 is
unsuccessful, signifying that all remaining frames are
V=R, fixed, storage-isolated, or just referenced since the
last UIC update.
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• The system is now in an emergency page-stealing condi-
tion. The entire ordinary page-stealing loop begins again,
with the criterion once again set to the system-wide high
UIC. This time, however, storage isolation of both address
spaces and the common area is ignored.

• If the required number of frames cannot be obtained, do-
main MPLs may be set to their minimums and unilateral
swap-outs commenced. Swap-outs of address spaces in do-
mains at or below their in-targets may be initiated. At this
point, the system is severely degraded, and will be per-
ceived by interactive users to be unresponsive.

Page stealing satisfied by any of the first few steps is unobtru-
sive and not likely to lead to significant subsequent page-in de-
lay. Stealing at low UICs will adversely affect the performance
of the most recently visited address spaces. If the cycle ever pro-
ceeds to the point of emergency page stealing, mission-critical
workloads may be adversely affected.
Other mechanisms exist in MVS to preclude the need for emer-
gency page stealing. There are two MPL adjustment parameters
in the OPT discussed in the following pages—RCCFXET and
RCCFXTT—whose default values are set so as to provide a re-
serve of frames that are neither fixed nor involved in paging op-
erations. Any upward adjustment of these parameters (for in-
stance, in systems with very large central storage) should be
done only in conjunction with careful measurements of page
stealing frequency, to avoid triggering damaging and inefficient
page stealing.
The OPT parameters MCCFXEPR and MCCFXTPR, also de-
scribed later in this chapter, supply higher thresholds for the
percentage of frames in the system that are fixed or allocated for
paging. Exceeding either or both of these thresholds will trigger
SRM actions to prevent exhaustion of the available frame
queue. The ensuing Pageable Storage Shortage swap-outs, with
their accompanying ominous messages, may serve to forestall
gross degradation of major workloads.
Given the capabilities of MVS/ESA since SP 4.2 to deal with
swappable workloads having very large storage needs, it may be
advisable to increase the MCCAFCTH thresholds if such work-
loads are present. If, for instance, the maximum swap packet
size is set at 3 megabytes (768 frames) and more than one such

SRM (Compatibility Mode) Parameters 353



job is likely to be running, page stealing should commence when
the AFC falls below this value and should not stop until the
likely block page-in requirement can be met without another
page stealing cycle. In such a case, the specification might be

MCCAFCTH=(768,1000)

As with all such recommendations, a period of measurement
and evaluation both before and after the change is needed to re-
fine the setting.

B.1.4. Swapping adjustments
In SP 4.2, two new controls were introduced to tune the swap-
ping process. The first can be used to limit the disruptive effect
of single swaps, while the second regulates the cumulative effect
of exchange swapping.

MCCMAXSW, maximum swap packet size
(Author’s Note: IBM calls this parameter swap set size. That name
is already used to describe the fixed 12-slot unit of swap data set
allocation and use. It is also used loosely to denote the maximum
contiguous-slot group size used by the Auxiliary Storage Manager
[ASM], typically 36 slots [three tracks] on a 3390. I therefore
coined the term swap packet to describe the maximum number of
pages moved at each stage in a multistage swap.)
Suppose that a moderately large batch job has a trimmed swap
group size of 830 pages, about 3.4 megabytes. If swapping is
done to expanded storage at a streaming rate of 30 microsec-
onds per page, about 25 milliseconds of CPU time will be di-
verted to page movement for the swap-out. The swap-in will be
broken up into the primary working set, swapped in together,
and the secondary working set, brought in as needed. If the
working set after swap-in resembles that before swap-out, per-
haps 800 pages will be brought in as page faults, at about 50 mi-
croseconds apiece. The swap-in thus consumes about 40 milli-
seconds, for a total of much less than a hundredth of a second of
pure CPU as overhead for each swap sequence.5 This is not yet a
severe load on the system.
The same job swapped to auxiliary storage requires 23 dedicated
3390, 9345, or RAMAC local page data sets on 23 channel and stor-
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age director paths for full concurrency, giving a swap-in time of
about 40–50 milliseconds. A more realistic configuration of six lo-
cal page data sets will give a swap-in time of 200–250 milliseconds,
or 400–500 milliseconds for the swap sequence, with about the
same CPU cost as for the expanded storage swap.
Now imagine a batch job ten times as big, with a trimmed work-
ing set of 8300 pages. Such jobs are commonplace in many engi-
neering and scientific application areas. Now the swapping im-
pact, if incurred all at once, can be very disruptive—if 8300 ex-
panded storage frames are available, almost a tenth of a second
of CPU time is consumed for a swap sequence. If swapping is to
and from auxiliary storage, a swap sequence time of 6 to 7 sec-
onds is incurred.
As of MVS/ESA SP 4.2, the intense impact of the swap sequence
is spread across a longer time interval based on the value of
MCCMAXSW. Successive trim packets of up to that number of
pages are sent out as blocks of pages, followed ultimately by the
final packet as the swap-out. Raising MCCMAXSW from its de-
fault value of 512 pages can make effective use of a
well-matched paging configuration to deal with the swapping
needs of very large swappable workloads.
Before changing this parameter, study the swapping statistics of
your system carefully. Ensure that the paging subsystem (or ex-
panded storage) can handle the anticipated load, and measure
carefully before and after the change. What should happen is that
the very large address spaces will not suffer excessive elongation,
while the throughput of the system (as measured by total CPU
and I/O service units) will increase. If the response times of inter-
active workloads have been suffering, they should improve.
The approach suggested here is necessary in any tuning exercise:

• Identify a problem to be solved.

• Secure appropriate measurements and analyze the prob-
lem to determine what kind of change might produce im-
provement.

• Predict what the expected effect of the change is likely to be;
also seek out and predict possible negative consequences.

• Make a set of baseline measurements for later comparison.

• Implement the indicated change (one change at a time).
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• Measure after each change.

• Assess the effect of the change on the direct area of con-
cern, as well as on all possible affected peripheral areas.
Test your theory of what the change should have done, us-
ing the measurements.

• Continue making changes to refine the original guess until
a point of diminishing return is reached.

SWAPRSF, exchange swapping bias
Exchange swapping was the pariah of workload management
tools throughout the history of MVS. However, it was imple-
mented to meet a simple need: ensure that in a domain with lim-
ited MPL, a shorter-running job would not get trapped behind a
longer-running one. Doing this is a simple way to ensure consis-
tent batch turnaround times regardless of arrival order, thus
contributing to customer satisfaction.
What, then, is so bad about exchange swapping? The simple expla-
nation is that it was viewed in the early days of MVS as “unneces-
sary” compared with such obviously more worthy swaps as unilat-
eral swaps for MPL adjustment and swaps of idle TSO users. Be-
cause all swapping in early MVS systems was an unqualified di-
saster, unnecessary swaps had to be eliminated.
Soon after exchange swaps had been “conquered,” MVS swap-
ping became much less of a problem. Swap data sets came first,
reducing the impact of swapping on workloads sensitive to
page-in delay. Logical swapping was next, eliminating many
TSO terminal-wait swaps. Later, extended swap and the contig-
uous-slot allocation algorithm made swap data sets obsolete
and, with storage isolation, made efficient swap paging with re-
duced page faulting possible. A big improvement came with the
introduction of expanded storage in the IBM 3090, as well as the
general trend to larger central storage sizes.
By the time MVS/ESA became available, the swapping burden
had become insignificant for address spaces of ordinary size. It
was time once again to consider the benefits of exchange swap-
ping. However, prior to SP 4.2, doing so would have required re-
working of thousands of IPSs constructed when exchange swap-
ping was out of favor. With SP 4.2, the parameters and mecha-
nisms arrayed against exchange swapping were all swept away.
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One parameter was added to set a global bias for or against ex-
change swapping.
SWAPRSF has a default value of 10, corresponding roughly to
the old default ISV of 100,000. It may be set as low as 0.1, effec-
tively allowing exchange swaps at will, or as high as 100, mak-
ing exchange swaps about one-tenth as likely as in the default
case.
In systems with a substantial load of unscheduled batch having
no sequential dependencies and widely varying run times, set-
ting SWAPRSF to a lower-than-default value, perhaps to 5, will
facilitate exchange swapping, improving uniformity of job com-
pletion durations. With a heavier batch load, including some
moderately large jobs, SWAPRSF should be left initially at its
default setting. When the dominant workload is NIC (Nu-
merically Intensive Computing) batch, SWAPRSF might be in-
creased to suppress exchange swaps and allow the “swapped out
too long” swap reason to bring in such address spaces at 10-min-
ute intervals.

B.1.5. Real storage management example
This example will show the relationships among expanded stor-
age criteria table entries, workloads, and the parameters that
control page stealing, migration, swap packet size, and exchange
swapping frequency.
Let us assume that the critical migration age for the system is
about 800 seconds, and that there are two CICS workloads (ma-
jor production and pilot production), two TSO workloads (sup-
port and application development), and two batch workloads
(“normal” and “heavy engineering”). The heavy engineering
workload has typical working-set sizes of 30 megabytes. There
are eight local page data sets on 9345B12s, each on separate
paths. Therefore, 288 pages may be moved concurrently. Al-
lowing for two data transfers per swap packet, an MCCMAXSW
value of 576 fits the packet size to the paging configuration, and
the default value of 512 is not far wrong.
The order of importance for these workloads is:

major production CICS
support TSO
heavy engineering batch
pilot production CICS
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application development TSO
normal production batch
default (open shop) batch

There is not enough expanded storage to accommodate the en-
tire workload. Heavy engineering batch is to be swapped to aux-
iliary storage. Other paging categories will compete for ex-
panded storage in priority order. OPT settings to manage these
competing workloads might be:

• global parameters
MCCMAXSW=576 /*FIT SWAP PACKET TO AUX*/
SWAPRSF=20 /*MILDLY RETARD EXCHANGE SWAP*/
MCCAECTH=(150,300) /*DEFAULTS OK*/
MCCAFCTH=(600,900) /*BIG SWAPS LIKELY*/

• criteria ages for default batch
ESCTSWWS(1)=32766 /*SWAPS TO E.S. LAST*/
ESCTSWTC(1)=32766 /*TRIMS TO E.S. LAST*/
ESCTSTC(1)=1000
ESCTPOC(1)=5000
ESCTVIO(1)=5000
ESCTBDS(1)=2000

• criteria ages for normal production batch
ESCTSWWS(5)=2000
ESCTSWTC(5)=2000
ESCTSTC(5)=1000
ESCTPOC(5)=2000
ESCTVIO(5)=1500
ESCTBDS(5)=1500 /*FACILITATE HIPERBATCH*/

• criteria ages for heavy engineering batch
ESCTSWWS(10)=32767 /*NO SWAP TO E.S.*/
ESCTSWTC(10)=32767 /*NO TRIM TO E.S.*/
ESCTSTC(10)=900
ESCTPOC(10)=900
ESCTVIO(10)=32766 /*VIO NOT EXPECTED*/
ESCTBDS(10)=32766 /*HSPACE NOT EXPECTED*/

• criteria ages for major CICS
ESCTSWWS(15)=32766 /*NORMALLY NONSWAPPABLE*/
ESCTSWTC(15)=32766 /*NORMALLY NONSWAPPABLE*/
ESCTSTC(15)=20
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ESCTPOC(15)=50
ESCTVIO(15)=2000 /*VIO NOT EXPECTED*/
ESCTBDS(15)=100 /*ALLOW HSPACE LSR*/

• criteria ages for pilot CICS
ESCTSWWS(20)=32767 /*NORMALLY NONSWAPPABLE*/
ESCTSWTC(20)=32767 /*NORMALLY NONSWAPPABLE*/
ESCTSTC(20)=150
ESCTPOC(20)=250
ESCTVIO(20)=3000
ESCTBDS(20)=1500 /*ALLOW SOME HSPACE LSR*/

• criteria ages for support TSO
ESCTSWWS(25)=100
ESCTSWTC(25)=100
ESCTSTC(25)=30
ESCTPOC(25)=100
ESCTVIO(25)=700
ESCTBDS(25)=1000

• criteria ages for application development TSO
ESCTSWWS(30)=200
ESCTSWTC(30)=200
ESCTSTC(30)=150
ESCTPOC(30)=200
ESCTVIO(30)=1500
ESCTBDS(30)=3000

This example will be revisited later in this appendix, showing
the corresponding IPS settings in context with the OPT set-
tings.

B.1.6. MPL adjustment
MPL adjustment might be thought of as unimportant in sys-
tems with expanded storage. After all, most swaps start off as
processor storage swaps, and paging delay from auxiliary
storage is insignificant. However, a major change occurred in
MVS/ESA SP 4.2, invalidating these assumptions. In today’s
systems it is possible to create two distinct workload catego-
ries, one that will ordinarily use expanded storage and one
that will not. MPL adjustment and considerations relating to
auxiliary storage paging and swapping apply, much as they
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did before, to the part of the workload excluded from ex-
panded storage.

IBM’s Initialization and Tuning Guide discusses at some length
the operation of the algorithm controlling system-wide MPL.
The basic process requires that the value of each MPL adjust-
ment variable be beyond the favorable limit of the correspond-
ing control to increase MPL, while a single variable on the
wrong side of the range can cause MPL decrease.

Default values for many MPL adjustment parameters have in the
past been inappropriate, tending to reduce MPL before the CPU is
fully utilized, yet allowing auxiliary storage paging delay to rise to
harmful values on some systems without reducing MPL. Improved
defaults were supplied starting with MVS/SP 3.1.3.

Ideally, MPL should be controlled so as to keep demand page-in
delay of key workloads and CPU delay arising from expanded
storage page movement to acceptable values. Unfortunately,
there was no MPL control parameter based on paging delay or
CPU delay, and none is workload-specific. In pre-SP 4.2 systems
with expanded storage, MPL is not adjusted in response to page
movement rates or migration activity. Lacking such ideal con-
trols, less direct indicators of delay had to be used in the OPT.
These included the page fault rate, the storage reference age
(UIC), the demand paging rate, the size of the auxiliary storage
manager’s (ASM’s) queue of pages to be moved, CPU utilization,
real storage utilization, and average page delay time. These con-
trols are of various degrees of usefulness, and all are at least
somewhat flawed.

These deficiencies were remedied in SP 3.1.3 by removing the
most inappropriate controls, and in MVS/ESA SP 4.2 with the
introduction of the Working Set Manager. The principal objec-
tive of the Working Set Manager is to ensure optimum occu-
pancy of central storage and to minimize wasted CPU cycles
that served only to move pages in and out of central storage.

Most experts agree that the basic control of MPL in a system
without expanded storage (or one with a workload segment ex-
cluded from expanded storage) should depend principally on the
page fault rate (the rate of nonswap, non-VIO page-ins from aux-
iliary storage), with other parameters either nullified or set to
values well outside a normal controlling range and thus respon-
sive only to extreme problems. In a system with a homogeneous
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paging configuration, with paging devices that all perform alike,
page fault rate should be a good indicator of overall page-in de-
lay.

A flaw in the original IBM definition of page fault rate was
that it also included reclaims, stolen pages “rescued” from the
page-out queue in response to subsequent page fault inter-
rupts. Usually there are few reclaims in systems without ex-
panded storage, but very high reclaim rates have been ob-
served in systems with expanded storage. Reclaims were ex-
cluded from the page fault rate beginning with MVS/SP 3.1.3,
and the attempt to perform reclaims was removed when block
paging and other real storage management mechanisms were
integrated in SP 4.2.

Each of the MPL adjustment parameters is discussed in the fol-
lowing paragraphs, followed by a summary table of default val-
ues and recommendations. They are presented in estimated or-
der of importance.

RCCPTRT, page fault rate
Page fault rate remains the best available (to SRM) indicator of
storage constraint and thus the most appropriate control vari-
able for MPL. As of SP 3.1.3, reclaims were no longer included in
RCCPTRT. In a default MVS system, RCCPTRT is set to
(1000,1000), normally nullifying it as a control.6

There is no way that a definitive recommendation for RCCPTRT
can be given a priori. The IBM default can thus be understood.
The best we can do is to suggest values based on the ability of
the paging configuration to resolve page faults in some accept-
able time frame.

Based on modeled results, device limits are suggested (in the fol-
lowing table) for commonly used paging devices, based on target
attainable device response times for several levels of underlying
path busy (Bp) and device busy (Bd).7
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Using these paging rates as guideline loading limits, one would
choose the underlying device and path utilizations correspond-
ing most closely to the actual paging configuration, read off the
page-in rates, and multiply by the number of local page data
sets, less one for each 100 logged-on TSO users in a system with-
out swap data sets. The result will be a first approximation to
the correct upper limit for RCCPTRT. Set the lower limit of
RCCPTRT to 80 percent of that value.

Sustainable Paging Rates, Page-ins per Second
Device Re-

sponse
Time
Target

Bp: 0% 10% 20%
Bd: 0% 10

%
0% 10% 0% 10%

3380J 20 ms 31 25 30 24 29 22
3380K 22 ms 21 14 21 14 20 14
9345B12 15 ms 41 32 41 32 41 32
9345B22 15 ms 38 29 38 29 38 29
3390-1 15 ms 32 24 32 24 32 24
3390-2 15 ms 23 15 23 15 23 15
3390-3 20 ms 38 31 38 31 38 31
SSD1 3.0 MB/s 2.5 ms 147 95 90 47 73 32
SSD 4.5 MB/s 2 ms 273 129 125 70 105 52
1 Solid state device, usually emulating an IBM 3380.

Example: For the system described in the preceding section, as-
sume that batch swapping uses the capacity of three of the eight
9345B12 paging devices. The suggested device limit for dedi-
cated devices with 10 percent underlying path busy is 41
page-ins per second. Discounting the three aggregate devices
used for swapping from the eight locals, the upper value chosen
for RCCPTRT should be 5 X 41 or 205. The lower limit should be
80 percent of that, or 164. In the OPT, specify

RCCPTRT=(164,205)

After a reasonable period of measurement, RCCPTRT should be
adjusted upward if unilateral swaps are triggered by a high
page fault rate when the system is not suffering excessive pag-
ing delay. It should be made lower if paging delay is excessive
and MPL reduction is not taking place to compensate.
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RCCUICT, UIC
Controlling MPL based on UIC depends on the assumption that
UIC is an indicator of storage constraint. In systems without ex-
panded storage, this is rarely so; hence the extreme default of
(2,4) for this parameter.8 (UIC is the only MPL control for which
low values indicate constraint.) Conceivably, low UIC can occur
in a system with a stable and static workload and just enough
real storage for it all to fit. In systems with more variable work-
loads and a high degree of real storage reuse, page stealing may
commence before UICs get low enough to trigger MPL adjust-
ment. Subsequent page faulting will cause MPL adjustment if
RCCPTRT is set correctly. Again, the UIC control will not come
into use.

In MVS/ESA with expanded storage, the picture changes. Pages
don’t move in if they don’t move out. The integration of swapping
with paging ensures that competing mechanisms don’t churn su-
perfluous paging traffic. Page stealing is innocuous if the page age
is very high or if there is sufficient available expanded storage. De-
lay due to page-in from auxiliary storage is handled well by
RCCPTRT as usual, but other sources of delay are possible. If the
page movement rate to and from expanded storage is too high,
CPU delay will rise significantly. Such excessive page movement is
a symptom of central storage exhaustion, and low UIC is a moder-
ately correlated indicator of that constraint.

Since MVS/ESA SP 4.2, with Working Set Manager, the value of
RCCUICT should not be changed without thorough analy-
sis—and a problem to solve.

RCCCPUT, CPU utilization
The idea of controlling the MPL based on CPU utilization seems
to be consistent with the idea (a recurring theme in Initializa-
tion and Tuning) that SRM controls “access to resources.” How-
ever, access to the CPU is controlled effectively by adjusting rel-
ative dispatching priorities. Moving address spaces in and out of
the multiprogramming set by means of swapping according to
CPU utilization has two effects:
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• Constraint on central (real) storage varies according to sys-
tem MPL, causing secondary SRM responses to deal with
possible storage shortages. In MVS/ESA since SP 3.1.3,
even this effect is muted because of the integration of real
storage management functions. It’s almost certain that a
unilaterally swapped address space will linger in central
storage, at least for a while.

• Swapped-out address spaces receive no service.
Denying service may be necessary under some special circum-
stances. Usually, however, the denial of service associated with
MPL adjustment is too temporary to deal with disruptive ad-
dress spaces—those causing contention with other, more impor-
tant address spaces. Such an address space, if swappable, needs
to be RESET via operator command to a special performance
group denoting a domain with (0,0) constraints, to be kept
swapped out until the potential for contention is removed.9 (It
may be just as effective to take an apparently contrary action:
put the offender in a more favorable performance group with
higher dispatching priority and a domain with generous con-
straints if it is a batch job with a predictably short time to com-
pletion.) In MVS beginning with Version 5, a RESET QUIESCE op-
erator command provides a more elegant solution for dealing
with disruptive address spaces.
Since the time of MVS/SP 2.1.7, the maximum value for
RCCCPUT has been 128 rather than 101, as it had been in ear-
lier MVS releases. With this limit, it is possible to “dial in” an ac-
ceptable range of CPU overcommitment. With a range of
(103,107), for instance, SRM will allow MPL increase even if the
CPU had no wait time and an average of fewer than three ad-
dress spaces received no service during an SRM summarization
(RM2) interval. MPL reduction will be forced if seven or more
address spaces received no service during the interval.
Why should such CPU overcommitment be desirable? With ade-
quate central storage, not needed for another purpose, it is
harmless to leave inert address spaces in the
multiprogramming set. Properly chosen dispatching priorities
will control CPU access. Low-priority address spaces will be in a
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position to take advantage of any momentary drop in higher-pri-
ority CPU demand and will receive service without the delay of
even the most efficient swap-in. In an MVS system with a mixed
workload and a well-balanced hardware configuration, a modest
level of planned CPU overcommitment should get the most out
of the hardware.
With a more stable and homogeneous workload, restricting CPU
overcommitment can ensure that I/O completion SRBs trig-
gered by low-priority address spaces will be less likely to tie up
the CPU when “important” address spaces need it. Such a con-
sideration is valid only on uniprocessors.
In systems running under IBM’s PR/SM LPAR, HDS’s MLPF,
Amdahl’s MDF, or VM, the SRM does not see a correct picture of
WAIT time unless the WAIT COMPLETE option (of PR/SM) or a
corresponding parameter is selected. Since this option can be
harmful to interactive response time, it is usually not chosen.
Consequently, any MVS system running in a logically or virtu-
ally partitioned mode will be exposed to spurious MPL adjust-
ment based on high CPU utilization, unless RCCCPUT is set to
a range exceeding 100 for both the low and high values.
Summarizing the considerations for setting RCCCPUT:

• Basic recommendation: with adequate central storage and
a TSO/batch workload, set RCCCPUT to (104,108) for sys-
tems with up to three processors, to (106,112) for a
four-way, (107,114) for a five-way, and (108,116) for a
six-way. Many systems run with “sponge” or “soaker”
jobs,10 one per CPU, to rule out “low utilization effects” and
supply a direct measure of reserve CPU capacity. The base
value of RCCCPUT should go no lower than 100 plus the
number of CPUs, to allow for an undispatched cycle-eater
in each processor. The upper value simply adds one to three
additional standby address spaces per processor, since the
sponge jobs are typically not swapped on account of being
in domains with fixed constraints.
The default values of RCCCPUT since MVS/ESA SP Ver-
sion 5 are (128,128), reflecting the bias in recent MVS and
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OS/390 releases toward achieving maximum CPU utiliza-
tion. The fair access dispatcher changes make it more
likely that address spaces low on the queue will be dis-
patched occasionally. If your system has adequate central
storage, leave the parameter at this default value.

• If in a partitioned environment (other than physically par-
titioned), make sure that RCCCPUT is at least (104,108)
regardless of any other factors.

• Adjust both RCCCPUT values upward, one step at a time,
if no significant CPU or storage delay is found in key work-
loads, and if address spaces are unilaterally swapped out,
with RCCCPUT as a cause of MPL reduction.11

• Reduce the RCCCPUT range if this parameter rarely
causes MPL reduction while workloads at relatively high
dispatching priority experience significant CPU delay.

RCCFXTT, total fixed/allocated storage
The idea of controlling MPL based on the amount of real stor-
age fixed or currently allocated for movement by the Auxil-
iary Storage Manager is appealing. Isn’t a lack of available
storage just what we’re trying to prevent? A fallacy of this
control is that the specification for RCCFXTT is not in frames
but in percentage of frames. The default range of 66–72 per-
cent, on a large LPAR with 800 megabytes of central storage,
would result in MPL reduction with 57,344 frames neither
fixed nor allocated for page-in or page-out. If this control
causes spurious MPL reduction or prevents MPL increase, its
values should be raised a little closer to 100 percent. However,
check first to see if emergency page stealing is occurring fre-
quently, or if the system-wide high UIC is chronically less
than 10. If so, it would be more appropriate to reduce the
RCCFXTT values than to increase them.

RCCFXET, fixed below 16 MB
This control, similar to RCCFXTT and similarly flawed, is de-
signed to allow I/O with format-0 CCWs to proceed as it must,
using only real storage below 16 megabytes. The need for this
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control will eventually fade as I/O routines are switched over to
Format-1 CCWs.

Summary of MPL adjustment parameters
The following table summarizes the preceding discussion of the
SRM MPL adjustment parameters maintained in the OPT as of
MVS Version 5.

Name Default Change to Comment
RCCPTRT 1000,1000 Device-related Most effective control
RCCUICT 2,4 Keep default Adjust only if problem
RCCCPUT 128, 128 104,108 & up or

leave at default
Allow full CPU loading;
default OK since V5

RCCFXTT 66,72 Higher if problem Avoid emergency steal
RCCFXET 82,88 Keep default Verify necessity

B.1.7. Logical swap controls
Logical swapping was an opportunistic enhancement to MVS at
a time when “large” real storage first became available. A very
large available frame count was perceived as an indicator of un-
used excess capacity. Using those frames for logical swap im-
proved average TSO response time and contributed to the mar-
keting momentum supporting the proposition that MVS could
make good use of practically any amount of real storage.
Given the marketing climate of the time, it is easy to see why
the original controls in MVS/SE1 for logical swap were firmly bi-
ased to encourage logical swaps over physical. When those con-
trols were made visible in the OPT in SE2 and in later releases,
the now-discarded guideline of release-to-release compatibility
dictated that the controls would not change.
Subsequent evolution has replaced the narrowly defined “log-
ical swap” with “processor storage swap” in systems with ex-
panded storage. The logical swap evaluation is made first, but
if it fails, the trimmed working set of an address space may be
retained in central storage on a pending push-out queue for
expanded storage, to be moved out only when its central stor-
age frames are needed as an alternative to a cycle of page
stealing. In such a system, “turning off ” logical swapping by
setting the think time range to (0,0) may appear to be ineffec-
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tive. It is effective in a strict and narrow sense; however, a
pending processor storage swap to expanded storage looks
just like a logical swap—hence the appearance that turning
off logical swap is ignored.
Logical swapping is controlled by four OPT parameters. One
(LSCTMTE) specifies the range of “think times” that the logical
swap decision criterion may assume. The other three controls
move the criterion up and down through the think-time range.
The two controls on fixed and allocated storage are absolute:
Think time will be reduced if either control (LSCTFTT or
LSCTFET) is above its maximum, and it will not be increased if
either storage control exceeds its minimum.
The UIC (LSCTUCT) control is permissive. Assuming no effect
due to the storage controls, think time will be increased if the
Unreferenced Interval Count is over its maximum. Think time
will be decreased if the UIC is below its minimum. Conflict is re-
solved in favor of decrease. The UIC control serves another pur-
pose: When the system UIC is less than half the lower limit, no
new logical swaps will be allowed for the duration of the current
RM2 interval.
Another use for the current think-time value is as an absolute con-
trol for making non-terminal-wait swaps logical. If the current
think time is at least 5 seconds, such logical swaps are allowed.

Logical swapping defaults
The following box summarizes the parameters governing logical
swapping and their default values.

Summary of Logical Swap Defaults (since SP 4.2)

Name Default Unit Definition

LSCTMTE 0,5 Seconds Think time range

LSCTFET 76,82 Percent Fixed frames below 16 MB

LSCTFTT 58,66 Percent Fixed or ASM-allocated (all)

LSCTUCT 20,30 Seconds Unreferenced Interval Count
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Tuning with logical swapping
Because logical swapping is somewhat preferred by the default
controls, those with storage-constrained systems may wish to
reduce the preference. Two approaches may be taken: either re-
duce the think-time range or make the controls more disposed to
reduce the think time. Both are usually done.
There is a caution that must be observed in this respect, as in all
cases of tuning by means of adjusting the OPT controls. Any cur-
rently effective control will tend to place its controlling variable
in its “happy”12 range if the controlled variable is free to be ad-
justed. For example, suppose we set LSCTUCT to (40,50) and
LSCTMTE to (1,5). If there is an abundant supply of logical
swap candidates of varying think times, the system-wide high
UIC will tend to settle somewhere between 40 and 50, with a
think-time criterion somewhere between 1 and 5 seconds. If at
the same time the UIC control of MPL (RCCUICT) is set to its
default of (2,4), the free adjustment of MPL will tend to keep
UIC between 2 and 4. The UIC cannot be both between 2 and 4
and between 40 and 50. In this case, it will probably rise to the
higher range, and UIC will be ineffective as an MPL control (as
it usually is). If storage activity increases, UIC will fall to the
lower range, leaving think time pinned at its lower limit but
serving then as an effective MPL control.
This interaction between free and controlled variables, and the
switching of control from one area to another, is not necessarily in-
appropriate; it just needs to be understood. If the ranges had been
reversed, SRM might have caused oscillation or other signs of in-
stability as it tried to reconcile the conflicting demand to reduce
MPL while increasing logical swapping, both based on UIC.

Typical logical swap adjustments
Following are a few examples of adjusting the logical swap con-
trols from their default values.
In systems without expanded storage and with some degree of
real storage constraint, it is common to alter the logical swap
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controls to reduce the amount of logical swapping under normal
conditions, and to cut it off before delay becomes unacceptable.
The following are typical and usually produce the desired re-
sults:

LSCTMTE=(1,5)
LSCTUCT=(30,40)

In systems with expanded storage, logical swap is absorbed
into processor storage swap. The logical swap controls are ir-
relevant if left at their default values, and can cause great
harm if altered. In spite of past advice or practice to the con-
trary, the think-time range should not be increased above its
default values.

B.1.8. CPU mean-time-to-wait adjustment
One OPT parameter originally used to control CPU load balanc-
ing (dropped with the other load balancers as of MVS/ESA SP
4.1) has another use—to set the interval of mean-time-to-wait
associated with each dispatching priority step in the MTTW al-
gorithm. The parameter is CCCSIGUR; it has a default value of
45, in units of SRM milliseconds. If several dissimilar address
spaces are in MTTW group x and their actual dispatching priori-
ties, as seen with a performance monitor, are not spread out in
the range x0 through x9, an adjustment to CCCSIGUR could en-
sure that MTTW works properly.
If the priorities are clumped at x9, it appears that all address
spaces have short MTTW. Thus CCCSIGUR is too large and
should be decreased. If all address spaces have the lowest dis-
patching priority in the group, CCCSIGUR is too small and
should be increased. Start by doubling or halving the value,
then make smaller adjustments until the desired result is
achieved.

B.1.9. Selective I/O enablement control
In systems with multiple CPUs, MVS/XA and MVS/ESA start
normal processing after IPL with only one CPU enabled to han-
dle I/O interrupts. An additional CPU is enabled when the per-
centage of I/O interrupts handled by the TEST PENDING INTER-
RUPT (TPI) instruction exceeds the upper threshold of the
CPENABLE OPT parameter. A CPU will be disabled for I/O in-
terrupts when the TPI percentage falls below the lower
CPENABLE threshold. The CPENABLE defaults are (10,30).
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If CPENABLE is to be changed from its default values, the fol-
lowing effects must be considered:

• If the CPENABLE range is increased, the CPU(s) not han-
dling I/O interrupts will run more efficiently by avoiding
status-switching overhead. There will be a small increase
in I/O completion time owing to CPU queuing.

• Decreasing the CPENABLE range will minimize CPU
queuing in handling I/O completions at the expense of in-
creasing status-switching CPU overhead on all enabled
CPUs.

• In a logically partitioned system, a decreased CPENABLE
range might cause extra switching of processors between
partitions or domains, with whatever overhead the hard-
ware and microcode impose, as physical processors are con-
tinually reassigned among logical processors. However, if
the partition or domain is receiving only a small fraction of
the processor complex’s service, setting CPENABLE to
lower values will minimize I/O elongation.

If the most important workload on the system is heavily domi-
nated by I/O, reducing the CPENABLE range might improve I/O
response times to a slight extent.

B.1.10. Miscellaneous controls
Certain additional and largely unrelated controls are in the
OPT. We consider them briefly:

• CNTCLIST, a YES/NO variable with a default of NO. If YES is
specified, the individual commands in a TSO CLIST are
counted as individual SRM transactions. The default of
NO counts the entire CLIST as a single transaction.
Specifying CNTCLIST=YES tends to increase the number of
reported transactions and reduce the reported “response
time.”
One application of CNTCLIST=YES is to ensure preferential
treatment of large CLISTs that constitute end-user appli-
cations or that are invoked by LOGON procedures.

• DVIO, a YES/NO variable with a default of YES. The default al-
lows “directed VIO.” VIO page-outs will go only to page data
sets not designated as NONVIO in IEASYSxx or in a
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PAGEADD command. Specifying DVIO=NO defeats directed
VIO even if the NONVIO designation is used for one or more
page data sets.
Directed VIO can be beneficial in a mixed paging configu-
ration if VIO is to be kept off relatively small high-speed
paging devices. It should not be used with homogeneous
paging configurations.
When sufficient expanded storage is in the system, VIO will
normally go to expanded, and DVIO becomes irrelevant.

• ERV (ENQueue residence value) specifies a number of CPU
(TCB) service units an address space must accumulate be-
fore it may be considered for a unilateral or exchange
swap-out if it holds an ENQ on a resource needed by an-
other address space, or an exclusive ENQ leading to a de-
vice RESERVE. The default ERV is 500 CPU service units.
During the ERV interval, the address space or enclave (as of
SP 5.2) runs at the “privileged” dispatching priority.

• MCCFXEPR and MCCFXTPR, percentage variables with defaults
of 92 and 80, respectively. The first applies to fixed frames
in central storage with real addresses below 16 megabytes;
the second to fixed pages, or those allocated for page-in or
page-out, in all of central storage. If either threshold of real
storage allocation is exceeded, SRM will signal a pageable
storage shortage and begin a series of actions described in
grisly detail in Initialization and Tuning Guide. If the
pageable storage shortage condition occurs with any regu-
larity (i.e., more than once a week), the thresholds might be
raised slightly and the cause investigated. If a pathological
condition is responsible, raising the thresholds will have
little effect.

• RMPTTOM specifies a scale factor for SRM invocation. The de-
fault and minimum is 1000, signifying a normal 1000 SRM
milliseconds per SRM second. RMPTTOM might be in-
creased in an MVS test system running under VM, to re-
duce overhead somewhat. It should not be increased in a
production MVS system running in a preferred, V=R, or
V=F virtual machine.
It might be desirable to increase RMPTTOM in an MVS
system with a stable nonswappable workload, such as an
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all-CICS system. A minor overhead component will be re-
duced. It is imperative if such a choice is made to make
sure that there is no swappable work of any importance
on the system.

B.1.11. OPT questions
1. Examine the current OPT in your MVS system. Fill in the

default specifications if they’re not there. If there is no OPT,
fill in all of the defaults. Identify the parts that control ac-
cess to expanded storage, the multiprogramming level, and
logical swap. Discard the load balancers except for
CCCSIGUR.

2. Is RCCPTRT the most effective control of MPL? Does CPU
utilization restrict MPL? Is the UIC range (RCCUICT) too
high? Review the discusssions in this chapter and make ap-
propriate adjustments.

3. Examine the RMF Swap Placement Report to determine
the effect of logical swap management as specified in your
OPT. Can you distinguish between “true” logical swaps and
processor storage swaps that didn’t get pushed out? What
changes would you make so that the system will perform
according to your expectations for logical swapping?

4. There should be two UIC ranges in your OPT. Determine
the range of UIC values for each of the following:

¤ MPL decrease

¤ no MPL change

¤ MPL increase

¤ logical swap think time increase

¤ no change in logical swap think time

¤ logical swap think time decrease

¤ no logical swap (cut-off)
Are there any inconsistencies or unexpected results? What
adjustments would correct them?

5. What is your installation’s critical migration age? If you
don’t have expanded storage, assume it is 700 seconds. De-
termine how many different classes of work you have for
the purpose of determining expanded storage eligibility.
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Now set up the criteria table entries for your installation’s
workloads.

B.2. Installation Performance Specification (IPS)

An IPS tells SRM how to treat each address space in the system,
and to some extent how to treat the common area as well.
Within the overall bounds and parameters established by the
OPT, IPS parameters specify how MPL is to be distributed, the
ranking of address spaces in competing for CPU cycles, the de-
gree to which each address space and the common area is sub-
ject to page stealing, and the eligibility of each address space’s
pages to be sent to expanded storage.

The IPS contains several kinds of information in a particular or-
der. Global definitions precede domain and performance group
definitions.

IPS concepts were discussed at length in Chapters 6 and Appen-
dix A. Here we’ll concentrate on syntax, defaults, and recom-
mended values. Note that there are two kinds of defaults in the
IPS:

• basic default—the value assigned if the parameter is omit-
ted in the IPS

• supplied default—the value specified in the default IPS
supplied with current MVS releases

The basic defaults are unlikely to change except at version
changes; the supplied defaults have evolved to some extent over
time.

B.2.1. Global definitions
Global definitions include service definition coefficients, which
must come first, followed by specifications for privileged dis-
patching priority, time unit divisor, time-slice pattern, I/O queu-
ing option, common-area storage isolation, and I/O service unit
option.

All of these parameters are optional. Defaults exist for all but
the time-slice pattern.
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Service Definition Coefficients (SDCs)

• CPU may range from 0 to 99.9. The “hard-wired” (basic) de-
fault is 1.0 if the coefficient is not specified, but a default of
10.0 is used in the supplied IEAIPS00 in an MVS/ESA sys-
tem as distributed.
Recommendation: Use the supplied default value of 10.0.

• SRB may range from 0 to 99.9. The basic default is 0.0 (be-
cause SRB service was not captured ’way back in
MVS/SE1) if the coefficient is not specified, but a default of
10.0 is used in the supplied IEAIPS00 in an MVS/ESA SP
4.2 system as distributed. The value of the basic default
makes it important that this parameter be specified in ev-
ery IPS.
For various reasons, those at some installations set the
SRB coefficient to a different value than that of the CPU
coefficient. This might be understandable if the SRB value
were made greater than the CPU value, since SRBs have
higher effective dispatching priority than TCBs, and thus a
greater impact on workloads. Unfortunately, a faulty as-
sessment of “importance” may be used, resulting in an SRB
value lower than the CPU value.
Recommendation: Use the supplied default value of 10.0.
Maintain equal values for the CPU and SRB coefficients.

• MSO may range from 0.0000 to 99.9999. The basic de-
fault is 1.0 if the coefficient is not specified, but a de-
fault of 3.0 is used in the supplied IEAIPS00 in current
systems as distributed.
Recommendation: In most cases, simply set MSO to 0.0
and be done with it. Even though SMF Type 30 records
now report raw page-seconds, your reporting and analysis
methodology may still make some use of the MSO number.
If there is such a need to preserve the MSO service number,
flawed as it is, set MSO to 0.01 or less.

• IOC may range from 0 to 99.9. The basic default is 1.0 if the
coefficient is not specified, but a default of 5.0 is used in the
supplied IEAIPS00 in an MVS/ESA system as distributed.
Recommendation: Use the supplied default value of 5.0.
It is unlikely that any alteration of IOC will be necessary.
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Other Global IPS Parameters

• PVLDP is the dispatching priority for privileged address
spaces, including initiators at job and step transitions, TSO
LOGONs, and other address spaces denoted as “privileged”
in the Program Properties Table (PPT), as well as address
spaces and enclaves in their ERV protected interval. Its basic
default is PVLDP=M0 (the lowest SRM-owned dispatching prior-
ity), but it is specified in the default IPS as PVLDP=F54. As with
any other dispatching priority, the value is meaningful only in
context with other priorities. In the supplied default IPS, F54
ranks higher in dispatching priority than all workloads in-
cluding first-period TSO; initiators with this priority might
cause TSO delays at job step transitions.

Recommendation: Make PVLDP one step lower in prior-
ity than the lowest-priority response-critical workload. For
instance, if TSO first period is at F72 and production CICS
address spaces are at F71 and F70, set PVLDP to F7.

• TUNIT need be specified only if time slicing is to be used,
and then only if the SRM second on the current CPU is not
short enough to execute the time-slice pattern without
causing perceptible delays in some workload. TUNIT
ranges from 1 to 10; the SRM second is divided by TUNIT
to become the SRM time unit.

Recommendation: Avoid using TUNIT if at all possible.
There is an overhead impact. If you must use it, make
TUNIT the smallest (least impacting) value needed to
smooth out priority-associated response time fluctuations
if they are noticed.

• TSPTRN is required if time slicing is to be used. One such cir-
cumstance is the need to divide CPU preference among dif-
ferent subsystems or user subsets to satisfy the terms of a
service level agreement.

Assume, for example, that TSO users in performance pe-
riod 1 of performance group 12 are to be preferred 30 per-
cent of the time and those in period 1 of performance group
14 are to be preferred 50 percent of the time, regardless of
the relative activity in the two performance groups. The
time-slice pattern should contain ten slices, five going to
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time-slice group 1 (PG 14) and three to time-slice group 2
(PG 12). The remaining two are unassigned.
The simple assignment of

TSPTRN=(1,1,1,1,1,2,2,2,*,*)

would cause each user set to wait for five SRM seconds be-
fore gaining preference, and other address spaces would
need to wait for eight slices before no address space would
be at its time-slice priority. A simple rearrangement mini-
mizes such delay and makes a subdivided (via TUNIT)
SRM second unnecessary:

TSPTRN=(1,2,1,*,1,2,1,*,1,2)

Recommendation: Avoid time slicing if at all possible. If it
is found to be necessary, try to minimize complexity by avoid-
ing the need for the TUNIT parameter, as shown above.

• IOQ has two possible values, FIFO (the base default) or
PRTY. IOQ=PRTY is specified in the IEAIPS00 shipped with
MVS/ESA.
Recommendation: IOQ=PRTY is usually specified and
can have a beneficial effect if there is a great deal of
low-priority, I/O-intensive batch running along with
other workloads and causing I/O contention with those
other, more time-critical workloads. Since there seems
little possible harm in making this choice, with some pos-
sibility of benefit, it is recommended.

• CWSS is used to specify storage isolation for the common
area—SQA, PLPA, and CSA, as well as their “extended”
counterparts above 16 megabytes. The base default is (0,*),
or no storage isolation. The lower value specifies a mini-
mum number of frames never subject to ordinary page
stealing; the upper sets a number of frames above which
the common area is subject to preferred page stealing.
If CPGRT is not specified, the protected frame count re-
mains at the lower value. With CPGRT, the number of pro-
tected frames (the target) is adjusted between the mini-
mum and maximum according to the rate of page faults re-
solved from auxiliary storage.
Recommendation: If you use CWSS, always set the max-
imum to “*,” denoting the largest possible value for the pa-
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rameter and preventing preferred stealing from the com-
mon area. Set the minimum to the observed minimum sum
of frame counts in the various common-area components at
a relatively un-busy time of day. With expanded storage,
the common-area paging rate from auxiliary storage is
likely to be very low; CPGRT would have little effect and
should not be used.
Without expanded storage, follow the recommendations of
the next paragraph to set CPGRT.

• CPGRT sets a range of acceptable page-in rates for the com-
mon area. If the rate from auxiliary storage exceeds the
maximum, the target is increased. When the page-in rate
falls below the minimum, the target will be reduced, but
not below the minimum CWSS value.
Recommendation: Without expanded storage, set CPGRT
to a range that will lead to an acceptably low level of common
page-in delay. Use the techniques described in Chapter 10 to
make this determination. When starting with storage isola-
tion, set CPGRT to somewhat high values, such as (10,15),
and observe the target value of CWSS. If the target never
rises above the minimum, and unacceptable common page-in
delay continues, reduce the range, maintaining the maxi-
mum at 1.5 times the minimum, until the CWSS target rises
when storage constraint develops.
CPGRT may be omitted in systems with expanded storage
unless the amount of expanded storage is very inadequate.

• IOSRVC may be specified as COUNT (the default) or TIME.
The considerations for choosing are discussed in Chapter 6,
in the section headed “I/O service units” on page 144.

B.2.2. Domains
Domains are defined with up to four parameters, only the first of
which, denoting the domain number, is required. The other
three parameters specify the MPL constraints on the domain,
the means of determining the domain’s contention index, and
the index of expanded storage criteria table entries to be used
for address spaces in the domain.
A domain defined without constraints has a default range of
(1,999). If no contention index algorithm is specified, a DSRV
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range of (0,999999999) is assumed. The default constraints al-
low wide SRM control of MPLs, in general a good strategy. A de-
fault lower constraint of 0 rather than 1 might be better; the ex-
tra increment of control is crucial in controlling storage-inten-
sive workloads.
Two default domains are predefined:

DMN=0,CNSTR=(999,999),DSRV=(0,999999999)
DMN=1,CNSTR=(1,999),DSRV=(0,999999999)

Domain 0, for privileged address spaces, cannot be altered, nor
can it be explicitly used for a performance group. Domain 1 is an
ordinary domain; it may and should be redefined to suit the in-
stallation’s needs.
Recommendation: Review the discussion of domains in Ap-
pendix A, as well as the material on the expanded storage crite-
ria table earlier in this appendix.

• Create the minimum number of domains needed to man-
age each distinct workload component, considering both
MPL and expanded storage eligibility ranking.

• Omit constraints on domains serving nonswappables only.

• Ensure that each swappable domain’s MPL is free to vary
over as wide a range as possible.

• Set nondefault minMPLs only in domains supporting re-
sponse-critical swappable address spaces, such as first- or
second-period TSO.

• Use the default range of (1,999) in most cases, with zero
minMPLs and restricted maximums reserved for very stor-
age-intensive workloads.

B.2.3. Performance groups
All that has gone before in the IPS and in our consideration of
its parameters is mere prelude to its real business—the defini-
tion of performance groups for the purpose of managing groups
of address spaces In the performance management model we
wish to encourage, each address space is assigned to a perfor-
mance group through the ICS, described at the end of this ap-
pendix. The ICS is the bridge between the outside world of job
names, job classes, and user-ids, and the SRM’s view of address
spaces, each assigned a performance group number.
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The definition of a performance group is simplicity itself:
PGN=number

defining a number in the range 1–999 as an acceptable perfor-
mance group number to be a target of assignment in an ICS, a
PERFORM specification in JCL or a TSO LOGON command, or
an operator RESET command.
Each IPS must include definitions of performance groups 1 and
2; all others are optional.
If only the minimal definition is provided, default assignments
are made for domain (domain 1), dispatching priority (M0), I/O
priority (M0), storage isolation (none), time slicing (none), and
RTO (none). If the default parameters are not acceptable (as of
course they will not be for most performance groups), additional
specifications are needed.

Performance Periods
Alterations to the default address space management parame-
ters are added to the basic performance group definition as sep-
arate groups of value assignments enclosed in parentheses. The
first of these performance period definitions is set off from the
performance group name by a comma. Additional period defini-
tions are delimited by enclosing parentheses with no interven-
ing comma. As many as eight periods are allowed in a perfor-
mance group.
Each SRM transaction starts execution in the first period of its
performance group. As service or time accumulates, SRM ad-
vances the transaction to the next period after a sufficient accu-
mulation is noted. As of MVS/ESA SP Version 5, nonswappables
are also moved through periods. The following sections describe
the set of parameters that may be defined for each performance
period.

Performance Period Parameters

• DP= is the way to specify the dispatching priority of each ad-
dress space in a performance period. The details of specify-
ing DP are covered in Appendix A. If the DP parameter is
omitted in a performance period definition, a priority of M0
is assigned.

• DMN= designates the domain in which address spaces in this
performance period will be managed. If the parameter is
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omitted, domain 1 is assigned by default unless there is a
prior period in the performance group. In that case, the do-
main of the prior period is selected. There is no need to
specify a domain for a performance group serving only
nonswappable address spaces, unless the workload is to
have its own expanded storage criteria. Whatever the defi-
nition of domain 1 (assigned by default if no DMN= ap-
pears), it has no effect on a nonswappable address space.
When domain 1 contains swappable address spaces as well
as nonswappables, its constraints should take into account
both categories of address spaces.

• DUR= specifies the minimum duration of the perfor-
mance period. DUR must be specified in each period of
a multiperiod performance group except the last pe-
riod. Its value (specified without commas) may range
from 0 to 999,999,999 or 999,999K. The unit of the
value is SRM service units, unless UNT=R has been
specified in the period definition as well. In that event,
the unit is in real-time seconds and is limited to a max-
imum value of 1,000,000. No error is indicated if the
limit is exceeded.

The actual duration may exceed the number of service
units specified; the SRM determines when to switch peri-
ods through sampling of address spaces and performs the
switch the first time it detects that the duration of the cur-
rent performance period has been exceeded.

• UNT= can alter the unit of DUR from service units (UNT=S,
the default) to seconds in real time (UNT=R). UNT=R can be
used for such clever tricks as ensuring that a transaction
that exceeds a certain number of service units is subjected
to a punitive delay:

DMN=86,CNSTR=(0,0)
… …

PGN=2,(…,DUR=400,…)
(…,DUR=4000,…)
(DMN=86,DP=M0,…,UNT=R,DUR=60,…)
(…)

Transactions ending in period 1 or period 2 will end nor-
mally; those going over 4400 service units will be subjected
to a minute in the “penalty box,” swapped out. After the
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1-minute delay, a transaction is allowed to proceed. At
some MVS installations, this technique is used to “discour-
age” TSO users from executing long-running transactions
(such as program compiles) from the terminal.

Imposing such a procrustean judgment on the behavior of
online users is most emphatically not recommended. Many
TSO transactions other than compiles can often consume a
large number of service units.13 A well-meaning attempt to
discourage apparently wasteful behavior can result in “in-
nocent” users being subjected to unacceptably poor re-
sponse time.

Another issue arises here: What might happen if the Data
Center Manager said to the Manager of Financial Applica-
tions Development, “I think all of your programmers
should submit all of their compiles as batch jobs. It makes
my system management job easier. If they don’t, I’ll delay
their long TSO transactions by a minute each.” The
M.F.A.D. might reflect on relative priorities, and their next
meeting might take place in someone else’s office—say,
that of the Vice President of Corporate Services.

The action of imposing an arbitrary delay on inconve-
niently lengthy transactions is entirely equivalent to
such arrogant words. It is all too easy to conceal an unac-
ceptable policy position if it is embodied within the mys-
tery of an IPS.

A less controversial application of UNT=R is a variation on
the frequently used swap-out performance group. If the
problem for which the offending job is to be swapped out is
temporary, it reduces the burden on the operator to let the
swapped-out period end automatically. A performance
group like the following might be used:

DMN=13,CNSTR=(0,0)
…

PGN=72,(DMN=13,DP=M0,DUR=900,UNT=R)
(DMN=1,DP=M0)
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In this case, the penalty after a RESET to PGN 72 ends af-
ter 15 minutes, and the job is allowed to run as domain 1
permits.14

• IOP= is in the same form as the DP parameter. Normally (by
default), the I/O priority of an address space is equal to its
dispatching priority. A different I/O priority may be se-
lected with the IOP parameter. Address spaces in a
mean-time-to-wait group have unchanging I/O priorities.
IOP=Fn is not allowed.
Recommendation: Always specify IOQ=PRTY to gain the
benefits of priority I/O queuing. Accept the IOP default un-
less and until analysis of workload problems indicates that
a key workload is suffering excessive I/O queueing delay
that cannot be relieved by normal responses such as re-
moving contending I/O from a device. As a last resort, a
higher I/O priority may help. On the other hand, if a work-
load causing I/O interference with another is safely meet-
ing its service target, giving it a lower I/O priority might
help both workloads to succeed.
The possibility of improvement is small, and more direct
methods are usually more effective.

• RTO= may be specified only in the first period and applies
only to TSO performance groups. Its purpose is to ensure
uniformity of TSO response time for short-running
transactions. If the average response time in the first pe-
riod is faster than desired, an RTO may be specified, de-
noting a somewhat higher target. The greater the gap be-
tween the native response time and the specified RTO,
the more uniform will be the resulting response time—in
theory.
Unfortunately, it’s not that easy. The idea of RTO is flawed
in the first place if current evidence linking minimum
(subsecond) response time to enhanced TSO-user produc-
tivity is to be believed and applied. RTO was dropped as of
MVS/ESA SP Version 5.
Recommendation: The only plausible reason for using
RTO in a production TSO system is if a system’s workload is
expected to increase substantially in the future and then to
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impose enough constraint to result in increased TSO re-
sponse time. In that case, specify an RTO close to the ex-
pected ultimate trivial TSO response time, so that response
time expectations may be properly conditioned.
In a system with a clearly subordinate TSO workload, an
RTO of 1.5 to 2.0 seconds might discourage the TSO users
enough to make them abandon TSO in favor of another
subsystem or to use personal computers instead. Do this if
you must, but don’t be surprised if the workload leaves the
system.

• PWSS= is used to specify storage isolation for each address
space in a performance period. Along with dispatching pri-
ority and the ESCRTABX parameter on the domain defini-
tion, it is one of the few IPS controls applicable to
nonswappable address spaces. PWSS is specified as two
values defining a range for a target protected working set
in frames. Both values are in the range 0 to 32,767 in
MVS/370 and MVS/XA, and 0 to 2,147,483,647 in
MVS/ESA. The maximum value in either case may be de-
noted by “*.”
Storage isolation may be static or dynamic. If neither
PPGRTR nor PPGRT is specified along with PWSS, the
target is always the minimum value specified. If either of
the paging-rate controls is added, the target varies be-
tween the minimum and the maximum according to the
page-in rate of the address space.
The target applies to the sum of frames in central and ex-
panded storage. An address space at or below its target
working set is protected from ordinary page stealing. If its
combined frame count exceeds the target, stealing is done
down to the target at the time the address space is reached
in the normal ASID-ordered scan of address spaces. If an
address space’s frame count exceeds the maximum, it is
targeted for preferred page stealing in a preliminary ad-
dress-space scan of the page stealing algorithm. All frames
above the maximum are vulnerable, up to the currently re-
quired number of frames.
One further aspect of storage isolation is noteworthy: when a
storage-isolated address space is swapped out, swap trim
does not go below the minimum PWSS value. In other words,

384 MVS Performance Management



the minimum target working set is preserved across swap-in
and swap-out. This property defines the swap group size and
is of crucial importance in managing TSO paging delay, par-
ticularly in systems without expanded storage and with some
degree of storage constraint.

Most page faults in TSO transactions (60 percent or more)
are re-reference page faults, bringing in pages formerly
used in the session. If storage isolation is specified for re-
sponse-critical TSO performance periods (usually first and
second) at a value somewhat above the mean frame count
for active transactions, re-reference page faults will be re-
duced drastically, at the expense of a few extra frames be-
ing tacked on to the last swap set.

For example, if an all-locals paging configuration on 3380s
is used, the effective swap set size is 30 slots. If the mean
frame count is 103 (by “eyeball averaging” on a perfor-
mance monitor’s display), four swap sets will be needed for
the average swap-out. Specifying PWSS=(120,*) does not
increase swap I/O, except to increase the average number
of pages transferred in the last swap set, at a cost of 1.34
milliseconds per page. Page faults might be reduced by 3 to
6 per transaction, at about 50 milliseconds per page fault.
The need for this technique has declined with the availabil-
ity of block paging.

Recommendations: Storage isolation has numerous bene-
fits and almost as many pitfalls. Several recommendations
are in order:

¤ For nonswappable subsystem Loved Ones such as CICS,
specify storage isolation to control paging delay in sys-
tems without expanded storage or to guard against mi-
gration in systems with expanded storage. A minimum
PWSS may be used to ensure minimal delay following a
period of inactivity. A limiting maximum PWSS should
not be used for a preferred workload, and dynamic ad-
justment of the target according to page-in rate should
be used. For a CICS address space,

PGN=14,(PWSS=(200,*),PPGRTR=(1,3),…

is a typical specification.
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¤ For TSO performance groups that will not be swapped
to expanded storage, use PWSS to define the swap group
size. A paging-rate control is not appropriate, nor is a re-
strictive maximum. PWSS=(144,*) is a typical starting
point. If frame counts frequently exceed the target (or if
unacceptably high levels of page-in delay are observed),
raise the PWSS minimum to the next multiple of the
swap set size.

¤ One of the many performance management aphorisms
attributed to those in the IBM Washington Systems
Center is, “Know who your loved ones are—and always
have someone else to kick around!” For address spaces
to be fitted with KICK ME signs, a special form of stor-
age isolation ensures that their frames are among the
first ones stolen, thus protecting respectable workloads
from such treatment.

For nonswappable and distinctly nonpreferred address
spaces, specify negative storage isolation by specifying
PWSS with a zero lower limit and an upper limit less
than the normal working set of the address spaces in the
performance period. For batch jobs normally needing
about 300 frames, PWSS=(0,160) will make about 140
frames of each address space in the performance period
available whenever page stealing is needed. Page-in de-
lay in the system will move toward these address spaces
and away from other workloads.

The same treatment is applied automatically to
swappable address spaces by the Working Set Manager
in MVS/ESA SP 4.2 and later systems. The Working Set
Manager will not monitor or manage storage-isolated
address spaces, so negative storage isolation should not
be specified for swappable address spaces.

• PPGRT[R]= is the other part of specifying storage isolation.
It is used to adjust the target working set according to
page-in rate. When the page-in rate exceeds the upper
limit of PPGRT or PPGRTR, the target is raised. A page-in
rate less than the lower limit causes the target to be re-
duced. With a page-in rate between the limits, the target is
not adjusted.
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PPGRT was the first form of this parameter available; it is
still accepted in MVS/XA and MVS/ESA. PPGRTR was
added early in MVS/XA. The paging rate specified in
PPGRTR has a uniform meaning for all kinds of address
space: page-ins per resident second of real time. Such pag-
ing rates are easy to read directly from most performance
monitors.
Recommendation: Use PPGRTR if page-in rate control is
to be used. Do not use PPGRT. For example, if a CICS ad-
dress space can tolerate four page-ins per second, the up-
per limit for PPGRTR should be 4. The lower limit is usu-
ally 50 to 80 percent of the upper limit. For our CICS ad-
dress space, use

PPGRTR=(3,4)

As with all controls of this nature, PPGRTR should be ad-
justed so that in normal operation the target protected
working set is not stuck at either extreme of the range.

• TSDP= is the alternative, higher dispatching priority when time
slicing is used. The form of the time-slice priority must be the
same as the form of the base priority: if DP=F52 is specified,
TSDP=F71 or TSDP=F9 is acceptable, but TSDP=M7 is not.

• TSGRP= designates the time-slice group for the perfor-
mance period.

B.3. Installation Control Specification (ICS)
The ICS is not strictly an SRM control; it serves simply to assign
performance groups to address spaces. Since there is no ICS by
default,15 it is essential to create and use an ICS so that entry to
each performance group is controlled as desired. The ICS is or-
ganized in a two-level hierarchy. A SUBSYS statement intro-
duces each section for batch (normally the primary subsystem),
for TSO, for APPC/MVS transactions, or for started tasks, as
well as for secondary subsystems that create address spaces. A
default PGN (performance group, called in this context a control
performance group) is usually specified on the SUBSYS state-
ment. Also allowed are definitions for a default report perfor-
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mance group (RPGN) and for one or more optional control per-
formance groups (OPGN) applying to each address space in the
performance group.
Following each SUBSYS statement may appear additional
statements defining exceptions to the SUBSYS defaults, defined
on the basis of user-id, job class, address space name, or account-
ing data. For each such subset of address spaces, PGN, RPGN,
and OPGN may be specified in any combination. In current ESA
releases of MVS, name specifications may include a “wildcard”
or “mask” character, specified as a single character in a MASK
statement that must come first in the ICS if it is used.
The ICS is well documented in Initialization and Tuning, so its
parameters will not be discussed in detail here. Note, however,
that the order for assigning performance groups to transactions
changed in MVS Version 4. If converting from a prior release to
Version 4 or later, evaluate carefully the hierarchy diagram in
the Initialization and Tuning Guide under the heading “Assign-
ment of Control Performance Groups.”
Recommendations:

• Above all, make sure that there is an ICS. Without one, a
carefully constructed scheme for controlling dispatching
priority and other execution attributes is at the mercy of
every batch job and the distributed JCL for every started
task, unless well-designed exits screen JCL and enforce
correct performance group assignments.

• The OPGN parameter is often ignored. Its use suggests an
uncertainty about which address spaces should be in which
performance group. If the OPGN is perceived to be more fa-
vorable than the base PGN, it will be selected with little
consideration. An OPGN less favorable than the PGN is
unlikely to be used at all. To the extent that a choice is al-
lowed, it should be one with clearly defined benefits to each
possible selection under conditions known only to the per-
son responsible for the address space.
For instance, if there are at least two different TSO perfor-
mance groups, PGN might denote a performance group
with steeply declining MPL and dispatching priority in
later periods but a high MPL in the first and second peri-
ods. OPGN would designate a performance group with
more gradual decline in favor and more generous storage
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isolation (in pre-SP 4.2 systems), but a lower MPL for
first-period transactions. Users planning to do only editing
of programs or text might receive better service in the de-
fault performance group, while those intending to use a
fourth-generation or query language, or to initiate fre-
quent online compiles or text processing runs with
BookMaster, might choose to use the OPGN. In each case,
the wrong choice means poorer service.

• Use the ICS to assign each started task and each APPC/MVS
transaction to an appropriate performance group. The de-
fault assignment should have relatively low dispatching
priority, similar to that of ordinary batch. Be aware of in-
stallation naming conventions and conform the STC and
ASCH TRXNAME entries to them, using the MASK capa-
bility if available.
Individual control of started tasks’ performance groups is
even more important in an MVS/ESA SP 4.2 or later sys-
tem with expanded storage. The individual assignment of
tasks to distinct performance groups is a necessary step on
the way to associating them with domains, in which the
ESCRTABX parameter can direct each to its customized
set of expanded storage criteria table entries.
Some started tasks, even if assigned to particular perfor-
mance groups, will not pick up all of their characteristics.
The GRS address space, for instance, operates at a prede-
termined dispatching priority. The benefit of assigning
GRS to a performance group is that its default storage iso-
lation can be changed. GRS prior to Version 5 appeared to
have a default storage isolation something like
PPGRT=(0,0); its target working set was increased by any
page fault and was (almost) never decreased. The special
storage isolation for GRS was removed in Version 5.

B.4. Other SRM Controls
In editions of Initialization and Tuning predating MVS/ESA SP
4.2, there is a page at the end of Chapter 5 labeled “SRM Con-
stants,” describing values for some thresholds not found in the
OPT.16 In the rare event of a problem in such an area, it might
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be appropriate to use the SUPERZAP service program to alter
these values. Most of the frequently altered SRM controls have
been added to the OPT over time.
One necessary parameter still buried without externals is the
two-level threshold against which the number of in-use auxil-
iary storage slots is measured. The less disruptive lower thresh-
old, MCCASMT1,17 has a default value of 70 percent. When
more slots than this percentage of all slots are allocated, the
SRM bars new work (such as TSO LOGONs) from entering the
system. At the second threshold, MCCASMT2, 85 percent by de-
fault, address spaces acquiring auxiliary storage are swapped
out. The system may eventually become paralyzed.
In today’s systems with very large page data sets, especially when
expanded storage carries the bulk of the paging burden, these
thresholds are far too restrictive and, if exceeded, can cause peri-
ods of great disruption. Adjusting these thresholds so that a re-
serve of perhaps 20,000 slots is maintained should be safe in most
systems. There is a severe penalty for being wrong in this case,
spelled I-P-L. Approach this adjustment with great caution.
A second area controlled from within the MCT is the detected
wait threshold, at which an address space in a protracted
non-LONG WAIT is made eligible for swap-out. The controlling
field is MCCMS6L, which has a default value (in milliseconds)
of 2000. Some special workloads may benefit by having this
threshold changed either upward or downward. Increasing the
value would tend to prevent swaps but increase any central
storage constraint. Decreasing it would make swaps more likely
but keep idle address spaces out of central storage if the frames
are needed. If reducing the threshold, check the table in the Ini-
tialization and Tuning Guide of SRM seconds per real-time sec-
ond. The value cannot be reduced below 8 SRM seconds.

B.5. Other Controls
The Initialization and Tuning Reference describes many members
of SYS1.PARMLIB other than those controlling the SRM. Many of
them can have a profound effect on MVS performance. It is beyond
our intended scope to make recommendations for each of these pa-
rameter sets. We leave these as an exercise for the reader, with the
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plea that an analysis of potential performance impact be added to
the planning cycle.
This principle must be extended to subsystem and application
planning as well. Choices such as buffering options, residency
and page-fixing options, the use of STEPLIBs, and many others
need to be put in context with priority, resource availability, cost,
and service level agreements. While it is true that most perfor-
mance problems are responsive to analysis of workload delays
and tuning to minimize delays, planning and impact evaluation
can shorten the time needed for workloads to stabilize with ac-
ceptable performance.

B.6. Comprehensive OPT, ICS, and IPS Example
Let us return to the system introduced in a partial OPT example
earlier in this appendix. We’ll also reiterate the principles of
“the well-ordered CPU” introduced in Chapter 5.
The order of importance for these workloads is:

major production CICS
support TSO
heavy engineering batch
pilot production CICS
application development TSO
normal production batch
default (open shop) batch

There is not enough expanded storage to accommodate the en-
tire workload. Heavy engineering batch is to be swapped to aux-
iliary storage. Other paging categories will compete for ex-
panded storage in priority order.
These parameter sets are fairly complete, but the ICS in partic-
ular does not have the genuine complexity of an ICS to be found
in a real system. Most ICSs are built up over time with numer-
ous layers of exceptions to general workload management rules.

B.6.1. Sample OPT
The management of system resources is defined in the OPT.
Workloads are defined by performance groups, and related as
appropriate to OPT settings by domains, in the IPS. External
work unit names are bound to the IPS by the ICS. We’ll examine
each of those parameter sets in turn. First, we’ll complete the
OPT:
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/******************** BEGINNING OF OPT *******************/
/* GLOBAL PARAMETERS */
MCCMAXSW=576 /* FIT SWAP PACKET SIZE TO AUX
CONFIG */
SWAPRSF=20 /* MILDLY RETARD EXCHANGE SWAP*/
MCCAECTH=(150,300) /* E.S. STEAL DEFAULTS OK*/
MCCAFCTH=(600,900) /*BIG SWAPS LIKELY*/

/ *********************************************************************/
/* LOGICAL SWAP CONTROLS */
LSCTMTE=(1,5) /* DON’T TIE UP CENTRAL FOR LONG
THINKERS
LSCTUCT=(20,30) /* DEFAULT UIC CONTROL OR THINK
TIME

/ *********************************************************************/
/* MPL ADJUSTMENT CONTROLS */
RCCPTRT=(164,205) /*STARTING POINT—SEE DISCUSSION*/
RCCCPUT=(106,110) /*STARTING POINT FOR FOUR-WAY*/
RCCUICT=(2,4) /*START AT SP 4.2 DEFAULT*/

/ *********************************************************************/
/* MISCELLANEOUS CONTROLS */
CCCSIGUR=45 /*INITIAL MTTW STEP SIZE*/
CNTCLIST=NO /*DEFAULT UNTIL REASON TO CHANGE*/
CPENABLE=(20,40) /*TRADE QUEUING FOR LESS DISRUP-
TION*/
DVIO=NO /*DIRECTED VIO IRRELEVANT WITH
ALL-9345s*/
ERV=500 /*DEFAULT UNTIL PROVEN OTHERWISE*/

/ *********************************************************************/
/* CRITERIA AGES FOR DEFAULT BATCH */
ESCTSWWS(1)=32766 /* SWAPS TO EXPANDED STORAGE LAST
*/
ESCTSWTC(1)=32766 /* TRIMS TO EXPANDED STORAGE LAST
*/
ESCTSTC(1)=1000
ESCTPOC(1)=5000
ESCTVIO(1)=5000
ESCTBDS(1)=2000

/ *********************************************************************/
/* CRITERIA AGES FOR NORMAL PRODUCTION BATCH */
ESCTSWWS(5)=2000
ESCTSWTC(5)=2000
ESCTSTC(5)=1000
ESCTPOC(5)=2000
ESCTVIO(5)=1500
ESCTBDS(5)=1500 /* FACILITATE SOME HIPERBATCH IF
SAFE */

/ *********************************************************************/
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/* CRITERIA AGES FOR HEAVY ENGINEERING BATCH */
ESCTSWWS(10)=32767 /*NO SWAP TO E.S.*/
ESCTSWTC(10)=32767 /*NO TRIM TO E.S.*/
ESCTSTC(10)=900 /*STEALS TO E.S. IF LITTLE MIGRA-
TION*/
ESCTPOC(10)=900 /*PRIVATE STORAGE MGT A POSSIBIL-
ITY*/
ESCTVIO(10)=32766 /*VIO NOT EXPECTED*/
ESCTBDS(10)=32766 /*HSPACE NOT EXPECTED*/

/ *********************************************************************/
/* CRITERIA AGES FOR MAJOR CICS */
ESCTSWWS(15)=32766 /*NONSWAPPABLE*/
ESCTSWTC(15)=32766 /*NONSWAPPABLE*/
ESCTSTC(15)=20 /*MOST PREFERRED WORKLOAD*/
ESCTPOC(15)=50
ESCTVIO(15)=2000 /*VIO NOT EXPECTED*/
ESCTBDS(15)=100 /*ALLOW HIPERSPACE LSR*/

/ *********************************************************************/
/* CRITERIA AGES FOR PILOT CICS */
ESCTSWWS(20)=32767 / *NONSWAPPABLE*/
ESCTSWTC(20)=32767 /*NONSWAPPABLE*/
ESCTSTC(20)=150
ESCTPOC(20)=250
ESCTVIO(20)=3000
ESCTBDS(20)=1500 /*ALLOW SOME HIPERSPACE LSR*/

/ *********************************************************************/
/* CRITERIA AGES FOR SUPPORT TSO */
ESCTSWWS(25)=100
ESCTSWTC(25)=100
ESCTSTC(25)=30
ESCTPOC(25)=100
ESCTVIO(25)=700
ESCTBDS(25)=1000

/ *********************************************************************/
/* CRITERIA AGES FOR APPLICATION DEVELOPMENT TSO */
ESCTSWWS(30)=200
ESCTSWTC(30)=200
ESCTSTC(30)=150
ESCTPOC(30)=200
ESCTVIO(30)=1500

/ *********************************************************************/
/* CRITERIA AGES FOR MOST-UNLOVED WORKLOADS */
ESCTSWWS(86)=32766
ESCTSWTC(86)=32766
ESCTSTC(86)=32766
ESCTPOC(86)=32766
ESCTVIO(86)=32766
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/ *********************************************************************/
/* CRITERIA AGES FOR EMERGENCY REPAIR JOBS */
ESCTSWWS(99)=5
ESCTSWTC(99)=5
ESCTSTC(99)=5
ESCTPOC(99)=5
ESCTVIO(99)=5
/********************** END OF OPT ***********************/

B.6.2. Sample IPS
Our sample IPS is built on the “well-ordered CPU” model we in-
troduced in Chapter 5, with the further definition of the work-
load initially discussed above. Note that dispatching priorities
are spread over the entire usable range, with plenty of gaps to
allow for future insertions with minimal disruption. If the prior-
ities seem low for some workloads, remember that dispatching
priorities are all relative—the numbers don’t matter.

/************************ BEGINNING OF IPS ***************************/
/* SERVICE DEFINITION COEFFICIENTS */
CPU=10.0,SRB=10.0,IOC=5.0,MSO=0.0 /* STAMP OUT MSO! */
/* GLOBAL PARAMETERS */
IOQ=PRTY /* ENABLE PRIORITY I/O QUEUING */
TSPTRN=(1,2,1,*) /* SIMPLE PATTERN IF T-SLICE USED
*/
/* IN THIS IPS, JES2 IS AT HIGH DP 50%, */
/* DFHSM IS PREFERRED 25%, AND NO TSDP IS */
/* ACTIVE 25% OF THE TIME */
PVLDP=F2 /* JUST ABOVE SIGNIFICANT TSO 2ND
PERIOD */
IOSRVC=COUNT /* PAY FOR INEFFICIENCY */
/************************ DOMAINS ************************/
/* DOMAIN 1 IS NEEDED FOR OTHERWISE UNCONTROLLED BATCH */
DMN=1,CNSTR=(0,50),DSRV=(5000,10000) /* DFLT BATCH */
/* DEFAULT TSO HAS 150 LOGONS AT PEAK TIMES */
DMN=2,CNSTR=(30,50),DSRV=(100000,100000) /*DEFAULT TSO PER 1*/
DMN=3,CNSTR=(5,20),ASRV=(2000,5000) /*DEFAULT TSO PER 2*/
DMN=4,CNSTR=(0,20),DSRV=(5000,20000) /*DEFAULT TSO PER 3*/
/* SUPPORT TSO HAS 15 LOGONS AT PEAK TIMES */
DMN=5,CNSTR=(3,15),DSRV=(500000,500000),ESCRTABX=25 /* PERIOD 1 */
DMN=6,CNSTR=(1,15),ASRV=(5000,10000),ESCRTABX=25 /* PERIOD 2 */
DMN=7,CNSTR=(1,15),DSRV=(10000,50000),ESCRTABX=25 /* PERIOD 3 */
/* APP DEV TSO HAS 50 LOGONS AT PEAK TIMES */
DMN=8,CNSTR=(10,20),DSRV=(300000,300000),ESCRTABX=30 /* PERIOD 1 */
DMN=9,CNSTR=(2,10),ASRV=(4000,8000),ESCRTABX=30 /* PERIOD 2 */
DMN=10,CNSTR=(0,10),DSRV=(7500,30000) /*PERIOD 3, DEFAULT ESCT*/
/* SINGLE PERIOD FOR HEAVY ENGINEERING BATCH */
DMN=11,CNSTR=(1,5),DSRV=(10000,300000),ESCRTABX=10
/* PRODUCTION BATCH, 2 PERIODS */
DMN=12,CNSTR=(1,30),DSRV=(3000,30000),ESCRTABX=5
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DMN=14,CNSTR=(0,30),DSRV=(10000,300000),ESCRTABX=5
/* SWAP-OUT DOMAIN (TRADITIONAL NUMBER BREAKS SEQUENCE) */
DMN=13,CNSTR=(0,0),ESCRTABX=86
/* DEFAULT STARTED TASKS */
DMN=15
/* PREFERRED CICS */
DMN=16,ESCRTABX=15 /* TOR */
DMN=17,ESCRTABX=15 /* AOR/ROR */
/* ORDINARY CICS */
DMN=18,ESCRTABX=20 /* TOR */
DMN=19,ESCRTABX=20 /* AOR/ROR */
/* “SPONGE” FOR FOUR PROCESSORS */
DMN=20,CNSTR=(4,4),ESCRTABX=86
/* EMERGENCY RED-HOT REPAIR JOBS */
DMN=99,CNSTR=(2,2),ESCRTABX=99
/****************** PERFORMANCE GROUPS *******************/
/****************** BASIC DEFAULTS *******************/
PGN=1,(DMN=1,DP=M1) /* DEFAULT BATCH AS REQUIRED */
PGN=2, /* DEFAULT TSO AND APPC/MVS */
(DMN=2,DP=F33,DUR=300) /* DUR PROVIDES 85% IN PER 1*/
(DMN=3,DP=M2,DUR=800) /* 12% IN PERIOD 2 */
(DMN=4,DP=M1) /* ALL THE REST */

/****************** SIGNIFICANT TSO *******************/
PGN=3, /* SUPPORT TSO */
(DMN=5,DP=F54,DUR=300)
(DMN=6,DP=F34,DUR=800)
(DMN=7,DP=M3)

PGN=4, /* APPLICATION DEVELOPMENT TSO */
(DMN=8,DP=F52,DUR=900)
(DMN=9,DP=M2,DUR=3000)
(DMN=10,DP=M1)

/****************** DISTINGUISHED BATCH *******************/
PGN=5,(DMN=11,DP=M2) /* HEAVY ENGRG BATCH */
PGN=6, /* PRODUCTION BATCH, 2 PERFORMANCE
PERIODS */
(DMN=12,DP=M2,DUR=20000) /* CLASS Q (1 CPU SEC) */
(DMN=14,DP=M1)

/******************** APPC/MVS TP’S ***********************/
PGN=7,(DMN=8,DP=F6) /* APPC/MVS HOT TXNS */
PGN=8,(DMN=8,DP=F51) /* APPC/MVS E-MAIL */
/****************** STARTED TASKS *******************/
PGN=10,(DMN=15,DP=M1) /* DEFAULT NONSWAPPABLES */
PGN=11,(DMN=16,DP=F70) /* MAJOR CICS TOR */
PGN=12,(DMN=17,DP=F43) /* MAJOR CICS AORS/RORS */
PGN=13,(DMN=18,DP=F24) /* MINOR CICS TOR */
PGN=14,(DMN=19,DP=F22) /* MINOR CICS AORS/RORS */
/**************** SYSTEM ADDRESS SPACES *******************/
PGN=20,(DMN=15,DP=F92) /*DIRECT-CONNECT REAL-TIME MONI-
TOR*/
PGN=21,(DMN=15,DP=F84) /* HISTORICAL MONITOR */
PGN=22,(DMN=15,DP=F82) /* VTAM */
PGN=23,(DMN=15,DP=F80) /* VTAM MONITOR */
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PGN=24,(DMN=15,DP=M8) /* HIGH-PRIORITY STCS */
/* PGN 24 INCLUDES SMS, APPC, AND ASCH */
PGN=25,(DMN=15,DP=F74) /* DB2 MONITOR */
PGN=26,(DMN=15,DP=F72) /* DB2 IRLM */
PGN=27,(DMN=15,DP=F71) /* CICS MONITOR */
PGN=28,(DMN=15,DP=F64) /* DB2 MSTR */
PGN=29,(DMN=15,DP=F62) /* DB2 DBM1 */
PGN=30,(DMN=15,DP=F60) /* LLA AND VLF */
PGN=31,(DMN=15,DP=F50) /* DB2 DIST */
PGN=32,(DMN=15,TSDP=F44,DP=F30,TSGRP=1) /* JES2 */
PGN=33,(DMN=15,TSDP=F42,DP=F02,TSGRP=2) /* DFHSM */
PGN=34,(DMN=15,DP=F40) /* RMF WRITER ADDRESS SPACE */
PGN=35,(DMN=15,DP=F04) /* CONFIGURATION/CHANGE MONITOR*/
/*************** SPECIAL PERFORMANCE GROUPS **************/
PGN=86,(DMN=13) /* UNCONDITIONAL SWAP-OUT */
PGN=87,(DMN=1,DP=F0) /* BOTTOM FEEDER */
PGN=88,(DMN=13,DUR=900,UNT=R) /* 15-MINUTE SWAP-OUT,THEN */
(DMN=1,DP=M1) /* SAME AS PGN 1 */

PGN=89,(DMN=20,DP=M0) /* SPONGE FOR EXCESS CYCLES */
PGN=99,(DMN=99,DP=F94) /* SUPER-EMERGENCY WORK ONLY!!!!*/
/********************** END OF IPS ***********************/

B.6.3. Sample ICS
Now that we have a moderately well-commented IPS, building
the ICS is simply a matter of translating the identifying com-
ments into the syntax of the ICS. By doing so, we “translate” the
names by which work units are known in the outside world to
the simple system of performance group numbers. Neither re-
port performance groups nor optional performance groups are
defined in this ICS. RPGNs are not essential to the purpose of
the example, and the conditions for self-policing use of OPGNs
do not exist in the accompanying IPS.

/************************* BEGINNING OF ICS ***********************/
MASK=*
SUBSYS=STC,PGN=10
TRXNAME=ASCH,PGN=24
TRXNAME=APPC,PGN=24
TRXNAME=SMS,PGN=24
TRXNAME=VLF,PGN=30
TRXNAME=LLA,PGN=30
TRXNAME=NET,PGN=22
TRXNAME=NETMON,PGN=23
TRXNAME=REALMON,PGN=20
TRXNAME=HISTMON,PGN=21
TRXNAME=DB2MON,PGN=25
TRXNAME=DB2IRLM,PGN=26
TRXNAME=CICSMON,PGN=27
TRXNAME=DB2MSTR,PGN=28
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TRXNAME=DB2DBM1,PGN=29
TRXNAME=DB2DIST,PGN=31
TRXNAME=RMF,PGN=34
TRXNAME=CFIGMON,PGN=35
TRXNAME=CICSPT(1),PGN=11
TRXNAME=CICSPR(1),PGN=12
TRXNAME=CICSPA(1),PGN=12
TRXNAME=CICSXT(1),PGN=13
TRXNAME=CICSXR(1),PGN=14
TRXNAME=CICSXA(1),PGN=14

SUBSYS=JES2,PGN=1
TRXCLASS=E,PGN=5
TRXCLASS=M,PGN=6
TRXCLASS=N,PGN=6
TRXCLASS=O,PGN=6
TRXCLASS=P,PGN=6
TRXCLASS=Q,PGN=6
TRXCLASS=T,PGN=6

SUBSYS=TSO,PGN=2
USERID=ADEV*,PGN=4
USERID=TSUP(1),PGN=3

SUBSYS=ASCH,PGN=10
TRXCLASS=HOT,PGN=7
TRXNAME=E_MAIL,PGN=8

/********************** END OF ICS ***********************/

B.7. Summary

The set of SRM parameters in the OPT and IPS members of
SYS1.PARMLIB, and the workload assignment information in
the ICS member, are the means of controlling how MVS in com-
patibility mode deals with its resources and workloads. The his-
tory of MVS, embedded in the defaults of OPT and IPS, had in
the past caused inconsistent and often counterproductive sys-
tem operation. Although the defaults have improved in recent
MVS/ESA releases, better workload-oriented controls demand
evaluation and customization. An essential step in performance
management is to take control of the system away from the soft-
ware vendor and place it firmly with the installation that paid
for it.

Information provided by IBM about these parameter sets and
their individual elements is factual and nonjudgmental. In this
and the preceding appendix, we have developed a more
evaluative view of how the SRM can and should be controlled.
Where advice is offered, justification and explanation accompa-
nies it. Readers may draw their own conclusions about the
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worth of the advice, but they are urged to try it before rejecting
it.

B.8. Chapter Questions
1. Review your dispatching priority layout. Determine if the

more important workloads have consistent treatment in
your IPS in all key resource areas—are they favored to the
same extent in dispatching priority, MPL, and expanded
storage eligibility? Correct the IPS as required.

2. Check the dispatching priority relationships in your IPS.
Are servers above the address spaces they serve? For exam-
ple, is JES2 low enough in priority to avoid interference
with first period TSO, but high enough to avoid having de-
vices or lines time out?

3. Examine the use of performance periods in your IPS. Are
they structured according to the considerations discussed
above? As a transaction moves to the next period, is it
likely to be swapped out only because the new domain’s
constraints are too limited? Why? If it’s broke, fix it!

4. If you have no ICS, create one. If you have one, check it for
completeness (all work captured) and excess complexity,
such as multiple OPGNs or OPGNs without self-policing
tradeoffs.

5. Adapt the sample parameter sets on the preceding pages to
your system. How do they compare with what you’ve been
using to date? Does an alternate viewpoint help you to get a
better understanding of your system?
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Glossary

Author’s note: The definitions in this glossary are those assumed in the
text and are my own; they are reasonably consistent with standard defi-
nitions. Terms in this glossary are in general those not contextually de-
fined in the text or those for which an extended discussion seemed neces-
sary. For a term not found here, the first reference found in the index
should supply a contextual definition. Another book in this series, MVS:
Concepts and Facilities, by Robert H. Johnson, also has an extensive glos-
sary with useful alternative points of view for some terms. Cross-refer-
ences within the glossary are shown in bold type.

The ultimate reference for IBM’s view of SRM-related terms and func-
tions is the current edition of Initialization and Tuning for the system
under consideration. For Workload Manager goal mode, it is the corre-
sponding edition of Planning:Workload Management.

A few definitions were adapted from those in Computer Desktop Ency-
clopedia, reprinted with permission. ©1997 The Computer Language
Co. Inc.

[Special Characters]
* (asterisk) used in storage isolation specifications to indicate maxi-
mum value; used in objectives to signify linear interpolation; the latter
use is obsolete in MVS/ESA SP 4.2 and later releases.

A
ABEND ABnormal END, the condition that occurs when a program
terminates by issuing the ABEND SUPERVISOR CALL (SVC 13), or is ter-
minated because of an unexpected program check or other condition that
MVS cannot handle. A common consequence of an ABEND is a dump.

above the line addresses above 16 megabytes. In MVS/370 the term
meant real storage in the extended addressing range; in MVS/XA and
MVS/ESA it refers to the extended virtual areas. The significance of
“above the line” in MVS/370 was the need to move I/O buffers “below
the line” before START I/O [FAST] could be issued. In XA and ESA, virtual
storage below the line is the area threatened by virtual storage con-
straint; moving code and data above the line by making program
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changes is the way to relieve such constraint. In XA and ESA, central
storage having absolute addresses below 16 MB is still needed to sup-
port I/O using Format-0 CCWs.

absolute address the lowest level of central storage addressing in a
processor complex in basic mode, or within a single logical partition.
An absolute address is not adjusted by prefixing or translated by dy-
namic address translation, and is the object of a CCW address. There
is an unnamed lower level of addressing in logically partitioned mode;
only one partition can have “logical” absolute addresses corresponding
to “physical” absolute addresses.

absolute storage central storage accessed through absolute ad-
dressing.

access control system system designed to define, control, and re-
port on [attempted] access of users (jobs, TSO sessions, individual us-
ers of transaction processing systems) to resources, most often data
sets, transactions, terminals, or other entities defined to the access
control system. Examples are IBM’s RACF and Computer Associates’
ACF2 and Top Secret.

access method part of an operating system providing the interface
and device-driving code between high-level I/O requests (e.g., GET,
PUT, READ, WRITE) and I/O devices as seen by the I/O supervisor
(IOS). Access methods translate logical record requests to the physical
data locations, create channel programs and convey them to IOS for
execution, manage retries of unsuccessful I/O, and manage queued re-
quests and buffers.

access register in ESA, a register activated in access register (AR)
mode to supply (indirectly) the segment table origin for data operands
paired with the same-numbered general register used as a base regis-
ter. The general register supplies the base address within the data
space or address space designated by the segment table found by
means of the access register.

account number a character string assigned to an address space
by the positional “account” field in a JOB statement, in the TSO UADS,
or in an equivalent source maintained by an access control system. In
MVS/XA and MVS/ESA systems, the account number or a substring of
it may be used as a basis for performance group assignment in the ICS.
In Workload Manager goal mode, the accounting data may be used for
classification of work units to service classes.

accounting data a more precise designation for account number.

active I/O an execution state in which a workload is waiting for com-
pletion of an input or output operation while not not having another
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dispatchable task. Active I/O is usually considered to be a productive
state, but it also represents a tuning opportunity, since most sequen-
tial I/O and much random I/O can and should be overlapped with in-
struction execution.

activity rate a measure of throughput in work units per second.
Tracking throughput is one of the essential functions of performance
management.

actuator mechanism of a direct access storage device (DASD) that
moves the arm, which in turn carries the read and write recording
heads and associated electronics; by extension, the arm itself and the
assembly of arm[s] and disk[s] that corresponds to a single device ad-
dress or device number in a DASD subsystem.

Actuator-Level Buffering use of a small cache or buffer holding a
track’s worth of data to eliminate variable rotational delay (RPS miss)
in DASD. The term is a trademark of Storage Technology Corporation.
The technique is an alternative to buffering in the storage director or
control unit, as in the IBM 3990 and 9343 control units.

adaptive resource management management of resources in a
computer system based on the behavior of the work that runs in the
system and goals for the performance of that work, as opposed to man-
agement based on parameters that specify how the resources are to be
apportioned.

address space a linear range of virtual storage addresses from 0
through the architecturally defined maximum for a given system.
Each work unit (job, started task, TSO session, subsystem) is synony-
mous with at least one address space. An address space in MVS is de-
fined by a segment table, its associated page tables, and several control
blocks, notably the ASCB. It contains a common area and a private
area. Address space layouts may be found in Chapter 3.

addressing mode the means by which the address parts of an in-
struction (base, displacement, optional index) are combined with other
information to yield an absolute address. Absolute addresses are direct
references to absolute storage. Real addresses may be altered by pre-
fixing before being treated as absolute. Virtual addresses are trans-
lated to real addresses by dynamic address translation. Cross-memory
mode uses a secondary segment table origin to initiate dynamic ad-
dress translation for operands of certain instructions. Access register
mode uses access registers to dynamically select segment table origins
for each operand reference accessed through a base register. The final
choice, independent of the others, is between 24-bit and 31-bit address
generation.
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ADSL Asymmetric Digital Subscriber Line (ADSL), a new modem
technology that converts existing twisted-pair telephone lines into ac-
cess paths for multimedia and high speed data communications. ADSL
transmits more than 6 Mbps to a subscriber, and as much as 640 kbps
more in both directions. Such rates expand existing access capacity by
a factor of 50 or more without new cabling. ADSL can transform the
existing public information network from one limited to voice, text and
low resolution graphics to a system capable of bringing multimedia, in-
cluding full motion video, to subscribers’ homes.

AFC see AFQ.

AFQ available frame queue; sometimes AFC for available frame
count. The queue is the ordered set of frames available for assignment
by the Real Storage Manager; the count is the number of such frames
in the queue.

AIX/6000 AIX/6000 is the IBM variant of UNIX that runs on the
RS/6000 platform.

ALB see Actuator-Level Buffering.

alert an exception message, particularly one that is displayed on an
operator’s console.

allegiance set of electronic states denoting the association of chan-
nel, control unit, [device controller,] and device for the duration of an
I/O operation. Allegiance is established during unoverlapped protocol
time and disbanded during overlapped protocol time.

ALLOCATE command TSO equivalent of the JCL DD statement;
completes the late binding of DD names in program references to phys-
ical I/O resources, usually the TSO terminal or data sets on DASD.

allocation set of operating system services to make associations be-
tween programs and I/O resources. Allocation establishes the required
connections when specific resources (such as catalogued data sets) are
needed, and additionally selects the resources to be assigned when the
request is nonspecific, as for a temporary data set or a tape drive.

allocation recovery series of console messages and responses
when the I/O resources called for by a program (usually a batch job
step) are not all available. A series of device numbers is presented to
the operator, who is expected to make a selection from among them.
When allocation recovery is invoked for other than tape units being
switched between systems, a missing data set is often the cause and
the operator dialogue is unlikely to succeed.

alternate path a redundant I/O connection from device through [de-
vice controller,] control unit, and channel to a CPU. In MVS/370, alter-
nate paths provided enhanced availability at the cost of performance deg-
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radation. In XA and ESA, DASD supporting dynamic pathing provides
benefits in both availability and performance from dynamic pathing. Up
to four active paths are supported in current device subsystems.

analytic model a mathematical representation of a physical system
(in this case a computer under MVS) that takes account of processing
times, delays, and queues in accounting for or predicting the perfor-
mance of the physical system. Contrast with simulation model.

AOBJ (obsolete as of MVS/ESA SP 4.2) the use of an objective to con-
trol the MPL of a domain, in which the average service rate received by
each address space in the domain is the independent variable of the
objective.

APF see authorized program facility.

APG automatic priority group, an obsolete IPS parameter to set the
dispatching priority within the original restricted MVS APG. An APG
specification in IEASYSxx sets the high-order hexadecimal digit of the
priority; the APG specification in the performance period in the IPS
sets the low-order digit. The use of the APG parameter is incompatible
with current SRM facilities for controlling dispatching priority.

APG range range of high-order hexadecimal digits of true dispatch-
ing priority subject to assignment by the DP, IOP, PVLDP, and TSDP
IPS keywords. The range and its implicit mapping are set by the
APGRNG keyword.

APGRNG IPS keyword to set the APG range controlled by the IPS.
This parameter was dropped as of MVS/ESA Version 5 compatibility
mode.

API application programming interface, a set of rules and conven-
tions, possibly including service routines and macro definitions, that
allow independent programs to communicate with the program “own-
ing” the API. An access method is an example of an API.

APPC/MVS set of services for peer-to-peer or client-server communi-
cations between transactions running under control of the APPC sub-
system in MVS and transactions on other platforms or server address
spaces on MVS, or any combination of such elements. APPC is one of
the principal workload subsystems in the ICS of compatibility mode or
in goal mode classifications.

applet in Microsoft Windows, a small application subordinate to a
major function such as the set of Control Panels; in Sun Microsystems’
JAVA environment, a JAVA application downloaded from a server and
executed on the client’s JAVA Virtual Machine under control of the
JAVA interpreter or compiler. Applets in JAVA are not limited in size
and may be substantial applications.
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application programming interface see API.

AR access register; also the addressing mode that makes use of ac-
cess registers.

architecture the highest level of logical design for a computing sys-
tem or family of such systems, defining such elements as the instruc-
tion set, the objects operated on by the instructions, exceptions and
their manifestation as interrupts, and reserved facilities. An architec-
ture usually spans more than a single product family and may include
features or facilities to be released at a future time. Current engineer-
ing designs may thus contemplate extendibility to a fuller implemen-
tation in the future.

archive to copy data for safekeeping and possible future use for re-
covery to another physical embodiment, usually from DASD to tape.

array data aggregate in which each element is of the same type and
size.

array storage layout representation in storage of an array, the es-
sential matter of concern being the order in which elements are stored.
If the order of use or reference approximates the order of storage, the
working set of the program making use of the array is minimized.

ASCB address space control block, the principal MVS data area de-
fining the attributes of an address space.

ASCII American Standard Code for Information Interchange—a 7-
or 8-bit set of character encodings defining the information content of
text data bytes. ASCII is the standard for alphabetic languages except
in IBM systems derived from System/360, which use EBCDIC.

ASID address space identifier, a number denoting the position of a
pointer to an address space’s ASCB in an array called the ASVT (ad-
dress space vector table). The ASVT and ASID are architecturally de-
fined in the various levels of System/370, XA, and ESA so that
microcode-assisted routines may aid in speeding up key MVS func-
tions that manipulate ASCBs.

ASM Auxiliary Storage Manager, the MVS component responsible for
controlling and initiating I/O to and from page and swap data sets.

ASM queue queue of pending I/O requests managed by the ASM.

ASN address space number, an engineer’s or architect’s synonym
for ASID.

ASRV IPS parameter specifying the minimum and maximum service
rates corresponding to contention index values of 100 and 1, respec-
tively, for a domain. The contention index is determined based on the
average service rate of all address spaces in the domain.
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ATTACH the MVS service, or its invoking macro-instruction or SVC,
that creates new tasks.

authorized program facility (APF) the means for designating li-
braries as eligible to contain authorized programs which are granted
the authorized status during execution. A program is designated as
authorized by setting the AC bit in its directory entry to 1, usually by
action of the Linkage Editor. An authorized program fetched from an
authorized library is permitted to issue otherwise restricted SVCs, in
turn giving it the ability to gain privileged states and storage-protect
keys, giving it access to any part of the system.

automated operations replacement of human operator activities
with programmed operations, with the purpose of eliminating repeti-
tive tasks, performing selected activities without human intervention,
simplifying complex tasks, and interpreting the message stream and
reducing its volume, thereby enabling the operator to make con-
strained decisions and reducing the likelihood of operator error.

automatic priority group see APG.

auxiliary storage the set of page and swap data sets.

Auxiliary Storage Manager see ASM.

auxiliary storage shortage condition detected by the SRM in
which the supply of unused auxiliary storage slots falls below a prede-
termined threshold.

auxiliary storage shortage swap swap-out initiated by the SRM
in response to the free slot count being lower than a threshold value.

auxiliary storage slot unit of measure of auxiliary storage; a slot
is the same size as a frame or a page, 4096 bytes.

availability portion (usually expressed as a percentage) of sched-
uled service time during which a computing system or service is fully
usable by its customers. Tracking availability is one of the essential
functions of performance management.

available frame count see AFQ.

available frame queue see AFQ.

B
b symbol or abbreviation for bit(s)

B symbol of abbreviation for byte(s)

back-end completion stage of a process that is partially asynchron-
ous. Back-end I/O processing, for example, occurs in the I/O sec-
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ond-level interrupt handler after the channel-end and device-end in-
terrupts are received by the CPU.

backing real resources used to materialize virtual resources; pages
are backed by frames of real storage. The term has a somewhat differ-
ent meaning in real storage hierarchies—the higher-level, smaller,
faster, more expensive storage element is fully backed by the slower,
cheaper, and more abundant lower level. In some cache I/O subsys-
tems, such as the IBM 3990 Model 3 with the Fast Write feature, non-
volatile storage at the higher level is used to defer backing.

backup jobs batch jobs used to preserve the content of essential
data resources in archives.

balanced methodology performance management approach mak-
ing optimum use of service data, resource data, bottleneck data, and
contention data.

balanced system system configuration with adequate but not ex-
cessive resource in all key hardware areas: CPU, central storage, ex-
panded storage, channels, control units, and devices. A balanced sys-
tem when loaded to capacity will show a similar degree of constraint in
all resource areas. The term (but not the definition) was originated
and popularized by Ray Wicks of the IBM Washington Systems Center.

Base Control Program that part of an MVS system other than the
JES and other independently controlled subsystems.

batch workload consisting of discrete jobs, managed up to initiation
and after termination by the JES.

Batch Message Processor batch job making use of IMS data base
facilities, often used for report creation, mass inquiries, or bulk up-
dates to data bases.

batch window time period during which essential batch jobs must be
completed. Such jobs are often not compatible with online service, either
by demanding exclusive access to critical resources or by causing such
high activity rates that online service would be unacceptably slow.

BatchPipes optional (priced) facility for MVS systems starting with
SP4.3 that enables sequential data to be transmitted from one job to a
subsequent job using a FIFO queue in a data space rather than a data
set that will be deleted after it is read. Such a data set is often called a
transient data set. BatchPipes alone is now obsolete, having been su-
perseded by SmartBatch, a more comprehensive set of service.

below the line see above the line

BCP see Base Control Program.

406 Glossary



binary search search technique in which the ordered list denoting
the items to be searched is successively halved, discarding the half not
encompassing the item’s identifier. The technique is efficient if the list
contains only identifiers; if the items are large and constitute the list
that is searched, the principle of validity of reference is violated, and
working-set size (for internal searches) or I/O time (for external
searches) may be excessive.

binding process of resolving symbolic references to data by associat-
ing physical resources with the references. Early binding is efficient
but limits flexibility; late binding requires more effort and more for-
mally defined interfaces but preserves maximum flexibility.

bipolar semiconductor technology that requires continuous power to
maintain the binary state of each switching element. The power de-
mand makes this technology run hot, requiring high-volume forced-air
or circulating water for cooling. Bipolar has until recently been capa-
ble of faster switching speeds than CMOS technology; its need for spe-
cialized cooling and lower circuit density make it much more expen-
sive than CMOS and thus likely to become obsolete as soon as CMOS
attains an undisputed lead in circuit speed.

block multiplexing I/O technique in which a portion of a path (nota-
bly the channel) may be processing more than one request at a time. Only
one request at a time may be connected through the entire path; other re-
quests are disconnected. In block multiplexing, data transfer proceeds
without interruption. Byte multiplexing is a lower-speed technique in
which the data stream is shared among active low-speed devices.

block multiplexor channel channel capable of block multiplexing.

block paging alternate name for paging using the contiguous-slot
allocation technique, extended in SP 4.2 to include blocked page steal-
ing, faulting, and incremental swapping.

block size size in bytes of the unit of physical data transfer in an
I/O operation.

BMP see Batch Message Processor.

bottleneck analysis performance monitoring technique that iden-
tifies execution states of a workload, leading to a table or histogram of
frequency of each state. A bottleneck is a state that prevents the work-
load from achieving its service goal; identification and easing of bottle-
necks is a key part of performance management. Use of this technique
is an essential part of Workload Manager goal mode.

buffer area of storage that contains a physical record or block. Opti-
mum use of buffers is a trade-off between I/O avoidance and excessive
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use of virtual storage. Buffers use fixed real storage during I/O opera-
tions.

bus-and-tag channels another way of describing parallel channels,
focusing on the large and heavy cables used to attach devices and con-
trol units to the channels. One cable set (bus) carries the data; the
other (tag) carries addressing and control information.

byte smallest unit of addressable data in central storage. In current
IBM architecture, a byte is 8 bits.

C
C (programming language) Low- leve l , b l o ck -s t ruc tured
programing language originally developed as the implementation lan-
guage for UNIX, now available on most platforms. An object-oriented ex-
tension to the language, C++, is eclipsing the original C language in pop-
ularity.

cache in a storage hierarchy, a small unit of fast storage that con-
tains the active data elements otherwise found in a larger unit of
slower (less expensive) storage. Examples of caches include the
high-speed buffer associated with a CPU and the storage in a cached
DASD control unit.

cache control unit an I/O control unit with a cache. Tape and
DASD control units are most often augmented with caches.

cache controller see cache control unit.

cache device strictly, an I/O storage device with a built-in cache; in com-
mon usage, a device connected to a channel through a cache control unit.

CADAM Computer-aided design and manufacturing, a subsystem for
very precise engineering and manufacturing graphics, originally de-
veloped by Lockheed but now marketed by IBM as one of a number of
such high-function graphics applications. CADAM was originally im-
plemented on OS/360 and has been slowly updated to current MVS
levels and to run on other platforms.

capacity management art of planning and implementing sufficient
(but not excessive) computing capacity to enable an establishment’s data
processing needs to be met. See also balanced system.

capture ratio ratio of CPU use which can be accounted for in CPU
(TCB and SRB) service accumulation, to absolute CPU use in the same
time interval. Uncaptured time is often accounted for by multiplying
captured service by the reciprocal of the capture ratio. Capture ratios
differ by types of workload, so such a correction may not be equitable.

CAT see Criteria Age Table.
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catalog data set containing at minimum the locations (volume IDs)
of other data sets. For VSAM data sets, the catalog also contains com-
prehensive information about the data set. Catalogs also contain alias
pointers to other catalogs, which in turn contain entries for data sets
whose names begin with the string that forms an alias pointer. Active
catalogs form a hierarchy topped by one master catalog.

catalogued data set that may be found through a search of catalogs
beginning with the master catalog.

catalogued procedure misnomer for a set of predefined JCL state-
ments contained in a library (partitioned data set) known to the JES.
The library need not be a catalogued data set since it is allocated to
JES at startup time. A catalogued procedure is invoked by simply
specifying its name in a JCL EXEC statement. If the procedure con-
tains symbolic parameters, the actual parameters to be substituted
are supplied in the invoking JCL.

CAW Channel Address Word.

CCW see channel command word.

CEC central electronic complex, now usually known as a proces-
sor complex. “CEC” (pronounced “kek”) is the preferred designation for
the central set of elements in a CMOS system such as the IBM 9672.

central electronic complex the set of CPUs, channels, and auxil-
iary elements that constitute the resources of a computing system
other than channel-attached I/O devices.

central storage real storage in which instructions and data reside.
The term was introduced when expanded storage was introduced, to
denote the subset of real storage that is not expanded storage.

chained searching search technique in which data elements are
unordered but have identifiers that are in a sequence linked by point-
ers to the next element and optionally to the preceding element.
Chained structures are easy to build with minimum data rearrange-
ment but often expensive to search. For large chained structures, a
preliminary search through a “thumb index” can restrict the search to
only a portion of the structure. Sequential searching through a large
chained structure violates the principles of validity of reference and
minimum working set size.

channel part of a computer system that performs input/output oper-
ations, linking central storage with I/O devices, as specified by channel
command words. An I/O operation is initiated by a CPU instruction,
which designates the starting point for the channel operation to com-
mence. The channel then proceeds independently, asynchronously
with the CPU, until its sequence of command words ends. When the
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last I/O operation of the sequence ends, the channel causes an inter-
rupt in the CPU. Even though a channel may not be fully independent
of the CPU (as in the cycle-stealing channels of the IBM 4381), the se-
ries of operations is conceptually followed.

channel command word (CCW) control word similar to an instruc-
tion, designating an I/O operation to be performed, the data address in
absolute storage that is to be used, the number of bytes to be transferred,
and bits designating options to be invoked for the operation.

channel measurement block architecturally defined interface to
the channel subsystem in XA and ESA to enable reporting programs to
extract information on I/O activity.

channel program series of CCWs defining a complete logical se-
quence of I/O operations and linked together by means of the com-
mand-chaining option bit in each CCW but the last.

channel-to-channel adapter (CTC) a pseudo-device that enables
two CECs to be connected together using a channel of each complex. Sys-
tems connected this way are sometimes known as loosely coupled
multiprocessors. CTC connections are fast and efficient, but can cause
high channel utilizations, leading to delay of other I/O using that chan-
nel.

CI contention index in compatibility mode; also, in VSAM, control in-
terval.

CICS/ESA Current name for IBM’s Customer Information Control
System, a very popular transaction-processing subsystem.

CIO Chief Information Officer, the executive in charge of all com-
puter-related operations and services in a corporation.

CISC “complex instruction-set computer,” a somewhat pejorative
back-formation acronym for the type of computer architecture that is
not RISC.

CKD see count-key-data.

client-server loosely, a multi-level computing architecture in which
dependent client systems (usually at workstations or personal comput-
ers) are dependent on (usually) larger server systems for files, applica-
tions, or data. A client-server application is typically more structured,
with programming interfaces extending across the connections be-
tween client and server.

CMOS complementary metal-oxide semiconductor, a circuit technol-
ogy in which swtching states are maintained without the continuous
application of electrical power. Consequently, CMOS runs cooler than
its rival, bipolar, enabling high circuit density and relatively low cost.
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CMOS has lagged bipolar in speed but appears to be catching up and
should soon pass bipolar’s speed based on CMOS’s higher density and
smaller components.

coincident usage an imprecise approach to contention analysis in
which a resource in contention is identified, followed by identification
of its users in the time span of interest. Within that set of users is the
one causing the contention. The main value of this approach is to rule
out noncontenders.

common area the area of virtual storage whose segments are in
each address space’s segment table, and thus addressable from any ad-
dress space.

common page-in delay delay state of an address space waiting for
resolution of a page fault in the common area, from either the PLPA or
CSA page data set.

compaction method of reducing storage needed for data based on
the content of the data, such as substituting codes and counts for re-
peated characters or repeated groups of characters.

compatibility mode option as of MVS/ESA SP Version 5 to use the
pre-existing SRM controls rather than Workload Manager goal mode.
By extension, any MVS system not running in goal mode.

compression method of reducing storage needed for data based on
collapsing redundancy in the coded representations of data.

connect time that portion of the time consumed by an I/O operation
during which control information and data are transmitted over the
path established for the operation. In a DASD I/O this includes a por-
tion of protocol time as well as search and data transfer time.

console automation see automated operations.

contention analysis performance analysis technique in which the fo-
cus is on a workload of interest, and the data gathered identifies other
workloads using resources for which the workload of interest is waiting.

contiguous-slot allocation the use of a local page data set for
page-out of a group of related pages (such as a swap-out group) as-
signed to contiguous slot locations within a single cylinder of the data
set. “Contiguous slot,” sometimes called block paging, was introduced
as a Small Programming Enhancement (SPE) prior to the release of
MVS/SP 1.3, then incorporated into that release. Contiguous slot
makes the channel programs of local page data sets as efficient as
those of swap data sets; for 3380 devices they are more efficient. The
combination of contiguous slot and extended swap has all but made
swap data sets obsolete.
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control register one of a set of special registers included in every
IBM system architecture since the introduction of System/370. Control
registers contain control bits denoting the modal states of certain fea-
tures (as a logical extension to the Program Status Word), mask bits
selecting which of certain system elements are active in a particular
context, ASIDs, and addresses. Control registers are not visible to
problem-state programs. Some are loaded explicitly with the LOAD
CONTROL instruction and others are loaded implicitly as selected con-
ditions occur during normal program execution. In general, control
registers are of no significance to ordinary (problem-state) programs;
their content may be inspected using the STORE CONTROL instruction,
itself a privileged (supervisor state) instruction.

controlled variable in MVS, a measurable quantity that is controlled
by SRM. Such quantities as CPU utilization, page fault rate, available
frame count, and unreferenced interval count (UIC) are subject to SRM
control. The value of a controlled variable is worthless as an indicator of
system activity or capacity when it is within a controlled range. If, for in-
stance, MPL adjustment tends to keep CPU utilization between 95 and
99 percent on average, a utilization of 85 percent indicates a surplus of
CPU capacity, but a utilization of 97 percent simply means that MPL ad-
justment is effective. In Workload Manager goal mode, the control is over
the performance of the workloads and utilization values may once again
be valuable as indicators of system loading.

count-key-data IBM’s basic large-system DASD architecture, in
which data tracks have no intrinsic format, but are formatted to reflect
actual data stored. Each block or physical record is of variable length
and consists of a count field identifying the record and specifying its
size, an optional key field, and a data field, with gaps between the
fields and following the block. In contrast, DASD in smaller systems
uses a newer fixed-block architecture (FBA) in which the device is
pre-formatted in fixed-length blocks much as are hard disks in per-
sonal computers.

Coupling Facility a processor complex without I/O channels but with
high-speed fiber links to the MVS images in a parallel sysplex. The cou-
pling facility, running under control of specialized object-oriented pro-
gramming is used to facilitate data sharing by holding control informa-
tion and data buffers in specific structures with the designations of list,
lock, and cache. Most MVS subsystems use the coupling facility to the ex-
tent that it can contribute to enhanced integrity and performance.

CPU delay state of an address space ready to use a CPU but not suf-
ficiently high on the dispatching queue to receive service in a measure-
ment interval or sample.
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CPU overcommitment having more address spaces in the
multiprogramming set than the CPU[s] can service. If central storage
can accommodate all such address spaces with acceptably low paging
delay, the lowest-priority address spaces can receive service when a
sufficient number of higher-priority address spaces are even tempo-
rarily nondispatchable. If CPU overcommitment can be tolerated,
throughput can be maximized. The current fair access dispatcher de-
sign can enable more address spaces to receive service than the previ-
ous first-ready first-served could do.

CPU queuing CPU delay, usually as described in an analytic model.

CPU, well-ordered a system in which address spaces with high
dispatching priority use relatively short bursts of CPU service, with
the length of the service burst increasing as priority decreases. This
ideal picture is rarely attained and is compromised by the high-prior-
ity global SRB activity engendered by I/O completions.

criteria [sic] age criterion used to determine eligibility of a class of
page for movement to expanded storage. Current migration age is al-
ways considered, augmented in certain categories by UIC or think
time. The criteria age function is not visible in goal mode.

Criteria Age Table table containing all criteria ages.

cross-memory addressing see addressing mode.

cross-memory mode attribute of an address space making use of
cross-memory services, or the target of such services, or using second-
ary addressing mode.

cross-memory services set of MVS services enabling use of the PRO-
GRAM CALL and PROGRAM TRANSFER instructions to allow address spaces
to invoke, synchronously, functional code in other address spaces.

CSA common service area or common storage area, the common area.

CSA page data set the second-named page data set in an MVS sys-
tem. It is used only for page-outs of common-area pages. PLPA pages
are not included unless the PLPA page data set is too small to contain
all such pages.

CTC see channel-to-channel adapter.

CTC ring configuration of CTC connections supporting the GRS func-
tion across multiple MVS systems. As of OS/390 Release 2, a star configu-
ration using the coupling facility is supported as an alternative.

D
DASD direct-access storage device[s], disk storage.
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DAT dynamic address translation.

Data Control Block (DCB) MVS control block or its defining
macro-instruction, the internal (to a program) representation of a data set.

data management portion of MVS responsible for handling input
and output operations at the level above physical device management;
the major portion of the Data Facility Product (DFP) now part of each
MVS system.

data set IBM terminology for an externally manageable unit of data,
often called a file in other systems. A data set is contextually defined as
the entity described by a DSCB on DASD, as a physical file on magnetic
tape, as the portion of the JCL data stream following a “//SYSIN DD *” or
“//SYSIN DD DATA” statement, or as a SYSOUT data stream.

Data Set Control Block (DSCB) data area on a DASD describing
the location, content, format, and size of a data area on that device.
DSCBs exist in several formats, the most common being the Format 1
DSCB describing a non-VSAM data set. The DSCB is the generaliza-
tion of the file label or directory entry of other systems.

data set organization (DSORG) physical format of a data set on
its containing medium. DSORGs include physical sequential, parti-
tioned, direct, and VSAM.

data set, linear type of VSAM data set used to back a Data in Vir-
tual object or a scroll hiperspace.

data space MVS/ESA variant of an address space containing no
common segments; therefore a full 2 gigabytes of private space. Data
in a data space is addressable only in access register (AR) mode and
cannot be executed as instructions.

data stream data organized as a continuous stream of bytes, given
meaning as individual data fields by the program reading or writing it.
The concept of stream I/O originated in FORTRAN and was further
formalized in PL/I. The contrasting type is called record I/O, consist-
ing of discrete records of fixed or variable size. I/O to and from a UNIX
terminal is stream data as well.

data windowing services set of services provided in MVS/ESA to
make hiperspaces and Data in Virtual objects accessible to programs
written in high-level languages.

dataset non-IBM spelling of data set.

DB2 IBM’s flagship relational data base subsystem.

DCB see Data Control Block.

DCC see disconnected command chaining.
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default behavior of a system in the absence of specification or control
information—what the system will do on its own.

default parameter values assigned to a control variable if no value
is communicated to the system.

defragmentation process of consolidating and coalescing data sets
on DASD to make each data set occupy a single contiguous extent. For
data sets that can contain internally unused and unusable space
(“gas”), “defragging” usually includes “degassing” as well.

degradation analysis performance monitoring technique that
samples and breaks down the time taken by a process into its compo-
nent parts, classifying each sample into the appropriate state, and ac-
cumulating data to produce a table of state frequencies. The data so
collected may be displayed in various forms. Other names for degrada-
tion analysis include execution-state analysis, bottleneck analysis,
and response-time component analysis.

delay state state found in degradation analysis in which the work-
load of interest is not receiving service because it is waiting for access
to a resource that is not currently available [to it].

demand paging in SRM, the sum of nonswap, non-VIO page-ins and
page-outs; in common parlance, page-ins caused by page faults. This is a
case in which the SRM term is contradictory to common understanding.

detected wait a wait (without the LONG parameter) that exceeds a
duration limit set by the SRM. Address spaces sustaining detected
waits are candidates for swap-out. At this writing , the duration limit
is 8 SRM seconds or 2 seconds, whichever is longer. In current systems
likely to be running MVS, the 2-second limit is the operative one.

device utilization the average (mean) portion of a time interval
during which the device in question was found to be busy—the target
of a currently active I/O operation. Devices are either busy or not busy,
but utilization can be any value from 0 to 100 percent.

DFP Data Facility Product; see data management.

DFSMS Data Facility Storage Management Subsystem; that part of
MVS/ESA that implements system-managed storage. See SMS for
more information.

DFSMShsm current name of IBM’s Hierarchical Storage Manager, a
data management extension that handles archiving, backup, and mi-
gration of data among levels of a storage hierarchy.

direct access storage device see DASD.

disconnect time time in the execution of a channel program in
which disconnected command chaining is initiated.
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disconnected command chaining (DCC) the capability of an I/O
device (through its control unit) to break its connection with the channel,
allowing an operation that does not require data transfer to proceed with-
out tying up the channel. DCC allows block multiplexor channels to be
used for multiple concurrent DASD operations, since the time such a de-
vice is disconnected usually far exceeds its connect time.

discretionary in Workload Manager goal mode, the set of work
units classified as having no goal and no importance. Workload Man-
ager has discretion to provide service to such work units as resources
are available after all achievable goals are met. The service received by
discretionary work units depends strongly on the availability of sur-
plus resources. In real storage management, discretionary pages are
those awaiting page-out, subject to the discretion of RSM as to its cur-
rent need for the frames occupied by such pages.

disk the IBM way to spell the word for a thin, circular, spinning (usu-
ally magnetic-coated) object found in a DASD. Some non-IBMers and
(especially) anti-IBMers make it an article of religious faith to spell
the word disc.

DIV Data in Virtual.

DSCB see Data Set Control Block.

DSORG see data set organization.

DSRV IPS parameter specifying the minimum and maximum service
rates corresponding to contention index values of 100 and 1, respec-
tively, for a domain. The contention index is determined based on the
total service rate of all address spaces in the domain.

dual processors computer configuration typified by larger models
of the IBM 4381 in which two processors (CPUs) share common stor-
age and each has a complement of attached cycle-stealing channels.
Such a configuration is not physically partitionable and, in MVS/XA
and MVS/ESA environments, does not intrinsically provide the inde-
pendent channel subsystem of those architectures. The channel sub-
system is simulated through microcode, but “channel set” consider-
ations are still necessary in system planning. This design has been su-
perseded by dyadics in the IBM ES/9000 9121 line.

dyadic computer configuration in which two processors share com-
mon storage and an independent channel subsystem. Such a configu-
ration is not physically partitionable.

dynamic path reconnect (DPR) ability of a DASD subsystem (con-
trol unit or storage director, string controller, and device) to reestablish
an I/O connection after completion of a disconnected operation through
any available storage director to any available channel connected to the
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initiating system. DPR is not supported in MVS/370, requiring the
path-definition facilities of the XA or ESA channel subsystem.

dynamic pathing DASD subsystem facility consisting of two parts,
dynamic path selection and dynamic path reconnect.

E

EBCDIC Extended Binary Coded Decimal Interchange Code, IBM’s
proprietary character encoding based on the old IBM punched-card
code. EBCDIC was picked as the default code for OS/360 and became
the only character set code for System/370 and System/390 as the
“ASCII bit” was dropped from the system architecture. In practice,
EBCDIC is not a great problem in interchanging data between the
System/390 platform and other, ASCII-based platforms. Translation is
simple and efficient. However, EBCDIC is a symbol of IBM’s propri-
etary past and represents an objection to be overcome in some close
choice situations.

element in OS/390, a part of the operating system (such as VTAM)
that was formerly a separate product or product feature.

enabled attribute of a system function or subsystem capable of tak-
ing advantage of an advanced capability of MVS since Version 5. Work-
load Manager goal mode, parallel sysplex data sharing, and VTAM ge-
neric logon are examples of such capabilities.

enclave an independent unit of work whose priority may be different
from the priority of the requester. The only IBM-provided requester to
date is the distributed data facility (DDF) of DB2 Version 4 and later.
An enclave is created using a WLM interface, providing classification
information that is used to determine the service class for the unit of
work. In compatibility mode, the service class is used to select a perfor-
mance group. One or more SRBs are scheduled associated with the en-
clave. The SRB will be dispatched with addressability to some address
space, such as the server which received the request. The SRB will be
queued, dispatched and preempted based on the enclave’s priority
(from the current service class period or performance group period)
rather than the priority of the address space that is known as its home
space.

engineering embodiment physical realization of an architecture,
usually defining a system or product-family of systems; it may not im-
plement all of the architecture or the full extent of the quantitative
limits of the architecture. For instance, XA defines 2 gigabytes as its
maximum real (central storage); no model of the 308X product family
had more than 128 megabytes.
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enqueue lockout condition in which a serially reusable resource
controlled by the ENQueue service is held by a work unit that will not
let it go. A typical cause is when the holder of the exclusive ENQ in
turn requires another resource held by yet another work unit. The root
problem is often known as a deadly embrace, but that term normally
refers only to the symmetrical situation. (There are exactly two af-
fected work units, and each has what the other wants.) Other work
units (usually each is a separate address space) are merely locked out.

ES Expanded Storage.

ESA Enterprise System[s] Architecture.

Ethernet a local area network (LAN) developed by Xerox, Digital
and Intel (IEEE 802.3). It is the most widely used LAN access method.
Ethernet connects up to 1,024 nodes at 10 Mbps over twisted pair, coax
and optical fiber. Faster Ethernets have been developed. 100BaseT and
100VG- AnyLAN transmit at 100 Mbps rather than 10, and switched
Ethernet gives each pair of users that want to communicate with each
other a dedicated 10 Mbps channel.
Ethernet is a data link protocol and functions at the data link and
physical levels of the OSI model (1 and 2).

exabyte 1018 bytes (in practice, the power of 2 value that just exceeds
the decimal value, 260). Exa- is a relatively new metric prefix, and there
are yet newer ones. Here is a list of currently defined prefixes; the powers
of two are not metric values but are commonly used to denote memory
sizes and sometimes personal computer hard disk sizes:

Prefix Symbol Magnitude Meaning (multiply by)

Yotta- Y 1024or 280 1 000 000 000 000 000 000 000 000

Zetta- Z 1021or 270 1 000 000 000 000 000 000 000

Exa- E 1018or 260 1 000 000 000 000 000 000

Peta- P 1015or 250 1 000 000 000 000 000

Tera- T 1012or 240 1 000 000 000 000

Giga- G 109or 230 1 000 000 000

Mega- M 106or 220 1 000 000

Kilo- K 103 or 210 1 000

Hecto- H 102 100

Deka- D 10 10

deci- d 10-1 0.1

centi- c 10-2 0.01
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Prefix Symbol Magnitude Meaning (multiply by)

milli- m 10-3 0.001

micro- µ 10-6 0.000 001

nano- n 10-9 0.000 000 001

pico- p 10-12 0.000 000 000 001

femto- f 10-15 0.000 000 000 000 001

atto- a 10-18 0.000 000 000 000 000 001

zepto- z 10-21 0.000 000 000 000 000 000 001

yocto- y 10-24 0.000 000 000 000 000 000 000 001

exception analysis monitoring technique in which states or quan-
tities observable within a system are continually compared with ac-
ceptable states or values. When a deviation is found, an exception is
said to exist. The monitor may display a message describing the excep-
tion on a terminal associated with it or on the system console, store the
exception data on a data set, send it to SYSOUT, or take any of several
other possible actions. Depending on the type of data examined, the
monitor may be performing system availability analysis, service deliv-
ery analysis, response time analysis, elapsed time analysis, and so on.

execution-state analysis see degradation analysis.

expert system branch of artificial intelligence known also as a
rules-based system. Elements include a knowledge base, describing the
rules by which decisions are to be made, and an inference engine, a pro-
gram that will follow the rules in any knowledge base to yield unambigu-
ous conclusions. Expert systems are usually driven in a consultation by a
human user; some expert systems gather data from performance moni-
tors to make recommendations aimed at improving system performance.

extent contiguous portion of a DASD containing all or part of a data
set. A data set with multiple widely distributed extents tends to be in-
efficient in random-access performance.

externalize to make a portion of a system subject to change or con-
trol without requiring knowledge of internal structure. MVS’s OPT pa-
rameters prior to MVS/SE2 were limited, and system changes were of-
ten made by changing the values in internal control blocks. Many of
those values were externalized—became OPT parameters in MVS/SE2
and subsequent releases, thus reducing the exposure to MVS integrity.

externals parts of a system subject to control by parameters or com-
mands; also the descriptions of such parameters and commands.
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F
fencing early name for storage isolation.

fork in UNIX or OpenEdition MVS, a copy of a process created for the
purpose of independent excution, or the act of creating the copy.

fragmentation see defragmentation.

frame the unit of real storage, 4096 contiguous bytes beginning at a
real storage address divisible by 4096, the same size as a page.

front-end the portion of I/O processing preceding the issuing of the
instruction initiating the I/O; see back-end.

G
GETMAIN MVS service routine and its invoking SVC; allocates vir-
tual storage upon program request. In MVS/ESA, GETMAIN (as well
as its companion deallocation service FREEMAIN) has been super-
seded by a more comprehensive STORAGE service, rather than ex-
panding GETMAIN to deal with allocation of storage in data spaces.

granularity in capacity planning, increments of size or cost in a fea-
ture such as memory or CPU capacity. The smaller the increments, the
higher the granularity.

GRS Global Resource Serialization.

GTF Generalized Trace Facility.

GUIDE an association of users of IBM computers. GUIDE, and a
similar association called SHARE, contribute to the development and
refinement of IBM hardware and software through technical confer-
ences and exchanges, as well as a formal requirements process.

H
happy values obsolescent name for SRM’s MPL adjustment parame-
ters, from the notion that the SRM is “happy” and therefore not about to
change the MPL if each measured value is within its specified range.

hashing algorithm
data structure algorithm that distributes data according to some func-
tion of its key value so that searching the structure approximates ideal
validity of reference. Simple hashing algorithms (such as assigning
each letter of the alphabet to its own area) lead to numerous collisions
and the need for supplementary local tables; more complex algorithms
may require very large virtual filing cabinets.
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head of string control point of a DASD subsystem usually con-
tained in the “A box” of the string. (In DASD subsystems with optional
modules, the A box is the first or only required component. The name
derives from IBM’s customary model designation.) Since the string
controller is part of a DASD path, it represents a site of contention and
queueing, usually called “head-of-string delay.” In some past devices,
the actuators physically present in the A box may have had slightly
less protocol delay and some priority in processing concurrent re-
quests. The differences today are negligible at most.

hardware compression compression implemented in the CPU or
channel subsytem of the processor complex, or in an I/O device controller.

hierarchical file system (HFS) In general, a file organization
method that stores data in a top-to-bottom organization structure. All
internal access to the data starts at the top and proceeds throughout
the levels of the hierarchy. Most operating systems use hierarchical
file systems to store data and programs, including DOS, OS/2, Win-
dows NT and 95, UNIX and the Macintosh.

In particular, the facility implemented in DFSMS to provide
OpenEdition MVS with ability to read and write files in a UNIX HFS.

high-speed buffer (HSB) fast storage associated with the instruc-
tion fetch and processing elements of a CPU: a cache. For example, a
CPU with a 15-nanosecond cycle time would have to take three idle cy-
cles while waiting for data or instructions from a 60-nanosecond mem-
ory element. If the data and instructions are asynchronously staged
into a 15-nanosecond HSB, CPU operations could proceed without the
inserted delays. Correctly sizing an HSB is a classical exercise in
cost/performance analysis.

HSM see DFSMShsm.

hypervisor a control program whose only function is to facilitate the
running of other control programs or operating systems. IBM’s PR/SM is
a hypervisor embodied in hardware and microcode. VM is a somewhat
compromised hypervisor because it supports numerous functions that al-
low virtual machines to communicate with it, in recognition of practical
performance realities. A “pure” hypervisor insulates its various subordi-
nate operating environments from one another; to the extent that it ap-
proximates an operating system, that benefit is diluted.

I
ICS Installation Control Specification, the IEAICSxx member of
SYS1.PARMLIB, used to assign address spaces to performance groups
in compatibility mode.
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IDAW Indirect Data Address Word, a logical extension to a CCW that
specifies data address and count; it may contain a 31-bit address and
was the means of enabling MVS/370 to support I/O to real storage ad-
dresses exceeding 16 megabytes.

image processing form of data processing in which digitized im-
ages of actual documents are stored and manipulated in order to save
transcription time and avoid transcription error. Large potential cost
savings are offset by very high computer resource requirements. The
image of a typewritten page may require 50,000 bytes to store; as text
it may take 3000 bytes.

IMS IBM’s Information Management System, a high-function sub-
system providing both data base and data communication (transaction
management) functions. IMS was one of the first such subsystems,
dating back to OS/360 and continually updated to exploit MVS ad-
vances including parallel sysplex and Workload Manager goal mode.
The current version is known as IMS/ESA.

Indirect Data Address Word see IDAW.

Initialization and Tuning IBM publication, in a different edition
for each version of MVS, that specifies (or points to) the operating pa-
rameter choices for an MVS system. Since Version 4 of MVS/SP, there
have been two separate publications, Initialization and Tuning Guide
and Initialization and Tuning Reference. The former describes algo-
rithms and concepts; the latter describes parameters and their permis-
sible values.

Installation Control Specification see ICS.

Installation Performance Specification see IPS.

IOSQ That portion of an I/O operation spent waiting while queued on
a busy UCB.

IPL Initial Program Load; hardware-defined operation leading to the
[re]initialization of a System/390 operating system including MVS.

IPS Installation Performance Specif ication, a member of
SYS1.PARMLIB that contains parameters directing the SRM in its as-
signment of resources to workloads in compatibility mode.

ISDN Integrated Services Digital Network, a telephone network based
on digital signals, capable of data rates of up to 128Kbits per second.

ISPF Interactive System Productivity Facility, full-screen text inter-
face to TSO and a great contributor to TSO’s acceptance.
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J
Java a platform-independent programming language developed by
Sun Microsystems, based on C++. The most common use of Java is to
create small applications (applets) which are made available for
download from World Wide Web sites on the Internet. The applets are
executed on the receiving computer in a Java Virtual Machine envi-
ronment, usually supplied by the software used for browsing the
Internet.

JCL job control language.

JES job entry subsystem. In response to MVT’s deficiencies at man-
aging job sequencing, printers, and input data streams, two rival sub-
systems were designed and implemented primarily by customers with
IBM support at only the local level. Both were eventually acquired by
IBM. The Houston Automatic SPOOLing Priority system (HASP)
eventually was made into JES2; the Attached Support Processor (ASP)
became JES3. As the two JESs converge in function and performance,
they are more and more distinguished primarily by their mutually in-
compatible control languages. The time may yet come when there is
only one JES, but it probably won’t be soon.

JES2 JES2 started out as the smaller, faster, simpler JES. It has
since grown in functionality so that most of what JES3 can do is found
now in JES2, perhaps with extensions built on its numerous exits. See
also JES.

JES3 JES3 began as the high-function JES for multisystem envi-
ronments and those with complex batch jobstreams requiring de-
pendency scheduling. JES3 performance now rivals that of JES2.
See also JES.

job control language (JCL) Control statements that define a
batch job, started task, or subsystem, existing in 80-byte fixed-length
records or card images.

job entry subsystem see JES.

jobstream sequence of batch jobs. Usually the term refers to a re-
lated sequence or suite of jobs that accomplish a single business pur-
pose. For example, a General Ledger jobstream might consist of 30 or
more individual jobs with sequential dependencies to be controlled by
a production control staff or an automated job management system.

K
K in scientific and engineering notation, the quantity 1000; in bi-
nary-based computing systems, the quantity 210, or 1024.

Glossary 423



L
late binding see binding.

latency the mean rotational delay of data located at any angular po-
sition on a DASD track; generally estimated as one-half of the rota-
tional period.

linear searching simplest data searching technique, in which the
element to be matched is compared with the corresponding part of
each stored data structure. If the list is ordered, a miss requires an av-
erage search of one-half of the data extent; for an unordered list, a
miss requires a full element-by-element search, the worst-case viola-
tion of validity of reference. Linear searching requires no setup; there-
fore, if the setup time of a more efficient search method is greater than
the time needed to traverse the list (or half if ordered), linear search-
ing may be an appropriate choice. The bad reputation of linear search-
ing comes from its fixed time requirement per element; more efficient
methods have a fixed setup time and a variable time component that is
less than proportional to the number of elements. Once the crossover
point (the number of elements at which competing methods have equal
search times) is passed, linear searching becomes increasingly costly
in both execution time and working-set size.

LLA in MVS/XA, LINKLIST Lookaside Area, an address space that
contains the directories of LINKLIST libraries, used to avoid outboard
searching for load modules. In MVS/ESA, Library Lookaside Area, a
service employing data spaces through VLF services to contain direc-
tories and load modules of selected LINKLIST libraries, used to avoid
both searching and Program Fetch I/O.

locality of reference design principle and common property of pro-
grams; instructions and the data they use tend to be tightly clustered,
whether the data is in virtual storage or on DASD. The clustering is
both spatial and temporal; temporal clustering is sometimes called
temporality of reference. If the implementation environment does not
enforce locality of reference, it may be necessary to enforce it as a de-
sign principle, to ensure minimum working-set size for internal data
and minimum access delay for external data.

“loved one” a workload that is economically significant to the busi-
ness unit operating a data center; therefore it is closely watched and
rescued if it is headed for trouble.

LPAR Logical PARtition in a PR/SM or MLPF environment.

LRU least recently used, page-stealing strategy which assumes that
a page not recently referenced is not likely to be referenced again soon.
For programs exhibiting strong locality of reference, this is usually a
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sound assumption. There are, however, many instances in which LRU
is counterproductive. If a transaction-processing subsystem serves a
large population with little commonality in the transactions they in-
voke, the correct strategy may be to discard the pages of a transaction
as soon as it is completed. This “MRU” (Most Recently Used) strategy
resembles swapping more than LRU page stealing. The original stud-
ies that resulted in LRU’s becoming the standard page replacement
strategy may need to be reexamined with today’s workloads.

M

M in scientific and engineering notation, the quantity 1,000,000; in
binary-based computing systems, such as the ones that support MVS,
the quantity 220, or 1,048,576.

M/M/1 queueing model which assumes an exponentially distributed
arrival rate (first “M”), exponentially distributed range of service
times (second “M”), and a single server (“1”). M/M/1 is a useful model
because it is mathematically simple and does match well to some com-
mon delay scenarios in data processing. As with any model, the sce-
nario under consideration should be carefully checked against the as-
sumptions of the model before using it.

main storage old name for storage internal to a computing system,
as opposed to DASD or tape. The term evolved to real storage when vir-
tual storage came in, then to processor storage in preparation for the
announcement of expanded storage, and finally to central storage
when expanded storage was announced.

mainframe a large computer system, particularly one on which an
operating system like OS/360 or MVS runs. The term originally re-
ferred to the contents of the large cabinet in which the processing unit
(CPU) resided. The hierarchy (since the first integrated circuits) was
chip, module, board, gate, frame. The main or most important frame
was the one containing the CPU and its local storage.

maximum PWSS storage-isolation parameter designating the maxi-
mum value an address space’s target protected working set may reach.
This is also the central storage frame count above which the address
space is subject to preferred page stealing. A limited maximum PWSS
should be specified only when preferred page stealing is desired.

MC MONITOR CALL instruction.

MDF Multiple Domain Facility, Amdahl Corporation’s name for a
hardware hypervisor providing multiple system images on a single
processor complex. It preceded IBM’s PR/SM in the marketplace.
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mean-time-to-wait (MTTW) the average interval between invoca-
tions of the WAIT macro or service by an address space, usually for I/O
operations. MTTW is used explicitly in compatibility mode as a dispatch-
ing priority specification. The Mn specification denotes a range of ten dis-
patching priorities. Address spaces with that specification (e.g. DP=M3) are
observed by SRM to determine the MTTW of each; their individual dis-
patching priorities are set depending on those values. The top priority in
the group of ten goes to address spaces with MTTW of 0-45 SRM millisec-
onds, with each additional 45 SRM ms dropping the priority one notch.
The step size may be changed from the default of 45 SRM ms by changing
the value of the OPT parameter CCCSIGUR.

In goal mode all work units classified as discretionary are in a single
MTTW dispatching group. CCCSIGUR is ignored in goal mode; pre-
sumably the spreading of priorities is done on a more heuristic basis.

megabyte see M; 1 M bytes.

MFT Multiprograming with a Fixed number of Tasks, the simpler im-
plementation of multiprogramming in OS/360. Storage was divided
into fixed-size partitions, as opposed to the more flexible regions of
MVT.

microcode a level of programmed operation beneath the architec-
turally defined “Principles of Operation” interface. In most of today’s
systems, hardware provides a low-level machine not generally seen by
the operating system; the power-on reset process initiates loading
(from an internal storage device) and execution of microcode to initial-
ize the hardware to be, for instance, a ES/9000-982 in LPAR mode. At
some other activation, one side of the 982 could be the equivalent of a
941 in ESA/390 mode, the other a 941 as a coupling facility. Microcode
programming (microcoding) is usually considered to be an engineering
discipline, but the required skills are exactly those of a very flexible as-
sembly language programmer. Underlying engineering designs may
have seemingly arbitrary word sizes, and “instructions” that perform
complex compound operations. Microcode also provides support for ex-
tended operation codes available to operating system (supervisor state)
code to perform functions such as creating an MVS address space.

migration movement of data from one medium (usually low in ca-
pacity, fast, and expensive) to another (usually bigger, slower, and
cheaper). Migration in a paging subsystem is used to move
long-unreferenced pages from a device high in a storage hierarchy to
one at a lower position. It was first used in VM’s predecessor, CP/67, in
the days of IBM 2305 fixed-head files (drums), moving pages from the
few slots on the expensive drums to relatively unlimited cheaper stor-
age on DASD. In MVS/XA and MVS/ESA, migration moves pages from
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expanded storage to auxiliary storage. Just as in the CP or VM case,
expanded storage migration requires frames in central storage as I/O
destinations for incoming pages and origins for outgoing pages. Migra-
tion is triggered by internally maintained thresholds of available
frames in expanded storage. Since MVS/ESA SP 4.2, the thresholds
are “externalized” in the OPT.

migration age measure of constraint in expanded storage. The mi-
gration age is a property of the entire expanded storage resource. Low
migration ages are usually correlated with high contention for ex-
panded storage pages. The migration routine, or migrator, operates on
demand when the available expanded storage frame count falls below
a threshold and continues operating until the count passes a higher
threshold. Each subsequent invocation of the migrator takes up where
the previous one left off, returning to the first frame when the last one
has been examined. The migrator examines the control bits of each
frame in sequence, turning off the “new” indication at first encounter
and selecting non-new frames for migration provided they are not in a
protected class, such as a storage-isolated working set.
Migration age is the time required for the migrator to traverse the en-
tire set of expanded storage frames and return to its starting point. It
is a complex function of the size of expanded storage and the workload
mix on the system. It is useful to measure and track migration rate as
a function of migration age. The “knee in the curve” defines a critical
migration age that may be used as the lower limit of criteria age for
less-important workloads.

MIPS millions of instructions per second, a measure of CPU power.
However, not all instructions are alike, and IBM in particular does not
generally release MIPS data for its products. Bare measures like MIPS
tend to ignore important CPU performance factors, including storage
and I/O bandwidth, microcoded assists for operating systems and key
programs, concurrency, and the power of individual instructions.

MLPF Multiple Logical Processor Facility, Hitachi Data Systems’
name for a hardware hypervisor providing multiple system images on
a single processor complex. MLPF is similar in functional capability to
IBM’s PR/SM.

MP multiprocessor.

MPL multiprogramming level, the number of address spaces resi-
dent in central storage at any given time; also the number of address
spaces of a particular kind or in a particular domain.

MPL delay delay state in which an address space is swapped out
and ready to be swapped in, but SRM cannot increase the MPL in its
domain to allow the address space to be swapped in. MPL delay is also
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known as “out and ready” time. The Workload Manager in goal mode
will place address spaces in this state as one of its mechanisms to reg-
ulate performance to goals.

MSO (1) component of service unit accumulation based on Main Stor-
age Occupancy; (2) service definition coefficient (SDC) in the IPS or
Service Definition establishing the weight of MSO service units in the
overall service unit quantity.

MTTW see mean-time-to-wait.

Multiple Domain Facility see MDF.

multiprocessor a computer hardware configuration in which two or
more CPUs or processors operate under control of a single instance of a
control program or operating system. In System/390 multiprocessors,
all processors have access to all storage and channels. One-sided con-
figurations can have up to five processors in the IBM ES/9000 711 se-
ries and in the Multiprise 2000, and up to ten processors in the IBM
9672. Two-sided configurations such as the larger ES/9000 9021 mod-
els are always multiprocessors; they have the added potential to be
physically partitioned into two independent hardware configurations.

multiprogramming method of operating a computing system so
that multiple workloads are concurrently active. In addition, if the sys-
tem is a multiprocessor, as many workloads may be simultaneously ac-
tive as there are processors. When one workload gives up its use of the
CPU by entering the WAIT state, another workload can be dispatched.
In earlier times, batch multiprogramming exploited I/O waits; in cur-
rent systems, multiprogramming exploits the “think time” of terminal
users as well.

multiprogramming level see MPL.

multiprogramming set the set of address spaces that constitutes
the system-wide MPL.

multitasking the possibility of multiprogramming within a single
address space. The ATTACH SVC creates an additional dispatchable
unit (task), quasi-independent of the task that created it. The FORK
function in UNIX or OpenEdition MVS performs a similar function al-
though the “child” may be a separate address space.

MVM original name for MVS, Multiple Virtual Memories.

MVT most complete version of OS/360, Multiprogramming with a
Variable number of Tasks. In MVT, storage was divided into regions of
variable size.
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N
negative storage isolation use of storage isolation with a low
maximum PWSS to designate an address space as a preferred source
for page stealing. Although it is effective, negative storage isolation
conflicts with the Working Set Manager and should not be used for
swappable workloads in MVS/ESA SP 4.2 and later systems.

network operating system (NOS) an operating system that con-
trols a server system, with extensions for communication with many
client systems as well as functions for making shared devices available
to clients. Novell NetWare, Windows NT Server, and OS/2 Server are
popular examples. OS/390 has all the attributes of an NOS as well.

network-centric computing IBM’s term, as expressed by its
Chairman, Lou Gerstner, for a computing environment in which major
applications and their data are maintained on one or more large server
systems (presumably OS/390). Clients connect to the server(s) through
the Internet or local networks over high-speed connections, down-
loading programs and data as needed. The development of the Java
language by Sun Microsystems has been enthusiastically endorsed by
IBM as a direction-setter for network-centric computing.

nonparametric statistics method of statistical analysis that does
not assume a particular model for the distribution of data. Statistics
that depend on the ranking of data rather than on a distribution model
are characteristic of nonparametric statistic. Examples include the
median, quartiles, and percentiles.

nonswappable address space not eligible for swap-out. Many
started tasks that run in authorized state simply make themselves
nonswappable by issuing the appropriate SYSEVENT SVC. Others be-
come nonswappable by means of an entry in the Program Properties
Table, and any address space operating in cross-memory mode is
nonswappable by definition.

normal distribution a statistical model (also known as Gaussian)
that is completely characterized by two random variables, µ (mu), the
mean, and σ2 (sigma-squared), the variance. A plot of the normal dis-
tribution is the familiar bell-shaped curve. A full discussion of normal
random variables may be found in Arnold Allen’s Probability, Statis-
tics, and Queueing Theory With Computer Science Applications (Aca-
demic Press,1978).

The normal distribution is tempting to use because it is very easy to
calculate a “mean” and “standard deviation” (to a first approximation
the square root of the variance) from a series of observations. However
the calculated standard deviation will be misleading and inappropri-
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ate to use if the data do not conform to the normal model. The transac-
tion completion times shown in an RMF Workload Activity Report of-
ten show standard deviations exceeding the magnitude of the
means—simply because a population of transactions is very unlikely to
meet the assumptions of the normal distribution model.

nucleus the permanently resident portion of MVS, encompassing the
I/O supervisor, the various resource managers (ASM, RSM, SRM, etc.),
interrupt handlers, and the most essential service routines. The “hori-
zontal splitting” made possible by cross-memory services complicates
the definition. ENQ/DEQ services used to be in the nucleus, but now
these services are provided by GRS in a separate address space.

numerically intensive [computing] (NIC) computer applica-
tion commonly encountered in scientific and engineering work, charac-
terized by very long intervals between WAITs and thus near-continu-
ous demand on the CPU resource. In many such applications, there is
also very heavy demand on virtual storage, with a correspondingly
large use of central storage. The working set is large and volatile, mak-
ing such a workload difficult to manage in a system with even the
smallest amount of central storage constraint.

NIC work was ill-served in MVS systems prior to the introduction of
Working Set Management in MVS/ESA SP 4.2. It was typically
scheduled to run at otherwise idle times because the paging activity
engendered by the large and constantly-changing working set dis-
rupted the stability of other work. When NIC work is also important
work, it cannot be pushed aside. Working Set Management en-
hanced the SRM to observe the working set behavior of address
spaces and the amount of CPU devoted to the paging task, and to
take action such as bulk page stealing and swapping to maintain an
optimal mix of work in central storage. Workload Manager in goal
mode uses the mechanisms of Working Set Management as one of its
tools to manage workloads to meet goals.

O

open system this term has had many meanings. At one time, it was
a code term for “UNIX” in contrast with the perception that IBM’s sys-
tems were proprietary and therefore closed. As MVS has evolved into
OS/390 and has become certified for the highest level of UNIX compli-
ance, it is now an open system in the most polarized meaning of the
term. Currently the “open” designation is applied to systems that can
communicate with, and inter-operate with a wide variety of systems
and platforms using standard protocols and interfaces.
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operator person responsible for directing the activities of a computing
system. Key operator tasks include [initiating] system startup and shut-
down, observing and replying to messages displayed at the system con-
sole, entering commands to deal with unusual circumstances, mounting
and demounting tapes, and loading and removing printer paper. All of
these tasks except those dealing with printer paper are candidates for
automation. Automated tape libraries and console automation programs
are redefining the operator’s job away from performing mundane tasks
and toward high-level decision making. Paper handling is becoming less
important as more high-quality page printers are installed at the point of
need rather than in the central computer room.

OPT abbreviation for “optimizer,” an early name for the SRM. Also,
usual designation for the IEAOPTxx member of SYS1.PARMLIB.

out-and-ready condition of an address space that is swapped out
and ready to run, but cannot be swapped in because the MPL in its do-
main will not allow a unilateral swap-in and there is no candidate in
the domain eligible for an exchange swap.

overcommitment use of a resource beyond its physical limits. The
term is usually applied when virtual storage is allocated in greater aggre-
gate quantity than real (central) storage. A form of CPU overcommitment
is recognized by the MVS SRM when not all members of the
multiprogramming set receive CPU service during a measurement inter-
val.

overinitiation pejorative name for the condition in which the aggre-
gate MPL of batch jobs is less than the number of active batch jobs. In
fact, overinitiation is a prerequisite to effective MPL management.

overlapped processing characteristic of a computing system in
which I/O operations proceed concurrently with CPU processing. Inde-
pendently operating channels make overlapped processing possible.
Overlapped processing in turn makes multiprogramming and
multitasking possible.

override to substitute a selected value for the default value of a pa-
rameter.

P
P/390 a heterogeneous multiprocessor consisting of an IBM PC
Server using the microchannel architecture, with an add-in card (also
called P/390) that supports the full ESA/390 instruction set with the
exception of the coupling facility instructions. The combined system is
built on OS/2 and emulates System/390 devices through the underly-
ing hardware, as well as accommodating external device attachment.
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The P/390 in its larger configurations is a capable MVS platform, able
to replace obsolete System/370 platforms like the 4341 and the 3083
for production use at smaller sites. It also is a very accessible develop-
ment and test platform for applications; one suggested use is testing
for Year 2000 preparedness. OS/390 can be ordered in a simple-to-in-
stall CD-ROM configuration for the P/390.

There is also an R/390, differing from the P/390 in that it is built on the
RISC 6000 platform with AIX/6000 as the supporting operating sys-
tem.

page n. 1. the unit of virtual storage, 4096 contiguous bytes at a
starting address divisible by 4096; 2. the unit of expanded storage,
4096 bytes designated by a single page number; v. to move pages be-
tween slots of auxiliary storage and frames of central storage; usually
the movement from auxiliary to central (page-in) is of interest.

page fault an interrupt caused by a page-translation exception, signi-
fying that the page is not shown to be occupying a frame of central stor-
age. A page fault results in a page-in, usually of a block of related pages.

page movement the transfer of pages between central and ex-
panded storage; also the movement of frames from central storage
above 16 megabytes to and from addresses “below the line,” used in
MVS/370 to allow ordinary I/O (without IDAWs) to proceed.

page stealing activity initiated when the Real Storage Manager
(RSM) has allocated a frame and finds that the available frame count
has fallen below the current MCCAFCLO threshold. The condition is
also triggered in conjunction with a swap-in when the required num-
ber of frames would put AFC below MCCAFCLO. SRM selects the
frames to be reassigned, first taking frames from storage-isolated ad-
dress spaces with frame counts above their PWSS maximums, then
taking frames from storage-isolated address spaces with more frames
than their current targets as well as other address spaces and the com-
mon area, in descending order of UIC. SRM sends any required
page-outs to the auxiliary storage manager (ASM).

parallel sysplex see sysplex

parallel-coupled (author’s term) the form of multiprocessing archi-
tecture embodied in the parallel sysplex. The essential elements are:

• multiple MVS images, each with its own independent copy of the
base control program and all subsystems, at release levels that
support the coupling facility and data sharing

• connections from each MVS image to and from one or more cou-
pling facilities
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• sharing of application data and some system data through
ESCON channels and directors

PARMLIB partitioned data set (SYS1.PARMLIB) containing the ex-
ternally specifiable parameters of MVS and some of its subsystems.
Initialization and Tuning contains a description of each member of
SYS1.PARMLIB.

partitioned data set (PDS) data set organization (DSORG) con-
sisting of a directory and a set of members resembling individual se-
quential data sets. A PDS is often known as a library.

partitioning, physical the act of dividing a computer system into
two (or more) independent computer systems. Physical partitioning re-
quires separate components from power supplies on up. IBM systems
and compatibles capable of running MVS support (to date only)
two-way physical partitioning if appropriately configured in
“two-sided” configurations.

path an I/O connection between a CPU and a device consisting of a
channel, control unit, and device controller, if applicable, as well as
the device.

PEND in XA and ESA, the time spent by the channel subsystem wait-
ing for a path to become available. PEND time is often associated with
shared DASD contention; it represents the I/O activity on other systems
that prevents an operation on the current system from proceeding.

performance index (PI) a normalized metric used by the Work-
load Manager in goal mode, representing the degree to which each
specified goal is being met. It is defined for all but velocity goals as (ac-
tual measurement) ÷ goal; for velocity goals it is the reciprocal. A goal
just met gives a PI of 1; a goal missed has a PI greater than 1, and an
overachieved goal has a PI less than 1.

petabyte 1015 bytes, sometimes the nearest binary equivalent, 250.
See exabyte for a table of metric scale prefixes.

physical sequential data set organization (DSORG) in which logical
records (defined by use in a program) are organized in (often larger)
physical records (defined to optimize device performance) and read or
written in strict order from the beginning to the end of the data set.

physical swap movement of the trimmed working set of an address
space between central (real) storage and auxiliary storage. Although a
processor storage swap is also a physical phenomenon, the term is
used only for the swap involving the use of auxiliary storage.

PLPA pageable link pack area, part of the common area, also includ-
ing EPLPA in MVS/XA and MVS/ESA, containing reenterable load
modules that may be used (in place) by any address space. There is
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also a fixed link pack area, containing modules that may not sustain
page faults and therefore are ineligible for page stealing.

PLPA page data set the first-named page data set in an MVS IPL,
containing only pages of the PLPA. Since the PLPA is read-only, the
PLPA page data set is preserved across IPLs and is rewritten only
when the CLPA option is specified for the IPL.

portable application application program or system written so it
can be executed on several different kinds of computer systems. In gen-
eral, portable applications trade off ease of implementation in environ-
ments other than the first for less-than-optimal performance in each en-
vironment. Of necessity, they must use a “lowest common denominator”
of system facilities and services in order to be portable. Implementors or
vendors of such applications must often devote substantial expense to im-
proving performance, reliability, integrity, and flexibility in particular en-
vironments, in response to customer requirements.

PPT Program Properties Table, an MVS data area specifying names
of programs that are to enjoy various forms of privilege.

preferred page stealing page stealing incurred by storage-iso-
lated address spaces holding more frames than the maximum PWSS
for the current performance period. See also negative storage isola-
tion. Preferred page stealing also takes place in Workload Manager
goal mode for an address space that has been identified as a donor of
central storage frames.

Principles of Operation IBM publication defining hardware data
structures and organization, instruction set, and related interpreta-
tions and relationships for a computer system or family of systems.

process the UNIX equivalent of an MVS task.

processor complex the central elements of a computing system, in-
cluding processor(s), processor storage, and the inner portion of the I/O
subsystem (in System/390 the channel subsystem).

processor storage central storage and expanded storage; all stor-
age accessible to a processor.

Program Fetch service routine in the MVS nucleus that loads pro-
grams from libraries into virtual storage. In ESA, Fetch also loads pro-
grams from the LLA data space. Program loading is more complex
than simply reading in a module; programs are generally relocatable,
so internal references to addresses must be adjusted relative to the
loading address of the module. The principal SVCs serviced by Fetch
are those for ATTACH, LINK, LOAD, and XCTL.

Program Properties Table (PPT) see PPT.
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program status word (PSW) in System/360, the 64-bit (dou-
ble-word) representation of the current state of the CPU. In Sys-
tem/370, XA, and ESA, the PSW still contains the current instruction
address and various mode and mask settings, but to capture the full
status of the CPU requires the content of several control register fields
as well. The PSW does not exist as a viewable object except when
stored as the result of an interrupt. When the interrupt occurs, the
PSW is created and stored at one of six reserved addresses according
to the interrupt type, and a new PSW is fetched from a corresponding
reserved address. A PSW at any double-word address is made the cur-
rent PSW when it is the object of the LPSW (LOAD PROGRAM STATUS
WORD) privileged instruction.

proprietary system opposite of an open system, a system in which
data formats and protocols do not conform to industry standards.

PSW see program status word.

push-out the process of moving the trimmed working set of an ad-
dress space from central storage to expanded storage, thus completing
a processor storage swap-out.

push-out queue set of pages destined to be moved to expanded stor-
age in FIFO order, as central storage is needed. The queue includes single
pages (as from requested page-outs) and groups of pages (stolen blocks,
VIO windows, trims, and swap groups), which are moved as groups.

Q
QSAM, queued sequential access method access method for
physically sequential data sets or members of PDSs which accepts
(PUTs) or provides (GETs) logical records one at a time. QSAM han-
dles synchronization, blocking, and buffering without the need for
problem program direction.

quiesce series of actions to prepare an address space for swapping;
the principal task is to ensure that all pending I/O is completed. As of
MVS/ESA SP Version 5, there is a QUIESCE operator command that
swaps out a swappable address space and makes a non-swappable ad-
dress space non-dispatchable.

R
R/390 see P/390

RAID (From an Internet citation entitled RAID White Paper):
In December, 1987, a University of California at Berkeley paper enti-
tled “A Case for Redundant Arrays of Inexpensive Disks (RAID)” was

Glossary 435



published by David Patterson, Garth Gibson and Randy Katz. The pa-
per… noted that as the number of drives in a stripe set increases, the
aggregate mean time between failure (MTBF) of the stripe set drops
dramatically. The conclusion is that performance significantly im-
proves at the expense of availability.
To solve the MTBF problem, the RAID paper introduced the concept of
using redundant arrays to ensure data availability. The Berkeley paper
describes five possible RAID methods, defined as RAID levels 1 through
5.
By definition, RAID has three attributes:

• It is a set of disk drives viewed by the user as one or more logical
drives.

• Data is distributed across the set of drives in a defined manner.

• Redundant capacity or data reconstruction capability is added to
recover data in the event of a disk failure.

Each RAID level explores these attributes in a different way.
Of the five RAID levels, RAID 1, RAID 3 and RAID 5 have received a
significant amount of interest by the computer industry. As RAID has
evolved into commercial products, the third letter of the acronym has
come to mean “Independent.”

RAMAC Name of the first commercially available disk storage product,
the IBM RAMAC 305, introduced in 1956. In recent years the name has
been revived for a family of new IBM devices based on RAID 5 arrays of
small disks. The capacity of the original new RAMAC has been doubled
in RAMAC II and doubled again in RAMAC 3. RAMAC 3 includes all the
functions of the 3390-3990 combination and surpasses it in performance,
capacity, reliability, and cost of ownership.

real frame replacement see page stealing.

reclaim see page fault.

reconnect the activity in the progress of an I/O operation following
the successful completion of a disconnected command or series of com-
mands; the device controller and storage director reestablish connec-
tion to the CPU through a channel. In System/370, reconnect could oc-
cur only on the original channel through which the operation began; in
XA and ESA, any channel physically connected to the CPU and stor-
age director or control unit may be used.

reenterability property of a program in which multiple concurrent
activations may proceed without interference. In systems such as
MVS, based on OS/360, reenterability was easy to achieve because pro-
grams generally acquire storage from the operating system (via the
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GETMAIN SVC) for work areas and I/O buffers, and do not carry
around such data in load modules.

reenterable attribute of a program that possesses the property of
reenterability. The attribute is indicated by a bit in a load module’s
PDS directory entry.

reentrant [sic] common alternative designation for reenterable. This
word is etymologically incorrect, having the plain meaning in other con-
texts of an entity that reenters itself. In a program, this would be a loop.

region in OS/360 MVT, a contiguous portion of real storage in which
a program executed. The size of the region was a de facto limit on the
aggregate size of all GETMAINs of the program in the region and all of
its subordinate programs. In SVS, the storage became virtual, but re-
gion still functioned the same way. In MVS, the region became an ad-
dress space of 16 megabytes, and later 2 gigabytes in XA and ESA. Re-
gion size would appear to have no current meaning. However, the page
tables needed to map a full address space are sufficiently large that it
is desirable to limit their extent if the full potential is not needed.
Hence an MVS parameter and the REGION= specification in JCL or at
LOGON allows a limit to be stated, separately in XA and ESA for both
storage below 16 MB and above the line. The REGION limit in MVS
retains the consequence of the MVT definition. It is the limit on the
amount of virtual storage obtainable in an address space.

re-reference subsequent reference to data that was previously
used. Re-reference to pages is what keeps their UICs low and thus pro-
tects them from stealing. Re-reference to blocks or tracks in a cache
control unit prevents that data from being destaged to the backing de-
vice. In active TSO populations with some degree of storage constraint,
re-reference to pages trimmed in the last few swaps accounts for about
60 percent of page faults. The use of storage isolation for TSO in such a
case reduces TSO page faults dramatically at the low cost of moving a
few more pages in the swap group. Re-reference frequency is the mea-
sure of locality of reference.

report class in Workload Manager goal mode, an optional entity
created during workload classification that is used only to provide an
alternative input to the RMF or equivalent reporting process. Each
classified work unit may belong to no more than one report class. The
data available for reporting is a subset of the data for a service class.
The principal exception is that all service data is reported in a single
performance period.

resource-oriented point of view approach to performance man-
agement that focuses on quantities measurable for hardware and op-

Glossary 437



erating system resources, such as CPU and channel utilization, paging
rates, and queue lengths.

RISC reduced instruction-set computer, a computer architecture op-
timized for high performance by restricting the number of instruc-
tions, registers, and instruction formats. In most RISC processors, al-
most all instructions may be executed in a single clock cycle, with some
being overlapped so that more than one completes in a cycle. The con-
trast between RISC and CISC is diminishing as larger-scale integra-
tion allows both rich instruction sets and pipelined and parallel opera-
tion in evolutionary designs.

RISC designs are often different enough from other processors to re-
quire completely new software support, especially if the full perfor-
mance potential of the design is to be attained.

RM1 interval at which SRM collects data, the SRM second.

RM2 interval at which the SRM in compatibility mode summarizes
the data collected at RM1 intervals and decides whether to adjust the
system’s MPL. In MVS/370, RM2 was fixed at 20 seconds, but in
MVS/XA and MVS/ESA it becomes smaller as the power of the proces-
sor complex increases.

RMF Resource Measurement Facility. RMF is described in Chapter 9
and discussed in Chapter 10.

RSM Real Storage Manager.

rule of thumb (ROT) method of making performance management
decisions, based on comparing resource values with a set of values
deemed to be acceptable. Deviations of the measurable values from the
ROTs is taken to signify a performance deviation, irrespective of work-
load indicators such as response time. This method of performance
management may sound absurd, but it is all too close to what MVS in
compatibility mode does for itself by default.

S
scale-up problem performance problem that comes about when a
workload volume increase makes formerly acceptable performance un-
acceptable. In particular, an algorithm that was efficient for low vol-
ume could become noticeably inefficient for high volume.

SCP System Control Program, one of two designations introduced on
June 23, 1969, when IBM “unbundled” software and services from
hardware, thus creating the mainframe software business. Originally,
SCPs were provided at no cost with the hardware, and Program Prod-
ucts were available at a fee. As MVS evolved through MVS/SE to
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MVS/SP, this distinction was lost, and today’s counterparts to SCPs
are not free.

sequential data set see physical sequential.

Service Level Agreement ideally, a carefully negotiated agree-
ment between a data center and its customers committing the delivery
of a specific minimum level of service (availability and performance) at
a named maximum level of demand. In practice, it often turns out to be
the expectation of the customers based on experienced or reported ser-
vice attainment.

SHARE see GUIDE.

shared pages a facility allowing a page frame to be mapped to differ-
ent private area addresses in different address spaces. Using this tech-
nique, selected UCBs can be made to appear “above the line” or “below
the line” as required in each address space. Shared pages can be used for
other purposes as well. Page frames are saved as long as a shared page is
not changed. When one is changed, that address space’s virtual page is
mapped to a different page frame before the update is completed.

simulation model a computer program which attempts to perform
like the system or program under study, and which can be monitored or
measured to provide planning information. The technique is valuable for
estimating the behavior of very large physical or economic systems.

slot unit of auxiliary storage, a 4096-byte physical record on a page
data set.

SmartBatch a separately priced add-on to MVS that supersedes the
BatchPipes/MVS offering.

The following material is quoted from the from the announcement let-
ter. Note that irrespective of the name, none of SmartBatch requires
OS/390. Only the the BatchPipePlex component specifically requires a
parallel sysplex.

IBM SmartBatch for OS/390™ is a major enhancement to and a re-
placement for BatchPipes®/MVS®. It maintains the single system
data piping capabilities of BatchPipes/MVS and provides the following
enhancements:

• BatchPipePlex™—a new component which extends the data piping
capabilities of BatchPipes/MVS to batch jobs operating in a Parallel
Sysplex environment. This support satisfies the statement of direc-
tion relative to Parallel Sysplex support that was made in Software
Announcement 295-400, dated September 26, 1995.

• BATCH ACCELERATOR**—a new component which trans-
parently splits batch jobs into units of work which can be exe-
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cuted in parallel on single system images and multiple system
images in a sysplex.

• DATA ACCELERATOR** Performance Component—a new com-
ponent which dynamically restructures I/O requests to improve
I/O efficiency for VSAM and non-VSAM access methods.

** Trademark or registered trademark of BMC Software.

SMP-E element of OS/390 (formerly a separate MVS product) used to
install and update software in the MVS environment. The availability of
SeverPac and other simplified install vehicles in OS/390 does not dimin-
ish the need for SMP/E specialists, but their workdays might get shorter.

SMS system-managed storage, the use of hardware and software in
MVS/ESA to automate the DASD management or storage manage-
ment functions usually found in an MVS installation. These functions
include space allocation, data set placement, backup, recovery, and ar-
chiving or migration of inactive data to less expensive media. SMS in
ESA also supports the use of performance considerations in determin-
ing data set placement, if only at initial allocation time. The elements
of OS/390 that implement SMS are called generically DFSMS, consist-
ing of DFSMSdfp (base functions), DFSMSdss (data mover),
DFSMSrmm (removable media manager), and DFSMShsm (archive
and backup). Some of these OS/390 elements are optional.

SNA Systems Network Architecture, the network architecture first
introduced by IBM in the mid-’70s. SNA is the overall architecture for
such elements as VTAM, APPN, SDLC, LU 6.2 and various other net-
working facilities in the IBM enterprise systems world. It is character-
ized by many as closed, proprietary, and difficult to maintain—but has
supported essential networking for IBM’s customers for over two de-
cades. The essential contrast between SNA and TCP/IP is that any
SNA node must “see” the whole network, out to the ultimate destina-
tion. There is no capability to move data point-to-point over numerous
alternate paths to the ultimate destination, as in TCP/IP. The idea of a
fully determinate network helps SNA to assure delivery and be resis-
tant to penetration. It also makes SNA lack flexibility to deal with
rapid growth or change.

SRM System Resources Manager. See Chapter 6 for an extensive dis-
cussion.

SRR serially reusable resource.

standard deviation see normal distribution

status switch[ing] transition from problem state to supervisor
state caused by an interrupt. Status switching is an expensive and dis-
ruptive operation because it interrupts the flow of instruction process-
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ing, causing the Translation Lookaside Buffer (TLB) and the CPU’s
High Speed Buffer to be purged either explicitly or implicitly as other
virtual storage (and hence central storage) areas are used. Changes in
MVS and the hardware it runs on, including the improved PROGRAM
CALL facilities in ESA/390 and use of the TEST PENDING INTERRUPT in-
struction, seek to minimize the need for status switching.

Storage Management Subsystem see DFSMS and SMS.

storage isolation a facility in compatibility mode that allows se-
lected address spaces to be protected from performance degradation
due to page stealing, or to single out address spaces for preferred page
stealing. Parameters in the IPS, applied at the performance group pe-
riod level, define minimum and maximum frame counts or an accept-
able page-in rate, or both. See topic A.6 in Appendix A for details and
discussion.

storage protection In Workload Manager goal mode, there is no
externally specified storage isolation. Instead, the working set behav-
ior of each address space is tracked, and address spaces running be-
hind goal and suffering page-in delay are provided with dynamically
adjusted storage protection. (The algorithms are more complex, but
this is the general idea.) Storage protection is loosely based on
Working Set Management as implemented in MVS/ESA SP 4.2, but
with the motivation being management of address space performance
to goal, rather than optimizing the use of central storage.

SUPERVISOR CALL or SVC the SUPERVISOR CALL instruction, used by a
program to request service from the operating system. A code imbed-
ded in the instruction designates the service to be performed; register
contents and data addressed through the registers give the details of
the request.

swap group in systems without expanded storage, the set of pages
that are both swapped out and swapped in. With expanded storage,
only the primary working set is swapped in from expanded, and the
term does not apply except for direct swaps to auxiliary storage.

swap trim form of page stealing done just prior to swap-out, reduc-
ing the frame count of the address space down to the swap group or
trimmed working set. Swap trim is aggressive by default; it can be
moderated (the swap group expanded) by specifying storage isolation
for performance periods (such as first-period TSO) to be protected from
page stealing.

synchronous delay delay to a workload that is caused by the activ-
ity of the workload itself. For instance, an address space that initiates
an I/O operation on a uniprocessor without entering a WAIT state will
inevitably be delayed by the back-end processing when the I/O request
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is completed. Even with a relatively inactive CPU, the address space
will be found in the “waiting for CPU” execution state for a portion of
its active time proportional to that kind of activity.
Another example is I/O delay caused when a transaction requires the
use of two randomly accessed data sets on the same device or two dis-
tinct areas of the same data set.

sysplex as of MVS/ESA SP 4.3, the first level of multi-system inte-
gration that preceded parallel sysplex. The major added facilities in
4.3 were XCF and the sysplex timer. With these two additions, true
merged console support was possible. A base sysplex (as distinguished
from a parallel sysplex) can have a single point of control for console
operations, with synchronized clocks on all participating MVS images
ensuring properly sequenced time stamps on all messages.
Since SP Version 5, with the coupling facility, sysplex could became
parallel sysplex, with data sharing, load sharing and balancing, cen-
tralized logging, and global control of workload performance. Parallel
sysplex, especially with “cloned” images equally able to receive any
work unit, has greatly enhanced manageability, serviceability, and reli-
ability. A parallel sysplex is intrinsically capable of running nonstop
for protracted periods of time; IBM is working to remove the last few
barriers in OS/390 to true continuous operation.

system-managed storage see DFSMS and SMS.

T
target working set in compatibility mode, the number of frames held
by an address space that will be protected from normal page stealing or
migration when storage isolation is specified in its current performance
period definition.

TCAS Terminal Control Address Space, an address space invoked
during the TSO LOGON process, used to create the address space that
will eventually become the TSO session.

TCP/IP a communications protocol (Transmission Control Proto-
col/Internet Protocol) developed under contract from the U.S. Depart-
ment of Defense to internetwork dissimilar systems. It is a de facto
UNIX standard, but is now supported on almost all platforms. TCP/IP
is the protocol of the Internet.
The TCP part of TCP/IP provides transport protocol functions which
ensure that the total number of bytes sent is received correctly at the
destination. The IP part of TCP/IP provides the routing mechanism.
TCP/IP is a routable protocol, which means that the messages trans-
mitted contain the address of a destination network as well as a desti-
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nation station. This allows TCP/IP messages to be sent to multiple net-
works within an organization or around the world, hence its use in the
worldwide Internet .

Terminal Monitor Program (TMP) the facilitating, service-pro-
viding environment that defines a TSO session. TSO was conceived as
a generalized interface in which the TMP could be replaced to meet
special needs, but in practice, the IBM-supplied TMP is used as is.

tetradic a processor complex configuration in which four processors
share storage and a channel subsystem.

text data which consists entirely of coded human-readable characters.
Usually, text data is organized as paragraphs of readable data, but source
code in a programming language is a special kind of structured text.

think time time during which a user of a terminal-based system is
either reading or interpreting the screen content, keying in data with-
out hitting the ENTER key, thinking about the screen and the session,
or doing something else entirely. In MVS, it is strictly defined for TSO
as the interval between two SYSEVENTs—Terminal Input Wait and
User Ready. The recent think time history of an address space is used
in the decision process for logical swapping and for swapping to ex-
panded storage.

token passing a multi-node control protocol that uses a special
message (the token) that is transmitted to the data link or network by
a computer. In one model, there is a single token, constantly circulat-
ing. The token can be held by a node while it places data onto the ring.
It thereby serves to serialize access to the aggregate resource defined
by the ring. Applications of this form of token passing (”passing the
buck”) within MVS include JES3 and the original form of GRS.
In token-ring networks, there are multiple tokens that carry messages
or message headers. Token-ring uses multiple tokens emitted by a con-
trolling computer. When a terminal or computer wants to send a mes-
sage, it waits for an empty token. When it finds one, it fills it with the
address of the destination station and some or all of its message. Every
computer and terminal on the network constantly monitors the pass-
ing tokens to determine if it is a recipient of a message, in which case it
“grabs” the message and resets the token status to empty. Token pass-
ing uses bus and ring topologies.

token-ring a LAN access method that uses the token passing tech-
nology in a physical ring. Each station in the network passes the token
on to the station next to it. Token Ring and FDDI LANs use the token
ring access method. See token passing.

TOR in CICS, Terminal-Owning Region.
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TPI TEST PENDING INTERRUPT, an instruction used in MVS/XA and
MVS/ESA to allow a processor (CPU) to “pick off” and process a pend-
ing I/O interrupt without leaving the I/O interrupt handler. Doing so
eliminates a subsequent interrupt and the corresponding disruption to
instruction processing caused by status switching. The extent to which
TPI is successful is used by the SRM to control the number of proces-
sors enabled for I/O interrupts.

transaction-oriented measurement system data co l l e c tor
which captures data reflecting the completion and history of each trans-
action in a given environment, for later analysis and reporting.

trimmed working set set of frames remaining as part of an ad-
dress space after swap trim.

TSO Time Sharing Option, the general-purpose interactive method of
accessing MVS functions. See chapter 5 for an extended discussion.

tuning performance management activity with the purpose of re-
moving known inefficiency or restoring inadequate service to an ac-
ceptable level. In the context of “buy, steal, tune, or accept,” to “tune” is
to change programs to be more efficient or to change installation
choices (such as block sizes) to improve the operation of one workload
without penalizing another.

U
UADS User Attribute Data Set, a data set containing identity and
control attributes for TSO users.

UCB Unit Control Block, data area in MVS describing the nature and
current state of an I/O device. There are as many UCBs as defined de-
vices. When a device is found busy in attempting to start an I/O opera-
tion, the queue of requests awaiting the device is associated with the
UCB.

UCBBSY bit in the UCB indicating, when set to “1,” that an I/O oper-
ation is currently active on the device.

UIC Unreferenced Interval Count, measure of activity in central
storage. The UIC for a frame is approximately the number of sec-
onds since it was referenced. Lower UICs are usually correlated
with higher contention for central storage frames, although it is pos-
sible for a workload with a large and stable working set to drive a
system’s UIC close to zero with little or no contention.

unattended operation see operator.

unblocked data set a data set in which the physical record or block
is the same size as the logical record. Unblocked data sets with small
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block sizes, especially when they are heavily used sequential or parti-
tioned data sets, usually represent a system-wide performance problem.

uncaptured time see capture ratio.

underinitiation see overinitiation.

Unit Control Block see UCB.

UNIX a multiuser, multitasking operating system originally developed
by AT&T. UNIX is written in C, also developed by AT&T, which can be
compiled into many different machine languages, causing UNIX to run in
a wider variety of hardware than any other operating system. For this
reason, UNIX has become synonymous with “open systems.”

V
V=R attribute of an address space whose virtual addresses are re-
quired to match its real addresses. Pages of such an address space can-
not be stolen, and the address space cannot be swapped. V=R was used
heavily in the infancy of MVS, when it was feared that the burden of
I/O address translation would cause incorrect operation of certain crit-
ical I/O devices, or that the dynamic address translation process was
not to be trusted. V=R has all but disappeared except for some special-
ized hardware diagnostic programs.

virtual=real see V=R.

Virtual Tape a tape subsystem that provides a storage hierarchy for
tape volumes. In the IBM implementation, announced for June 1997
delivery, active volumes are virtualized on a large internal RAID
DASD cache. Dismounted volumes are maintained in the cache as long
as space is available, making quick remounting of the virtual volume
possible. When the space is needed, the virtual volume is written to a
high-capacity tape volume in an autoloading array, with multiple vir-
tual volumes “stacked” on the real tape up to its full capacity. Inactive
virtual volumes are loaded to the DASD cache when they are mounted.
Virtual tape makes possible a dramatic reduction in tape inventory.

VLF Virtual Lookaside Facility; in MVS/ESA, used to store named
objects such as load modules or TSO CLISTs in data spaces, to save the
I/O associated with repeated use.

VM/ESA the current level of IBM’s virtual machine operating sys-
tem.

W
WAIT SVC to suspend the execution of instructions in an address
space until an expected event occurs. The usual mechanism is to define
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an Event Control Block (ECB), which is the object of the WAIT
macro-instruction. Some other process (for instance, another active
task in the address space) will later issue the POST macro with the
ECB as its object, to signify that the WAIT is completed. Most WAITs
are not invoked directly by a problem program but are the implicit con-
sequence of I/O or other service requests.

WAIT state state of a CPU when it has no work to do. The accumula-
tion of WAIT state time is the complement of CPU utilization. Time
spent in the WAIT state may not be visible in a logical partition if
event-driven scheduling is used.

workload-oriented point of view performance management ap-
proach based primarily on the measurement of service delivered by
the workloads of interest, with corrective action initiated when a ser-
vice target is missed. It is the underlying approach of Workload Man-
ager goal mode.

Workplace Shell the graphical user interface of OS/2 Release 3
(Warp).

World Wide Web An Internet service that links documents by pro-
viding hypertext links from server to server. It allows a user to jump
from document to related document no matter where it is stored on the
Internet. World Wide Web client programs, or Web browsers, such as
Microsoft Internet Explorer and NetScape Navigator, allow users to
browse “the Web.”
Developed at the European Center for Nuclear Research (CERN) in
Geneva, it was created to link research information between different
locations. WWW documents are structured with format codes and hy-
pertext links using the HyperText Markup Language, or HTML. A
home page is created for each server with links to other documents lo-
cally and throughout the Internet.
The Web has become a centerpiece of Internet activity, because its doc-
uments can contain both text and graphics, and it is quickly turning
the Internet into an online shopping mall.

work unit the unit of workload management. Work units are batch
jobs, TSO, CICS, DDF, IMS, APPC/MVS, or OpenEdition MVS transac-
tions, started tasks, DB2 stored procedures, or enclaves. This enumer-
ation is likely to continue growing.

X
XCF Cross-system Coupling Facility. XCF is the inter-system or
inter-image communication facility through which packets of informa-
tion relating to sysplex operation are exchanged. GRS and JES also
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use XCF as a communication medium. The acronym is sometimes ren-
dered as “cross-system communication facility.”
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cache control units 70, 257
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source of problem 201
undocumented 213
unexpected 213

change detection
limits 213

change management 242
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channel control word 67
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association with CPUs 45
cycle-stealing 45

channel-to-channel adapter 8-9, 43
charge-back 146
Chargeback

See Also Accounting
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CICS xii, 5, 30-31, 40, 50, 55, 82-83, 102,
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response time 189, 197
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CICSplex 50
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class 102
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classification group 166
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contention index 209, 311
See Also workload

contention,avoidance 261
contention-delay state 261
contiguous slot 111
contiguous slot allocation 249, 321
contiguous-slot allocation 12
continuous operation 53, 194
control mechanisms xiii
control performance group 307, 383
control program xvii
control register 205
control unit 66, 68-69, 218
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controlled variable 364
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SDC 370
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CPU queueing 258
CPU queuing delay 207
CPU SDC

default 370
CPU service

in goal mode 146
CPU service unit 367
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DASD farm 64
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DASD management policy 280
DASD modeling 216
DASD tuning
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DASDMON 257
DAT

See Also dynamic address translation
DAT box 3
data

logical organization 93
data collector 202, 204
Data Control Block 95
data entry time 189
Data Facility Product 14
Data Facility: Storage Management Subsys-

tem 105
Data in Virtual 15, 190
Data Language/I

See DL/I
data management 2, 94
data processing

relation to business 198
data set 8, 93

attribute 94
moving 63
partitioned 104

member 104
sequential 104

Data Set
Linear 16

data set control block
See DSCB

data set growth 256
data set organization 93
data space 16, 84-85, 246, 280

to enhance integrity 86
to enhance performance 85

data spaces 190
data streaming 8
data transfer rate 279
data windowing services 255
data-in-virtual 280
Data-in-Virtual 254
dataset

See data set
DB2 xvi, 30, 102, 116, 118, 280, 334
DCB 95

DCC 68, 222
DCE 195
DD statement

STEPLIB 126
debugging code 268
default parameters 268
defaults

dangers of 133
defragmentation 220
degradation analysis 108, 210
delay

caused by initiator settings 110
indirect indicators of 355
on-queue 110
operator intervention 108
tape mount 109

delay states 211
delayed 209
demand paging 4

response time 12
demand paging delay 325
demand paging rate 355
Denning, Peter 273
dependency scheduling

of batch 105
DEQ 97

See dequeue
dequeue 8
design

flawed 191
detected wait 141, 319
device 41

optical storage 64
device busy 215, 356
device contention 264
device controller 66, 217-218

contention at 217
device limits

for paging configuration 356
device order 69
device queueing 216
device response times 356
device rotation 224
device utilization 207, 216
DFHSM 117
DFP

See Data Facility Product
DFP/370 14
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DFSMS 29, 105, 117, 255-256
data placement decisions 256

direct access storage device
See DASD

directed VIO 367
directory 94
disabled for interrupts 206, 279
DISC 200
disconnect 68, 218
disconnect time 175
disconnected command chaining 68
Disconnected Command Chaining 222
discretionary 176
disincentives 190
disk

DASD 64
dispatch 41
dispatcher 41, 53, 205, 320

SP2.1.7 improvements 15
dispatching priority 3, 7, 64, 108, 118, 126,

139, 162, 179, 209, 306, 328-329, 331,
360, 365, 376
adjustment by SRM 331
fixed 329

dispatching queue 330
disruptive address spaces 359
distribution of service 207
DIV 262

and hiperspaces 255
See Data in Virtual

DL/I 116
DMN 376
domain 7, 137, 207, 209, 306, 317-318, 359,

369, 374, 376
assignment to 309
constraints 209, 309

domain 0 374
domain constraints

equal 309
donor 161
DOS/VS 3
DP 329, 332, 376
DP budget 199
DPRTY

JCL parameter 328
TSO LOGON option 328

DSCB 94-95
DSORG 93
DSRV 149, 311

dual processors 48
dumb terminal 195
duplex page data set 248
DUR 308, 376
DVIO 367
dyadic 31, 47
dynamic address translation 3, 44, 53

vs. V=R 54
dynamic allocation 95
dynamic caching 255
dynamic channel subsystem 217
dynamic path reconnect 68, 224
dynamic path selection 224
dynamic pathing 224

E
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ECC

See error-correcting code
econometric modeling 267
ECSA 326
effective path busy 224
effectiveness xii
efficiency xii

volume-dependent 269
elapsed time 187, 213, 262, 318
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enabled 31
encapsulated 272
End-user

See Also Customer
energy 27

cost of 28
engineering design 267
engineering embodiment 42
ENQ 97, 192

See enqueue
ENQ lockout 98, 310
enqueue 8

global 8
enqueue delay 210
ENQueue Exchange Swap-out 316
enqueue residence value 367
Enqueue Residence Value 307
ENQueue Swap-in 316
enterprise 103
Enterprise Server Offering 34
Enterprise System Connection 68
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See Also Extended Architecture
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EPILOG 250
EPLPA 84, 325
error recovery 40
error-correcting code 72
ERV 367, 371

See Enqueue Residence Value
ES/9000 18, 51
ESA 48, 84

See Enterprise Systems Architecture
ESA/390 18
ESCON 18, 52, 68
ESCRTABX 337
ESCTBDS 253, 338
ESCTVIO 253, 338
Ethernet 26
event-related data 206
exception

address-translation 77
exception analysis 203
exception message 262
exchange swap 316, 318, 367
exchange swapping 152, 318, 354
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EXEC 254
execution state 108, 200, 281

page-in delay 109
execution state data 205
execution states 250
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execution-state analysis 208, 210, 213
execution-state data 207, 210, 213, 261
execution-state monitor 211
execution-state profile 262
exit 107
expanded storage 5, 11, 58, 80, 136, 144,

180, 239, 245, 249, 252, 313-314,
320-321, 343, 356, 363, 365, 373, 385
and UIC 358
direct swap to 321
eligibility 307
in VM 59
needed by non-swappable work 246
needed by swappable work 246
overload 252
reclaim rate 356

selection criteria 337
storage isolation with 325

expanded storage constraint 322
expanded storage controls

defaults 338
expanded storage criteria 310
experiment 134
expert system 202
exponential distribution 216
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extended addressing 84
Extended Architecture 44, 47, 66, 224
extended storage
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extended swap 10-12, 111, 325
Extended Swap xix
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externalize 272
externals xi

F
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See storage isolation
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FIFO 372
file 93
file name 94
file system 2
first-come-first-served dispatching 331
fixed dispatching priority 330
fixed frames 367
fixed pages 54
fixed virtual storage 7
fixed-head device 220
floor space 258
flow of control 205
FORTRAN 276
FORTRAN H compiler 275
fragmentation 3
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real storage, in MVT 2

frame 77
frames

fixed 367
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See GRS
Global SRB 328
goal 161
goal mode 31, 37, 130, 132, 158, 190, 207

as IPL default 138
goal, velocity 175
Goals, Setting 172
granularity 51
GRS 9, 35, 50, 97, 116, 253
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GTF 205-206
GUIDE 244

H
happy values 364
hardware xii, 40

degraded performance 201
hardware compression 73
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hashing algorithm 275
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contention at 217
help desk xii, 29
high-speed buffer 60, 201
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hiperspace 16, 246, 262, 280
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direct access to expanded storage 59
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performance advantage 86
VSAM buffers in 246
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data windowing services 255

Hitachi Data Systems 78
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batch job 106
HOLD

JCL parameter 105
job class 105
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HSM 334
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hypervisor 49, 79

I
I/O

avoidance 254
CPU role 66
in MVS/ESA 62
physical resource 62
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limitations in System/370 46
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I/O architecture 66
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I/O contention 256, 261
I/O control unit 45
I/O delay 62, 209
I/O device

delay 210
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I/O performance degradation
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I/O queue 175
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execution state 109
I/O queueing delay 378
I/O resource 92
I/O subsystem 64
I/O Supervisor 66
I/O tuning 63, 176
I/O WAIT 42
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models 72
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IBM 9672 31, 49, 59
IBM 9674 31
IBM Series 1 23
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ICS 137, 375, 383
IDAW

See Indirect Data Address Word
IDMS 116
IEAIPS00 370, 372
IEAOPTxx 136, 336
IEASYS00 137
IEASYSxx 137, 367
Impact Analysis 212, 280
importance 161, 177
IMS xii, 5, 30, 50, 82, 102, 116, 210, 334

and Virtual Fetch 13
Control Region 121
Message Processing Region 121

IMS-DB 118
inactive page 80
incentives and disincentives 190
incident xii
independent software vendor 207
Indirect Data Address Word 57
influence 270
Initialization and Tuning 135, 338, 355, 359,

367, 383, 385
Initialization and Tuning. 251
initiator 104
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class assignment 104
drained 110
idle 104
one-class 104
open 104

initiator settings 111
modeling 113

initiators 212
number of 110

input/output
See I/O

installation xi, 317
Installation Control Specification 383

See ICS
Installation Performance Specification 369

See IPS
installation standards 268
in-target 314

integrated channels
See cycle-stealing channels

Intel 80386 23
Intel Pentium 23
interactive 5
internal contention 280
internal CPU contention 281
internal inefficiency 270
internal reader 103-104
internals xi
Internet 26
inter-processor communication 44
interrupt

page fault 77
interruption 41
IOC 371
IOP 378
IOQ 372

=PRTY 372
IOQ=PRTY 378
IOS 66
IOS queue 162
IOS queuing delay 207
IOSQ 175, 200
IOSRVC 370, 373

IPS parameter 144
IPL 45, 78, 212
IPS xvii, 137, 309, 326, 332, 369-370, 375

global definitions 370
required performance groups 375

ISDN 37
ISPF

and VLF 254
ISV 318

J
Java 36
JCL 94, 100, 270, 375

DD statement 94
JES 63, 96, 100, 102, 104

checkpoint data set 65
reader 104
SPOOL 65

JES2 15, 30, 43, 96, 102, 115, 334
CHKPT 236
job-dependent scheduling 105
multi-access SPOOL 43

JES3 15, 30, 43, 96, 102, 105, 115
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job-dependent scheduling 105
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name 100
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JOB card 100
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job control language 94, 100
See Also JCL

job entry subsystem 100, 102
Job Entry Subsystem 96
job initiation 102
job management 102
job name 375
job queue 102-103
job selection 102
JOB statement
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King, Gary 136, 244
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Landmark 207

The Monitor for MVS 117
large system 42
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late binding 2, 94
latency 221, 223
legend 2, 5, 45
legends 4
Legent 206
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See LLA
line

16-megabyte 84
linear data set 254
Linear Data Set 16
linear searching 275
LINK 126
linkage code 272
LINKLIST 125-126
LLA 116, 246, 253

LOAD 126
load balancing 53
load-balancing 111
local area network 24
local page data set 12, 109, 357
locality of reference 55, 274
LOCATE RECORD 221
lock 45, 97
log 205
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swap controls 362
logical control unit 217
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logical resources 40, 76
logical swap 11, 314, 323, 363

adjustment 365
controls 251
defaults 251
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evaluation 363
grace period 238

logical swap decision 363
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logical swap eligibility 238
logical swapping 56, 238, 260
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Logical Tuning Approach 160
logically partitioned 212
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LOOK 207
loosely coupled multiprocessing 43
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LSCTFET 363
LSCTFTT 363
LSCTMTE 363-364
LSCTUCT 363-364
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M/M/1 queueing model 216, 224
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default priority 376
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mainframe xix, 23, 37

decline of 23
maintenance
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mapping

of virtual resources to real 79
MASK
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Mass Storage Subsystem 78
mathematical model 198
maximum PWSS 381
maxMPL 309-310
MC 205
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MCCASMT1 251, 385
MCCASMT2 251, 385
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MCCMAXSW 349
MDF 49, 212, 246, 253, 360
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real storage with 246
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mean-time-to-wait 176, 329-330, 365
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measurement systems
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measurement techniques 205
measurement tool 200
measurement tools 202
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megabytes 246
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memory 44
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methodology 213
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workload-oriented 201

MF/1 207
MFT 3
microcode 6, 69, 93

path selection 218
Microsoft Windows 23
MICS 138, 204
migration 61, 239, 245, 252, 322
migration age 321, 338

critical 339
millisecond response time 255
Milliseconds Response

See MSR
minimum resource group 165
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minimum target working set 380
minMPL 309-310, 316, 374
MIPS 246
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See Management Information Systems
miscellaneous OPT controls 366
mismanaged workload 213
missed service target 201
mixed workload 11, 243
MLPF 49, 78
modeling 198, 214
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and capacity planning 214
of I/O 74
results 227
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modeling DASD I/O 214
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programs 272
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Monitor III 209-210
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See multiprocessor
MP box 44, 46
MP feature 46
MP65 44
MPL 108, 136, 179, 237, 260, 310, 317, 369,

374
adjustment 354
delay 175
See multiprogramming level
reduction 109
system-wide 316

MPL adjustment 238, 359
MPL adjustment parameters

default values 355
MPL control 316
MPL delay 108
MSO

Service Unit 144
MSR 87
MSS 78
MTTW 365

algorithm 365
See mean-time-to-wait

Multiple Domain Facility 78
multiple exposure 222
multiple extents 260
multiple requesting 222
multiple tasks 280
Multiprise 2000 34
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in MVT 2
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multiprocessor 42, 243
side 78

Multiprocessor 43
multiprogramming 2, 42

in MVT 2
multiprogramming level 136, 237, 314
multiprogramming set 360
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MVS xii

preconfigured offerings 236
release 14

under VM 368
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MVS System Extensions 6
MVS System Product 7
MVS/370 84, 224, 264
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MVS/SP 6
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MVS/SP 2.2.0 338
MVS/SP 3.1.0 338
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objectives 14
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Numerically Intensive Computing 352
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OMEGAMON II for MVS 108, 113, 117
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on-line applications 193
open system 25
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open-shop workload 267
operating system 3, 40
Operating System xi
Operating System/360 1
operations xii
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operator involvement

in batch management 105
OPT 185, 314, 316, 336-337, 369

MPL controls 260
OPT parameter 247, 322, 365-366

ESCTSWWS 321
OPT parameters

effect of 336
optical storage device 64
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for performance 270
organizational politics 130
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See Operating System/360
OS/2 24, 127
OS/360 28
OS/360 MP65 44
OS/360 MVT 44
OS/390 1, 24, 33, 35, 37
OS/390 Release 3 175, 200
OS/400 127
OS/VS1 3
oscillation 364
out and ready 141
out-and-ready 316, 318

out-target 314
out-time 141
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over-initiation 111
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overlapped processing 279
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P/390 236
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page 77
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page data set 5, 11, 65, 80

local 109
size considerations 248

page data sets
number of 249

page fault 5, 217, 312, 325, 380
page fault interrupt 356
page fault rate 136, 251, 355-356, 358
page faults
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page fixing 54

for I/O 54
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page movement 252

in MVS/370 57
in MVS/XA and MVS/ESA 58

page movement rate 239, 358
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237-238, 260, 312-313, 344, 363, 369,
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See Also swapping

Page stealing 62
page stealing described 344
pageable link pack area 95, 253
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page-in delay 109, 355
page-in rate 357, 373
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delay 175
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paging delay 4, 108, 136, 207, 245, 358
paging devices 356
paging problems 237
paging response time 5, 109
paging subsystem 80, 247, 280
paging-rate control

of storage isolation 379
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Generation 3 33
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parallel sysplex 31, 35, 37, 49-50, 61, 192
Parallel sysplex 51
Parallel Sysplex

elements of 51
Need 50
Offering 49

Parallel Transaction Server 31, 49
parallel-coupled 31
parameters xii, 42

system 104
PARMLIB

See SYS1.PARMLIB
partitioned data set 104
Partitioned Data SetÄExtended 255
Partitioned Data Sets-Extended

See PDSE
partitioning 48
partitioning, physical 46
partitioning, role in migration 48
path 66
path busy 215, 356
path contention 257
path delay 217
path selection

microcode 218
path service time 218
path utilization 216, 224
path-busy 218
PC-DOS 79
PCJr 24
PDSE 87, 255
PEND 175, 200, 217

pending 217
pending push-out queue 363
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PERFORM 375
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measurement 240
problems 187, 189, 191, 193, 195
reporting 240
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performance degradation 214, 223

acute 214
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359, 369, 375, 383
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performance group period 326
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approaches 198
complete methodology 213
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methodology 213
proactive 240
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Performance Management 199
Resource-oriented 199

performance monitor 121, 200, 203, 365
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performance monitoring 178
performance period 307-308, 375

DUR 308
parameters 376

performance problem
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performance problems
types of 188

Performance Problems
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247, 249, 251, 253, 255, 257, 259, 261,
263, 265
Solving 236-237, 239, 241, 243, 245, 247,
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265
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PGN 375
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physical resources 40
physical sequential 93
physical swap 321
physical swap-out 314
physical swapping 10, 111
PL/1 276
PLPA 84, 95, 125, 253, 260, 325, 372
PLPA page data set 248
politics,organizational 130
portable application 268
positioning 10
POST 118
PPGRT 326, 379, 382
PPGRTR 326, 379, 382
PPT

See Program Properties Table
PR/SM 17, 49, 78, 212, 246, 253

real storage with 246
prediction 197, 199, 201, 203, 205, 207, 209,

211, 213, 215, 217, 219, 221, 223, 225,
227, 229, 231, 233, 235

preemptive dispatching 3
preferred

for page stealing 326
preferred page stealing 251, 380
prefix register 44-45
prefixing 44, 46
primary working set 320, 322
Principles of Operation 42
printer 63
priority

selection 102
priority queueing 3
PRIORITY statement 110
private area 8, 77, 80-81

See Also system area
privileged address space 337, 371, 374
privileged dispatching priority 370
Processor 40
processor address 44
processor complex 31, 43
processor delay 209
Processor Resource/Systems Manager

See PR/SM

processor storage 64, 80, 139
Processor Storage Estimation 136
processor storage swap 321, 323, 363
processor use 209
production xii
production applications 267
production batch 103
production control 103
production job class 107
productivity

and response time 123
PROGRAM CALL 117
program check 205
program fetch 125, 253
program object 76

indirect reference 76
translation 76

Program Properties Table 309, 371
Program Status Word 41
programmers

amateur 268
promotion 268, 272
proprietary 25
protected frame count 373
protocol 218

overlapped 218
unoverlapped 218

Protocol 218
protocol time 218
prototype 268
PRTY 372
PS/2 24
PSW 44

See Program Status Word
PTS 32
punched card 72, 102
pushout 313
PVLDP 371
PWSS 326, 379-380

for TSO 381
maximum 381

Q
QMF 124
QSAM 93
quality of service 240
Query Management Facility 124
queued I/O

delay state 62
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queued I/O delay 211
queued sequential access method

See QSAM
queueing

channels 10
queueing delay 192, 216
queueing model 216
Quickstart service policy 182
quiesce 319

R
R/390 236
RACF 117-118, 242
RAID 25, 32, 194
raised floor 28
RAMAC 32, 35
RAMAC 3 35
RAMAC II 32
randomly accessed data 279
RCCCPUT 359-360

adjustment 361
basic recommendation 360
maximum value 359

RCCFXET 362
RCCFXTT 361
RCCPTRT 238, 247-248, 356

adjustment 358
default value 356
lower limit 357
upper limit 357

RCCUICT 358
real address 44
real frame replacement

See page stealing
real storage 4-5, 7, 43, 53, 246, 273, 312

adequate 360
constraint 11, 53, 109
contention 109
in MVS/ESA 57
in MVS/XA 57
management 54

real storage configuration 244
real storage constraint 56, 81, 108, 365

and 3033MP 56
consequence of using PR/SM or MDF 60
in MVS/ESA 60

real storage management 237
default 237

Real Storage Manager 53, 59, 77, 345
Real Storage Shortage Swap 324

real-time 209
real-time alert 299
real-time monitor 203
real-time monitors 203
reasonableness check 191
reclaim 356
recommendation value 108
recommendations 356
reconfigurability 46
reconnect 68, 219, 223, 226

dynamic path 68
reenterability 41
reenterable 13

and other terms 13
reference

to a page 77
reference bit 53
region 3
register 42
release

with START I/O 66
Remote Copy 194
Remote Procedure Call 195
renaming

in MVS 76
replication 263
report class 164, 207
report performance group 383
Request Swap 323
re-reference 279
RESERVE 8, 192

demotion 9
RESET

operator command 359, 375
residency 307
resident-time 141
residual path busy 223
Resolve Plus 207
resource

logical 87
resource accounting 146
resource constraint 136
resource contention 190, 192, 260
resource data 197
resource exhaustion 213, 258
resource group 146, 163-165
resource measurement 206
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Resource Measurement Facility
See RMF

resource name
in ENQ 97

resource shortage 201, 208
resource usage

accounting 199
tracking 199

resource-oriented point of view 199
resources xi, 40
resources in contention 212
response time 189, 213, 215, 239, 262

anomalies 239
at terminal 64
vs. RMF transaction completion time 140

Response Time Goals 172
response time target 261, 280
return

from service routine 77
REXX 254
RM1 140, 314
RM2 140, 237, 314, 363
RMF 6, 117, 205-206, 210

Monitor II 250
Monitor III 117, 209-211
Version 5 176
Workload Activity Report 176

RMFGAT 209
RMFWDM 209
RMPTTOM 368
ROSCOE 102
rotation 221
Rotational Position Sensing

See RPS
RPB 223
RPC

See Remote Procedure Call
RPS 223

introduction 223
justification 223

RPS miss 220, 223-225
RSM 279, 345
RTO 378
rule of thumb 200
RV 108

S
SAA 27, 127
SALLOC lock 97
sampling 200, 205, 210

SAS 204
save area 77
scalability 51
scale-up problem 191
scheduled batch 103
scheduling 190, 263

of workloads 193
scheduling preferences 190
scheduling rules 190
scientific applications 267
SCP 6
SDC 370

See service definition coefficient>
SDCs

See service definition coefficients
SEARCH 222, 225
secondary allocation 212
secondary storage 64

upgrade 65
secondary working set 320, 322
second-level interrupt handler 205
sector 221
SEEK 201, 221
segment 81, 85, 320
segment boundary 81
segment table 85
selectable unit

See SU
selection priority 102, 110
self-contention 280
sequential data set 93, 104
sequential data sets 278
sequential delay 221
serially reusable resource 97
server 118
server address space 180
ServerPac 236
service

and service units 142
denying by swapping 359

service agreement 164
service analysis 214

real-time 214
service class 161, 164-165, 207
Service Definition 163
service definition coefficient 146
service definition coefficients 163, 370

in SMF 146
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Service Definition Coefficients 370
service exception 213
service expectations 136, 189

for batch 106
service goal 188
service goals 208
service level agreement 64, 386
Service Level Agreement 130
service level agreements 161
Service Level Reporter 204
service level target 136
service measurement 202
service policy 161
Service Policy 163
service rate 147-148, 163, 318
Service Request Block

SRB 83
service routine 77
service target 189-190, 194, 201-202

attainment 189
missed 201

service targets xii, 138, 241, 258
de facto 241

service time 189, 215
path 218

service unit 142
services 40
SET PREFIX 44
SET SECTOR 221
Setting Goals 172
SHARE 244
shared buffering 264
shared DASD 8, 43, 192, 216, 253, 310

considerations 253
coupling 253

shared DASD contention 193, 217
shared DASD delay 217

See Also with GRS
shared libraries

contention due to 244
shared pages 80, 190
shared real storage 43
shoulder tap 44
side 48
SIGNAL PROCESSOR 44
SIGP 44
single image 46
SIO 66
slot 80

SLR 138, 204
SmartBatch 36, 188, 190
SMB

See speed matching buffer
SMF 146, 204
SMF exit

IEFUSI 86
SMP-E 29
SMS 29, 86, 105, 117
SNA 24, 26, 127
Software Configuration 212
software engineering 8
solid-state device 11, 220, 225, 249, 280
sorting algorithms 191
source/sink device 63
SP 4.1 19
SP 4.2.2 21
SP1 7
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