

Year 2000 - extracting the real-time clock setting

INTRODUCTION

In common with many sites, we have logically partitioned our
mainframe. Recently one of these partitions was elected to be the
official year 2000 test machine. It was decided by the project team to
keep the MVS date to a permanent setting (19 January 2000), by re
issuing the MVS SET DATE command daily. This was accomplished
by using a JES2 timed command to kick off a started task running
batch TSO (IKJEFfO I), which would then invoke a REXX routine to
issue the MVS SET DATE command via TSO CONSOLE, and then
re-set the JES2 timer for the following day (ie in 24 hours' time).

This worked well. However, keeping the MVS date to a fixed setting
has brought its own problems. One of them, which has caused several
outages of the partition, is the maintenance ofthe JES2 queues. On the
production partitions we keep only two days' worth of test job output
on the queues. Because we do not have a dedicated SYSOUT archive
package, such as SAR, we make use of the JES2 $P Q command,
which allows you to specify a number of hours and days. Any output
that was created prior to this is purged.

The problem with the year 2000 partition was that all the output had
the same date! Therefore, it was impossible to decide which output
was old and which was not. It was then agreed that the simplest
method would be to clear the queues completely every Sunday night
using $OQ,ALL (release all held output), and $PQ,ALL (delete). We
could have simply IPLed the machine and performed a JES2 cold
start, but we preferred a method we could automate.

Now to the problem. We had a method for issuing a command daily
(JES2 timer plus batch TSO). However, because the MVS date was
fixed, we had no way of knowing what day ofthe week it was! If there
was a way to get at the real date, then calculating the weekday was
relatively simple. However, all date and time functions under REXX
extract the date from MVS. The only way I knew to get at the
machine's real-time clock was from Assembler using the STCK
operation (STore ClocK).

© 1997. Rerroduction prohibited. Pk,\.~e inform Xl'phon of any infringement. 3

Because I needed this information in a REXX routine, I decided to
write the SYSDATEO REXX function. This Assembler routine is
invoked from a REXX EXEC in the same manner as you would use
the built-in DATEO and TIMEO functions. However SYSDATEO
extracts the machine's real-time clock value, not the MVS date. The
function may be called with two possible arguments:

• The first is with NO ARGUMENTS, ie:

dat - SYSDATE()

This will return a string into dat with the format
YYYYMMDDHHMMSSHT where:

YYYY is the year

• MM is the month

DD is the day

• HH is hours

• MM is minutes

• SS is seconds

• HT is hundredths and thousandths of a second.

• The second form is:

day - SYSDATE('W')

This will return the current day of the week (ie Monday, Tuesday,
Wednesday, etc) in the same manner as the REXX DATECW')
function, except that this will be the real weekday.

By using the 'W' argument form ofSYSDATE, we were able to set up
the timed routine to issue only the JES2 queue purge commands on a
Sunday. As we expanded the daily timer routines to issue shutdowns
for the test CICS regions as well, the first form of SYSDATE became
useful for logging purposes.

The source for SYSDATE appears below. The program was developed
under MVS5.2 and assembled using High-Level Assembler (ASMA90)
Release 1.1.

4 <D 1997. Xephon UK telephone- 01615 33R4X. fax OJ635 18345. USA telephone (940) 455 7050. fax (940) 4552492.

SOURCE CODE

IIjobname JOB 'your job card'
//STEPA EXEC ASMACL.PARM.C-'RENT· .PARM.L-'RENT.REUS'
IIC.SYSIN DO *
SYSDATE TITLE 'REXX FUNCTION TO EXTRACT DATE/TIME FROM RTC'

*** THIS IS A PROGRAM THAT WILL EXECUTE AS A REX X ***
*** FUNCTION AND WILL RETURN THE DATE/TIME STAMP FROM ***
*** THE MACHINES REAL TIME CLOCK (RTC) INSTEAD OF THE MVS ***
*** DATE/TIME (AS WITH THE STANDARD TSO/REXX DATE() AND TIME() ***
*** FUNCTIONS. ***

WHEN INVOKED WITH NO PARAMETERS. IE:~

SDAT - SYSDATE()

THE FUNCTION WILL RETURN A STRING OF THE FORM

YYYYMMDDHHMMSSHT
WHERE:~

YYYY IS THE CURRENT YEAR
MM IS THE CURRENT MONTH
DD IS THE CURRENT DAY
HH IS THE CURRENT HOUR (24~HOUR FORMAT)
MM IS THE CURRENT MI NUTE
SS IS THE CURRENT SECOND
H IS THE CURRENT HUNDRETH OF A SECOND
T IS THE CURRENT THOUSANDTH OF A SECOND

OPTIONALLY. SYSDATE CAN BE INVOKED WITH A SINGLE ARGUMENT ***
IF 'W'. WHICH WILL RETURN THE CURRENT DAY OF THE WEEK ***
IN THE FORM 'MONDAY'. 'TUESDAY'. ETC. FOR THE CURRENT SYSTEM***
DATE. THIS IS EQUIVALENT TO DATE('W') ***

EG WDAY - SYSDATE('W') ***

SYSDATE CSECT
SYSDATE AMODE 31
SYSDATE RMODE ANY

BAKR R14.0 *STACK EVERYTHING
LR R12. R15 *R12 ~~) BASE REGISTER
USING SYSDATE, R12 *ESTABLISH ADDRESSABILITY
LR RH1.R0 *R10 -~> A(ENVIRONMENT BLOCK)
USING ENVBLOCK,Rlfl *MAP ENVIRONMENT BLOCK
LR Rll. Rl *Rll - -) A(PARAM LIST (EFPl))
USING EFPL. Rll *MAP EFPL
STORAGE OBTAIN. X

LENGTH-DYNLEN. X
ADDR-(Rl), X
LOC-ANY

CD 19lJ7. Reproduction prohibited. Please inform Xerhon of any infringement. 5

LR R2. R1 * POINT AT WORKAREA
L R3.~A(DYNLEN) * SET ITS LENGTH
LA R4.1O * SET DUMMY FROM ADDRESS
LA R5.1O * SET DUMMY LENGTH
MVCl R2. R4 * BLANK OUT THE AREA
LR R13.R1 *R13 --)A(DYNAMIC AREA)
USING DYNAM.R13 *ESTABLISH ADDRESSABILITY
L R9.ENVBLOCK_IRXEXTE *R9 --) A(EXTERNAL EP TABLE)
USING I RXEXTE. R9 *MAP IT

CHECK THE PARAMETER LIST FOR VALID ARGUMENTS
AND STORE VALUES IN WORKING STORAGE

*

*** FIRST CHECK FOR FUNCTION CODE ***

L
USING
CLC
BNE
MVI
B

TESTARG OS
L
CLI
BE
ell
BE
B

GOODARG1 OS
MVI
B

RB.EFPLARG *RB --) A(ARGUMENT TABLE)
ARGTABLE_ENTRY.RB *MAP ENTRY
ARGTABLE_ARGSTRING_PTR(B).~2F' I' *ENO OF ARGS?
TESTARG * --) NO - CHECK ARG

YES - SET FLAG
AND GO GET ..

ARGFLAG,X'I00' * --)
GETDATE * --)
0H
R2,ARGTABLE_ARGSTRING_PTR
0(R2) ,X' E6'
GOODARG1
IO(R2).X'A6'
GOODARG1
ARGlERR
IOH
ARGFLAG,X'I01'
GETDATE

*R2 --) A(ARGUMENT)
* UPPERCASE 'W' ?
* YES - CARRY ON
* LOWERCASE 'W' ?
* YES - CARRY ON
* INVALID FUNCTION

* SET ARGUMENT FLAG
* GO GET '"

*
*
*

IF FUNCTION ERROR -
ISSUE ERROR MESSAGE WITH IRXSAY
AND SE RETURN CODE AS 410 TO FLAG INVALID FUNCTION CALL.

TITLE 'ERROR MESSAGES'

*
ARGlERR OS

LA
LA
B

*

0H
R1,~C'IRX0000I PARAMETER 1 NOT W OR BLANK'
RIO.35
ERROR

*** SET FUNCTION RESULT ***

*
ERROR

6

OS
BAS

IOH
R14.@SAY * SAY ERROR MESSAGE

© 1997. Xephon UK telephone 01635 33848. fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LA R15,40
*

B RETURN
*
GETDATE DS 0H

* SET RC~40 TO INDICATE
INVALID FUNCTION CALL

* AND RETURN TO CALLER

*** NOW GET AND FORMAT TIME ***

STCK DWDRK
STCKCONV STCKVAL~DWORK,CONVVAL-OUTAREA,TIMETYPE~DEC,

DATETYPE-YYYYMMDD,MF-(E,CONVL)
MVC PWORK,PTIME *MOVE TIME TO WORK AREA
MVC PWORKl,~X'0C000000' *MOVE IN PACK CHARACTER
MVO PWORK(9), PWORK *AND OVERLAY TIME
MVC CTIME,~X'F02120'

ED CTIME,PWORK *FORMAT TIME
MVC PWORK,PDATE *MOVE DATE TO WORK AREA
MVC PWORKl,~X'0C000000' *MOVE IN PACK CHARACTER
MVO PWDRK(9),PWORK *AND OVERLAY DATE
MVC CDATE,-X'F02120'

*

* ELSE

ED CDATE,PWORK *FORMAT DATE
MVC OUTTIM(8),CDATE+2 *STORE DATE IN MESSAGE
MVC OUTTIM+8(8),CTIME+2 *STORE TIME IN MESSAGE

CLl
BE

ARGFLAG,X'01'
GETDAY

* ARGUMENT SPECIFIED?
* GO GET WEEKDAY

*** RETURN FULL DATE ***

L R6,EFPLEVAL *R6 A(-) EVAL BLOCK)
L R6,0(R6) *R6 A(EVAL BLOCK)
USING EVALBLOCK, R6 *MAP EVALBLOCK

L R15,=F'16'
ST RI5,EVALBLOCK~EVLEN *PASS LENGTH OF RESULT
MVC EVALBLOCK~EVDATA(16),OUTTIM *PASS RESULT VALUE
XR R15,R15 *SET RC-0
B RETURN

*** CALCULATE AND RETURN DAY OF WEEK FROM CURRENT DATE ***

GETDAY OS 0H
**
* CALCULATE DAY OF WEEK FOR DATE
* PROGRAM USES A FORMULA KNOWN AS ZELLER'S CONGRUENCE
* ASSUMING M - MONTH, D ~ DAY, C - CENTRY NUMBER, Y- YEAR
* AND THAT 1 ~ MAR, 2 ~ APR ... ETC AND THAT
* JAN AND FEB ARE CLASSED AS MONTHS 11 AND 12 OF THE PREVIOUS YEAR
* THEN THE FORMULA IS:
*
* F - (26*M-2)/10 + D + Y + Y/4 + C/4 - 2 * C

© 19')7. Reproduction prohibited. Please lIltorm Xephon of any infringement 7

*
* ALL DIVISIONS ARE INTEGER (IE REMAINDERS ARE IGNORED)
* THEN:
*
* W ~ F(MOD 7) WILL DENOTE WEEKDAY (0-SUN. I-MON)
*
* IF W IS NEGATIVE. ADDING 7 WILL GIVE THE CORRECT NUMBER
*
* DATE FORMAT ~ YYYYMMDD
* EXTRACT EACH PARM FROM STORAGE. PACK AND CONVERT TO BINARY FOR
* CALCULATION

STM R14,R12,SAVEAREA
LA R3.0UTTIM

* DAY
PACK TEMP(S) .6(2.R3)
CVB R5. TEMP
ST R5. DAY

* MONTH
PACK TEMP (S) ,4 (2. R3)
CVB R5, TEMP

* YEAR
PACK TEM P (S) .0 (4 . R3)
CVB R7 . TEMP
SPACE 2

* NOW DROP 2 FROM MONTH. AND IF NEGATIVE
* ADJUST

S R5.-F'2'
BP SPLIT
A R5.-F'12'
BCTR R7.0
SPACE 2

*SAVE ALL REGISTERS
*ADDRESS DATE

*PACK DAY
*CONVERT TO BINARY IN R5
*AND SAVE (R5 NOW FREE AGAIN)

*PACK MONTH
*CONVERT TO BINARY IN R5

*PACK YEAR
*CONVERT TO BINARY IN R7

«0) ADD 12 TO

*MONTH-2
*IF)0 GO TO NEXT BIT
*ELSE <0 SO ADD 12 TO ADJUST
*AND DROP 1 FROM YEAR

* NOW SPLIT YEAR INTO CENTURY AND YEAR BY DIVISION/100
* (CENTURY WILL BE QUOTIENT AND YEAR WILL BE REMAINDER)
SPLIT DS 0H

SR R6, R6
D R6.-F'100'
SPACE 2

* AND NOW :

*CLEAR FOR DIVISION
*DIVIDE (R6-YEAR, R7-CENT

* F ~ «26*M-2)/10) + D + Y + Y/4 + C/4 2*C
* USING REG S AS ACCUMULATOR

SPACE 2
* «26*M-2)/10) IGNORING REMAINDER

M R4,-F'26' * 26*M
S R5,-F'2' * 26*M-2
D R4.-F'10' * (26*M-2)!10
LR R8. R5 * PLACE IN ACCUMULATOR
SPACE 2

* + 0 + Y - 2*C
A RS, DAY * GET DAY BACK FROM STORE (+D)
AR R8.R6 * +Y
SR R8,R7

8 © 1997. Xcphon L K telephone 01635 33848, fax 016~5 lX14S. USA telephone (940) 455 705{), fa.\. (940)455 2492.

SR RB.R7 * - 2*C
SPACE 2

*+Y/4+C/4
LR Rll.R6 * GET Y
SR R10.R10 * BLANK FOR DIVIDE
o RH1.-F'4' * Y 14
AR RB,Rll * ADD TO ACCUM
SR R6,R6 * BLANK FOR DIVIDE
o R6,-F'4' * Cf4
AR RB,R7 * AND ADD TO ACCUM
SPACE 2

* NOW DIVIDE F(MOD7) TO GIVE WEEKDAY NUMBER
SRDL R8,32 * PREPARE FOR DIVIDE (SIGN UNKNOWN)
o R8,~F'7' * F(MOD 7)

C R8,~F'0' * <0? (IE NEGATIVE)
BN L *+8
A RB,~F'7'

* IF NOT, SKIP NEXT STATEMENT
* IF NEGATIVE, ADJUST

SPACE 2
* RB WILL HOLD OFFSET TO TABLE

MH R8 . ~A L2 (9)

LA Rl,DAYTAB(RB)
MVC OUTDAY(9),0(Rl)

* NOW ENSURE DAY IN MIXED CASE BY 'OR'ING
* TO UPPER CASE, THEN AN EXCLUSIVE OR.

DC OUTDAY,MASK
XC OUTDAY,MASKI
LM R14,R12,SAVEAREA

* X9 FOR TABLE OFFSET
* LOAD ADDRESS OF DAY
* MOVE DAY

WITH BLANKS TO FORCE

* FORCE UPPERCASE
* AND NOW MIXED CASE
* RELOAD ALL REGISTERS

*** RETURN FULL DATE ***

R6,EFPLEVAL
R6,0(R6)

USING EVALBLOCK,R6
L R15.~F'9'

ST R15,EVALBLOCK_EVLEN
MVC EVALBLOCK_EVDATA(9),OUTDAY
XR R15,R15

* R6 A(-> EVAL BLOCK)
* R6 A(EVAL BLOCK)
* MAP EVALBLOCK

* PASS LENGTH OF RESULT
* PASS RESULT VALUE
* SET RC-0

*

*** RETURN TO CALLER ***

*
RETU RN

*

OS 0H
LR R2,R15

STORAGE RELEASE,
LENGTH~DYNLEN,

ADDR~(R13)
LR
PR

R15,R2

* SAVE R15 AROUND RELEASE
* FREE STORAGE BLOCK

* RESTORE RETURN CODE
* RETURN TO CALLER

© 1997. Reproduction prohibited. Please inform Xephon afany infringement

x
X

9

*** REXX ROUTINE INTERFACES ***

*
TITLE 'REXX SAY ROUTINE (IRXSAV)'

*** INTERFACE TO SAY ROUTINE. ***
*** ON ENTRV: ***
*** R0 l(BU F FER) ***
*** Rl - A(BUFFER) ***
*** R14 - RETURN ADDRESS ***
*** ***

@SAY

* *

@SAVOK

OS
ST
ST
ST
LA
ST
LA
ST
LA
ST
LA
ST
LA
ST
01
MVC
ST
LA
ST

0H
R14,SAYSAV
Rl,SAVP2
R0, SAVP3
R0,SAYPI
R0,SAVPLIST
R0,SAVP2
R0,SAYPLIST+4
R0,SAYP3
R0,SAVPLIST+S
R0,SAVP4
R0,SAVPLIST+12
R0,SAVP5
R0,SAVPLIST+16
SAYPLIST+16,X'80'
SAYPl,-CLS'WRITE'
R10,SAYP4
R0, FWD
R0,SAVP5

LR R0,R10
LA Rl,SAVPLIST

R15,IRXSAY
BALR R14,R15
LTR R15,R15
BZ @SAVOK
LA Rl,~C'IRXSAY'

EX
EOU
L
BR

R0, *
*
R14,SAYSAV
R14

*SAVE RETURN ADDRESS
*PUT A(RECORD) IN FULLWORD
*PASS RECORD LENGTH
*INIT PLIST POINTERS

*FLAG END OF LIST
*SET FUNCTION
*PASS A(ENV BLOCK)
*R0--)A(RETURN CODE AREA)
*PASS A(RETURN CODE)

*R0--) A(ENV BLOCK)
*Rl -) A(PARAMETER LIST)
*R15--) A(USERID ROUTINE)
*ISSUE SAY
*SAY OK?
*YES
*Rl INDICATE SAY ROUTINE
*FORCE DIAGNOSTIC ABEND
*
*R14--) RETURN ADDRESS
*RETURN TO CALLER

*** WORKING STORAGE ETC. ***

MASK
MASKl
DAYTAB

TITLE
DC
DC
OS

'WORKING STORAGE / DSECTS'
XL9'404040404040404040'
XL9 '004040404040404040 ,
0H

10 © 1997. Xc phon UK telephone 0163533848. fax 01635 38345. USA telephone (940) 455 7050. fax (940) 455 2492.

DC CL9'SUNDAY'
DC CL9'MONDAY'
DC CL9'TUESDAY'
DC CL9'WEDNESDAY'
DC CL9'THURSDAY'
DC CL9'FRIDAY'
DC CL9' SATURDAY'
LTORG

DYNAM DSECT * DYNAMIC WORK AREA STORAGE
DWORK OS 0D,D
OUTAREA OS 0CLl6 * STCKCONV STORAGE AREA
PTIME OS PL8 * TIME (PACKED, NO SIGN)
PDATE OS PL8 * DATE (PACKED. NO SIGN)
PWORK DS PL8 * WORK AREA
PWORKI OS PL8 * WORK AREA
TEMP DS PL8 * TEMP PACK WORK AREA
SAVEAREA OS 18F * REGISTER SAVE AREA
DAY DS F * PACKED DAY NUMBER FOR ZELLER
CTIME DS C L22 * TIME (AFTER EDIT)
COATE OS CL22 * DATE (AFTER EDIT)
OUTDAY OS CL9 * OUTPUT WEEKDAY (CHARACTER)
DUn I M DS CLl6 * OUTPUT TIMESTAMP CHARACTER)
ARGFLAG DS X * PRESENCE OF ARGUMENT FLAG
CONVL STCKCONV MF~L

*** IRXSAY PARAMETER AREA ***

*
SAYSAV OS F * SAY ROUTINE RETURN ADDRESS
FWD OS F * FULLWORD WORK AREA
SAYPLIST OS 5A * PLIST FOR IRXSAY
SAYPI DS CL8 * IRXSAY FUNCTION
SAYP2 OS A * IRXSAY A(-)BUFFER)
SAYP3 OS A * I RXSAY l(BUFFER)
SAYP4 DS A * IRXSAY A(ENVBLOCK)
SAYP5 OS A * IRXSAY - A(4-BYTE AREA FOR RC)
DYNLEN EQU *-DYNAM
*

*** REQUIRED DSECTS FOR REX X FUNCTIONS ***

IRXEFPL
IRXARGTB
IRXEVALB

IRXEXTE
IRXENVB

*** REGISTER EQUATES ***

*
R0 EOU

I ylJ7 R~~production prohibited, Please illform Xcphon of any infrinb'l'lllcnt 11

Rl Eau 1
R2 Eau 2
R3 Eau 3
R4 Eau 4
R5 Eau 5
R6 Eau 6
R7 Eau 7
R8 Eau 8
R9 Eau 9
R10 Eau 10
R11 Eau 11
R12 Eau 12
R13 Eau 13
R14 Eau 14
R15 Eau 15

END
f*
ffl.SYSlMOD DD DSN-your. load. library.DISP-SHR.UNIT
f fl. SYSIN DD *

ENTRY SYSDATE
NAME SYSDATE(R)

f*
/I

P Tavlor
-- - --- -- ---------

Senior Systems Programmer (UK) © Xephon 1997

A simple search utility

Diagnosing problems almost always involves scanning the system log
or some other file that contains messages or data. IBM provides a
useful utility, ISRSRCHC, that can be invoked under ISPF orexe~uted
in batch to search for specific pieces of information. This utility
enables you to construct a search consisting of a single string or
multiple strings. If you are searching for multiple strings, the utility
performs an OR search, if one of the search patterns is found in the
current record, the record is output. The ISRSRCHC utility also
allows you to search for the occurrence of mUltiple strings in a record.
Both of these search types can be performed in a single execution.

We decided to see if we could construct a similar utility as a
programming exercise. The results of our efforts are a routine that we
named IEBIBALL. IEBIBALL can perform both the normal OR type

12 © ! 997. Xcphon UK telephone 01635 33848, fax 01615 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

search, where a record will match if it contains one of the search
arguments, and an AND search. IEBIBALL can also perform both of
these search types in a single execution.

IEBIBALL uses the DSABSERV routine to obtain the dataset names
for all of the datasets, as well as to obtain the record type and logical
record length for the SYSUTl dataset.

IEBIBALL is a fairly straightforward utility. There are two key
sections of code that you will want to examine. The first section is
where the search argument table is constructed. To build the table of
search arguments, we first check to see if the first input record is the
DELIM= card. IEBlBALL allows you to select the character that you
will use as a deli meter. The DELIM= card must be the first input
record, or the utility will issue an error message and terminate. If the
DELIM= card is present, then the delimeter character is extracted and
placed in the translate table. The remainder of the search arguments
are then read from the SRCHARGS dataset. Each argument is placed
into the search argument table. The length of each argument, as well
as a flag which indicates whether AND processing is required, are also
placed in the table. The size of the argument table can be adjusted by
changing the value of symbol ARG_NUM. The size ofthe table in the
listing that follows is 100 entries. Once the last search argument has
been read and processed, the address of the last entry is determined
and saved. If the size of the table is exhausted before all of the search
arguments are processed, an error message is issued, and the routine
terminates. We also check the last search argument to see whether the
AND flag is on. This also indicates an error, so we issue a message and
terminate the routine.

The second key section of the program is the actual search of each
input record. The search of each record is accomplished by using two
BXLE loops. The outer BXLE loop is based on the search argument
table. The inner BXLE loop is based on the current input record that
we are searching for. This is how it works. Registers 9, 10, and 11
access the search argument table. Register 9 has the address of the first
entry,register 11 the last entry, and register 10 has the size of each table
entry. When we read an input record from the SYSUTI dataset, we
detemline wheher the file is fixed or variable. If it was fixed, then the
LRECL has already been determined for us by the DSABSERV

cD 1997. Reproduction prohibited. Please inform Xephon of any infringement. 13

routine. If it is variable, then the LRECL is extracted from the RDW
at the beginning of the record. We use the length of the record, and the
length of the search argument, to determine the ending address for the
record scan. This ending address is saved. Register 5 is loaded with the
beginning address of the current input record. Register 6 is loaded
with the scan increment, and register 7 is loaded with the ending
address that we have just calculated. Register 5,6, and 7 comprise the
BXLE loop that scans across the input record 1 byte at a time. We use
an executable CLC instruction to perform the compare. If we complete
the scan BXLE loop and drop through, then the current search
argument is not present in the input record. We check to see whether
the AND flag is on for the current argument. If it is not, then we adjust
register 9 to point at the next search argument, and then go through the
process of calculating the ending scan address and perform the scan.
If the AND flag was on when we completed the scan, then we
manually adjust the contents of register 9 to point to the next search
argument. We then check to see if the AND flag is on for this argument.
We keep adjusting register 9 in this manner until we do not find the
AND flag turned on. When the address in register 9 is greater than the
address in register 11, we know that we have searched for all the
arguments in the search argument table, and we go to read in a new
record from the input file. If we get a match from the compare
operation, and the AND flag is turned off for the current search
argument, then we output the current record with the record number
to the REPORT dataset. If the AND flag is on, then we increment
register 9 to point to the next search argument and scan the record
agam.

IEBIBALL has been assembled and executed under MVS 4.3 and
5.2.2 with DFSMS/MVS 1.3. The files are all coded for 31-bit
processing. You can adjust this for 24-bit processing, by modifying
the OPEN, CLOSE, and DCB specifications for each of the files. The
SYSUT I dataset can be fixed, variable, or undefined record types.
IEBIBALL as coded also supports partitioned datasets in a limited
manner. You can point to individual members of a PDS, but you can't
simply point to a PDS and process all the members in a single
execution. The program source for DSABSERV has been included, as
well as the source for the $ESAPRO, $ESAEPI, $ESASTG and

14 © 1997. XcphOll UK telephone 01635 :nX48, fax: 016Yi JS3.t). USA telephone (940) 4557050. fax (940) 455 2492.

$CALL macros that were used to develop IEBIBALL. We also
executed a few benchmark runs of IEBIBALL and ISRSRCHC
against the same input file using the same search arguments. We found
that IEBIBALL appears to be more efficient, and on average utilizes
about 50% less CPU to obtain the same results. Of course your own
results may vary.

SAMPLE JCL TO EXECUTE IEBTBALL
Ilxxxxxxxx JOB your job card info
IISTEP0001 EXEC PGM~IEBIBALL

IISTEPLIB
IISYSABEND
IIMESSAGES
IIREPORT
IISYSUTl
IISRCHARGS
DELIM~+

*TMS001+&
,PRIVAT,+
TMS009+
II

DO DISP~SHR,DSN~your. load. library
DO SYSOUT~*

DO SYSOUT~*,DCB~(LRECL~133,RECFM-FBA,BLKSIZE-0)

DO SYSOUT~*,DCB~(LRECL~133,RECFM~FBA,BLKSIZE~0)

DO DISP~SHR,DSN~file.we.want.search

DO *,DCB~(LRECL~80,BLKSIZE~80)

IEBIBALL PROGRAM SOURCE
TITLE 'IEBIBALL - SCAN UTILITY'

*----+----+-

* CSECT
*
*
*
*
*
*
*
*

MODU LE
DESC

* MACROS
*
* DSECTS
* I N PUT
*
* OUTPUT
*
*
*
* PLIST
* CALLS

-+- - --+ ---+----+----+----+----+-- -+- - - -+- ---+----+----*

IEBIBALL *
IEBIBALL *
IEBIBALL IS A SCAN UTILITY SIMILAR TO IBM SEARCH UTI LITY *
WHICH IS INVOKED FROM ISPF. IEBIBALL SUPPORTS PHYSICAL *
SEQUENTIAL, PARTITIONED ORGANIZATION, AS WELL AS FILES *
CONTAINING LOAD MODULES. IEBIBALL ALLOWS YOU TO SPECIFY *
A DELIMITER, AS WELL AS SPECIFY THAT YOU WANT ONE *
OR MORE ARGUMENTS TOGETHER. CURRENTLY IEBIBALL WILL *
ACCEPT UP TO 100 SEARCH ARGUMENTS. *
$ESAPRO $ESAEPI $ESASTG OPEN CLOSE DCB DCBD DCBE *
PUT GET $CALL
IHADCBD
SYSUTl
SRCHARGS
MESSAGES
REPORT

NONE
DSABSERV

SPECIFIES THE FILE WE WANT TO SEARCH
FILE CONTAINING OUR SEARCH ARGUMENTS
OUTPUT DATASET CONTAINING MESSAGES

*
*
*
*

OUTPUT FILE LISTING THE RECORDS THAT WERE LO- *
CATED CONTAINING ONE OR MORE OF THE SEARCH
ARGUMENTS.

*
*
*
*

© 1997, Reproduction prohibited. Please infonn Xephon of any infringement. 15

* NOTES : 31 BIT ADDRESSING USED FOR ALL FILES. *
----+----+----+----+----+-- -+----+----+----+----+----+----+----+----

EJECT
IEBIBALL $ESAPRO R12,AM-31,RM-24
----+----+----+- --+----+----+----+----+----+----+----+----+----+----
* MAKE SURE THAT WE CAN OPEN UP OUR MESSAGES DATASET. IF NOT WE ARE *
* DONE VERY QUICKLY. *
----+----+----+----+----+----+----+----+----+----+----+-- -+----+----

OPEN
USING
LA
TM
BO

(UT3,(OUTPUT)).MODE=31
IHADCB,Rl
Rl, UT3
DCBOFLGS,DCBOFOPN
MSG_ OPEN

TELL THE ASSEMBLER
GET @(DCB WE JUST OPENED)
Q. OPEN SUCCESSFULL?

----+----+----+----+-.--+----+----+----+----+----+----+----+----+----
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE UT3 DATASET. *
----+----+----+----+----+----+----+----+- --+----+----+- --+----+----

SYN_UT3 OS 0H SYNAD EXIT CODE
MVC RET_CODE,CC16 SET THE RETURN CODE
B EXIT_RTN

MSG_OPEN DS 0H
MVI UT3_FLAG,DCBOFOPN INDICATE DATASET ID OPEN

----+----+----+-- -+-- -+----+----+----+----+----+----+----+----+----
* LOAD DSABSERV INTO VIRTUAL STORAGE AND SAVE THE ENTRY POINT ADDRESS.*
----+----+----+----+----+----+----+----+----+----+----+----+----+----

LOAD EP-DSABSERV,ERRET-LOAD_ERR
B LOAD_OK LOAD SUCCESSSFUL, CONTINUE

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* LOAD OF DSABSERV FAILED. ISSUE MESSAGE AND EXIT THE ROUTINE. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
LOAD_ERR OS

MVI
MVC
MVC
PUT
MVC
B

LOAD_OK DS
ST

0H
0_ LINE,C' , PUT BLANK IN BYTE ONE
O_LINE+lCL'O_LINE-l),O_LINE BLANK OUT REMAINDER
O_LINE(EM_001L),EM_001 MOVE IN THE MESSAGE
UT3,O_LINE
RET_CODE,CC_16 SET THE RETURN CODE
EXIT_RTN GO TO COMMON EXIT POINT
0H
R0,@DSAB SAVE ADDRESS FOR LATER USE

----+----+----+----+----+----+----+-- -+----+----+----+----+----+----

* OPEN UP THE SEARCH ARGUMENTS FILE. *
----+----+----+----+----+----+----+----+- --+----+----+----+----+----

OPEN (UT4,(INPUT)),MODE-31
LA Rl,UT4
TM DCBOFLGS,OCBOFOPN
BO ARG_OPEN

GET @(DCB WE JUST OPENED)
Q. OPEN SUCCESSFULL ?
A. YES

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* SYNAO CONTROL POINT FOR PHYSICAL ERROR ON THE UT4 DATASET. *
----+----+----+----+----+----+----+----+----+----+----+----+- --+----
SYN_UT4 OS 0H

MVI O_LINE,C" PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O LINE-l),O_LINE BLANK OUT REMAINDER

16 © 1997. Xephon UK It:lephone 01635 33848. fax OI6~:'i 3RJ45. USA telephone (940) 455 705(), fax (940) 455 2492.

MVC 0_LINE(EM_002L),EM_002 MOVE IN THE MESSAGE
PUT UT3,O_L1NE
MVC RET_CODE,CC16 SET THE RETURN CODE
B EXIT_RTN GO CLOSE MESSAGES FILE

ARG_OPEN DS 0H
MVI UT4_FLAG,DCBOFOPN INDICATE THE DATASET IS OPEN

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* OPEN UP THE REPORT FILE. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----

OPEN (UT2,(OUTPUT»,MODE-3I
LA Rl,UT2
TM DCBOFLGS,DCBOFOPN
BO UTLOPEN

GET @(DCB WE JUST OPENED)
Q. OPEN SUCCESS FULL ?
A. YES

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE UT2 DATASET. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
SYN_UT2 DS

MVI
MVC
MVC
PUT
MVC
B

0H
O_L1NE,C' , PUT BLANK IN BYTE ONE
O_LINE+l(L'O_LINE-I),O_LINE BLANK OUT REMAINDER
0_LINE(EM_003L),EM_003 MOVE IN THE MESSAGE
UT3, 0_L1 NE
RET_COOE,CC_16 SET THE RETURN CODE
EXIT_RTN GO TO COMMON EXIT POINT

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* OPEN UP THE FILE THAT WE WANT TO SEARCH THROUGH. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
UTLOPEN DS

MVI
OPEN
LA
TM
BO

0H
UT2_FLAG,DCBOFOPN
(UTl,(INPUT»,MODE-31
RI,UTl
DCBOFLGS,DCBOFOPN
UTLOPEN

INDICATE DATASET IS OPEN

GET @(DCB WE JUST OPENED)
Q. OPEN SUCCESSFULL ?
A. YES

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE UTI DATASET. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
SYN_UTl DS

MVI
MVC
MVC
PUT
MVC
B

UTLOPEN DS
MVI

0H
O_LINE,C' , PUT BLANK IN BYTE ONE
O_LINE+I(L'O_LINE-I),O_LINE BLANK OUT REMAINDER
0_LINE(EM_004L),EM_004 MOVE IN THE MESSAGE
UT3, O_LI NE
RET_CODE,CC_16 SET THE RETURN CODE
EXIT_RTN GO TO COMMON EXIT POINT
0H
UTI_FLAG,DCBOFOPN INDICATE DATASET IS OPEN

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* CALL THE DSABSERV ROUTINE. WE WILL PASS A SET OF QUINTUPLETS TO THE*
* ROUTINE. EACH QUINTUPLET CONSISTING OF THE FOLLOWING: *
* ADDRESS(HALFWORD FOR THE LENGTH OF THE DATASET NAME) *
* ADDRESS(B BYTE ARE WITH THE DDNAME WE ARE INTERESTED IN) *
* ADDRESS(44 BYTE AREA FOR THE RETURNED DATASET NAME *
* WILL CONTAIN 44 ASTERISKS IF DSABSERV WAS NOT ABLE *

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 17

*
*
*

TO OBTAIN THE DATASET NAME.)
ADDRESS(LOGICAL RECORD LENGTH,DATASET ORGNIZATION)
ADDRESS(RECORD FORMAT, FIXED OR VARIABLE)

*
*
*

----+----+----+----+----+----+----+----+----+----+----+----+----+----
$CALL @DSAB,(UTl_L,UTl_DDN,UTl_DSN,UTl_LREC,UTl_RT,

UT2_L,UT2_DDN,UT2_DSN,UT2_LREC,UT2_RT,
UT3_L,UT3_DDN,UT3_DSN,UT3_LREC,UT3_RT,
UT4_L,UT4_DDN,UT4_DSN,UT4_LREC,UT4_RT),
VL,BM=BASSM,MF=(E,PLIST)

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* OUTPUT INFORMATION ABOUT EACH OF THE FILES THAT WE HAVE OPENED. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----

MVI O_LINE,C" PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O_LINE-l),O_LINE BLANK OUT REMAINDER
MVC 0_LINE(OP_001L),OP_001 MOVE IN THE MESSAGE
MVC 0_LINE+OP_001D(L'UTl_DSN),UTl_DSN MOVE IN DSNAME
MVC 0_LINE+OP_001C(L'UTl_DSO),UTl_DSO MOVE IN DSORG
MVC 0_LINE+OP_001E(L'UTl_RT),UTl_RT MOVE IN RECORD TYPE
LH R14,UTl_LREC GET LOGICAL RECORD LENGTH
CVD R14,D_WORK CONVERT IT TO DECIMAL
UNPK 0_LINE+OP_001F(5),D_WORK+5(3) UNPACK IT
01 0_LINE+OP_001F+4,X'F0' FIX THE SIGN
PUT UT3,O_LINE
MVI O_LINE,C" PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O_LINE-l),O_LINE BLANK OUT REMAINDER
MVC 0_LINE(OP_002L),OP_002 MOVE IN THE MESSAGE
MVC 0_LINE+OP_002D(L'UT2_DSN),UT2_DSN MOVE IN DSNAME
MVC 0_LINE+OP_002C(L'UT2_DSO),UT2_DSO MOVE IN DSORG
MVC 0_LINE+OP_002E(L'UT2_RT),UT2_RT MOVE IN RECORD TYPE
LH R14,UT2_LREC GET LOGICAL RECORD LENGTH
CVD R14,D_WORK CONVERT IT TO DECIMAL
UNPK 0_LINE+OP_002F(5),D_WORK+5(3) UNPACK IT
01 0_LINE+OP_002F+4,X'F0' FIX THE SIGN
PUT UT3, O_LI NE
MVI O_LINE,C" PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O_LINE-l),O_LINE BLANK OUT REMAINDER
MVC 0_LINE(OP_003L),OP_003 MOVE IN THE MESSAGE
MVC 0_LINE+OP_004D(L'UT3_DSN),UT3_DSN MOVE IN DSNAME
MVC 0_LINE+OP_003C(L'UT3_DSO),UTLDSO MOVE IN DSORG
MVC 0_LINE+OP_003E(L'UT3_RT),UT3_RT MOVE IN RECORD TYPE
LH R14,UT3_LREC GET LOGICAL RECORD LENGTH
CVD R14,D_WORK CONVERT IT TO DECIMAL
UNPK 0_LINE+OP_003F(5),D_WORK+5(3) UNPACK IT
01 0_LINE+OP_003F+4,X'F0' FIX THE SIGN
PUT UT3 ,O_LI N E
MVI O_LINE,C" PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O_LINE-l),O_LINE BLANK OUT REMAINDER
MVC 0_LINE(OP_004L),OP_004 MOVE IN THE MESSAGE
MVC 0_LINE+OP_004D(L'UT4._DSN),UT4_DSN MOVE IN DSNAME
MVC 0_LINE+OP_004C(L'UT4_DSOI,UT4_DSO MOVE IN DSORG
MVC 0_LINE+OP_004E(L'UT4_RT),UT4_RT MOVE IN RECORD TYPE

+
+
+
+

18 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LH RI4,UT4_LREC GET LOGICAL RECORD LENGTH
CVD RI4,D_WORK CONVERT IT TO DECIMAL
UNPK 0_LINE+OP1304F(5),D __ WORK+5(3) UNPACK IT
01 0_LINE+OP_13134F+4,X'F13' FIX THE SIGN
PUT un, O_LI N E

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* AT THIS POINT WE READ IN THE FIRST RECORD FROM THE SRCHARGS FILE *
* WHICH IS POINTED TO BY THE UT4 DCB. THE FIRST RECORD MUST CONTAIN *
* THE DELIM~ IN CARD COLUMN 1. IF IT DOES NOT, THEN THE ROUTINE WILL *
* ISSUE AN ERROR MESSAGE, AND TERMINATE. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----

GET UT4
LR R2, Rl GET @(CURRENT RECORD)
CLC DELIM,13(R2) Q. FIRST CARD THE DELIM CARD?
BE GOT_DELM A. YES, WE CAN PROCEED
MVI O_LINE,C' PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O_LINE-I),O_LINE BLANK OUT REMAINDER
MVC 0_LINE(EM_13135L),EM_13135 MOVE IN THE MESSAGE
PUT un,O_LINE
MVC RET_CODE,CC_16 SET THE RETURN CODE
B EXIT _RTN GO TO COMMON EXIT POINT

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* WE HAVE A DELIMETER. PICK IT UP AND POPULATE IT INTO OUR TRANSLATE *
* TABLE. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
GOT_DELM DS 13H

XR R3, R3 CLEAR REG 3
IC R3 , L' DELI M (R2) GET THE DELI METER
LA R4,TRAN_TAB GET @(TRANSLATE TABLE)

PLACE CHARACTER IN THE TABLE
----+----+----+----+----+----+----+----+----+----+----+----+----+----
* PICK UP THE NEEDED INFORMATION FOR THE BXLE LOOP THAT WILL BE USED *

STC R3 ,13 (R3 , R4)

* TO POPULATE THE SEARCH ARGUMENT TABLE. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----

LA R3, ARG_L GET @(FIRST ENTRY)
ST R3,ARG_TB SAVE IT FOR BXLE
L R4, ARG_LE GET DISPLACEMENT
LA R3 ,13 (R4 , R3) CALC @(LAST ENTRY)
ST R3, ARG_ TE SAVE IT FOR BXLE
LA R3, ARG_ENTL GET SIZE OF EACH ENTRY
ST R3, ARG_ TI SAVE IT FOR BXLE
LM R7, R9 ,ARG_TB LOAD REGS FOR BXLE LOOP

----+----+----+----+----+----+----+----+----+----+----+----+----+----

* READ THE REMAINDER OF RECORDS FROM THE SRCHARGS FILE. EACH ENTRY *
* IS CHECKED TO DETERMINE IF IT END WITH A VALID DELIMETER. WE CHECK *
* FOR THE DELIMITER BY EXECUTING A TRT INSTRUCTION. IF THE RECORD *
* DOES NOT TERMINATE WITH A VALID DELIMITER, WE ISSUE A MESSAGE TO THE*
* MESSAGES DATASET, AND PROCESSING CONTINUES. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----

LOOP_UT4 DS 13H
GET UT4

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 19

LR
LH
BCTR
EX
BC
BC
B

ERR_DLM DS
MVI
MVC
MVC
MVC
PUT
B

R3.Rl
R14. UT4_LREC
R14.0
R14. TRT_I
B.ERR_DLM
4.CALCLEN
LDOP_UT4
0H

GET @CRECORD JUST READ)
GET THE RECORD LENGTH
DECREMENT THE LENGTH
O. DELI METER LOCATED.
A. DELI METER NOT LOCATED
A. FOUND THE DELIMETER
SHOULD NEVER GET HERE

O_LINE.C' PUT BLANK IN BYTE ONE
O_LINE+ICL'O_LINE-l).O_LINE BLANK OUT REMAINDER
O_LINECEM_007L).EM_007 MOVE IN THE MESSAGE
O_LINE+EM_007DCB0).0CR3) COPY SEARCH ARGUMENT
Un.O_LINE
LOOP UT4 READ ANOTHER SEARCH ARG

. *----+----+----+----+----+----+----+----+----+----+----+----+----+----*
* DETERMINE THE LENGTH OF THE SEARCH ARGUMENT. PLACE THE SEARCH ARG- *
* UMENT INTO THE SEARCH ARGUMENT TABLE. PLACE THE LENGTH OF THE ARGU- *
* MENT INTO THE TABLE. SEE IF THE USER IS LOOKING TO AND THIS ARGU- *
* MENT WITH THE NEXT. AND SET THE AND FLAG ON IN THE TABLE ENTRY. *
----+----+----+----+----+----+----+----+----+----+----+- -+----+----
CALC_LEN DS 0H

LR R14.Rl PICK UP WHERE Rl IS ---»
SR R14. R3 CALCULATE ARG LENGTH - 1
BCTR R14.0 DECREMENT IT BY 1
STH R14.0CR7) SAVE THE LENGTH
MVI AND_FLAG-ARG_LCR7).AND - OFF TURN THE AND FLAG ON
EX R14.MVCI MOVE THE ARGUMENT
LA R3.1(. Rl) BUMP THE ADDRESS
CLI 0CR3) .X'50' O. USER WANT TO AND WITH NEXT
BNE BXLE_ GO A. NO
MVI AND_FLAG-ARG_L< R7) .AND_ON TURN THE AND FLAG ON
DS 0H
BXLE R7 .RB.LOOP _UT4 GO GET ANOTHER ENTRY
MVI O_L1NE.C' PUT BLANK IN BYTE ONE
MVC o LINE+ICL'O_LINE-l).O_LINE BLANK OUT REMAINDER
MVC 0_LINECEM_006L).EM_006 MOVE IN THE MESSAGE
PUT un. O_LI NE
MVC RET_CODE.CC16 SET THE RETURN CODE
B EXIT _RTN GO TO COMMON EXIT POINT

----+----+----+----+----+----+----+-- -+----+----+----+----+----+----
* NORMAL EOF ON THE SEARCH ARGUMENTS DATASET BRINGS US HERE. CHECK *
* TO SEE IF THE USER ASKED FOR AN AND ON THE LAST RECORD. THIS IS AN *
* ERROR. IF WE FIND THIS CONDITION. ISSUE A MESSAGE AND EXIT THE *
* PROGRAM. ELSE WE COMPLETE THE NECESSARY SETUP FOR THE BXLE CONTROLS.*
----+----+----+----+----+-- -+----+----+----+----+----+----+----+----
EOF_UT4 OS 0H

SR R7.RB BUMP DOWN TO LAST ENTRY
CLI AND_FLAG ARG_LCR7).AND_ON O. IS THE AND FLAG ON
BNE AND OFFF A. NO. AND FLAG IS OFF
MVI O_L1NE.C· PUT BLANK IN BYTE ONE
MVC o LINE+ICL·O_LINE-l).O_LINE BLANK OUT REMAINDER

20 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax: (940) 4552492.

MVC O_LINE(EM_008L).EM_008 MOVE IN THE MESSAGE
PUT UT3.0_LINE
B EXIT_RTN EXIT THE PROGRAM

AND_OFFF OS 0H
ST R7.ARG_TE SAVE AS LAST ENTRY
XC UT4_FLAG.UT4_FLAG CLEAR FLAG BYTE
LA R2.1 PRIME R2
ST R2. R_BXLE+4 SAVE IN SCAN BXLE AREA
ZAP RECORD_R. PACK_0 ZERO OUT RECORD NUMBER
ZAP RECORD __ M. PACK_0 ZERO OUT RECORD NUMBER
ZAP RECORD_N.PACK_0 ZERO OUT RECORD NUMBER

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* THE SEARCH IS ACCOMPLISHED BY USING A PAIR OF BXLE LOOPS. THE OUTER *
* LOOP IS USED TO PROCESS THE SEARCH ARGUMENT TABLE. R9 POINTS AT THE*
* CURRENT ENTRY. R10 CONTAINS THE INCREMENT. AND Rll POINTS AT THE *
* LAST SEARCH ARGUMENT IN THE TABLE. THE INNER BXLE LOOP IS USED TO *
* SCAN ACROSS THE CURRENT RECORD. RS POINTS AT THE CURRENT BYTE LO- *
* CATION IN THE RECORD. R6 CONTAINS THE INCREMENT. IN THIS CASE 1. *
* AND R7 CONTAINS THE END POINT IN THE BUFFER. THE END POINT FOR EACH*
* RECORD IS CALCULATED BY TAKING THE SIZE OF THE RECORD. AND SUB-RAC *
* TRACTING OFF THE LENGTH OF THE CURRENT ARGUMENT. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
LOOP_UTI OS 0H

GET
LM
AP
AP

PRIMCR2 OS
LR
CLI
BNE
ST
LH
B

VAR_Un OS
LH
SH
LA
ST

COM_Un OS
SH
BCTR
LA
ST
LM
LH

un
R9. Rll . ARG_ TB
RECORD_R.PACK_l
RECORD_N.PACK_l
0H
R2. Rl
UTLRT. LRECL_F
VAR_un
R2.RBXLE
R3. UTLLREC
COM_._.un
0H
R3. 0(R2)
R3.HALF_4
R2.4(.R2)
R2.R_BXLE
0H
R3. 0(R9)
R3.0
R2 . 0 (R3 . R2)
R2.R_BXLE+8
RS.R7.R_BXLE
R2.0(R9)

GET TABLE INFO
BUMP RECORD READ COUNTER
INCRENT CURRENT RECORD #

GET @(RECORD JUST READ)
o. FI XED RECORD
A. NO. DO VARIABLE WORK
SAVE BEGINNING ADDRESS
GET LOGICAL RECORD LENGTH
BRANCH TO COMMON CODE

GET THE CURRENT RECORD LENGTH
ACCOUNT FOR THE ROW
ACCOUNT FOR THE ROW
SAVE BEGINNING ADDRESS

SUBTRACT LENGTH OF ARGUMENT
DECREMENT BY ONE
CALCULATE ENDING ADDRESS
SAVE ENDING ADDRESS
PRIME FOR SCAN LOOP
GET LENGTH OF ARGUMENT

----+----+----+----+----+----+----+----+----+----+----+----+----+----
* PERFORM THE COMPARE. WE DO THIS BY EXECUTING A CLC. R2 HAS THE *
* LENGTH OF THE CURRENT SEARCH ARGUMENT. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
SCAN_GO DS 0H

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 21

EX R2, CLC_I O. PATTERN MATCH
BNE NO MATCH A. NO,
CLI AND FLAG -ARG_U R9) ,AND_ON O. AND FLAG ON ??
BE BXLEBU
B AND_NON GO OUTPUT THE RECORD

NO_MATCH OS 0H
BXLE R5, R6. SCAN __ GO KEEP SCANNING RECORD

* ---+----+----+----+----+----+----+----+----+----+----+----+----+----*
* IF WE GET HERE, WE HAVE SCANNED THE ENTIRE RECORD AND DID NOT FIND *
* A MATCH. SEE IF THE AND FLAG WAS ON FOR THE CURRENT ARGUMENT. IF *
* IT IS. MANUALLY BUMP R9 UNTIL WE DON'T FIND THE AND FLAG ON. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
MAN_R9 OS 0H

CLI ANDJLAG-ARG_UR9) ,AND_ON O. AND FLAG ON
BNE BXLE BU A. NO, GET NEXT SEARCH ARGUMENT
LA R9,0(R10,R9) MANUALLY ADJUST R9
B MA~ R9 GO TEST NEXT ARG

BXLE R9,R10,PRIME_R2
LOOP UTI

START SCAN AGAIN
GO GET NEXT RECORD

-- -+----+----+----+----+----+----+----+----+----+----+----+----+----
* WE HAVE FOUND A SEARCH ARGUMENT. OUTPUT THE CURRENT RECORD. *
-- -+----+----+----+----+----+----+----+.---+----+----+----+----+----
AND_NON OS 0H

AP RECORD_M,PACK_l INCREMENT THE MATCH COUNTER
MVI O_LINE.C·' PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O_LINE-l),O_LINE BLANK OUT REMAINDER
MVC O_LINE(OP_005L),OP_005 MOVE IN THE MESSAGE
LA R5,MAX_5 GET MAX ALLOWABLE
CLI UTLRT, LRECL_F O. FIXED RECORD
BNE UTI_VF A. NO, VARIABLE
LH R6,UTI LREC GET ACTUAL RECORD SIZE
CR R6,R5 COMPARE TO THE MAX ALLOWABLE
BNH REC MOVR GO MOVE THE RECORD TO BUFFER
LR
B

UTL VF OS
LH
LA
CR
BNH

RECMOVR DS
EX
UNPK
01
PUT
B

R6,R5
REC MOVR
0H
R6 ,0C Rl)

Rl.4C ,Rl)
R6, R5
RECMOVR
0H
R6,MVCRR
O_LINE+l(6),RECORD_N(4)
0_L1NE+6,X'F0'
UT2, O_LI NE
LOOP _UTI

SET R6 TO THE MAX
MOVE TH E RECORD

GET LENGTH FROM THE ROW
BUMP PAST THE RDW
COMPARE TO THE MAX ALLOWABLE
GO MOVE THE RECORD TO BUFFER

MOVE THE RECORD TO O_LINE
UNPACK RECORD NUMBER
FIX THE SIGN

GET NEXT RECORD

XC UTl_FLAG.UTl_FLAG CLEAR FLAG BYTE
MVI O_LINE,C" PUT BLANK IN BYTE ONE
MVC ° LINE+ICL'O_LINE-l),O_LINE BLANK OUT REMAINDER

22 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MVC 0 LINE(OP006l) ,OP _006 MOVE IN THE MESSAGE
UNPK 0 LINE+l(S) ,RECORD_R(6) UNPACK RECORD NUMBER
01 0 LINE+S,X'F0' FIX THE SIGN
PUT UT3,Q.LINE
MVI O_LINE,C' PUT BLANK IN BYTE ONE
MVC O_LINE+l(L'O_LINE-l),O_LINE BLANK OUT REMAINDER
MVC 0_LINE(OP_007L),OP_007 MOVE IN THE MESSAGE
UNPK 0_LINE+l(6),RECORD M(4) UNPACK RECORD NUMBER
01 0_LINE+6,X'F0' FIX THE SIGN
PUT UT3, O_LI N E
B EXIT_RTN EXIT THE. ROUTINE

* ---+----+----+----+----+----+----+----+- --+----+----+----+----+----*
* COMMON EXIT POINT. CLOSE FILES AS NEEDED AND EXIT. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----
EXIT_RTN OS 0H

TM UTl~FLAG,DCBOFOPN O. DATASET OPEN
BNO UTI XXX A. NO, CHECK NEXT DATASET
CLOSE (UTl),MODE~31

UTI_XXX OS 0H
TM
BNO
CLOSE
OS
TM
BNO
CLOSE
OS
TM
BNO

UT2 FLAG,DCBOFOPN
UT2_XXX
(UT2),MODE-31
0H
UT3_FLAG,DCBOFOPN
UT3_XXX
(UT3), MODE-31
0H
UT4_FLAG,DCBOFOPN
UT4 _XXX

CLOSE (UT4),MODE-31

O. DATASET OPEN
A. NO, CHECK NEXT DATASET

O. DATASET OPEN
A. NO, CHECK NEXT DATASET

O. DATASET OPEN
A. NO, ALL DONE

UT4_XXX OS 0H

LRECL_F
AND_ON
AND_OFF
MVC_RR
MVCI
CLC_I
TRT _I
ARG LE
CC 16
HALF _ 4
PACK_0
PACK_l

$ESAEPI RET_CODE
TITLE 'IEBIBALL LITERALS AND CONSTANTS'
EOU C'F' USED FOR RECORD TYPE TESTING
EOU C'Y' USED FOR AND PROCESSING
EOU C'N' USED FOR AND PROCESSING
MVC 0_LINE+OP_005L(*-*),0(Rl) EXECUTABLE MOVE
MVC 3(*-*,R7),0(R3) EXECUTABLE MOVE
CLC 0(*-*,R5),3(R9) EXECUTABLE COMPARE
TRT 0(*-*,R3),TRAN TAB FIND THE DELIMETER
DC A(ARG_NUM*ARG ENTL) DISPLACEMENT TO LAST ENTRY
DC F'16' USED TO SET A RETURN CODE
DC H'4' USED FOR RDW ADJUSTMENT
DC PL4'0' USED TO PRIME FIELDS
DC PL4'l' USED TO INCREMENT COUNTERS

DELIM DC CL06'DELIM~'

TITLE 'IEBIBALL - MESSAGES'
NO_MSG DC H'60'

DC CL60'UNABLE TO OPEN THE MESSAGES FILE - EXECUTION TERMIN+
ATED'
C'A ERROR HAS OCCURRED TRYING TO LOCATE AND LOAD THE

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 23

EM_liJliJlL Eau
EM_1iJ1iJ2 DC

EM 1iJ1iJ2L Eau
EM_1iJ1iJ3 DC

EM_003L EQU
EM_1iJ1iJ4 DC

EM_1iJ1iJ4L EQU
EM_01iJ5 DC

DSABSERV ROUTINE. IEBIBALL TERMINATING'
*-EM 001 LET THE ASSEMBLER CALC LENGTH
C'A ERROR HAS OCCURRED WHILE TRYING TO OPEN THE SEARCH
ARGUMENTS DATASET. IEBIBALL TERMINATING'
*-EM_1iJ02 LET THE ASSEMBLER CALC LENGTH
C'A ERROR HAS OCCURRED WHILE TRYING TO OPEN THE REPORT
DATASET. IEBIBALL TERMINATING'
*-EM_1iJ1iJ3 LET THE ASSEMBLER CALC LENGTH
C'A ERROR HAS OCCURRED WHILE TRYING TO OPEN THE SYSUTI
DATASET. IEBIBALL TERMINATING'
*-EM_1iJ1iJ4 LET THE ASSEMBLER CALC LENGTH
C'FIRST CARD ENCOUNTERED IN SEARCH ARGUMENTS WAS NOT THE+

DELIM- CARD. IEBIBALL TERMINATING'
EM_1iJ1iJ5L Eau *-EM 005 LET THE ASSEMBLER CALC LENGTH
EM_1iJ1iJ6 DC C'MORE THAN lliJliJ SEARCH ARGUMENTS ENCOUNTERED. IEBIBALL +

TERMINATING. '
EM_01iJ6L EQU *-EM_01iJ6 LET THE ASSEMBLER CALC LENGTH
EM_1iJ1iJ7 DC C' MISSING DELIMETER. CARD IMAGE~'

EM 01iJ7D Eau * EM 007
CL80' DC

EM 1iJ1iJ7 L EQU *-EM_007 LET THE ASSEMBLER CALC LENGTH
EM 008 DC C' AND OPERATION REQUESTED ON THE LAST SEARCH ARGUMENT. +

IEBIBALL TERMINATING'
EM_008L EQU *-EM_1iJ08
OP_001 DC C' SYSUTI DSNAME~'

OP_001D EQU *-OP_1il1il1
DC CL44"
DC C' DSORG-'

ap _Iillill C EQU *- OP ... lillill
DC CL2'
DC C' RECFM~'

OP __ lillillE Eau *-OP 001
DC C L2 '
DC C' LRECL~'

OP_01iJIF Eau *-OP_001
DC CL5'

OP_IilIilIL EQU *-OP_1il1il1
*
OP 002 DC
OP 0020 EQU

DC
DC

OP_1il02C EQU
DC
DC

OP_002E Eau
DC

C' REPORT DSNAME-'
*-OP_1iJ1il2
CL44'
C' DSORG~'

*-OP_1il1iJ2
CL2 •
C' RECFM-'
*-OP_002
CL2'

DC C' LRECL~'

OP_1iJ1il2F Eau *-OP_002
DC C L5'

OP_002L Eau *-OP.002

LET THE ASSEMBLER CALC LENGTH

LET ASSEMBLER CALCULATE LENGTH
ALLOCATE SPACE FOR DSNAME

DATASET ORGANIZATION

RECORD TY P E

LOGICAL RECORD LENGTH
LET THE ASSEMBLER CALC LENGTH

LET ASSEMBLER CALCULATE LENGTH
ALLOCATE SPACE FOR DSNAME

DATASET ORGANIZATION

RECORD TY P E

LOGICAL RECORD LENGTH
LET THE ASSEMBLER CALC LENGTH

24 © 1997. Xephon UK telephone 01615 :nX4X, fax 0163531-1345. USA telephone (940) 455 7050, fax (940) 455 2492.

*
OP 1'11'13 DC
OP_I'JI'J3D EQU

DC
DC

OP _003C Eau
DC
DC

C' MESSAGES DSNAME~'

*-OP_I'J03
CL44'
C' DSORG~'

*-OP_I'JI'J3
CL2 '
C' RECFM~'

OP 003E Eau *-OP_I'J03
DC C L2'
DC C' LRECL~'

OP_003F Eau *-OP 003
DC C L5 '

OP_I'J03L Eau *-OP_003
*
OP_I'J04 DC
OP_004D EQU

DC
DC

OP_0I'J4C Eau
DC
DC

OP_004E EQU
DC
DC

OP_004F EQU
DC

OP_0I'J4l EQU
o P._0I'J 5 OS
OP_005R DS

DS
OP_0I'J5L EQU
MAX 5 Eau
OP_I'JI'J6 OS
OP_0I'J6R OS

C' SRCHARGS DSNAME~'

*-OP_I'JI'J4
CL44'
C' DSORG~'

*-OP_004
CL2'
C' RECFM~'

*-OP JJ04
Cl2'
C' LRECL~'

*-OP_004
CL5'
*-OP_0I'J4
XLl
XL6
XLl
*-OP 1'105
L'O_LINE OP_I'JI'J5L
XLl
XL8
XLl

LET ASSEMBLER CALCULATE LENGTH
ALLOCATE SPACE FOR DSNAME

DATASET ORGANIZATION

RECORD TY PE

LOGICAL RECORD LENGTH
LET THE ASSEMBLER CALC LENGTH

LET ASSEMBLER CALCULATE LENGTH
ALLOCATE SPACE FOR OS NAME

DATASET ORGANIZATION

RECORD TYPE

LOGICAL RECORD LENGTH
LET THE ASSEMBLER CALC LENGTH

SPACE FOR RECORD NUMBER
FILLER
LET THE ASSEMBLER CALC lENGTH
LET THE ASSEMBLER CALCULATE

SPACE FOR RECORD NUMBER
FILLER OS

DC
OP_I'JI'J6L EQU
OP_007 OS
OP_I'JI'J7R OS

C'RECORDS READ FROM THE SYSUTI DATASET'

DS
DC

OP_007L EQU
TITLE

UTI DON DC
UT2_DON DC
Un_DON DC
UT4 DON DC

*-OP_006
XU
XL6

LET THE ASSEMBLER CALC LENGTH

SPACE FOR RECORD NUMBER
XLI FILLER
C'RECORDS FOUND CONTAINING THE SEARCH ARGUMENTS'
*-OP_I'J07 LET THE ASSEMBLER CALC LENGTH
'IEBIBALL DCB RELATED INFORMATION'
CL8'SYSUTl' USED BY THE DSABSERV ROUTINE
CL8'REPORT' USED BY THE DSABSERV ROUTINE
CL8'MESSAGES' USED BY THE DSABSERV ROUTINE
CL8'SRCHARGS' USED BY THE DSABSERV ROUTINE

* DECLARE THE DCB EXTENSIONS
DCBE_UTI DCBE RMODE31~BUFF

DCBE_UT2 DCBE RMODE31~BUFF

,8) 1997. Reproduction prohibited. Please inform Xephon of allY infringement. 25

DCBE_UT3 DCBE RMODE31~BUFF

DCBE_UT4 DCBE RMODE31~BUFF

* DECLARE THE DCB INFO FOR THE FILES
UTl DCB DSORG-PS.MACRF~(GL).DDNAME-SYSUT1.EODAD-EOF_UT1. +

SYNAD-SYN UTl
UT2 DCB DSORG~PS.MACRF~(PM).DDNAME~REPORT.DEVD~DA. +

DCBE-DCBE_UT2.SYNAD-SYN_UT2
UT3 DCB DSORG-PS.MACRF-(PM).DDNAME-MESSAGES.DEVD~DA. +

DCBE~DCBE_UT3.SYNAD-SYN_UT3

UT4 DCB DSORG-PS.MACRF~(GL).DDNAME-SRCHARGS.EODAD~EOF_UT4. +
DEVD~DA.DCBE-DCBE_UT4.SYNAD-SYN_UT4

HSASTG
@DSAB OS A ADDRESS DF DSABSERV
RET_CODE OS RETURN CODE FIELD
O_WORK OS
PLIST OS
UTL L OS
UTl_ DSN DS
UTl_LREC DS
UTLDSO DS
UTLRT
UTLL

DS
DS

UT2_0SN OS
UT2_LREC
UT2_0S0
UT2_RT

DS
OS
OS

UT3_ L OS
UT3_DSN DS

DS
DS
DS
OS
OS

UT4_LREC OS
UT4_DSO OS
UT4 RT OS
O_LINE DS
UTl_FLAG OS
UT2_ FLAG DS
UT3JLAG DS
UT4_FLAG OS
R_BXlE OS
TRAN_TAB DS
RECORD_R OS
RECORD_M DS
RECORD _N DS
ARG_TB OS
ARG_TI DS
ARG_ TE DS
ARG_L DS
AND_FLAG OS

D
(4*5)A
H
Xl44
XL2
Xl2
XU
H
XL44
XL2
XL2
XU
H
XL44
XL2
Xl2
XU
H
Xl44
Xl2
XL2
XU
XU33
XU
XU
XU
XU
3A
256XU
PL6
PL4
PL4
A
A
A
H
XU

WORK AREA
USED BY $CALL
LENGTH OF THE OSNAME
SPACE FOR DATASET NAME
SPACE FOR RECORD SIZE
SPACE FOR DATASET ORG
SPACE FOR RECORD TYPE
LENGTH OF THE DSNAME
SPACE FOR DATASET NAME
SPACE FOR RECORD SIZE
SPACE FOR DATASET ORG
SPACE FOR RECORD TYPE
LENGTH OF THE DSNAME
SPACE FOR DATASET NAME
SPACE FOR RECORD SIZE
SPACE FOR DATASET ORG
SPACE FOR RECORD TYPE
LENGTH OF THE DSNAME
SPACE FOR DATASET NAME
SPACE FOR RECORD SIZE
SPACE FOR DATASET ORG
SPACE FOR RECORD TYPE
OUTPUT LINE BUFFER
FLAG INDICATOR FOR DCB
FLAG INDICATOR FOR DeB
FLAG INDICATOR FOR DCB
FLAG INDICATOR FOR DCB
USED BY THE BXLE SCAN LOOP
USED BY THE TRT OPERATION
NUMBER OF RECORDS READ
NUMBER OF RECORDS FOUND
CURRENT NUMBER
@(FIRST ARG IN THE TABLE)
TABLE INCREMENT
@(LAST ARG IN THE TABLE)
LENGTH OF SEARCH ARG
FLAG FOR AND OPERATION

26 © 1997. Xephoo UK telephone 01635 33848. lax 0163538345. USA telephone (940) 455 7050. fax (940) 455 2492.

ARG_ARG DS XL80 SPACE FOR THE SEARCH ARG
LET ASSEMBLER CALC LENGTH
MAX NUMBER OF ARGUMENTS
ALLOCATE SPACE

ARG_ENTL EQU *-ARG
ARG_NUM EQU 99

OS (ARG_NUM*ARG_ENTL)XLI
ARG_TBLL EQU *-ARG_TB CALCULATE TABLE SIZE
* PULL IN THE DCB MAPPING MACRO

DCBD DSORG=(QS)
END IEBIBALL

DSABSERV PROGRAM

TITLE 'DSABSERV - ACCESS DATASET JFCB INFORMATION'
----+----+----+----+----+----+----+----+----+----+----+----+----+----
* CSECT
* MODU LE
* DESC
*
*
*
*
*
*
* MACROS
* DSECTS
* INPUT
* OUTPUT
* PLIST
*
*
*
*
*
*
*
*
*
*
*

DSABSERV *
DSABSERV *
DSABSERV IS A CALLABLE ROUTINE THAT CAN BE USED TO OBTAIN *
THE NAME OF THE DATASET THAT IS ASSOCIATED WITH A DDNAME *
IN THE CURRENT STEP. RECORD TYPE. DATASET ORGANIZATION *
AND LOGICAL RECORD LENGTH ARE ALSO RETRIEVED. SOME OF *
FIELDS MAY NOT BE AVAILABLE IF THE DATASET HAS NOT BEEN *
OPENED. THE ROUTINE DOES NOT ESTABLISH A RECOVERY ENVI- *
RONMENT. SO IT WILL PERCOLATE IF IT ABENDS. *
$ESAPRO $ESAEPI $ESASTG GETDSAB SWAREQ *
IHADSAB CVT IEFJESCT I EFT lOTI IEFJFCBN IEFZB505 *
NONE *
NONE
RI POINTS TO A STANDARD PARAMETER LIST
RI+X'00' ADDRESS OF HALFWORD FOR DATASET NAME LENGTH
Rl+X'04' ADDRESS OF DDNAME
Rl+X'08' ADDRESS OF 44 BYTE AREA TO PLACE THE DATASET

*
*
*
*
*

NAME INTO *
Rl+X'0C' ADDRESS OF A FULLWORD. FIRST HALFWORD CONTAINS *

LRECL. SECOND HALFWORD CONTAINS DSORG
Rl+X'10' ADDRESS OF 1 BYTE CONTAINING RECFM *
THE PLIST IS VARIABLE IN LENGTH. THE HIGH ORDER BIT IS *
TURNED ON IN THE LAST ADDRESS IN THE LIST. THIS ALLOWS *
THE ROUTINE TO DETERMINE HOW MANY ARGUMENTS ARE IN THE *
PLIST. *

----+----+----+----+----+----+----+----+----+----+----+----+----+----
Eel ECT

DSABSERV $ESAPRO R12.RM=ANY.AM=31
USING ZB505.R9 LET THE ASSEMBLER KNOW
LR RB,RI PICK UP POINTER FROM CALLER
LTR RB.R8 Q. DID WE GET SOME PARMS
BNZ GOT.PARM A. YES. CALLER PASSED SOMETHING
MVC RET.CODE. RC016 SET IN A RETURN CODE
B EX ITPROG EXIT THE ROUTINE

----+----+----+----+----+----+----+----+----+----+--- -+----+ ---+----
* BUILD THE TRANSLATE TABLE. IT IS USED TO DETERMINE THE LENGTH OF *
* THE DATASET NAME. ONLY SIGNIFICANT CHARACTER IS THE SPACE X'40'. *

1997. R..:production pwhihited. Pka~e inform Xerhun of any infringement 27

----+----+----+----+----+----+----+----+----+----+----+----+--- +----
GOT PARM OS 0H

MVI TRANTAB+C' .C' , PUT SPACE IN XLATE TABLE
NXT PARM OS 0H

LM R3 . R 7 .0 (R8) PICK UP ADDRESSES FROM CALLER
* R3 NOW HAS @(DSNAME LENGTH)
* R4 NOW HAS @(DDNAME)
* RS NOW HAS @(DSNAME)
* R6 NOW HAS @(RECORD LENGTH.
* OS ORGANIZATION)
* R7 NOW HAS @(RECORD TYPE)

XC EPA_AREA. EPA_AREA INSURE AREA IS CLEARED
LA R9. EPA_AREA GET @(EPA AREA)

----+----+----+----+----+----+----+----+----+----+----+----+ ---+----
* SET THE DSNAME LENGTH TO THE MAXIMUM POSSIBLE. AND PRIME THE DSNAME *
* FIELD WITH ASTERISKS. IT WILL BE UP TO THE CALLER TO CHECK THE *
* CONTENTS OF THE DSNAME FIELD TO SEE WHAT IT CONTAINS. *
----+ ---+----+----+----+- --+- --+----+----+----+----+----+----+----

MVC 0(Z.R3).HALF44 SET MAX DSNAME LENGTH
MVI 0(R5).C'*' DUMMY OUT FIRST BYTE OF THE

* DATASET NAME FIELD
MVC 1(43.RS).0(RS)

*
DUMMY OUT THE REMAINDER OF
THE DATASET NAME FIELD

----+----+----+----+----+----+----+----+----+----+- --+----+----+----
* UTILIZE THE GETDSAB SERVICE TO GET THE ADDRESS OF THE DATA SET *
* ASSOCIATION BLOCK. FROM THE DSAB. WE PICK UP THE POINTER TO THE *
* TIOT ENTRY. FROM THE TIOT ENTRY. WE PICK UP THE SVA FOR THE JFCB. *
* THEN WE USE THE SWAREQ SERVICE TO GET THE ADDRESS OF THE JFCB. AND *
* FROM THERE WE PICK UP THE DATASET NAME. *
----+----+----+----+----+----+----+----+----+----+----+----+----+----

GETDSAB DDNAME-(R4).DSABPTR-PTRDSAB.RETCODE-DSAB_RET.
RSNCODE-DSAB_RSN.MF-(E.DYN_DSAB)

CLC DSAB_RET.RC000 Q. DO WE HAVE THE DSAB
BNE NXT_NTRY A. ENCOUNTERED AN ERROR
L R4 • PTRDSAB GET @(DSAB)
L R4.DSABTIOT-DSAB(.R4) GET @(TIOT ENTRY)

--- +----+----+-- -+----+----+----+----+----+----+----+----+----+----

* FROM THE TIOT ENTRY FOR THE DDNAME IN QUESTION WE PICK UP A TOKEN *
* THAT WILL BE PLACED INTO THE EPA (EXTENDED PARAMETER AREAl THAT WILL*
* BE PASSED TO SWAREQ. *
----+----+--- +----+----+----+----+----+----+----+----+----+----+----

MVC SWVA(L'TIOEJFCB) .TIOEJFCB-TIOENTRY(R4)
LA R4. EPA_AREA GET @(EXTENDED PARAMETER AREA)
ST R4.SVA_PTR SET UP PLIST FOR CALL TO SWAREQ
SWAREQ FCODE-RL.EPA-SVA_PTR.UNAUTH-YES.MF-(E.DYN_SWAI
C RlS.RC000 Q. CLEAN FROM SWAREQ
BNE NXT_NTRY A. ENCOUNTERED AN ERROR

Rl.SWBLKPTR GET @(JFCB)
MVC 0(Z.R61.JFCLRECL-JFCBDSCT(Rll GET THE RECORD LENGTH
MVC Z(Z.R61.DST_## PRIME WITH UNKNOWN
TM JFCDSRGI-JFCBDSCT(Rl),JFCORGPS Q. PHYSICAL SEQUENTIAL

28 If; 1997. Xepholl PK felephone 01635 3JR4R, fax 0\615 3X345. USA felephone (040) 455 7050, fax (940) 455 2492.

BNO
MVC
B

CHK_PO DS
TM
BNO
MVC

CHKRECFM DS
MVC
TM
BNO
MVC
B

CHK_FI X DS

CHK_PO
2(2,R6),DST PS
CHKRECFM
0H

A. NO, GO SE IF PO
INDICATE PS FILE TYPE
GO DETERMINE RECORD TYPE

JFCDSRGI-JFCBDSCT(Rl),JFCORGPO Q. PARTITIONED ORG.
CHKRECFM A. NO, ?? FILE TYPE
2(2,R6),DST_PO INDICATE PO FILE TYPE
0H
0(l,R7),U_TYPE# SET TO UNDEFINED
JFCRECFM-JFCBDSCT(Rl),JFCUND Q. UNDEFINED
CHK_FIX A. NO
0(1, R7), U_TYPE
MVC_DSN
0H

SET TO UNDEFINED
GO MOVE DSN

TM JFCRECFM-JFCBDSCT(Rl),JFCFIX Q. FIXED RECORD TYPE
BNO CHK_VAR A. NO
MVC
B

0(1, R7), F _TYPE
MVC_DSN

SET TO FIXED
GO MOVE DSN

CHK_VAR DS 0H
TM
BNO
MVC

JFCRECFM-JFCBDSCT(Rl),JFCVAR O. VARIABLE
MVC_DSN GO MOVE DSN
0(l,R7),V_TYPE SET TO VARIABLE

MVCDSN OS 0H

*

*

*
*

*

MVC

TRT

BC
BC

MVC
B

o (L' ,1 FCBDSNM, R5) ,J FCBDSNM -J FCBDSCT(Rl) MOV E THE DSNAME
TO THE CALLER'S AREA

0(L'JFCBDSNM,R5),TRANTAB SCAN FOR THE FIRST BLANK

2,NXT NTRY
4,CALC LEN

RET_CODE,RC004
EXITPROG

IN THE DATASET NAME
NO BLANKS ENCOUNTERED
BLANK FOUND, CALCULATE LENGTH
SHOULD NEVER FALL THROUGH, BUT
JUST IN CASE WE DO
SET A RETURN CODE TO INDICATE
LEAVE THE ROUTINE
AN ERROR WAS ENCOUNTERED

CALC LEN OS 0H
SR Rl, R5
STH R1,0(R3)

CALCULATE DSNAME LENGTH -
PUT IT IN CALLERS STORAGE

----+----+----+----+- --+----+----+----+----+----+----+-- -+----+----
* CONTINUE UNTIL WE HAVE PROCESSED THE LAST TRIPLET OF ADDRESSES. *
----+----+----+----+----+----+----+----+----+----+----+----+--~-+----

NXT _NTRY OS 0H
TM HI_BITL(R8),HIBITON O. LAST SET OF ARGUMENTS
BO EX ITPROG A, YES, ALL DONE
LA R8, PTR_ADJ (, R8) ADJUST REGISTER 2
B NXT_PARM GO PROCESS NEXT SET

EX ITPROG DS 0H
$ESAEPI RET_CODE GET THE RETURN CODE

PTR_SIZE EOU 4 SIZE OF 1 PARAMETER
PTR NUM EQU 5 NUMBER OF PARMS/ARGUMENT
PTR ADJ EQU PTR SIZE*PTR_NUM INCREMENT SIZE
HI_BIll EOU PTR_ADJ-4 LOCATION TO CHECK FOR HIGH BIT

© 1997. ReproductIOn prohibited. Please inform Xcphon of any infringement 29

HIBITON EQU X'80'
F'0 '
F' 4'
F'16'

RC000 DC
RC004 DC
RC016 DC
HALF44
DST __ PS
DST _PO
DST _1M
F _TYPE
V_TYPE
U_TYPE
U_ TY P Eff

DC H'44'
DC CL2' PS'
DC CLZ'PO'
DC CLZ'??'
DC CLl'F'
DC CLl 'V'
DC CLl 'U'
DC C Ll ' ? '

USED FOR ADDRESS TESTING
USED FOR RETURN CODE SETTING
USED FOR RETURN CODE SETTING
USED FOR RETURN CODE SETTING
MAX DATASET NAME LENGTH
PHYSICAL SEQUENTIAL FILE
PARTITIONED ORGANIZATION
DON'T KNOW THE FILE TYPE
FIXED RECORD TYPE
VARIABLE RECORD TYPE
UNDEFINED RECORD TYPE
UNKNOWN RECORD TYPE

TITLE 'DSABSERV
$ESASTG

- MAP OUT THE DYNAMIC STORAGE AREA'

DSAB_RET
DSAB_RSN
PTRDSAB
RET_ CODE
SVA_PTR
EPA_ AREA
TRANTAB
*

DS F
DS
DS F
DS F
DS F
DS X Ll6
DS Z56XLl

RETURN CODE FROM GETDSAB
REASON CODE FROM GETDSAB
USED BY THE GETDSAB CALL
RETURN CODE FIELD
POINTER TO THE EPA
SPACE FOR THE SWAREQ EPA
SET ASIDE SPACE FOR THE
TRANS LATE TAB LE

* SET ASIDE SPACE FOR THE GETDSAB MACRO
GETDSAB MF~(L,DYN DSAB)

* SET ASIDE SPACE FOR THE SWAREQ MACRO
DYN_SWA SWAREQ MF-L

TITLE 'DSABSERV MAP OUT THE DSAB CONTROL BLOCK'
IHADSAB
TITLE 'DSABSERV MAP OUT THE CVT CONTROL BLOCK'
CVT DSECT~YES,LIST~YES
TITLE 'DSABSERV MAP OUT THE JESCT CONTROL BLOCK'
IEFJESCT
TITLE 'DSABSERV MAP OUT IEFZB505'
IEFZB505
TITLE 'DSABSERV MAP OUT THE TIOT CONTROL BLOCK'

TI OT DSECT
IEFTIOTl
TITLE 'DSABSERV - MAP OUT THE JFCB CONTROL BLOCK'

J FCBDSCT DSECT
IEFJFCBN
END DSABSERV

$ESAPRO MACRO

MACRO
&LABEL $ESAPRO &AM~31,&RM~ANY,&MODE~P

TELL ASM WHERE PROGRAM ENDS

**
* THIS MACRO WILL PROVIDE ENTRY LINKAGE AND OPTIONALLY
* MULTIPLE BASE REGISTERS. TO USE THIS MACRO, YOU NEED TO
* ALSO USE THE $ESASTG MACRO. THE $ESASTG DEFINES THE SYMBOL

30 © 1997 Xephon UK telephone 01635 33R4R, fax 01635 3R345, USA telephone (940) 455 7050, fax (940) 455 2492.

* QLENGTH WHICH OCCURS IN THE CODE THAT &ESAPRO GENERATES.
* IF YOU DO NOT CODE ANY OPERANDS, THEN REGISTER 12 WILL BE
* USED AS THE BASE. IF YOU CODE MULTIPLE SYMBOLS, THEN THEY
* WILL BE USED AS THE BASE REGISTERS.
*
*
*
*
*

EXAMPLES:
SECTNAME $ESAPRO
SECTNAME $ESAPRO 5
SECTNAME $ESAPRO R10,Rll

REG 12 BASE
REG 5 BASE
REGS 10 AND 11 ARE BASES

**
*

LCLA &AA,&AB,&AC
R0 EQU 0
Rl EQU
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
RA EQU Hl
Rll EQU 11
RB EQU 11
R12 EQU 12
RC EQU 12
R13 EQU 13
RD Eau 13
R14 EQU 14
RE EQU 14
R15 EQU 15
RF EQU 15
*
FPR0 Eau 0
FPR2 EQU 2
FPR4 EQU 4
FPR6 EQU 6
*
&LABEL CSECT
&LABEL AMODE &AM
&LABEL RMODE &RM
*

SYSSTATE ASCENV-&MODE SET THE ENVIRONMENT
*

$ $ $ $E Y E C . * (R15) BRANCH AROUND EYECATCHER
DC ALl(($$$$EYEC-*)-l) EYECATCHER LENGTH
DC CLS'&LABEL' MODULE 10
DC C L3'

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 31

*
$$$$F1SA
$$$$4096
*
$$$$EYEC
*

.USER12

DC CLS'&SYSDATE' ASSEMBLY DATE
DC CL3' - ,

DC CLS'&SYSTIME' ASSEMBLY TIME
DC CL3' FILLER

DC CL4'F1SA' USED FOR STACK OPERATIONS
DC F'4096' USED TO ADJUST BASE REGS

DS 0H

BAKR R14,0 SAVE GPRS AND ARS ON THE STACK
AIF (N'&SYSLIST EO 0).USER12
LAE &SYSLIST(1),0(R15,0) LOAD OUR BASE REG
USING &LABEL,&SYSLIST(1) LET THE ASSEMBLER KNOW
AGO .GNBASE
ANOP
MNOTE *, 'NO BASE REG
LAE R12,0(R15,0)
USING &LABEL,R12

SPECIFIED. REGISTER 12 USED'
LOAD OUR BASE REG
LET THE ASSEMBLER KNOW

AGO .STGOB
.GNBASE ANOP

AIF (N'&SYSLIST LE 1).STGOB
&AA SETA 2
&AC SETA 4096
. GNBASEl ANOP
*

&AB

&AA
&AC

.STGOB
*

*

*

.MEND
*

AIF (&AA GT N'&SYSLIST).STGOB
SETA &AA-1
LR &SYSLIST(&AA).&SYSLIST(&AB)
A &SYSLIST(&AA).$$$$4096

GET INITIAL BASE
ADJUST NEXT BASE

USING &LABEL+&AC.&SYSLIST(&AA)
SETA &AA+1

LET THE ASSEMBLER KNOW

SETA &AC+4096
AGO . GNBASE1
ANOP

L R0.0LENGTH GET THE DSECT LENGTH

STORAGE OBTAIN.LENGTH-(R0).LOC-(RES.ANY)

LR R15. R1 GET @(OBTAINED AREA)
L R13.0DSECT GET DISPLACEMENT INTO AREA
LA R13.0(R13.R15) GET @(OBTAINED AREA)
LR R0.R13 SET REG 0 - REG 13
L Rl. QLENGTH GET THE LENGTH OF THE AREA
XR R15.R15 CLEAR REG 5
MVCL R0.R14 INTIALIZE THE AREA
MVC 4(4.R13),$$$$F1SA INDICATE STACK USAGE
USING DSECT.R13 INFORM ASSEMBLER OF BASE
ANOP

32 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

EREG Rl.Rl
MEND

$ESAEPI MACRO

MACRO
$ESAEPI

RESTORE REGISTER 1

**
* THIS MACRO WILL PROVIDE EXIT LINKAGE. IT WILL FREE THE
* STORAGE AREA THAT WAS ACQUIRED BY THE $'[SAPRO MACRO. YOU
* CAN OPTIONALLY PASS IT A RETURN CODE VALUE. THIS VALUE IS
* EITHER THE LABEL OF A FULL WORD IN STORAGE. OR IT IS A REG-
* ISTER. AS WITH THE $ESAPRO MACRO, YOU NEED TO USE THE $ESASTG
* MACRO. THE SYMBOL QLENGTH WHICH OCCURS IN THE CODE THAT IS
* GENERATED BY THIS MACRO IS DEFINED BY $ESASTG
*
*
*
*
*
*

EXAMPLES:
$ESAEPI
$ESAEPI (R5)
$ESAEPI RETCODE

NO RETURN CODE SPECIFIED
RETURN CODE IS IN REG 5
RETURN CODE IS IN THE FULLWORD AT
RETCODE

**
AIF (N'&SYSLIST EO 0).STGFRE
AIF ('&SYSLIST(l)'(l,l) EO '(').REGRC
L R2.&SYSLIST(1) GET RETURN CODE VALUE
AGO . STGFRE

. REGRC ANOP
LR R2.&SYSLIST(1.1) GET RETURN CODE VALUE

.STGFRE ANOP
L R0,QLENGTH GET THE DSECT LENGTH
STORAGE RELEASE.LENGTH-(R0).ADDR-(R13)
AIF (N'&SYSLIST NE 0).SETRC
XR R15.R15 CLEAR THE RETURN CODE
AGO . MEND

. SETRC ANOP
LR R15.R2 SET THE RETURN CODE

.MEND ANOP
PR RETURN TO CALLER

* FOR ADDRESSABI LITY PURPOSES
LTORG
MEND

$ESASTG MACRO

MACRO
HSASTG

**
* THIS MACRO IS USED IN CONJUNCTION WITH THE $ESAEPI AND $ESAPRO
* MACROS. IT PROVIDES A 0 TYPE ADDRESS CONSTANT WHICH WILL CON-

I 'JlJ7. Reproduction prohibited. Pk(l~l' mform Xephon of any infrlllgemcill 33

* THE LENGTH OF THE DSECT. A REGISTER SAVE AREA 10 PROVIDED AS
* WELL.
*
*
*
*
*
*
*

EXAMPLES:
$ESASTG

XXX DC F
YYY DC XL255

DEFINE ADDITIONAL STORAGE AREA

*
**

ODSECT
OLENGTH
DSECT

DC O(DSECT)
CXD
DSECT
OS 18F

$CALLMACRO

MEND
MACRO

DEFINE A OCON
LET ASM CALCULATE THE LENGTH

SET ASIDE REGISTER SAVE AREA

&NAME $CALL &ENTRY,&OPRNDS,&VLPARA,&BM-BALR,&ID-,&MF-I
**

.* MODIFIED VERSION OF THE IBM SUPPLIED CALL MACRO *
**

&IHBNO
&GNAME
&IHBSWA
&IHBSWB

&NAME

.CONTC

.CONTA

.CONTB

.CONTD

.CONTE

.CONTF

GBlB &IHBSWA,&IHBSWB
GBlC &1 HBNO
LCLC &GNAME
SETC '309'
SETC 'I HB' . '&SYSNDX'
SETB ('&VLPARA' EO 'VL')
SETB ('&ENTRY' EO '(15)')
AIF ('&VLPARA' NE " AND '&VLPARA' NE 'VL').ERROR4
AIF ('&MF' EO 'L' AND '&ENTRY' NE ").ERRORI
AIF ('&MF' EO 'L' AND '&ID' NE ").ERROR2
AIF ('&MF' NE 'L' AND '&ENTRY' EO ").ERROR3
OS flH ALIGNMENT
AIF ('&MF' EO 'L').CONTC
AIF (&IHBSWB).CONTCC
AIF ('&OPRNDS' EO " AND

('&MF' EO 'I' OR '&MF' EO 'L'»)'CONTB
IHBOPLTX &ENTRY,&OPRNDS,&NAME,MF-&MF
AIF ('&MF' EO 'L').EXIT
AIF (&IHBSWB).CONTD
L 15,&ENTRY LOAD 15 WITH ENTRY ADR
AIF ('&BM' EO 'BASSM').CONTE
BALR
AGO

14,15
.CONTF

BASSM 14,15
AIF ('&10' EO ").EXIT
DC X'47flfl'

BRANCH TO ENTRY POINT

BRANCH TO ENTRY POINT

NOP INSTRUCTION WITH

34 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050. fax (940) 455 2492.

DC AL2(&ID)
. EXIT MEXIT
.CONTCC ANOP
&NAME OS 0H

AGO .CONTC
.ERROR1 IHBERMAC 73,&IHBNO,&ENTRY

MEXIT
.ERROR2 IHBERMAC 74,&IHBNO,&ID

MEXIT
.ERROR3 IHBERMAC 26,&IHBNO

MEXIT
.ERROR4 IHBERMAC 1fl14,THIRD

MEND

Enterprise Data Technologies (USA)

The command exit

10 IN LAST TWO BYTES

ENTRY WI MF-L

ID WI MF-L

ENTRY SYMBOL MISSING

INVALID THIRD PARM

© Xephon 1997

Since MVS Version 5, an MVS command exit has been made
available as a standard exit point. By that time many sites had home
grown versions of programs that would listen in on the subsystem
interface, intercept commands, and respond to MVS. This was a
somewhat complex piece of code to write, and all of this has been
made much easier by making use of the published exit point. The exit
has to be in a LNLKSTed dataset. It also has to be re-entrant and
receives control in supervisor state key O. It can have any name
complying with standard load module naming conventions and is
defined to MVS via the MPFLSTxx member in the following way:

.CMD USEREXIT(exitname)

Itis dynamicallyrefreshable by relinking the module into the LNKLS T
library followed by:

T MPF-xx

where xx the suffix of the MPFLSTxx member in SYS I.PARMLIB
(or any other SYSx.PARMLIB as from OS/390). This way it is really
easy to add changes to the exit and no pre-loading in common storage
or zapping of pointers in memory is required. The module is also
ESTAE-protected and a catastrophic error in the module will merely

© 1997. Reproduction prohibited. Please infoml Xephon of any infringement 35

disable the exit. (Keep in mind that the exit is called in supervisor state
o though, so it is quite easy to do irrecoverable damage to the operating
system if care is not taken.)

The exit can be used to alter the command. If a command is altered,
both the old command and the new command are displayed on the
console (and on the SYSLOG), but only the altered command is
executed. We will look at a few uses of this facility and also at some
coding hints.

When the module is called, a copy of the command amongst other
things is passed to the routine. This is done for all commands, so a
command to any of the other subsystems can be viewed, altered, or
denied even if it has a prefix character assigned to it. An important
thing to remember is that this command exit could potentially lock
itself in. That is, if coded incorrectly, the command required to disable
it (T MPF=NO) can also be rejected - making an IPL the only way to
recover from an infinite loop in the module. It is good practice to scan
the text for any T MPF commands right at the start of the logic and,
if found, to immediately return to MVS with a return code of o. This
way we can be sure that the T MPF command is always processed.

Another good idea is to make the exit merely a text analyser with all
the actual work being done in called subroutines. When we receive a
copy of the command BUFFER, look for our command(s) by comparing
them to a table where we keep all the ones we are interested in. If we
find a match, we set up our own ESTAE and then do a LINK
EP=module for the particular function. This way we end up with
several independent load modules, leading to a clean modular design.
By doing this we can develop new command modules and, if they
abend (as modules tend to do whilst being developed or tested), we
intercept the abend and recover. We then never get our exit disabled
by MVS because the exit itself never abends, only one of its subroutines
for which we have set up an ESTAE. We can make use of a bit pattern
or a flag in our command table to indicate that a certain command is
causing an ABEND, and from this we can issue a warning message
should the command be entered again. The following is a suggested
sequence of events in the main routine:

1 Set up addressability to the passed command text (see example
later).

36 © 1997. Xephon UK telephone 01635 33X4X, fax 01635 3X345. USA telephone (940) 4."i."i 7050, fax (940) 455 2492.

2 Because this module has to be re-entrant, obtain storage in
subpool 229 for its workareas.

3 Remove all blanks from the command buffer to standardize the
format.

4 See if the command buffer contains the text we are looking for by
comparing it with our table of commands.

5 If it does not, return to MVS with a return code of 0 (telling MVS
to proceed).

6 If it does, do the following:

Set up an ESTAE environment.

• Call the matching command processing subroutine for that
particular command.

• Decide if MVS should further process the command or not.

• Return to MVS with a 0 (proceed) or 4 (ignore). Ignore
would be the case if our logic has already done the necessary
work or if we decide to reject the command for some reason.

Keep in mind that the command exit also gets a copy of all messages
sent through the system. An infinite loop could potentially be created
should we issue a message containing the text we are scanning for in
the command buffer.

We will now look at a few uses of this command exit and then work
through the above four points with examples and some tips. The
following are ideas of what we may want to do in a command exit:

Refreshing a single LLA - dataset is cumbersome (we have to
update a PARMLIB member or have one ready for it), so most
systems programmers simply enter F LLA,REFRESH. This
places a massive overhead on the system and in some cases can
lead to performance problems for quite some time because VLF
is also involved in the process. A much better idea would be to
have the ability to enter a command of the format:

F LLA.REFRESH~mydsname

Because we have the LLACOPY macro available, this is quite a

© 1997. Reproduction prohihited. Please inform Xephon of any mfringement. 37

simple process once we have identified the dataset name from the
command text. As our routine will be doing the LLACOPY work
itself, we can return to MVS with a return code of four which will
cause MVS to not process the command any further - that is, LLA
never gets instructed by MVS to actually do the refresh. (One of
the drawbacks of this exit is that people become used to it: if we
now get it disabled for some reason, MVS will pass the above
command for further processing which of course does not fit in
with the standard format. This is the reason why you should make
sure that once in use, the exit itself never gets disabled through an
abend.)

• Inspecting and possibly restricting VARY commands. With the
introduction of 4-digit commands, an incorrectly entered VARY
command can cause quite some overhead on a system. The
command

V 123·456.0NLINE

incorrectly entered as

v 123-4566.0NLINE

(due to a typo) will hang MVS for quite some time. It may be a
good idea to investigate command ranges and only pass them
through to MVS (by means of a 0 return code) if they fall within
reasonable ranges.

• Inspecting the:

E jobname.SRVCLASS~name

may be a good idea. It is also a good idea to have a RACF-routine
for any of the new commands introduced. This same routine can
be used to verify access to certain restricted commands. First do
a RACF-check and only allow the command to be issued if the
user is within a certain group or has certain RACF privileges.

• Any product that manipulates UCBs to facilitate tape sharing
could potentially leave the UCBs in an incorrect state if it abends
or is FORCEd out of the system - requiring a zap in the UCB,
which is a dangerous practice even at the best of times. A new
UCBZAP command can be introduced with a module doing the

38 © 1997. Xephon UK telephnne 01635 13R4R, fax 01035 38345. USA telephone (940) 4557050. fax (940) 455 2492.

work for us. (This one would definitely require the RACF-check
first because it could be extremely destructive.) Any other high
risk zaps that systems programmers have to do from time to time
could be put into the command exit. It is far better to code up the
exit accurately and with a cool head than to have to work out
offsets and set up a zap during a time when the system is
experiencing an emergency of sorts.

• RMF has a routine that can be called to obtain figures on service
consumption, real and auxiliary frame usage, etc. This module is
called ERBSMFI. Using the command exit we can define a new
command, something like D BUSY, which can then have a
module called in which we invoke ERBSMFI and manipulate its
output. In a case of a total hang (no TSO user or monitor gets
dispatched), we may be able to find the cause by entering a D
BUSY command from the console. The routine should be written
in such a way that it look for high consumers of CPU etc. (The
way to process ERBSMFI is to call it, save the returned values,
wait a few milliseconds, call it again and then make decisions
based on the differences obtained. For instance, if address space
ABC had used X CPU seconds at the time of the first call and Y
CPU seconds at the time of the second call, then Y - X will show
us how many CPU seconds it has used. One has to take the
number of processors on-line into consideration to be able to
express this as a CPU % - the SDSF source code is a good
example to look at.)

• GRS contention is very common in the early stages of sysplex
implementation. The D GRS,C command (and other versions of
it) goes some way to help resolve contention. There is however
a fair bit more information available by doing a GQSCAN macro.
This will for instance show which member of a sysplex has a
RESERVE on a volume. By scanning through this information
and looking at I/O queues chained off UCBs, one can greatly
enhance the systems programmer's ability to resolve problems
during sysplex hang situations. So it may be a good idea to have
something like D RESERVE to show which sysplex member is
causing the problem.

• In the October 1997 issue of MVS Update an example was given

© 1997. Reproduction prohibited. Please inform Xephon of any infringement 39

on how to write a routine to display disk characteristics. This
routine could easily be adopted to support a command such as
DISKTYPE xxxx, displaying more information regarding a disk
unit directly onto the console.

There are more good reasons to have a command exit installed, but by
now you should have an idea of the benefits that can be derived from
it. It also gives a large degree of flexibility once it is in place - if a
certain command suddenly has to be intercepted for one reason or
another it could be a fairly simple task to make an addition to the exit,
provided it was well planned and structured as suggested.

We will now get back to points 1 - 4 mentioned earlier and give some
examples of how this can be implemented.

1 To set up addressability to the passed buffer, the following can be
used. When we receive control, register 1 contains the address of
the command installation exit routine parameter list mapped by
the macro IEZVX 1 0 1. A large amount of information is contained
in this DSECT and it includes fields such as:

• CMDXISYN - the name of the system that issued the
command.

• CMDXCNNM - the name of the console that issued the
command.

• CMDXTOKN - command issuer TOKEN.

• CMDXCLIP - pointer to the command length and the
command image.

(By making use of the SHOWMEM routine published in the May
1997 issue of MVS Update, it may be a good idea to display some
of these fields and also the command buffer before making
decisions based on their contents.)

Sample text to get to the command buffer:

L
USING
L
DRDP
USING
LH

R4.0(Rl)
CMDX.R4
R4. CMDXCLI P
R4
CMDXC LI B. R4
R5.CMDXCMDL

.Passed pOinter when we receivecontrol

.Addressability to passed parameter

.Command buffer address

.Addressability to the command buffer

.Length of entered command

40 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LA Rl,CMDXCMDI .Command image text

As mentioned before, it may be a good idea to de-blank the
command buffer before we start, Keep in mind that we can alter
a command by overlaying the command buffer and setting a flag
(the field name is CMDXRFLI and the flag is CMDXRCMI) so
it is best to copy the command buffer into our own workarea
before we start manipulating it. We now remove all the blanks by
going through a simple loop (make sure you do not exceed the
length of the passed command because this will lead to an OC4,
which will disable the exit). Once we have de-blanked the
command, we can enter another loop, comparing it to a table with
our customized commands. If we decide to alter the command we
can then move it back into the original command buffer that was
passed to us.

Some commands will never be passed to MVS, some commands
will always be passed to MVS once we have taken note of them
or altered them, and some may be passed to MVS if we are
satisfied with the syntax (eg the range of a VARY command). By
passing a return code of 0 to MVS the command gets processed
and a return code of 4 instructs MVS to ignore the command
(without giving any error message). Make sure that the successful
processing of a private command resulting in a return code 0 does
not cause the return code to be passed back to MVS because this
will mean that MVS will then also try to interpret it. It may be a
good idea to keep the return code that should be passed back to
MVS in the command table. AX'OO' could mean that the command
is always passed on, a X'04' that it will never be passed on, and
a X'02' that the program logic will decide whether or not the
command will ever reach MVS, Here is a sample of what a
command table could look like:

CommTble os OF .Command table
ComOOOI DC C'FLLA,REFRESH-' .Deblanked format of command
LengOODI DC AL2(*-ComOOl) .Length of command text
EnPtOOOI DC AL4(LLAEntpt) ,Address of routine to call*
RCDOOI DC H'4' .Never pass command to MVS
*
ComOOO2 DC C' V' .Vary command
LengOOO2 DC AL2(*-ComOOO2) ,Length of command text
EnPtOOO2 DC AL4(VARYENTP) .Address of routine to call
RCOOO2 DC H'2' .May pass to MVS

© 1997. Reproduction prohibited. Please infonn Xephon of any infringement 41

*
Com0003 DC C' DBUSY'
Leng0003 DC
En PT0003 DC
RC0003 DC

AL2(*-Com0003)
AL4(DBSYENTP)
H'4'

.Deblanked format of command

.Length of command text

.Address of routine to call

.Never pass command to MVS

4 Coding an ESTAE routine is a little complex. Keep in mind that
we should actually return to MVS at the end of the routine and not
to a point inside our program. The sequence of flow in the case of
an abend is this: after the abend MVS gets control, it then
branches off to our ESTAE routine which can do a clean-up, set
a flag (eg mark the command as not available in a bit map), and/
or write a message. Our ESTAE routine then returns back to
MVS, telling it by means of the SETRP macro to either percolate
(abend further, which in our case will have the entire command
exit disabled) or branch back to a point in our mainline code. To
be able to address our own storage area in the ESTAE routine we
have to set up what is known as a RUBLIST. This list instructs
MVS which of our registers to reload before giving control to the
ESTAE routine. The best convention to ensure that we correctly
return control to MVS from inside the ESTAE routine is to make
use of the BAKR/PR instructions at the start and end of the
routine.

Many automation packages offer high-level language interfaces to
commands and messages generated and it is not suggested that the
command exit is introduced to replace any of these. It has as a
drawback that it somewhat exposes the system to any programming
errors it may have. Once stabilized, it is however a handy and very
powerful tool in the hands of a careful systems programmer. It also
puts the control back where it belongs - with the MVS systems
programmer (although the merits of this may be disputed by some).
The command exit gets to look at incoming commands first and is in
a position to override it or alter the syntax before it is seen by any of
the other subsystems.

AAKevser
Systems Profvammer
Houghton Consulting Services Pty Ltd (Australia) © Xephon 1997

42 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Year 2000 aid: list YEAR2K qualifying records

This program, YEAR2KLM, reads the selection file (OUTPUT) from
program YEAR2K (see MVS Update issue 134), refomlats it so that
the source record is contiguous, and lists the records. This listing is
useful in the following two ways:

• as a guide for the manager or lead analyst to determine quickly
whether the qualified records need to be addressed, and, if so, the
priority and resources that should be assigned.

as a source for such assignments.

To address these different functions, a single option may be specified.
This option is used to determine if the records for each member is to
be listed on separate pages. This option is used when distributing
information to individuals for conducting further study or as
maintenance assignments. This option is selected by specifying the
following PARM= statement:

PARM-' SEPARATE'

It is recommended that both of these options be used with at least one
of the copies being used for the initial analysis and for notes on
tracking progress and the other forms for distributing to individual
maintenance analysts for necessary changes. The original file may
also be edited and notes of assignment etc be made prior to such
listings. In this later case, it is recommended that such notes be
restricted to the first 72 bytes of the record, since the remainder of the
record is formatted based on positions 73-80 being non-blank (ie
containing a member name). A sample of a listing, showing manual
notes, is given in Figure 1.

SAMPLEJCL

IISYST0021 JOB
11*- -------------- --------
IISTEPl EXEC PGM~YEAR2KLM

IISYSABEND DO SYSOUT~*

IISYSPRINT DO SYSOUT~*

IIPRINTER DO SYSOUT~*

--------------------------*11

IIINPUT DO DSN-SYST002.YEAR2K.MATCHES.DISP~SHR

II

IY97. Reproduction prohibited, Please Inform Xephon of any infringement 43

LISTING OF YEAR2K SELECTIONS JOB-SYS1002 I DSN-SY S1002. YEAR2K. MATCH ES

MEMBER RECORD

1. .. 5 ... 10 ... 15 ... 20 ... 25 ... 30 ... 35 ••. 40 ... 45 ••• 50 .•. 55 ... 60 .•. 65 ... 70 .•. 75 ..• 80

********NOTE:THE WORD ACRONYM IS A FALSE SELECTION BECAUSE ITS SUFFIX IS 'YM'

NOTE:

NOTE: ASSIGNED TO PROG001 FOR REVIEW AND CORRECTION. KHN 11/18/96.

NOTE:

AAGI0010 73 000730 ACRONYM, (AC DR KP AT TIME OF WRITING) DEPENOING

AAGI0010 171 001710 02 SLASHED-YEAR PIC 9(2).

AAGI0010 176 001760 01 WORKDATE-YYMMDD.

AAGI0010 177 001770 02 WORKDATE-YY PIC X (2),

AAGI0010 181 001810 01 WORKDATE-MMSLDDSLYY,

AAGI0010 186 001860 05 WORKDATESL-YY PIC 99.

AAGI0010 206 002060* "JULGREG" OR "GREGJUL" ROUTINES (CONVERSION OF JULIAN

AAGI0010 207 002070* DATES TO GREGORIAN, AND VICE VERSA).

AAGI0010 209 002090 01 JULIAN-PARM PIC X(23).

AAGI0010 210 002100 01 FI LLER REDEFINES JULIAN PARM.

AAGI0010 211 002110 05 JULIAN-PARM-PACKEO PIC 9(5) COMP 3.

AAGI0010 212 002120

AAGI0010 213 002130

05 JULIAN PARM-YYMMDD

05 JULIAN'PARM-MMDDYY

PIC X (6) .

PI C X(6).

AAGI0010 214002140 05 JULIAN-PARM-MMSLDDSLVY PIC X(B).

AAGl0010 224 002240* COMPUTE-DATE-AND-TIME ROUTINE.

AAGI0010 22800228001 JULIAN-CVRT-DATE PIC 9(7).

AAGI0010 229 002290 01 FILLER REDEFINES JULIAN-CVRT-DATE.

AAGI0010 231 002310 05 CURRDTE-JULIAN PIC 9(5).

AAGI0010 232 002320 05 FILLER REDEFINES CURRDTE-JULIAN.

AAGI0010 233 002330 10 CURRDTE-JULIAN-VY PIC 9(2).

AAGI0010 234 001340 10 CURRDTE-JULIAN-DDD PIC 9(31.

AAGI0010 135 00235001 CURRDTE·JULIAN-PACKED PIC 9(5) COMP 3.

AAGI0010 237 002370 01 CURRDTE-MMDDYY.

AAGI0010 240 002400 05 CURRDTE-YY PIC 9(2).

AAGI0010 241 001420 01 CURRDTESL-MMDDYY.

AAGI0010 247 002470 05 CURRDTESL-YY

AAGI0010 249 002490 01 CURRDTE-VYMMDD

PIC 9(2).

PIC X (6).

AAGI0010 337 003370 02 L2 PIC X(75) VALUE 'AT THIS TIME OF THE YEAR.

AAGI0010 982 009820 MOVE CURRDTE-YYMMDD TO GLJE-BTHD-BATCH-ENTRY-DATE.

AAGI0010 1227 012270* CONVERT JULIAN DATE TO CALENDAR DATE

AAGl0010 1228 012280 MOVE SPACES TO JULIAN-PARM.

1. .. 5 ••• 10 •.. 15 ••• 20 ••. 25 ... 30 ... 35 ... 40 ... 45 ... 50 ••• 55 •.• 60 ... 65 ..

NOTE: THE WORD ACRONYM IS A FALSE SELECTION BECAUSE ITS SUFFIX IS 'YM'

NOTE:

NOTE: NO CORRECTION NECESSARY.

NOTE:

MEMBER RECORD

1. .. 5 ... 10 ... 15 ... 20 ... 25 ... 30 .•. 35 ••. 40 ..• 45 ••• 50 ..• 55 •.. 60 ..• 65 ... 70 ... 75 ... 80

Figure J: YEAR2KLM sample report page

44 © 1997. Xephon UK telephone 01635 33R48, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 24!J2.

PROGRAM SOURCE
LCLC &MYNAME

*
&MYNAME SETC 'YEAR2KLM' CSECT NAME
RBASE Eau 12 BASE REGISTER FOR CSECT
RBAL Eau 10 BAL REGISTER
*

TITLE '&MYNAME' LISTING TITLE

THIS PROGRAM LISTS THE RECORDS SELECTED BY THE YEAR 2000
ANALYSIS PROGRAM (YEAR2K).

EJECT

*** LINKAGE CONVENTIONS ENTERING PROGRAM ***

&MYNAME CSECT

NAME

BEGIN

STM
B
DC
DC
DC

R14.R12.12(R13)
(BEGIN-&MYNAME)(R15)
A(L' NAME)
C'&MYNAME'
C· &SYSDATE &SYSTIME

LR RBASE.R15
USING &MYNAME.RBASE
PRINT NOGEN
GETMAIN R.LV=WORKDLEN
ST Rl.S(0.R13)
5T R13.4(0.Rl)
LR R13.Rl
USING WORKD.R13
L Rl.4(0.R13)
LM R15.Rl.16(Rl)
EJECT

SAVE REGS TO CALLER S.A.
BRANCH AROUND EYECATCHER
LENGTH OF CSECT NAME
CSECT NAME
ASSEMBLY DATE/TIME STAMP
LOAD BASE REGISTER

ADDRESSABI LITY

GET SAVE/WORK AREA
MY S.A. ADDR INTO CALLER S.A.
CALLER S.A. ADDR INTO MY S.A.
Rl3 POINTS TO MY S.A.
ADDRESSABILITY OF SAVE AREA
R1 POINTS TO CALLER S.A.
R15 R0 AND R1 ARE RESTORED

*** MAINLINE ROUTINE ***

MAIN Eau * BEGIN MAINLINE ROUTINE

ST Rl. RlSAVE SAVE INITIAL Rl
MVC PARM.-8C' , SET TO PARAMETER AREA TO BLANKS
L Rl.0(Rl) LOAD ADDRESS OF PARAMETER
LH R8.0(Rl) SET LENGTH
BCTR R8.0 DECREMENT TO LENGTH - 1
LTR R8. RS WAS PARAMETER PRESENT?
BM MAINNOP NO
CH R8.-H·?' PARAMETER TOO LONG?
BH MAINNOP YES
EX R8.MOVEPARM MOVE PARAMETER TO SAVE AREA

*
MAINNOP XC COMPCODE.COMPCODE CLEAR COMPLETION CODE

MVC JGMOTBL(13*L'JGMOTBL).JGMOTBLD COPY JULGREG DAYS/MONTH
* BEGIN DCB INITIALIZATION

CD 1997. Reproduction prohibited. Please infonll Xephon of any infringement. 45

MVC PRINTER(PRINTERL).PRINTERD INITIALIZE DCB
MVC INPUT(INPUTL).INPUTD INITIALIZE INPUT DCB

* END DCB INITIALIZATION
* BEGIN DCB OPENS

MVC PROPENLCPROPENLN).OPEND INITIALIZE SET PRINTER OPEN LIST
OPEN (PRINTER.COUTPUT».MF~(E.PROPENL) OPEN PRINTER
MVC IPOPENL(IPOPENLN).OPEND SET INPUT OPEN LIST
OPEN (INPUT,(INPUT»).MF~(E.IPOPENL) OPEN INPUT

* END DCB OPENS
TIME
ST
BAL
MVC
MVC
MVC
MVC
BAL
ZAP
MVC
BAL

MAINLOOP GET
CLI
BNE
CLC
BNE
CP
BNE
BAL

MAINNOTS MVC
B

MAINOK CLC
BNE
MVC
MVC
B

Rl.JGYYDDD SAVE JULIAN DATE
RBAL,JULGREG CONVERT TO MM/YY/DD
HEADER(L'HEAD) ,HEAD INITIALIZE HEADER
HEADER+L'HEAD(L'HEADER-L'HEAD),HEADER+L'HEAD-l CLEAR
PAGENO-4(4).~C'PAGE' SET PAGE NUMBER 10
DDNAME.INPDDN MOVE IEBCOPY JCL FILE NAME
RBAL.GETNAMES GET SELECTION DSN
PAGES,-P'l' INITIALIZE PAGE COUNT
HEADDATE.JGMMDDYY MOVE MM/YY/DD TO HEADING
RBAL,HEADPAGE PRINT PAGE HEADER
INPUT,INAREA READ INPUT RECORD
INAREA.C'-· SEPARATOR LINE
MAINOK NO
-C'SEPARATE' ,PARM 'SEPARATE' PARM?
MAINNOTS NO
PAGES,~P'l' FIRST PAGE?
MA I NNOTS NO
RBAL.HEADPAGE EJECT TO NEW PAGE
LINE+(SCALE-SUBHEAD)(80).SCALE SET SCALE
MAINPR GO PRINT LINE
INMEM.~8C' MEMBER NAME PRESENT?
MAINRFMT YES
LMEM.~8C·*' SET FLAG
LCOUNT.-C'NOTE:' SET NOTE INDICATOR
MAINMVC

MAINRFMT MVC LMEM,INMEM SET MEMBER NAME
MVC LCOUNT.INCOUNT
MVC L7380.IN7380

MAINMVC MVC LSOURC.INSOURC
MAINPR BAL RBAL,PRINT

B MA I N LOOP
MAINEOF OS 0H

SET RECORD NUMBER
MOVE COLUMNS 73-80
MOVE COLUMNS 1-72
GO PRINT LINE
CONTINUE UNTIL E-O-F

PUT PRINTER. SUBHEAD PRINT FOOTER
* BEGIN DCB CLOSE

MVC PRCLOSL(PRCLOSLN).CLOSED INITIALIZE CLOSE LIST
CLOSE (PRINTER).MF~(E,PRCLOSL) CLOSE IT

*
MVC IPCLOSL(IPCLOSLN).CLOSED SET INPUT CLOSE LIST
CLOSE (INPUT),MF~(E,IPCLOSL) CLOSE INPUT

*
* END DCB CLOSE
*

46 © 1997. Xcphon UK telephone 01635 33848, fax 01635 lR345. USA telephone (940) 455 7050, fax (940) 455 2492.

END00

*

LA
ST
B

EJECT

R15.0
R15.COMPCODE
ENDING

SET COMPLETION CODE 00
INTO STO RAGE

GO TO ENDING

*** LINKAGE CONVENTIONS EXITING PROGRAM ***

ENOING L R14.COMPCODE R14 SAVES COMP CODE
LR Rl.R13 Rl SAVES ADDR OF MY S.A.
L R13 .40'1. Rl) R13 RESTORED. PTR CALLER S.A.
FREEMAIN R.LV~WORKDLEN.A~(Rl) FREE MY SAVE/WORK AREA
LR R15.R14 R15 SET TO COMP CODE
LM R0.R12.20(R13) R0·R12 RESTORED
L R14.12(0.R13) R14 RESTORED
MVI 12(R13) .X'FF· SET COMPLETION SIGNAL
BR R14 RETURN TO CALLER

* BEGIN STUB DEFINE
EJECT

*** GET JOB AND PDS DSN NAMES ***
*** -- - - - - - - ***
*** THANKS TO MR. MARK HOFFMAN FOR THIS LOGIC ***

*
GETNAMES ST RBAL. SAVGNBAL SAVE LINKAGE REGISTER
*

XR R15.R15 ADDRESS OF PSA
USING PSA.R15 ESTABLISH ADDRESSABILITY
L R14. FLCCVT ADDRESS OF CVT
DROP R15 DROP ADDRESSABILITY TO PSA
USING CVTMAP.R14 ESTABLISH ADDRESSABILITY TO CVT
L R15.CVTTCBP ADDRESS OF NEXT TCB POINTER
L R15.4(0.R15) ADDRESS OF CURRENT TCB
DROP R14 DROP ADDRESSABILITY TO CVT
USING TCB.R15 ESTABLISH ADDRESSABILITY CURRENT TCB
L R14.TCBTIO ADDRESS OF TIOT
USING TIOT.R14 ESTABLISH ADDRESSABILITY TO TIOT
MVC HEADJOBN.TIOCNJOB MOVE JOB NAME TO HEADER
MVC HEADJOBN-4(4).~C'JOB~' SET JOBNAME ID

*
DROP R15 DROP ADDRESSABILITY TO TCB
LA R15.TIOELNGH ADDRESS OF FIRST TIOT ENTRY
DROP R14 DROP ADDRESSABILITY (HLASM OBJECTS)
USING TIOENTRY. R15 ESTABLISH ADDRESSABILITY TO TIOT

GNTIOTLP CLl TIOELNGH. X' 00' END OF TIOT CHAIN?
BE GNRETURN YES (SHOULDN'T HAPPEN)
CLC TIOEDDNM(8).DDNAME PDS NAME FOUND?
BE GNDSN YES
XR R0.R0 CLEAR REGI STER
IC R0. TIOELNGH INSERT ENTRY LENGTH
AR R15,R0 POINT TO NEXT ENTRY

1997. Reproduction pruhibited. Pka~c inform Xc phon of any infringement 47

B GNTI OTLP CONTINUE
GNDSN XR RI ,RI CLEAR REGISTER

ICM Rl. 7, TIOEJ FCB ADDRESS OF JFCB
USING JFCB, RI ESTABLISH ADDRESSABILITY TO JFCB
MVC HEADDSN,JFCBDSNM MOVE DSNAME TO HEADER
MVC HEADDSN-4(4),-C'DSN-' SET DSN ID IN HEADER
DROP RI ,RI5 DROP ADDRESSING TO JFCB,TIOT,ENTRY

GNRETURN L RBAL, SAVGNBAL RESTORE LI N KAGE REGISTER
BR RBAL RETURN
EJECT

*** CONVERT JULIAN DATE TO GREGORGIAN DATE ***

*
JULGREG ST

ZAP
ZAP
LA
LA
LA
ZAP
CLC
BE

JG20THCN TM
BO
TM
BM

RBAL,SAVJGBAL SAVE LINKAGE REGISTER
JGDAYS,JGYYDDD+2(2) SAVE DAYS FROM BEGINNING OF YEAR
JGMONTHS,-P'I' INITIALIZE MONTH
RI5,JANUARY LOAD ADDRESS OF DAYS/MONTH TABLE
0,L'JANUARY ... WIDTH OF TABLE
I,DECEMBER ... END OF TABLE
FEBRUARY,-P'ZS' SET NON LEAP YEAR DAYS
-X'2000' ,JGYYDDD YEAR 20XX?
JGYR2000 YES
JGYYDDD+I,I LEAP YEAR?
JGLOOP NO
JGYYDDD+I,X'IZ'
JGLOOP NO
FEBRUARY,-P'I' ADJUST
JGDAYS,0(L'JANUARY,RI5) CURRENT MONTH?
JGFOUND YES
JGMONTHS,-P'I' INCREMENT MONTH

JGYR2000 AP
JGLOOP CP

BNH
AP
SP
BX LE

JGDAYS,0(L'JANUARY,RI5) DECREMENT DAYS PER CURRENT MONTH

JGFOUND UNPK
UNPK
UNPK
MVI
MVI
01
01
01

JGRETURN L
BR

RI5,R0,JGLOOP CONTINUE
JGMMDDYY(Z),JGMONTHS UNPACK MONTH
JGMMDDYY+3(2),JGDAYS UNPACK DAY
JGMMDDYY+6(3),JGYYDDD+l(2) UNPACK YEAR
JGMMDDYY+Z,C'/' SEPARATE MONTH AND DAY
JGMMDDYY+5,C'/' SEPARATE DAY AND YEAR
JGMMDDYY+I,C'0' FORCE MONTH NUMERIC
JGMMDDYY+4,C'0' FORCE DAY NUMERIC
JGMMDDYY+7,C'fj' FORCE YEAR NUMERIC
RBAL,SAVJGBAL LOAD LINKAGE REGISTER
RBAl RETURN

* END STUB DEFINE
EJECT

*** PRI NT ROUT.[NE ***

*
PRINT PUT

MVI
PRJ NTER, LI N E
LINE,C' .

PRINT LINE
SET SEED

48 <J 1997. Xcphon UK telephone 01635 33R48. fax 01635 38345. LSA telephone (940) 455 7050, fax (940) 4552492.

MVC LINE+l(L' LINE). LINE CLEAR LINE
DOUBLESP BCTR R9. RBAL RETURN IF PAGE NOT FULL

PUT PRINTER. SUBHEAD PRINT FOOTER
HEADPAGE MVC PAGENO.~X'40202120· SET EDIT PATTERN

ED PAGENO.PAGES FORMAT PAGE NUMBER
AP PAGES.-P'l' INCREMENT PAGE COUNT
PUT PRINTER. HEADER PRINT PAGE HEADING
PUT PRINTER.SUBHEAD PRINT SUBHEADING
LA R9.5Z SET LINES/PAGE
MVI L1NE.C'0' SET TO DOUBLE SPACE AFTER HEADER
BR RBAL RETURN
EJECT

*** FIXED DATA AREA ***

HEAD DC
SUBHEAD DC

ORG
DC
DC

SCALE DC
DC
ORG

C'lLISTING OF YEAR2K SELECTIONS'
CLl33'0'
SUBHEAD+1
CLS' MEMBER'
CL7' RECORD'
C'l ... 5 ... 10 ... 15 ... 20 ... 25 ... 30 ... 35 ... 40'
C' ... 45 ... 50 ... 55 ... 60 ... 65 ... 70 ... 75 ... S0·

OPEND
CLOSED
* BEGI N
PRINTERD

OPEN (.) .MF~L
CLOSE ().MF~L

DCB CONSTANTS

INPUTD
INPDON

DCB DDNAME-PRINTER.OEVD~DA.DSORG~PS.LRECL~133.

BLKSIZE~133.MACRF-(PM) .RECFM-FBA
DCB DDNAME~INPUT.DSORG-PS.MACRF-GM.EODAD~MAINEOF

EQU INPUTD+DCBDDNAM-DCBRELAD
* END DCB CONSTANTS
JGMOTBLD DC PLZ·0.31.ZS.31.30.31.30.31.31.30.31.30.31'
* END CONSTANTS
MOVEPARM MVC PARM(*-*).2(R1)

LTORG
EJECT

*** DSECT FOR MY SAVE AREA AND VARIABLES. ***

WORKD DSECT
MY SA V E DS lSF MY REGISTER SAVE AREA
COMPCODE DS PROGRAM COMPLETION CODE
RETCDE DS I ITERNAL RETURN CODE
RISAVE DS F INITIAL VALUE IN Rl
PAGES DS PL2
DOUBLE DS D
DDNAME DS CLS
PARM DS CLS
* BEGIN STUB LINK SAVE
SAVGNBAL DS A SAVE RETURN REGISTER FOR GETNAMES
SAVJGBAL DS A SAVE RETURN REG I STER FOR JULGREG

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 49

* END STUB LINK SAVE
* BEGIN OPEN/CLOSE LIST

OS 00
PROPENL OPEN (.) .MF~L
PROPENLN EQU *-PROPENL
PRCLOSL CLOSE ().MF~L

PRCLOSLN EQU *-PRCLOSL
IPOPENL OPEN (.).MF~L

IPOPENLN EQU *-IPOPENL
IPCLOSL CLQSE ().MF-L
IPCLOSLN EQU *-IPCLOSL
* END OPEN/CLOSE LIST
* BEGIN DCB DSECTS
PRINTER OCB DONAME-PRINTER.OEVD-OA.DSORG-PS.LRECL-133.

BLKSIZE~133.MACRF-(PM).RECFM-FBA

PRINTERL EQU *-PRINTER
INPUT OCB OONAME-INPUT.OSORG-PS.MACRF-GM.EOOAO~MAINEOF

INPUTL EQU *-INPUT
* END OCB OSECTS
JGMOTBL OS PL2'0'
JANUARY OS P'31'
* M A M J J A S 0 N
FEBRUARY OS P'28.31.30.31.30,31.31.30.31.30·
DECEMBER DS P'31 '
JGOAYS OS PL2
JGMONTHS OS PL2
JGMMOOYY DC C'MM/OO/YY'
JGYYOOO OS F
* END OSECT INS ERT
HEADER OS CL133

ORG HEADER+L'HEAO+10
HEADJOBN OS CL8. C' OSN-'
HEAODSN OS CL44,5C
HEAOOATE OS CL8

ORG HEAOER+L'HEAOER-5
PAGENO OS CL4

ORG
I NAREA OS CL93

ORG I NAREA
I NSOU RC DS CL72
INMEM OS CL8
[N7380 OS CL8
INCOUNT OS CL5

ORG
LINE OS CLl33

ORG LINE+l
LMEM OS CL8.C
LCOUNT OS CL5.C
LSOU RC OS CL72
L7380 OS CL8

ORG
OS 00

50 © 1997. Xephon UK telephone 0163533848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

WORKDLEN EOU *-WORKD
IHAPSA
IKJTCB

TI OT OSECT
IEFTIOTl
CVT OSECT~YES

JFCB OSECT
JFCBPREF OS CL16

IEFJFCBN LIST~NO

OCBD DSORG-PO,OEVD-OA
EJECT

-----~--

Keith H Nicaise

MAP OF PSA DSECT-PSA
MAP OF TeB DSECT-TCB

MAP OF TIOT
MAP OF CVT DSECT-CVTMAP
MAP OF JFCB

PREFIX
JFCB PROPER

A.T.

Technical Services Manager
Touro Infirmary (USA) © Xephon 1997

Simulating Include files in REXX

THE PROBLEMS

The purpose of this article is to explain a process I have developed for
simulating include files in REXX EXECs. One of the accepted ways
to prevent repetition of code in any language is to use include files for
the common code. In this way the code is part of the program and is
included in it at compile time. In REXX there is no such feature.

The accepted procedure is to use external REXX EXECs and to
invoke them as subroutines or functions. The drawback to this
solution is that only values passed as parameters on the call are
available to the called subroutine (or function). If it was defined
internally within the REX X EXEC then all the caller's values would
be accessible unless a PROCEDURE command included in the
subroutine.

A number of problems are encountered with parameter passing and
returning when calling external REXX EXECs. The main ones are:

• It is not possible to pass a list of variables based on stems. In this
case it would be necessary to pass each value as a separate
parameter.

© 1997. Rl'proJuction prohlhited. Please Inform Xeph(ln of any infringement. 51

• The number of parameters that can be passed is limited to 30 (or
15 - depending on the REXX PTF level). Although this seems to
be a reasonable number there are a number of cases where this is
not sufficient.

• It is possible to pass more than one value in a single parameter
(separated by blanks, for example), however this does not work
if blanks are to be included in the parameter value itself.

Any change in the parameters required by the called REXX
requires changes to each EXEC that invokes it.

• It is only possible to return one value from the called EXEC. This
value is returned as the parameter of the return statement and is
available in the variable RESULT (when the EXEC is called as a
subroutine) or as the function return value (when called as a
function).

POSSIBLE SOLUTIONS

A number of options are available to solve these problems. However,
none of these options covers all possibilities.

• Pass and return the values via the stack. This is done by using
PUSH and PULL commands. It is advisable to use the
NEWS TACK command before filling the stack and the
DELSTACK after reading it so as to hide the contents of other
stacks from the EXEC.

This solution works quite well although it is a bit messy in the
code. It will not work ifthe external EXEC is invoked as a TSO
or ISPF command. In this case the lines queued by the invoked
EXEC will be interpreted by the operating system as commands.
To prevent this it is necessary to add a NEWSTACK command
after filling the stack before returning to the caller and then a
DELSTACK in the caller before reading the values from the
stack. For example:

Test:
'NEWSTACK'
queue varl
queue var2
call testcall
pull result_value_l

52 co 1997. Xephon UK telephone 01635 33848, fax 01635 3R345. USA telephone (940) 4:')5 7050, fax (940) 4552492

pull resul t_val ue_2
'OELSTACK'

Testca 11 :
pull varl
pull var2

queue result_value ~l
queue result_value_2

The main disadvantage of this method is that the order of the
caller and called must be maintained,

Similar to the previous but, so as to solve the problem of the order
of values, queue actual commands to set values and the
INTERPRET them after reading them from the stack. For example ,
to pass the values of variables A and B to the called EXEC:

Caller:

Called:

queue "a ~ " a
queue "b ~ " b

do queued()
pull line
interpret line

end

The called EXEC would return values to the caller in the same
way. This solution has the added advantage that passing of stem
based values is easier,

• Pass the values using ISPF commands VPUT and VGET. This
solution is similar to the previous one except that the values are
stored in ISPF controlled variables. The main disadvantage of
this solution is the limited length of names of variables in ISPF
(8 characters). Furthermore, the passing of stem-based variables
is almost impossible via this method.

Pass and return the values as a single value separated by blanks (as
given above). On return a PARSE command would be used to separate
the result into its variables. This will solve the problem of the name
lengths and is much clearer in the code. However, if values contain
blanks, this would not work. It would be possible to use a different
character but the same problem would arise if that character exists in
one of the values. For example:

1497. Reproduction prohibited. Please infoflll Xcphon of any infrint!~'llll'nt 53

Call er:

Called:

A ~ 1
B ~ 2

C - 3
call testcall ABC

a rg abc

return resl res2 res3

We were left looking for a solution that would have the same effect as
an include statement in PL/I etc. In this way the code would be
included in the main EXEC and all the variables would be accessible.
The solution we found was to use the INTERPRET command, so as
to execute commands inline within the EXEC. This interpret command
allows the construction of commands inREXX variables and execution
of these commands as if they were part of the code. In this way it is
possible to build dynamic commands within the EXEC.

The solution was to construct the required code externally to the main
EXECs. These external EXECs are then read in at the start of the ISPF
application and constructed in a single variable, which contains all the
commands that were in the original EXECs.

Whenever it is necessary to execute the commands, an INTERPRET
command on the variable is performed. In this way all the variables are
fully accessible. Furthermore, any changes made to the EXEC are
automatically reflected in the caller and no change is needed so as to
pass the extra parameters. The only stipulation is that these external
EXECs can only use values that are available in all the EXECs.

The constructed command variables are stored as ISPF variables and
can be retrieved by any EXEC that requires to execute them. The best
way to perform this, we found, was to construct one more ISPF
variable that contains all the VGET commands for all the command
variables. In this way, if a new EXEC is added, then no change is
needed. This is especially important since the INTERPRETed
commands can themselves include INTERPRET commands.

54 © 1997. Xephon UK telephone 0163533848. fax 0163538345. USA telephone (940) 455 7050, fax (940) 455 2492

PARSEMEM
1**/

/* This REX X EXEC is used for a creating a line of commands that can */
/* be used by another REXX EXEC in an INTERPRET command. */
/* * /
/* The EXECwill read the lines of the specified file and return them */
/* as a single variable with a semi-colon between the lines. */
/* The calling EXEC can then execute the commands using the INTERPRET */
/* command.
/*
/* The EXEC is useful where it is necessary to execute the same
/* commands in a number of EXEC but it is not possible to put them
/* in a called EXEC. For example, when the function must changed a
/* number of variables.
/*
/* In this way, any change will be reflected in all the EXECs.
/*
/* The EXEC receives the following parameters:
/*
/*
/*
/*

1. A list of libraries to search for the member.
2. Name of the member to fetch.

*/
*/
*/

in */
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

1**/
arg libraries, member.
address TSO
1**1

/* Search the libraries looking for the member. If it is not found */
/* then exit with no string. */
/**/
do i ~ 1 to words(libraries)

filename - "'"word(libraries,i)"("member")'"
if sysdsn(filename) - 'OK' then

leave
end
if i > words(libraries) then

return "
1**/

/* Read in all the lines of the exec. */
1**1
"ALLOC F(EXEC) DS("filename") REUSE SHR"
'EXECIO * DISKR EXEC (STEM LINES. FINIS'
"FREE FCEXEC)"
/**/
/* Now loop over all the lines concatenating them into one string. */
/* Insert a semi-colon between the commands. */
/* If the last character of the line is a comma then the next line is
*/
/* a continuation. In this case the trailing comma is removed and the */
/* lines are concatenated. */

(£) 1997. Reproduction prohihitcd. Please inform Xcphon of any infringement. 55

/**/
all_lines ~
do 1-1 to lines.0

line ~ strip(lines.i)
if right(line.l) ~ '.' then
do

line - left(line.length(line)-l)
all lines - all_linesilline

end
else

all_lines ~ all linesilline';'
end

/**/

/* Now return the result to the caller so that it can be used in an */
/* INTERPRET command. */
/**/

return all_lines

Below is an EXEC that builds all the ISPF variables for the commands.
Each one contains the code from one EXEC:

/**/

/* */
/* This EXEC is used to set up the internal macros for the CSP41 */
/* EXECs. It is invoked at the entry to CSP41. */
/* */
/**/

search libraries ~ CSP4slib()
parse var search_libraries sysexecl sysexec2
ifsysexec2 - ., then sysexec2 - sysexecl

CSP4CHKP cparsmem(search_libraries
CSP4CHMS - cparsmem(search_libraries
CSP4DETL cparsmem(search_libraries
CSP4EFIL cparsmem(search_libraries
CSP4QUAL - cparsmem(search_libraries
CSP4SLST - cparsmem(search_libraries
CSP4VGET - cparsmem(search_libraries
CSP4VPUT - cparsmem(search_libraries
address ISPEXEC ,

'CSP4CHKP')
'CSP4CHMS')
'CSP4DETL')
'CSP4EFIL')
'CSP4QUAL')
'CSP4S LST')
'CSP4VGET')
'CSP4VPUT')

"V PUT (CSP4CHKP,CSP4CHMS,CSP4DETL,CSP4EFIL"
"CSP4QUAL,CSP4SLST,CSP4VGET,CSP4VPUT) SHARED"

CSP4MGET - 'address ISPEXEC' ,
'HVGET (CSP4CHKP.CSP4CHMS,CSP4DETL.CSP4EFIL.·

'CSP4QUAL.CSP4SLST,CSP4VGET,CSP4VPUT) SHARED"'
address ISPEXEC 'VPUT (CSP4MGET.SYSEXECl,SYSEXEC2) SHARED'
exit

56 iJ) 1997. Xepholl UK telephone 01635 3184R, fax 01615 1R345. USA telephone (940) 455 7050. fax (940) 4552492.

It is also possible to use the function directly by using the interpret
command on the result of the call to the extemal function PARSEMEM.
For example:

Interpret parsemem(' LIB! LIB2', 'MEMBER')

Below is an example of an EXEC that will be interpreted:

1**/
1* This EXEC is used by the EXECsto set the qualifiers for the temp *1
1* files. *1
1**1

parse value timet) with hh':' mm '. ' ss .
scndqual 'T'llhhllmmllss
qual - mdrllpll'.'llscndqual

Following is an example the use of the EXECsin another EXEC:

1* REX X *1
1* -* I
1* C.S.P. rel. 4.1 - UTILITIES *1
1*
1* This program generate a job that move a member from one msl
1* to another. The program can get as input an asterisk (*) as
1* a wildcard character to represent one or more characters in
1* the member name.
1* To move 2 or more members, put the names in a file and use the
1* file options.
1*
1* Libraries:
1*

Panels
Skels

1* Msgs
1* Macros

SYS.ALL.ISRPLIB
SYS.ALL.ISPSLIB
SYS.ALL.ISPMLIB
SYS.CSP.EXEC

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

1*- - - - - - - - - - - - - - - - - - - -- -------- -----*1
address ISPEXEC
1*------ ---------------*1
1* Get the command for GETting all the commands from the ISPF *1
1* variables. Execute it to get all the commands. *1
1* *1
1* Next exec the VGET EXEC commands so as to get all the variables *1
1* needed for the EXEC from the application profile pool. *1
1*----------------------------- --------- -------------------------- *1

'VGET CSP4MGET'
interpret CSP4MGET
interpret CSP4VGET
function - 'COPYMEM'

1*- -*1
1* Display panel *1
1*------------ --*1

© 1997. Reproduction prohibited. Please inform Xcphon of any Infringement. 57

"DISPLAY PANEl(CSP4M2M)"
Ret - Rc

do while Ret ,- 8
call process_first_screen
"DISPLAY PANEL(CSP4M2M)"
Ret - rc

end
exit
process_first_screen:
Csrfield - .•
Error = FALSE

/*--------- ---*/

/* Checking the data in the screen
/*
/* Checking if the files exist ...

*/
*/
*/

/* -----------------*/

if Sysdsn(.... ·FROMMSL ·) .- "OK" then
do

"SETMSG MSG(CSP410G)"
Csrfield - "FROMMSL"
return

end

if Sysdsn(.. · .. TOMSL .. • ..)
do

"SETMSG MSG(CSP410G)"
Csrfield - "TOMSL"
return

end

"OK" then

/* - * /
/* Generate qualifiers for temporary files. Use pre-built command */
/*----- --*/
p = ..

interpret CSP4QUAL
/*---*/
/* Edit file if needed */
/*- - - - - -- - --- - -- - --- -- ---- --- - - -- - --- - - - -- -- - -*/
interpret CSP4EFIL
/* - * /

/* Moving the csp commands to the temp dsn. */
/*-------------------------------------- --------------------------*/
address ISPEXEC "TBCREATE CSP4M2M NAMES(LINE) NOWRITE"
address TSO "NEWSTACK"
do i-I to memb.0

Line = "LIST MEMBER(" I I STRIP(MEMB.I) I I ..) ..
"TBADD CSP4M2M"
Line - "PRINT(Y) OUTFILE(TEMP) MSL(FROMMSL) REFTYPE(*):"
"TBADD CSP4M2M"

58 © 1997. Xephon UK telephone 0163533848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

end
/*---*/
/* Handling the list associates option. */
/*---*/
if Lsta - 'Y' then
do

Line - "LISTA INFILE(TEMP) PRINT(Y) GUTFILE(TEMPl);"
"TBADD CSP4M2M"
Line - "MSL MCTOMSl) ROMSl(FROMMSl);"
"TBADD CSP4M2M"
Line - "COPYLIST INFILE(TEMPl) PRINT(Y) REPLACE(Y);"
"TBADD CSP4M2M"

end
else
do

Line - "MSL M(TOMSL) ROMSL(FROMMSLI;"
"TBADD CSP4M2M"
Line - "COPYLIST INFILE(TEMPl) PRINT(Y) REPLACE(Y);"
"TBADD CSP4M2M"

end
/*------- ------------------- ------------------- ----------*/
1* Creating the skeleton file.
/*-- --------------
"FTOPEN TEMP"
"VGET (ZTEMPF)"
call csp4jobc mem.l , 'CMEM'
"FTINCL CSP4M2M"
"FTCLOSE"
"TBCLOSE CSP4M2M"
"TBERASE CSP4M2M"

*1
--------- --------*1

/*---------------- ------ ------------- ----------------------*/

1* Checking if automatic submition or editing the job is *1
1* wanted. */
1*-- -----------*/
if Edit - 'Y' then

"EDIT DATASET("'I IZTEMPFI 1 "')"

else
address TSO "SUBMIT "'IIZTEMPFII"'"

interpret CSP4VPUT
return

The interpreted commands CSP4QUAL,CSP4VGET, andCSP4VPUT
are used in all the EXECsin the system. In this way if, for example, we
wish to change the structure of the temporary files prefix, then it is
sufficient to make the change in CSP4QUAL and there is no need to
make changes to every EXEC.

1997. Reproduction prohibited. Please inform Xephon of any infrin!!-ell1ent 59

NOTES ABOUT THE INTERPRET COMMAND

The following points should be noted when building the EXECs:

• Interpret commands can be nested. So it is possible to include in
the EXECs built calls to other EXECs via interpret commands.

All loops must be complete within the command string. It is not
possible to include only the first part of the loop in the interpreted
string and to have part of the loop outside of it.

• Any signal command will cause immediate exit from the interpret
command. Labels are permitted within the string but are ignored.

• It is not possible to jump into the middle of an interpret command
string.

• Any subroutine or function calls in the interpreted string will not
search for the label within the string. Labels will be searched for
only in the EXEC itself. However, after the subroutine/function
completes, control is returned to the interpret command at the
point where the call occurred.

This last point allows the possi bil ity to bui ld generic functions that can
invoke specific subroutines to perform certain tasks. In this way, an
EXEC that supplies a general structure for a series of actions can be
defined. Within this interpreted EXEC it is possible to include call
commands to perform specific tasks required by the EXECs that
include the interpret command. The interpret command will invoke
the local subroutines whilst maintaining the general structure of the
EXEC. The local subroutines will perform the EXEC-specific
commands and then return control to the interpret command.

An example of this would be a generic structure for building jobs via
ISPF screens. The structure of the main loop could be maintained in
one interpreted EXEC with calls to subroutines that perform the
DISPLAY commands for the panels and the FTINCL commands for
the skeleton construction.

Take the above code as an example. All the code from the start of the
skeleton building to the end is standard in all EXECs. The onl y section
that is different is the includes. All that needs to be done is to take that
section and create another interpreted EXEC. In place ofthe FTINCL
command a call command would be inserted. This would call a
subroutine included in the main EXEC and would be different in each
EXEC.

60 © 1997. Xephon UK telephone 01635 33R4R, fax 01635 3R34S. USA telephone (940) 455 7050, fax (940) 455 2492.

OVERHEADS

There are a number of overheads inherent in this method. These are:

• The call to PARSEMEM to set-up each EXEC into the variables
at the start and the VPUT commands to save them. This step can
be particularly heavy especially if there are many EXECs.

The VGET commands to get the variables with the commands
within them.

• Commands included in an interpret command execute slower
than commands in the actual code. This is because the command
has to be parsed every time whereas the standard EXEC commands
are parsed only once.

• The EXEC cannot include any SIGL or internal calls. This
increases the complexity of the EXEC.

These overheads must be weighed against the gains in productivity in
future updates. The load time can be reduced by loading only those
EXECs that are actual I y used. They can be loaded at first -use time and,
in this way, only those EXECs used will be loaded.

One way of doing this is to set up the variable that is to contain the
EXEC so as to self load the EXEC. For example:

CSP4QUAL - "CSP4QUAL~PARSEMEM('LlBl LIB2'.'CSP4QUAL');",
"VPUT CSP4QUAL; INTERPRET CSP4QUAL"

This would then be saved as the value of CSP4QUAL. When it is
INTERPRETed the first time it will simply parse the same named
EXEC and replace the stored string with the created one. It then
INTERPRETs the new string. In future calls to the EXEC the newly
created string will be used.

Jonathan Blitz
Senior Systems Programmer
AnyKey Computer Sytems Ltd (Israel) © Xephon 1997

I ()lj7 _ Reproduction prohibited_ Plen\l' in!orm Xephon of any infrin~clll<:llt 61

Organize your disks and claim free space

Do you ever need to move files from one volume to another in a fast
and clean way? Do you ever wonder why user X likes to allocate one
cylinder to create a ten-line file, instead of allocating one track? If you
do, you may find something of interest below.

IBM supplies a utility program with MVS known as ADRDSSU. In
its standard form, it is not very user-friendly. However, thanks to Mike
Cowlishaw, we can easily overcome that handicap and make it work
for our benefit by designing REXX programs around it. This is what
I have done with the following two programs.

The first program, MOVEFILE, is designed around the COPY option
of ADRDSSU, and allows you to move a file or a group of files
between volumes. Simply invoke the MOVE FILE EXEC, passing as
argument the name of the file you want to move. The EXEC will ask
you the original volume of the file and the destination volume. With
those three arguments, the EXEC creates and submits a job that will
perform the operation. Since the file is going to be freshly allocated,
ADRDSSU allows you to specify how you want it to be allocated - in
blocks, tracks, or cylinders. Personally, I prefer tracks, and so, as a
side-effect of the move operation, those cylinder mammoths to which
I was referring previously will be reduced to more decent proportions.

If you develop the MOVE concept, you can use it to downsize the
allocated space, and then put the file back in its original volume. That
is what the second program, REALLOC, does. REALLOC is simply
a double MOVE, where the destination volume functions as a temporary
volume. REALLOC generates a two-step job - the first moves the file
to another volume of your choice, and the second puts it back in the
original place.

USAGE NOTES

Both MOVEFILE and REALLOC are especially useful to deal with
a group offiles. They can be VSAM, SEQs, or PDS. To specify a group
of files, use the ADRDSSU filtering rules (see DFSMSdss Storage
Administration Reference). As a reminder of those rules, here are
some examples:

62 © 1997. Xepholl UK telephone 01635 33848, LLX () 1635 .1XJ4:'i. USA telephone (940) 45) 7{l50, fa'((940) 455 2492.

IBM. * Means any file with onl y two qualifiers, the first being
IBM.

IBM. ** Means any file with any number of qualifiers, the first
being IBM.

IBM*. ** Means any file with any number of qualifiers, the first
beginning with IBM.

If a file that is to be processed is allocated by another task, it will not
be processed. The same is true for an empty PDS. If such is the case,
a return code of 8 or 4 will appear. You may ignore it, since all the other
files are correctly processed.

VSAM files will not be space-reduced, so REALLOC is useless for
them. If you use REALLOC for a group of files, be sure that the
temporary volume you specify does not contain any file that fits into
your generic specification, otherwise they will be moved in the jobs
second step. As an example, if you REALLOC IBM. * files in volume
A, using volume B as temporary volume, and volume B also contains
IBM. * files, they will all end up in volume A.

MOVEFILE

1* REXX MVS ***/

/*
/*
/*
/*

MoveFile - Moves a file or group of files
from one volume to another

*/
*/
*/
*/

1***/

jobfile - userid()II".movefile"
xx ~ msg (off)
"free da("'jobfile''')''
okay - sysdsn(jobfile)
if okay~~"OK" then do

"free da('''jobfile''')''
"alloc dar "'jobfile"') dd(ddtemp),

new reuse blksize(3200) lrecl(80),
recfm(f.b) dsorg(ps) space(1 1) tracks"

if rc ~- 0 then do

end

say "Error" rc " allocating "jobfile
signal saida

end
else do

"alloc dar "'jobfile''') dd(ddtemp) shr"
if rc ~~ 0 then do

say "Error" rc " allocating "jobfile

© 1997. Reproduction prohibited. Please inform Xeph(ln of any infringement.

/* job file */
/* check if jobfile */
/* already exists */
/* if not, create it*/

/* If jobfile exists,*/
/* retrieve previous */
/* volume to use */
/* as default */

63

end

signal saida
end
execio 5 diskr ddtemp
do 5

pull I inha
end
parse var linha . "DS(INCLUDE(" dsnll H))"
execio I diskr ddtemp
parse pull linha . "(" volll H)"

execio I diskr ddtemp "(finis"
parse pull linha . "(" vol22 ")"

arg dsnl
if dsnl .- "" then do

dsnll - dsnl

end

xx - listdsi(dsnl)
volll - sysvolume

/* get arg (filename)*/
/* get its volume */

say"MoveFile: Input File? ENTER for" dsnll
pull dsnl
if dsnl -
say"
pull voll
if voll -
say"
pull vol2
if vol2 -
dropbuf

then dsnl - dsnll
Input Volume? (ENTER for" volil

then vall - vallI
Output Volume? (ENTER for" vol22

then vol2 - vol22

dsnl - strip(dsnl,,"'")
queue "//"userid()"0 JOB MSGCLASS-X,MSGLEVEL-(l,l)"
queue" / /STEPI EXEC PGM-ADRDSSU, REGION-2M"
queue "//SYSPRINT DD SYSOUT-*"
queue "//SYSIN DD *"
queue" COpy DS(lNCLUDE("dsnl"»)
queue INDYNAM ("vol I")

queue OUTDYNAM ("voI2")
queue
queue
queue
queue
queue
queue "/*"
queue

CATALOG
DELETE
FORCE
TGTALLOC (TRK)

PROCESS (SYSI)"

"execio * diskw ddtemp (finis"
"submit '"jobfile"'"
saida:
"free da("'jobfile"')"
"free dd(ddtemp)"
exit

REALLOC
1* REXX MVS ***/

64 © 1997. Xephon UK telephone 01635 ::nR4R, fax 01615 38345. USA telephone (940) 455 7050, fax (940) 4552492.

1* Realloc - Reallocates a file in tracks *1
1***/
jobfile - userid()1 I".realloc"
xx - msg(off)
"free da('"jobfile''')"
okay - sysdsn(jobfile)
if okay·-"OK" then do

end

"free da("'jobfile"')"
"alloc da("'jobfi le''') dd(ddtemp),

new reuse blksize(3200) lrecl(80),
recfm(f,b) dsorg(ps) space(l 1) tracks"

if rc .- 0 then do

end

say "Error" rc " allocating "jobfile
signal saida

else do
"alloc da('"jobfile"') dd(ddtemp) shr"
if rc ~ 0 then do

end

end

say "Error" rc " allocating "jobfile
signal saida

execio 5 diskr ddtemp
do 5

pull linha
end
parse var linha . "DSIINCLUDE(" dsnll H))"

execio 1 diskr ddtemp
parse pull linha . "(" volll ")"
execio 1 diskr ddtemp "(finis"
parse pull linha . "I" vo122 ")"

arg dsnl
if dsnl .- "" then do

dsnll - dsnl
xx - listdsi(dsnl)
volll - sysvolume

end

1* job file *1
1* check if jobfile *1
1* already exists *1
1* if not, create it*1

1* If jobfile exists,*1
1* retrieve previous *1
1* volume to use *1
1* as default *1

1* get arg (filename)*1
1* get its volume *1

say"Realloc: Input File? I ENTER for" dsnl1
pull dsnl
if dsnl - then dsnl - dsnll
say" Input Volume? (ENTER for" volll
pull voll
if voll - then voll - volll
say"
pull vo12
if vo12 -
dropbuf

Temporary Volume? (ENTER for" vo122

then vo12 - vo122

dsnl - strip(dsnl .. ""')
queue "11"useridl)"0 JOB MSGCLASS-X,MSGLEVEL-(l,l)"
queue "IISTEPI EXEC PGM-ADRDS5U,REGION-2M"
queue "IISYSPRINT DD SYSOUT-*"

If) [997. Reproduction prohibited. Please infoml Xephon of any infringement. 65

queue "IISYSIN DD *"
queue" COPY DS(INCLUDE("dsnl"))
queue INDYNAM ("vol I")
queue
queue
queue
queue
queue
queue
queue "1*"

OUTDYNAM ("vo12")
CATALOG
DELETE
FORCE
TGTALLOC (TRK)
PROCESS (SYSI)"

queue "1ISTEP2 EXEC PGM-ADRDSSU,REGION-2M"
queue "IISYSPRINT DO SYSOUT-*"
queue "IISYSIN DO *"
queue" COPY DS(INCLUDE("dsnl"))
queue INDYNAM ("vo12")
queue OUTDYNAM ("vol I")
queue CATALOG
queue DELETE
queue FORCE
queue TGTALLOC (TRK)
queue PROCESS (SYSI)"
queue "1*"
queue
"execio * diskw ddtemp (finis"
"submit '"jobfile"'"
saida:
"free da('"jobfile"')"
"free dd(ddtemp)"
exit

Luis Paulo Figueiredo Sousa Ribeiro
Systems programmer
Edinfor (Portugal;

Useful Assembler macros - part 3

© Xephon 1997

We complete our look at the Assembler macros BSM31 ,BALRXA, and
CALLXA. Also included are AUTHON and AUTHOFF which will
dynamically turn on/off authorization through the traditional
authorization SVc.

BSM31 MACRO

* SET ADDRESSING MODE TO 31 BIT IF RUNNING UNDER XA/ESA
* NEUTRAL UNDER MVS/370

66 © 1997. Xephon UK telephone 0163533848, fax 0163538345, USA telephone (940) 4557050, fax (940) 455 2492,

* USES WORK REGISTER, DEFAULT TO R15
* WORKREGISTER CAN BE OVERWRITTEN BY BSM (RX)
* WORK REG POINTS TO NEXT INSTR AND CONTAINS ADDR MODE
* CODE FOR SUPPORT OF NON-XA (MVS/370) WILL ONLY BE GENERATED IF
* GLOBAL VARIABLE FROM INITR &MVS370S-SUP IS SPECIFIED OR &SPLEVEL-l;
* IF MACRO INITR IS NOT USED AND &SPLEVEL > 1, IT IS STILL POSSIBLE
* TO FORCE GENERATION OF MVS/370 VIA THE PARAMETER MVS370-SUP.
* CODE FOR SUPPORT OF XA/ESA WILL ONLY BE GENERATED IF &SPLEVEL > 1.

MACRO
&NAME BSM31 ®,&MVS370-NOTSUP

GBLC &MVS370S COMES FROM INITR IF THIS MACRO IS USED
GBLC &SYSSPLV MACRO LEVEL
SPLEVEL TEST SET SYSSPLV
LCLC &NONXA

&NONXA SETC 'B31' .'&SYSNDX'
AIF ('&MVS370S' NE ").INTSUPP

&MVS370S SETC '&MVS370' . SET ONLY FROM PARAMETER IF INITR IS NOT USED
INTSUPP ANOP

AIF ('&MVS370S' EO 'NOTSUP').SUPP
AIF ('&MVS370S' EO 'SUP').SUPP
MNOTE 8, 'MVS370 MUST BE INDICATED AS NOTSUP OR SUP'
MEXIT

SUPP ANOP
AIF

&MVS370S SETC
XASUPP ANOP

AIF
AIF
AGO

AREG ANOP
®R SETC

AGO
RNULL ANOP

('&SYSSPLV' GT '1').XASUPP XA-MACRO LEVEL
'SUP' FORCE MVS370 SUPPORT

('®' EO ").RNULL
('®'(l,I) EO '(').AREG

. RNU L L

'®(l) ,
.REG

®R SETC 'IS'
REG ANOP
&NAME OS 0H.

AIF ('&MVS370S' EO 'NOTSUP').XA
AIF ('&SYSSPLV' LT '2').NONXA BYPASS IF NOT XA/ESA MACLEVEL
TESTXA (®R)
LTR ®R,®R TEST FOR MODE
BP &NONXA. MVS/370

XA ANOP
LA ®R,&NONXA POINT TO AMODE 31 CODE
o ®R,&NONXA-4 TURN ON AMODE 31 BIT
BSM 0,®R . BRANCH TO AMODE 31 CODE
CNOP 0,4 ALIGN
DC X'S0000000' AMODE 31 BIT

&NONXA OS 0H .
NONXA ANOP

BALR ®R,0 LET WORK REG POINT TO NEXT
MEXIT
MEND

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 67

BALRXA MACRO
* GENERATES BASSM RX,RY IF RUNNING UNDER XA/ESA, CALL AS BALRXA R14,RlS
* GENERATES BALR RX,RY IF RUNNING UNDER MVS/370, CALL AS BALRXA R14,R15
* ENSURES THAT A SUBROUTINE IN AN XA/ESA ENVIRONMENT IS CALLED IN RIGHT
* ADDRESSING MODE; THE REQUIREMENT IS THAT RIS CONTAINS CORRECT
* ADDRESSING MODE IN HIGH ORDER BIT; THE ADDRESSING MODE OF A SUB
* ROUTINE IS RETURNED TO THE USER FROM THE LOAD MACRO.
* CODE FOR SUPPORT OF NON-XA (MVS/370) WILL ONLY BE GENERATED IF
* GLOBAL VARIABLE FROM INITR &MVS370S~SUP IS SPECIFIED OR &SPLEVEL-l;
* IF MACRO INITR IS NOT USED AND &SPLEVEL > I, IT IS STILL POSSIBLE
* TO FORCE GENERATION OF MVS/370 VIA THE PARAMETER MVS370-SUP.
* CODE FOR SUPPORT OF XA/ESA WILL ONLY BE GENERATED IF &SPLEVEL > 1.
* IF SUBROUTINE RETURNS IN DIFFERENT ADDRESSING MODE THAN IT WAS
* CALLED, THEN ADDRESSING MODE IS CORRECTED BACK.

&NAME

&XA24
&XA31
&NEXTOP

MACRO
BALRXA &RREG,&BREG,&MVS370~NOTSUP
GBLC &MVS370S COMES FROM INITR IF THIS MACRO IS USED
GBLC &SYSSPLV MACRO LEVEL
SPLEVEL TEST
LCLC &XA24,&XA31
LCLC &NEXTOP
SETC 'BLl'.' &SYSNDX'
SETC 'BL2'.' &SYSNDX'
SETC

SET SYSSPLV

AIF
&MVS370S SETC
INTSUPP ANOP

'BL3'.'&SYSNDX'
('&MVS370S' NE ").INTSUPP
'&MVS370' . SET ONLY FROM PARAMETER IF INITR IS NOT USED

AIF ('&MVS370S' EO 'NOTSUP').SUPP
AIF ('&MVS370S' EO 'SUP'l.SUPP
MNOTE 8, 'MVS370 MUST BE INDICATED AS NOTSUP OR SUP'
MEXIT

SUPP ANOP
AIF ('&SYSSPLV' GT 'l').XASUPP XA-MACRO LEVEL

&MVS370S SETC 'SUP' FORCE MVS370 SUPPORT
XASUPP ANDP

AIF ('&SYSSPLV' LT '2').NONXA BYPASS IF NOT XA/ESA MACLEVEL
TESTXA (&RREG)
LTR &RREG,&RREG
BM &XA31
BZ
AIF

NDNXA ANDP

&XA24 .
('&MVS370S' EO

TEST FOR XA
USE BASSM FOR XA/ESA 31-BIT
USE BASSM FOR XA/ESA 24 BIT

'NOTSUP').XA

BALR &RREG,&BREG LINK
AIF ('&SYSSPLV' LT '2').BYPNDN2 BYPASS IF NOT XA/ESA MACLVL
B &NEXTOP NEXT INLINE INSTRUCTION
AGO .XA

BYPNON2 ANOP
MEXIT

XA ANOP
&XA24 OS 0H

BASSM &RREG,&BREG
BSM24 (&RREG)

LI NK
ENSURE STILL IN 24 BIT MODE

68 © 1997. Xephon UK telephone 01635 33R48, fax 0163538345. USA telephone (940)455 7050, tax (940) 455 2492.

B &NEXTOP NEXT INLINE INSTRUCTION
&XA31 OS 0H

BASSM &RREG,&BREG LINK
BSM31 (&RREG) ENSURE STILL IN 31 BIT MODE

&NEXTOP OS 0H
BALR &RREG,0 LET RET-REG CONTAIN SAME VALUE AS IF REAL BALR
MEND

CALLXA MACRO

* WORKS AS CALL MACRO AT THE SAME TIME AS ENSURING CORRECT ADDR-MODE
* GENERATES BASSM 14,15 IF RUNNING UNDER XA/ESA.
* GENERATES BALR 14,15 IF RUNNING UNDER MVS/370.
* ENSURES THAT A SUBROUTINE IN AN XA/ESA ENVIRONMENT IS CALLED IN RIGHT
* ADDRESSING MODE; THE REQUIREMENT IS THAT R15 CONTAINS CORRECT
* ADDRESSING MODE IN HIGH ORDER BIT; THE ADDRESSING MODE OF A SUB
* ROUTINE IS RETURNED TO THE USER FROM THE LOAD MACRO.
* CODE FOR SUPPORT OF NON-XA (MVS/370) WILL ONLY BE GENERATED IF
* GLOBAL VARIABLE FROM INITR &MVS370S~SUP IS SPECIFIED OR &SPLEVEL~l;
* IF MACRO INITR IS NOT USED AND &SPLEVEL > I, IT IS STILL POSSIBLE
* TO FORCE GENERATION OF MVS/370 VIA THE PARAMETER MVS370~SUP.
* CODE FOR SUPPORT OF XA/ESA WILL ONLY BE GENERATED IF &SPLEVEL > 1.
* IF SUBROUTINE RETURNS IN DIFFERENT ADDRESSING MODE THAN IT WAS
* CALLED, THEN ADDRESSING MODE IS CORRECTED BACK.

&NAME

&XA24
&XA31
&NEXTOP

MACRO
CALLXA &ENTRY,&OPRNDS,&VLPARA,&ID~,&MF~I,&MVS370~NOTSUP
GBLB &IHBSWA,&IHBSWB
GBLC &IHBNO
LCLC &GNAME
GBLC &MVS370S COMES FROM INITR IF THIS MACRO IS USED
GBLC &SYSSPLV MACRO LEVEL
SPLEVEL TEST SET SYSSPLV
LCLC &XA24,&XA31
LCLC &NEXTOP
SETC
SETC
SETC
AIF

'CXI'. '&SYSNDX'
'CX2' . '&SYSNDX'
'CX3' . '&SYSNDX'
('&MVS370S' NE ").INTSUPP

&MVS370S SETC '&MVS370' . SET ONLY FROM PARAMETER IF INITR IS NOT USED
INTSUPP ANOP

AIF
AIF
MNOTE
MEXIT

SUPP ANOP
AIF

&MVS370S SETC
XASUPP ANOP
&IHBNO SETC
&GNAME SETC
&IHBSWA SETB

('&MVS370S' EO 'NOTSUP'). SUPP
('&MVS370S' EO 'SUP') .SUPP
8, 'MVS370 MUST BE INDICATED AS NOTSUP OR SUP'

(' &SYSSPLV' GT '1'). XASUPP XA-MACRO LEVEL
'SUP' FORCE MVS370 SUPPORT

'309'
, I HB' . '&SYSNDX'
('&VLPARA' EO 'VL')

.:(, I ()97. Reproduction prohibited. Pk<l\\.' illlonl1 Xl'phon of any infringcmcnl 69

&IHBSWB SETB ('&ENTRY' EO '(15)')
AIF ('&VLPARA' NE " AND '&VLPARA' NE 'VL').ERROR4
AIF ('&MF' EO 'L' AND '&ENTRY' NE ").ERRORI
AIF ('&MF' EO 'L' AND '&ID' NE ").ERRORZ
AIF ('&MF' NE 'L' AND '&ENTRY' EO ").ERROR3
AIF ('&MF' EO 'L').CONTC
AIF (&IHBSWB).CONTCC
CNOP 0,4

&NAME B *+8 BRANCH AROUND VCON
&GNAME.B DC V(&ENTRY) ENTRY POINT ADDRESS
CONTC AI F (' &OPRNDS' EO " AND X

('&MF' EO 'I' OR '&MF' EO 'L')).CONTB
CONTA IHBOPLTX &ENTRY,&OPRNDS,&NAME,MF~&MF
CONTB AIF ('&MF' EO 'L').EXITI

AIF (&IHBSWB).CONTD
L

CONTD ANOP
15,&GNAME.B LOAD 15 WITH ENTRY ADR

AIF ('&SYSSPLV' LT 'Z').NONXA BYPASS IF NOT XA/ESA MACLEVEL
TESTXA (14)
LTR 14,14 TEST FOR XA
BM &XA31 USE BASSM FOR XA/ESA 31-BIT
Bl &XAZ4 USE BASSM FOR XA/ESA 24 BIT
AIF ('&MVS370S' EO 'NOTSUP').XA

NONXA ANOP
BALR 14,15. LINK
AIF ('&SYSSPLV' LT '2').BYPNON2 BYPASS IF NOT XA/ESA MACLVL
B &NEXTOP NEXT INLINE INSTRUCTION

XA ANOP
&XA24 DS 0H

BASSM 14,15 LINK
BSM24 (14) . ENSU RE STI LL IN 24 B IT MODE
B &NEXTOP NEXT INLINE INSTRUCTION

&XA31 DS 0H
BASSM 14.15 .
BSM31 (14)

&NEXTOP OS 0H
BYPNON2 ANOP

AIF
DC
OC
OS

EX ITX ANOP

('&10' EO ").EXITX
X'4700'
AL2(&IO)
0~

LINK
ENSURE STILL IN 31 BIT MODE

NOP INSTRUCTION WITH
10 IN LAST TWO BYTES

BALR 14,0. LET RET-REG CONTAIN SAME VALUE AS IF REAL BALR
EXITI MEXIT
CONTCC ANOP
&NAME OS 0H

AGO . CONTC
ERRORI IHBERMAC 73.&IHBNO,&ENTRY ENTRY WI MF~L

MEXIT
ERROR2 IHBERMAC 74.&IHBNO.&IO

MEXIT
ERROR3 IHBERMAC 26.&IHBNO ENTRY SYMBOL MISSING

70 © 1997. Xephon UK telephone 01635 33X48, fax 01635 38345. USA telephone (940) 455 7050. fax (940) 455 2492.

