21

RACF

August 2000

In this issue

- 3 RACHECK/RACDEF postprocessing exits
- 6 Using REXX for RACF security checking
- 14 RACF internals
- 37 Checking the authorization of JCL parameters
- 49 Cursor-sensitive LISTDSD EDITOR command
- 52 Information point reviews
- 60 RACF news

© Xephon plc 2000

RACF Update

Published by

Xephon 27-35 London Road Newbury Berkshire RG14 1JL England Telephone: 01635 38030 From USA: 01144 1635 38030 E-mail: fionah@xephon.com

North American office

Xephon Post Office Box 350100 Westminster CO 80035-0100 USA Telephone: (303) 410-9344

RACF Update on-line

You can download code from *RACF Update* from our Web site at http://www.xephon. com/racfupdate.html; you will need the user-id shown on your address label.

Subscriptions and back-issues

A year's subscription to *RACF Update*, comprising four quarterly issues, costs £190.00 in the UK; \$290.00 in the USA and Canada; £196.00 in Europe; £202.00 in Australasia and Japan; and £200.50 elsewhere. In all cases the price includes postage. Individual issues, starting with the August 1995 issue, are available separately to subscribers for £50.50 (\$77.50) each including postage.

Editor

Fiona Hewitt

Disclaimer

Readers are cautioned that, although the information in this journal is presented in good faith, neither Xephon nor the organizations or individuals that supplied information in this journal give any warranty or make any representations as to the accuracy of the material it contains. Neither Xephon nor the contributing organizations or individuals accept any liability of any kind howsoever arising out of the use of such material. Readers should satisfy themselves as to the correctness and relevance to their circumstances of all advice, information, code, JCL, and other contents of this journal before making any use of it.

Contributions

Articles published in *RACF Update* are paid for at the rate of £170 (\$260) per 1000 words and £100 (\$160) per 100 lines of code for the first 200 lines of original material. The remaining code is paid for at the rate of £50 (\$80) per 100 lines. In addition, there is a flat fee of £30 (\$50) per article. To find out more about contributing an article, without any obligation, please contact us at any of the addresses above and we will send you a copy of our *Notes for Contributors*, or you can download a copy from www.xephon.com/ contnote.html

© Xephon plc 2000. All rights reserved. None of the text in this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior permission of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use in their own installations, but may not sell such code or incorporate it in any commercial product. No part of this publication may be used for any form of advertising, sales promotion, or publicity without the written permission of the publisher. Copying permits are available from Xephon in the form of pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs \$36 (£24), giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

RACHECK/RACDEF postprocessing exits

If the PROTECTALL option is set in RACF, datasets can be read or written to only if there is a matching RACF profile. The fact that this is also true for tape files can cause problems, particularly if a lot of tapes come from external sources.

The following two RACF exits enable you to prevent PROTECTALL from affecting tapes:

RACROUTE REQUEST=AUTH (RACHECK) Postprocessing Exit (ICHRCXO2) RACROUTE REQUEST=DEFINE (RACDEF) Postprocessing Exit (ICHRDXO2)

If the following conditions are true

- Class DATASET
- Tape file
- No profile found

the RACHECK/RACDEF return and reason codes are set to values indicating that access is allowed.

NOTES

Reading from and writing to a tape yields a RACROUTE REQUEST=AUTH (RACHECK SVC) call; writing also involves a RACROUTE REQUEST=DEFINE (RACDEF SVC) call, because writing to tape always means the creation of a dataset, even if an identically named dataset is overwritten.

MANUALS

The following manuals are useful:

- RACF System Programmer's Guide V2R2, SC23-3725
- External Security Interfaces (RACROUTE) Macro Reference V2R2, GC23-3733
- RACF Data Areas V2R2, LY27-2636.

RACHECK/RACDEF POSTPROCESSING EXIT

TITLE 'ICHRCXØ2/ICHRDXØ2 - RACHECK/RACDEF POSTPROCESSING EXIT' * REGISTER USAGE * RØ : * R1 : ADDRESS OF PARAMETER LIST R2 : WORK * * R3 : WORK * R4 : WORK R5 : + R6 : R7 : * R8 : * R9 : * R1Ø: WORK * R11: * R12: BASE R13: ADDRESS OF SAVE AREA * R14: RETURN ADDRESS: WORK * R15: ENTRY ADDRESS: WORK: RETURN CODE * RACROUTE REQUEST=AUTH POSTPROCESSING EXIT PRINT GEN MACRO EXPANSION VISIBLE YREGS , REGISTER SYMBOLS ICHRCXØ2 CSECT . SUPERVISOR, KEY Ø; REUS, RENT, REFR ICHRCXØ2 RMODE ANY ICHRCXØ2 AMODE 31 SAVE (14,12), 'ICHRCXØ2 & SYSDATC & SYSTIME' R12.R15 LR USING ICHRCXØ2,R12 SPACE USING RCXPL.R1 ADDRESS PARAMETER LIST XR R15.R15 VALUE Ø LA R14.4 VALUE 4 SPACE L R2,RCXCOMP ADDRESS OF ABEND CODE CL R15,Ø(,R2) PENDING ABEND IN RACHECK ? YES. DO NOTHING BNE LCEND SPACE R2.RCXCLASS ADDRESS OF CLASS L CLC CLASS DATASET ? KCLASS,Ø(R2) BNE LCEND NO, DO NOTHING SPACE ADDRESS OF FLAGS L R2.RCXFLAG3 ТМ Ø(R2),RCXDTYPT DSTYPE=T, IE TAPE FILE ? ΒZ LCEND NO, DO NOTHING SPACE 1 R3.RCXRCODE ADDRESS OF RACHECK RETURN CODE CL R14.Ø(.R3) RC = 4, NO PROFILE FOUND ?

	BNE	LCEND	NO, DO NOTHING	
LCEND	ST DS	R15,Ø(,R3) ØH	RACHECK RET CODE Ø, ACCESS	SPACE ALLOWED
LOLIND			RETURN WITH RETURN CODE Ø	
*******	*****	*****	*****	EJECT *******
	-	UEST=DEFINE	ESSING EXIT **********	*****
ICHRDXØ2	ENTRY SAVE LR	ØD ICHRDXØ2 (14,12),,'ICHRDXØ2' R12,R15 ICHRDXØ2,R12	ALIAS	SPACE
	X R L A	RDXPL,R1 R15,R15 R14,4 R10,8	ADDRESS PARAMETER LIST VALUE Ø VALUE 4 VALUE 8	
	CL	R2,RDXCOMP R15,Ø(,R2) LDEND	ADDRESS OF ABEND CODE PENDING ABEND IN RACDEF ? YES, DO NOTHING	SPACE
	L TM BO	R2,RDXISSUR Ø(R2),RDXICMND LDEND	ADDRESS OF FLAG RACDEF BECAUSE OF RACF COMM YES, DO NOTHING	
	L TM BNZ	R2,RDXFLAG Ø(R2),RDXTYPEV LDEND	ADDRESS OF FLAGS TYPE=DEFINE (CREATION OF DA NO, DO NOTHING	
	L CLC BNE	R2,RDXCLASS KCLASS,Ø(R2) LDEND	ADDRESS OF CLASS CLASS DATASET ? NO, DO NOTHING	SPACE
	L TM BZ	R2,RDXFLAG2 Ø(R2),RDXDSTYT LDEND	ADDRESS OF FLAGS DSTYPE=T, IE TAPE FILE ? NO, DO NOTHING	SPACE
	L	R3,RDXRCODE R1Ø,Ø(,R3) LDEND R4,RDXREAS R14,Ø(,R4) LDEND	ADDRESS OF RACDEF RETURN CO RC = 8, ERROR ? NO, DO NOTHING ADDRESS OF RACDEF REASON CO 4, NO PROFIL AND PROTECTALL NO, DO NOTHING	DE ?
	ST ST	R15,Ø(,R3) R15,Ø(,R4)	RACDEF RET CODE Ø, ACCESS A REASON CODE Ø	SPACE LLOWED

LDEND DS ØН RETURN (14,12),, RC=(15) RETURN WITH RETURN CODE Ø DROP R12.R1 FJFCT * CONSTANTS KCLASSØ DC AL1(7).C'DATASET' KCLASS EQU KCLASSØ.*-KCLASSØ LTORG , DC ØD'Ø',32C'Z' ZAP AREA EJECT * DSFCTS PRINT NOGEN ICHRCXP , RACHECK SVC EXIT PARAMETER LIST EJECT RACDEF SVC EXIT PARAMETER LIST ICHRDXP . SPACE END ICHRCXØ2 Walter Wiedemann (Germany) © Reserved 2000

Using REXX for RACF security checking

I have frequently written CLISTs and REXX EXECs that access datasets, volumes, and/or other secured resources to which a particular user might not have access. The security package usually issues a nasty message indicating that access is denied, and may even be configured to suspend the offending userid after a pre-defined number of violations.

When users run CLISTs or EXECs that access these restricted resources, they aren't usually aware of whether or not they have the necessary security level. I thought it would be nice to have a command that could be used to check their access to a resource before they actually attempted to access it. A number of vendor products have such a function built in, including various console automation packages and a few REXX language extension packages. The problem with

automation packages, however, is that their security checking functions can be invoked only from within the automation environment. And both they and REXX extensions are expensive. I therefore decided to write a small REXX function to perform security checking using the IBM MVS standard RACROUTE security interface.

The function, RACAUTH, accepts up to three parameters:

- The first (required) parameter is the entity name on which to perform security checking, such as dataset name, volume name, SMS class name, etc.
- The second (optional) parameter is the level of access to check for. The valid levels are READ, UPDATE, CONTROL, or ALTER, with the default being READ.
- The third (optional) parameter is the class to which the entity belongs, with the default being DATASET. For a dataset name, the class would be DATASET; for an SMS storage class, it would be STORCLAS; for an MVS console command, it would be OPERCMDS; and so on. These class names are defined by the security product in use. For RACF, they are in the class descriptor table (CDT). For TopSecret, they are in the resource descriptor table (RDT) record.

RACAUTH sets the REXX RESULT variable to 0 to indicate that the user does not have access to the requested entity, or to 1 to indicate that the user does have access. RACAUTH can be invoked:

- As a REXX function, in which case a user-assigned variable will be given the proper RESULT value, but the RESULT variable itself will not be set.
- Via the REXX CALL statement, in which case RESULT is set appropriately.

The sample REXX EXEC shown below, called RACFTEST, demonstrates the various ways in which the RACAUTH function can be used. It can be invoked via the following commands:

%RACFTEST SYS1.PARMLIB READ DATASET %RACFTEST SYS1.PARMLIB READ %RACFTEST SYS1.PARMLIB %RACFTEST SYSTEM READ STORCLAS

RACFTEST - SAMPLE REXX EXEC

```
parse upper arg ent typ class rest
    = strip(ent,"B")
ent
typ = strip(typ,"B")
class = strip(class,"B")
say '****ent="'ent'"'|| ',typ="'typ'"'||',class="'class'"'
say ''
call RACAUTH ent,typ,class
say 'call' rc result aa
say ''
call RACAUTH ent,typ
say 'call' rc result aa
say ''
aa=RACAUTH(ent,typ,class)
say 'func' rc result aa
say ''
aa=RACAUTH(ent,typ)
say 'func' rc result aa
say ''
aa=RACAUTH(ent)
say 'func' rc result aa
say ''
aa=RACAUTH(ent, 'READ', 'IBMFAC')
say ent typ class "RACAUTH("ent", 'READ', 'IBMFAC')" rc result aa
say ''
call RACAUTH ent, 'READ', 'IBMFAC'
say ent typ class "call RACAUTH "ent", 'READ', 'IBMFAC'" rc result aa
```

RACAUTH

```
RACAUTH CSECT ESTABLISH CSECT
RACAUTH AMODE 31
```

RACAUTH RMODE 24 SAVE (14,12),,RACAUTH-&SYSDATE YREGS **REGISTER EQUATES** LR LOAD R12 W/EPA ADDRESS R12.R15 USING RACAUTH, R12 ESTABLISH ADDRESSABLITY LA R15.SAVEAREA LOAD A(MY SAVEAREA) ST MY S/A ADDR IN CALLERS S/A ST R15,8(,R13) ST R13.4(.R15) ST MY S/A ADDR IN CALLERS S/A LR R13.R15 LOAD ADDR OF MY S/A IN R13 ST R1,EFPLADDR SAVE A(EFPL) R1Ø,EFPLADDR LOAD FOR LATER L L R1, EFPLARG-EFPL(, R1) LOAD A(EFPLARG) USING ARGTABLE_ENTRY,R1 ST R1.EFPLARGA SAVE A(EFPLARG) R15.R15 CLEAR R15 FOR COUNTER SR ARGLOOP DS ØН ARGTABLE_ARGSTRING_PTR(L'ARGTABLE_END), ARGTABLE_END CLC ΒE ENDARGS YES. R15 HAS # OF ARGS ADD 1 TO ARG COUNTER ΙA R15,1(,R15) R1, L'ARGTABLE NEXT(, R1) BUMP TO NEXT ENTRY LA ARGLOOP LOOP TO SEE IF THERE ARE MORE ARGS В DROP R1 ENDARGS DS ØН L R1.EFPLARGA RESTORE A(EFPLARG) С R15.=F'1' IS THERE AT LEAST 1 ARG NO. THEN ERROR ΒL ARGSERR ARE THERE MORE THAN 3 ARGS С R15,=F'3' ΒH ARGSERR NO. THEN ERROR В PARSARGS ELSE. CHECK ARGS ARGSERR DS ØН LA RØ,MSG1 LOAD A(MESSAGE) SAVE IN PLIST ST RØ,BUFRPTR RØ.L'MSG1 LOAD LENGTH(MESSAGE) LA ST RØ,BUFRLEN SAVE IN PLIST R1, IRXSAYPL LOAD A(PLIST) LA LINK EP=IRXSAY CALL SAY ROUTINE LA RØ,2Ø SET RETURN CODE STH RØ.SAVERC SAVE RETURN CODE В RETURN GO RETURN TO CALLER PARSARGS DS ØН STH R15,NUMARGS SAVE NUMBER OF ARGUMENTS L R11.EFPLARGA A(EFPLARGS) USING ARGTABLE ENTRY, R11 SR R1.R1 CLEAR REGISTER SR R14,R14 CLEAR REGISTER SR R15,R15 CLEAR REGISTER CLC =H'1'.NUMARGS ARE THERE NO ARGS ΒH YES ARG1ERR

	L	R14,ARGTABLE_ARGST	RING LENGTH
	C	. –	IS LENGTH(ARG1) LESS THAN 1
			YES
			IS LENGTH(ARG1) MORE THAN 44
			YES
	B	CHKARG2	ELSE
ARG1ERR		ØH	
ANGIENN	LA	RØ,MSG2	LOAD A(MESSAGE)
	ST		
			LOAD LENGTH(MESSAGE)
		RØ,BUFRLEN	
		R1,IRXSAYPL	
			CALL SAY ROUTINE
	LA		SET RETURN CODE
		RØ,SAVERC	
			GO RETURN TO CALLER
CHKARG2	DS	ØH	
0	L		ING_PTR LOAD A(ARG1)
			ING_LENGTH LOAD LENGTH(ARG1)
			DECREMENT FOR EXECUTE
	EX		EXECUTE MVC OF ARG1 TO ENTYNAME
	SR		CLEAR R5 FOR IC
			LOAD A(ATTR TRANSLATE TABLE)
	USING	ATTRDSCT,R7	
	IC	R5,ATTRHEX	SET DEFAULT ATTR OF READ (1ST ENTRY)
	CLC	=H'2',NUMARGS	ARE THERE LESS THAN 2 ARGS
		CHKARG3	
	CLC	ARGTABLE_ARGSTRING_	_LENGTH+L'ARGTABLE_NEXT(4),=F'Ø'
	CLC	ARGTABLE_ARGSTRING_	_LENGTH+8(4),=F'Ø' LEN(ARG2)=Ø?
	BE	CHKARG3	YES, WILL USE DEFAULT ATTR OF READ
ATTRLOOP	DS	ØH	
	CLC		ATTRLEN ARE WE AT END OF TABLE
	ΒE	ARG2ERR	YES, ARG2 IN ERROR
	SR	R15,R15	CLEAR R15 FOR IC
	IC	R15,ATTRLEN	ELSE GET LENGTH OF EBCDIC ENTRY
	L		RING_PTR+L'ARGTABLE_NEXT A(ARG3)
	L		ING_LENGTH+L'ARGTABLE_NEXT LEN(ARG3)
	CR	R9,R15	ARE LENGTHS EQUAL
	BNE	ATTRBUMP	NO, BUMP TO NEXT TABLE ENTRY
	BCTR	R15,RØ	DECREMENT R15 FOR EXECUTE
	EX	R15,EXCHKATR	EXECUTE CLC OF ARG3 TO TABLE ENTRY
	BE	GETATTR	IF MATCH, GET ATTR BYTE
ATTRBUMP		ØH	
	LA		N ELSE BUMP TO NEXT TABLE ENTRY
0	B	ATTRLOOP	LOOP TO CHECK NEXT TABLE ENTRY
GETATTR	DS	ØH DE DE	
	SR	R5,R5	CLEAR REGISTER
	IC	R5,ATTRHEX	INSERT ATTR VALUE
	В	CHKARG3	GO CHECK ARG3

ARG2ERR	DS	ØH	
MULLIN	LA		LOAD A(MESSAGE)
	ST		SAVE IN PLIST
	LA		LOAD LENGTH(MESSAGE)
	ST		SAVE IN PLIST
	LA	-	LOAD A(PLIST)
			CALL SAY ROUTINE
	LA		SET RETURN CODE
			SAVE RETURN CODE
	B		GO RETURN TO CALLER
CHKARG3	DS	ØH	do Reform to oneelin
omando		R1,R1	CLEAR REGISTER
	SR		CLEAR REGISTER
			SET DEFAULT RETURN CODE
		-	ARE THERE LESS THAN 3 ARGS
			YES, GO USE DEFAULT CLASS
			LENGTH+L'ARGTABLE_NEXT*2,=F'Ø'
	BE		YES
	L		RING_LENGTH+L'ARGTABLE_NEXT*2
	C	R14,=F'1'	IS LENGTH(ARG3) LESS THAN 1
	BL		YES
	C	R14,=F'8'	IS LENGTH(ARG3) MORE THAN 8
	BH		YES
	B		ELSE
ARG3ERR	DS	ØH	
MIGSERR	LA		LOAD A(MESSAGE)
	ST		SAVE IN PLIST
	LA		LOAD LENGTH(MESSAGE)
	ST		SAVE IN PLIST
	LA		LOAD A(PLIST)
		EP=IRXSAY	CALL SAY ROUTINE
	LA		SET RETURN CODE
		RØ,SAVERC	SAVE RETURN CODE
	B	RETURN	GO RETURN TO CALLER
DFLTCLAS		ØH	
DIEIGENO	LTR	R14,R14	IS THERE AN ARG2
	BNZ		YES
	MVC		ELSE ASSUME ARG2=DATASET
	MVI		SET CLASSNAM LENGTH
	В		GO CHECK AUTH
	B	CHEKAUTH	GO CHECK AUTH
SETCLAS	DS	ØH	
0 _ 1 0 _ 1 0	L		ING_PTR+16 LOAD A(ARG3)
	L		ING_LENGTH+16 LOAD LENGTH(ARG3)
		R3,1,CLASSLEN	SET CLASSNAM LENGTH
	BCTR		DECREMENT FOR EXECUTE
	EX		EXECUTE MVC OF ARG3 TO CLASSNAM
SETREGS	DS	ØH	
SEINEGO	LA	R3,RACFWKA	LOAD A(RACF WORKAREA) FOR RACROUTE
	_ <i>,</i> ,		

СНЕКАИТН	LA LA DS	R4,ENTYNAME R6,CLASSLEN ØH	LOAD A(ENTITY NAME) FOR RACROUTE LOAD A(LEN,CLASS NAME) FOR RACROUTE	
ONLIGIO			RKA=(R3),ATTR=(R5),	Х
			S=(R6),RACFIND=YES	
	LTR	R15,R15	CHECK RETURN CODE	
	ΒZ	AUTHOK	WAS RETURN CODE = \emptyset	
	MVI	RESULT,C'Ø'	NO, SET RESULT	
	В	SETRESLT	GO STORE RESULT	
AUTHOK	DS	ØH		
	MVI	RESULT,C'1'		
	В		GO STORE RESULT	
		RESULT,C'1'		
		R15,R15	WAS IT	
	BZ MVI	SETRESLT		
SETRESLT		RESULT,C'Ø' ØH	ELSE SET FAILURE	
SEIKESLI	L	R14,EFPLADDR		
	L		,R14) LOAD A(A(EVALBLOCK))	
	L		LOAD A(EVALBLOCK)	
		EVALBLOCK,R14		
	LA	R15,L'RESULT	GET LENGTH OF RESULT	
	ST	R15,EVALBLOCK_EVLE		
	EX	R15,EXMVC		
RETURN	DS	ØH		
	LH		LOAD RETURN CODE	
	L		LOAD R13 W/ADDR OF CALLERS S/A	
	RETUR	N (14,12),RC=(15)	RETURN TO OS WITH RETCODE IN R15	
SAVEAREA	DS	18F	SHOULD BE FIRST IN WORKAREA	
EFPLADDR	DC	A(Ø)	A(EFPL)	
EFPLARGA	DC	A(Ø)	A(EFPLARG)	
BUFRPTR		A(Ø)	A(INPUT BUFFER)	
BUFRLEN			LENGTH(INPUT BUFFER)	
IRXSAYPL		A(WRITEERR)		
	DC	A(BUFRPTR)	A(A(INPUT BUFFER))	
	DC		ØØ') A(LENGTH(INPUT BUFFER))	
NUMARGS	DC	H'Ø'	TOTAL NUMBER OF ARGUMENTS	
SAVERC	DC	H'Ø'	SAVE AREA FOR RETURN CODE	
RACFWKA		512X'4Ø'	RACROUTE WORK AREA	
ENTYNAME		CL256' '	ENTITY NAME	
CLASSLEN CLASSNAM		ALI(L CLASSNAM)	CLASSNAME LENGTH CLASSNAME	
EXMVCENT			EXECUTED MVC OF ARG1 TO ENTYNAME	
EXMVCCL			EXECUTED MVC OF ARG3 TO CLASSNAM	
EXCHKATR			EXECUTED CLC OF ARG3 TO TABLE ENTRY	
EXMVC	MVC),RESULT EXECUTED MVC OF RESULT	
RESULT	DC	C''	REXX RC	
MSG1	DC		ument/maximum of 3 arguments needed.'	

MSG2	DC	C'Argument1 (entit	y) must be between 1-44 bytes long. '
MSG3	DC	C'Argument2 (auth)	<pre>must be READ/UPDATE/CONTROL/ALTER. '</pre>
MSG4	DC	C'Argument3 (class) must be between 1–8 bytes long. '
DATASET	DC	CL8'DATASET '	FOR DATASET CLASS CHECKING
ATTRTABL	DS	ØF	ATTRIBUTE TABLE
ATTRDFLT	DC	AL1(4),CL8'READ	',X'Ø2' DEFAULT ATTR
	DC	AL1(6),CL8'UPDATE	',X'Ø4'
	DC	AL1(7),CL8'CONTROL	',X'Ø8'
	DC	AL1(5),CL8'ALTER	',X'80'
ATTRTBND	DC	X'FF',8X'FF',X'FF'	END OF TABLE INDICATOR
TABENTLN	EQU	*-ATTRTBND	LENGTH OF A TABLE ENTRY
WRITEERR	DC	C'WRITEERR'	IRXSAY FUNCTION
	LTORG		
	IRXAR	GTB DECLARE=YES	MAPS REXX ARGUMENT TABLE
ATTRDSCT	DSECT		ATTRTABL MAPPING
ATTRLEN	DS	AL1	LENGTH OF EBCDIC ATTR
ATTRVAL	DS	CL8	EBCDIC ATTR VALUE
ATTRHEX	DS	Х	HEX EQUIVALENT OF EBCDIC ATTR
	PRINT	NOGEN	
	IRXEF	PL	MAPS REXX EXTERNAL FUNT PARM LIST
	IRXEV	ALB	MAPS REXX EVALUATION BLOCK
	END		
Systems	nraara	mmer	

Systems programmer (USA)

© Xephon 2000

Code from *RACF Update* articles

As a free service to subscribers and to remove the need to rekey the scripts, code from individual articles of *RACF Update* can be accessed on our Web site, at

http://www.xephon.com/racfupdate.html

You will need the user-id shown on your address label.

RACF internals

This article offers general background information on the structure and facilities available in RACF, from the perspective of an MVS systems programmer. It covers the following topics:

- RACF database structure
- Resident data blocks
- RACF buffer synchronization
- Grouping profiles
- RACROUTE REQUEST=LIST processing
- Sysplex communication
- Sysplex data sharing
- RACGLIST class
- Recent RACF enhancements.

THE RACF DATABASE STRUCTURE

The RACF database is formatted into 4096 byte blocks. The first block in the database is the Inventory Control Block (ICB), and provides the beginning pointers for all other block types. The ICB also contains:

- RBA of the highest level index block
- Number of BAM blocks in the RACF dataset
- BAM high water mark
- The RBA of the first block of the INDEX sequence set
- Change count arrays
- SETROPTS options
- Audit options
- CLASS masks.

There is also an in-storage copy of the ICB located in ESCA storage subpool 231 key 0, pointed to by field DSDEHRD in the DSDT data area.

The first byte of each block in the RACF database contains a block identifier as follows:

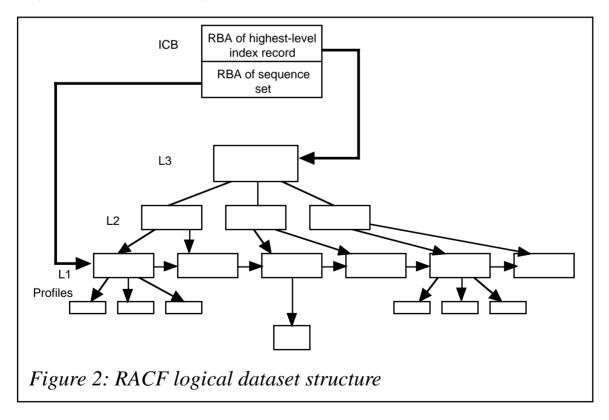
- X'00' BAM
- X'02' segment table
- X'83' data block
- X'8A' index block
- X'C3' empty block.

Logical view of the RACF database

The logical view of the RACF database is very similar to a VSAM KSDS in that there is always a level 1 (L1) or sequence set in the index structure, and, depending on the number of profiles, there may be two (L2), three (L3), or more levels of index above the sequence set (there can be up to ten levels on a RACF database). The sequence set or level 1 index entries contain the RBAs of the actual security profiles. IBM has used index-entry compression to save space on the RACF database. The types of compression are:

- Front-end compression
- Upper-level compression.

The forward and backward pointers between the higher level and lower index blocks allow RACF to find the next block in sequence. All of the pointers are given by relative byte address (RBA) from byte zero of the ICB. If the required information is not in-storage, each profile access will require an access to the ICB information and the information within one block at each level of the index structure, plus an access to the data block desired. Each index block contains a 14byte header followed by the index entries.


The structure of the index block header is shown in Figure 1.

Byte position	Description The index block identifier (X'8A')
2-3	The length of the index block (X'1000')
4	An index block identifier (X'4E')
5	Format identifier (X'00')
6	The index level number
7-8	The offset to the last entry in the index block
9-10	The offset to free space in the index block
11-12	The offset to a table of index-entry offsets
13-14	A count of entries in the table of index-entry offsets

At the logical end of each block, there is a one-byte end-of-block delimiter, which is set to X'0C'. The end of the index entries is identified by a level-1 block consisting of 255 bytes of X'FF'.

IBM provides a utility program called BLKUPD which can be used to examine or modify any BAM, index, or data block on a RACF database. It's an extremely powerful utility, and should be used only when directed by the IBM support centre. For a systems programmer or RACF administrator to run the BLKUPD utility, at least UPDATE authority is required to the RACF database.

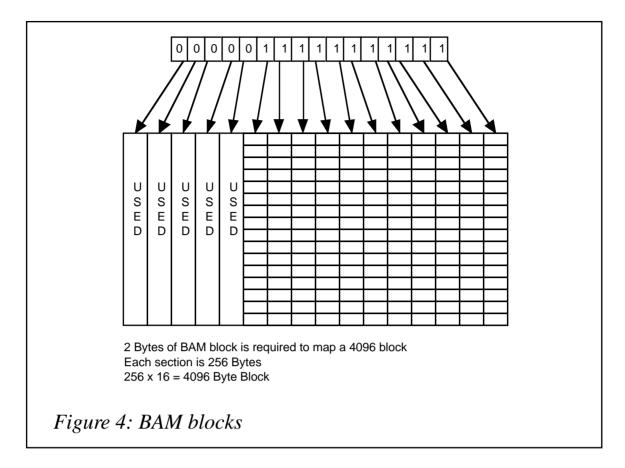
Figure 2 shows the logical view of the RACF database.

Template blocks

The blocks that follow the ICB will contain templates. These are maps of how profiles are structured, and normally vary between different releases of RACF. The number of template blocks will vary between different release levels of RACF because of reserved fields being used for new functions. RACF provides a template for each type of profile (user, group, dataset, and general resource). Internally, the template maps the fields that are contained in each segment of the profile by describing the field name and length.

Segment table block

The segment table block physically follows the template blocks. This block contains mappings of individual profile segments from within templates.


Block Availability Map

The block availability map (BAM), which physically follows the segment table block, contains bit structures representing parts of blocks in the RACF database and are on or off depending on whether the block contains information or is free (if a bit is set to 1, the corresponding slot is free). Each 4096 byte data block is broken down into sixteen parts, each 256 bytes long. One BAM bit represents one of the 256 byte parts. It takes two bytes to map a 4096 byte block. Each BAM block contains header information followed by the block masks. The header contains the information shown in Figure 3.

A maximum of 2038 blocks ((4096-20)/2), each of length 4096, can be defined by one BAM block.

Contained within the ICB is the BAM high-water mark. This field

1-6	The RBA of the previous BAM block (or 0 if this is the first block)
7-12	The RBA of the next BAM block (or 0 if this is the last block)
13-18	The RBA of the first block whose space this BAM block defines.
19-20	The number of blocks whose space this BAM block defines.

contains the address of the BAM block that was last used to allocate or de-allocate space within the RACF database. When space is required in the RACF database for a new profile, the BAM high-water mark is used as the starting position. For instance, in Figure 4 the first five slots are in use and the next eleven are available for allocation.

Security profiles

The security profiles are made up of:

- USER profiles
- GROUP profiles
- Dataset profiles
- **RESOURCE** profiles.

A profile can be made up of a number of segments. Segments that make up a profile are stored as individual elements and are not necessarily stored in contiguous positions in the RACF database. The

Field	Description
Record identifier	A one-byte field containing the identifier X'83'
Logical record length	A four-byte field containing the length of the actual data portion contained in the physical record
Physical record length	A four-byte field containing the physical record length
Segment name	An eight-byte field containing the name of the segment
Key length	A two-byte field containing the length of the profile name
Reserved	A one-byte reserved field
Record key	The profile name
Data fields	One or more segment data fields

Block 0	Block 1	Block 2-9	Block 10	Block 11	Block 12	Block <i>n n</i>
ICB	Template	Template	Reserved template block	Segment table	BAM (1 or more blocks)	Index and data blocks

Figure 6: The physical RACF database view

level-one index entry for a profile has a count of and pointers to all segments that make up a profile. For example, the user profile has a base segment and may also have a TSO segment, an OMVS segment, a DFP segment, an OPERPARM segment, a CICS segment, a NetView segment, or a WORKATTR segment.

The RACF database profiles consist of a header record followed by segments that are made up of fields and repeat groups. The record header is made up of the fields shown in Figure 5.

Physical view of the RACF database

The RACF database may be made up of multiple datasets, and each may have a mirror copy called a duplex. The number of RACF datasets is controlled by creating a RACF dataset name table and placing it as member ICHRDSNT in a link list library. The systems programmer can also use the Database Range Table (ICHRRNG) to determine the RACF database on which to place each security profile. The Database Range Table must reside in an LPA or MLPA library. From the physical viewpoint, an index or data record/block can be located anywhere in the RACF database.

The structure of the RACF physical database is shown in Figure 6.

RESIDENT DATA BLOCKS

RACF provides an option to keep the active portions of the RACF database in storage. This is accomplished by specifying the number of resident data blocks for each primary RACF database in the RACF Database Name Table (ICHRDSNT). During the IPL procedure, RACF obtains the storage for the specified number of buffers from the extended common storage area (ECSA). It is recommended that this value be set to 255 (the maximum that can be specified) as RACF will work most efficiently when the maximum number is given to it.

The following RACF data blocks can be kept in the resident data blocks:

- RACF profiles
- Block availability blocks
- Database index blocks

Depending on whether the RACF database environment is shared or non-shared, RACF will use a different technique to synchronize the various RACF local buffers, as described below.

Shared RACF database

When resident data blocks are used for a shared RACF database, synchronization for local buffers in all systems sharing the RACF database is performed by using change count arrays in the inventory control block (ICB). The change count in the ICB, corresponding to the block type (profile or index), is updated whenever a block is updated. Index block buffers and profile buffers are marked out-of-date if the change count in the ICB differs from the change count in the in-storage buffer. Before the resident data blocks are searched, the ICB must be read and the change count arrays compared. If a count differs, all blocks for one level or all data blocks are invalidated.

When a profile or index block needs to be read by a sharing CPU, RACF will see whether the ICB has been refreshed in storage within the last two seconds. If it has, the in-storage copy will be used; otherwise, the DASD copy of the ICB will be brought into storage before it accesses other information. If RACF is performing I/O to the RACF database (writing a profile or index block), the ICB is always refreshed.

If all the space has been used and a profile is needed which is not in storage, a Least Recently Used (LRU) algorithm will be used to identify which block to purge in order to provide the needed space.

Non-shared RACF database

For a non-shared RACF database, RACF will first search the resident data blocks to find a copy of the needed block. If this block is not found in the resident data blocks, RACF will obtain an in-storage buffer from the pool of buffers from within the resident data blocks, read the data block from the RACF database into that buffer, and retain the data block in storage for future references. When updating a profile, RACF searches the in-storage buffers for a copy of the block that contains the profile. If it doesn't find one, it obtains an in-storage buffer from the pool of buffers. When a block is updated, RACF always performs an I/O operation to store the new data block on the RACF database to ensure that the database has an up-to-date version of the block. When getting a buffer from the pool, RACF attempts to get a buffer that is empty. If it can't find an empty buffer, RACF takes the buffer containing the least-recently-used block.

GROUPING PROFILES

A facility in RACF permits the association of a name with a single profile through the use of a resource name group facility. This is referred to in RACF terminology as a grouping class. The resource managers of CICS and IMS use this facility through

RACROUTE REQUEST=LIST

and

RACROUTE REQUEST=FASTAUTH

In CICS, the default grouping class is GCICSTRN. RACF grouping classes are associated with a member class which could have a single RACF profile per transaction. The default member class for transaction names in CICS is TCICSTRN.

In MVS environments, CICS uses RACF's fast authorization checking mechanism to minimize I/Os during transaction processing. To use the fast authorization check (RACROUTE REQUEST=FASTAUTH), CICS will build transaction profiles in storage at initialization time by using the RACROUTE REQUEST=LIST macro (RACLIST). The space needed for the RACLISTed profiles can be minimized by grouping transactions which have like security requirements under a unique name in the appropriate grouped class.

In RACF, the systems programmer maintains a table called the Class Descriptor Table (CDT). This table describes how resources in the class are to be named, and how they are to be administered. It also allows resources with the same name to be distinguished from each other. For each class defined in the CDT, the following information can be specified:

- Name of the resource class
- Default return code when no profile exists for the resource that is being accessed
- GENLIST option
- Grouping class name
- Member class name
- POSIT number
- RACLIST option
- Default UACC
- Class name format.

As can be seen from the previous information, the CDT also specifies when grouping of profiles is to be used, and which class is the grouping class and which the member class. The definitions for the

Class Name GCICSTRN	Parameters POSIT=5 OTHER=ANY MAXLNTH=13 DFTUACC=NONE MEMBER=TCICSTRN OPER=NO FIRST=ANY ID=13
TCICSTRN	POSIT=5 OTHER=ANY MAXLNTH=13 DFTUACC=NONE GROUP=GCICSTRN OPER=NO FIRST=ANY ID=12
the authorization name has no app	ember class, the profile name is the name of the resource against which request will be made. In the corresponding grouping class the profile plication significance. It is merely chosen as a convenient name to refer esource names that are added as "members". These member names are

the resource names against which requests will be made. Generic names can be defined as the profile name in the entity or member class or as member names in any of the grouping class profiles. Generic profiles cannot be used with the resource name grouping facility.

Figure 7: Definitions for GCICSTRN and TCICSTRN classes

GCICSTRN and TCICSTRN classes are as shown in Figure 7 (CDT entry for grouping class will be paired with member class entry).

During CICS initialization, the CICS Resource Manager requests the service of RACLIST by invoking the RACROUTE REQUEST=LIST macro. RACLIST determines that the TCICSTRN class is grouped by the GCICSTRN class by looking at the CDT and reads the GCICSTRN records first. RACLIST will build the in-storage profiles in two pools. The two pools are pointed to by an anchor element. The anchor element varies in size depending on whether generic or non-generic profiles are defined. The first pool contains fixed information such as UACC and AUDIT flags. It also contains the access list, either USERID or GROUP names. The second pool contains the index. Every entry in the member list will have an entry in the index. The index is built from the following sources:

• The transaction named by the ADDMEM keyword of the GCICSTRN definition.

• The transaction named in the definition in the TCICSTRN class.

The index entries contain fields that are used to provide the binary search capability of RACF FRACHECK in response to a RACROUTE REQUEST=FASTAUTH. When the GCICSTRN records have been exhausted, RACLIST starts processing the records from the TCICSTRN class.

The following examples show CICS transaction security definitions. The examples use grouping profiles, generic profiles, and discrete profiles:

RDEFINE GCICSTRN TG1 UACC(NONE) ADDMEM(TRN1,TRN2,TRN3,TRN4,TRN5) PERMIT TG1 CLASS(GCICSTRN) ID(U1,U2,U3,U4,U5) ACCESS(READ) RDEFINE GCICSTRN TG2 UACC(NONE) ADDMEM(TRN6,TRN7,TRN8,TRN9,TRNA) PERMIT TG2 CLASS(GCICSTRN) ID(U6,U7,U8,U9) ACCESS(READ) RDEFINE TCICSTRN T* UACC(NONE) PERMIT T* CLASS(TCICSTRN) ID(U1Ø,U11,U12,U13,U14,U15,U16) ACCESS(READ) RDEFINE TCICSTRN TRNZ UACC(NONE) PERMIT TRNZ CLASS(TCICSTRN) ID(UQ,UY,UZ) ACCESS(READ)

It is never necessary to define the name of any resource for which RACF control is desired in more than one RACF profile, but there is nothing preventing you from doing so. In general, all of the CICS or IMS resources that you wish to control can be defined, via the ADDMEM parameter, as members of profiles defined within the grouping class used for each CICS or IMS resource type. It is not necessary (and is in fact undesirable because of the additional processing required during RACLIST processing) to define these same CICS or IMS resource names individually as profiles in the member class. Whenever a single resource name appears in more than one profile, RACF is forced to merge these multiple profiles during RACLIST processing for any authorization request that may be issued for any such resource name. The net effect of the profile merge processing is to construct a profile in memory such that the response to any particular resource name

would be the same as processing each profile within which the resource name appears, allowing the least restrictive access defined for any of the profiles.

A resource manager that uses grouping profiles would probably issue the following RACF macro services:

• During initialization:

RACROUTE REQUEST=LIST,CLASS=class_name,ENVIR=CREATE,

• For each authorization request:

RACROUTE REQUEST=FASTAUTH,CLASS=class_name,ACEE=acee_addr,

• To REFRESH in-storage profiles:

RACROUTE REQUEST=LIST,CLASS=class_name,ENVIR=DELETE,

RACROUTE REQUEST=LIST,CLASS=class_name,ENVIR=CREATE,

Recent enhancements to RACROUTE REQUEST=LIST have provided the option of specifying GLOBAL=YES on the request. When this option is specified, the results of the REQUEST=LIST are stored in a dataspace which can shared by other applications that issue the same request. The main benefit of this new option is that the RACF administrator can issue a

SETROPTS RACLIST(classname) REFRESH

which deletes the existing dataspace and loads the discrete and generic profiles into a new dataspace, and that all applications that have issued

REQUEST=LIST,GLOBAL=YES

for the same class will therefore be automatically connected to the new dataspace. This saves applications from having to issue the

RACROUTE REQUEST=LIST,CLASS=class_name,ENVIR=DELETE

followed by a

RACROUTE REQUEST=LIST,CLASS=class_name,ENVIR=CREATE

to refresh the in-storage profiles. In the case of CICS, the CICS administrator does not have to issue the CEMT PERFORM SECURITY REBULID command.

GLOBAL ACCESS TABLE

An important tuning option in RACF is the global access table. This table allows an installation to define a set of named resources and a level of access at which anyone may access them. A global table may be created for any resource class.

The global access table is built at IPL time or when a refresh is performed by a security administrator, and is maintained in central storage. Once built, there is no I/O performed for security checking if there is an entry in the table which grants access to the resources being checked. The global access table entries will be used for regular authorization checking, such as OPEN, unless the class of resources has had all of its profiles built in shared storage, using SETROPTS RACLIST.

The global access table is not used for fast authorization checking (RACROUTE REQUEST=FASTAUTH). For example, CICS uses FASTAUTH checking for transaction authorization for the TCICSTRN class.

To add a resource class to the global access table, use the RDEFINE GLOBAL class_name command. To allow global access checking for a specific resource, use the RALTER GLOBAL class_name ADDMEM command. To delete an entry from the global access table, use the RALTER GLOBAL class_name DELMEM command. To list the global access table, issue the RLIST GLOBAL class_name command (see Figure 8).

Note the following conditions for global access checking:

RDEFINE GLOBAL DATASET
RALTER GLOBAL DATASET ADDMEM('SYS1.HELP'/READ) SETROPTS GLOBAL (DATASET) REFRESH RLIST GLOBAL class_name SETROPTS GLOBAL(DATASET)

SETROPTS NOGLOBAL(class_name)

Figure 8: Global access table

Add a resource class to the global access table Allow global access checking for a specific resource Rebuild the global access table List entries in a particular class Activate global access checking for a class Stop global access checking for a specific class

Enhanced Generic	Names is in effect.			
&RACGPID	.**/READ			
&RACUID.**/ALTER				
CATALOG.MASTER.**/READ				
ISF.**/READ				
ISP.**/READ				
SYS1.BRODCAST/UPDATE				
	SYS1.RACF*/NONE			
SYS1.LPALIB/NONE				
SYS1.PARMLIB/NONE				
SYS1.**/RE				
01011 /112				
&RACGPID	Represents the group that a user has signed on with at the time that the resource access check is being made.			
&RACUID	Represents the userid that the user has signed on with at the time of the authorization check.			
NONE	None implies that the given name is not to be included in the broader security definition further down the list.			

Figure 9: Example global access table

- Global access checking is used for authorization processing invoked by the RACROUTE REQUEST=AUTH macro. It is not used for authorization processing invoked by the RACROUTE REQUEST=FASTAUTH macro.
- When access is granted through the global access table, no logging to SMF will occur at authorization checking time.
- When access is granted through the global access table, RACF maintains no statistics.
- RACF bypasses global access checking if the PROFILE, CSA, or PRIVATE operand is specified on the RACROUTE REQUEST=AUTH request.
- Fully qualified names of resources as well as generic names may be placed in the global access table.

Figure 9 illustrates what a global access table might look like when displayed in response to a RLIST GLOBAL DATASET. The display is in the sequence that RACF will build the table in storage.

SYSPLEX COMMUNICATION

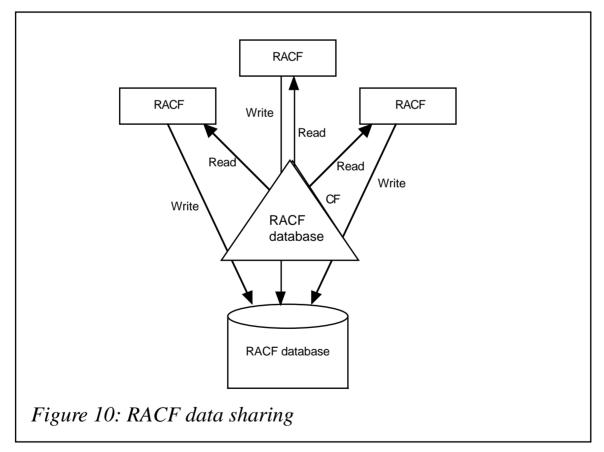
When RACF is enabled for RACF communication, it uses the cross-

system coupling facility (XCF) to join the RACF data sharing group, IRRXCF00. There is only one data sharing group per system. RACF sysplex communication can be enabled only by modifying the flag byte (Bit 4 - Enable RACF Sysplex communication) of the first entry in the RACF database name table (ICHRDSNT). Activating this modification requires an IPL of the systems.

An essential requirement is that the RACF database name table and the class descriptor table (ICHRRCDE) must be compatible on all systems, and the database range table (ICHRRNG) must be the same on all systems.

Once RACF sysplex communication has been activated, RACF can be in one of the following modes:

- Non-data sharing
- Data sharing
- Read-only.


When RACF is enabled for sysplex communication, it propagates SETROPTS RACLIST Class_name or SETROPTS RACLIST Class_name REFRESH commands issued from any one system to the other systems in the data sharing group, if the command is successful on the system on which it was entered. The full list of commands that are propagated through the sysplex are as follows:

- RVARY SWITCH
- RVARY ACTIVE
- RVARY INACTIVE
- RVARY DATASHARE
- RVARY NODATASHARE
- SETROPTS RACLIST(classname)
- SETROPTS RACLIST(classname) REFRESH
- SETROPTS NORACLIST(classname)
- SETROPTS GLOBAL(classname)

- SETROPTS GLOBAL(classname) REFRESH
- SETROPTS GENERIC(classname) REFRESH
- SETROPTS WHEN(PROGRAM)
- SETROPTS WHEN(PROGRAM) REFRESH

RACF DATA SHARING.

RACF uses a Coupling Facility (CF) cache structure for data sharing, and implements CF cache structures as a store through cache for the RACF primary and back-up databases (see Figure 10). It is used to keep frequently-referenced information located in the RACF database so that security information can be accessed quickly by all sharing RACF systems. The structures act like a buffer for the RACF read activity. Whenever you make changes to RACF, the DASD version is always updated before the structure. One cache structure is created for each dataset that makes up the primary and back-up RACF databases.

Structure type	Naming conventions
CACHE	IRRXCF00_ayyy Where:
	 a = P/B for primary/backup yyy = RACF database sequence number The sequence number is retrieved from the RACF dataset descriptor table (ICHPDSDT). This table describes the primary and back-up RACF dataset and is created at IPL time with information from the customer provided load module database name table (ICHRDSNT). The sequence number is assigned by RACF in the dataset descriptor table according to the sequence in which the RACF datasets are defined in the dataset name table. Both sequence numbers, for the primary and back-up, should start with 001.
Figure 11: RACF cache structure name definitions	

These cache structures are shared with all systems in the coupling facility. RACF uses non-persistent cache structures, which means that buffers get deallocated when all systems have disconnected from them.

RACF sysplex data sharing is enabled by setting bit 5 (Bit 5 - Enable RACF sysplex data sharing) of the RACF database name table (ICHRDSNT) flag byte. RACF sysplex communication must also be enabled.

The RACF cache structure name definitions are shown in Figure 11.

In order to exploit RACF data sharing the following are required:

- RACF Version 2 Release 2 or later must be installed on all sharing systems.
- All sharing systems must have access to the same coupling facility.
- All sharing systems must be enabled for sysplex communication.
- Only members of the multi-system sysplex can share the RACF database.
- The major names SYSZRACF and SYSZRAC2 cannot be in the GRS exclusion RNL.

- The database must reside on shared DASD.
- The database name table (ICHRDSNT) must be compatible for all sharing systems.
- The database range table (ICHRRNG) must be identical on all sharing systems.
- The class descriptor table (ICHRRCDE) must be compatible for all sharing systems.
- RACF sysplex communication must be enabled via bit setting in the RACF database name table (ICHRDSNT).

When implementing RACF data sharing, all systems in the parallel sysplex that are in data sharing mode must share the same RACF database. Other systems within the parallel sysplex that are not in data sharing mode can use their own RACF database.

RACF support for data sharing mode can be characterized as follows:

- Use of GRS ENQ/DEQ protocol, rather than the use of RESERVE/RELEASE for serialization. This protocol uses GLOBAL ENQs to protect the integrity of RACF data in the RACF database.
- Use of XCF signalling for communication.
- Use of the coupling facility for sharing the RACF database.
- When data sharing is initiated, the RACFDS (data sharing) address space is started automatically and stays active until the next IPL, even if RACF is placed back into non-RACF sysplex data sharing mode. The RACFDS address space is started with a high dispatching priority.

The following steps are required to enable RACF sysplex data sharing:

- Enable RACF sysplex communication.
- Define the coupling facility structures.
- Activate the coupling facility structures.

• Activate RACF sysplex data sharing mode by issuing the following RACF command:

#RVARY DATASHARE

(where # is the RACF subsystem prefix character).

• Default to RACF sysplex data sharing mode. To enable RACF to initialize automatically in RACF sysplex data sharing mode at IPL time, the flag byte of the first entry in the RACF dataset name table (ICHRDSNT) may be modified.

RACGLIST CLASS

RACGLIST was designed specifically for the parallel sysplex environment, to improve the performance of RACLIST processing, and ensures that all members have exactly the same copy of the profiles. RACGLIST provides a single image for security when the installation is using

RACROUTE REQUEST=LIST, ENVIR=CREATE, GLOBAL=YES,

or

SETROPTS RACLIST(class_name)

on multiple systems in a sysplex. Installations that use RACGLIST classes should see decreased accesses to the RACF database when performing sysplex-wide SETROPTS RACLIST REFRESH operations or during initialization when an initial RACLIST is performed

RACF uses the RACGLIST class to save the results of in-storage profiles that have been RACLISTed to a RACLIST dataspace, when using one of the following commands:

- SETROPTS RACLIST(Class_name)
- SETROPTS RACLIST(Class_name) REFRESH
- RACROUTE REQUEST=LIST,GLOBAL=YES

When a SETROPTS RACLIST(Class_name) is issued on a system in a sysplex and the RACGLIST class has been activated, the system will

read every profile in the class from the RACF database, build the RACLIST tree of profiles for the RACLIST dataspace, and write a copy of the whole tree into one or more RACGLIST profiles in the RACF database. The other systems will read the RACGLIST profile and copy them into their own dataspace. The RACGLIST class profiles are stored in a structure similar to the structure that is finally stored in the RACLIST dataspace.

RACF uses the RACGLIST profiles to build the RACLIST dataspace for the following events:

- SETROPTS RACLIST(class_name) during an IPL
- RACROUTE REQUEST=LIST, ENVIR=CREATE, GLOBAL=YES
- Propagates SETROPTS RACLIST or SETROPTS RACLIST(class_name) REFRESH

To enable RACF to use the RACGLIST class, you need to activate RACGLIST by using

SETROPTS CLASSACT(RACGLIST)

and prime RACGLIST for a specific class by issuing the RDEFINE RACGLIST Class_name command. RACF will then build additional profiles and store them in the RACF database. For example, if the RACGLIST class name profile is REMCLASS, RACF creates profiles named:

- REMCLASS_00001
- REMCLASS_00002
- REMCLASS_00003, etc.

RECENT RACF ENHANCEMENTS

Password management

The following password management enhancements are provided by APAR OW26060:

• As of Release 2.6, a help desk administrator can reset passwords and resume user ids that have been revoked without requiring

excessive RACF privilege. This means you avoid the requirement for help desk personnel to have the SPECIAL or GROUP SPECIAL attribute, or to own the affected USER PROFILE. Also, the home-grown Assembler and REXX add-ons can now be removed. Password management is implemented by defining a profile that will protect resource IRR.PASSWORD.RESET in the FACILITY class. If the profile does not exist, the standard privileges apply when RACF determines whether the command issuer is authorized. Users who are permitted to this rule with READ permission can reset passwords for all userids except userids which have SPECIAL, OPERATIONS, or AUDITOR.

The command syntax is:

RDEFINE FACILITY IRR.PASSWORD.RESET UACC(NONE) OWNER(OWNGROUP) PERMIT IRR.PASSWORD.RESET CLASS(FACILITY) ACC(READ) ID(HELPDESK)

• The ability to reset a password without marking the new password as expired, so that the next time the user logs on, he or she does not need to change the password.

The commands syntax is

ALU userid NOEXPIRED Password(password)

• The ability to list information in the base RACF segment of a user profile without requiring SPECIAL, GROUP SPECIAL, or ownership of the profile.

The previous two enhancements can be delegated to help desk personnel by permitting them to a FACILITY class rule named IRR.LISTUSER. A user or group with READ or higher permission to this rule can issue the LISTUSER command for all userids except those userids with SPECIAL, OPERATIONS, or AUDITOR. A user with UPDATE or higher permission to this rule can issue ALTUSER userid NOEXPIRED for any userid except those with SPECIAL, OPERATIONS, or AUDITOR.

To enable a help desk user to issue the LU and ALU userid NOEXPIRED, the following RACF commands can be issued:

RDEFINE FACILITY IRR.LISTUSER UACC(NONE) OWNER(OWNGROUP) PERMIT IRR.LISTUSER CLASS(FACILITY) ACC(UPDATE) ID(HELPDESK)

The UNIXMAP class

RACF has used the facilities of Virtual Lookaside Facility (VLF) to map UIDs to user IDs and GIDs to group names for verification of OS/390 Unix system service requests. For RACF to begin using VLF for UID and GID mapping, you must define the IRRUMAP and IRRGMAP class to VLF in the COFVLFxx member of SYS1.PARMLIB as follows. Although not required, IBM strongly recommends this action:

```
CLASS NAME(IRRUMAP)
EMAJ(UMAP)
CLASS NAME(IRRGMAP)
EMAJ(GMAP)
```

A performance problem has been encountered when RACF is invoked to look up a RACF userid when given an OMVS UID, or when RACF is invoked to look up a RACF group name when given an OMVS GID. If VLF is not active or VLF is active but a UID or GID is not found in a VLF data space, requests for UID-to-USERID mapping and GIDto-GROUP mapping default to searching the RACF database on each request. Even more serious are environments that use Network File System (NFS) or Distributed File System (DFS) to mount external file systems from systems where the UIDs and GIDs are not kept in synch with the mounting system. In this case, the UIDs and GIDs will not be found in VLF, and then the entire RACF database is searched in order to determine that the UID or GID is unknown, resulting in poor performance.

To resolve this problem, IBM has provided the UNIXMAP class. This is used to map UIDs to user IDs and GIDs to group names. This allows RACF to tell whether a UID or GID is unknown by doing one I/O operation to the RACF database. This new function will automatically keep the new class in synch with user and group information in the RACF database. It does this by modifying the UNIXMAP class profile appropriately when ADDUSER, ALTUSER, DELUSER, ADDGROUP, or DELGROUP commands are issued.

The new support still uses VLF as follows: when a UID or GID mapping is not found in VLF, the UID or GID is looked up in the new UNIXMAP class. If it is found, the UID or GID is added to VLF.

There are two types of profile in the UNIXMAP class:

- UID mapping profiles. The profile names are of the form *Uxxxxxxxxx*, where *xxxxxxxxx* is the UID in EBCDIC.
- GID mapping profiles. The profile names are of the form Gyyyyyyyyy, where yyyyyyyy is the GID in EBCDIC.

Where one UID is allowed to map to multiple user ids (for example, UID=1 for system programmers), there would be multiple entries on the access list of UNIXMAP profile U1. The look-up routine will return the first user ID on the access list.

The RACF FMID

As of OS/390 Version 2 Release 6, RACF is a component of the OS/390 Security Server. Security Server (RACF) has a new FMID HRF22260. Because RACF is a component of the OS/390 Security Server, it no longer has a version, release, and modification level of its own. To provide compatibility with previous releases and versions of RACF, the ICHEINTY, ICHEACTN, ICHETEST, and RACROUTE macros accept the RELEASE=2.6 keyword. The RACF Vector Table (RCVT) contains the value 2060 to identify the RACF level. In essence, the FMID HRF2260 is presented as Version 2.6.0

R F Perretta Millenium Computer Consultancy (UK)

© Xephon 2000

Leaving? You don't have to give up *RACF* Update

You don't have to lose your subscription when you move to another location – let us know your new address, and the name of your successor at your current address, and we will send *RACF Update* to both of you, for the duration of your subscription. There is no charge for the additional copies.

Checking the authorization of JCL parameters

THE PROBLEM

We wanted to restrict the output class in JCL to certain permitted classes. We also wanted certain users to be allowed only certain classes. The authorizations are defined in RACF.

OUR SOLUTION

Checking permitted output classes takes place in JES2 user exit 6 (converter exit). The exit extracts the following from the converted JCL (the converter/interpreter text):

- The MSGCLASS parameter from the JOB card '//... JOB... ,MSGCLASS=X,...'. This is the output class when SYSOUT=* in DD card.
- The first sub-parameter of the SYSOUT parameter from the DD card '//... DD... ,SYSOUT=(X,...),...'.
- The CLASS parameter from the OUTPUT card '//... OUTPUT... ,CLASS=X,...'.

This creates the following RACF resource names to check RACF authorization in class FACILITY:

- @JCL.JOB.MSGCLASS.x
- @JCL.DD.SYSOUT.CLASS.x
- @JCL.OUTPUT.CLASS.x.

where 'x' is the output class.

Note that the exit is executing as a subtask in the JES2 address space, but with an ACEE for the job user. This means that RACF checking is possible for the job user.

An output class is allowed if the user has at least READ authority for the matching RACF profile, or if there is no profile. If the user is not

^{© 2000.} Reproduction prohibited. Please inform Xephon of any infringement.

authorized, the job terminates with a JCL error and the following message appears in the joblog:

IEFC452I jobname - JOB NOT RUN - JCL ERROR

The job is also shown as not executed in BETA92.

INSTALLATION

The following steps are necessary to install this solution:

- Install the USREX006 load module in SYS1.LINKLIB, preferably by SMP.
- Define the exit in JES2 parameters:

LOAD(USREXØØ6) STORAGE=PVT EXIT(ØØ6) ROUTINE=UEXØØ6, STATUS=ENABLED, TRACE=NO

- Create profiles in RACF class FACILITY, for example, using @JCL.** with UACC(READ), @JCL.JOB.MSGCLASS.x, @JCL.DD.SYSOUT.CLASS.x, @JCL.OUTPUT.CLASS.x with the necessary UACC and entries in access lists (eg @JCL.**.*CLASS.x is also possible).
- To turn off the exit, use the following JES2 command:

\$T EXIT(6),STATUS=DISABLED

It can be reactivated using:

\$T EXIT(6),STATUS=ENABLED

EXTENDING THE EXIT

This exit can be easily extended for any parameter of the JOB, EXEC, DD, and OUTPUT card (it makes little sense to check the remaining JCL statements) – see the program logic (the JCL parameter table) and the commentary of the source program below.

The RACF resource names are defined as follows:

@JCL.statement.parameter.value

if the JCL parameter has no sub-parameters, and:

@JCL.statement.parameter.subparameter.value

if the JCL parameter has sub-parameters.

Additional background information can be obtained from the *JES2 Installation Exits* manual, SC28-1463, and from the *MVS C/I Text Processing* chapter in *MVS/ESA Installation Exits*, SC28-1459. It would also be useful to review SYS1.SAMPLIB(HASX06A).

USREX006

<pre>TITLE ' USREXØØ6 JES2 USER EXIT 6 - * REGISTER USAGE * RØ : WORK * R1 : WORK * R2 : WORK * R2 : ADDRESS OF 1ST ENTRY FOR KEY FO * R3 : ADDRESS OF ENTRY IN KEY TABLE * R4 : LENGTH OF KEY PARAMETER OR KEY * R5 : # OF KEY SUBPARAMETER * R6 : KEY SUBPARAMETER * R6 : KEY SUBPARAMETER * R8 : KEY PARAMETER COUNT * R7 : # OF KEY PARAMETER * R8 : KEY PARAMETER COUNT * R9 : CURRENT POINTER TO C/I TEXT * R10: ADDRESS OF 16 BYTES WORK AREA * R11: ADDRESS OF \$HCT * R12: BASE * R13: ADDRESS OF WORK AREA = ADDRESS * R14: WORK * R15: WORK</pre>	OUND IN KEY TABLE SUBPARAMETER OF SAVE AREA
******	*****
* JES2 ENVIRONMENT AND DSECTS	
**************************************	*****
PRINT NOGEN	
	GLOBALS
	GLOBALS FJECT
	ASK IN JES2 ADDRESS SPACE + EFORE AMODE=31 + ,NOGEN,NOGEN), (*,EX,*,MVS,JES) + ERTER MESSAGE BUFFER + KEYS, TABLE OF C/I KEYS +

		\$DTE, \$HASPEQU, \$HCCT, \$HCT, \$JCT	DAUGHTER TASK ELEMENT GENERAL EQUATES COMMON STORAGE COMMUNICATION TABLE COMMUNICATION TABLE <- R11 JOB CONTROL TABLE EJECT	+ + +
DOKEY	PUSH PRINT DSECT IEFDO POP	, KEY ,	DYNAMIC OUTPUT KEYS (// OUTPUT)	
XPL XØØ6WORK XØØ6TEXT XØØ6DTE XØØ6JCT XØØ6CNMB	DS DS DS DS	A A A A	EJECT EXIT PARAMETER LIST, NOT IN \$XPL ADDRESS OF 16 BYTES WORK AREA ADDRESS OF C/I TEXT ADDRESS OF \$DTE ADDRESS OF \$JCT Ø, POSSIBLY ADDR OF CNMB AT RETURN SPACE	
WK16 WK1616 WK16R3 WK16R14 WK16@DYN WK16IND WK16IND1	DS DS DS DS DS	ØXL16 F F A B B'10000000'	16 BYTES WORK AREA SAVED R3 SAVED R14 ADDRESS OF WORKING STORAGE KEY TO SEARCH FOUND IN C/I TEXT UNUSED	
WORK WORK@SAH WORKR13 WORKRN WORKRNL WORKRNA WORKRAU WORKRAU WORKSAFW	DS DS DS DS DS DS DS DS		SPACE WORKING STORAGE SAVE AREA (FOR RACROUTE) ADDRESS OF HIGHER SAVE AREA SAVED R13 ENTITYX STRUCTURE RESOURCE NAME BUFFER LENGTH TRUE LENGTH OF RESOURCE NAME RESOURCE NAME (MAX 5 QUALIFIERS) RACROUTE PAR LIST FOR AUTH CHECK SAF WORK AREA LENGTH OF WORKING STORAGE	
KEY_ KEY_KEY * KEY_OUTP *	DS	, AL1 AL2	TAB OF KEYS TO PROCESS IN C/I TEXT KEY (SEE MACRO IEFVKEYS) KEY FOR OUTPUT (Ø WHEN JOB/EXEC/DD) (SEE MACRO IEFDOKEY)	

KEY_#PAR DS AL1 # OF KEY PARAMETER KEY_#SUB_DS AL1 *#* OF KEY SUBPARAMETER (Ø WHEN NO KEY SUBPARAMETER) KEY_IND DS R ANOTHER TAB ENTRY FOR THE SAME KEY KEY CONT EQU 1 FOLLOWS BUT WITH A DIFFERENT KEY + PARAMETER OR KEY SUBPARAMETER * KEY @PRO DS AL4 ADDRESS OF RACE PROFILE (1 BYTE LENGTH FIELD IS 1ST BYTE) KEY L EQU *-KEY LENGTH OF TABLE SPACE &J2SECTN &J2SECTT , AGAIN CSECT OR RSECT EJECT TITLE '--- USREXØØ6 --- JES2 USER EXIT 6 ---' * PROLOGUE REUS, RENT, REFR: KEY 1: SUPERVISOR UEXØØ6 \$ENTRY BASE=R12 \$SAVE , SAVE CALLER'S REGISTERS LOAD BASE REGISTER LR R12.R15 USING XPL,R1 R1Ø,XØØ6WORK ADDRESS OF 16 BYTES WORK AREA L USING WK16,R1Ø CLEAR 16 BYTES WORK AREA XC WK1616,WK1616 LTR RØ.RØ 4 = CONVERTER FINISHED? BNZ YES, LAST CALL, NOTHING TO DO RETURN ADDRESS OF C/I TEXT 1 R2.XØØ6TEXT USING TEXT.R2 DROP R1 SPACE LA R3,KEYSJOB KEYS TO PROCESS IF JOB CARD ADDR OF 1ST KEY IN C/I TEXT IF JOB LA R9.STRJKEY ТΜ STRINDCS.JOBSTR JOB CARD ? BO YES CIT LA KEYS TO PROCESS IF EXEC CARD R3,KEYSEXEC LA R9,STREKEY ADDR OF 1ST KEY IN C/I TEXT IF EXEC ТΜ STRINDCS, EXECSTR EXEC CARD ? B0 YES CIT KEYS TO PROCESS IF DD CARD LA R3.KEYSDD ADDR OF 1ST KEY IN C/I TEXT IF DD LA R9,STRDKEY ТΜ STRINDCS, DDSTR DD CARD ? BO CIT YES KEYS TO PROCESS IF OUTPUT CARD LA R3,KEYSOUTP LA R9.STRSKEY ADDR OF 1ST KEY IN C/I TEXT IF OUTP OUTPUT/CNTL/ENDCNTL CARD ? ТΜ STRINDCS, JDVBSTR ΒZ RETURN NO CLI STRSKEY.JDTVERBK OUTPUT/CNTL/ENDCNTL CARD ? BNE RETURN NO

CLC COUTPUT, STRSKEY+2 **OUTPUT CARD ?** ΒE CIT YFS В RETURN OTHER JCL CARDS NOT PROCESSED DROP R2 USING KEY_,R3 EJECT CIT DS ØН CLI KEY KEY.ETEND ANY KEYS TO PROCESS ? ΒE NO RETURN ST R3,WK16R3 SAVE ADDRESS OF TABLE OF KEYS XR R8.R8 KEY PARAMETER COUNT XR R6,R6 KEY SUBPARAMETER COUNT XR R4.R4 LENGTH OF KEY PAR OR KEY SUBPAR SPACE * ******* NOTE ********* // DD SPACE=(...,(1,2)),. * JCL C/I TEXT // JOB (X,Y),.. * _____ * PARAMETER <-> KEY POSITION PARAM 'SPACE' * SUBPAR <-> KEY PAR ACCOUNT PRIM+SEC 'X' , 'Y' * SUBSUBPAR <-> KEY SUBPAR '1' . '2' SPACE CITLKEY DS LOOP: ALL KEYS ØН END OF C/I TEXT ? CLI Ø(R9).ENDK ΒF RETURN YES ΝI WK16IND,255-WK16IND1 KEY NOT FOUND XR RØ.RØ XR R1.R1 Ø(R9).JDTKWDK CLI **KEY FOR OUTPUT ?** BNE CITNKEYO NO BCTR RØ.Ø KEY FOR OUTPUT WITHOUT KEY PARAMETER LA R1,3 SKIP KEY FOR OUTPUT CITNKEYO DS ØН SPACE L R3,WK16R3 AGAIN ADDR OF BEGIN OF TABLE OF KEYS LA R14,KEY_L LENGTH OF A TABLE ENTRY SLR R3.R14 CITSKEY LOOP: TABLE OF KEYS DS ØН ALR R3.R14 TO NEXT TABLE ENTRY END OF TABLE ? CLI KEY_KEY,ETEND ΒE CITNKEY YES, NOT ONE OF THE KEYS SEARCHED CLC KEY_KEY,Ø(R9) THE KEY SEARCHED ? BNE CITSKEY NO SPACE CLI Ø(R9),JDTKWDK KEY FOR OUTPUT TO SEARCH ? BNE CITNOUT NO CLC KEY_OUTP,3(R9) IS IT THE KEY FOR OUTPUT SEARCHED ? BNE CITSKEY NO CITNOUT DS ØН

SPACE

	01		KEY FOUND
CITNKEY	DS IC AR XR LA LTR BZ	ØH R8,1(,R9) R8,RØ R7,R7 R9,2(R1,R9) R8,R8 CITLKEY	KEY PARAMETER COUNT POSSIBLY ONE LESS IF KEY FOR OUTPUT # OF KEY PARAMETER ADDRESS OF LENGTH OF KEY PARAMETER NO KEY PARAMETERS ? YES, ALREADY AT NEXT KEY
CITLPAR	DS LA TM BZ IC LA NR XR LA	ØH R7,1(,R7) Ø(R9),X'8Ø' CITXSUB R6,Ø(,R9) R15,X'FF'-X'8Ø' R6,R15 R5,R5 R9,1(,R9)	SPACE LOOP: ALL KEY PARAMETERS OF A KEY # OF KEY PARAMETER KEY SUBPAR SEQUENCE, NOT KEY PAR ? NO KEY SUBPARAMETER COUNT KEY SUBPARAMETER COUNT WITHOUT SUBPAR BIT # OF KEY SUBPARAMETER ADDR OF LENGTH OF KEY SUBPARAMETER SPACE
CITLSUB	DS LA ICM BZ TM BZ LR	CITISUB WK16IND,WK16IND1 CITISUB	LOOP: ALL KEY SUBPAR OF A KEY PAR # OF KEY SUBPARAMETER LENGTH OF KEY SUBPAR; LENGTH ZERO ? YES, KEY SUBPAR NOT EXISTING THE KEY SEARCHED ? NO SAVE ADDR OF 1ST TABLE ENTRY FOR KEY
CIT∦SUB	DS CLM BNE CLM BE	R2,R3 ØH R7,B'ØØØ1',KEY_#PAR CITCSUB R5,B'ØØØ1',KEY_#SUB CITFSUB	THE KEY PARAMETER SEARCHED ? NO
CITCSUB	DS TM BZ LA B	ØH KEY_IND,KEY_CONT CITNSUB R3,KEY_L(,R3) CIT#SUB	ANOTHER KEY PARAMETER FOR SAME KEY ? NO ADDR OF NEXT TAB ENTRY FOR SAME KEY SPACE
CITFSUB	DS BAS B B B B B	ØH R14,RACF *+4(R15) CITNSUB RETURN CANCEL	CHECK KEY SUBPARAMETER VALUE BY RACF VALUE IS VALID NO DECISION, NO FURTHER CHECKING VALUE IS INVALID
CITNSUB	DS LR	ØH R3,R2	AGAIN ADDR OF 1ST TAB ENTRY FOR KEY SPACE
CITISUB	DS LA	ØH R9,1(R4,R9)	ADDRESS BEHIND KEY SUBPARAMETER

BCT R6,CITLSUB ANOTHER KEY SUBPARAMETER ? R8,CITLPAR вст NO, ANOTHER KEY PARAMETER ? В CITLKEY NO. NEXT KEY CITXSUB DS ØН SPACE R4.B'ØØØ1'.Ø(R9) LENGTH OF KEY PAR; LENGTH ZERO ? ICM YES, KEY PARAMETER NOT EXISTING ΒZ CITIPAR ТΜ WK16IND,WK16IND1 THE KEY SEARCHED ? ΒZ CITIPAR NO LR R2,R3 SAVE ADDR OF 1ST TAB ENTRY FOR KEY CIT#PAR DS ØН R7,B'ØØØ1',KEY_#PAR THE KEY-PARAMETER SEARCHED ? CLM BNE CITCPAR NO CLI KEY **∦**SUB.1 NO KEY SUBPAR OR THE FIRST ONE ? BNH CITFPAR YES * NO KEY SUBPAR AND THE 1ST KEY SUBPAR ARE SYNONYMOUS, EG: * SPACE=(TRK.1) : PRIMARY SPACE IS KEY PARAMETER. NO KEY SUBPAR * SPACE=(TRK,(1,0)) : PRIMARY SPACE IS 1ST KEY SUBPARAMETER CITCPAR DS ØН KEY_IND,KEY_CONT ANOTHER KEY PAR FOR THE SAME KEY ? ТΜ ΒZ CITNPAR NO ADDR OF NEXT TAB ENTRY FOR SAME KEY LA R3,KEY_L(,R3) В CIT#PAR SPACE CITFPAR DS ØН CHECK KEY PARAMETER VALUE BY RACF BAS R14,RACF В *+4(R15) В CITNPAR VALUE IS VALID В RETURN NO DECISION. NO FURTHER CHECKING VALUE IS INVALID В CANCEL CITNPAR DS ØН AGAIN ADDR OF 1ST TAB ENTRY FOR KEY LR R3.R2 SPACE CITIPAR DS ØН R9,1(R4,R9) ADDRESS BEHIND KEY PARAMETER LA R8,CITLPAR BCT ANOTHER KEY PARAMETER ? R CITLKEY NO, NEXT KEY FJFCT * EPILOGUE CANCEL DS ØН R2.8 CANCEL JOB LA В RETURNX RETURN DS ØН XR R2,R2 0K RETURNX DS ØН R1.WK16@DYN ADDRESS OF WORKING STORAGE L ХC WK1616,WK1616 RESET 16 BYTES WORK AREA

44

LTR R1.R1 WORKING STORAGE EXISTING ? ΒZ RETURNY NO USING WORK.R1 R13.WORKR13 RESTORE R13 OF CALLER 1 * \$RETURN NEEDS R13 OF CALLER IN SPITE OF REGISTERS BEING IN STACK! * (OTHERWISE SØF7 REASON X'58') DROP R1 LA RØ.WORKL LENGTH OF WORKING STORAGE STORAGE RELEASE, LENGTH=(Ø), ADDR=(1), SP=Ø FREE STORAGE RETURNY DS ØН \$RETURN RC=(R2) EJECT * SUBROUTINE * CHECK BY RACF IF JCL PARAMETER IS ALLOWED FOR USER * OUT: $R15 = \emptyset$: JCL PARAMETER ALLOWED FOR USER * = 4: RACF CLASS NOT ACTIVE OR NO PROFILE = 8: JCL PARAMETER NOT ALLOWED FOR USER RACF DS ØН ST R14.WK16R14 SAVE R14 ICM R1,B'1111',WK16@DYN WORKING STORAGE ALREADY OBTAINED ? BNZ RACFDYN YES RØ,WORKL LENGTH OF DYNAMIC WORKING STORAGE LA STORAGE OBTAIN,LENGTH=(Ø),LOC=BELOW,SP=Ø KEEP ADDRESS IN MIND ST R1.WK16@DYN LR RØ.R1 R1.WORKL ΙA XR R15.R15 MVCL RØ.R14 CLEAR DYNAMIC WORKING STORAGE L R1,WK16@DYN USING WORK,R1 R13.WORKR13 ST SAVE ADDRESS OF CALLER'S SAVE AREA DROP R1 LR R13.R1 ADDR OF OWN SAVE AREA = ADDR DYN STG USING WORK.R13 WORK@SAH,=C'F1SA' REGS IN STACK INSTEAD OF SAVE AREA MVC LA RØ.L'WORKRNM TOTAL LENGTH OF RESOURCE NAME STH RØ.WORKRNL MVC WORKRNM(L'RHIQ), RHIQ 1ST QUALIFIER OF RESOURCE NAME RACFDYN DS ØН SPACE R1,WORKRNM+L'RHIQ ADDR BEHIND 1ST QUAL OF RSRC NAME IA MVI Ø(R1).C'' PAD RESOURCE NAME WITH BLANKS 1(L'WORKRNM-L'RHIQ-1,R1),Ø(R1) MVC ICM R14,B'1111',KEY_@PRO ADDRESS OF RACF PROFILE FOR KEY XR R15.R15 R15,Ø(,R14) LENGTH OF PROFILE IC

BCTR R15,Ø MINUS 1 BECAUSE OF EX ЕΧ R15,EXMVC1 RACF PROF FOR KEY TO RESOURCE NAME LA R1.1(R15.R1) ADDRESS BEHIND RESOURCE NAME MVI Ø(R1).C'.' LENGTH OF JCL PARAMETER (VALUE) LR R15.R4 MINUS 1 BECAUSE OF EX BCTR R15.0 JCL PARAM (VALUE) TO RESOURCE NAME ЕΧ R15,EXMVC2 ЕX R15.EXTR2 '*' & '&' IN RSRC NAME NOT ALLOWED SPACE MVC WORKRAU,RAUP RACROUTE REQUEST=AUTH, RACROUTE PROTOTYPE TO DYNAMIC AREA CHECK AUTHORIZATION BY RACF + WORKA=WORKSAFW. + (LENGTH OF CLASS + CLASS) + CLASS=RCLS. ENTITYX=WORKRN. + RELEASE=1.9. + MF=(E,WORKRAU) LA RØ.8 JCL PARAMETER NOT ALLOWED FOR USER ? CLR R15.RØ YES ΒF RACFCNMB SAVED R14 L R14.WK16R14 LA RØ.4 CLR R15,RØ CLASS NOT ACTIVE OR NO PROFILE ? BER YES R14 XR R15.R15 ALLOWED, OR ANY ERROR BR R14 SPACE RACFCNMB DS ØН ΙA RØ.CNMBSIZE LENGTH OF CNMB STORAGE OBTAIN,LENGTH=(Ø),LOC=BELOW,SP=CNMBSP, BECAUSE KEY 1 REQUIRED FOR STORAGE! CALLRKY=YES * RELEASE OF STORAGE OF CNMB DONE BY CONVERTER! LR R15.R1 USING CNMB.R15 R1.3 MODIFIABLE AREA OF STACK REQUESTED LA ESTA RØ,R1 GET RØ AND R1 FROM STACK USING XPL.R1 R15,XØØ6CNMB RETURN ADDR VIA PARAMETER ADDR LIST ST DROP R1 CNMB(CNMBSIZE), CNMB CLEAR ALL FIELDS ХC MVC CNMBID,=AL4(CNMBCID) ID OF CONTROL BLOCK MVI CNMBVER, CNMBCVER VERSION OF CONTROL BLOCK CNMBSUBP,CNMBSP MVI SUBPOOL OF CONTROL BLOCK LA RØ,CNMBSIZE STH RØ.CNMBLEN LENGTH OF CONTROL BLOCK CNMBOPTS, CNMBFJOB INDICATE JCL ERROR 0 I * PUTS MESSAGE "IEFC452I - JOB NOT RUN - JCL ERROR" TO JOBLOG; * IMPORTANT FOR BETA92: OTHERWISE JCL ERROR OF JOB NOT RECOGNIZED DROP R15

	LA L BR	R15,8 R14,WK16R14 R14	JCL PARAMETER NOT ALLOWED FO SAVED R14	OR USER	
				EJECT	
		*******	******************************	*******	
* CONSTA ******		*****	*****	********	
CNMBSP	EQU	230	SUBPOOL OF CNMB		
EXMVC1	MVC	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	RACF PROFILE FOR KEY TO RSR	C NAME	
EXMVC2	MVC	1(1,R1),1(R9)	JCL PARAM (VALUE) TO RESOUR		
EXTR2	TR	1(1,R1),TTAB	REPLACE '*' & '&' IN VALUE I		
RHIQ	DC	C'@JCL.'	1ST QUALIFIER OF RACF PROFI		
	DC		IDENT IN C/I TEXT FOR OUTPU	SPACE	
COUTPUT	EQU	AL1(6),C'OUTPUT' *-6-1,1+6,C'C'	IDENT IN C/I TEXT FOR OUTPU	I CARD	
0001101	LQU	0 1,1,0,0 0		SPACE	
ТТАВ	DC	256AL1(*-TTAB)	TRANSLATION TABLE '*' & '&'		
	ORG	TTAB+C'*'	'*' & '&' ARE NOT ALLOWED I	N	
	DC	C'?'	RESOURCE NAME, REPLACE BY	'?'	
	ORG	TTAB+C'&&'			
	DC	C'?'			
	ORG	9		SPACE	
	DC	AL1(8)	LENGTH OF RACF CLASS NAME	JFAUL	
RCLSN	DC	CL8'FACILITY'	RACF CLASS		
RCLS	EQU	RCLSN-1,1+L'RCLSN,C	'C'		
				SPACE	
RAUP	RACRO	UTE REQUEST=AUTH,	RACROUTE PROTOTYPE FOR AUTH		+
		ATTR = READ, RELEASE=1.9,	READ AUTHORITY SUFFICIENT		+ +
		MF=L			Т
RAUPL	EQU	*-RAUP	LENGTH OF RACROUTE PROTOTYPI	E	
				EJECT	
		ESS IN C/I TEXT (SEE			
			E TO BE DIRECTLY CONSECUTIVE	AND	
		NCATENATION INDICATO	R HAS IO BE SEI,		
^ KEYSJOB	DS	IN THE LAST LINE! ØX	FOR JOB CARD		
KL1300D	DC		(Ø),AL1(1,Ø,Ø),AL4(PRØØ1-1)		
	DC		(Ø),AL1(1,Ø,Ø),AL4(PRØØ4-1)		
	DC	AL1(ETEND)	INDICATE END OF TABLE		
KEYSEXEC		ØX	FOR EXEC CARD		
	DC	AL1(ETEND)	INDICATE END OF TABLE		
KEYSDD	DS		FOR DD CARD		
	DC DC	ALI(SYSUUIK+00),AL2 AL1(ETEND)	(Ø),AL1(1,Ø,Ø),AL4(PRØØ2-1) INDICATE END OF TABLE		
KEYSOUTP		ØX	FOR OUTPUT CARD		
	DC		CLASS+ØØ),AL1(1,Ø,Ø),AL4(PRØ	03-1)	
	DC	AL1(ETEND)	INDICATE END OF TABLE		
				SPACE	

```
* RACF PROFILES BELONGING TO THE KEYS
* (WITHOUT FIXED 1ST QUALIFIER AND LAST QUALIFIER = VALUE)
      DC
          AL1(L'PRØØ1)
PRØØ1
      DC
          C'JOB.MSGCLASS'
      DC
          AL1(L'PRØØ2)
PRØØ2
      DC
          C'DD.SYSOUT.CLASS'
      DC
          AL1(L'PRØØ3)
PRØØ3
      DC
          C'OUTPUT.CLASS'
          AL1(L'PRØØ4)
      DC
PRØØ4
      DC
          C'JOB.CLASS'
                                            EJECT
* END JES2 ENVIRONMENT
DROP R13.R1Ø.R3
      $MODEND ,
      END
          .
```

Walter Wiedemann Consultant (Germany)

© Reserved 2000

Call for papers

Why not share your expertise, and earn money at the same time?

RACF Update is looking for REXX EXECs, macros, program code, etc, that experienced RACF users have written to make their lives, or the lives of their users, easier. We also publish longer, analytical pieces, and 'hints and tips' type articles.

Your article will be vetted by our expert panel, and we'll send you a cheque when it's published. Articles can be short or long, and can be sent or e-mailed to Fiona Hewitt at any of the addresses shown on page 2.

Why not call now for a free copy of our *Notes for Contributors*, or look on our Web site, at

www.xephon.com/contnote.html

Cursor-sensitive LISTDSD EDITOR command

When you're creating a new JCL member, or changing an existing one, you may need to know how a dataset is protected. Although you can often find this information by using the RACF ISPF dialog or by issuing a TSO LISTDSD command, both methods can give the wrong answer if a dataset name is misspelled. In addition, the RACF ISPF dialog requires an extra logical screen – the LISTDSD TSO command presents the most important information, UACC and access list, on different screens.

You can avoid these problems by using the simple ELDB EDIT macro presented here. This enables you to find out how a dataset is protected simply by entering ELDB on the EDIT (or VIEW) command line, positioning the cursor on the first character of the dataset name, and pressing ENTER. Note that you will need ISPF (any supported release) and TSO (any supported release) in order to use this macro.

HOW ELDB WORKS

After the dataset name has been extracted, an "LD DATASET(dsn) GENERIC ALL" command is issued. The resulting output is OUTTRAPped in the stem variable SOL. A VIO dataset is allocated to a logical screen dependent DD statement.

The really interesting parts of the LISTDSD command output are:

- The profile name, owner, and UACC, which are contained in lines 1 to 6.
- The access list, starting around line 45 (depending on other segments).

These are copied to the VIO dataset and displayed using the ISPF BROWSE service (see sample output below).

Using a VIO dataset instead of a disk dataset removes the need to code

^{© 2000.} Reproduction prohibited. Please inform Xephon of any infringement.

complex recovery, since it will be automatically cleaned up at TSO LOGOFF or TIMEOUT.

SAMPLE OUTPUT

LEVEL	OWNER	UNIVERSAL ACCESS	WARNING	ERASE
ØØ	USERØ1	NONE	NO	NO
ΙD	ACCES	S		
GROUPØ	5 READ			
USER52	ALTE	R		
USERØ1	ALTE			
GROUP22	2 READ			
ΙD	ACCESS	CLASS	ENTIT	Y NAME
		DNDITIONAL ACCESS		*****

ELDB SOURCE CODE

/* REXX LISTDSD EDITOR COMMAND POINT	AND SHOOT	*/
ADDRESS ISREDIT "MACRO "	/* MUST BE 1ST STATEMENT	*/
"(ELDBLIN,ELDBCOL) = CURSOR"	/* RETRIEVE CURSOR POSITION	*/
"(ELDBDSN) = LINE "ELDBLIN	/* COPY EDITOR LINE	*/
ELDBLEN = LENGTH(ELDBDSN) ELDBDSN = SUBSTR(ELDBDSN,ELDBCOL,(EL	/* LENGTH OF LINE /* REST OF LINE STARTING AT /* CURSOR POSITION .DBLEN-ELDBCOL+1))	*/ */ */
I1= INDEX(ELDBDSN,' ') IF I1 = Ø THEN I1 = 999 I2= INDEX(ELDBDSN,',') IF I2 = Ø THEN I2 = 999	/* SEARCH FOR FIRST BLANK /* OR FIRST COMMA. OTHER /* DELIMITERS MAY BE ADDED. /* WHATEVER COMES FIRST, DE-	*/ */ */

/* LIMITS THE DATASET NAME LPOS = MIN(I1,I2) - 1*/ /* */ ELDBDSN = SUBSTR(ELDBDSN.1.LPOS) /* EXTRACT DATASET NAME */ ADDRESS TSO /* */ A = OUTTRAP(SOL..500) /* MAXIMAL 500 SYSOUT LINES IN STEM SOL. */ "LD DATASET('"ELDBDSN"') GENERIC ALL" /* IMPORTANT : SINGLE QUOTE*/ IM = SOL.Ø/* RETRIEVE SCREEN-ID ADDRESS ISPEXEC 'VGET ZSCREEN' */ /* ALLOCATE A VIO DATASET */ ADDRESS TSO 'ALLOCATE DD(LDB'ZSCREEN') NEW UNIT(VIO)' ||, ' RECFM(V B) LRECL(133) BLKSIZE(4127) REUSE' /* COPY THE FIRST 6 LINES TO THE VIO DATASET */ 'EXECIO 6 DISKW LDB'ZSCREEN' (STEM SOL.)' A = OUTTRAP(OFF)/* SWITCH OFF SYSOUTTRAPPING */ /* COPY ALL LINES STARTING AT */ $J = \emptyset$ DO I = 45 TO IM/* LINE 45 TO STEM LINE. */ J = J + 1LINE.J = SOL.IFND /* WRITE COPIED LINES TO THE VIO DATASET */ 'EXECIO ' J ' DISKW LDB'ZSCREEN' (STEM LINE. FINIS)' ADDRESS ISPEXEC /* DEFAULT IS ISPEXEC */ 'LMINIT DATAID(COM'ZSCREEN'DID)', /* CALL LMINIT SERVICE */ ' DDNAME(LDB'ZSCREEN') ENQ(SHR) ORG(PS) ' A = 'COM' || ZSCREEN || 'DID' /* RETRIEVE DATAID */ DXD = VALUE(A)'BROWSE DATAID('DXD')' /* CALL BROWSE SERVICE */ ADDRESS TSO 'FREE DD(LDB'ZSCREEN')' /* FREE VIO DATASET */ EXIT

Karl Reinhard Blatt (Germany)

© Xephon 2000

 $[\]ensuremath{\mathbb{O}}$ 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Information point – reviews

MANUALS

IBM offers RACF manuals on-line in the System/390 Library. The entry point is

http://www.s390.ibm.com/library

and there will be detailed discussion of exactly what's there in future issues of *RACF Update*. In the meantime, don't forget that the OS/390 implementation of RACF is now part of the SecureWay Security Server for OS/390, and the RACF name is slowly disappearing.

RACF users often need to look at ACF2 and Top Secret manuals. Surprisingly enough, Top Secret manuals are included in the IBM VSE Collection, and can be found by using the *Search Titles* feature.

Computer Associates offers manuals on-line in Adobe Acrobat format for both products from its Support site, at

http://support.cai.com

Note that manuals aren't currently provided for certain implementations, most notably VM.

In the *Support by Product* section of the page, select CA-ACF2 or CA-Top Secret from the selection list. In the *Technical Information by Product* section, click on the implementation (operating system or database) of the product you're interested in. In the *General Technical Information* section, click on *Manuals*.

You'll now see a complete list of manuals. In some cases, multiple lists will appear, one for each of the currently supported versions of the product. Clicking on a manual title will download the complete manual before displaying it with the Adobe Acrobat. A free reader can be installed from

http://www.adobe.com/products/acrobat/readstep.html

These manuals aren't small (for example, the *ACF2 Administrator Guide* is 4MB), so how long you wait will depend on your Internet access. If you plan to use the same manual even occasionally, a download may be a better idea. For Microsoft Internet Explorer, right mouse click the manual and select *Save Target As* from the menu that appears.

TECHCRAWLER

New (to me) at

http://www.techcrawler.com

TechCrawler is a computing portal that knows how to spell Mainframe. It divides the world into:

- Hardware and systems
- IT management
- Networking and telecommunications
- Software development.

One section of *IT Management* is *Security*, and *Security* is further subdivided into:

- Vendors 22
- Associations 5
- Research 4
- News 10
- Resources 4.

The number following each category is the current number of links listed. If the site is as new as I think it is, the number of categories and links is likely to grow in the months ahead.

In *Resources*, you'll find *AspEncrypt Crypto 101*, which leads to a Web page on the AspEncrypt product. At the bottom of this page,

^{© 2000.} Reproduction prohibited. Please inform Xephon of any infringement.

you'll find a link to Crypto 101. Follow that link to find an easy-toread on-line book with six short chapters covering the basics of cryptography. If you can't be bothered navigating, the direct URL is:

http://www.aspencrypt.com/crypto101.html

Search

In the middle of any TechCrawler page, you'll find a Search box that allows you to search just the section you're in, or the entire site. There are also options to search all of parent company EarthWeb's sites, as well as the entire Internet.

A search for RACF across all of TechCrawler returned 547 matching pages from 80 different sources. Listed first, with 99% confidence level, was the IBM search page for *RACF for VM* on-line manuals. The second, at 98% confidence, was Computer Associates' product information page for the RACF option of Unicenter TNG. Next up came:

- 3 Eric Loriaux's System/390 home page
- 4 An Amdahl security management page
- 5 A Counterpane list of sensors they support
- 6 IBM security overview page
- 7 StorageTek's Library Station software.

Each entry has two additional options. You can list all the other search results from the same source. Or you can *monitor* the page. You can even monitor the top ten search results in a single mouse click.

Monitoring notifies you when a given Web page changes, but it does require that you create a (free) log-in ID and password with TechCrawler. Optionally, a cookie can be used to save you repeatedly typing in your ID and password. CISSP

If you've heard about the CISSP, but aren't quite sure what it is, why not go to the source – the organization that controls it? The Certified Information Systems Security Practitioner (CISSP) designation can be used legally only by people who have been certified by the International Information Systems Security Certification Consortium. This is quite a mouthful for an organization name, but they've somehow managed to figure out a clever acronym: (ISC)². The somewhat mathematically flawed concept is that if you take the square of ISC, you get IISSCC.

With that in mind, it makes sense that the home page is at

http://isc2.org

And the site is kept current. When I last checked, it had been updated less than two hours before I looked at it.

This site has lots of great information resources, but if you're just looking for the CISSP Examination Study Guide, you'll find a link to it on the home page near the top on the left side. Unfortunately, however, it's not quite that easy. Although the guide is free, you must fill out an electronic form to get the URL where the guide can be downloaded. And because it's a security organization, the electronic form is SSL-secured with 128-bit encryption.

Further down the page, below the electronic form, there's a list of some of the major references used to create the questions on the exam, including a two-volume set published this year specifically for the CISSP, though not published or endorsed by ISC².

Finally, there's an additional list of books at the bottom of the page that are described as being part of the ISC² Reference Library. Unlike the previous set of references, no links are provided to on-line sources where you can purchase the books.

From the ISC² home page, the *CISSP Examination* link gets you to a page with links to detailed information on exams:

• Locations and dates

- Fees (about US\$450)
- Exam overview
- Applicant requirements
- Registration forms.

But note that passing the exam isn't the end of it. Every three years, 120 Continuing Professional Education (CPE) credits are required to maintain CISSP certification.

CBK

If you spend any time at all on this site, you're likely to run into the CBK acronym. It stands for Common Body of Knowledge, which refers to the scope of subject areas that the CISSP exam is intended to test.

The *CBK Review Seminar* link on the ISC² home page provides details on:

- Locations and dates
- Fees
- Registration forms.

Note that the seminar fees include the examination fee, presumably meaning that you would do the exam at the end of the review seminar, although that's not clear from the information on the site.

Finally, note that the registration forms for both the exam and seminars are currently available only in hard copy. There are plans to automate the registration process.

IS LIBRARY

If you haven't looked at Xephon's own Web site recently, you may not be aware of the new IS Library. To get there directly, go to

http://www.xephon.com/is_library.html

You'll find more than 300 articles listed, almost half of which are available free. All are extracted from published Xephon consulting reports. The free ones can be read on-line or downloaded without so much as a prompt for your subscriber ID and password. All are in Adobe Acrobat format. Details on obtaining the free Adobe reader are included near the end of *Manuals* section above.

You'll find 'Integrating RACF and Distributed Security Systems' and 'Managing the OS/390 Security Server (RACF) with Tivoli' in the *New Technologies and Applications* section, 'An Introduction to CA-ACF2' under *System/390*, and 'Authorization Checking for RACF and AIX' as *Other Systems*. Of these, only the ACF2 article is not available for on-line viewing.

There are also a significant number of articles on security, scattered amongst the sections. To find them quickly, use your Web browser's search function, specifying 'secur' as the search string. For example, in Microsoft Internet Explorer, hit Ctrl-F or select Edit from the Menu bar, then Find from the drop-down menu, type the string, and hit the Find Next button.

Because this Web site is frames-based, you must move to the frame before doing the Find. An easy way to do this is to select some text with the mouse near the top of the right side of the page: position the mouse, hold down the left mouse button and move the mouse a few characters horizontally. Then do the Find.

Search

Another new feature of the Xephon site at

http://www.xephon.com

is the Search function, located in the red sidebar on the left of the screen. Because this is a frames site, the red sidebar, and therefore the Search function, follow you wherever you go on the site.

The search looks through the 10,000 pages of free material on the site, plus the titles and summaries of subscriber-only pages. You have a

^{© 2000.} Reproduction prohibited. Please inform Xephon of any infringement.

choice of an All Words or Any Words keyword search. Note that if an All Words search fails, you should look carefully for a very small print 'No pages found that include all search words' message, after which you'll see the results of an Any Words search.

Jon E Pearkins (Canada)

© Xephon 2000

Free weekly news by e-mail

Xephon has four weekly news services covering the following subject areas:

- Data centre
- Distributed systems
- Networks
- Software.

Each week, subscribers receive, by e-mail, a short news bulletin consisting of a list of items; each item has a link to the page on our Web site that contains the corresponding article. Each news bulletin also carries links to the main industry news stories of the week.

To subscribe to one or more of these news services, or review recent articles, point your browser at

http://www.xephon.com/news.htm

Contributing to RACF Update

In addition to *RACF Update*, the Xephon family of *Update* publications now includes *CICS Update*, *MVS Update*, *TCP/SNA Update*, *VSAM Update*, *DB2 Update*, *AIX Update*, *Domino Update*, *MQ Update*, *NT Update*, *Oracle Update*, *SQL Server Update*, and *TSO/ISPF Update*. Although the articles published are of a very high standard, the vast majority are not written by professional writers, and we rely heavily on our readers themselves taking the time and trouble to share their experiences with others. Many have discovered that writing an article is not the daunting task that it might appear to be at first glance.

They have found that the effort needed to pass on valuable information to others is more than offset by our generous terms and conditions and the recognition they gain from their fellow professionals. Often, just a few hundred words are sufficient to describe a problem and the steps taken to solve it.

If you have ever experienced any difficulties with RACF, or made an interesting discovery, you could receive a cash payment, a free subscription to any of our *Updates*, or a credit against any of Xephon's wide range of products and services, simply by telling us all about it. For a copy of our *Notes for Contributors*, which explains the terms and conditions under which we publish articles, please write to the editor, Fiona Hewitt, at any of the addresses shown on page 2, or e-mail her at fionah@xephon.com

William Data Systems has now announced FTPalert Version 1.1, an OS/390 application that interfaces to FTP and enables reporting of all FTP activity, showing both successful and failed file transfers, the users' ID and IP addresses, and the transfer rates achieved.

With FTPalert, all FTP activities can be defined to RACF and other security systems as secure resources, making FTP as secure as all other mainframe services.

For further information, contact: William Data Systems, 5 High Street, Old Oxted, Surrey, RH8 9LN, UK. Tel (01883) 723 999 URL: http://www.willdata.com

* * *

Blockade Systems has announced a partnership with enCommerce, a provider of software and services for managing secure access to e-business portals. The partnership means Blockade's OS/390 security products for authentication, authorization, and auditing will be integrated with the enCommerce getAccess portal management software through a specialized getAccess pluggable authentication and authorization module (PAAM). For further information, contact: Blockade Systems, 2200 Younge Street, Number 1400, Toronto, ON, M4S 2C6, Canada. Tel: (416) 482 8400. URL: http://www.blockade.com

* * *

InfoExpress has announced CyberArmor Suite 1.1, a software suite to help establish enterprise personal firewalls, enabling corporations to extend policy-based security to remote users connecting from home computers.

In a separate announcement, InfoExpress has appointed Network Utilities as the sole provider of its marketing and technical support in the UK market.

For further information, contact: InfoExpress, 425 First Street, Suite E, Los Altos, CA 94022, USA. Tel: (650) 947 7880 URL: http://www.infoexpress.com Network Utilities, Liberty House, 158a Ewell Road, Surbiton, Surrey, KT6 6HE, UK. Tel: (020) 8390 9911 URL: http://www.netutils.com

xephon

