
October 1999

84

© Xephon plc 1999

3 Java meets DB2: get there from
here – SQLJ

11 Taming the traces
29 Timestamp checking program –

part 2
36 Quick table information
46 January 1995 – October 1999 index
48 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38030
From USA: 01144 1635 38030
E-mail: info@xephon.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
Articles published in DB2 Update are paid
for at the rate of £170 ($250) per 1000 words
and £90 ($140) per 100 lines of code for
original material. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors.

DB2 Update on-line
Code from DB2 Update can be downloaded
from our Web site at http://www.xephon.
com/db2update.html; you will need the user-
id shown on your address label.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Robert Burgess

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1994 issue, are available separately
to subscribers for £22.50 ($33.50) each
including postage.

 3© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Java meets DB2: get there from here – SQLJ

Editor’s note: the author’s first article on database connectivity from
Java explored JDBC, Java’s answer to ODBC. In this second article,
the author covers a new technology, SQLJ.

As explained in Java meets DB2: get there from here – JDBC,
published in DB2 Update, Issue 83, September 1999, JDBC is a low-
level, dynamic call-level interface predicated upon the X/Open CLI
specification. It’s a mature robust technology that can be used in
mission-critical applications today. However, JDBC has a number of
built-in problems and limitations, most of which can be solved with
a standard for embedded static SQL. This is where SQLJ comes in.
SQLJ offers the following advantages over JDBC:

• Development-time error checking.

• Smaller source programs.

• Enhanced run-time performance with statically bound SQL.

• Eliminates the need to learn a complicated new API.

• Leverages existing knowledge of embedded SQL programming.

SQLJ was developed by a consortium of major players in the database
industry, including IBM, Oracle, Tandem (Compaq), and Sybase. The
specification for SQLJ contains three parts:

• Part 0 – describes specifications for embedding SQL statements
in Java methods.

• Part 1 – describes specifications for calling Java static methods
as SQL stored procedures and user-defined functions.

• Part 2 – describes specifications for using Java classes as SQL
user-defined datatypes.

Part 0 was approved by the ANSI X3H2 committee in early 1999,
while Parts 1 and 2 are still being finalized. This article will cover only
Part 0.

 4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DEVELOPMENT PROCESS

Because JDBC is part of the core Java API, and hence is written in
100% pure Java, JDBC calls within a Java program are reduced to
bytecodes just like the rest of the program – through the invocation of
a standard Java compiler. At run-time, these bytecodes are executed
interpretively within a Java Virtual Machine. But SQLJ calls are non-
standard Java and somehow must be disposed of prior to invoking the
Java compiler. This is accomplished via an extra preparation step in
which the SQLJ calls are searched for and replaced with some other
database access API, whether it be JDBC, ODBC, or a native API such
as DSNHLI. (Long-time mainframe DB2-COBOL programmers
should be very familiar with the concept.) Which database access API
is actually used at run-time is not formally defined in the ANSI
specification; it depends upon the implementation of SQLJ that is
being used. Figure 1 compares the two processes.

SQLJ SYNTAX

Static SQL in Java appears in SQLJ clauses. Each SQLJ clause begins
with the token #sql, which is not a legal Java identifier, and so makes
the clause recognizable in Java programs. The simplest SQLJ
executable clauses consist of the token #sql followed by an SQL
statement enclosed in curly brackets, followed by a semi-colon. See
the following code:

import sqlj.runtime.*;
public class SQLJExample1 {
 public static void main(String args[]) throws Exception {
 Class.forName("COM.ibm.db2os39Ø.sqlj.jdbc.DB2SQLJDriver");
 String v, m;
 int y;
 v = new String("BEA16TYE4HGD99");
 #sql {SELECT MAKE, YEAR FROM INV_TAB
 INTO :m, :y WHERE VIN = :v };
 System.out.println("Make is " + m + " year is " + y);
 y = 1997;
 #sql { UPDATE INV_TAB SET YEAR = :y WHERE VIN = :v };
 m = new String("Mercedes-Benz");
 y = 199Ø;
 v = new String("VHS3Y7EWQS8M22");
 #sql { INSERT INTO INV_TAB VALUES (:v, :y, :m) };

 5© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1: JDBC versus SQLJ development steps

Ja
va

 s
ou

rc
e

w
ith

 s
om

e
ot

he
r

da
ta

ba
se

 A
P

I

Ja
va

 s
ou

rc
e

w
ith

 J
D

B
C

ca
lls

Ja
va

 b
yt

e
co

de
s

S
am

pl
e.

ja
va

S
ta

nd
ar

d
Ja

va
co

m
pi

la
tio

n

Ja
va

 s
ou

rc
e

w
ith

em
be

dd
ed

 S
Q

L

Ja
va

 b
yt

e
co

de
s

S
Q

LJ

tr
an

sl
at

io
n

S
ta

nd
ar

d
Ja

va
co

m
pi

la
tio

n

S
am

pl
e.

cl
as

s
S

am
pl

e.
ja

va
S

am
pl

e.
sq

lj

S
am

pl
e.

cl
as

s

JD
B

C

S
Q

LJ

 6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 #sql { DELETE FROM INV_TAB };
 }
}

In an SQLJ clause, the tokens inside the curly brackets are SQL
tokens, except for the host-variables, which are marked by colon
characters. SQL tokens never occur outside of the single pair of curly
brackets in an SQLJ statement.

You’ll notice a driver being loaded, just as with JDBC. In the example
above, the driver being loaded is the SQLJ driver developed by IBM
specifically for use with DB2 for OS/390.

Assume that the table used in the example has a primary key of Vehicle
ID Number (VIN). That would imply that the SELECT statement
shown above would never return more than one row. But suppose we
had a different WHERE clause, or none at all? How would a multi-row
result set be processed in SQLJ?

The answer is through the use of something called an SQLJ result-set
iterator. A result-set iterator is a Java object from which the data
returned by an SQL query can be retrieved. In that role, it corresponds
to the cursors used in standard embedded SQL, from which data is
fetched. Unlike the cursor, however, an iterator is a first-class Java
object. An iterator can be passed as a parameter to a method, and can
be used outside the SQLJ translation unit that creates it, without losing
its static type for the purposes of type checking of component
interfaces.

An iterator has one or more columns with associated Java types.
Names that are Java identifiers can optionally be provided for the
iterator columns. The columns of an iterator (which have Java types)
are conceptually distinct from the columns of a query (which have
SQL types), and therefore, a means of matching one to the other must
be chosen. Two mechanisms are supported for matching iterator
columns to query columns:

• Bind-by-position

• Bind-by-name.

The iterator declaration clause indicates whether the iterator is using
bind-by-position or bind-by-name. (The two styles of access to result

 7© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

set data are mutually exclusive; an iterator class supports either bind-
by-position or bind-by-name, but not both.)

Bind-by-position means that the left-to-right order of declaration of
the iterator columns places them in correspondence with the expressions
selected in an SQL query. Traditional FETCH...INTO syntax is used
to retrieve data from the iterator object into Java variables, as shown
in the following code:

import sqlj.runtime.*;
public class SQLJExample2 {
 public static void main(String args[]) throws Exception {
 Class.forName("COM.ibm.db2os39Ø.sqlj.jdbc.DB2SQLJDriver");
 #sql iterator ByPos (String, int);
 ByPos result; // declare object of type ByPos
 String m;
 int y;
 #sql result = {SELECT MAKE, YEAR FROM INV_TAB};
 while (true) {
 #sql { FETCH :result INTO :m, :y };
 if (result.endFetch())
 break; // exit the infinite loop
 System.out.println("Make is " + m + " year is " + y);
 }
 }
}

Bind-by-name means that the name of each iterator column is matched
to the name of a column returned by the SQL query, independent of
the order in which they appear in the query. Named no-arg accessor
methods are automatically generated for the columns of the iterator in
this case. The name of an accessor method matches the name of a
column returned by a query. Its return type is the Java type of the
iterator column. FETCH may not be used with iterators of bind-by-
name types. See the following code:

import sqlj.runtime.*;
public class SQLJExample3 {
 public static void main(String args[]) throws Exception {
 Class.forName("COM.ibm.db2os39Ø.sqlj.jdbc.DB2SQLJDriver");
 #sql iterator ByName (int YEAR, String MAKE);
 ByName result; // declare object of type ByName
 String m;
 int y;
 #sql result = {SELECT MAKE, YEAR FROM INV_TAB};
 while (result.next()) {
 m = result.MAKE(); // standard method call

 8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 y = result.YEAR(); // standard method call
 System.out.println("Make is " + m + " year is " + y);
 }
 }
}

CONNECT WHERE?

The one critical piece missing from the code examples shown so far
is the DB2 subsystem on which the SQL is going to run.

In SQLJ terminology, all statements execute within a connection
context. And it’s the connection context that specifies the location
and, by extension, the subsystem.

There are four different ways to establish a connection context:

• Using a command line parameter:

$ sqlj -url=jdbc:db2os39Ø:ORLANDO SQLJExample1.sqlj

• Coding an SQLJ properties file and using it at translation time:

$ sqlj -props=sqlj.properties SQLJExample1.sqlj

where ‘sqlj.properties’ is an ASCII text file that might look like
this:

specify jdbc-style URL
sqlj.url=jdbc:db2os39Ø:ORLANDO
specify a user name and password
sqlj.user=whgates
sqlj.password=borg

• Establishing a default connection context programmatically:

import java.sql.*;
import sqlj.runtime.*;
public class SQLJExample4 {
 public static void main(String args[]) throws Exception {
 Class.forName("COM.ibm.db2os39Ø.sqlj.jdbc.DB2SQLJDriver");
 #sql context Ctx1;
 Ctx1 prod = new Ctx1(DriverManager.getConnection(
 "jdbc:db2os39Ø:ORLANDO"));
 DefaultContext.setDefaultContext(prod);
 String v, m;
 int y;
 v = new String("BEA16TYE4HGD99");
 #sql {SELECT MAKE, YEAR FROM INV_TAB

 9© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 INTO :m, :y WHERE VIN = :v };
 System.out.println("Make is " + m + " year is " + y);
 y = 1997;
 #sql { UPDATE INV_TAB SET YEAR = :y WHERE VIN = :v };
 }
}

A default connection context is established by calling the method
setDefaultContext() defined on the DefaultContext class. When
calling this method you will need to pass along a valid context
object; this is done in the previous code example with the variable
called ‘prod’. This is created as an instance of Ctx1, which in turn
was declared in a prior #sql clause as a type of context. Note the
DriverManager class is being used just as was seen in the first
article in this series.

• Use an explicit connection context on a per statement basis:

import java.sql.*;
import sqlj.runtime.*;
public class SQLJExample5 {
 public static void main(String args[]) throws Exception {
 Class.forName("COM.ibm.db2os39Ø.sqlj.jdbc.DB2SQLJDriver");
 #sql context Ctx1;
 Ctx1 prod = new Ctx1(DriverManager.getConnection(
 "jdbc:db2os39Ø:ORLANDO"));
 Ctx1 test = new Ctx1(DriverManager.getConnection(
 "jdbc:db2os39Ø:GLENVIEW"));
 String v, m;
 int y;
 v = new String("BEA16TYE4HGD99");
 #sql [prod] {SELECT MAKE, YEAR FROM INV_TAB
 INTO :m, :y WHERE VIN = :v };
 System.out.println("Make is " + m + " year is " + y);
 y = 1997;
 #sql [test] { UPDATE INV_TAB SET YEAR = :y WHERE VIN = :v };
 }
}

In this code, no default connection context is established. Instead, two
explicit contexts are created, one for the production subsystem and the
other for test. These objects are referenced within square brackets
immediately after the #sql delimiter.

There is no limit on the number of contexts that can be created and
used within a single application or applet. However, beyond a certain

 10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

limit things might get confusing for the maintenance programmer.

Note that if a default context has been established, that default can be
referenced within square brackets, but it is obviously not required –
it’s your choice.

CONCLUSIONS

SQLJ offers a robust alternative to JDBC. Although JDBC has a head
start in the marketplace, look for SQLJ to close the gap rapidly as more
of the database vendors climb on board the bandwagon.

IBM has already established itself as a leader in the Java market and
is moving aggressively to bring Java-based solutions into the world of
DB2 databases.

Java is the future of computing. With JDBC and SQLJ, DB2 will
occupy an important place in that future.

FURTHER READING

• Application Programming Guide For Java, from IBM at http://
www.software.ibm.com/data/db2/os390/pdf/javadb5.pdf.

• DB2 UDB SQLJ Support, from IBM at http://
www.software.ibm.com/data/db2/java/sqlj/index.html.

• IBM’s Java Enablement page at http://www.software.ibm.com/
data/db2/java.

• SQLJ Consortium Web site at http://www.sqlj.org.

• Essential SQLJ Programming by J Basu and J Shome, John
Wiley & Sons; ISBN: 0471349208.

• Understanding the New SQLJ by J Melton and A Eisenberg, Ap
Professional; ISBN: 1558605622.

Editor’s note: if you would like to discuss this article further, the
author can be contacted at jbradford@gr.com.

John T Bradford
Greenbrier and Russel (USA) © Xephon 1999

 11© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Taming the traces

DB2 traces are an excellent way of analysing DB2 systems and
application performance objectives, and diagnosing problems. The
analysis of these traces is complicated. While there are numerous
products available on the market offering on-line monitoring, batch
report, exception analysis, etc, they do not necessarily provide the
desired reports. Getting to know how to format, analyse, and generate
custom reports from DB2 traces using one’s own programs gives great
power and flexibility to a DBA.

I have found that writing programs (especially using REXX) to format
and analyse traces, for certain customized needs, is very helpful. This
article presents various techniques I have used to achieve this. It only
contains information about SMF and OP destinations. All the REXX
code presented is for sample purposes only and could be non-
optimized.

DB2 TRACE

DB2’s Instrumentation Facility Component (IFC) provides a trace
facility that is used to record DB2 data and events. The trace records
can be written to SMF, GTF, SRV, or On-line Performance (OP) buffer
(provided by DB2) destinations. To analyse and format these records,
you need to retrieve them from SMF, GTF, or OP buffers and format
them outside DB2.

DB2 traces are categorized into six types, based on the information
they retrieve:

• Statistics

• Accounting

• Audit

• Monitor

• Performance

• Global.

 12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Each of these categories is further divided into various classes. For
example, in order to know wait times for a thread, you need to start
ACCOUNT CLASS(3) trace. The trace is started using the START
TRACE command. Starting a trace for any particular class triggers
DB2 to write particular types of information requested. DB2 writes
various types of record and they are identified by many Instrumentation
Facility Component Identifiers (IFCIDs). The details of IFCIDs are
described, along with the comments in their mapping macros, contained
in prefix.SDSNMACS, which is shipped with DB2. These mapping
macros are written in Assembler and PL/I, making it difficult to format
for anyone who knows only REXX or COBOL. This article provides
helpful tips to format DB2 traces without knowing Assembler.

The table in Figure 1 describes various IFCIDs that are triggered when
the START TRACE command is issued. For simplicity, the table
contains only a few common events. For a complete description of all
the trace types and classes, please refer to the DB2 Administration
Guide.

TRACE DESTINATION

The destination of trace records is found using the DB2 command
START TRACE(?) DEST(SMF). The most commonly used
destinations are SMF, GTF, and OP buffers.

SMF collects and records system and job-related information that
your installation can use in billing users, reporting reliability, analysing
the configuration, scheduling jobs, summarizing direct access volume
activity, evaluating dataset activity, etc. Because this facility is
available for various subsystems in the installation, this destination
should be used with care. Heavy volume trace data should avoid using
SMF as a destination.

Normally, SMF is used for statistics and accounting traces, because
some installations prefer running these traces all the time. There could
be two or more datasets where SMF writes the records. SMF data-
gathering routines fill predefined datasets one at a time. While the
gathering routines write records on one dataset, SMF can write out or
clear the others. SMF continues to write records for as long as it can
find an empty inactive dataset when the active dataset becomes full.

 13© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

SMF dataset definition:

DEFINE CLUSTER (NAME(SYS1.MAN1) VOLUME(xxxxxx) NONINDEXED +
CYLINDERS(1ØØ) REUSE RECORDSIZE(4Ø86,32767) SPANNED SPEED +
CONTROLINTERVALSIZE(4Ø96) SHAREOPTIONS(2))

All SMF records written have an SMF Type to identify them. DB2
records have SMF Type 100,101, and 102. SMF Record type 100 is
for statistics trace, 101 for accounting, and 102 is for monitor,
performance, and audit traces.

Figure 1: IFCIDs triggered by START TRACE command

Type Class Data collected IFCIDS activated

Statistics 1 Statistical data 1-2, 105, 106, 202

3 Deadlock and timeout, 152, 172, 196, 250

Accounting 1 Accounting data 3, 106, 239

2 In DB2 time 232

3 Various waits 6-7, 8-9, 32-33, 44-45 ,

7 Package level accounting 232,240

8 Package level wait time Same as in Accounting

Audit 1 Authorization failures 140

Performance 30 No specific events This triggers the IFCID

connect or disconnect
from a group buffer,
long running tasks

261, 262, 313

(51-52, 56-57),117-118
127-128, 170, 171, 174-
175, 213-214, 215-216,
226-227, 242-243

Class 3

mentioned in the IFCID()
keyword of START
TRACE command

 14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SMF DUMP PROGRAM

When one SMF dataset becomes full, the SMF writer switches to the
next dataset and the previous one is ready to be cleared. The program
IFASMFDP is used to clear out the filled SMF VSAM dataset and
dump the contents into sequential datasets on either tape or DASD.
This entire process is automated in most installations.

The output sequential datasets (where the SMF Dump program has
dumped the data) can be retained for a long time and from here we can
easily extract the DB2 trace records. These sequential datasets are
defined with a record format of Variable Block Spanned (VBS) and
record length of 32,760 or 32,767. The block size is installation-
dependent and can be 4,096.

Most DBAs are probably not used to handling VBS record format and,
moreover, VBS format datasets cannot be read/browsed directly
using REXX or ISPF services. The easiest way to format DB2 records
is to extract them from SMF dump output and write them into another
dataset with VB or FB format. For example:

/STEP1 EXEC PGM=SORT
//SORTIN DD DSN=<mention SMF Dump dataset name>,DISP=SHR
//SORTOUT DD DSN=<trace data, input to rexx>,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(CYL,(2,15),RLSE),
// LRECL=8188,BLKSIZE=8192,RECFM=VB,DSORG=PS
//SORTWK1 DD DISP=(NEW,DELETE,DELETE),
// SPACE=(CYL,(55,5Ø)),UNIT=SYSDA
//SORTWK2 DD DISP=(NEW,DELETE,DELETE),
// SPACE=(CYL,(55,5Ø)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 SORT FIELDS=(7,4,CH,A)
 INCLUDE COND=(6,1,CH,EQ,X'65')
/*

This JCL not only writes the content from SMF Dump output to
variable block datasets for a REXX program to read, but also eliminates
all unnecessary records from SMF and writes only DB2 record type
101 to SORTOUT in an efficient way.

The parameter INCLUDE COND=(6,1,CH,EQ,X'65') in SYSIN is
used to choose only SMF 101 (accounting trace data). The SMF
record is positioned on the sixth byte in the record and it is represented

 15© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

in binary form. Record type 101 is represented as X'65'. The SMF
record header is discussed later in this article.

Please note that the records in the dataset mentioned under DDname
SORTOUT will appear shifted to the left by four bytes. This means the
SMF record type X'65' will appear in the second column instead of the
sixth. Similarly, all the fields will appear at a position which is 4 bytes
earlier than you would expect.

Another point is that the shortest records in the SMF DUMP output
(which are the header and the trailer records) are 18 bytes long.
Therefore, you should not try to sort on a field which is beyond 18
bytes. For example, the following SYSIN card is wrong, because it is
trying to sort on a field which is beyond the shortest record in the input
dataset.

//SYSIN DD *
SORT FIELDS=(2Ø,4,CH,A) ——WRONG———

So how do you extract SMF record type 100 for DB2 subsystem
DB2D?

SMF record type 100 can be represented as X'64'. The subsystem
name appears on position nineteen in the SMF header. So the SORT
control card will appear as follows:

INCLUDE COND=(6,1,CH,EQ,X'64',AND,19,4,CH,EQ,C'DB2D')

OTHER WAYS TO READ DATA FROM SMF DUMP

You could consider writing a COBOL program to read the SMF Dump
dataset. The FILE-CONTROL SECTION appears as follows, to read
a QSAM dataset with VBS format:

FD SMFDATA
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS S
 RECORD CONTAINS 18 TO 32767 CHARACTERS
 BLOCK CONTAINS Ø CHARACTERS
Ø1 SMFDATA-REC PIC X(32767).

All other considerations remain the same as when you read any other
dataset through your COBOL program. Here again the record read
into your program will not show Record Descriptor Word (RDW).
This means all the fields will be at a position four bytes earlier than you

 16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

would expect. For example, the SMF header date field, which starts
at the eleventh byte, would appear inside the COBOL record at the
seventh byte.

An Assembler programmer could use the BFTEK=A option to read a
VBS QSAM dataset and the DCB will appear as below:

INDATA DCB DSORG=PS,MACRF=GL,DDNAME=SMFIN,EODAD=RETURN, X
 RECFM=VBS,LRECL=32767,BLKSIZE=4Ø96,BFTEK=A

Assembler programmers do not have to compensate for 4 bytes RDW
and can easily map any field using mapping macros provided by IBM.

ON-LINE PERFORMANCE BUFFERS

DB2 provides eight performance monitor destinations – OPn, where
n is equal to a value from 1 to 8. Typically, the destination of OPn is
only used with commands issued from a monitor program. For
example, the monitor program can pass a specific on-line performance
monitor destination (eg OP1) on the START TRACE command to
start asynchronous trace data collection.

The OP destination is very useful for any kind of trace, either low
volume or high volume data, but at the same time it is more complicated
to handle. As mentioned earlier, in most cases you need to use some
kind of monitor program. However, DB2’s stand-alone utility,
DSN1SDMP, is a very handy-to-use OP destination. For example, if
you want to start trace performance class 30 (which is a default
category) with IFCID(22,59,60,61,63,58), and want to collect up to
5,000 records into an output dataset defined by you, then you could
use the following JCL:

//OPTRACE EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø
//STEPLIB DD DISP=SHR,DSN=DSN51Ø.SDSNLOAD
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SDMPPRNT DD SYSOUT=*
//SDMPTRAC DD DISP=(NEW,CATLG,CATLG),DSN=<output trace dataset>,
// UNIT=SYSDA,SPACE=(8192,(1ØØ,1ØØ)),DCB=(DSORG=PS,
// LRECL=8188,RECFM=VB,BLKSIZE=8192)
//SDMPIN DD *
 START TRACE(P) CLASS(3Ø) IFCID(22,59,6Ø,61,63,58) DESTINATION(OPX)
FOR(5ØØØ)
/*

 17© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DSN)
 RUN PROG(DSN1SDMP) PLAN(<any valid plan name>)
 END
/*
//*

In this JCL, the DSN1SDMP needs a plan to run; although it does not
execute any SQL, it needs the plan name to establish a thread with
DB2. The DDname SDMPIN contains a valid start trace command
without the hyphen (-). The keyword FOR is used to specify how
many records DSN1SDMP should look for. Here, the ACTION
keyword is missing because we are only interested in writing the trace
records into the output dataset mentioned in DDname DSMPTRAC.
This dataset can be used as input to a REXX or COBOL program,
which will then format the traces and produce the desired reports.

Those familiar with Assembler can write their own monitor program
that establishes a thread with DB2, issues the start trace command
using DSNWLI2, and waits until buffers are filled to a specified
threshold and DB2 posts the ECB. This program will then need to
issue a READA command to read trace data from OP buffers and write
into an output dataset.

To keep this article simple, I am not listing the Assembler code for a
monitor program. The DB2 Administration Guide has good guidelines
and useful information on how to do this. I was able to make my
monitor program work with very little effort.

The job priority plays an important role here. The user-written
monitor program, or DSN1SDMP, should run with equal or higher
priority than DB2 itself, otherwise there is a possibility of losing data
from the OP destination. The trace data is written in wrap-around
fashion in OP buffers and can get overwritten if buffers are full.
Alternatively, you could use third-party monitors, which allow you to
start traces on the OP destination and download into user-specified
datasets – for example, the Supertrace utility of TMON, etc.

DESTINATION OPN VERSUS OPX

When you specify any trace destination from OP1 to OP8, DB2 starts

 18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

a trace on that particular OP buffer. However, if there is already a trace
running on that destination, there is the possibility of over-writing
someone else’s trace data. Therefore, it is best to specify a generic
destination OPx, in which case DB2 will find the first empty buffer
slot in one of the eight OP buffers and start the trace there.

FORMAT OF TRACE RECORDS

A typical trace record (accounting trace), together with the exploded
record, is shown in Figure 2. The trace record contains the following:

• Header – the header of the trace record depends on the destination
type and could contain the SMF header, the IFI header, or the GTF
header based on the destination specified in the start trace
command.

• Self-defining section – this section resides next to the header and
contains a pointer to the product section followed by as many

section

Figure 2: A typical trace record

SMF header Self-defining section Accounting
section

SQL
sectionsection section
Buffer Product

SMF header

Self-defining section

Pointer for
product section

Accounting
section

Product

SQL section

Buffer section

 19© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

pointers as data sections. The pointer contains triplet fields –
offset of the section, length of the section, and number of times
the section is repeated.

• Data section – one or more data sections follow the self-defining
section and they have to be tracked down using pointers provided
in the self-defining section. These data sections contain the actual
trace data, requested through the START TRACE command.

• Product section – the last section of the trace record is the product
section and the pointer provided in the self-defining section
tracks its position. The product section for all record types
contains the standard header. The standard header contains
information like IFCID, number of data sections (self-defining
sections), Subsystem-id, etc. Other headers – correlation, CPU,
distributed, and data sharing data – may also be present. The
information in the product section header is controlled through
TDATA options of the START TRACE command. TDATA
specifies the product section headers to be placed into the product
section of each trace record. If you do not specify TDATA, then
the type of trace determines the type of product section header.
The product section of a trace record can contain multiple
headers.

All IFC records have a standard IFC header. The correlation header is
added for accounting, performance, audit, and monitor records. The
trace header is added for serviceability records.

HOW TO FORMAT TRACE RECORDS

Having extracted trace records from SMF or OP into a specified
dataset, you now need to format them. Writing REXX code is the
easiest way to do this; alternatively, you could use COBOL code.

REXX

Using REXX, it is easy to format your trace data and generate
customized reports. The description of each IFCID is available in
dataset prefix.DSNSAMP(DSNWMSGS) (provided by IBM) and the
mapping macros are also available in the dataset
prefix.DSNMACS(DSNDQ*).

 20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Understanding these macros requires Assembler or PL/I programming
knowledge. However, a person with no prior knowledge of Assembler
can understand this with a little practice.

For those not familiar with Assembler programming, taking help from
mapping macros provided by IBM is the easiest way to format traces
on your own. These macros start with a DSECT, followed by data
definition of each variable in the IFCID, and end with MEND.

Here is an example of an Assembler macro to define the self-defining
section DSNDQWA0:

QWAØ DSECT
*
* /* DB2 SELF DEFINING SECTION MACRO FOR ACCOUNTING IFCID=ØØØ3 */
* /* PRODUCT SECTION FOR ACCOUNTING CONTAINS TWO HEADERS
*
QWAØ1PSO DS AL4 /*OFFSET TO THE PRODUCT SECTION */
QWAØ1PSL DS XL2 /*LENGTH OF THE PRODUCT SECTION */
QWAØ1PSN DS XL2 /*NUMBER OF PRODUCT SECTIONS */

This is how a REXX programmer could use it:

/* REXX */
Length_of_SMF_Header = 28 – 4 /*4 bytes reduced to compensate for RDW*/
Offset_self_def_sect = Length_of_SMF_Header
/* position at which self-defining section starts */
cursor_pos = Offset_self_def_sect + 1
QWAØ1PSO = C2D(SUBSTR(input_record, cursor_pos,4))
/* Full word occupies 4 bytes */
cursor_pos = cursor_pos + 4
Offset_product_sect = (QWAØ1PSO – 4)
/* Subtract 4 bytes for RDW and add 1 for position of product section */
QWAØ1PSL = C2D(SUBSTR(input_record,cursor_pos,2))
/* halfword occupies 2 bytes, contains length of product section*/
QWAØ1PSL = C2D(SUBSTR(input_record,cursor_pos,2))
/* halfword occupies 2 bytes - times product section is repeated*/

Some of the common data types, and their REXX conversions, are
shown in Figure 3. Note that the store clock value is the MVS TOD
clock, which is stored as 64 unsigned integers. This value contains the
time and date in microseconds since 1 January 1900. Normally, a
mapping macro will have sufficient documentation to indicate that a
field of data type CL8 is a store clock value. The 51st bit is equal to
1 microsecond, hence you need to ignore the last 1.5 bytes of the 8
bytes field. The microsecond value should be converted as below.

 21© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Please note that REXX uses nine significant digits. To convert 52 bits
of store clock into decimal, you need to increase the significant digits
to at least 16.

/* REXX */
hex_value = SUBSTR(C2X(stck,1,8)) /*convert char leng 8 to hexadecimal*/
Hex_mic_sec = SUBSTR(hex_value,1,13) /* truncate last 1.5 bytes */
NUMERIC DIGITS 2Ø /* Increase the precision */
Micro_sec = X2D(Hex_mic_sec) /* value in micro seconds */

Assembler Comments REXX conversion

F This is float data type C2D(SUBSTR(record,offset,4))

H This is halfword data type C2D(SUBSTR(record,offset,2))

X This is hexadecimal value C2D(SUBSTR(record,offset,1))

XL4 This is hexadecimal value C2D(SUBSTR(record,offset,1))

XL8 Hexadecimal value of 8 bytes. NUMERIC DIGITS 50

A This variable contains the C2X(SUBSTR(record,offset,4))

C This is character data type SUBSTR(record,offset,1))

CL4 This is character data type SUBSTR(record,offset,4))

CL8 This variable sometimes SUBSTR(record,offset,8)

0F, 0H, Any data type start with zero No conversion required

data type

It could be store clock value C2D(SUBSTR(record,offset,8))

Address value with length 4

with length 4

represents character of length
8 and sometimes contains
store clock value

See below for store
clock conversion

0CL20, etc. indicates duplication factor.
This is a kind of group level field

Figure 3: Common data types and REXX conversions

 22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

For formatting DB2 trace records, it is not usually necessary to
convert the store clock value to date and time. However, if you do need
to convert store clock value from binary form to timestamp format,
you can use the procedure given at the end of this article.

FORMATTING TRACE RECORDS

The following steps will help you to format trace records using
REXX.

Formatting the trace header

SMF header is mapped by DSNDQWAS.

* SMF COMMON HEADER MAPPING MACRO FOR ACCOUNTING (SMF 1Ø1)
SM1Ø1LEN DS XL2 SM1Ø1 TOTAL LENGTH
SM1Ø1SGD DS XL2 ZZ BYTES
SM1Ø1FLG DS XL1 SYSTEM INDICATOR
SM1Ø1RTY DS XL1 RECORD TYPE X'65'
SM1Ø1TME DS XL4 TIME SMF MOVED RECORD
SM1Ø1DTE DS XL4 DATE SMF MOVED RECORD
SM1Ø1SID DS CL4 SYSTEM ID (SID)
SM1Ø1SSI DS CL4 SUBSYSTEM ID
SM1Ø1STF DS XL1 RESERVED
SM1Ø1RI DS CL1 RESERVED
SM1Ø1SQ DS ØXL4 RESERVED
SM1Ø1BUF DS XL4 TEMPORARY POINTER TO BUFFER AREA

The four bytes long RDW, which contains SM101LEN and
SM101SGD, will not be available to REXX if you use DFSORT to
extract trace records. Therefore, the SMF header, in essence, starts
from field SMF101FLG. Some useful fields are shown in Figure 4.

If you use DSN1SDMP to extract your trace records from OP buffers
into an output dataset, you won’t see the IFI header because this
header is only 4 bytes (fullword field) and contains the total length of
the complete trace record. This means there is no formatting required
for the header part.

Formatting the self-defining section

The self-defining section is placed immediately after the header. If
you use DFSORT to extract SMF records, then the self-defining
section would start on column position 25 and, in the case of

 23© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

DSN1SDMP, you would find the very first field in the output dataset
is the start of the self-defining section.

The self-defining section consists of numerous pointer triplets. A
pointer triplet consists of three fields – offset (full word), length (half
word), and number of times repeated (half word). The first triplet field
in the self-defining section contains the offset to the product section.
Note that four bytes (to compensate for RDW) have to be subtracted
from the offset to arrive at the actual offset. One is also added to get
the actual start position because the start position is always one more
than the actual offset value.

Formatting the product section

The product section can contain various headers, depending on the
TDATA parameter. The product section contains a standard header,
followed by any other headers. The standard header contains Resource

Figure 4: Some useful fields

Column Field Assembler Possible REXX Comments

2 SM101RTY XL1 C2D(SUBSTR(rec,2,1)) Record types

3 SM101TME XL4 C2D(SUBSTR(rec,3,4)) Needs further

7 SM101DTE XL4 Var =C2X(SUBSTR(rec,7,4)) This field contains

11 SM101SID CL4 SUBSTR(rec,11,4) MVS system ID

15 SM101SSI CL4 SUBSTR(rec,15,4) DB2 subsystem ID

position name conversiondata type

 could be 100-102

conversion into
hh:mm:ss.nn format
Field contains time in

 msecs since midnight

Var1 = SUBSTR(Var,1,7)

Date=X2D(Var1) (julian date)

Julian date in packed

decimal format

 24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Manager ID (RMID), IFCID, number of self-defining sections, etc.
The standard header is mapped by macro DSNDQWHS.

QWHSLEN DS XL2 LENGTH OF THE STANDARD HEADER
QWHSTYP DS XL1 HEADER TYPE
QWHSRMID DS XL1 RESOURCE MANAGER ID
QWHSIID DS XL2 IFCID
QWHSRELN DS ØXL2 RELEASE NUMBER AREA
QWHSNSDA DS XL1 NUMBER OF SELF-DEFINING AREAS
.
.
QWHSLUCC DS FL2 COMMIT COUNT
QWHSEND DS ØF END OF STANDARD HEADER

The table in Figure 5 shows some useful fields. There are many other
fields that are useful, and this is documented in the macro itself. You
could verify various fields in the product section (eg validate FCID)
before moving on to format the rest of the record.

values indicate

 header type:
 1 - standard
 2 - correlation

 4 - trace
8 - cpu
16 - distributed

32 - data sharing

number of self-
 defining sections

record contains

Figure 5: Useful fields

Start Field Assembler Possible REXX Comments

3 QWHSTYP XL1 C2D(SUBSTR(rec,3,1)) The following

5 QWHSIID XL2 C2D(SUBSTR(rec,5,2) IFCID

7 QWHSNSDA XL1 C2D(SUBSTR(rec,7,1) This field contains

position data type conversionname

 the trace

 25© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Formatting remaining self-defining sections

The accounting trace record (IFCID 3) contains multiple data sections
and the actual number of data sections can vary. Use macro
DSNDQWA0 to format the self-defining section of accounting trace
records (IFCID 3). Collect the pointers to all required data sections
and calculate the actual start position in the record (subtract 4 bytes for
RDW and add one to position the cursor). Similarly, if you find that
you have multiple data sections, then you need to search for the
appropriate mapping macro. Normally, most of the performance trace
records have only one data section, but there are exceptions to this.

Formatting the data sections

Once you hook on to the correct start position of the data section, you
need to get help from the documentation in member DSNWMSGS
and mapping macro DSNDQ* provided by IBM. With a little practice,
you will find it easy to format the data section using REXX or
COBOL.

Generating customized reports

After formatting all the desired fields, you can create customized
reports. The REXX code given below is only a sample and does not
contain any error-checking logic.

/* REXX */
"ALLOC DD(INP) DS('input file (sortout from dfsort)') SHR REU"
"ALLOC DD(OUP) DS('output report') SHR REU"
 CNT = Ø
 /* WRITE HEADER */
 CALL WRITE_HEADER
 /* START PROCESSING */
DO FOREVER
 "EXECIO 1 DISKR INP"
 IF RC > Ø THEN LEAVE
 PARSE PULL INPUT_REC
 I = 1
 OFFSET = 1
 CALL DSNDQWAS /* MAP SMF HEADER */
 IF SM1Ø1RTY = 1Ø1 & SM1Ø1SSI = 'DB2A' THEN /* CHECK SMF REC TYPE */
 DO
 CALL DSNDQWAØ /* MAP SELF-DEFINING SECT */
 OFFSET = QWAØ1PSO - 4 + 1

 26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 CALL DSNDQWHS /* MAP STANDARD HEADER */
 CALL DSNDQWHC /* MAP CORRELATED HEADER */
 OFFSET = QWAØ1R1O - 4 + 1
 IF QWHSIID = 3 THEN
 DO
 CALL DSNDQWAC /* MAP ACCOUNTING SECTION */
 CALL WRITE_REPORT
 END
 END
END
"EXECIO Ø DISKW OUP (STEM INL. FINIS"
"EXECIO Ø DISKR INP (STEM INL. FINIS"
"FREE DD(INP)"
"FREE DD(OUP)"
EXIT

DSNDQWAS: /* MAP SMF HEADER */
OFFSET = OFFSET + 1
/* SM1Ø1RTY DS XL1 RECORD TYPE X'65' OR 1Ø1 */
SM1Ø1RTY = C2D(SUBSTR(INPUT_REC,OFFSET,1))
OFFSET = OFFSET + 1
/* SM1Ø1TME DS XL4 TIME SMF MOVED RECORD */
SM1Ø1TME = C2D(SUBSTR(INPUT_REC,OFFSET,4))
CALL GET_FMT_TIME
OFFSET = OFFSET + 12
/* SM1Ø1SSI DS CL4 SUBSYSTEM ID */
SM1Ø1SSI = SUBSTR(INPUT_REC,OFFSET,4)
OFFSET = OFFSET + 1Ø
/* TOTAL LENGTH = 28 */
RETURN

DSNDQWAØ: /* MAP SELF-DEFINING SECT */
/* QWAØ1PSO DS AL4 OFFSET TO THE PRODUCT SECTION */
QWAØ1PSO = C2D(SUBSTR(INPUT_REC,OFFSET,4))
OFFSET = OFFSET + 4
OFFSET = OFFSET + 4
/* QWAØ1R1O DS AL4 OFFSET TO THE ACCOUNTING SECTION */
QWAØ1R1O = C2D(SUBSTR(INPUT_REC,OFFSET,4))
OFFSET = OFFSET + 78
RETURN
DSNDQWHS: /* MAP STANDARD HEADER */
OFFSET = OFFSET + 4
/* QWHSIID DS XL2 IFCID */
QWHSIID = C2D(SUBSTR(INPUT_REC,OFFSET,2))
OFFSET = OFFSET + 8
/* QWHSSSID DS CL4 SUBSYSTEM NAME */
QWHSSSID = SUBSTR(INPUT_REC,OFFSET,4)
OFFSET = OFFSET + 64
/* TOTAL LENGTH = 76 */
RETURN

 27© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

DSNDQWHC: /* MAP CORRELATED HEADER */
OFFSET = OFFSET + 24
/* QWHCCN DS CL8 CONNECTION NAME */
QWHCCN = SUBSTR(INPUT_REC,OFFSET,8)
OFFSET = OFFSET + 8
/* QWHCPLAN DS CL8 PLAN NAME */
QWHCPLAN = SUBSTR(INPUT_REC,OFFSET,8)
OFFSET = OFFSET + 42
/* TOTAL LENGTH = 74 */
RETURN

DSNDQWAC: /* MAP ACCOUNTING DATA SECTION */
/* QWACBSC DS XL8 CLASS 1 BEGINNING STORE CLOCK VALU */
NUMERIC DIGITS 2Ø
QWACBSC = C2X(SUBSTR(INPUT_REC,OFFSET,8)) /*CONVERT INTO HEX VALUE*/
QWACBSC = X2D(SUBSTR(QWACBSC,1,13)) /*ELIMINATE 1.5 BYTES */
OFFSET = OFFSET + 8
/* QWACESC DS XL8 CLASS 1 ENDING STORE CLOCK VALU */
QWACESC = C2X(SUBSTR(INPUT_REC,OFFSET,8)) /*CONVERT INTO HEX VALUE */
QWACESC = X2D(SUBSTR(QWACESC,1,13)) /*ELIMINATE 1.5 BYTES */
OFFSET = OFFSET + 8
ELAPSED_TIME = (QWACESC - QWACBSC) /1ØØØØØØ
/* QWACBJST DS XL8 BEGINNING TCB CPU TIME FROM MVS (CLASS 1)*/
QWACBJST = C2X(SUBSTR(INPUT_REC,OFFSET,8)) /*CONVERT INTO HEX VALUE*/
QWACBJST = X2D(SUBSTR(QWACBJST,1,13)) /*ELIMINATE 1.5 BYTES */
OFFSET = OFFSET + 8
/* QWACEJST DS XL8 ENDING TCB CPU TIME IN ALL ENVIRONMENTS */
QWACEJST = C2X(SUBSTR(INPUT_REC,OFFSET,8)) /*CONVERT INTO HEX VALUE*/
QWACEJST = X2D(SUBSTR(QWACEJST,1,13)) /*ELIMINATE 1.5 BYTES */
OFFSET = OFFSET + 8
TCB_TIME = (QWACEJST - QWACBJST)/1ØØØØØØ
OFFSET = OFFSET + 26Ø
/* TOTAL LENGTH = 292 */
RETURN

GET_FMT_TIME:
 RUN_HH = SM1Ø1TME % 36ØØØØ
 RUN_HH = RIGHT(RUN_HH,2,'Ø')
 RUN_MIN = SM1Ø1TME % 6ØØØ - RUN_HH*6Ø
 RUN_MIN = RIGHT(RUN_MIN,2,'Ø')
 RUN_SEC = SM1Ø1TME % 1ØØ - RUN_HH *36ØØ - RUN_MIN*6Ø
 RUN_SEC = RIGHT(RUN_SEC,2,'Ø')
 RUN_FMT_TIME = RUN_HH||':'||RUN_MIN||':'||RUN_SEC
RETURN

WRITE_HEADER:
 VAR = 'RUN TIME CONECTION PLAN ELAPSED TIME TCB TIME'
 PUSH VAR
 "EXECIO 1 DISKW OUP"

 28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 VAR = ' '
 PUSH VAR
 "EXECIO 1 DISKW OUP"
RETURN

WRITE_REPORT:
 CNT = CNT + 1
 VAR = RUN_FMT_TIME||' '||LEFT(QWHCCN,12,' ')||QWHCPLAN||' '||,
 RIGHT(ELAPSED_TIME,13,' ')||RIGHT(TCB_TIME,13,' ')
 PUSH VAR
 "EXECIO 1 DISKW OUP " /* WRITE THE REPORT */
RETURN

CONVERTING STORE CLOCK VALUE INTO TIMESTAMP

You can plug the following procedure into your REXX code:

Time_stamp = #STCKCONV(store_clock)

and use it as follows as follows:

#STCKCONV: Procedure
NUMERIC DIGITS 2Ø /* increase significant digits to 2Ø */
stck = arg(1)
secs = x2d(substr(stck,1,13)) /* Ignore last 1.5 bytes */
micsec = ((secs / 1ØØØØØØ) - (secs % 1ØØØØØØ))* 1ØØØØØØ
micsec = trunc(micsec,Ø)
secs = (secs - micsec)%1ØØØØØØ
year = secs / (36ØØ*24*365.25)
addon = trunc(year,Ø) / 4 - trunc(year,Ø) % 4 /* take care of leap yr*/
jd = (year - trunc(year,Ø)) * 365.25 + addon
if addon = Ø then jd = jd + 1 /* leap year */
hours = (jd - trunc(jd,Ø)) * 24
min = (hours - trunc(hours,Ø)) * 6Ø
sec = (min - trunc(min,Ø))*6Ø
prec = sec - trunc(sec,Ø)
if prec > Ø.98 then sec = sec + 1
time = right('ØØ'||trunc(hours,Ø),2) || '.' || right('ØØ'||,
 trunc(min,Ø),2) || '.' || right('ØØ'||trunc(sec,Ø),2) || '.' ||micsec
NUMERIC DIGITS 9 /* restore default significant digits */
year = trunc(year,Ø) + 19ØØ /* add 19ØØ-Ø1-Ø1 */
jd = trunc((jd+1),Ø) /* to current date */
jdcal = 'Ø31Ø59Ø9Ø12Ø1511812122432733Ø4334365'
jdcal_leap = 'Ø31Ø6ØØ911211521822132442743Ø5335366'
mon = 1
prev_mon_days = Ø
do forever
 start_pos = (mon-1)*3 + 1

 29© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 if addon = Ø then days = substr(jdcal_leap,start_pos,3)
 else days = substr(jdcal,start_pos,3)
 if jd < days | jd = days then
 do
 days = jd - prev_mon_days
 leave
 end
 mon = mon + 1
 prev_mon_days = days
end
date = year|| '-' || Right('ØØ'||mon,2) || '-' || Right('ØØ'||days,2)
return (date || "-" || time)

Venkat Pillay
DBA (USA) © Xephon 1999

Timestamp checking program – part 2

This month we conclude the program that performs a timestamp
‘health check’ on a given group of load modules.

CheckDBRM:
 /* Check whether the DBRM matches the package (ie catalog) T/S */
 ADDRESS ISPEXEC "LMMFIND DATAID("dbrmdsid") MEMBER("prev_package")",
 "STATS(YES)"
 if rc > 8 then do
 say "Error executing LMMFIND for DBRM member" name.i
 zispfrc = 8
 signal exit
 end
 if rc = 8 then return
 if rc = Ø then found_dbrm = "YES"
 ADDRESS ISPEXEC "LMGET DATAID("dbrmdsid") MODE(INVAR)",
 "DATALOC(DBRMLINE) DATALEN(LENVAR) MAXLEN(3276Ø)"
 get_rc = rc
 if get_rc > 8 then do
 say "Error during LMGET for load module" prev_package
 say "Return code = " rc
 zispfrc = 8
 signal exit
 end
 dbrm_timestamp = substr(dbrmline,25,8)
 do j = 1 to pkg_count - 1
 if pkg_timestamp.j = dbrm_timestamp then do
 match_dbrm = "YES"

 30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 return
 end
 end
return

DisplayResults:
 /* Print out results if necessary based on errlvl indicator */
 /* This logic is a bit messy due to the permutations and */
 /* combinations of parameters and events possible - apologies */
 if (errlvl = "E" & match_load = "NO" & found_load = "YES") |,
 ((found_load = "NO" | match_load = "NO" |,
 found_dbrm = "NO" | match_dbrm = "NO") & errlvl = "W"),
 then say prev_package
 if found_load = "NO" then do
 if errlvl = "W" then,
 say " Load module containing program not found"
 end
 else if match_load = "NO" then,
 say " No package timestamp matched in load module" module
 if (found_load = "YES" & match_load = "NO") | errlvl = "W" then do
 if found_dbrm = "NO" then say " DBRM not found"
 else if match_dbrm = "NO" then,
 say " DBRM timestamp does not match any package"
 if match_load_dbrm = "NO" &,
 found_load = "YES" &,
 found_dbrm = "YES" then,
 say " Load module and DBRM timestamps do not match"
 else if found_load = "YES" & found_DBRM = "YES" &,
 match_load = "NO" then,
 say " Load module and DBRM timestamps match"
 end
return

BuildXREF:
 /* Create module cross reference table */
 ADDRESS ISPEXEC "TBCREATE MODXREF KEYS(CSECT MODULE)",
 "NOWRITE REPLACE"
 if rc > 4 then do
 say "Error creating MODXREF ISPF table. Return code =" rc
 zispfrc = 8
 signal exit
 end
 /* Read AMBLIST listing */
 /* "ALLOC F(AMBLIST) DA(USER.PRINT) SHR REUSE" */
 "EXECIO * DISKR AMBLIST (STEM line. FINIS"
 if rc > Ø then do
 say "Error reading from AMB listing. Return code =" rc
 zispfrc = 8
 signal exit
 end
 start = "NO"

 31© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 db2_module = "NO"
 csect_num = 1
 do i = 1 to line.Ø
 if pos("ALPHABETICAL CROSS-REFERENCE",line.i) > Ø then do
 parse var line.i module .
 if datatype(module,"ALPHA") <> "1" then exit
 if start <> "YES" then do
 csect.csect_num = module
 csect_num = csect_num + 1
 end
 start = "YES"
 end
 if pos("** END OF MAP",line.i) > Ø then do
 start = "NO"
 /* if load module contains DB2 interface module then */
 /* insert into CSECT list in cross reference table for */
 /* this load module */
 if db2_module = "YES" | appl = "PE" then do
 do j = 1 to csect_num - 1
 /* say " " csect.j */
 csect = csect.j
 ADDRESS ISPEXEC "TBADD MODXREF"
 tbadd_rc = rc
 if tbadd_rc <> Ø then do
 say "Error adding row with module="module,
 "csect="csect "to ISPF table"
 say "Return code =" tbadd_rc
 zispfrc = 8
 signal exit
 end
 end
 end
 csect. = ""
 csect_num = 1
 db2_module = "NO"
 end
 if start = "YES" then do
 parse var line.i csect_name .
 /* Skip over unwanted CSECTs and flag whether module */
 /* contains DB2. */
 if csect_name = "1" |,
 csect_name = "Ø" |,
 csect_name = "-" then parse var line.i . csect_name .
 if csect_name = "DSNHLI" then db2_module = "YES"
 if csect_name = "SYMBOL" |,
 csect_name = "" |,
 csect_name = "ALPHABETICAL" |,
 substr(csect_name,1,3) = "DSN" |,
 substr(csect_name,1,3) = "DFH" |,
 substr(csect_name,1,3) = "IGZ" |,
 substr(csect_name,1,3) = "ILB" |,

 32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 substr(csect_name,1,3) = "PLI" then iterate
 found_csect = "NO"
 /* Check whether we already know about this csect */
 /* If not then add it to the list for this module */
 do j = 1 to csect_num
 if csect.j = csect_name then do
 found_csect = "YES"
 leave
 end
 end
 if found_csect = "NO" then do
 csect.csect_num = csect_name
 csect_num = csect_num + 1
 end
 end
 end
return

AllocLibs:

 /* A lot of the naming here is site-specific. Be sure to alter */
 /* this to match your site's naming standards */

 if appl = "EL" then env = 'CPSR'
 else env = 'COMM'
 loadlib.Ø = 4
 loadlib.1 = "TLM."env".ACPT.CICSLOAD"
 loadlib.2 = "TLM."env".PROD.CICSLOAD"
 loadlib.3 = "TLM."env".ACPT.LOADLIB"
 loadlib.4 = "TLM."env".PROD.LOADLIB"
 if appl = "PE" then do
 loadlib.Ø = 2
 loadlib.1 = "APE.ACPT.LOADLIB"
 loadlib.2 = "PPE.PROD.LOADLIB"
 end
 dsname = ""
 do i = 1 to loadlib.Ø
 dsname = dsname||"'"||loadlib.i||"' "
 end
 "ALLOC F(LOADSCAN) DA("dsname") SHR REUSE"
 dbrmlib.Ø = 2
 dbrmlib.1 = "TLM."env".ACPT.DBRM"
 dbrmlib.2 = "TLM."env".PROD.DBRM"
 if appl = "PE" then do
 dbrmlib.Ø = 2
 dbrmlib.1 = "APE.M3Ø13J.DBRMLIB"
 dbrmlib.2 = "PPE.M3Ø13J.DBRMLIB"
 end
 dsname = ""
 do i = 1 to dbrmlib.Ø
 dsname = dsname||"'"||dbrmlib.i||"' "

 33© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 end
 "ALLOC F(DBRMSCAN) DA("dsname") SHR REUSE"
 ADDRESS ISPEXEC "LMINIT DATAID(LOADDSID) DDNAME(LOADSCAN) ENQ(SHR)"
 if rc <> Ø then do
 say "Error executing load library LMINIT. Return code =" rc
 zispfrc = 8
 signal exit
 end
 ADDRESS ISPEXEC "LMINIT DATAID(DBRMDSID) DDNAME(DBRMSCAN) ENQ(SHR)"
 if rc <> Ø then do
 say "Error executing DBRM library LMINIT. Return code =" rc
 zispfrc = 8
 signal exit
 end
 ADDRESS ISPEXEC "LMOPEN DATAID("loaddsid") OPTION(INPUT)"
 if rc <> Ø then do
 say "Error executing load library LMOPEN. Return code =" rc
 zispfrc = 8
 signal exit
 end
 ADDRESS ISPEXEC "LMOPEN DATAID("dbrmdsid") OPTION(INPUT)"
 if rc <> Ø then do
 say "Error executing DBRM library LMOPEN. Return code =" rc
 zispfrc = 8
 signal exit
 end
return

RunChecks:
 found_load = "NO"
 found_dbrm = "NO"
 match_load = "NO"
 match_dbrm = "NO"
 match_load_dbrm = "NO"
 call CheckDBRM
 if static_flag = "Y" then do
 /* If we are assuming static linking, then find each load */
 /* module that contains the current package and check it */
 ADDRESS ISPEXEC "TBVCLEAR MODXREF"
 csect = prev_package
 module = ""
 ADDRESS ISPEXEC "TBSARG MODXREF NEXT NAMECOND(CSECT,EQ)"
 ADDRESS ISPEXEC "TBSCAN MODXREF"
 scan_rc = rc
 do until (scan_rc > Ø)
 found_load = "NO"
 match_load = "NO"
 match_load_dbrm = "NO"
 if scan_rc = Ø then call CheckLoad
 call DisplayResults
 ADDRESS ISPEXEC "TBSCAN MODXREF"

 34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 scan_rc = rc
 end
 if scan_rc > 8 then do
 say "Error executing TBSCAN. Return code =" scan_rc
 zispfrc = 8
 ADDRESS ISPEXEC (VPUT ZISPFRC)
 exit 8
 end
 end
 else do
 module = prev_package
 call CheckLoad
 call DisplayResults
 end
return

JCL

//T5MKISPF JOB ,'ISPF BAT',NOTIFY=&SYSUID,MSGCLASS=X,CLASS=B,REGION=4M
//*
//* Generate AMBLIST commands for selected members
//*
//GENAMB EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø
//ISPPROF DD DSN=&&PROFILE,DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(LRECL=8Ø,BLKSIZE=2344Ø,RECFM=FB),
// SPACE=(TRK,(1,1,1))
//ISPPLIB DD DSN=SYS1.PLIB,DISP=SHR
//ISPSLIB DD DSN=SYS1.SLIB,DISP=SHR
// DD DSN=T5MK.USER.ISPSLIB,DISP=SHR
// DD DSN=P1DP.PROD.ISPSLIB,DISP=SHR
//ISPMLIB DD DSN=SYS1.MLIB,DISP=SHR
//ISPLLIB DD DSN=SYS1.LLIB,DISP=SHR
// DD DSN=SYS2.PUBLIC.ISPLLIB,DISP=SHR
//ISPTLIB DD DSN=SYS1.TLIB,DISP=SHR
//SYSPROC DD DSN=SYS1.CLIB,DISP=SHR
// DD DSN=T5MK.USER.CLIST,DISP=SHR
// DD DSN=P1DP.PROD.CLIST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//AMBCMD DD DSN=&&AMBCMD,DISP=(NEW,PASS),SPACE=(TRK,(1Ø,1Ø)),
// DCB=(RECFM=FB,LRECL=8Ø,BLKSIZE=Ø),UNIT=SYSDA
//ISPLOG DD DUMMY
//SYSIN DD DUMMY
//SYSTSIN DD *
 ISPSTART CMD(GENAMB AM)
//*
//* Run AMBLIST for selected members. Make sure that the LOADLIBx
//* datasets match those defined in the GENAMB REXX EXEC.
//*
// IF (GENAMB.RC EQ Ø) THEN

 35© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

//AMBLIST EXEC PGM=AMBLIST,COND=(Ø,NE)
//SYSPRINT DD DSN=&&AMBLIST,DISP=(NEW,PASS),
// SPACE=(CYL,(5Ø,5Ø),RLSE),UNIT=SYSDA,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=Ø)
//LOADLIB1 DD DSN=TLM.COMM.ACPT.CICSLOAD,DISP=SHR
//LOADLIB2 DD DSN=TLM.COMM.PROD.CICSLOAD,DISP=SHR
//LOADLIB3 DD DSN=TLM.COMM.ACPT.LOADLIB,DISP=SHR
//LOADLIB4 DD DSN=TLM.COMM.PROD.LOADLIB,DISP=SHR
//SYSIN DD DSN=&&AMBCMD,DISP=(OLD,DELETE)
//*
//* Run timestamp checks. This is the only step required if
//* you are not using static linking.
//*
// IF (AMBLIST.RC EQ Ø) THEN
//TSCHECK2 EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø
//ISPPROF DD DSN=&&PROFILE,DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(LRECL=8Ø,BLKSIZE=2344Ø,RECFM=FB),
// SPACE=(TRK,(1,1,1))
//ISPPLIB DD DSN=SYS1.PLIB,DISP=SHR
//ISPSLIB DD DSN=SYS1.SLIB,DISP=SHR
// DD DSN=T5MK.USER.ISPSLIB,DISP=SHR
// DD DSN=P1DP.PROD.ISPSLIB,DISP=SHR
//ISPMLIB DD DSN=SYS1.MLIB,DISP=SHR
//ISPLLIB DD DSN=SYS1.LLIB,DISP=SHR
// DD DSN=SYS2.PUBLIC.ISPLLIB,DISP=SHR
//ISPTLIB DD DSN=SYS1.TLIB,DISP=SHR
//SYSPROC DD DSN=SYS1.CLIB,DISP=SHR
// DD DSN=T5MK.USER.CLIST,DISP=SHR
// DD DSN=P1DP.PROD.CLIST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//AMBCMD DD DSN=&&AMBCMD,DISP=(NEW,PASS),SPACE=(TRK,(1Ø,1Ø)),
// DCB=(RECFM=FB,LRECL=8Ø,BLKSIZE=Ø),UNIT=SYSDA
//ISPLOG DD DUMMY
//SYSIN DD DUMMY
//SYSTSIN DD *
 ISPSTART CMD(TSCHECK2 DB2A AM E Y)
//*
// ENDIF
//*
//* Print out AMBLIST output if anything goes wrong.
//*
// IF (AMBLIST.RC NE Ø) THEN
//IEBGENR1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&AMBLIST,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
// ENDIF
// ENDIF

Matthew Keene (Australia) © Xephon 1999

 36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Quick table information

The REXX procedure TIN gives quick DB2 table information,
column information, index information, and referential integrity
information, and generates a report. Figure 1 shows the TIN Entry
panel, where ‘DB2’ is the subsystem identifier and ‘Creator’ and
‘Table’ are DB2 Catalog search conditions.

 Table Information

 DB2 : DSNN
 Creator : NADI
 Table : TLØØ%

 Enter:Continue PF3:End

Figure 1: Entry panel

The Selection Result panel (shown in Figure 2) appears when you
press ‘Enter’ on the Entry panel. The panel shows the Selection result
for the input search conditions.

 ———————————————————————————— Selection Result —————————— Row 1 to 9 of 9

 Command ===> Scroll ===> PAGE

 ——

 Valid cmd: S More Information C Column I Index R Ref.Integrity D Document

 Enter Valid cmd and press Enter PF3 Return

 ——

 cmd Creator Table Dbname Tsname Card

 - NADI TLØØ1 DBTTEMP TSØØ1 1.Ø67.495

 - NADI TLØØ2 DBTTEMP TSØØ2 853.222

 - NADI TLØØ3 DBTTEMP TSØØ3 196.116

 - NADI TLØØ4 DBTTEMP TSØØ4 4.49Ø

 - NADI TLØØ5 DBTTEMP TSØØ5 1.639

 - NADI TLØØ6 DBTTEMP TSØØ6 6.278

 - NADI TLØØ7 DBTTEMP TSØØ7 1.381

 - NADI TLØØ8 DBTTEMP TSØØ8 1Ø.71Ø

 - NADI TLØØ9 DBTTEMP TSØØ9 8

Figure 2: Selection Result panel

 37© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

The valid commands in the ‘cmd’ field are:

• S – additional table information (detail information).

• C – detail column information.

• I – index information.

• R – referential integrity information.

• D – document report.

The components of TIN are as follows:

• TIN is the driver procedure.

• TINM0 is the main menu.

• TINM1 is the table selection result panel.

• TINM2 is the detail table information.

• TINM3 is the column selection result panel.

• TINM4 is the detail column information.

• TINM5 is the index selection result panel.

• TINM6 is the additional index information.

• TINM7 is the referential integrity information.

• TIN00 is the TIN message.

• PTINF01 is PL/I source code (table detail).

• PTINF02 is PL/I source code (column detail).

• PTINF03 is PL/I source code (index detail).

• PTINF04 is PL/I source code (referential integrity).

• PTINF05 is PL/I source code (table document report).

TIN

/* REXX */
/* Table information */
/* trace r */
 zpfctl = 'OFF'

 38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 Y=MSG("OFF")
 address ispexec 'vput (zpfctl) profile'
 Call Aloc
 cur='cre'
 TOP:
 address ispexec "display panel(TINMØ) cursor("CUR")"
 if rc=8 then do
 Call Free_proc
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.TABLE'"
 exit
 end
 /* Check input parameters */
 if DB2=' ' then do
 message = 'Enter DB2 ssid. !'
 Call Error 'DB2'
 end
 if cre=' ' & tab=' ' then do
 message='At least one Catalog search field must be entered.'
 Call Error 'cre'
 end
 parm=substr(cre,1,8)||substr(tab,1,18)
 ADDRESS TSO
 QUEUE "RUN PROGRAM(PTINFO1) PLAN(PTINFO1),
 LIBRARY ('SKUPNI.BATCH.LOADLIB'),
 PARMS ('/"parm"')"
 QUEUE "END "
 "DSN SYSTEM("DB2")"
 if rc=12 then do
 "delstack"
 Call Free_proc
 Call Aloc
 message = 'Error. 'DB2||' ssid is not valid. !'
 Call Error 'DB2'
 end
 "EXECIO * DISKR SYSPRINT (STEM ROW."
 if row.2 = 'NO CATALOG ENTRIES FOUND' then do
 Call Free_proc
 Call Aloc
 message = 'No catalog entries found, check Search Fields.'
 Call Error 'cre'
 end
 else do
 address ispexec 'tbcreate "tlist" names(cre1 tab1 dbn1 tsn1 card)'
 do i=2 to row.Ø BY 3
 cre1= word(row.i,5)
 tab1= word(row.i,4)
 dbn1= word(row.i,2)
 tsn1= word(row.i,3)
 card= right(word(row.i,6),14)
 address ispexec 'tbadd "tlist"'
 end

 39© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 address ispexec 'tbtop "tlist"';
 Call Display_table
 end
 DIS:
 Select
 when(cmd='S') THEN DO
 Call Table_detail
 Call Display_table
 Signal DIS
 end
 when(cmd='C') THEN DO
 Call Columns
 Call Display_table
 Signal DIS
 end
 when(cmd='I') THEN DO
 Call Indexes
 Call Display_table
 Signal DIS
 end
 when(cmd='R') THEN DO
 Call RI
 Call Display_table
 Signal DIS
 end
 when(cmd='D') THEN DO
 Call Document
 Call Display_table
 Signal DIS
 end
 otherwise rc=Ø
 End
 Call Free_proc
 address ispexec 'tbend "tlist"'
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.TABLE'"
 Call Aloc
 Signal TOP
 Aloc:
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.TABLE'"
 "ALLOC DD(SYSPRINT) DSN('"SYSVAR(SYSUID)".DB2.TABLE') SPACE(24 8),
 TRACK MOD UNIT(339Ø) RECFM(F,B) LRECL(254) BLKSIZE(254) ,
 F(SYSPRINT) CATALOG REUSE "
 Return
 Error:
 ARG cur_par
 cur=cur_par
 address ispexec "setmsg msg(tinØØ1)"
 signal top
 Return
 Free_proc:
 "execio Ø diskr sysprint (finis"
 address tso "free f(sysprint)"

 40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 Return
 Display_table:
 address ispexec 'tbdispl "tlist" panel(TINM1)'
 if rc=8 then do
 Call Free_proc
 address ispexec 'tbend "tlist"'
 Call Aloc
 signal top
 end
 Return
 Check_dsn:
 if rc>Ø then do
 message=file||' not found.'
 address ispexec "setmsg msg(tinØØ1)"
 Call Free_proc
 Call Aloc
 address ispexec 'tbend "tlist"'
 signal top
 end
 Return
 Table_detail:
 ADDRESS ISPEXEC 'ADDPOP ROW(2) COLUMN(7)'
 crtb=cre1||tab1
 do j=1 to row.Ø while (crtb<>word(row.j,5)||word(row.j,4))
 end
 j=j+1
 tv.1='-'
 tv.2=cre1
 tv.3=tab1
 jj=j+1
 tv.4=subword(row.jj,1)
 tv.5=tsn1
 tv.6=dbn1
 do v=7 to 29
 tv.v=word(row.j,v-6)
 end
 do j=1 to 29
 dti = tv||j
 INTERPRET dti '= strip(tv.j)'
 end
 address ispexec "display panel(TINM2)"
 ADDRESS ISPEXEC "REMPOP"
 Return
 Columns:
 Call Free_proc
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.COLUMNS'"
 "ALLOC DD(SYSPRINT) DSN('"SYSVAR(SYSUID)".DB2.COLUMNS'),
 SPACE(24 8) TRACK MOD UNIT(339Ø) RECFM(F,B) LRECL(254),
 BLKSIZE(254) F(SYSPRINT) CATALOG REUSE "
 parm=substr(cre1,1,8)||substr(tab1,1,18)
 ADDRESS TSO
 QUEUE "RUN PROGRAM(PTINFO2) PLAN(PTINFO2),

 41© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 LIBRARY ('SKUPNI.BATCH.LOADLIB'),
 PARMS ('/"parm"')"
 QUEUE "END "
 "DSN SYSTEM("DB2")"
 "EXECIO * DISKR SYSPRINT (STEM col."
 tabinfo=cre1||'.'||tab1
 address ispexec 'tbcreate "clist",
 names(cname ctyp clen csca cnul crem)'
 ccmd=''
 do c=1 to col.Ø by 3
 cname= word(col.c,2)
 ctyp = word(col.c,3)
 clen = right(word(col.c,4),6)
 csca = right(word(col.c,5),5)
 cnul = word(col.c,6)
 crem = subword(col.c,7)
 address ispexec 'tbadd "clist"'
 end
 address ispexec 'tbtop "clist"';
 DISC:
 address ispexec 'tbdispl "clist" panel(TINM3)'
 if ccmd='S' then do
 Call Column_detail
 Signal DISC
 end
 Call Free_proc
 address ispexec 'tbend "clist"'
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.COLUMNS'"
 Return
 Column_detail:
 ADDRESS ISPEXEC 'ADDPOP ROW(1) COLUMN(13)'
 do k=1 to col.Ø while (cname<>word(col.k,2))
 end
 k=k+1
 col1 = cname
 col2 = crem
 col4 = cre1
 col5 = tab1
 col6 = strip(word(col.k,3))
 col7 = ctyp
 col8 = strip(clen)
 col9 = strip(csca)
 col1Ø= cnul
 col11= strip(word(col.k,2))
 col12= strip(word(col.k,4))
 col13= strip(word(col.k,5))
 col14= strip(subword(col.k,12))
 col16= strip(word(col.k,6))
 col17= strip(word(col.k,7))
 col18= strip(word(col.k,8))
 col19= strip(word(col.k,9))
 col2Ø= strip(word(col.k,1Ø))

 42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 col21= strip(word(col.k,11))
 k=k+1
 col3 = strip(subword(col.k,2))
 address ispexec "display panel(TINM4)"
 ccmd=''
 ADDRESS ISPEXEC "REMPOP"
 Return
 Indexes:
 Call Free_proc
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.INDEXES'"
 "ALLOC DD(SYSPRINT) DSN('"SYSVAR(SYSUID)".DB2.INDEXES'),
 SPACE(24 8) TRACK MOD UNIT(339Ø) RECFM(F,B) LRECL(254),
 BLKSIZE(254) F(SYSPRINT) CATALOG REUSE "
 parm=substr(cre1,1,8)||substr(tab1,1,18)
 ADDRESS TSO
 QUEUE "RUN PROGRAM(PTINFO3) PLAN(PTINFO3),
 LIBRARY ('SKUPNI.BATCH.LOADLIB'),
 PARMS ('/"parm"')"
 QUEUE "END "
 "DSN SYSTEM("DB2")"
 "EXECIO * DISKR SYSPRINT (STEM inx."
 tabinfo=cre1||'.'||tab1
 address ispexec 'tbcreate "ilist",
 names(iname icre iuni iing ired itio bp ityp)'
 icmd=''
 do i=2 to inx.Ø by 1
 if word(inx.i,1)='I' then do
 iname= word(inx.i,2)
 icre = word(inx.i,3)
 iuni = word(inx.i,4)
 iing = word(inx.i,5)
 ired = word(inx.i,6)
 itio = left(word(inx.i,7),6)
 bp = word(inx.i,8)
 ityp = word(inx.i,9)
 address ispexec 'tbadd "ilist"'
 end
 end
 address ispexec 'tbtop "ilist"';
 DISI:
 address ispexec 'tbdispl "ilist" panel(TINM5)'
 if icmd='S' then do
 Call Index_detail
 Signal DISI
 end
 Call Free_proc
 address ispexec 'tbend "ilist"'
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.INDEXES'"
 Return
 Index_detail:
 icmd=''
 ixinfo=icre||'.'||iname

 43© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 inic=iname||icre
 address ispexec 'tbcreate "klist",
 names(colname ordering colcard)'
 do i=1 to inx.Ø while (inic<>word(inx.i,2)||word(inx.i,3))
 end
 i=i+1
 do j=i to inx.Ø while (word(inx.j,1)='K')
 colname =word(inx.j,2)
 if word(inx.j,3)='D'
 then ordering='Desc'
 else ordering='Asc'
 colcard =right(word(inx.j,4),1Ø)
 address ispexec 'tbadd "klist"'
 end
 address ispexec 'tbtop "klist"';
 address ispexec 'addpop row(3) column(15)'
 address ispexec 'tbdispl "klist" panel(TINM6)'
 address ispexec 'rempop'
 address ispexec 'tbend "klist"';
 Return
 RI:
 Call Free_proc
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.RI'"
 "ALLOC DD(SYSPRINT) DSN('"SYSVAR(SYSUID)".DB2.RI'),
 SPACE(24 8) TRACK MOD UNIT(339Ø) RECFM(F,B) LRECL(8Ø),
 BLKSIZE(8Ø) F(SYSPRINT) CATALOG REUSE "
 parm=substr(cre1,1,8)||substr(tab1,1,18)
 ADDRESS TSO
 QUEUE "RUN PROGRAM(PTINFO4) PLAN(PTINFO4),
 LIBRARY ('SKUPNI.BATCH.LOADLIB'),
 PARMS ('/"parm"')"
 QUEUE "END "
 "DSN SYSTEM("DB2")"
 "EXECIO * DISKR SYSPRINT (STEM ri."
 address ispexec 'tbcreate "rlist",
 names(rship rcre rtab reln drule)'
 tabr=cre1||'.'||tab1
 rip=Ø
 ric=Ø
 do i=2 to ri.Ø
 rship= word(ri.i,1)
 if rship='P'
 then do
 if rip=Ø
 then rship='Parent table'
 else rship=' '
 rip=1
 end
 if rship='C'
 then do
 if ric=Ø
 then rship='Child table'

 44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 else rship=' '
 ric=1
 end
 rcre = word(ri.i,2)
 rtab = word(ri.i,3)
 reln = word(ri.i,4)
 drule= word(ri.i,5)
 if drule='R' then drule='Restrict'
 if drule='C' then drule='Cascade'
 if drule='N' then drule='Set Null'
 address ispexec 'tbadd "rlist"'
 end
 address ispexec 'tbtop "rlist"';
 address ispexec 'tbdispl "rlist" panel(TINM7)'
 address ispexec 'tbend "rlist"'
 Call Free_proc
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.RI'"
 Return
 Document:
 Call Free_proc
 ADDRESS TSO "DELETE '"SYSVAR(SYSUID)".DB2.DOC'"
 "ALLOC DD(SYSPRINT) DSN('"SYSVAR(SYSUID)".DB2.DOC'),
 SPACE(24 8) TRACK MOD UNIT(339Ø) RECFM(F,B) LRECL(13Ø),
 BLKSIZE(13ØØ) F(SYSPRINT) CATALOG REUSE "
 parm=substr(cre1,1,8)||substr(tab1,1,18)
 ADDRESS TSO
 QUEUE "RUN PROGRAM(PTINFO5) PLAN(PTINFO5),
 LIBRARY ('SKUPNI.BATCH.LOADLIB'),
 PARMS ('/"parm"')"
 QUEUE "END "
 "DSN SYSTEM("DB2")"
 "Execio * diskr Sysprint (stem doc. finis"
 address ispexec "browse dataset('"sysvar(sysuid)".DB2.doc')"
 Return

TINM0

)ATTR
 $ type(text) color(white) caps (off) hilite(reverse) intens(high)
 | type(text) color(white) hilite(reverse) intens(high)
 (type(text) color(yellow) hilite(reverse) intens(high)
) type(text) color(green) intens(high)
 _ type(input) color(red) intens(high) pad(_)
)BODY WINDOW(36,12)
+
$ Table Information
| + |
|) DB2 :_DB2 + |
|) Creator :_cre + |
|) Table :_tab +|
| + |

 45© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

(Enter:Continue PF3:End
)INIT
 if (&DB2 ¬= ' ')
 .attr (DB2) = 'pad(nulls)'
 if (&cre ¬= ' ')
 .attr (cre) = 'pad(nulls)'
 if (&tab ¬= ' ')
 .attr (tab) = 'pad(nulls)'
)PROC
 IF (.PFKEY = PFØ3) &PF3 = EXIT
 VPUT (TAB CRE DB2) PROFILE
)END

TINM1

)Attr Default(%+_)
 | type(text) intens(high) caps(on) color(yellow)
 $ type(output) intens(high) caps(off) color(yellow)
 ? type(text) intens(high) caps(on) color(green) hilite(reverse)
 # type(text) intens(high) caps(off) hilite(reverse)
 } type(text) intens(high) caps(off) color(white)
 [type(input) intens(high) caps(on) just(left)
] type(input) intens(high) caps(on) just(left) pad('-')
 ¬ type(output) intens(low) caps(off) just(asis) color(green)
)Body Expand(//)
%-/-/- ? Selection Result +%-/-/-
%Command ===>_zcmd / /%Scroll
===>_amt +
+———————————————————————————————————————
+Valid cmd:|S+More
Information|C+Column|I+Index|R+Ref.Integrity|D+Document
+Enter Valid cmd and press|Enter+
|PF3+Return
+———————————————————————————————————————
#cmd+ #Creator + #Table + #Dbname + #Tsname + #
Card+
)Model
]z+ ¬z + ¬z + ¬z + ¬z + ¬z
+
)Init
 .ZVARS = '(cmd cre1 tab1 dbn1 tsn1 card)'
 &amt = PAGE
 &cmd = ''
)Reinit
)Proc
)End

Editor’s note: this article will be continued next month.

Bernard Zver
Database Administrator
Informatika Maribor (Slovenia) © Xephon 1999

 46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

January 1995 – October 1999 index

Items below are references to articles that have appeared in DB2 Update since January 1995.
References show the issue number followed by the page number(s). Back-issues of DB2
Update are available back to Issue 15 (January 1994). See page 2 for details.

24-bit CAF applications 70.3-9
Accessing directory information 69.7
Active log status 77.3-9
Ageing data 80.3-8
ALTERing DSETPASS 77.35-38
Back-up/restore 57.22-48
Boot Strap Dataset (BSDS) 46.23-34
Buffer pool 50.9-23, 51.43-47, 54.12-40,

 58.39-47, 59.17-18, 66.3-18,
70.34-47, 71.35-47, 71.12-14

Buffer pool maintenance 65.22-37
CAF 70.3-9
Catalog 52.42
Catalog statistics 78.8-24, 79.15-23
Character data types 72.45-46
Check constraints 39.8-16
CHECKDATA 49.5
CICS 41.47, 44.19-20,

53.3, 53.28-32
CLIST 49.3, 56.3-8
COBOL 53.3-12, 59.27
Column descriptions 63.22-30
Command interface 64.3-21
Command panel 54.40-43
Convert plans to packages 68.41-47,

 69.29-47, 70.16-34
COPY 59.26-47
Coupling facility 55.27-29
CREATE clauses 72.9-24
Creating DB2 statements 78.3-8
Data copying 76.7-24
Data generator 61.36-47, 62.26-47,

 63.31-47, 64.38-47
Data sharing 50.5
Data warehouse 81.14-22, 83.43-47
Datasets 49.4
DB2 cloning 55.3-26, 56.20-44
DB2 for OS/2 41.3-9
DB2 UDB 62.14-15
DB2 Version 4.1 40.10-15,

42.33-42, 44.40-43

DB2 Version 4.2 43.32-35
DB2 Version 5 50.3, 57.21,

65.3-10, 76.3-6
DB2 Version 6 57.21, 72.3-8, 77.39-47
DB2 WWW 68.18-21
DB2/2 52.45-47
DBRM 42.3-15, 49.13-38,

51.20-27, 53.29
DCL 53.3-12, 61.26-35
DCLGEN output 76.25-31
DDL 43.12-32,44.20-39,

47.25-39, 49.38-46,
50.24-45, 51.27-42, 52.14-29,

53.13-28, 57.3-19, 58.19-38
Deadlock 46.13-23, 69.20-29
Dirty read 40.10-15
DISPLAY BUFFERPOOL 66.3-18,

70.34-47, 71.35-47
DSETPASS 77.35-38
DSNDB07 59.3-17
DSNZPARM 39.16-34, 69.3-7
DSNZPARM load module 80.24-37,

 81.35-47, 82.14-25
Dynamic plan switching 67.9-25
EDM pool 62.3-13
EXPLAIN 49.13-38
Extent checker 81.22-34, 82.37-47
FIELDPROC 79.23-33, 80.38-47
Hardware failure recovery 45.3-15
IBM announcements 43.32-35
IFCID6 records 73.3-12
Image copy 41.10-19, 79.3-14
Image copy analyser 63.3-7
Index 49.41, 52.30, 74.3-6,

81.3-13, 82.9-13
Index tuning 65.22-37
Index, Type 1 81.3-13
Index, Type 2 74.3-6, 81.3-13, 82.9-13
Indexspaces 48.18-26
Internet 68.3-8, 68.18-21
ISPF utility 56.3-8, 59.18-26

 47© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Java 83.23-35, 84.3-10
Joins 48.3-18
LISTCAT output 78.25-32
LOAD utility 68.9-17, 47.3-12
MGCRE 60.15-19
Numeric data types 72.45-46
Object maintenance 58.3-18
Object-id translation 43.36-47, 45.30-47
On-line statistics 69.17-19
Optimizer 55.37
Outer joins 47.20-24
Packages 54.3-12
Page number calculator 67.25-30
Parallelism 50.4
Partitioned tablespaces 61.3-8
PL/I 76.25-31
Plan table 55.36-47
PLAN/PACKAGE management 73.26-47,

 74.6-20, 75.7-21
QMF 60.7-15
QMF user-id 74.45-47
RACF 53.28-30, 58.18-19
RCT 41.47, 44.19-20
RDS STATISTICS 69.17-19
REBIND PLAN/PACKAGE 68.41-47,

 69.29-47
RECOVER 52.29-42
Referential integrity 48.3-18, 82.26-36
Relational database 83.43-47
Relinking DB2 modules 73.13-16
REORG 51.3-20, 56.44-51,

77.10-16
Repair 57.48-55
Restart 47.13-20, 48.26-40
Restricted tablespaces 82.3-9
Return codes 56.44-51
REXX 53.3-13, 53.32-47,

60.20-40, 61.9-25,
 62.15-24, 63.8-24

REXX extension 64.26-37, 65.10-21,
 66.34-47, 67.31-47

RID pool 54.43-47
RUNSTATS 51.3, 52.3-14, 66.19-31
Security 44.40-43, 50.45-47,

53.28-32, 58.18-19,
 60.15-19, 69.3-7

Simulate production environment
71.15-34, 72.24-44, 73.17-25

SMART REORG 77.10-16
SMF Accounting information 68.22-40,

 69.8-16
SMS 65.42-47
Space calculation 46.3-13
Space status 70.10-15
SPUFI panels 75.43-47
SQL 42.42-51, 44.3-18,

 45.15-26, 52.42-47,
65.37-41, 75.43-47, 76.3-6

SQLJ 84.3-10
Start-up parameters 78.32-47, 79.34-47
Stored procedures 50.5-6
SUPERCE 75.3-6
SYSIBM.SYSCOPY 39.35-43
System Catalog 39.3-7,

40.15-43, 41.19-46,
42.16-33, 65.3-10

Table descriptions 63.22-30
Table information 84.36-45
Table recovery 56.8-20
Tablespace, modified 83.5-22
Tablespace, restricted 82.3-9
Tablespaces 45.30-47, 48.18-26,

49.43-45, 55.27-28, 83.3-5
TERM UTILITY 64.22-26
Test data 43.3-12
THREAD 60.3-6
Timeout 46.13-23, 69.20-29
Timestamp checking 83.35-42, 84.29-35
Trace analysis 84.11-29
Transparent migration 71.3-11
Triggers 77.39-47
TSO interfaces 44.3-18, 45.15-26
Two’s complement converter 62.25
UNLOAD utility 47.3-12, 68.9-17
Updating statistics 66.19-31
Utility abends 55.29-36
Utility services 74.21-44, 75.22-42,

76.31-45, 77.17-34
Variable data 45.27-30
Verify start-up parameters 78.32-47,

79.34-47
VSAM 40.3-10, 46.34-43
VSAM extents 80.9-20
VSAM to DB2 conversion 80.20-23
Year 2000 57.21-22,

67.3-8, 76.46-47

StarBase has announced Version 4.1 of its
StarTeam and StarTeam Enterprise
integrated technical collaboration and
software configuration management tool,
with improved support and enhanced
scalability and new integration with DB2
and Informix Dynamic Server.

Version 4.1 includes an improved repository
management tool, providing the ability to
verify repository integrity, upgrade the
repository to new releases, migrate the
repository to a different database, and export
the StarTeam database catalogue to comma-
delimited files. It also includes several
general performance enhancements like a
smaller memory footprint (server and
client), faster check in/out, faster client
connections, faster query executions, and
improved response for binary files over
100MB.

For further information contact:
Starbase, 18872 MacArthur Boulevard,
Irvine, CA 92715, USA.
Tel: (949) 442 4400.
URL: http://www.starbase.com.

* * *

DB2 users can benefit from Wall Data’s
Cyberprise BI Studio, a suite of information
access and analysis tools for the company’s
Cyberprise Portal Server.

The suite includes Report Query and Cube
Designer, DBApp Developer, and
Cyberprise InfoPublisher, allowing users to
create reports, OLAP cubes, queries, and

forms from DB2, Oracle, SQL Server, and
other databases.

For further information contact:
Wall Data, 11332 North East 122nd Way,
Kirkland, WA 98034-6931, USA.
Tel: (425) 814 9255.
Wall Data (UK), Wall Data House, 418 Bath
Road, Longford, West Drayton, Middlesex,
UB7 0EA, UK.
Tel: (0181) 476 5000.
URL: http://www.walldata.com.

* * *

Princeton Softech has announced its
SyncPoint software, which supports DB2 for
OS/390 and DB2 UDB.

SyncPoint transforms corporate database
information so that it can be distributed to
and synchronized at multiple sites. It
maintains data accuracy while automatically
segmenting, distributing, securing, and
synchronizing data in a multi-vendor
database and application independent
environment. It accommodates complex
applications that have a large number of
users that require simultaneous
synchronization, via scalable parallel
processing and dynamic load balancing.

For further information contact:
Princeton Softech, 1060 State Road,
Princeton, NJ 08540-1423, USA.
Tel: (609) 497 0205.
URL: http://www.princetonsoftech.com.

* * *

DB2 news

x xephon

	 Java meets DB2: get there from here – SQLJ
	Taming the traces
	 Timestamp checking program – part 2
	 Quick table information
	 January 1995 – October 1999 index
	 DB2 news

