
© Xephon Inc 2004

July 2004

141

In this issue

3 Sampling table data
8 Stored procedures versus CICS

transactions
17 Renaming a DB2 subsystem for

datasharing – part 2
30 DB2 object manager
51 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 2000 issue, are available separately
to subscribers for $33.75 (£22.50) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Sampling table data

This article looks at a new function available in DB2 UDB V8
FP2, which allows you to obtain sampling data from a table.
Before this function became available, you had to select the
entire contents of the table and then write a program to perform
any sampling that you wanted. This new function makes it a lot
easier! There are two types of sampling available – row-level
and block-level. In basic terms, row-level sampling means that
every x rows are sampled, whereas block-level sampling means
that every y pages are sampled. Which method is best?
Hopefully, that will become clear as you read on.

So, let’s look at the mechanics. To allow you to sample data
from a table, there is a new parameter associated with the
SELECT command called tablesample. It is this parameter that
indicates whether you will be performing row-level or block-
level sampling. The help pages for tablesample say: ‘The
BERNOULLI keyword specifies that row-level Bernoulli
sampling is performed. The SYSTEM keyword specifies that
block-level Bernoulli sampling is performed unless the
optimizer determines that it is more efficient to perform row-
level Bernoulli sampling instead. Performance of block-level
sampling is excellent because only one I/O is required for
each selected page.’

Let’s look at each of these in turn.

I ran all the SQL in this article on a Windows 2000 machine
running DB2 UDB 8.1 FP2.

For my example table I used a four-million row table
(approximately) called EMP (based on the EMPLOYEE table in
the SAMPLE database copied into itself 16 times, giving
4,194,304 rows). There are no indexes defined on the table. I
have only the default buffer pool of 250 x 4KB pages defined.

Say I want to sum all the bonus payments in this EMP table for
all employees in the D11 department. My traditional query would
look like:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

>db2 select sum(bonus) from EMP where workdept = 'D11'

This would obviously have to look at every row in the table
(because we don’t have an index on the table). If I want to see
the sum based on a sampling of, say, 10% of all employees in
the D11 department, I would issue the query (this is a row-level
sampling example):

>db2 select sum(bonus) from EMP tablesample bernoulli (1Ø) repeatable

(5) where workdept = 'D11'

Where the (10) is the percentage of rows that you want to
sample and the (5) is a repeatable (seed) value.

The meaning of the percentage value is fairly obvious, but what
is the repeatable value? This value gives you the ability to rerun
a query several times and get the same result. Also, changing
the repeatable value changes the result set, so you should
experiment with this value to see which gives you the closest
value to the actual result. This is shown later on.

What happens if you try to specify a percentage value of 0? You
will receive this error message: ‘SQL20242N The sample size
specified in the TABLESAMPLE clause is not valid’.

In the discussion below, I mention certain execution time
values. What is important is not the absolute execution time
value, but the relationship between one time and another. While
your absolute times might vary, the ratios should be in a similar
proportion to the ones I show.

If I do a straight select sum(bonus) from EMP where workdept
= 'D11' command, the sum value returned is 576,716,800.00
and the SQL execution time is 26 s. If I connect to the database
once and then issue five select commands one after the other,
the individual execution times are all about 26 s.

In Figure 1 below, I disconnected/reconnected to the database
between every run, and executed:

>db2 select sum(bonus) from EMP tablesample bernoulli (x) repeatable (5)

where workdept = 'D11'

where x is the Bernoulli value in the table in Figure 1.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Bernoulli value (x) sum value returned SQL execution time
0.01 62,000.00 25s
0.1 572,200.00 25s
1 5,752,400.00 23s

10 57,673,400.00 23s

50 288,444,200.00 23s

Figure 1: SQL execution time for different Bernoulli values

Bernoulli Sum value Sum value Sum difference
value returned multiplied up (%) from execution time

 full value (no index) (with index)
0.01 62,000 620,000,000 +7.5 25s 4s
0.1 572,200 572,200,000 -0.8 25s 6s
1.0 5,752,400 575,240,000 -0.3 25s 13s

10.0 57,673,400 576,734,000 +0.03 23s 27s
50.0 288,444,200 576,888,400 +0.02 23s 30s

Figure 2: SQL execution time with an index

You can see that the SQL execution time does not effectively
change irrespective of the percentage value specified. This is
because I didn’t have an index defined on the table. The help
pages state: ‘If there is no index then there are no I/O savings
over executing a query without sampling’. If I didn’t disconnect/
reconnect after every run, the SQL execution times obtained
would still all be about the same.

So let’s create an index on the EMP table called INDX1 based
on the WORKDEPT column using the command below and run
runstats for the table:

>db2 CREATE INDEX DB2ADMIN.INDX1 ON DB2ADMIN.EMP (WORKDEPT ASC) PCTFREE

1Ø MINPCTUSED 1Ø

And let’s rerun our selects – the values are shown in Figure 2.

Remember that the full select gave a sum value of 576,716,800.
First let’s look at the accuracy of the sum value returned for the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

different sampling levels. As the sampling percentage value
increases so does the accuracy of the sum returned. This can
be seen by comparing the Sum value multiplied up column
value with the actual value of 576,716,800. The trade-off is the
execution time. You can see that there is a large reduction in
execution time for a sampling value of 0.01 compared with that
for, say, 10 and upwards. If you are interested in just an
estimate, then the sampling value of 0.1 seems perfectly
adequate, whereas if you need a precise value, then obviously
you have to perform the full select. If you don’t need an exact
answer, then in this scenario a sampling value of 0.1 seems to
give the best trade-off between execution time and result set
accuracy.

We shall quickly look at the repeatable parameter. Let’s run our
query with differing values for the repeatable parameter. The
results are shown below:

>db2 select sum(bonus) from EMP tablesample bernoulli (1) repeatable (y)

where workdept = 'D11'

Repeatable value (y) Rows returned.

5 5,752,4ØØ

1Ø 5,736,3ØØ

15 5,789,1ØØ

2Ø 5,788,3ØØ

25 5,68Ø,8ØØ

The time taken to run the query for each repeatable value was
roughly the same, but, as you can see, the number of rows
returned differs for each different repeatable read value. The
number of rows returned from a full select is 576,716,800, so
you can see that the best value for the repeatable parameter is
around the 5 mark. I also repeated the run for the same
repeatable value five times, and each time the same number of
rows was returned – this highlights the ‘repeatable’ ability of the
query. As always, you need to perhaps run with more repeatable
values to determine the best value for your data and query.
What I hoped to show here was that changing the repeatable
value does make a difference to the sum value returned.

So now let’s look at block-level sampling and see how that

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

System Sum value Sum value Sum difference
value returned multiplied up (%) from execution time

 full value (with index)
0.01 61,600 616,000,000 +7 0.3s
0.1 568,800 568,800,000 -1.4 0.7s
1.0 5,810,100 581,010,000 +0.7 5s

10.0 57,144,500 571,445,000 -0.9 24s
100.0 576,716,800 576,716,800 0.0 30s

Figure 3: Select sum(bonus) query resulst

works. The format of the command for block-level sampling is:

>db2 select sum(bonus) from EMP tablesample system(1Ø) where workdept =

'D11'

where system() is a keyword, and 10 is the percentage of
pages to sample.

You can’t use a percentage value greater than 100 because a
value of 100 means sample 100% of all pages (ie sample every
page), which effectively is the same as not using the sampling
facility.

I reran the select sum(bonus) query specifying different system
percentage values and, as before, disconnecting/reconnecting
to the database between runs. The results are shown in Figure
3.

You can see that the execution times of block-level sampling
are lower than those for row-level sampling, but the results are
generally less accurate. Also, if you didn’t have an index on the
workdept column, then the execution times wouldn’t be much
different from those shown.

So which method is best? The help pages indicate that this
decision is dependent on your data and the distribution of
values within your data. I would therefore recommend (which
should come as no surprise) that you try each method and see
which one fits your data best. I used only a relatively small table

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

Stored procedures versus CICS transactions

This article examines the differences and similarities between the
two most commonly used methods to process data on the mainframe
side if requests are coming from smaller platforms, which today is
usually from Internet or intranet applications. Those methods are
stored procedures and CICS transactions.

At the first glance, the main difference between these two methods
is the nature of the data they can use in their code – stored
procedures use DB2 tables and CICS transactions normally use
VSAM datasets (but can use DB2 tables too). One could say that
since CICS transactions can use more than one source for their
data, it is better to use them – however, we will see that it is not
as simple as it looks. Below we will look at some topics and find
out how both of these methods behave.

HOW IS IT DEFINED?

This is the point where everything begins. How easily and quickly
you can have your code deployed, and how much other team
members must participate in the whole process depends on how
things are defined.

A stored procedure is a compiled program, stored at a DB2 local
or remote server, that can execute SQL statements. A typical
stored procedure contains two or more SQL statements and some
manipulative or logical processing in a host language.

with a simple query, but if your table size is orders of magnitude
bigger and you run the query a significant number of times in a
day, then the potential execution time savings could be great.
This is yet another useful tool in the DBA armoury.

C Leonard
Freelance Consultant (UK) © Xephon 2004

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

A stored procedure must be defined in DB2 by using a CREATE
PROCEDURE SQL DDL (Data Definition Language) statement.
This statement includes a description of the input and output
parameters, the type of SQL processing on the DB2 tables, the
number of result sets (which will be explained later), the execution
environment, etc.

To be able to work with stored procedures we need to have a
Package List (Collection) defined, where our programs would be
bound, because stored procedures cannot run from plans.

Certain DB2 actions must be taken before we can even start to
code our stored procedure:

• BIND ADD Authority must be given to you.

• Package List (Collection) must be created.

• CREATE, BIND, and EXECUTE authority must be given to
you on that package.

• EXECUTE authority must be given to you on that stored
procedure.

• If your stored procedure will be executed by WLM (Work
Load Manager), you need to ask your DBA to create one
and to give you authority to use it.

To avoid doing all these authorizations for each user, it is a good
idea to define a DB2 group and then just add new users to the
existing group.

Usually stored procedures are used to decrease the network
traffic between a client and server by setting all the business logic
in one module and, therefore, all the SQL statements that deal with
DB2 tables. Typically stored procedures do not have too many
SQL statements and are used to retrieve some subset of records
for a client for further processing. However, with newer versions
of DB2 (7 and 8) more robust stored procedures can be written.

A CICS transaction is a unit of application data processing
(consisting of one or more application programs) initiated by a

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

single request. A transaction may require the initiation of one or
more tasks for its execution.

CICS transactions, and programs that perform that transaction,
must be defined in a CICS System Definition (CSD) file by using
the CEDA transaction. In addition, you might need to use the
CEMT transaction to set some of the options for the transaction
or programs. Also, you need to define your VSAM datasets to
CICS in the same way. As for DB2, we also have to deal with some
authorizations (to run the transaction and program). Again defining
a group of users will help a lot.

We can see that both methods ask for additional work to define
them and therefore additional knowledge. A DBA or CICS system
programmer can do some of this work, but it is good to understand
what is going on behind the scenes.

HOW IS IT INVOKED?

This is really a question about how easy it is to work with these two
methods. Which one to use is only important to you and the client-
side programmers, who will actually use them.

Stored procedures are invoked using standard SQL CALL
statements. By giving the name of a stored procedure (together
with the schema name – like SYSPROC, or one that is application
specific) and the list of parameters, we will execute the stored
procedure program back on mainframe. As a result of that call, we
can have either output parameter values, an opened result set
(one or many) on some cursor(s), or both.

Prior to using the CALL statement we need to be connected to
DB2, so we need to use the SQL CONNECT statement. To make
it possible we need to have a tool, like DB2 Connect. In addition,
the programming language we use must have a library of database
functions we can use to browse (fetch) opened result sets. For
Java there is the JDBC library, for Visual Basic there is the ADO
library, etc.

CICS transactions, on the other hand, can use several techniques,

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

including EHLLAPI, APPC, or TCP/IP (just to mention those I’ve
used so far). All of them ask for additional knowledge to that
needed for the client or server programming language.

EHLLAPI also needs to have an ‘open’ channel to a host emulator
program (like IBM PC Communications, EXTRA, Rumba, etc).
APPC needs a special connection established between the client
and server. TCP/IP wants to have established ports on both sides
– client and server. On the CICS side, there must be a listener (a
special CICS program waiting for incoming calls), and on the client
side there must be Windows sockets (if Windows OS is in use).

It is not that simple to establish a connection between client code
and code on our mainframe, but it looks much easier for stored
procedures than for CICS transactions. EHLLAPI is a very easy
way to make a connection, but it is also the one that is the most
vulnerable.

WHAT IS THE OUTPUT STRUCTURE AND HOW CAN WE USE
IT?

Here we will look at the structure of the output we can get by using
these two methods.

Stored procedures can have both records and/or simple variables
for their output. In the case of variables, the only restriction is that
they must be described as valid DB2 types, while records are
actual data from DB2 tables (more than one if that was the
request). Records are organized in result sets and there can be
more than one (with a maximum of 32,767 result sets). And while
variables are used as any other variable from any other procedure
call, records are processed using database functions specific to
the client environment (JDBC, ODBC library). Usually you will
need to use additional SQL statements like ASSOCIATE LOCATOR
and ALLOCATE CURSOR, as well as some kind of FETCH
statement (usually NEXT). You will know when you reach the end
of a result set by catching -100 for SQLCODE (or having NEXT
return FALSE).

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

CICS transactions are not as good as stored procedures in
creating output structure. The result from a CICS transaction is
usually a long string, with a structure that is already known on the
client side. The process of reading and using that structure is
known as screen scraping. This process is usually slow and limited
by the size of the output structure, so it can take several calls to
get all the data that the client requires.

This is another example where stored procedures are a better
choice to use.

WHERE ELSE CAN IT BE USED?

If you can use the same code in several environments, you will get
better design and less maintenance per unit of code.

Stored procedures can be used on the mainframe side with no
changes at all. Therefore, if your application needs data from DB2
tables you can use stored procedures in the same way as a client
application on a PC. As already said, code in a stored procedure
is a compiled program, so you can use it not only as a stored
procedure but also as a common module in your applications (in
which case you would use a standard CALL statement from the
host language). In addition, you can use stored procedures in
CICS programs.

CICS transactions can also be used on the mainframe side. You
can use them in CICS to process some data, but you need to
be careful that all data sent to a screen is suppressed. A good
example of using such transactions is an application with
distributed data, where you need a tool to access data remotely
(APPC or TCP/IP only). You can use such a CICS transaction
in some batch processing too, by using the CICS EXCI facility.

From what I’ve said here, it is obvious that stored procedures are
much more useful. They can be used in many address spaces
(DB2, batch, CICS, on remote mainframes, and client/server
environments) with almost no changes to your code.

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

WHAT CAN BE A SOURCE OF DATA?

It is very important to know what data sources you can use once
you decide on the method you will use in your application. The
more data sources the better because you are perhaps in a
position to inherit data from current designs and it can be expensive
to remodel everything.

Stored procedures can use only data in DB2 tables. We cannot
use datasets in stored procedures. However, there are two
exceptions.

The first one is when we use code from a stored procedure as an
external module. If we want to do that, it is good to have an input
parameter that will tell the stored procedure code what the mode
of the call is (batch/CICS when the code is called by a non-SQL
CALL statement, or a pure stored procedure when the code is
called using an SQL CALL statement).

The other one is where we can actually print data (like messages)
into a standard output dataset. We can see these messages in
WLM’s SYSPRINT dataset.

CICS transactions do not have such a problem, but still there are
some restrictions. All datasets we use in CICS transactions must
be VSAM datasets, so we cannot use ordinary sequential ones
except ESDS VSAM datasets. CICS transactions can read DB2
tables with no restrictions.

As we can see, both methods have some restrictions. CICS
transactions have more freedom than stored procedures because,
if we need to have basic stored procedures, we need to make
additional effort in transferring datasets into DB2 tables.

IS THERE ADDITIONAL PROGRAMMING TO LEARN?

When you come to the point of deciding what new technique or tool
you will start to use, you need to know much time is needed to
acquire new skills and knowledge – or maybe you already have
sufficient experience.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

Stored procedures are very easy to code. There are no additional
commands, statements or APIs to learn. All you need to know is the
host language (COBOL, PL/I, etc) and SQL for DB2.

CICS transactions demand additional knowledge besides the host
language and SQL (if you have data in DB2 tables). You need to
learn CICS API, a set of statements that will establish a connection
between the host language and CICS. As for SQL, the good thing
is that there are no differences between the API for COBOL and
the API for PL/I.

If you want results as soon as possible, it will be much quicker
if you choose stored procedures.

HOW DOES IT MANAGE WITH LARGE AMOUNTS OF DATA IN
THE RESULT SET?

The result set(s) is a set of records that fulfil the requested
conditions for the current call. The number of records can be from
zero to several thousand (eg a list of phone calls for some period
of time for some company) so this can be a very important issue.

Stored procedures deal with DB2 tables and the way it gives the
result set is to have a cursor opened and then let the calling
program fetch and process the requested records. Therefore,
since the number of records is not known at the beginning, cursor
opening can be a time-consuming process if conditions are not set
properly. Another way to make the process faster is to limit the
number of records returned in the result set by using the option
FETCH FIRST n ROWS ONLY. Be aware that this feature is
available only in DB2 Versions 7 and 8.

CICS transactions on the other hand can read both DB2 tables and
VSAM datasets, but there are problems if the result set is too big.
It is better if we have data in VSAM datasets than in DB2 since we
can control the number of records processed. If you use EHLLAPI
or TCP/IP you are limited by the size of the screen (EHLLAPI) or
package size (TCP/IP), so you need to have developed a technique
for getting more than one screen or package on the client side.

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

For both methods there is a solution for large result sets. The
solution is to write records from the result set into a data pool, and
then read only a portion of that pool at a time. The difference is in
what we will use for that pool of data. With a stored procedure, we
can use DB2 tables that we will read in consecutive calls. With
CICS transactions, temporary storage datasets (or other VSAM
datasets) are used. With both methods, there is additional
processing of this data pool once you create the result set. You
need to delete it, or save it if you expect the same query to be made
in the near future – in which case you need to develop a technique
to retrieve previously-created result sets instead of creating a
new one. Anyway, some kind of housekeeping process (deleting
or keeping these records in the data pool) must be done.

While stored procedures can deal with big result sets by using
new features in DB2 Version 7 (Version 7 has scrollable
cursors that can be very helpful for this purpose), CICS
transactions can only write to and read from only a data pool.
In addition, while DB2 is working for us by returning only those
records we want, with CICS transactions we need to check
conditions for each record in VSAM datasets. As we can see,
more reasons to use stored procedures.

An additional benefit with stored procedures is that they can return
more than one result set (up to 32,767 in DB2 Version 7).

IS THERE ANY WAY TO BACK-OUT CHANGES?

By back-out, we mean the ability to undo any changes your
program can make to data in either DB2 or a VSAM dataset.

Stored procedures can easily back out changes with almost no
effort. By using the SQL ROLLBACK statement, any changes
made during the DB2 unit of work (from the last SQL COMMIT
statement) will be undone. Moreover, ROLLBACK statements
can be issued both from inside and outside of stored procedures.
But be aware that this will roll back the whole unit of work,
including any changes in the calling program too. With DB2
Version 7 you can also COMMIT inside a stored procedure,

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

which was not possible in previous versions, so more care
must be taken. In addition, when you define your stored
procedure, you can set an option for DB2 to make COMMIT ON
RETURN from the stored procedure to the calling program (this
is not possible if the calling program is an IMS transaction).

CICS transactions can roll back any changes, but only from inside
the transaction and only for changes made on data in DB2 tables.
You must use the CICS SYNCPOINT statement (with or without
the ROLLBACK option), not SQL COMMIT or SQL ROLLBACK. If
we have our data in VSAM datasets there is no way to undo
changes just made by the use of a known statement or command.
If we want to roll back changes, once we finish the transaction, we
cannot do it because the transaction does not know what was
done in its previous run. Keeping some kind of log of all the actions
and then reversing them can replace the rollback function. However,
for that purpose we need another transaction.

It is obvious that stored procedures are much better. Having the
opportunity to undo changes is a very important thing, especially
in client/server applications.

CONCLUSION

Considering all of the above, we can say that if you have a new
project and your team has significant knowledge of DB2, it is much
better to use stored procedures as your gateway to the outer
world. However, if your data is already in VSAM datasets, it is
worth reconsidering all the time, cost and effort involved in moving
that data to DB2 tables – so you could continue to use CICS
transactions. The benefits of using stored procedures are obvious
– it’s up to you to decide.

Predrag Jovanovic
Project Developer
Pinkerton Computer Consultants (USA) © Xephon 2004

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Renaming a DB2 subsystem for datasharing –
part 2

This month we conclude our detailed look at renaming a DB2
subsystem for datasharing.

MORE ALTERS

Although the statements we’re going to generate are undoing the
statements we’ve just created, they are somewhat more
complicated. In changing the objects so that they do not use
storage groups, we lost some information. For a user-defined
object (one which doesn’t use a storage group) primary quantity
and secondary quantity are irrelevant, because DB2 doesn’t
define the datasets. When we change the objects to be DB2-
defined (by adding a storage group) we need to specify the primary
and secondary quantity because DB2 needs the information for
reorgs, loads, etc.

The ALTER statement needed for tablespaces is:

ALTER TABLESPACE dbname.tsname PART part USING STOGROUP storagegroup

 PRIQTY primaryquantity SECQTY secondaryquantity

For indexes, the statement is:

ALTER INDEX creator.indexname PART part USING STOGROUP storagegroup

 PRIQTY primaryquantity SECQTY secondaryquantity

All the information is in SYSTABLEPART and SYSINDEXPART
respectively. We need to be a bit careful with the secondary
quantity. In DB2 Version 6, the old SMALLINT secondary quantity,
SECQTY, was superseded by the integer field SECQTYI, but the
latter field was not filled in by the Version 6 CATMAINT, and is
therefore zero until an ALTER is done. We can get the correct
secondary quantity using a CASE statement:

CASE WHEN SECQTYI = Ø

 THEN SQTY

ELSE

 SECQTYI

END

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

The other thing to remember is that the primary and secondary
quantities are held in the DB2 catalog as numbers of 4KB blocks,
whereas our ALTER statements need to specify the amounts in
KB.

There is a problem here which is obvious from looking at the ALTER
statements above – they’re just too long to fit on a line – they need
to go over two lines. DSNTIAUL can unload only rows, ie single
lines not split lines. What we’ll do is generate each statement as
a single line and worry about splitting it later.

Using the approach adopted earlier, here is the SQL to generate
the ALTER statements for the tablespaces:

SELECT CHAR(

 'ALTER TABLESPACE ' ||

 STRIP(DBNAME)||'.'||STRIP(TSNAME) ||

 CASE WHEN PARTITION = Ø

 THEN ' '

 ELSE

 ' PART ' || STRIP(CHAR(PARTITION))

 END ||

 ' USING STOGROUP ' || STRIP(STORNAME)||

 ' PRIQTY ' || STRIP(CHAR(PQTY * 4))||

 ' SECQTY ' ||

 STRIP(CHAR(

 CASE WHEN SECQTYI = Ø

 THEN SQTY

 ELSE

 SECQTYI

 END * 4

)) ||

 ';'

 ,12Ø)

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

 ORDER BY DBNAME,TSNAME,PARTITION

 WITH UR

;

If you edit the file this creates, you can see the problems with the
lengths of the lines.

EDIT SMITHAC.TSP.UNLOAD Columns ØØØØ1 ØØØ72

Command ===> Scroll ===> CSR

****** ************************** Top of Data **************************

ØØØØØ1 ALTER TABLESPACE DABRATE.SABRATE USING STOGROUP DB2PØ1 PRIQTY

12912 SEC

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

ØØØØØ2 ALTER TABLESPACE DABRATE.SABWARM USING STOGROUP SMS PRIQTY 1ØØ

SECQTY 2

ØØØØØ3 ALTER TABLESPACE DADMSDCH.SADCRGPD USING STOGROUP DB2P28 PRIQTY

24 SECQ

ØØØØØ4 ALTER TABLESPACE DADMSDCH.SADIFCON USING STOGROUP DB2P28 PRIQTY

32 SECQ

ØØØØØ5 ALTER TABLESPACE DADMSDCH.SADPJREG USING STOGROUP SG1ADL PRIQTY

134Ø SE

ØØØØØ6 ALTER TABLESPACE DADMSDCH.SADSYSUB USING STOGROUP DB2P28 PRIQTY

4ØØ SEC

ØØØØØ7 ALTER TABLESPACE DAIACCNT.SACCNTOT USING STOGROUP DB2P16 PRIQTY

18ØØ SE

I’d already written a general purpose edit macro, which gets round
this problem. The macro is a REXX called FOLDS. FOLDS takes
one or two parameters: the first is a number specifying what
column to split on – FOLDS splits the line starting at the rightmost
space before the target column; if the second parameter is present
(it can be set to any value), any blank lines which result from a split
are suppressed.

Before executing FOLDS, you need to get rid of the single trailing
X'00 at the end of each line – enter:

C P'.' ' ' ALL

which gets rid of unprintable characters.

Entering FOLDS 72 y while editing the dataset has this result:

EDIT SMITHAC.TSP.UNLOAD Columns ØØØØ1 ØØØ72

Command ===> Scroll ===> CSR

****** ************************** Top of Data **************************

ØØØØØ1 ALTER TABLESPACE DABRATE.SABRATE USING STOGROUP DB2PØ1 PRIQTY

12912

ØØØØØ2 SECQTY 1292;

ØØØØØ3 ALTER TABLESPACE DABRATE.SABWARM USING STOGROUP SMS PRIQTY 1ØØ

SECQTY

ØØØØØ4 2Ø;

ØØØØØ5 ALTER TABLESPACE DADMSDCH.SADCRGPD USING STOGROUP DB2P28 PRIQTY

24

ØØØØØ6 SECQTY 4;

ØØØØØ7 ALTER TABLESPACE DADMSDCH.SADIFCON USING STOGROUP DB2P28 PRIQTY

32

ØØØØØ8 SECQTY 4;

ØØØØØ9 ALTER TABLESPACE DADMSDCH.SADPJREG USING STOGROUP SG1ADL PRIQTY

134Ø

ØØØØ1Ø SECQTY 136;

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

ØØØØ11 ALTER TABLESPACE DADMSDCH.SADSYSUB USING STOGROUP DB2P28 PRIQTY

4ØØ

ØØØØ12 SECQTY 1ØØ;

ØØØØ13 ALTER TABLESPACE DAIACCNT.SACCNTOT USING STOGROUP DB2P16 PRIQTY

18ØØ

ØØØØ14 SECQTY 389Ø4;

This is the code for FOLDS:

/**/

/* REXX */

/* Edit Macro to split a line at nearest space below parm */

/* Alan Smith Sep 2ØØ3 */

/**/

ADDRESS ISPEXEC

"ISREDIT MACRO (PARM)"

suppressSpace = Ø

if parm = "" then

 parmind = 72

else

 do

 parse var parm parmind supp

 if supp ¬= '' then

 suppressSpace = 1

 end

halfparm = parmind / 2

lno = 1

"ISREDIT (LASTNUM) = LINENUM .ZLAST"

do while lno <= lastnum

 "ISREDIT (lStat) = XSTATUS (lno)"

 if lStat = "NX" then

 do

 ind = parmind

 "ISREDIT (theLine) = LINE (lno)"

 do while substr(theLine,ind,1) ¬= ' ' & ind > halfparm

 ind = ind -1

 end

 ind = ind - 1

 theLine2 = right(theLine,length(theLine)-ind)

 theLine = left(theLine,ind)

 "ISREDIT LINE (lno) = (theLine)"

 if (theLine2 = ' ' & suppressSpace) then

 nop

 else

 do

 "ISREDIT LINE_AFTER (lno) = (theLine2)"

 lno = lno + 1

 end

 end

 lno = lno + 1

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 "ISREDIT (LASTNUM) = LINENUM .ZLAST"

end

exit

The SQL to generate the ALTERs for indexes looks like this:

SELECT CHAR(

 'ALTER INDEX ' ||

 STRIP(IXCREATOR)||'.'||STRIP(IXNAME) ||

 CASE WHEN PARTITION = Ø

 THEN ' '

 ELSE

 ' PART ' || STRIP(CHAR(PARTITION))

 END ||

 ' USING STOGROUP ' || STRIP(STORNAME)||

 ' PRIQTY ' || STRIP(CHAR(PQTY * 4))||

 ' SECQTY ' ||

 STRIP(CHAR(

 CASE WHEN SECQTYI = Ø

 THEN SQTY

 ELSE

 SECQTYI

 END * 4

)) ||

 ';'

 ,12Ø)

 FROM SYSIBM.SYSINDEXPART

 WHERE STORTYPE = 'I'

 ORDER BY IXCREATOR,IXNAME,PARTITION

 WITH UR

;

This is some of the output after FOLDS has been applied:

ALTER INDEX NUAI.XAIITADJØ3 USING STOGROUP DB2P16 PRIQTY 5616 SECQTY

 564;

ALTER INDEX NUAM.XAMACA1 PART 1 USING STOGROUP DB2P1Ø PRIQTY 456ØØ

 SECQTY 456Ø;

ALTER INDEX NUAM.XAMACA1 PART 2 USING STOGROUP DB2PØ1 PRIQTY 456ØØ

 SECQTY 456Ø;

We’ve created four lots of ALTER statements. They must be
copied into datasets with a RECFM of FB and LRECL of 80, so
that we can run them later.

STOPS AND STARTS

The ALTERs we’ve generated can be performed only when the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

tablespaces and indexspaces are stopped. Rather than generate
-STOP and -START commands for each object, it’s easiest to use
wildcards with the database names:

-STOP DB(databasename) SPACE(*)

Create two jobs, one with -STOP commands for all databases
except DSNDB01, DSNDB06, and DSNDB07, and one with –
START commands for the same databases.

STOGROUPS

In between the two lots of ALTER statements, the STOGROUPs
have to be dropped and recreated with their new VCAT.

The statements for each STOGROUP will look something like this:

DROP STOGROUP stogroupname;

COMMIT;

CREATE STOGROUP stogroupname VOLUMES(vol1,…) VCAT DBBG;

How you approach this depends on the number and complexity of
your STOGROUPS. If you use only one STOGROUP, and therefore
rely on SMS to sort out all DASD allocation, creating the statements
is trivial.

A common approach is to let SMS do nearly everything, but have
a few STOGROUPs defined to take care of objects needing to be
individually assigned to named disks for the sake of performance.
The disks are defined as guaranteed space, which means that if
they are referenced in a STOGROUP, those disks are used and no
substitution takes place.

If the only volume used by a STOGROUP is ‘*’, ie it lets SMS do
the allocation, or if each STOGROUP references only one volume,
then the techniques we have already seen can be used to
generate the statements from SYSSTOGROUP and
SYSVOLUMES. Otherwise you need to do at least some of it
manually.

JOBS RUN ON THE NIGHT

The jobs we’ve looked at so far can be generated in advance and

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

then run unchanged on the night. The remaining jobs can be
prepared in advance but have some aspects that need to be
changed on the night.

BSDS UPDATES

The BSDS needs to be informed of the new VCAT for the DB2
catalog and directory, and the old log names removed and the new
ones added. All this is done with DB2 down.

The first step is to check that DB2 came down cleanly and there
are no outstanding units of recovery (URs). Run a DSNJU004 job
to print off the contents of the BSDS:

//SMAPBSDS EXEC PGM=DSNJUØØ4

//STEPLIB DD DSN=SYS2.DB2P.SDSNLOAD,DISP=SHR

//SYSUT1 DD DSN=DB2P.BSDSØ1,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

In the output find the CHECKPOINT QUEUE:

 CHECKPOINT QUEUE

 18:57:59 JANUARY Ø2, 2ØØ4

 TIME OF CHECKPOINT 18:57:13 JANUARY Ø2, 2ØØ4

 BEGIN CHECKPOINT RBA ØC11FBCE8CD3

 END CHECKPOINT RBA ØC11FBDØCDA2

 TIME OF CHECKPOINT 18:42:13 JANUARY Ø2, 2ØØ4

 BEGIN CHECKPOINT RBA ØC11F66ØA191

 END CHECKPOINT RBA ØC11F663AB53

 TIME OF CHECKPOINT 18:27:13 JANUARY Ø2, 2ØØ4

 BEGIN CHECKPOINT RBA ØC11F2CE697Ø

 END CHECKPOINT RBA ØC11F2DØ6764

 TIME OF CHECKPOINT 18:14:42 JANUARY Ø2, 2ØØ4

Make a note of the BEGIN CHECKPOINT RBA for the most recent
checkpoint (best to copy this to the clipboard to save any
transcription errors).

Then run a DSN1LOGP job:

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=SYS2.DB2P.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=X

//SYSABEND DD DUMMY

//BSDS DD DSN=DB2P.BSDSØ1,DISP=SHR

//SYSSUMRY DD SYSOUT=X

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

//SYSIN DD *

 RBASTART(ØC11FBCE8CD3)

 SUMMARY(ONLY)

The RBASTART parameter is the RBA from the BSDS print. In the
output from the job, look for the RESTART SUMMARY. This should
say:

DSN1156I ALL URS COMPLETE

DSN1159I NO DATABASE WRITES PENDING

This means it’s safe to proceed. If you don’t get these messages,
you need to start up the subsystem again and shut it down cleanly.

The other information we need to get from the BSDS print is details
from the active logs. The things to note are the start and end RBA
for each log. The other item of interest is the status. For most it is
REUSABLE, which means the log has been archived. The current
active log pair will have a status of NOTREUSABLE, as will any
other log pairs that have not been archived.

We’re going to rename the logs, so the BSDS has to be updated
with the new names. To change the active log names in the BSDS,
the old log entries have to be deleted and new ones added. The
statements look like this for each log:

 DELETE DSNAME=DB2P.LOGCOPY1.DS14

 NEWLOG DSNAME=DBBG.DBB1.LOGCOPY1.DS14,COPY1,

 STARTRBA=ØC1DC6DØ4ØØØ,ENDRBA=ØC1DE99E3FFF

The DELETE statement is pretty simple. The NEWLOG statement
is more complicated, involving the use of RBAs. You can build
these statements by hand from the BSDS print, but it takes time
and is prone to error. Because of this I wrote a REXX program,
RENLOGS, to produce the statements from the BSDS:

/* REXX program */

"EXECIO 1 DISKR inf"

more_recs = queued()

parse pull line

call process_active

call process_active

return

process_active:

active_string = substr(line,2,1Ø)

do while more_recs > Ø & active_string ¬= "ACTIVE LOG"

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 "EXECIO 1 DISKR inf"

 more_recs = queued()

 parse pull line

 active_string = substr(line,2,1Ø)

end

if more_recs = Ø then

 return 12

copy_no = substr(line,18,1)

"EXECIO 2 DISKR inf (skip"

"EXECIO 1 DISKR inf"

more_recs = queued()

parse pull line

eos = substr(line,2,1)

do while more_recs > Ø & eos ¬= "A"

 startrba = substr(line,5,12)

 endrba = substr(line,28,12)

 dsn = substr(line,67,44)

 dsn = strip(dsn,trailing)

 "EXECIO 1 DISKR inf"

 parse pull line

 status = substr(line,7Ø,11)

 push "DELETE DSNAME="||dsn

 "EXECIO 1 DISKW out"

 push "NEWLOG DSNAME="||dsn||",COPY"||copy_no||","

 "EXECIO 1 DISKW out"

 push " STARTRBA="||startrba||",ENDRBA="||endrba

 "EXECIO 1 DISKW out"

 "EXECIO 1 DISKR inf"

 more_recs = queued()

 parse pull line

 eos = substr(line,2,1)

end

return

This version works with the DSNJU004 output from DB2 V7. The
layout changed by a character from V6, so you need to check that
the REXX works for your version.

RENLOGS produces statements like this:

 DELETE DSNAME=DB2P.LOGCOPY1.DS14

 NEWLOG DSNAME=DB2P.LOGCOPY1.DS14,COPY1,

 STARTRBA=ØC1DC6DØ4ØØØ,ENDRBA=ØC1DE99E3FFF

so you need to change the NEWLOG DSNAME using edit
commands.

In addition to the DELETE and NEWLOG statements, you need a

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

NEWCAT statement to store the VCAT for the catalog and directory
in the BSDS.

NEWCAT VSAMCAT=DGPG

The final job to prepare is the one to process the DSNDB07
tablespaces. The job just needs to run SQL like this:

 DROP TABLESPACE DSNDBØ7.DSN4KØ1;

 DROP TABLESPACE DSNDBØ7.DSN4KØ2;

 .

 .

 COMMIT;

 SET CURRENT SQLID = 'NUDBHSYS';

 CREATE TABLESPACE DSN4KØ1 IN DSNDBØ7

 BUFFERPOOL BP1

 CLOSE NO

 USING VCAT DGPG;

 CREATE TABLESPACE DSN4KØ2 IN DSNDBØ7

 BUFFERPOOL BP1

 CLOSE NO

 USING VCAT DGPG;

 .

 .

Under V6 you need to stop DSNDB06. You may be able to do
without the stop under V7.

A CHECKLIST

Here’s a checklist that goes through the whole process.

Preparation:

• Copy TID – copy TIDDB2P to TIDDBB1.

• Change all ‘DB2P’ to ‘DBB1’.

• Run install CLIST – ensure values are correct on the following
screens:

– DSNTIPA1 – input member name

– DSNTIPA2 – catalog alias – DBBG

– DSNTIPH – HLQs – DBBG.DBB1

– DSNTIPO – parameter module – DSNZPBB1.

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Checks:

– check correct entries in SYS1.PARMLIB(IEFSSN*).

– Catalog Alias DBBG exists in the correct catalog.

– STC userid, STCs in STARTED class.

– RACF profile for DBBG exists and STC userid has ALTER
access.

– SMS rules for tablespaces, indexes, logs, BSDSes,
archive logs.

– VTAM, TCP/IP definitions.

– Unix System Services definitions.

– WLM definitions.

• Libraries – create any required load libraries, etc.

• Generate tablespace/index jobs – generate stop/start
tablespace/index job.

• Generate rename tablespace job.

• Generate rename index job.

• Generate rename logs job.

• Generate rename BSDSes job.

• Generate alter tablespace (no STOGROUP) job.

• Generate alter index (no STOGROUP) job.

• Generate alter tablespace (STOGROUP) job.

• Generate alter index (STOGROUP) job.

• Create other jobs:

– Create job to drop/recreate STOGROUPs

– Create DSN1LOGP job

– Create DSNJU004 job

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

– Create DSNJU003 job

– Create job to drop recreate DSNDB07 TSes

– Create new STC procs.

Implementation:

• Maint mode – stop DB2 and restart in maint mode.

• Back-up – image copy the catalog and directory and quiesce.

• Issue an -ARCHIVE LOG.

• Stop objects – run job to stop tablespaces and indexes.

• Alter objects – run jobs to alter tablespaces and indexes to not
use STOGROUPs.

• Change STOGROUPs – run job to drop and recreate
STOGROUPs with new VCAT.

• Stop DSNDB07.

• Stop DB2.

• Back-up – DSS dump BSDS and NOTREUSABLE active log.

• Print BSDS R – run job DSNJU004.

• Run DSN1LOGP R – run with RBASTART set to RBA from
previous step.

• Check no URs outstanding.

• Rename datasets – run jobs to:

– rename tablespace/index datasets.

– rename logs.

– rename BSDSes.

• ZPARM – run DSNTIJUZ to create new zparm.

• Update BSDS – run RENLOGS REXX with output from Print
BSDS step.

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Add NEWCAT line.

• Run DSNJU003 job to update BSDS.

• Start subsystem with new name –start in maint mode.

• Sort works – run job to drop/recreate DSNDB07 tablespaces.

• Alter objects – run jobs to ALTER tablespaces and indexes to
use STOGROUPs.

• Start objects – run jobs to start tablespaces and indexes.

• Restart normally – stop subsystem and restart normally.

PROGRAMS, JCL, ETC

Although rather out of the scope of this article, let’s consider briefly
what changes need to be made by other areas – the systems and
application areas which use DB2.

If only the underlying dataset names are changing – the high-level
qualifiers for the VSAM datasets used by tablespaces, indexspaces,
logs, and the BSDS – hardly anything will need to change. No user
programs or other subsystems such as CICS should be looking
directly at them. You may, however, have a small number of jobs
that do LISTCs against the datasets or run BSDS prints, etc.

If the subsystem name is changing, a whole lot will have to change:
CICS and IMS will need to connect to the ‘new’ subsystem;
program and utility JCL will need to use the new subsystem name.
Programs using DDF are affected – where CONNECTS are used,
programs will need to CONNECT to a different subsystem; three-
part ALIASes will need to be changed to point to the new
subsystem; plans which are bound to include in their PKLIST
entries such as subsys.collid.packagename will need to be
rebound. Programs may look at CURRENT SERVER, and then
make a choice depending on the value.

If the subsystem name is not changed, but the subsystem is moved
to datasharing, CICS, IMS, and JCL do not need to change,
because the subsystem still exists. However, when a program

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

does a CONNECT, it will now connect to the group location name,
and CURRENT SERVER now returns the name of the group
(CURRENT MEMBER returns the subsystem name).

SUMMARY

This article has described a process for renaming a DB2 subsystem.
Although there are a large number of steps to go through, with
sufficient preparation, the implementation can be performed in a
couple of hours during the night. Automatic generation of job
statements via SQL and REXX are key to the preparation.

Hopefully, I don’t need to say this, but you should try renaming a
test subsystem before you do a production one.

BIBLIOGRAPHY

IBM manuals:

DB2 Universal Database for OS/390 and z/OS Data Sharing:
Planning and Administration SC26-9935-02 – Chapter 3: Installing
and enabling DB2 data sharing; Renaming the DB2 member.

DB2 Universal Database for OS/390 and z/OS Administration
Guide SC26-9931-02 – Chapter 7: Altering your database design;
Changing the high-level qualifier for DB2 data sets.

Alan Smith
Norwich Union (UK) © Xephon 2004

DB2 object manager

With DB2 systems getting larger and more complex, and skilled
DBAs becoming increasingly rare and expensive, it’s important
to have a monitor program to identify objects that need
maintenance. Performing unnecessary maintenance for objects

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

makes inefficient use of DBA time and wastes the batch window
time. DB2 Version 7 provides the Real Time Statistics function
as well as a stored procedure (DSNACCOR) to give
recommendations for objects needing maintenance. This COBOL
program will utilize DSNACCOR. Having a self-managed DB2 is
the goal.

PROCEDURE DESCRIPTION

This tool provides five types (extent, image copy, reorg, restrict,
and runstats) of recommendation list, based on the user input
criteria. A main program processes input parameters query
type, scope, and criteria, then it invokes one of the subprograms,
which will in turn call DSNACCOR, retrieve the result set, and
format the output. Formulas for recommending action, criteria
parameter meaning, and default values can be found in the DB2
manual. The following examples will demonstrate how it works:

1 List the names of all DB2 tablespaces and indexes if their
underlying VSAM dataset is over 100 extents. Sort the
output in descending sequence so the objects that have the
most extents will be listed first.

EXTENT DBNAME % TYPE ALL EXTLIMIT 1ØØ

2 List any objects currently in restricted status.

RESTRICT DBNAME % TYPE ALL

3 List all tablespaces under a database starting with TDB if
any of the following conditions since the last reorg are true:

– ratio of the sum of update, insert, and delete, to the total
number of rows >30%.

– ratio of unclustered inserts to the total number of rows
>20%.

– ratio of imperfectly chunked LOBs to total number of
rows >10% (default).

– mass delete >0 (default).

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

– ratio of overflow records to the total number of rows
>20%.

– VSAM extents >100.

REORG DBNAME TDB% TYPE TS REORGCRI 3Ø,2Ø,,,2Ø,1ØØ

CHECKLIST FOR INSTALLATION

• Change DB2LOC to your DB2 location name.

• Change SSID to your DB2 subsystem name.

• Compile, linkedit, and bind five subprograms as a package
first, then the main program (objmaint) as a plan to include
all the package lists.

• Use the attached JCL to run reports;1 more information can
be found in the JCL.

The test environment is DB2 Version 7 for z/OS 1.3, Enjoy!

OBJMAINT PROGRAM
 IDENTIFICATION DIVISION.

 PROGRAM-ID. OBJMAINT.

 AUTHOR. LIJUN GAO;

 DATE-WRITTEN. Ø8/Ø8/Ø3.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-37Ø.

 OBJECT-COMPUTER. IBM-37Ø.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT MYFILE ASSIGN TO S-PARMIN

 FILE STATUS IS MASTER-CHECK-KEY

 ORGANIZATION IS SEQUENTIAL

 ACCESS MODE IS SEQUENTIAL.

/**

 DATA DIVISION.

 FILE SECTION.

 FD MYFILE

 RECORDING MODE IS F

 LABEL RECORDS ARE STANDARD

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 BLOCK CONTAINS Ø RECORDS

 DATA RECORD IS CONTROL-PARM-REC.

 Ø1 CONTROL-PARM-REC PIC X(8Ø).

/***

 WORKING-STORAGE SECTION.

 Ø1 SRC-PARM-INPUT PIC X(8Ø).

 Ø1 MASTER-CHECK-KEY PIC X(2).

 Ø1 W1ØØ-MYFILE-EOF PIC X(Ø1) VALUE 'N'.

 88 MYFILE-EOF VALUE 'Y'.

 Ø1 PARM-INPUT-REC.

 Ø5 LINEA.

 Ø7 PARM-TYPE PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-DBNAME PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-DBNAME-VALUE PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-QUERY PIC X(4).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-QUERY-TYPE PIC X(3).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø5 LINEB.

 Ø7 PARM-CRI PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-CRI-VAL1 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-CRI-VAL2 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-CRI-VAL3 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-CRI-VAL4 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-CRI-VAL5 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 PARM-CRI-VAL6 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 77 PGM-NAME PICTURE X(8).

 Ø1 CHAR-COUNT PIC 9(3) USAGE BINARY.

 Ø1 CTR-1 PIC S9(3).

 PROCEDURE DIVISION.

 ØØØØ-MAIN-LOGIC.

 PERFORM 1ØØØ-INITIALIZATION THRU 1ØØØ-EXIT.

 PERFORM 2ØØØ-READ-INPUT THRU 2ØØØ-EXIT

 UNTIL MYFILE-EOF.

 STOP RUN.

 1ØØØ-INITIALIZATION.

 OPEN INPUT MYFILE.

 IF MASTER-CHECK-KEY NOT = "ØØ"

 DISPLAY "NONZERO FILE STATUS " MASTER-CHECK-KEY.

 MOVE SPACES TO CONTROL-PARM-REC.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

 MOVE SPACES TO PARM-INPUT-REC.

 MOVE Ø TO CHAR-COUNT.

 1ØØØ-EXIT.

 EXIT.

 2ØØØ-READ-INPUT.

 **

 * PROCESS INPUT PARAMETERS

 **

 READ MYFILE

 AT END

 MOVE 'Y' TO W1ØØ-MYFILE-EOF

 CLOSE MYFILE

 GO TO 2ØØØ-EXIT

 END-READ

 INSPECT CONTROL-PARM-REC

 TALLYING CHAR-COUNT FOR LEADING SPACE.

 MOVE CONTROL-PARM-REC (CHAR-COUNT + 1:) TO SRC-PARM-INPUT.

 UNSTRING SRC-PARM-INPUT

 DELIMITED BY ALL SPACES OR "," OR X"ØØ"

 INTO PARM-TYPE COUNT IN CTR-1

 PARM-DBNAME

 PARM-DBNAME-VALUE

 PARM-QUERY

 PARM-QUERY-TYPE

 PARM-CRI

 PARM-CRI-VAL1

 PARM-CRI-VAL2

 PARM-CRI-VAL3

 PARM-CRI-VAL4

 PARM-CRI-VAL5

 PARM-CRI-VAL6

 PERFORM 21ØØ-PROCESS-PARMS THRU 21ØØ-EXIT.

 2ØØØ-EXIT.

 EXIT.

 21ØØ-PROCESS-PARMS.

 DISPLAY ' ***** R T S O B J E C T '

 ' M A N A G E R F O R D B 2 V1R1.ØØ *****'.

 DISPLAY ' COPYRIGHT (C) 2ØØ2 - 2ØØ3'

 ' Author: Lijun Gao. ALL RIGHTS RESERVED. '.

 DISPLAY ' '.

 EVALUATE PARM-TYPE

 WHEN "EXTENT"

 MOVE 'EXTIND' TO PGM-NAME

 CALL PGM-NAME USING PARM-INPUT-REC

 WHEN "REORG"

 MOVE 'REORGIND' TO PGM-NAME

 CALL PGM-NAME USING PARM-INPUT-REC

 WHEN "COPY"

 MOVE 'COPYIND' TO PGM-NAME

 CALL PGM-NAME USING PARM-INPUT-REC

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 WHEN "RUNSTATS"

 MOVE 'RUNSTIND' TO PGM-NAME

 CALL PGM-NAME USING PARM-INPUT-REC

 WHEN "RESTRICT"

 MOVE 'RESTRIND' TO PGM-NAME

 CALL PGM-NAME USING PARM-INPUT-REC

 WHEN OTHER

 DISPLAY ".DSNGØ12E Invalid query type " PARM-TYPE

 END-EVALUATE.

 21ØØ-EXIT.

 EXIT.

EXTIND PROGRAM

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EXTIND.

 AUTHOR. LIJUN GAO;

 DATE-WRITTEN. Ø8/Ø8/Ø3.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-37Ø.

 OBJECT-COMPUTER. IBM-37Ø.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 DATA DIVISION.

 FILE SECTION.

/***

 WORKING-STORAGE SECTION.

 * DISPLAY FIELDS FOR USER INPUT CRITERIA

 Ø1 SAVE-TOTALEXTENTS PIC 9(Ø4) VALUE ZEROES.

 Ø1 EXTENT-DIS-VAL1 PIC ZZZ9.

 * OUTPUT TITLE FOR OBJECTS EXCEED EXTENT LIMITS

 Ø1 LIST-EXTENT-NAMES.

 Ø2 FILLER PIC X(12) VALUE 'DBNAME'.

 Ø2 FILLER PIC X(12) VALUE 'NAME'.

 Ø2 FILLER PIC X(12) VALUE 'TYPE'.

 Ø2 FILLER PIC X(12) VALUE 'EXTENTS'.

 Ø2 FILLER PIC X(12) VALUE 'PART'.

 Ø2 FILLER PIC X(12) VALUE 'ASSOC-TS'.

 * OUTPUT LIST FOR OBJECTS EXCEED EXTENT LIMITS

 Ø1 LIST-EXTENT.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

 Ø2 LIST-EXTENT-DEF OCCURS 12ØØØ TIMES.

 Ø8 EX-DBNAME PIC X(8).

 Ø8 FILLER PIC X(4).

 Ø8 EX-NAME PIC X(8) VALUE SPACES.

 Ø8 FILLER PIC X(4).

 Ø8 EX-OBJECTTYPE PIC X(2).

 Ø8 FILLER PIC X(1Ø).

 Ø8 EX-TOTALEXTENTS PIC 9(4) VALUE ZEROES.

 Ø8 FILLER PIC X(8).

 Ø8 EX-PARTITION PIC 9(3).

 Ø8 EX-PAR-II REDEFINES EX-PARTITION PIC X(3).

 Ø8 FILLER PIC X(9).

 Ø8 EX-ASSOCIATEDTS PIC X(8).

 Ø8 FILLER PIC X(12).

 * COPY ALL RELATED WORKING STORAGE DEFINITION

 COPY WRKINPT.

 * DB2 AREA *

 EXEC SQL

 INCLUDE SQLCA

 END-EXEC.

 EXEC SQL

 INCLUDE WSACCOR

 END-EXEC.

 LINKAGE SECTION.

 Ø1 EXTENT-REC.

 Ø5 LINEA.

 Ø7 EXTENT-TYPE PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-DBNAME PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-DBNAME-VALUE PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-OBJECT PIC X(4).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-OBJECT-TYPE PIC X(3) VALUE 'ALL'.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø5 LINEB.

 Ø7 EXTENT-CRI PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-CRI-VAL1 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-CRI-VAL2 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-CRI-VAL3 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-CRI-VAL4 PIC 9(4) VALUE ZERO.

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-CRI-VAL5 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 EXTENT-CRI-VAL6 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 PROCEDURE DIVISION USING EXTENT-REC.

 ØØØØ-MAIN-LOGIC.

 PERFORM 1ØØØ-INIT THRU 1ØØØ-EXIT.

 PERFORM 21ØØ-PROCESS-PARMS THRU 21ØØ-EXIT.

 PERFORM 22ØØ-PROCESS-PARMS THRU 22ØØ-EXIT.

 PERFORM 3ØØØ-CONNECT-TO-SERVER THRU 3ØØØ-EXIT.

 IF OKAY THEN

 PERFORM 4ØØØ-CALL-DSNACCOR THRU 4ØØØ-EXIT

 PERFORM 5ØØØ-OUTPUT-RESULT THRU 5ØØØ-EXIT

 ELSE

 DISPLAY 'CONNECT NOT SUCCESSFUL'

 MOVE 8 TO RETURN-CODE.

 EXEC SQL

 CONNECT RESET

 END-EXEC.

 EXIT PROGRAM.

 1ØØØ-INIT.

 MOVE 'GOOD' TO RUN-STATUS.

 ACCEPT REFMOD-TIME-ITEM FROM TIME.

 ACCEPT YYYYMMDD FROM DATE.

 DISPLAY ".DSNGØØ1I Job execution starting at "

 YYYYMMDD (5:2)

 "/"

 YYYYMMDD (7:2)

 "/2"

 YYYYMMDD (2:3)

 " "

 REFMOD-TIME-ITEM (1:2)

 ":"

 REFMOD-TIME-ITEM (3:2)

 ":"

 REFMOD-TIME-ITEM (5:2)

 " ..."

 DISPLAY '.DSNGØØ2I MVS=SP7.Ø.3,PID=HBB77Ø6,DFSMS=1.3.Ø'

 ',DB2=7.1.Ø'.

 DISPLAY '.DSNGØ18I Connected to Subsystem ' DB2-LOC-NAME.

 1ØØØ-EXIT.

 EXIT.

 21ØØ-PROCESS-PARMS.

 EVALUATE EXTENT-OBJECT

 WHEN "TYPE"

 MOVE EXTENT-OBJECT-TYPE TO OBJECTTYPE-DTA

 MOVE 3 TO OBJECTTYPE-LN

 WHEN OTHER

 DISPLAY ".DSNGØ13E Invalid keyword " EXTENT-OBJECT BJECT

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

 STOP RUN

 END-EVALUATE

 EVALUATE EXTENT-CRI

 WHEN "EXTLIMIT"

 MOVE 'EXTENTS' TO QUERYTYPE-DTA

 MOVE 8 TO QUERYTYPE-LN

 MOVE EXTENT-CRI-VAL1 TO EXTENTLIMIT

 WHEN OTHER

 DISPLAY ".DSNGØ13E Invalid keyword " EXTENT-CRI

 STOP RUN

 END-EVALUATE

 MOVE EXTENT-DBNAME-VALUE TO CRI-VALUE.

 STRING

 CRI-NAME SPACE CRI-POINT

 DELIMITED BY SIZE

 CRI-VALUE

 DELIMITED BY SPACES

 CRI-POINT

 DELIMITED BY SIZE

 CRI-EXC

 DELIMITED BY SIZE

 INTO CRITERIA-DTA.

 MOVE 5Ø TO CRITERIA-LN.

 21ØØ-EXIT.

 EXIT.

 22ØØ-PROCESS-PARMS.

 DISPLAY ".DSNGØ15I QueryType = " EXTENT-TYPE.

 DISPLAY ".DSNGØ15I ObjectTYPE = " EXTENT-object-TYPE.

 MOVE EXTENT-CRI-VAL1 TO EXTENT-DIS-VAL1.

 DISPLAY ".DSNGØ15I ExtentLimit = " EXTENT-DIS-VAL1.

 DISPLAY ".DSNGØ15I QUERYSCOPE = WHERE " CRITERIA-DTA.

 DISPLAY ' '.

 **

 * PROCESS DSNACCOR INVOCATION PARAMETERS

 **

 MOVE 23 TO CHKLVL.

 MOVE SPACES TO LASTSTATEMENT-DTA.

 MOVE 1 TO LASTSTATEMENT-LN.

 MOVE Ø TO RETURNCODE.

 MOVE SPACES TO ERRORMSG-DTA.

 MOVE 1 TO ERRORMSG-LN.

 MOVE Ø TO IFCARETCODE.

 MOVE Ø TO IFCARESCODE.

 MOVE Ø TO XSBYTES.

 * SET THE INDICATOR VARIABLES TO Ø FOR NON-NULL INPUT *

 * PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *

 * DSNACCOR TO USE DEFAULT VALUES) AND FOR OUTPUT *

 * PARAMETERS. *

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 MOVE Ø TO CHKLVL-IND.

 MOVE Ø TO CRITERIA-IND.

 MOVE Ø TO EXTENTLIMIT-IND.

 MOVE Ø TO LASTSTATEMENT-IND.

 MOVE Ø TO RETURNCODE-IND.

 MOVE Ø TO ERRORMSG-IND.

 MOVE Ø TO IFCARETCODE-IND.

 MOVE Ø TO IFCARESCODE-IND.

 MOVE Ø TO XSBYTES-IND.

 22ØØ-EXIT.

 EXIT.

 3ØØØ-CONNECT-TO-SERVER.

 **

 * CONNECT TO THE REMOTE SERVER

 **

 EXEC SQL CONNECT TO :DB2-LOC-NAME END-EXEC.

 MOVE 'CONNECT' TO DB2-COMMAND.

 IF SQLCODE IS NOT EQUAL TO ZERO THEN

 PERFORM 9ØØØ-CHECK-SQLCODE.

 3ØØØ-EXIT.

 EXIT.

 4ØØØ-CALL-DSNACCOR.

 * CALL DSNACCOR *

 EXEC SQL CALL DSNACCOR

 (:QUERYTYPE :QUERYTYPE-IND,

 :OBJECTTYPE :OBJECTTYPE-IND,

 :ICTYPE :ICTYPE-IND,

 :STATSSCHEMA :STATSSCHEMA-IND,

 :CATLGSCHEMA :CATLGSCHEMA-IND,

 :LOCALSCHEMA :LOCALSCHEMA-IND,

 :CHKLVL :CHKLVL-IND,

 :CRITERIA :CRITERIA-IND,

 :RESTRICTED :RESTRICTED-IND,

 :CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,

 :CRCHANGESPCT :CRCHANGESPCT-IND,

 :CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,

 :ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,

 :ICRCHANGESPCT :ICRCHANGESPCT-IND,

 :CRINDEXSIZE :CRINDEXSIZE-IND,

 :RRTINSDELUPDPCT :RRTINSDELUPDPCT-IND,

 :RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,

 :RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,

 :RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,

 :RRTINDREFLIMIT :RRTINDREFLIMIT-IND,

 :RRIINSERTDELETEPCT :RRIINSERTDELETEPCT-IND,

 :RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,

 :RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,

 :RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

 :RRILEAFLIMIT :RRILEAFLIMIT-IND,

 :RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,

 :SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,

 :SRTINSDELUPDABS :SRTINSDELUPDABS-IND,

 :SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,

 :SRIINSDELUPDPCT :SRIINSDELUPDPCT-IND,

 :SRIINSDELUPDABS :SRIINSDELUPDABS-IND,

 :SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,

 :EXTENTLIMIT :EXTENTLIMIT-IND,

 :LASTSTATEMENT :LASTSTATEMENT-IND,

 :RETURNCODE :RETURNCODE-IND,

 :ERRORMSG :ERRORMSG-IND,

 :IFCARETCODE :IFCARETCODE-IND,

 :IFCARESCODE :IFCARESCODE-IND,

 :XSBYTES :XSBYTES-IND)

 END-EXEC.

 MOVE 'CALL' TO DB2-COMMAND.

 IF SQLCODE IS NOT EQUAL TO +466 THEN

 PERFORM 9ØØØ-CHECK-SQLCODE

 ELSE

 PERFORM 41ØØ-GET-RESULT.

 4ØØØ-EXIT.

 EXIT.

 41ØØ-GET-RESULT.

 IF RETURNCODE NOT EQUAL TO Ø THEN

 DISPLAY 'ERRORMSG ' ERRORMSG

 DISPLAY 'RETURNCODE' RETURNCODE

 DISPLAY IFCARETCODE IFCARESCODE XSBYTES

 DISPLAY 'LASTSTATEMENT' LASTSTATEMENT

 ELSE

 DISPLAY '.DSNGØ11I' ERRORMSG.

 EXEC SQL ASSOCIATE LOCATORS(:LOC1, :LOC2)

 WITH PROCEDURE DSNACCOR

 END-EXEC.

 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1

 END-EXEC

 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :LOC2

 END-EXEC

 PERFORM 42ØØ-DIS-TITLE.

 PERFORM 43ØØ-GET-RESULT2 VARYING I

 FROM 1 BY 1 UNTIL SQLCODE EQUAL TO +1ØØ.

 42ØØ-DIS-TITLE.

 DISPLAY '***'

 '*****************************'

 DISPLAY '* PART: Partition number for partitioned tab'

 'le space *'

 DISPLAY '* ASSO-TS: Associated tablespace name for ind'

 'ex space *'

 DISPLAY '***'

 '*****************************'

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 DISPLAY ' '.

 DISPLAY LIST-EXTENT-NAMES.

 DISPLAY '---'

 '--------------------'.

 42ØØ-EXIT.

 EXIT.

 43ØØ-GET-RESULT2.

 EXEC SQL FETCH C2 INTO :RS-OUTPUT-2 :RS-OUT2-IND

 END-EXEC.

 MOVE 'FETCH' TO DB2-COMMAND.

 PERFORM 9ØØØ-CHECK-SQLCODE.

 MOVE RS-DBNAME TO EX-DBNAME(I).

 MOVE RS-NAME TO EX-NAME(I).

 MOVE RS-OBJECTTYPE TO EX-OBJECTTYPE(I).

 MOVE RS-ASSOCIATEDTS TO EX-ASSOCIATEDTS(I).

 IF RS-TOTALEXTENTS NOT EQUAL TO Ø THEN

 MOVE RS-TOTALEXTENTS TO EX-TOTALEXTENTS(I) .

 IF RS-PARTITION EQUAL TO Ø THEN

 MOVE LOW-VALUES TO EX-PAR-II(I)

 ELSE

 MOVE RS-PARTITION TO EX-PARTITION(I).

 5ØØØ-OUTPUT-RESULT.

 **

 * SORTS THE EXTENT RECORD WITH HIGHEST NUMBER FIRST *

 **

 PERFORM 51ØØ-SORT-RESULT THRU 51ØØ-EXIT

 VARYING WS-IDX FROM 1 BY 1

 UNTIL EX-NAME (WS-IDX) = SPACES.

 DISPLAY '--'

 '--------------------'.

 COMPUTE I = I - 1.

 MOVE I TO DIS-I.

 DISPLAY '.DSNGØ21I TOTAL ' DIS-I ' RECORDS RETRIEVED.'.

 5ØØØ-EXIT.

 EXIT.

 51ØØ-SORT-RESULT.

 **

 * SORTS THE EXTENT RECORD WITH HIGHEST NUMBER FIRST *

 **

 MOVE ZEROES TO SAVE-TOTALEXTENTS.

 PERFORM 52ØØ-HIGHEST-EXTENT THRU 52ØØ-EXIT

 VARYING WS-IDX2 FROM 1 BY 1

 UNTIL EX-NAME (WS-IDX2) = SPACES.

 DISPLAY LIST-EXTENT-DEF(WS-IDX-MAX)

 MOVE ZEROES TO EX-TOTALEXTENTS (WS-IDX-MAX).

 51ØØ-EXIT.

 EXIT.

 52ØØ-HIGHEST-EXTENT.

 **

 * DETERMINES THE HIGHEST EXTENT NUMBER *

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

 **

 IF EX-TOTALEXTENTS (WS-IDX2) > SAVE-TOTALEXTENTS

 MOVE WS-IDX2 TO WS-IDX-MAX

 MOVE EX-TOTALEXTENTS(WS-IDX2) TO SAVE-TOTALEXTENTS

 ELSE

 NEXT SENTENCE.

 52ØØ-EXIT.

 EXIT.

 9ØØØ-CHECK-SQLCODE.

 **

 * VERIFY THAT THE PRIOR SQL CALL COMPLETED SUCCESSFULLY

 **

 IF SQLCODE NOT = Ø AND SQLCODE NOT = 1ØØ THEN

 MOVE 'BAD' TO RUN-STATUS

 DISPLAY '* UNEXPECTED SQLCODE FROM SYSPROC.DANACCOR'

 ' DURING ' DB2-COMMAND ' REQUEST.'

 DISPLAY '*'

 PERFORM 91ØØ-DETAIL-SQL-ERROR.

 91ØØ-DETAIL-SQL-ERROR.

 **

 * CALL DSNTIAR TO RETURN A TEXT MESSAGE FOR AN UNEXPECTED

 * SQLCODE.

 **

 CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

 IF RETURN-CODE = ZERO

 PERFORM 92ØØ-PRINT-SQL-ERROR-MSG VARYING ERROR-INDEX

 FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 1Ø.

 92ØØ-PRINT-SQL-ERROR-MSG.

 **

 * PRINT MESSAGE TEXT

 **

 DISPLAY ERROR-TEXT (ERROR-INDEX).

REORGIND CODE

 IDENTIFICATION DIVISION.

 PROGRAM-ID. REORGIND.

 AUTHOR. LIJUN GAO;

 DATE-WRITTEN. Ø8/Ø8/Ø3.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-37Ø.

 OBJECT-COMPUTER. IBM-37Ø.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

/**

 DATA DIVISION.

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 FILE SECTION.

/***

 WORKING-STORAGE SECTION.

 * DISPLAY FIELDS FOR INPUT CRITERIA

 Ø1 DIS-EXTENTLIMIT PIC ZZZ9.

 Ø1 DIS-RRTINSDELUPDPCT PIC ZZZZ9.

 Ø1 DIS-RRTUNCLUSTINSPCT PIC ZZZZ9.

 Ø1 DIS-RRTDISORGLOBPCT PIC ZZZZ9.

 Ø1 DIS-RRTMASSDELLIMIT PIC ZZZZ9.

 Ø1 DIS-RRTINDREFLIMIT PIC ZZZZ9.

 * OUTPUT TITLE FOR OBJECTS EXCEED REORG CRITERIA LIMITS

 Ø1 LIST-REORG-NAMES.

 Ø2 FILLER PIC X(9) VALUE 'DBNAME'.

 Ø2 FILLER PIC X(9) VALUE 'NAME'.

 Ø2 FILLER PIC X(3) VALUE 'TP'.

 Ø2 FILLER PIC X(4) VALUE 'EXT'.

 Ø2 FILLER PIC X(6) VALUE 'IDU'.

 Ø2 FILLER PIC X(6) VALUE 'UCI'.

 Ø2 FILLER PIC X(6) VALUE 'DOL'.

 Ø2 FILLER PIC X(6) VALUE 'MSD'.

 Ø2 FILLER PIC X(6) VALUE 'IDR'.

 Ø2 FILLER PIC X(2Ø) VALUE 'REORG-LASTTIME'.

 Ø2 FILLER PIC X(5) VALUE 'PART'.

 * OUTPUT LIST FOR OBJECTS EXCEED REORG LIMITS

 Ø1 LIST-REORG.

 Ø2 LIST-REORG-DEF OCCURS 12ØØØ TIMES.

 Ø8 EX-DBNAME PIC X(8).

 Ø8 FILLER PIC X(1).

 Ø8 EX-NAME PIC X(8).

 Ø8 FILLER PIC X(1).

 Ø8 EX-OBJECTTYPE PIC X(2).

 Ø8 FILLER PIC X(1).

 Ø8 EX-TOTALEXTENTS PIC 9(Ø3) VALUE ZEROES.

 Ø8 FILLER PIC X(1).

 Ø8 EX-RRTINSDELUPDPCT PIC 9(5).

 Ø8 EX-RRIDU-II REDEFINES EX-RRTINSDELUPDPCT PIC X(5).

 Ø8 FILLER PIC X(1).

 Ø8 EX-RRTUNCINSPCT PIC 9(5).

 Ø8 EX-RRUCI-II REDEFINES EX-RRTUNCINSPCT PIC X(5).

 Ø8 FILLER PIC X(1).

 Ø8 EX-RRTDISORGLOBPCT PIC 9(5).

 Ø8 EX-RRDOL-II REDEFINES EX-RRTDISORGLOBPCT PIC X(5).

 Ø8 FILLER PIC X(1).

 Ø8 EX-RRTMASSDELETE PIC 9(5).

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

 Ø8 EX-RRMSD-II REDEFINES EX-RRTMASSDELETE PIC X(5).

 Ø8 FILLER PIC X(1).

 Ø8 EX-RRTINDREF PIC 9(5).

 Ø8 EX-RRIDR-II REDEFINES EX-RRTINDREF PIC X(5).

 Ø8 FILLER PIC X(1).

 Ø8 EX-REORGLASTTIME PIC X(19).

 Ø8 EX-RLT-II REDEFINES EX-REORGLASTTIME PIC X(19).

 Ø8 FILLER PIC X(1).

 Ø8 EX-PARTITION PIC 9(3).

 Ø8 EX-PAR-II REDEFINES EX-PARTITION PIC X(3).

 Ø8 FILLER PIC X(1).

 Ø8 EX-ASSOCIATEDTS PIC X(8).

 Ø8 FILLER PIC X(1).

 * COPY ALL RELATED WORKING STORAGE DEFINITION

 COPY WRKINPT.

 * DB2 AREA *

 EXEC SQL

 INCLUDE SQLCA

 END-EXEC.

 EXEC SQL

 INCLUDE WSACCOR

 END-EXEC.

 LINKAGE SECTION.

 Ø1 REORG-REC.

 Ø5 LINEA.

 Ø7 REORG-TYPE PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-DBNAME PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-DBNAME-VALUE PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-OBJECT PIC X(4).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-OBJECT-TYPE PIC X(3).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø5 LINEB.

 Ø7 REORG-CRI PIC X(Ø8).

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-CRI-VAL1 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-CRI-VAL2 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-CRI-VAL3 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-CRI-VAL4 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 Ø7 REORG-CRI-VAL5 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 Ø7 REORG-CRI-VAL6 PIC 9(4) VALUE ZERO.

 Ø7 FILLER PIC X VALUE SPACE.

 PROCEDURE DIVISION USING REORG-REC.

 ØØØØ-MAIN-LOGIC.

 PERFORM 1ØØØ-INIT THRU 1ØØØ-EXIT.

 PERFORM 21ØØ-PROCESS-PARMS THRU 21ØØ-EXIT.

 PERFORM 22ØØ-PROCESS-PARMS THRU 22ØØ-EXIT.

 PERFORM 3ØØØ-CONNECT-TO-SERVER THRU 3ØØØ-EXIT.

 IF OKAY THEN

 PERFORM 4ØØØ-CALL-DSNACCOR THRU 4ØØØ-EXIT

 ELSE

 DISPLAY 'CONNECT NOT SUCCESSFUL'

 MOVE 8 TO RETURN-CODE.

 EXEC SQL

 CONNECT RESET

 END-EXEC.

 STOP RUN.

 1ØØØ-INIT.

 MOVE 'GOOD' TO RUN-STATUS.

 ACCEPT REFMOD-TIME-ITEM FROM TIME.

 ACCEPT YYYYMMDD FROM DATE.

 DISPLAY ".DSNGØØ1I Job execution starting at "

 YYYYMMDD (5:2)

 "/"

 YYYYMMDD (7:2)

 "/2"

 YYYYMMDD (2:3)

 " "

 REFMOD-TIME-ITEM (1:2)

 ":"

 REFMOD-TIME-ITEM (3:2)

 ":"

 REFMOD-TIME-ITEM (5:2)

 " ..."

 DISPLAY '.DSNGØØ2I MVS=SP7.Ø.3,PID=HBB77Ø6,DFSMS=1.3.Ø'

 ',DB2=7.1.Ø'.

 DISPLAY '.DSNGØ18I Connected to subsystem ' DB2-LOC-NAME.

 1ØØØ-EXIT.

 EXIT.

 21ØØ-PROCESS-PARMS.

 EVALUATE REORG-OBJECT

 WHEN "TYPE"

 MOVE 'TS' TO OBJECTTYPE-DTA

 MOVE 3 TO OBJECTTYPE-LN

 WHEN OTHER

 DISPLAY ".DSNGØ13E Invalid keyword " REORG-OBJECT

 STOP RUN

 END-EVALUATE

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 46

 EVALUATE REORG-CRI

 WHEN "REORGCRI"

 MOVE 'REORG' TO QUERYTYPE-DTA

 MOVE 8 TO QUERYTYPE-LN

 WHEN OTHER

 DISPLAY ".DSNGØ13E Invalid keyword " REORG-CRI

 STOP RUN

 END-EVALUATE

 MOVE REORG-DBNAME-VALUE TO CRI-VALUE.

 STRING

 CRI-NAME SPACE CRI-POINT

 DELIMITED BY SIZE

 CRI-VALUE

 DELIMITED BY SPACES

 CRI-POINT

 DELIMITED BY SIZE

 CRI-EXC

 DELIMITED BY SIZE

 INTO CRITERIA-DTA.

 MOVE 5Ø TO CRITERIA-LN.

 IF REORG-CRI-VAL1 NOT EQUAL TO SPACE AND ZERO THEN

 MOVE REORG-CRI-VAL1 TO RRTINSDELUPDPCT.

 IF REORG-CRI-VAL2 NOT EQUAL TO SPACE AND ZERO THEN

 MOVE REORG-CRI-VAL2 TO RRTUNCLUSTINSPCT.

 IF REORG-CRI-VAL3 NOT EQUAL TO SPACE AND ZERO THEN

 MOVE REORG-CRI-VAL3 TO RRTDISORGLOBPCT.

 IF REORG-CRI-VAL4 NOT EQUAL TO SPACE AND ZERO THEN

 MOVE REORG-CRI-VAL4 TO RRTMASSDELLIMIT.

 IF REORG-CRI-VAL5 NOT EQUAL TO SPACE AND ZERO THEN

 MOVE REORG-CRI-VAL5 TO RRTINDREFLIMIT.

 IF REORG-CRI-VAL6 NOT EQUAL TO SPACE AND ZERO THEN

 MOVE REORG-CRI-VAL6 TO EXTENTLIMIT.

 21ØØ-EXIT.

 EXIT.

 22ØØ-PROCESS-PARMS.

 **

 * PROCESS DSNACCOR INVOCATION PARAMETERS

 **

 MOVE 59 TO CHKLVL.

 DISPLAY ".DSNGØ15I QueryType = " reorg-type

 DISPLAY ".DSNGØ15I ObjectType = " reorg-object-type

 IF REORG-OBJECT-TYPE NOT EQUAL TO "TS"

 DISPLAY '.DSNGØ16I Query type REORG will be'

 ' limited to tablespace only'

 END-IF

 MOVE RRTINSDELUPDPCT TO DIS-RRTINSDELUPDPCT.

 MOVE RRTUNCLUSTINSPCT TO DIS-RRTUNCLUSTINSPCT

 MOVE RRTDISORGLOBPCT TO DIS-RRTDISORGLOBPCT

 MOVE RRTMASSDELLIMIT TO DIS-RRTMASSDELLIMIT

 MOVE RRTINDREFLIMIT TO DIS-RRTINDREFLIMIT

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 MOVE EXTENTLIMIT TO DIS-EXTENTLIMIT.

 DISPLAY ".DSNGØ15I RRTINSDELUPDPCT = " DIS-RRTINSDELUPDPCT

 DISPLAY ".DSNGØ15I RRTUNCLUSTINSPCT = " DIS-RRTUNCLUSTINSPCT

 DISPLAY ".DSNGØ15I RRTDISORGLOBPCT = " DIS-RRTDISORGLOBPCT

 DISPLAY ".DSNGØ15I RRTMASSDELLIMIT = " DIS-RRTMASSDELLIMIT

 DISPLAY ".DSNGØ15I RRTINDREFLIMIT = " DIS-RRTINDREFLIMIT

 DISPLAY ".DSNGØ15I EXTENTLIMIT = " DIS-EXTENTLIMIT

 DISPLAY ".DSNGØ15I QueryScope = WHERE " CRITERIA-DTA.

 DISPLAY ' '.

 * INITIALIZE OUTPUT PARAMETERS *

 MOVE SPACES TO LASTSTATEMENT-DTA.

 MOVE 1 TO LASTSTATEMENT-LN.

 MOVE Ø TO RETURNCODE.

 MOVE SPACES TO ERRORMSG-DTA.

 MOVE 1 TO ERRORMSG-LN.

 MOVE Ø TO IFCARETCODE.

 MOVE Ø TO IFCARESCODE.

 MOVE Ø TO XSBYTES.

 * SET THE INDICATOR VARIABLES TO Ø FOR NON-NULL INPUT *

 * PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *

 * DSNACCOR TO USE DEFAULT VALUES) AND FOR OUTPUT *

 * PARAMETERS. *

 MOVE Ø TO CHKLVL-IND.

 MOVE Ø TO CRITERIA-IND.

 MOVE Ø TO RRTINSDELUPDPCT-IND.

 MOVE Ø TO RRTUNCLUSTINSPCT-IND.

 MOVE Ø TO RRTDISORGLOBPCT-IND.

 MOVE Ø TO RRTMASSDELLIMIT-IND.

 MOVE Ø TO RRTINDREFLIMIT-IND.

 MOVE Ø TO EXTENTLIMIT-IND.

 MOVE Ø TO LASTSTATEMENT-IND.

 MOVE Ø TO RETURNCODE-IND.

 MOVE Ø TO ERRORMSG-IND.

 MOVE Ø TO IFCARETCODE-IND.

 MOVE Ø TO IFCARESCODE-IND.

 MOVE Ø TO XSBYTES-IND.

 22ØØ-EXIT.

 EXIT.

 3ØØØ-CONNECT-TO-SERVER.

 **

 * CONNECT TO THE REMOTE SERVER

 **

 EXEC SQL CONNECT TO :DB2-LOC-NAME END-EXEC.

 MOVE 'CONNECT' TO DB2-COMMAND.

 IF SQLCODE IS NOT EQUAL TO ZERO THEN

 PERFORM 9ØØØ-CHECK-SQLCODE.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 48

 3ØØØ-EXIT.

 EXIT.

 4ØØØ-CALL-DSNACCOR.

 * CALL DSNACCOR *

 EXEC SQL CALL DSNACCOR

 (:QUERYTYPE :QUERYTYPE-IND,

 :OBJECTTYPE :OBJECTTYPE-IND,

 :ICTYPE :ICTYPE-IND,

 :STATSSCHEMA :STATSSCHEMA-IND,

 :CATLGSCHEMA :CATLGSCHEMA-IND,

 :LOCALSCHEMA :LOCALSCHEMA-IND,

 :CHKLVL :CHKLVL-IND,

 :CRITERIA :CRITERIA-IND,

 :RESTRICTED :RESTRICTED-IND,

 :CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,

 :CRCHANGESPCT :CRCHANGESPCT-IND,

 :CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,

 :ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,

 :ICRCHANGESPCT :ICRCHANGESPCT-IND,

 :CRINDEXSIZE :CRINDEXSIZE-IND,

 :RRTINSDELUPDPCT :RRTINSDELUPDPCT-IND,

 :RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,

 :RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,

 :RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,

 :RRTINDREFLIMIT :RRTINDREFLIMIT-IND,

 :RRIINSERTDELETEPCT :RRIINSERTDELETEPCT-IND,

 :RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,

 :RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,

 :RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,

 :RRILEAFLIMIT :RRILEAFLIMIT-IND,

 :RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,

 :SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,

 :SRTINSDELUPDABS :SRTINSDELUPDABS-IND,

 :SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,

 :SRIINSDELUPDPCT :SRIINSDELUPDPCT-IND,

 :SRIINSDELUPDABS :SRIINSDELUPDABS-IND,

 :SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,

 :EXTENTLIMIT :EXTENTLIMIT-IND,

 :LASTSTATEMENT :LASTSTATEMENT-IND,

 :RETURNCODE :RETURNCODE-IND,

 :ERRORMSG :ERRORMSG-IND,

 :IFCARETCODE :IFCARETCODE-IND,

 :IFCARESCODE :IFCARESCODE-IND,

 :XSBYTES :XSBYTES-IND)

 END-EXEC.

 MOVE 'CALL' TO DB2-COMMAND.

 IF SQLCODE IS NOT EQUAL TO +466 THEN

 PERFORM 9ØØØ-CHECK-SQLCODE

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ELSE

 PERFORM 41ØØ-GET-RESULT.

 4ØØØ-EXIT.

 EXIT.

 41ØØ-GET-RESULT.

 IF RETURNCODE NOT EQUAL TO Ø THEN

 DISPLAY 'ERRORMSG' ERRORMSG

 DISPLAY 'RETURNCODE' RETURNCODE

 DISPLAY 'LASTSTATEMENT' LASTSTATEMENT

 DISPLAY IFCARETCODE IFCARESCODE XSBYTES

 ELSE

 DISPLAY '.DSNGØ11I ' ERRORMSG.

 EXEC SQL ASSOCIATE LOCATORS(:LOC1, :LOC2)

 WITH PROCEDURE DSNACCOR

 END-EXEC.

 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1

 END-EXEC

 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :LOC2

 END-EXEC

 PERFORM 4Ø5Ø-DIS-TITLE

 PERFORM 43ØØ-GET-RESULT2 THRU 43ØØ-EXIT VARYING I

 FROM 1 BY 1 UNTIL SQLCODE EQUAL TO +1ØØ.

 DISPLAY '---'

 '------------------------------'.

 COMPUTE I = I - 1.

 COMPUTE J = J - 1.

 MOVE I TO DIS-I.

 MOVE J TO DIS-J.

 DISPLAY '.DSNGØ21I TOTAL ' DIS-I ' RECORDS RETRIEVED AND '

 DIS-J ' RECORDS DISPLAYED.'.

 4Ø5Ø-DIS-TITLE.

 DISPLAY '***'

 '*****************************'

 DISPLAY '* iDU: The ratio of the sum of INS, UPD, DEL'

 ' to the total number of rows. *'

 DISPLAY '* UCI: The ratio of number of unclustered INS'

 ' to the total number of rows. *'

 DISPLAY '* DOL: The ratio of number of chunked LOBs'

 ' to the total number of rows. *'

 DISPLAY '* MSD: The number of mass DEL. '

 ' *'

 DISPLAY '* IDR: The number of overflow records created'

 ' to the total number of rows. *'

 DISPLAY '***'

 '*****************************'

 DISPLAY ' '.

 DISPLAY LIST-REORG-NAMES.

 DISPLAY '---'

 '------------------------------'.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 50

Editor’s note: this article will be concluded next month.

Lijun Gao (legend_gao@yahoo.com)
Senior DB2 System Programmer (USA) © Xephon 2004

DB2 news

Embarcadero Technologies has announced that
its DBArtisan Workbench has been extended to
support DB2 UDB Versions 7.2 and 8.1.

DBArtisan Workbench is a database
administration solution. It includes all three of the
Embarcadero Analyst Series components:
DBArtisan Space Analyst, DBArtisan Capacity
Analyst, and DBArtisan Performance Analyst.
Through a user interface, users can detect and
correct problems early without coding long and
complicated scripts. Users can also prevent
downtime by anticipating future database
growth and adding capacity before problems
occur, and save time by automating the space
maintenance of DB2 objects.

For further information contact:
Embarcadero Technologies, 100 California St,
12th Floor, San Francisco, CA 94111, USA.
Tel: (415) 834 3131.
URL: http://www.embarcadero.com/products/
dbartisan/index.html.

* * *

Quest Software has announced Quest Central
for Databases, which offers support for DB2
SYSPLEX. The product can perform real-time
diagnostics of performance bottlenecks in data
sharing environments, which helps to identify
and resolve performance issues. This in turn
reduces the resource costs related to managing
and maintaining complex DB2 SYSPLEX
environments.

The Quest Spotlight graphical interface displays
all of the members of a data-sharing group
concurrently. It performs diagnostics and
provides a summarized view of the activity that
is taking place across the SYSPLEX.

For further information contact:

Quest Software, 800 Irvine Center Drive,
Irvine, CA 92618, USA.
Tel: (949) 9754 8000.
URL: http://www.quest.com/quest_central/
db2.

* * *

TeamQuest Software has announced
TeamQuest Performance 9.1 with scalability,
statistical analysis, and multi-system modelling
advancements. The new version of the
performance management and capacity
planning software provides additional
capabilities, making it easier to predict
performance when servers are added to
horizontally scale a tiered network of servers.
The product now includes agents for DB2 UDB,
WebSphere, and EMC.

For further information contact:
Teamquest, One TeamQuest Way, Clear Lake,
IA 50428, USA.
Tel: (641) 357 2700.
URL: http://www.teamquest.com/newsletter/
2004/1q/highlights.shtml.

* * *

DataDirect Technologies has announced
Version 2.1 of DataDirect Connect for .Net,
which offers enhanced connection, failover, and
client-side load balancing capabilities. The
software, for environments that run Microsoft’s
.Net, also offers password and user ID
encryption for DB2.

For further information contact:
DataDirect Technologies, 3202 Tower Oaks
Blvd, Suite 300, Rockville, MD 20852, USA.
Tel: (301) 468 8501.
URL: http://www.datadirect.com/products/
dotnet/index.ssp.

x xephon

	Sampling table data
	Stored procedures versus CICS transactions
	Renaming a DB2 subsystem for datasharing - part 2
	DB2 object manager
	DB2 news

