
© Xephon Inc 2004

May 2004

36

In this issue

3 Extending RACF security
through a simple LDAP server

10 Drop-in RACF security, for your
in-house utilities

20 Obtaining RACF information the
easy way

32 RACF 101 – RACF commands
36 Coding RACF exits using IBM

C/C++
55 RACF in focus – implementing

audit features
63 RACF news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

RACF Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

RACF Update on-line
Code from RACF Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
racf; you will need to supply a word from the
printed issue.

Subscriptions and back-issues
A year’s subscription to RACF Update (four
quarterly issues) costs $290.00 in the USA
and Canada; £190.00 in the UK; £196.00 in
Europe; £202.00 in Australasia and Japan;
and £200.50 elsewhere. The price includes
postage. Individual issues, starting with the
August 2000 issue, are available separately
to subscribers for $72.75 (£48.50) each
including postage.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any
warranty or make any representations as to
the accuracy of the material it contains.
Neither Xephon nor the contributing
organizations or individuals accept any
liability of any kind howsoever arising
out of the use of such material. Readers
should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in RACF Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original
material. The remaining code is paid for at the
rate of $32 (£20) per 100 lines. To find out
more about contributing an article, without
any obligation, please download a copy of
our Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Extending RACF security through a simple LDAP
server

INTRODUCTION

In issue 35 (February 2004) of RACF Update (Easy LDAP
program to authenticate RACF userids), authentication through
an IBM LDAP server was discussed. This kind of implementation
requires a configuration based on only a RACF database and
lets users and groups reference all the information relating to
users, groups, and connections.

The next step in our exploration of the features of an LDAP
server is the configuration based on both the RACF database
and DB2.

This implementation lets you project a typical LDAP tree where
the access list of each node may include RACF-defined users
and group.

The reason why this implementation is interesting is that it lets
you extend and enhance RACF’s capabilities to build user
profiles made up of attributes and assign them directly to
groups.

What follows is the method we used to project the LDAP tree.
It’s a working example, it may easily be extended, and it
requires little intervention by the security administrator when
new users need to be enabled to Web applications.

OUR IMPLEMENTATION

The tree has two main sub-trees: the first one is the pure RACF
implementation, the second one is the company Web applications
structure and is implemented in DB2. Let’s describe the latter
sub-tree whose root we named o=COMPANY_NAME.

Access to the sub-tree is generically granted only to those
users who previously successfully authenticated through RACF.

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

This characteristic is inherited by every node of this sub-tree
if not explicitly overridden at the node level by access lists and
new propagation attributes.

Let’s see the sub-trees we generated: the first one differs from
all the others.

The first sub-tree

We decided to implement a sub-tree dedicated to information
common to all applications, and for this reason visible to all
users (previously authenticated). In our company, for example,
there is a strict correspondence between the first two characters
of a userid and a previously-decided numerical code. This is
typically information that is not suitable for implementation in
RACF, but is used in every application or database. In the sub-
tree appl=CODES,o=COMPANY_NAME, we made a leaf for
every numerical code used, and for each one we defined an
access list with only the RACF group of corresponding users.

All the other sub-trees

Every Web application has a dedicated sub-tree, whose root
name is something l ike
appl=WEBAPPLx,o=COMPANY_NAME.

Here is a schematic representation of our LDAP tree.

- root
- sysplex=SYSPLEX_NAME RACF subtree
+ profileType=USERS
+ profileType=GROUPS
+ profileType=CONNECTIONS
- o=COMPANY_NAME Webapplications sub-tree
 - appl=CODES numerical codes sub-tree
 + profv = 21 code = 21
 + profv = 23 code = 23
 ………..
 + appl=WEBAPP1 web application number 1
 + appl=WEBAPP2 web application number 2
 ………..

Normally Web applications need to know which profile a user

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

has after log-on so that only proper masks may be shown to him.
Profiles typically are coded in some kind of control files on the
server on which authentication is required.

We tried to think of profiles as being composed of attributes
whose values may vary in a range of possible predefined
choices. This way, in a Web application sub-tree, we coded as
many sub-trees as the number of attributes that make a profile.
Every attribute is a profile-name and every possible value it
may assume is a leaf of type profilevalue and whose name is
the real value.

This is a schematic representation of a Web application sub-
tree:

- appl=WEBAPPn
- profn=URLADDRESS
+ profv=www.blabla1…..
+ profv=www.blabla2…..
……..
- profn=TYPEOFUSER
+ profv=master
+ profv=normal
…….
- profn=TYPEOFMENU
+ profv=complete
+ profv=minimal
 + profv=administrator
 ……
- profn=MULTIPLE_NUMERICAL_CODES
+ profv=45
+ profv=54
+ profv=99
 -…..and so on as you like

Every node or leaf has two main LDAP attributes. We use:

• Access list – containing a list of RACF users or groups that
may search and read the node.

• aclPropagate – an LDAP attribute of the node (whose
possible values are True or False) saying whether from this
node downward the access list (explicitly defined or inherited
from upwards) is propagated.

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

And now, let’s have a look at LDAP code

First of all a little notation: the name of every node is built
appending the name of the nodes from the current up to the root.
So for example the name of the last leaf in the above LDAP tree
is:

profv=99,profn=MULTIPLE_NUMERICAL_CODES,appl=WEBAPPn,o=COMPANY_NAME.

For this reason, parsing a node name lets you rebuild the
information pertaining to the profile of an application.

Well, the trick is simple:

ldapbind –D "racfid=USERID,profileType=USER,sysplex=SYSPLEX_NAME" -w
racf_password

ldapsearch –D "racfid=USERID,profileType=USER,sysplex=SYSPLEX_NAME" –w
racf_password -b "o=COMPANY_NAME" (objectclass=pval)

The result depends on the visibility the user has of the tree:
every node that has or inherits an access list in which the same
user, or a group to which he belongs, is present, is returned by
the ldapsearch call just with the entire node name.

Also when a user can search a node, he can read its attributes,
which may be, for example, a URL, a mail address, or so on.

Now a few lines of code in whatever language you like are
necessary for parsing and building the user profile. You may
decide to give some values special meaning, such as all_values,
and to use whatever method you like to decompose the user
profiles.

TECHNICAL NOTES AND SAMPLES

And now a few notes about the implementation of this solution.

First the configuration of this LDAP tree is typically located in
/etc/ldap/slapd.conf and looks like this:

include /etc/ldap/schema.system.at
include /etc/ldap/schema.IBM.at
include /etc/ldap/schema.user.at

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

include /etc/ldap/schema.system.oc
include /etc/ldap/schema.IBM.oc
include /etc/ldap/schema.user.oc
port 39Ø
maxconnections 5ØØ
timelimit 36ØØ
sizelimit 5ØØ
adminDN "racfid=USERADM,profileType=USER,sysplex=SYSPLEX_NAME"

database sdbm GLDBSDBM
suffix "sysplex=SYSPLEX_NAME"

database tdbm GLDBTDBM
dsnaoini /etc/ldap/dsnaoini.ini
servername YOURDB2LOCATION
databasename YOURDB2DB
dbuserid YOURDB2USERID
attroverflowsize 255
extendedgroupsearching on
suffix "o=YOUR_COMPANY"
and dsnaoini.ini is like

[COMMON]
MVSDEFAULTSSID=DBxx

[DBxx]
MVSATTACHTYPE=CAF
PLANNAME=DSNACLI

[YOURDB2LOCATION]
AUTOCOMMIT=Ø
CONNECTTYPE=1

Then, the necessary DB2 definitions to implement TDBM
configuration are included in GLD.SGLDSAMP(TDBMDB) and
TDBMINDX. They must be properly customized and then
executed. That’s all.

Then you need to update two files, schema.user.ldif and
schema.IBM.ldif, after copying them from /usr/lpp/ldap/etc to a
temporary directory. Change dn: cn=schema, <suffix> to dn:
cn=schema,o=COMPANY_NAME.

After starting the LDAP server, load your modified LDIF as
follows:

Ldapmodify –v –h ip_address_ldap_server –p port –D

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

"racfid=LDAP_ADM,profileType=USER,sysplex=SYSPLEX_NAME" –w
ldap_adm_password –f <schema.user.ldif>

Ldapmodify –v –h ip_address_ldap_server –p port –D
"racfid=LDAP_ADM,profileType=USER,sysplex=SYSPLEX_NAME" –w
ldap_adm_password –f <schema.IBM.ldif>

Then you need to build and load up your LDAP tree structure.

Below is an example of the LDIF statements we used:

dn: o=COMPANY_NAME
objectclass: top
objectclass: organization
o: COMPANY_NAME
aclentry: group:cn=Authenticated:normal:rs

dn: appl=CODES, o=COMPANY_NAME
appl: CODES
description: numerical codes
objectclass: top
objectclass: cedacriApplid
entryowner:racfid=LDAPADM,profileType=USER,sysplex=COPLEX
ownerPropagate:TRUE

dn: pval=Ø3,appl=CODES, o=COMPANY_NAME
pval: Ø3
description: users of society Ø3
objectclass: top
objectclass: profileValue
aclEntry:group:racfid=GROUPØ3,profileType=GROUP,sysplex=COPLEX:normal:rs
aclsource:pval=Ø3,appl=CODES,o=COMPANY_NAME
aclPropagate=FALSE

dn: appl=WEBAPPL1, o=COMPANY_NAME
appl: WEBAPPL1
description: web application 1
objectclass: top
objectclass: cedacriApplid

dn: pval=cgadm,appl=WEBAPPL1, o=COMPANY_NAME
url:www.xxx.yyy/zzz
pval: cgadm
description: access for the adm users
objectclass: top
objectclass: profileValue
aclEntry:group:racfid=WAP1ADM,profileType=GROUP,sysplex=COPLEX:normal:rs
aclsource:pval=cgadm,appl=WEBAPPL1,o=COMPANY_NAME
aclPropagate=FALSE

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

How to add a new permission

If you build your RACF groups accordingly, enabling a user to
use a Web application and giving him the right profile may be
managed by simply connecting him to a RACF group you
inserted in the access list of the leaf corresponding to the
desired profile. So the RACF administrator doesn’t even need
to know any details about the LDAP structure. Once the LDAP
administrator has built the tree using RACF groups in the
access lists, he needs to act only when a new RACF group has
to be explicitly inserted in an access list or when a Web
application has changed its user profile structure.

Below is an example of an LDIF command to add a new RACF
group to an access list (like a permit):

dn: pval=cgadm,appl= WEBAPPL1,o=COMPANY_NAME
changetype:modify
add:aclentry
aclEntry:group:racfid=RACFGRP1,profileType=GROUP,sysplex=SYSPLEX_NAME:normal:rs
aclEntry:group:racfid=RACFGRP2,profileType=GROUP,sysplex=SYSPLEX_NAME:normal:rs
aclEntry:group:racfid=RACFGRP3,profileType=GROUP,sysplex=SYSPLEX_NAME:normal:rs

and then the corresponding LDAPmodify to load the update:

ldapmodify -V 3 -h ip_address_ldap -p port ;
 -D "racfid=LDAP_ADM,profileType=USER,sysplex=SYSPLEX_NAME" -w
pass_ldap_adm ;
 -v -f /tmp/permit.ldif

How to write the Web application call to the LDAP server

Last but not least, there follows an example of an ldapsearch
that the Web application needs to make of the LDAP server to
obtain the leaves the user is enabled to read, so that it can build
the user profile.

ldapsearch -D "racfid=USER_RACF,profileType=USER,sysplex=SYSPLEX_NAME" ;
-w passw -b "pval=cgadm,appl=WEBAPPL1,o=COMPANY_NAME" ;
-h ip_address_ldap -p port "(objectclass=*)" ;
description

CONCLUSIONS

Our experience shows that, by just using the standard security

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

server components, it’s possible to enhance the management
of mainframe security – such as assigning to users extra
profiles or groups of information normally not coded in a RACF
database but necessary for Web applications, so that, after
authenticating users on the mainframe, we are now able, with
just a couple of calls to the LDAP server active on mainframe,
to build a profile (even a very specialized one) with which to
control user activity in the application. The impact of new
activities on the RACF administrator is really minimal and the
LDAP administrator too is less busy if he/she writes the LDAP
tree efficiently.

We can confirm that it works. Try it and see!

M Elena Campidoglio
System Programmer
Cedacri Ovest SpA (Italy) © Xephon 2004

Drop-in RACF security, for your in-house utilities

You know the problem – if you have code in your shop,
particularly sensitive code, you need to have some way to
protect it from unauthorized use. Some pieces of code are
simply too dangerous for anyone other than a select number of
users to have access to. Examples of these types of program
are modules that zap VTOCs directly, manipulate system control
blocks, or simply examine and modify storage. Then there are
other pieces of code that you support, where you may need to
provide access for some individuals or groups for legitimate
reasons, but which are potentially too destructive to allow open
and free access for everyone. Finally you probably have some
code that you just want to keep within your area because, well,
maybe you just don’t want to formally support it for everyone.
An example of this code would be internal programs that are
helpful, but if they break, or if someone finds a bug, or tries to
use it for something it wasn’t intended for, you will find yourself

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

being woken in the middle of the night to start working on a fix.
Another more common reason to protect these pieces of code
is a mandate from the auditors, if you let them find out that the
code exists in the first place.

Even a junior systems programmer knows how to solve this
basic requirement; you locate the ACEE, get the user’s userid,
and check it against a table that you maintain inside the code
itself. In a perfect world that would be the end of it – but we don’t
live in a perfect world. Userids and people come and go, you will
need to add userids to the table and remove old ones from it.
Even if you have the forethought to mask your ID checks, as
most people who get tired of maintaining these tables do, then
you find that users move around, and they refuse to give up their
old privileged IDs. Or worse yet, the userid standard changes
entirely! This happens, not only for your code, but the code you
have inherited, and the code from other potentially less
experienced systems programmers in your group. So you end
up doing table maintenance, and potentially a lot of it. It is simple
maintenance to be sure, but the bottom line is that you have
more important things to do than maintain a table of userids, a
job that a first-year applications programmer could handle
without any problems at all.

The formally endorsed way to handle access authorization is of
course RACF. RACF calls, unfortunately, have a reputation for
being difficult and cumbersome, something most systems
programmers avoid whenever they can. So to solve the problems
mentioned above I developed a single simple module. Just call
it, and it will use the program name you are calling it from and
concatenate that behind a literal, and use the resultant value to
make a unique RACF call for any piece of code it is called from.
You just have to check the return code, and you’re done. It really
becomes nothing more than three to four lines of code to
permanently protect each new program, or old program that we
pull an outdated userid table search out of.

Now we have no reason to keep maintaining userid lists, we let
the RACF administrators handle that instead of us. Furthermore,

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

any of your systems programmers can handle the simple call,
so no-one has an excuse for not using this security method. It’s
much easier to use this new module than the older way of
locating the ACEE and checking it against a table. I’m sure it will
become your standard for handling access to sensitive programs
in your shop if you try it on one or two projects. The security
module can be linked into your project, or dynamically loaded at
execution time. It works the same for batch jobs as for TSO or
ISPF modules.

The logic of the module is actually fairly simple. It finds the name
of the module it is being called on behalf of, and appends that
to a literal to develop a unique resource name. The developed
resource name is then used as the object of a call to RACF to
check each user’s authorization. If the authorization to the
generalized resource name is allowed, a return code of zero is
set; and if the authorization is not allowed, a return code of 4 is
set. If for some reason, eg if RACF is not active, or some other
environmental error, we are not able to determine the access,
a return code of 16 is set. In no case is the program cancelled,
or ended, the return code is just set and the final determination
for what is to be done is made by the calling program, which in
our shop is usually just to end with an error message. Your code
could just as easily run in a restricted mode, like viewing
storage only, but not performing any updates that would have
otherwise been allowed if the RACF access had been granted.

We use the literal of TECHPGM and append to it the name of
the module being checked, to form a resource name to pass to
RACF. As an example, if I were developing a new program
named PROG1, the generalized resource name that the called
security module would construct to be checked would be
TECHPGMPROG1. We check for READ authorization, but the
access type is really arbitrary and could have just as easily
been update or control; we are just looking for a simple yes or
no answer to the question, ‘Is this user authorized to use this
program?’. Since you know the name of the program you have,
all you need to do is tell the security administrator to provide
READ access to generalized resource name TECHPGMPROG1

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

or TECHPGMUTL1, or whatever name would be checked,
based on your new program name, or the name of the next
program you pull an old userid table out of. Now the responsibility
for changing the access for your program is shifted to the
security administrator, and the auditors will love you.

Below is the source for the called module, the one that actually
handles the RACF call for us. It simply checks the CDE for the
current module name. If the RACHEK module name is found,
indicating that it was loaded, it backs up on the PRB chain of
one program, and uses the program name it finds there to
format the RACF call.

 PUNCH ' ENTRY RACHEK '
 PUNCH ' SETOPT PARM(AMODE=31,RMODE=ANY) '
* *%PDSDOC ØØ DO RACROUTE TO CHECK ACCESS TO RESTRICED ACCESS PGMS
* *-*-*---*-*-*
* *- PROGRAM NAME - RACHEK -*
* *- FUNCTION - RACF CHECK FOR ACCESS TO RESTRICED PROGRAMS -*
* *- PASSED PARM = STD FORMAT PARMS - POINTER TO PGM NAME TO CHK -*
* *- RC = Ø = ACCESS PERMITTED -*
* *- RC = 4 = ENTITY UNKNOWN - CREATE FAC. CLASS STPGMMODNAME -*
* *- RC = 8 = ACCESS DENIED -*
* *- -*
* *- ** NOTE *** -*
* *- THIS MODULE DOES NOT ALLOW, OR DENY ACCESS TO ANYTHING, IT -*
* *- ONLY SETS A RETURN CODE AND POSSIBLY ISSUES A MESSAGE BASED -*
* *- ON THE USERS "READ" ACCESS TO A FACILITY CLASS OF: -*
* *- T E C H P G M + THE MODULE NAME -*
* *- IE IF THE MODULE NAME IS CONSOLE THEN THE FACILITY CLASS -*
* *- THAT IS CHECKED IS TECHPGMCONSOLE -*
* *- -*
* *-*-*---*-*-*
RACHEK CSECT
RACHEK AMODE ANY
RACHEK RMODE 31
RØ EQU Ø
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R1Ø EQU 1Ø

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 USING RACHEK,R15 TEMP ADDRESSABILITY
 B STARTIT AROUND EYECATCHER
 DC C'RACHEK - TECH SERVICES AUTH. CHECK &SYSDATE'
 DS ØH SET PROPER ALIGNMENT
STARTIT BAKR R14,RØ SAVE REGISTER/PSW STATUS
 LR R12,R15
 DROP 15
 USING RACHEK,R12 R12 IS NOW BASE
 L R2,DYNSIZE LENGTH TO GET
 STORAGE OBTAIN,ADDR=(1),LENGTH=(2),LOC=24
 LR R13,R1 GET ADDRESS OF AREA
 USING DYNAREA,13 USING FOR THE DYNAMIC AREA
 MVC 4(4,R13),=C'F1SA' FORMAT 1 SAVE AREA USED
* *-*-*---*-*-*
* *- PRE-FORMAT DYNAMIC AREA BASED ON STATIC MODELS -*
* *-*-*---*-*-*
 LA R2,DYNMODEL ADDRESS OF DYNAMIC AREA MODEL
 L R3,MDLSIZE LENGTH OF DYNAMIC AREA MODEL
 LA R4,DYNAREA1 ADDRESS OF DYNAMIC AREA
 LR R5,R3 LENGTH OF DYNAMIC MODEL AREA
 ICM R5,B'1ØØØ',X'4Ø' SET A PAD CHARACTER OF BLANK
 MVCL R4,R2 COPY MODEL TO DYNAMIC AREA
* *-
 BAL R11,GETPROG GO GET THE CALLING PGM NAME
 BAL R11,FORMENT GO FORM THE ENTITY NAMES
 LA R6,ENTITY SET UP PTR FOR ENTITY TO CHK
 LA R4,RACFWORK SET UP PTR TO RACF WORK AREA
** * ------ MAKE SURE THIS GUY IS "ONE OF THE GANG" (RACHECK) -- * **
 RACROUTE REQUEST=AUTH,WORKA=(R4), X
 RELEASE=2.4, X
 ENTITYX=((R6)), POINT TO OUR DEVELOPED NAME X
 MF=(E,MRFX), X
 ATTR=READ
 LR R9,R15 SAVE THE RETURN CODE A BIT
 LTR R9,R9 *IS IT OK TO ACCESS THE RESOURCE
 BZ ACCEPT *- YES, ACCEPT USAGE
 B END1 - AND EVENTUALLY END.
ACCEPT DS ØH
** * *** * **
** * ** ANY SPECIAL PROCESSING FOR ALLOWED ACCESSES HERE ** * **
** * ** - for example you may want to write an SMF record ** * **
** * *** * **
 B RETURN
END1 EQU *
** * *** * **

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

** * ** ANY SPECIAL PROCESSING FOR REJECTED ACCESSES HERE ** * **
** * *** * **
** * ** IF AUTH. IS NOT OBTAINED ISSUE MESSAGE - BUT THE - * **
** * ** CALLING PGM IS RESPONSIBLE FOR DENYING ACCESS - * **
** * *** **
 LA R8,ERRMSG2
 SR RØ,RØ ALWAYS CLEAR RØ BEFORE A WTO
 WTO TEXT=(R8),MF=(E,WTOLIST) ISSUE AN ERROR MESSAGE
RETURN L R2,DYNSIZE LENGTH TO RELEASE
 LR R8,R13 ADDR OF STORAGE TO RELEASE
 STORAGE RELEASE,ADDR=(8), X
 LENGTH=(2) RELEASE AQUIRED STORAGE
 LR R15,R9 RESET RETURN CODE IN R15
 PR RESTORE STATUS & RETURN
** * *** * **
** * ** GET THE CALLING PROGRAM NAME - ** * **
** * ** ** * **
** * ** FIRST GET THE CURRENT RB'S CDE ** * **
** * ** ** * **
** * ** - IF IT IS RACHEK (THEN WE WERE LOADED) ** * **
** * ** WALK BACK THE RB CHAIN LOOKING FOR A PRIOR ** * **
** * ** PRB AND THEN USE THE CDE FOUND THERE TO ** * **
** * ** RESOLVE THE PGM NAME. ** * **
** * ** ** * **
** * ** - IF NOT RACHEK THEN WE WERE STATICALLY LINKED ** * **
** * ** AND WE SHOULD JUST USE THAT NAME ** * **
** * ** ** * **
** * *** * **
GETPROG EQU * GET THE PROGRAM NAME TO CHECK
 USING PSA,RØ MAP THE PSA
 L R6,PSATOLD R6 HAS THE TCB ADDRESS
 USING TCB,R6 MAP IT
 L R8,TCBRBP R8 HAS THE RB POINTER
 USING RBSECT,R8 MAP IT
CHKMOD ICM R9,B'Ø111',RBCDE1 GET CDE ADDRESS FOR THIS RB
 USING CDENTRY,R9
* - FIRST IS THIS THE RACHEK MODULE (WE MAY HAVE BEEN LOADED)
 CLC CDNAME(7),=C'RACHEK ' GET A COPY OF THE MODNAME
 BE BACKUP1 IF IT IS US, THEN BACKUP SOME
 MVC MODNAME,CDNAME KEEP THE PGM NAME TO CHECK
 B Ø(R11) RETURN - WE ARE DONE HERE
BACKUP1 EQU * BACK UP TO PREVIOUS PRB
* FIRST CHECK TO SEE IF WE CAN BACK UP - OR - IF AT TOP ALREADY
 TM RBSTAB2,RBTCBNXT IS THIS THE TOP RB?
 BO MAJERR1 IF SO THEN ERROR HAS OCCURED
 ICM R8,B'Ø111',RBLINKB GET PREVIOUS RB IN CHAIN
 TM RBSTAB1,RBFTP IS THIS ONE A PRB?
 BE CHKMOD IF SO THEN CHECK CDE
 B BACKUP1 IF NOT LOOK BACK FURTHER
MAJERR1 EQU * - NO NON RACHEK PRB IS FOUND

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 LA R9,ERRMSG1
 SR RØ,RØ ALWAYS CLEAR RØ BEFORE A WTO
 WTO TEXT=(R9),MF=(E,WTOLIST)
 L R9,=F'16' SET RETURN CODE IN R9
 B RETURN RELEASE STORAGE AND GO HOME
** * *** * **
** * ** THIS ROUTINE WILL FORMAT ALL REQUIRED AREAS FOR THE ** * **
** * ** RACROUTE CALL WE ARE ABOUT TO MAKE ** * **
** * *** * **
FORMENT EQU *
 MVI ENTITY,X'4Ø' ENSURE WE START WITH ALL BLANKS
 MVC ENTITY+1(L'ENTITY-1),ENTITY
 MVC ENTITY(4),=X'ØØØØØØØØ' ZERO THE PREFIX AREA FOR ENTITY
 MVC ENTITY+4(7),=C'TECHPGM' GENERAL GROUPING
 MVC ENTITY+11(8),MODNAME DETAIL RESOURCE LEVEL
 LA R9,9(Ø,RØ) MAX LENGTH TO LOOK 4 BLANK
 LA R8,ENTITY+11 WHERE TO START LOOKING
LOOKMORE CLI Ø(R8),X'4Ø' LOOK FOR DELIMITING BLANK
 BE FNDEND BRANCH IF FOUND
 LA R8,1(R8) - ELSE BUMP OUR POINTER
 BCT R9,LOOKMORE CHECK LIMIT AND LOOP
FNDEND EQU *
 LA R6,ENTITY+4
 SR R8,R6 LENGTH OF NAME IS NOW IN R8
 STH R8,ENTITY+2 SAVE LENGTH IN PREFIX
 STH R8,ENTITY DO IT TWICE
 B Ø(R11) RETURN FROM SUB ROUTINE
* *-*-*---*-*-*
* *- STATIC STORAGE AREA HERE - LTORG - MODELS ETC. -*
* *-*-*---*-*-*
DYNMODEL DS ØF
MWTOPL WTO TEXT=, WTO PARAMETER LIST X
 MF=L
MRFX RACROUTE REQUEST=AUTH, Authorization check X
 RELEASE=2.4, X
 LOG=ASIS, X
 CLASS='FACILITY', Facility class to check X
 ATTR=READ, Check for read access X
 MF=L
 DS ØF
@MDLSIZE EQU *-DYNMODEL LENGTH OF THE COPIED AREA
DYNSIZE DC AL4(@DYNSIZE) DYNAM AREA SIZE
MDLSIZE DC AL4(@MDLSIZE) MODELED AREA SIZE
ERRMSG1 DC AL2(L'ERRØ1) LENGTH OF WTO MESSAGE
ERRØ1 DC C'RACHEKØØ IS NOT INDEPENDENTLY EXECUTABLE - PROGRAM ENDX
 ING '
ERRMSG2 DC AL2(L'ERRØ2) LENGTH OF WTO MESSAGE
ERRØ2 DC C'RACHEKØ1 - FACILITY CLASS CALL HAS BEEN DENIED - GET AX
 PPROPRIATE RACF AUTH. TO USE THIS PGM'
 LTORG

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

*
DYNAREA DSECT
SAVEAREA DS 18F
 DS ØF ALIGN FOR PERFORMANCE AND RACF USAGE
ENTITY DS CL2Ø ENTITY NAME BUFFER
USERID DS CL8
MODNAME DS CL8
DYNAREA1 DS ØF
WTOLIST WTO TEXT=, WTO PARAMETER LIST X
 MF=L
RFX RACROUTE REQUEST=AUTH, Authorization check X
 RELEASE=2.4, X
 LOG=ASIS, X
 CLASS='FACILITY', Check for facility class X
 ATTR=READ, check read authorization X
 MF=L
RACFWORK DS CL512
@ENDDYN DS ØX USED TO CALC DYNAM AREA SIZE
@DYNSIZE EQU ((@ENDDYN-DYNAREA+7)/8)*8 DYNAM AREA ROUNDED TO DBLWD
 IKJTCB
 IHARB
 IHACDE
 IHAPSA
 END RACHEK

Here is an example of calling the module from within a batch
program, when the module is statically linked with the calling
module:

 PUNCH ' INCLUDE MYLOAD(RACHEK) '
 PUNCH ' ENTRY CONSOLE '
 PUNCH ' SETOPT PARM(AMODE=24,RMODE=24) '
* *%PDSDOC ØØ TEST PROGRAM TO USE WITH RACHEK
* *-*-*---*-*-*
* *- PROGRAM NAME - CONSOLE -*
* *- FUNCTION - CHECK THE USE OF THE STRACHEK PROGRAM -*
* *-*-*---*-*-*
CONSOLE CSECT
CONSOLE AMODE ANY
CONSOLE RMODE 24
RØ EQU Ø
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 USING CONSOLE,15 TEMP ADDRESSABILITY
 B @PROLOG AROUND EYECATCHER
 DC C'CONSOLE - TECH SERVICES AUTH. CHECK &SYSDATE'
 DS ØH PRESERVE ALIGNMENT
@PROLOG BAKR R14,RØ SAVE REGISTER/PSW STATUS
 LR R5,R1 SAVE PARM POINTER
 LR 12,15
 DROP 15
 USING CONSOLE,R12 R12 IS NOW BASE
 L R2,DYNSIZE * LENGTH TO GET
 STORAGE OBTAIN,ADDR=(1),SP=Ø,LENGTH=(2)
 LR R13,R1 GET ADDRESS OF AREA
 USING DYNAREA,R13 USING FOR THE DYNAMIC AREA
 MVC 4(4,R13),=C'F1SA' FORMAT 1 SAVE AREA USED
**
** HERE IS THE CALL TO RACHECK FOR AUTHORIZATION CHECK **
** JUST CALL THE MODULE AND CHECK THE RETURN CODE **
** R15=Ø = AUTHORIZATION IS OK ** R15>Ø = DON'T ALLOW ACCESS **
**
 SR R9,R9 PRE-CLEAR RETURN CODE
 L R15,=V(RACHEK)
 BALR 14,15
 LTR 15,15
 BZ DOFUNCTN
 SR RØ,RØ ALWAYS CLEAR RØ BEOFRE WTO
 WTO 'CONSOLEØ1 –ACCESS NOT PERMITTED– FUNCTION ENDING'
 LA R9,16(Ø,RØ) SET RETURN CODE OF 16
ENDIT EQU *
RETURN L R2,DYNSIZE LENGTH TO GET
 LR R8,R13
 STORAGE RELEASE,ADDR=(8),LENGTH=(2)
 LR R15,R9 RESTORE RETURN CODE IN R15
 PR RESTORE STATUS & RETURN
DOFUNCTN EQU *
* PERFORM THE SENSITIVE WORK KNOWING IT HAS BEEN AUTHORIZED
 XR R9,R9 CLEAR THE RETURN CODE
* . . .
* . . .
* . . .
 B ENDIT
DYNSIZE DC AL4(@DYNSIZE)
 LTORG
*
DYNAREA DSECT

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SAVEAREA DS 18F
 DS ØF
* OTHER VARIABLES GO IN HERE
@ENDDYN DS ØX USED TO CALC DYNAM AREA SIZE
@DYNSIZE EQU ((@ENDDYN-DYNAREA+7)/8)*8 DYNAM AREA SIZE ON DBLWD BDY
 END CONSOLE

Alternatively, the module can be dynamically loaded at execution
time rather than being statically linked. This obviously has the
advantage of allowing maintenance to be performed on the
module, if it is ever needed, without having to relink every
module that calls it. By loading the module at execution time,
you also remove the literals used to form the resource name –
which some may think has certain security advantages. Of
course, when you load the module the calling sequence should
be a bit different to account for potentially different addressing
modes.

An example of the load and call would be:

 SR 15,15 Pre-clear the return code
 LOAD EP=RACHEK LOAD OR GET ENTRY ADDRESS
 LR 15,Ø ENTRY POINT ADDRESS IN R15
 BASSM 14,15 MAKE THE CALL TO RACHEK
 LTR 15,15 FINALLY CHECK THE RETURN CODE

Now you have everything you need to easily handle legitimate
RACF controlled program access for all of your in-house code.
Anyone in your group that does any coding at all should be able
to handle it, the auditors should be quite satisfied, and best of
all you make the security administrators handle the administration
of your userid tables.

I hope this saves you some time in the future, while you satisfy
the auditor’s requirements, and generally provide better products
to your shop.

Stephen McColley
Senior Systems Programmer
SunTrust Bank (USA) © Xephon 2004

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Obtaining RACF information the easy way

A few years ago, about ten I guess, when I was beginning to
understand a little bit about the way RACF worked, I started
feeling the need to obtain information in a way that the available
RACF commands were not able to give me.

At that time, if memory serves me right, I needed to check the
access list of several profiles in the FACILITY class. I could,
and did, obtain the relevant profiles, by means of a SEARCH
CLASS (FACILITY) MASK (something) or FILTER
(something), and then I would proceed with the relevant RL
FACILITY (something) AUTH, and check the access lists that
RACF provided me with.

That proved to be a bit cumbersome and time consuming. And
then, the access list would be shown in the order that it had
been established, not in an orderly way. When what I wanted
was to compare access lists, this would mean added work and
complication.

In order to overcome this hurdle, I wrote the first version of the
RL@CLAS command, which I have been improving since then.
The first version gave me the basic information I was looking for
at the time: profile name, universal access, and access list.
Over time, I made a few changes, and included, in the output
list, the owner, creation date, and installation data.

I sorted the access list, by access (ALTER down to NONE), and
alphabetically, for each access type. And I displayed the entries
in the access list in an evenly-spaced way, which makes it
easier when you are comparing access lists of different profiles.
It makes for easier reading.

- -
YYYY-MM-DD ==> Profile-name
 --> Entry #one
 --> Entry #two
 --> . . .
 --> Entry #nnn
 OWNER ==> Group-Owner

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 (N) ==> Whatever Installation Data it may have
 ALTER ==> OtherGrp ThisGrp
 UPDATE ==> AntGroup
- -

Then, when the STARTED class made its appearance, I included
the STDATA:

- -
YYY-MM-DD ==> STCNAME.*
 OWNER ==> GroupName
 (N) ==> This STC Installation
 ==> No Users
 STDATA ==> USR(USERID) GRP(GROUP) TRUST(NO) PRIV(NO)
TRACE(NO)
- -

At some point in time, I included some code so that, when
dealing with the PROGRAM class, I could validate whether the
datasets were on the volumes referred by the profile (for this
one, it is better if you do not have the TSO MOUNT authorization;
you might get stuck with a MOUNT pending for some forgotten
volume definition). And you must be aware that even if the
volumes do not exist in the system where you are working, they
can exist in another system that shares the RACF you are
using:

- -
YYYY-MM-DD ==> *
 --> SYS1.C.SCLBDLL............................../SYSRS2/NO
 ---> SYS1.C.SCLBDLL............................../SYSRS1/NO
 --> SYS1.C.SCLBDLL............................../SYSRS3/NO
 --> SYS1.C.SCLBDLL............................../SYSRS2/NO
 --> SYS1.LE.SCEERUN............................./SYSRS2/NO
 --> SYS1.LE.SCEERUN............................./SYSRS1/NO
 --> SYS1.LE.SCEERUN............................./ NONE /NO
 --> SYS1.LE.SCEERUN............................./SYSRS2/NO
 --> SYS1.LE.SCEERUN............................./SYSRS4/NO /NOT OK
 --> SYS1.LE.SCEERUN............................./ NONE /NO /NOT OK
 --> SYS1.LINKLIB................................/******/YES
 OWNER ==> Owner-Group
 (R) ==> No Installation Data
 NONE ==> GrPØ1 Grp1 ZGrp2
- -

The YES or NO has to do with the PADCHK option. The NOT OK
means that the dataset was not found on that volume, or that the

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

volume itself was not found. You will have to work out which one.
If there is no volume associated with the library definition, then
NONE will be displayed. I am using the TSO ALLOCATE
command to check for library existence. It is a bit heavy on
resource consumption, and it delays the overall execution, but
it is not too much of a problem if you send it through batch, or
if you are not checking too many profiles.

There are two small caveats: you do not get to see your access
level, and it does not handle conditional access list. I never
needed that, so I never wrote the code for it. And I wanted
condensed information! If I wanted everything, I would use (and
I use it) the basic RL command. However, I have been using it
a lot, on a day-to-day basis, ever since I wrote it. It has proved
itself quite valuable.

This program can generate from a few to a lot of lines. The way
it works is, it will check if it is running in batch or in ISPF
foreground. If the former, it will display its results by means of
the REXX say command. If the latter, it will create a temporary
dataset, then it will write the results into it, and it will invoke the
ISPF BROWSE command to display it.

This file will be deleted on exit. Usually, if I need the output for
something more than a quick look, I will send it through batch
execution and use SDSF to save it in a file.

The way to use it is simple. You can invoke it with just one
parameter – that being the class that you want to check. If you
do not want to check all the profiles in the class, you must enter
a filter. This can be done in one of two ways. RL@CLAS uses
the RACF SEARCH command, and it will use the second
parameter to determine the way it will be invoked. If you do not
pass it anything, it will do a SEARCH NOMASK. If you pass it
the first positions of the profiles that you want to check, it will
use a SEARCH MASK(second parameter). If the common
part of the profile names is not in the first positions, you can
use, as the second parameter, FILTER(whatever). This will
generate a SEARCH FILTER(whatever) command, which
means that all you have to do is to specify a valid RACF

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SEARCH mask. The parsing is done by masking, so it is
imperative that, if using the FILTER keyword, you do not leave
any space between ‘FILTER’ and the ‘(’. Alternatively, you could
change the code to alter this. So, you can invoke it thus:

RL@CLAS FACILITY $DASDI.P

This will list all the profiles in the FACILITY class, beginning with
$DASDI.P.

If you invoke it like this:

RL@CLAS FACILITY FILTER(**.*DDR*.**)

it will list all the profiles in the FACILITY class that have the
string DDR in any place in their name.

More recently, I included the ability to exclude some profiles
from the SEARCH result, prior to doing the actual RLISTs. If you
want to use this feature, you will have to specify
EXCLUDE(exclude_mask) as the third (or second) parameter.
This exclude mask is not a RACF SEARCH mask. RL@CLAS
will check this mask against all the profiles returned by the
RACF SEARCH, and it will exclude the matches. At the present
time I am using a WORDPOS to do the match, but you can use
a simple POS instead. As in the use of the FILTER keyword, the
use of EXCLUDE must be without spaces between ‘EXCLUDE’
and ‘(’. This is a very recent addition, so it may need
improvement.

If you invoke it this way:

RL@CLAS FACILITY FILTER(**.*DDR*.**) EXCLUDE(SYSV.)

you will get the same list as in the previous example, minus the
profiles beginning with SYSV.

CODE

/* rexx

 * *
 * Joao Bentes de Jesus *
 * RL@CLASS 2.3.Ø *

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 * *

- */
arg class_name mask excl
if class_name="" then
 do
 say"You did not specify the class to list"
 end
else
 do
 call get_info
 end
return
/* - - - - - - - - - - - - - */
get_info:
ok=1
if mask="" then
 do
 sr_out.Ø=1
 sr_out.1="*"
 end
else
 do
 if pos("FILTER",mask)=1 then
 nop
 else
 do
 mask="mask ("mask")"
 end
 x=outtrap(sr_out.,,"noconcat")
 "sr "mask" class ("class_name")"
 x=outtrap("OFF")
 if rc=Ø then
 do
 if excl¬="" then
 do
 call clean_sr_out
 end
 end
 else
 do
 ok=Ø
 say sr_out.1
 end
 end
if ok then
 do
 call parse_results
 end

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

return
/* - - - - - - - - - - - - - */
parse_results:
z=Ø
sep=copies("- ",38)"-"
opts="HIST AUTH"
if abbrev("STARTED",class_name) then
 do
 opts=opts" STDATA"
 end
else
 do
 if abbrev("PROGRAM",class_name) then
 do
 cvt_start = c2x(storage(1Ø,4))
 ucb_addr = c2x(substr(storage(cvt_start,52),49,4))
 sysres = substr(storage(ucb_addr,5Ø),29,6)
 end
 end
do a=1 to sr_out.Ø
 x=outtrap(i_line.,,"noconcat")
 "rl "class_name" ("word(sr_out.a,1)")" opts
 x=outtrap("OFF")
 do l=1 to i_line.Ø
 select
 when space(i_line.l)="CLASS NAME" then
 do
 call make_sep
 l=l+2
 z=z+1
 o_line.z=word(i_line.l,2)
 base=z
 end
 when subword(space(i_line.l),3,2)="UNIVERSAL ACCESS" then
 do
 l=l+2
 z=z+1
 o_line.z=right("OWNER",1Ø)" ==> "word(i_line.l,2)
 warning=word(i_line.l,words(i_line.l))
 if warning="YES" then
 do
 o_line.z=overlay(o_line.z,,
 right("***** WARNING MODE *****",79))
 end
 z=z+1
 o_line.z=" ("left(word(i_line.l,3),1)") ==>"
 end
 when subword(space(i_line.l),1,2)="CREATION DATE" then
 do

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 l=l+3
 parse value i_line.l with dias ano .
 cr_date=date("S",right(ano,2,Ø),
 ||right(dias,3,Ø),"J")
 cr_date=insert("-",insert("-",cr_date,6,1),4,1)
 o_line.base=cr_date" ==> "o_line.base
 end
 when subword(space(i_line.l),1,2)="STDATA INFORMATION" then
 do
 z=z+1
 o_line.z=" STDATA ==>"
 do l=l+2 to l+6
 parse value i_line.l with um"= "dois .
 select
 when um="USER" then
 opt="USR"left("("dois")",1Ø)
 when um="GROUP" then
 opt="GRP"left("("dois")",1Ø)
 when um="TRUSTED" then
 opt="TRUST"left("("dois")",5)
 when um="PRIVILEGED" then
 opt="PRIV"left("("dois")",5)
 otherwise
 opt=um||"("dois")"
 end
 o_line.z=o_line.z opt
 end
 end
 when space(subword(i_line.l,1,3))="DATA SET NAME" &,
 abbrev("PROGRAM",class_name) then
 do l=l+2
 if i_line.l="" then
 do
 leave l
 end
 z=z+1
 parse value i_line.l with dsn vol pads .
 o_line.z=copies(" ",1Ø)"-->",
 left(dsn,44,".")
 if pads="" then
 do
 pads=vol
 vol=" NONE "
 end
 o_line.z=o_line.z,
 ||"/"left(vol,6),
 ||"/"left(pads,3)
 call check_pds
 end

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 when space(i_line.l)="INSTALLATION DATA" then
 do
 l=l+2
 lx=length(o_line.z)
 if i_line.l="NONE" then
 do
 o_line.z=o_line.z "No Installation Data"
 end
 else
 do
 data=i_line.l
 do l=l+1
 if i_line.l="" then
 do
 leave l
 end
 else
 do
 data=data||i_line.l
 end
 end
 data=space(data)
 call format_data data
 end
 end
 when subword(space(i_line.l),1,2)="USER ACCESS" then
 do
 call get_acc_level
 end
 when space(i_line.l)="RESOURCES IN GROUP" then
 do l=l+2
 if i_line.l="" | i_line.l="NONE" then
 do
 leave l
 end
 z=z+1
 o_line.z=copies(" ",15)"--> "strip(i_line.l)
 end
 otherwise
 nop
 end
 end
end
call make_sep
if z>Ø then
 do
 if sysvar("SYSENV")="FORE" & sysvar("SYSISPF")="ACTIVE" then
 do
 call browse_output

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 end
 else
 do a=1 to z
 say o_line.a
 end
 end
return
/* - - - - - - - - - - - - */
clean_sr_out:
parse value excl with excl"("excl_mask")"
if abbrev("EXCLUDE",excl) then
 do
 x=outtrap(ex_out.,,"NOCONCAT")
 "SR MASK("excl_mask") CLASS("class_name")"
 x=outtrap("OFF")
 if rc=Ø then
 do
 tab_out=""
 do a=1 to sr_out.Ø
 tab_out=tab_out word(sr_out.a,1)
 end
 do a=1 to ex_out.Ø
 px=wordpos(word(ex_out.a,1),tab_out)
 if px>Ø then
 do
 tab_out=delword(tab_out,px,1)
 end
 end
 drop sr_out.
 sr_out.Ø=words(tab_out)
 do a=1 to sr_out.Ø
 sr_out.a=word(tab_out,a)
 end
 drop tab_out
 end
 end
return
/* - - - - - - - - - - - - */
check_pds:
dd="I"time("S")
x=outtrap("ON")
if vol=" NONE " then
 do
 "alloc f("dd") shr da('"strip(dsn)"')"
 end
else
 do
 if vol="******" then
 do

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 chk_vol=sysres
 end
 else
 do
 chk_vol=vol
 end
 "alloc f("dd") shr da('"strip(dsn)"') VOL("chk_vol")"
 end
if rc=Ø then
 do
 o_line.z=o_line.z
 "free f("dd")"
 end
else
 do
 o_line.z=o_line.z"/NOT OK"
 end
x=outtrap("OFF")
return
/* - - - - - - - - - - - - */
get_acc_level:
acc_lvls="ALTER CONTROL UPDATE READ EXECUTE NONE"
do acl=1 to words(acc_lvls)
 ac_lvl=word(acc_lvls,acl)
 interpret "ac_"ac_lvl"=''"
end
do l=l+2
 if i_line.l="" | l =i_line.Ø then
 do
 users=words(acc_lvls)
 do acl=1 to words(acc_lvls)
 ac_lvl=word(acc_lvls,acl)
 grupos=value("ac_"ac_lvl)
 if grupos¬="" then
 do
 grupos=sort_tab(grupos)
 z=z+1
 o_line.z=" "left(ac_lvl,8)"==>",
 put_8(subword(grupos,1,7))
 do ws=8 by 7 to words(grupos)
 z=z+1
 o_line.z=left("",14),
 put_8(subword(grupos,ws,7))
 end
 end
 else
 do
 users=users-1
 end

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 end
 if users=Ø then
 do
 z=z+1
 o_line.z=right("==> No Users",23)
 end
 leave l
 end
 parse value i_line.l with ac_group ac_lvl .
 interpret "ac_"ac_lvl"=ac_"ac_lvl" ac_group"
end
return
/* - - - - - - - - - - - - */
put_8:
parse arg in_data
out_data=""
do p8=1 to words(in_data)
 out_data=out_data left(word(in_data,p8),8)
end
return strip(out_data)
/* - - - - - - - - - - - - */
sort_tab:
arg tab_input
qx=words(tab_input)
do wk=1 to qx
 var.wk=word(tab_input,wk)
end
do w1=1 to qx-1
 w2=w1+1
 if var.w1>var.w2 then
 do
 var_xx=var.w1
 var.w1=var.w2
 var.w2=var_xx
 do w4=w1 by -1 to 2
 w3=w4-1
 if var.w3>var.w4 then
 do
 var_xx=var.w3
 var.w3=var.w4
 var.w4=var_xx
 end
 else
 do
 leave w4
 end
 end
 end
end

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

tab_output=""
do wk=1 to qx
 tab_output=tab_output var.wk
end
return tab_output
/* - - - - - - - - - - - - */
format_data:
arg i_line
zx=length(i_line)
if zx>64 then
 do
 px=lastpos(" ",left(i_line,64))
 if px=Ø then
 do
 px=65
 end
 o_line.z=o_line.z left(i_line,px-1)
 z=z+1
 o_line.z=left("",lx)
 data=substr(i_line,px+1)
 call format_data data
 end
else
 do
 o_line.z=o_line.z i_line
 end
return
/* - - - - - - - - - - - - */
make_sep:
if o_line.z¬=sep then
 do
 z=z+1
 o_line.z=sep
 end
return
/* - - - - - - - - - - - - */
browse_output:
dsn ="'"userid(),
 ||"."mvsvar("SYSNAME"),
 ||".D"date("J"),
 ||".T"space(translate(time(),,":"),Ø),
 ||".TEMP'"
dd="O"time("S")
"alloc f("dd") da("dsn") recfm(v b) lrecl(84) space(1Ø 5)",
 "tracks new"
if rc=Ø then
 do
 "execio "z" diskw "dd" (finis stem o_line.)"
 address "ISPEXEC" "control errors return"
 address "ISPEXEC" "browse dataset("dsn")"

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 "free f("dd") delete"
 end
else
 do
 say"Error ("rc") on "dsn" ALLOC"
 end
return
/* - - - - - - - - - - - - */

Joao Bentes de Jesus
Systems Programmer (Portugal) © Xephon 2004

RACF 101 – RACF commands

This is a new column that will address basic topics in RACF.
It is meant to help newbies to the RACF world better understand
the intricacies of RACF. This time, we will look at RACF
command structure.

New RACF administrators often have to decide whether or not
to learn RACF command syntax. Quite often, installations have
RACF products from vendors that simplify the administration
work, and often reduce the need to look up command syntax, if
not eliminate the need entirely.

Even if you have vendor products (or their home-grown
equivalents) to simplify RACF administration, in the long run
nothing beats knowing the basics of RACF commands and how
they work. If you can find some structure and logic in how RACF
commands are organized, so much the better – it will make it
easier to remember them.

In this discussion we will deal with only the most common RACF
commands.

To understand the basic RACF commands, think of the entire
RACF database consisting of nothing but profiles. This is
indeed the case, with very few exceptions. And then, think of
RACF commands doing nothing more than manipulating these
profiles.

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

What could you possibly want to do with profiles? Well, only
four things – list, add, delete, or alter them! Now, there are only
four types of RACF profiles – dataset, general resource, user,
and group.

So we need to figure out how to perform our four basic
operations on these four types of profiles. Perhaps we will even
see some rhyme and reason here!

LISTING RACF PROFILES

The commands for listing RACF profiles are:

• LISTDSD (dataset profiles)

• RLIST (resource profiles)

• LISTUSER (user profiles)

• LISTGRP (group profiles).

You can see that the commands look similar, except maybe
RLIST.

ADDING RACF PROFILES

The commands for adding RACF profiles are:

• ADDSD (dataset profiles)

• RDEFINE (resource profiles)

• ADDUSER (user profiles)

• ADDGROUP (group profiles).

Again, you see that they have similar forms except maybe
RDEFDINE.

ALTERING (CHANGING) RACF PROFILES

The commands for altering (changing) RACF profiles are:

• ALTDSD (dataset profiles)

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• RALTER (resource profiles)

• ALTUSER (user profiles)

• ALTGROUP (group profiles).

RALTER looks a little different from the rest.

DELETING RACF PROFILES

The commands for deleting RACF profiles are:

User profiles Dataset profiles

CONNECT

Group profiles Resource profiles

LISTUSER
ADDUSER
ALTUSER
DELUSER

LISTDSD
ADDSD
ALTDSD
DELDSD

LISTGRP
ADDGROUP
ALTGROUP
DELGROUP

RLIST
RDEFINE
RALTER
RDELETE

PERMIT

PERMIT

PERMIT

PERMIT

Figure 1: RACF profiles and the commands

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• DELDSD (dataset profiles)

• RDELETE (resource profiles)

• DELUSER (user profiles)

• DELGROUP (group profiles).

The command RDELETE is a little different.

So, we see that the commands look similar, except when it
comes to commands for resource profiles. They are a bit of an
oddity, but easy to remember after a while.

Figure 1 shows the RACF profiles and the commands to
manipulate them. It also introduces two other basic RACF
commands – CONNECT and PERMIT.

The CONNECT command is used to connect users to groups.
In RACF, access can be granted to a user or to a group.
Granting access at the group level simplifies RACF
administration, but first we would need to use the CONNECT
command to put a user in a group.

Lastly, we need to permit users and groups to profiles. For that,
there is the PERMIT command.

SUMMARY

We have looked at only the basic RACF commands, and even
then, only the format of the commands. The idea was to see
how they are structured and named. If you view the various
types of profiles as ‘decks of cards’, as in Figure 1, the RACF
structure makes more sense.

Dinesh Dattani (dinesh123@rogers.com)
Independent Consultant
Toronto (Canada) © Xephon 2004

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Coding RACF exits using IBM C/C++

Using documented exit points in MVS and its related subsystems
has been a popular practice for many years. The exit points are
provided to allow different users of the operating system or
subsystem software to effect alternative results based on their
own specific needs rather than using the default system
behaviour. In almost every case, the interface to these exit
points is documented in its Assembler terms and the
corresponding input parameter data mappings are frequently
provided in Assembler DSECT format.

This holds true for RACF as well. Documentation for the RACF
exits discusses register contents on entry and register return
value settings and their corresponding effects on the exit
primarily as they relate to use in an Assembler program.

No-one can argue the operational efficiency of an Assembler
program when compared with a high-level language program
that performs the same function, but occasionally it is more
interesting, more fun, or maybe even more practical to use a
high-level language in a situation more normally associated
with using an Assembler program.

This article discusses an Assembler stub program that acts as
the framework for setting up the environment to call a C coded
subroutine that supplies exit logic. The stub program can be
used (with one very minor modification) for each different C
‘exit’ code program you would like to create. To demonstrate
this, the Assembler stub program and two sample C code RACF
exit subroutines – an IRREVX01 exit and an ICHPWX01 exit –
have been included.

THE STUB PROGRAM – XITFRMWK

The stub program, XITFRMWK, provides the set up call to the
C subroutine and the return logic. It passes the value of R1, the
most common exit parameter list pointer, through to the C

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

subroutine unaltered, allowing the C subroutine to use the
parameter list pointer as the input parameter for addressing the
parameter list as a C structure. The return code from the C
subroutine is passed back as the return value in R15 from the
XITFRMWK stub program. The stub program can be used to
drive any C subroutine by changing the CALL statement to
reference the specific program to be invoked.

THE IRREVXC1 SUBROUTINE

The IRREVXC1 subroutine provided in this article is for the
IRREVX01 RACF exit point. This particular exit examines the
specific RACF command information to determine whether the
command in question is a RACF LISTUSER command. If the
command is a LISTUSER command, this subroutine will force
on the display of the TSO and OMVS segment information for
the userid regardless of what has been specified in the original
command. The EVXPL structure definition has been created
from the IRREVXP DSECT mapping macro by using the
CBC3DSCT program to convert the Assembler DSECT into a C
structure definition.

The C subroutine also sets #pragma runopts(TRAP(OFF)).
This allows the C code to run in supervisor state.

The ENTREGS() function referenced in the IRREVXC1
subroutine is provided in the XITFRMWK stub program. The
purpose of the ENTREGS() function is to return the values of R0
– R15 as they existed on entry to the XITFRMWK stub program.
A 16-entry register value vector is used for this purpose. Check
the program for information on how to activate the register
display console messages.

The IBM C/C++ supplied __console() function is used to
display exit messages to the operator console. This function
provides functions similar to the WTO macro for Assembler
programs.

To create a usable IRREVX01 exit, perform the following:

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Assemble the XITFRMWK stub program. Be sure to specify
IRREVXC1 on the call macro as follows:

CALL IRREVXC1

• Compile the IRREVXC1 subroutine. Before running the
compile, be sure to convert all occurrences of ‘[’ to X'AD'
and ‘]’ to X'BD'. Be sure to run the C compile with the RENT
option.

• To accommodate subroutine names greater than eight
characters and the RENT compile option, the compile step
object code (created in the previous step) must be run
through the pre-linker. If the object module created in the
previous step is called IRREVXCC, use the following
sample JCL to create the IRREVXC1 object module:

//PLKED1 EXEC PGM=EDCPRLK,PARM='UPCASE',
// REGION=2Ø48K
//SYSMSGS DD DSNAME=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=TCPIP.SEZARNT1,DISP=SHR
//SYSOBJ DD DSN=object.code.pds,DISP=SHR
//SYSMOD DD DSN=object.code.pds(IRREVXC1),DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INCLUDE SYSOBJ(IRREVXCC)

• Create the IRREVX01 load module using the following
linkedit JCL:

//IEWL EXEC PGM=HEWLHØ96,PARM='XREF,LIST,MAP,RENT'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//OBJECT DD DSN=object.code.pds,DISP=SHR
//SYSLMOD DD DSN=load.library,DISP=SHR
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLIN DD *
 INCLUDE OBJECT(XITFRMWK)
 INCLUDE OBJECT(IRREVXC1)
 ENTRY XITFRMWK
 SETCODE AC(1)
 NAME IRREVXØ1(R)

The exit can be activated dynamically using the following OS/
390 operator command:

SETPROG EXIT,ADD,EXITNAME=IRREVXØ1,MODNAME=IRREVXØ1,DSNAME=load.library

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

THE ICHPWXC1 SUBROUTINE

The ICHPWXC1 subroutine provided in this article is for the
ICHPWX01 RACF exit point. This particular exit processes the
PWXPL parameter list and pulls out the userid and password
value that is about to be set for this userid. It then displays
these values through a console message. This is not something
you would normally do, but the purpose of this exit subroutine
is simply to demonstrate potential capability. The PWXPL
structure definition has been created from the ICHPWXP
DSECT mapping macro by using the CBC3DSCT program to
convert the Assembler DSECT into a C structure definition.

To create a usable ICHPWX01 exit, perform the following:

• Assemble the XITFRMWK stub program. Be sure to specify
ICHPWXC1 on the call macro as follows:

CALL ICHPWXC1

• Compile the ICHPWXC1 subroutine. Before running the
compile, be sure to convert all occurrences of ‘[’ to X'AD'
and ‘]’ to X'BD'. Be sure to run the C compile with the RENT
option.

• To use the RENT compile option, the compile step object
code (created in the previous step) must be run through the
pre-linker. If the object module created in the previous step
is called ICHPWXCC, use the following sample JCL to
create the ICHPWXC1 object module:

//PLKED1 EXEC PGM=EDCPRLK,PARM='UPCASE',
// REGION=2Ø48K
//SYSMSGS DD DSNAME=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=TCPIP.SEZARNT1,DISP=SHR
//SYSOBJ DD DSN=object.code.pds,DISP=SHR
//SYSMOD DD DSN=object.code.pds(ICHPWXC1),DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INCLUDE SYSOBJ(ICHPWXCC)

• Create the ICHPWX01 load module using the following
linkedit JCL:

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//IEWL EXEC PGM=HEWLHØ96,PARM='XREF,LIST,MAP,RENT'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//OBJECT DD DSN=object.code.pds,DISP=SHR
//SYSLMOD DD DSN=a.lpa.library,DISP=SHR
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLIN DD *
 INCLUDE OBJECT(XITFRMWK)
 INCLUDE OBJECT(ICHPWXC1)
 ENTRY XITFRMWK
 SETCODE AC(1)
 NAME ICHPWXØ1(R)

Unless you have a way of dynamically activating your LPA
resident RACF exits, you will need an IPL with a CLPA option
to activate the ICHPWX01 exit for test purposes.

SUMMARY

Traditionally, subsystem exits have been coded in Assembler.
A s
OS/390 Assembler coding skills erode, using a high-level
language such as IBM’s C/C++ may become a viable option for
those site-specific customization requirements. Try out the
provided exits and maybe you will see ways of working this exit
coding technique into your environment.

XITFRMWK.ASM

* *
* The XITFRMWK program is a representative model of an Assembler *
* program that can be used as an exit point entry program stub *
* that calls a C program subroutine for primary exit code logic. *
* *
* The CBC3DSCT utility program can be used to create the C *
* structure definition for any exit control blocks necessary. *
* *
* The following macros are required to set up and take down the *
* environment that makes this operation possible: *
* CEEENTRY *
* CEETERM *
* CEEPPA *
* CEEDSA *
* CEECAA *

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

* *
* The following restrictions are in effect for the CEEENTRY macro: *
* With MAIN=YES: *
* BASE= can be any register R3-R11 (R11 is the default) *
* R12 is to the address of the CEECAA *
* R13 is to the address of the CEEDSA *
* PARMREG= the parameter list address (R1 is the default) *
* *
* This exit driver can be used for any exit. Simply change the *
* CALL macro instruction to reflect the appropriate module for *
* your requirements. *
* *

XITFRMWK CEEENTRY PPA=MAINPPA, ** Label of CEEPPA mapping macro **X
 AUTO=WORKSIZE, ** Size of DSA & local work area **X
 MAIN=YES, ** This rtn is main rtn in enclave**X
 EXECOPS=NO, ** No runtime options in parms **X
 PARMREG=R1, ** R1 is the default parm reg **X
 BASE=R11, ** R11 is the default base reg **X
 PLIST=HOST ** Standard JCL PARM= parm list **

 USING WORKAREA,R13 Set addressability to temp storage

* Uncomment whichever of the following CALL macro invocations you *
* desire prior to assembling this code. *

** CALL IRREVXC1 ** IRREVXC1 is the C subroutine **
** CALL ICHPWXC1 ** ICHPWXC1 is the C subroutine **
 LR R5,R15 Copy the return code

RETURN DS ØH
 CEETERM RC=(R5),MF=(E,CEETERMW)

 LTORG ,

MAINPPA CEEPPA Constants describing the code block

* The Workarea and DSA *

WORKAREA DSECT
 ORG *+CEEDSASZ Leave space for the DSA fixed part
CALLLST CALL ,(Ø,Ø,Ø,Ø,Ø,Ø,Ø,Ø,Ø,Ø,Ø),VL,MF=L
CEETERMW CEETERM MF=L
WORKSIZE EQU *-WORKAREA

 CEEDSA , Mapping of the Dynamic Save Area
 CEECAA , Mapping of the Common Anchor Area

RØ EQU Ø
R1 EQU 1

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
--
ENTREGS CSECT
ENTREGS AMODE 31
ENTREGS RMODE ANY
 ENTRY ENTREGS
 GBLB &CEESTART
&CEESTART SETB 1
 EDCPRLG BASEREG=R12,DSALEN=WORKLEN
 USING REGSWORK,R13
 L R2,Ø(,R1) Get register vector address
 L R3,4(,R13) Get savearea -1 address
 L R4,4(,R3) Get savearea -2 address
 L R5,4(,R4) Get savearea -3 address
 MVC Ø(52,R2),2Ø(R5) Copy RØ-R12 values
 ST R5,52(,R2) Save R13 value
 MVC 56(8,R2),12(R5) Copy R14-R15 values
 LA R15,Ø Set return code
 EDCEPIL
 LTORG ,
--
REGSWORK EDCDSAD
WORKLEN EQU *-REGSWORK
 END

IRREVXC1.C
/*
 * This is a C program subroutine which is invoked from a calling
 * Assembler program that has established the main() enclave. The
 * IRREVXFC subroutine will be invoked via a standard Assembler
 * CALL macro from the calling program.
 *
 * This subroutine expects one incoming parameter.
 * PARM1: is the address of the EVXPL.
 * The structure definition has been created using the

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 * CBC3DSCT program which is used to create C structure
 * definitions from Assembler DSECTs.
 *
 * For demonstration purposes, this exit examines the RACF command
 * buffer looking for LISTUSER commands. If a LISTUSER command is
 * detected, this exit will force on the displaying of TSO and OMVS
 * segment information regardless of what was requested in the
 * original command. Although this may have practical use in your
 * environment, this code and the accompanying Assembler driver
 * are primarily provided to demonstrate a technique that could be
 * employed to allow for the coding of RACF system exits using
 * IBM C/C++.
 *
 * This subroutine is used in conjuction with the XITFRMWK Assembler
 * program to create the IRREVXØ1 RACF exit. This exit point is
 * entered in supervisor state, key Ø, so be careful. The IRREVXØ1
 * exit is eligible to be managed by the OS/39Ø dynamic exit manager.
 * It can be enabled and disabled with the following operator
 * commands:
 *
 * SETPROG EXIT,ADD,EXITNAME=IRREVXØ1,MODNAME=exitname,
 * DSNAME=catalogd.dsn
 *
 * SETPROG EXIT,DELETE,EXITNAME=IRREVXØ1,MODNAME=exitname
 *
 * where 'exitname' is the member name of the IRREVXØ1 exit that
 * resides in the cataloged dataset specified in 'catalogd.dsn'.
 *
 * Before compiling this program, remember to convert all occurrences
 * of '[' to x'AD' and ']' to x'BD'
 *
 */

#pragma runopts(TRAP(OFF)) // Allows code to run supervisor state
#pragma linkage(ENTREGS, OS) // Define the ENTREGS external routine

#include <string.h>
#include <stdlib.h>
#include <__messag.h>
#include <fcntl.h>

#pragma pack(packed)

struct EVXPL {
 void *EVXLEN; /* Length address: */
 void *EVXCALLR; /* Caller address: */
 void *EVXFLAGS; /* Flag byte address: */
 void *EVXCMBUF; /* Command buffer address: */
 void *EVXACEE; /* ACEE address: */
 void *EVXWORK; /* Communication word address: */

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 void *EVXCMDRC; /* Command return code address: */
 void *EVXABCD; /* Abend code address: */
 void *EVXSRCND; /* Command source node address: */
 void *EVXSRCUS; /* Command source user ID address: */
 void *EVXMSSG; /* Message text address: */
 };

/* Values for field "EVXCALLR" */
#define EVXADDGR ØxØ1 /* ADDGROUP */
#define EVXADDSD ØxØ2 /* ADDSD */
#define EVXADDUS ØxØ3 /* ADDUSER */
#define EVXALTDS ØxØ4 /* ALTDSD */
#define EVXALTGR ØxØ5 /* ALTGROUP */
#define EVXALTUS ØxØ6 /* ALTUSER */
#define EVXCONNE ØxØ7 /* CONNECT */
#define EVXDELDS ØxØ8 /* DELDSD */
#define EVXDELGR ØxØ9 /* DELGROUP */
#define EVXDELUS ØxØA /* DELUSER */
#define EVXLISTD ØxØB /* LISTDSD */
#define EVXLISTG ØxØC /* LISTGRP */
#define EVXLISTU ØxØD /* LISTUSER */
#define EVXPASSW ØxØE /* PASSWORD */
#define EVXPERMI ØxØF /* PERMIT */
#define EVXRALTE Øx1Ø /* RALTER */
#define EVXRDEFI Øx11 /* RDEFINE */
#define EVXRDELE Øx12 /* RDELETE */
#define EVXREMOV Øx13 /* REMOVE */
#define EVXRLIST Øx14 /* RLIST */
#define EVXSEARC Øx15 /* SEARCH */
#define EVXSETRO Øx16 /* SETROPTS */

/* Values for field "EVXFLAGS" */
#define EVXPRE Øx8Ø /* Pre-processing call */
#define EVXPOST Øx4Ø /* Post-processing call */
#define EVXOPER Øx2Ø /* Command issued as operator command */
#define EVXPARM Øx1Ø /* Command issued from RACF parmlib */
#define EVXAT ØxØ8 /* Command directed with AT or ONLYAT */
#define EVXACD ØxØ4 /* Command directed with automatic */
#define EVXRASP ØxØ2 /* Command execution in RACF subsystem */
#define EVXABND ØxØ1 /* Command abended during execution */

struct CMDBUF {
 short int CMDBUFL; /* length of command buffer */
 short int CMDBUFO; /* offset in command buffer to the */
 };

#pragma pack(reset)

#define REG_DISPLAY Ø // Set != Ø to display register content

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

void Console_Msg(char *msg_buf)

/*
 * The Console_Msg() function is used to issue a message to the
 * operator console similar to the function of a WTO macro in
 * an Assembler program. To issue a multi-line message, include
 * newline characters ("\n") within the data wherever you want
 * your message to start on a new display line at the console.
 */

{
 int msg_i;
 int msg_j;
 char con_buf[256];
 struct __cons_msg *msg;

 msg = (struct __cons_msg *)con_buf;

/*
 * Copy the message buffer and message length into the message
 * structure and use the __console() function to issue the message
 * to the console.
 */
 msg->__format.__f1.__msg = (char *)msg_buf;
 msg->__format.__f1.__msg_length = strlen(msg_buf);
 msg_i = __console(msg,NULL,&msg_j);

 return;
}

int IRREVXC1(struct EVXPL EVXPL)

{
int* i;
int* k;
int* l;
int j;
int m;
int p;
int q;
int r;
int term_char;
int omvs_flag;
int tso_flag;
char* mm;
char* ii;
char* jj;
char flags[3];
char flags_save[3];
char caller[2];

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

char caller_save[2];
char source_userid[9];
char msgarea[256];
unsigned int reg_vector[16];

/*
 * Capture register values as they existed on entry to the exit
 * point. They may be of use at a later point.
 */

j = ENTREGS(®_vector);

/*
 * If you want to display the contents of the registers as they
 * existed on entry to the called exit, set the value of REG_DISPLAY
 * in the prior #define statement to a value other than Ø.
 */
if (REG_DISPLAY != Ø)
{
 for (j=Ø; j<16; j++)
 {
 sprintf(msgarea,"R%d on entry: %#Ø1Øx\Ø",j,reg_vector[j]);
 Console_Msg(msgarea);
 }
}

/*
 * Extract and save the EVXFLAGS information for future reference.
 */

 for (m=Ø; m<3; m++)
 {
 flags_save[m] = Ø;
 }
 memcpy(flags_save+Ø,(char *)(EVXPL.EVXFLAGS)+Ø,2);

/*
 * Extract and save the EVXCALLR information for future reference.
 */

 for (m=Ø; m<2; m++)
 {
 caller_save[m] = Ø;
 }
 memcpy(caller_save+Ø,(char *)(EVXPL.EVXCALLR)+Ø,1);

/*
 * Extract the EVXLEN value which indicates the number of
 * fullwords contained in the EVXPL. Indicate this value
 * in a message issued to the console using the __console()

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 * function call.
 */

if (flags_save[Ø] == Øx8Ø)
{
 j = (int)(*(int *)(EVXPL.EVXLEN));
 i = &(*(int *)(EVXPL.EVXLEN));

 sprintf(msgarea,"EVXLEN addr: %#Ø1Øx EVXLEN is %d fullwords.\Ø",
 i,j);
 Console_Msg(msgarea);
}

/*
 * Extract the EVXCALLR value which indicates the command that
 * triggered the exit call. Indicate this value
 * in a message issued to the console using the __console()
 * function call.
 */

if (flags_save[Ø] == Øx8Ø)
{
 for (m=Ø; m<2; m++)
 {
 caller[m] = Ø;
 }
 memcpy(caller+Ø,(char *)(EVXPL.EVXCALLR)+Ø,1);
 mm = &((*((char *)(EVXPL.EVXCALLR))));

 sprintf(msgarea,"EVXCALLR addr: %#Ø1Øx EVXCALLR is %#Ø4x\Ø",
 mm,caller[Ø]);
 Console_Msg(msgarea);
}

/*
 * Extract the EVXFLAGS value which indicates the flag values
 * in effect for this exit call. Indicate this value
 * in a message issued to the console using the __console()
 * function call.
 */

 for (m=Ø; m<3; m++)
 {
 flags[m] = Ø;
 }
 memcpy(flags+Ø,(char *)(EVXPL.EVXFLAGS)+Ø,2);
 mm = &((*((char *)(EVXPL.EVXFLAGS))));

 sprintf(msgarea,"EVXFLAGS addr: %#Ø1Øx EVXFLAGS are %#Ø4x%Ø2x\Ø",
 mm,flags[Ø],flags[1]);

 48 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 Console_Msg(msgarea);

 m = Ø;
 mm = (char *)&m;
 memcpy(mm+2,flags+Ø,2);

/*
 * Extract the EVXSRCUS value which indicates the command
 * source userid for the issued command. Indicate this value
 * in a message issued to the console using the __console()
 * function call.
 */

if (flags_save[Ø] == Øx8Ø)
{
 mm = &((*((char *)(EVXPL.EVXSRCUS))));
 strncpy(source_userid,mm,8);
 source_userid[8] = Ø;

 if (strncmp(source_userid," ",8) != Ø)
 {
 sprintf(msgarea,"EVXSRCUS addr: %#Ø1Øx EVXSRCUS is %s\Ø",
 mm,source_userid);
 Console_Msg(msgarea);
 }
}

/*
 * Extract the EVXACEE address which indicates the ACEE in
 * effect for the current task. Indicate this value
 * in a message issued to the console using the __console()
 * function call.
 */

if (flags_save[Ø] == Øx8Ø)
{
 mm = &((*((char *)(EVXPL.EVXACEE))));
 strncpy(source_userid,mm+21,8);
 source_userid[8] = Ø;

 sprintf(msgarea,"EVXACEE addr: %#Ø1Øx Task userid is %s\Ø",
 mm,source_userid);
 Console_Msg(msgarea);
}

/*
 * Extract the EVXCMBUF address which contains the address of
 * the command buffer for the issued command. Indicate this value
 * in a message issued to the console using the __console()
 * function call.

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 */

if (flags_save[Ø] == Øx8Ø)
{
 mm = &((*((char *)(EVXPL.EVXCMBUF))));
 ii = (char *)(&j);
 j = Ø;
 memcpy(ii+2,(char *)(EVXPL.EVXCMBUF)+Ø,2);

 sprintf(msgarea,"EVXCMBUF addr: %#Ø1Øx Buffer length is %d\Ø",
 mm,j);
 Console_Msg(msgarea);

 q = j; // Save command buffer length

 if (j > 7Ø)
 {
 j = 7Ø;
 }

 strcpy(msgarea,"Command buffer content <= 7Ø bytes: \Ø");
 strncpy(msgarea+strlen(msgarea),mm+4,j);

 for (m=strlen(msgarea)-1; m>=Ø; m--)
 {
 if (msgarea[m] == 64)
 {
 msgarea[m] = Ø;
 }
 else
 {
 break;
 }
 }

 Console_Msg(msgarea);

/*
 * The command buffer has been echoed to the console. Check to see
 * if this is a LISTUSER (LU) command and, if it is, force the
 * command to include TSO and OMVS segment information displayed.
 */

 if (caller_save[Ø] == EVXLISTU)
 {
// Get offset of first byte past the LISTUSER command.

 jj = (char *)(&r);
 r = Ø;
 memcpy(jj+2,(char *)(EVXPL.EVXCMBUF)+2,2);

 50 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/*
 * At this point, q contains the command buffer length and r
 * contains the offset of the first byte past the LISTUSER command.
 */

// Skip to the userid list.

 for (p = r; p<q; p++)
 {
 if (mm[4+p] != 64)
 {
 break;
 }
 }
 if (p >= q-1)
 {
 goto BADCMD;
 }

// Skip past the userid list.

 term_char = 64; // Set default termination character.
 if (mm[4+p] == 77) // Does userid list start with '('?
 {
 term_char = 93; // Set termination character to ')'.
 }

 for (r=p; r<q; r++)
 {
 if (mm[4+r] == term_char)
 {
 break;
 }
 }
 if (r >= q-1)
 {
 goto BADCMD;
 }
/*
 * At this point, r contains the offset into the command buffer at
 * the point where the userid list ends.
 */
 omvs_flag = Ø;
 for (p=r; p<q-6; p++)
 {
 if (strncmp(mm+4+p,"NOOMVS",6) == Ø)
 {
 mm[4+p] = 64;
 mm[4+p+1] = 64;

 51© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 omvs_flag = 1;
 }
 }
 tso_flag = Ø;
 for (p=r; p<q-5; p++)
 {
 if (strncmp(mm+4+p,"NOTSO",5) == Ø)
 {
 mm[4+p] = 64;
 mm[4+p+1] = 64;
 tso_flag = 1;
 }
 }
 if (omvs_flag == Ø)
 {
 for (p=r; p<q-4; p++)
 {
 if (strncmp(mm+4+p,"OMVS",4) == Ø)
 {
 omvs_flag = 1;
 break;
 }
 }
 }
 if (tso_flag == Ø)
 {
 for (p=r; p<q-3; p++)
 {
 if (strncmp(mm+4+p,"TSO",3) == Ø)
 {
 tso_flag = 1;
 break;
 }
 }
 }
 if (omvs_flag == Ø)
 {
 for (p=r; p<q-6; p++)
 {
 if (strncmp(mm+4+p," ",6) == Ø)
 {
 strncpy(mm+4+p+1,"OMVS",4);
 mm[4+p+5] = 64;
 break;
 }
 }
 }
 if (tso_flag == Ø)
 {
 for (p=r; p<q-5; p++)

 52 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 {
 if (strncmp(mm+4+p," ",5) == Ø)
 {
 strncpy(mm+4+p+1,"TSO",3);
 mm[4+p+4] = 64;
 break;
 }
 }
 }

 }

}
BADCMD:
 return(Ø);
}

ICHPWXC1.C
/*
 * This is a C program subroutine which is invoked from a calling
 * Assembler program that has established the main() enclave. The
 * ICHPWXØC subroutine will be invoked via a standard Assembler
 * CALL macro from the calling program.
 *
 * This subroutine expects one incoming parameter.
 * PARM1: is the address of the PWXPL.
 * The structure definition has been created using the
 * CBC3DSCT program which is used to create C structure
 * definitions from Assembler DSECTs.
 *
 * This subroutine is used in conjuction with the XITFRMWK Assembler
 * program to create the ICHPWXØ1 RACF exit. This exit point is
 * entered in supervisor state, key Ø, so be careful.
 *
 * Before compiling this program, remember to convert all occurrences
 * of '[' to x'AD' and ']' to x'BD'
 *
 */
#pragma runopts(TRAP(OFF))
#include <string.h>
#include <stdlib.h>
#include <__messag.h>
#include <fcntl.h>
#pragma pack(packed)
struct PWXPL {
 void *PWXLEN; /* Length address: */
 void *PWXCALLR; /* Caller address: */
 void *PWXCPPL; /* CPPL address: */

 53© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 void *PWXNEWPW; /* NEWPASS address: */
 void *PWXINTVL; /* INTERVAL address: */
 void *PWXUSRID; /* Userid address: */
 void *PWXWA; /* Exit work area address: */
 void *PWXCURPW; /* Current password address points */
 void *PWXPLCDA; /* Password Last Change Date */
 void *PWXACEE; /* ACEE address: */
 void *PWXGROUP; /* Group name address: */
 void *PWXINSTL; /* Installation data address: */
 void *PWXPWHST; /* Password history address: */
 void *PWXFLAG; /* Flag byte address: */
 void *PWXPLCD4; /* Password Last Change Date @Ø1A */
 };
/* Values for field "PWXCALLR" */
#define PWXRINIT ØxØ1 /* RACINIT */
#define PWXPWORD ØxØ2 /* PASSWORD Command */
#define PWXALTUS ØxØ3 /* ALTUSER Command */
/* Values for field "PWXFLAG" */
#define PWXCTEXT ØxØØ /* Clear text form */
#define PWXETEXT ØxØ1 /* Encrypted form (If */
#define PWXPTKT ØxØ2 /* Passticket is passed in the old @P1A */
#pragma pack(reset)
/* Indicate to the compiler that standard OS linkage will be used. */
#ifdef __cplusplus
 extern "OS" int ICHPWXC1(struct PWXPL*);
#else
// #pragma linkage (ICHPWXC1,OS)
#endif
int ICHPWXC1(struct PWXPL PWXPL)
{
int* i;
int j;
int msg_i;
int msg_j;
unsigned int cvtloc;
unsigned int cvt;
unsigned int rcvt;
char* mm;
char userid[9];
char password[9];
char msgarea[256];
char con_buf[256];
struct __cons_msg *msg;
msg = (struct __cons_msg *)con_buf;
i = &(*(int *)ICHPWXC1);
sprintf(msgarea,"Module entry addr: %#Ø1Øx\Ø",i);
msg->__format.__f1.__msg = (char *)&msgarea;
msg->__format.__f1.__msg_length = strlen(msgarea);
msg_i = __console(msg,NULL,&msg_j);
cvtloc = 16;

 54 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

cvt = *(unsigned int *)cvtloc;
rcvt = *(unsigned int *)(cvt + ØxØØØØØ3eØ);
if (strncmp((char *)(rcvt + Ø),"RCVT",4) == Ø)
{
 sprintf(msgarea,"RCVT located at addr: %#Ø1Øx\Ø",rcvt);
}
else
{
 sprintf(msgarea,"RCVT not located at addr: %#Ø1Øx\Ø",rcvt);
}
msg->__format.__f1.__msg = (char *)&msgarea;
msg->__format.__f1.__msg_length = strlen(msgarea);
msg_i = __console(msg,NULL,&msg_j);
mm = &((*((char *)(PWXPL.PWXUSRID))));
strncpy(userid,mm+1,8);
userid[8] = Ø;
for (j=Ø; j<8; j++)
{
 if (userid[j] == 64)
 {
 userid[j] = Ø;
 break;
 }
}

mm = &((*((char *)(PWXPL.PWXNEWPW))));

strncpy(password,mm+1,8);
password[8] = Ø;
for (j=Ø; j<8; j++)
{
 if (password[j] == 64)
 {
 password[j] = Ø;
 break;
 }
}

sprintf(msgarea,"ICHPWXØ1 userid: %s password: %s.\Ø",
 userid,password);
msg->__format.__f1.__msg = (char *)&msgarea;
msg->__format.__f1.__msg_length = strlen(msgarea);
msg_i = __console(msg,NULL,&msg_j);
return(Ø);
}

Rudy Douglas
System Programmer (Canada) © Xephon 2004

 55© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

RACF in focus – implementing audit features

This is a regular column focusing on specific aspects of
RACF. In this issue, we will discuss various auditing and
logging options available in RACF, and how best to implement
them.

BACKGROUND

First, when we talk of auditing in RACF, we are talking about the
logging of events and activities that occur to the System
Management Facility (SMF) datasets of the operating system.
In this discussion, auditing and logging are used interchangeably
and mean the same thing.

SMF data contains not only RACF logging, but various other
types of system activity logging as well. RACF logging in SMF
is separated from these other activities by the type of SMF
records that are generated.

Typically, SMF data (and therefore RACF logging) at an
installation is retained for many years, so you can always go
back and trace some event that occurred in the past.

Installations have considerable freedom in choosing what
RACF activity and events they want audited and which ones to
ignore. It is important to choose your auditing options carefully
– too much auditing often means that you do not have the time
to review the audit reports in a meaningful way, and important
events may go unnoticed. Too little auditing, of course, means
that you are not capturing the important security-related events
that are occurring in your system.

Some of the RACF auditing activities, especially those related
to violations and warnings, are also seen in the system log and
the operator console in real time, that is, as they occur.

We shall now discuss the various auditing options available in
RACF.

 56 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

AUDITING USER ACTIVITY

If you want to audit and monitor all activity of a user, you can
use the UAUDIT operand of the alter user command:

ALTUSER USER123 UAUDIT

This will log all datasets and other resources the user references,
and all the RACF commands the user enters. The logging will be
in effect until you remove the UAUDIT attribute from the user
profile:

ALTUSER USER123 NOUAUDIT

UAUDIT will log not only the violations, but successful accesses
as well. This will generate lots of logging and, for this reason,
should be used appropriately. It is meant to be used when you
suspect a user of malicious intentions. Sometimes it is also
used for debugging purposes, for example when you want to
find out what RACF profiles are accessed by a user in certain
cases.

UAUDIT should not be used to log all activities of users with
special powers, such as operations or special. Some RACF
administrators do this, under the mistaken assumption that all
activities of users with special powers should be monitored.
This will needlessly create a lot of logging activity. There are
other ways to monitor the activities of users with special
powers – see the section AUDITING USERS WITH SPECIAL
ATTRIBUTES below.

AUDITING RESOURCES AT THE PROFILE LEVEL

The AUDIT specification of the RACF commands ADDSD,
ALTDSD, RALTER, and RDEFINE relate to auditing resources
covered by dataset and resource profiles.

You can indicate, for each profile, whether you want to log
successful accesses, or failures, or both. If you want to see
what kind of logging is in effect for a profile, you can list the
profile.

 57© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In general, you want to log only successful accesses for those
profiles that cover highly sensitive data. Over-use of successful
auditing will generate a lot of logging, and needlessly clutter
your RACF reports. (The DATASET profiles are used in these
examples, but it applies to other classes, although the command
will be RALTER.) The command:

ALTDSD 'ds_profile_name' AUDIT(SUCCESS(READ))

will log all successful accesses, but not failures (violations).

For most profiles, you would want to see only the failures or
violations. This is highly recommended. The command to do
this is:

ALTDSD 'ds_profile_name' AUDIT(FAILURES(READ))

If you want to see both successes and failures, the command
to use is:

ALTDSD 'ds_profile_name' AUDIT(ALL(READ))

USING THE GLOBALAUDIT OPERAND

Like the AUDIT specification, GLOBALAUDIT also applies to
individual profiles in the dataset and general resource classes.
The command syntax for GLOBALAUDIT is also very similar to
that of AUDIT. The difference is that GLOBALAUDIT is meant
for auditors (who have the AUDITOR attribute or the GROUP-
AUDITOR attribute).

An auditor can, using GLOBALAUDIT, increase the amount of
logging for dataset and general resource profiles, as specified
in the AUDIT operand. They cannot decrease the loggings
specified in the AUDIT specification.

For example, if a dataset profile has the specification:

AUDIT(FAILURES(UPDATE))

it indicates logging of all violations for UPDATE, CONTROL,
and ALTER (but not READ).

An auditor may also wish to log violations at the READ level, so

 58 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

they can specify:

GLOBALAUDIT(FAILURES(READ))

When you list a DATASET profile or a general resource profile,
you see both specifications, AUDIT and GLOBALAUDIT, for
that profile.

AUDITING RESOURCES AT THE CLASS LEVEL

In addition to auditing resources at the profile level, RACF also
provides for auditing specifications at the class-level. This can
be helpful because you may have many profiles in a class (for
example the DATASET class), and you may not have consistent
AUDIT specifications for all of them.

If you want consistency in auditing at the class level, you can
use the LOGOPTIONS specification of the SETROPTS
command. We will use the DATASET class as an example, but
this applies to all classes at your installation.

All auditing for the DATASET class is suppressed by:

SETROPTS LOGOPTIONS(NEVER(DATASET))

 This overrides any auditing requirements you may have
specified in individual profiles in the DATASET class.

Conversely, the command:

SETROPTS LOGOPTIONS(ALWAYS(DATASET))

will log all activity to resources in the DATASET class, overriding
any specification at the profile level.

If you want to see all successes for all profiles in the DATASET
class, you can use the following command. Successes will be
logged in addition to what is already specified in the individual
profiles:

SETROPTS LOGOPTIONS(SUCCESSES(DATASET))

If you want to see all failures for all profiles in the DATASET
class, you can use the following command. Failures will be

 59© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

logged in addition to what is already specified in the individual
profiles. This is highly recommended, in case the logging of
failures is missing in some of the profiles:

SETROPTS LOGOPTIONS(FAILURES(DATASET))

If you want to respect the audit requirements as specified in
individual profiles, you can do so by specifying the following
command. It is also the default specification if you do not
specify one of the above LOGOPTIONS keywords:

SETROPTS LOGOPTIONS(DEFAULT(DATASET))

AUDITING USERS WITH SPECIAL ATTRIBUTES

Activities of users having either the SPECIAL attribute or
OPERATIONS attribute should be logged. But you should only
log – and monitor – those activities that pertain to the use of
their special powers.

This is done by the SETROPTS commands (you need to be
authorized to use them).

To log users with SPECIAL or group-SPECIAL attribute use the
command:

SETROPTS SAUDIT

To log users with OPERATIONS or group-OPERATIONS
authority use the command:

SETROPTS OPERAUDIT

The defaults for both these specifications are NOSAUDIT and
NOOPERAUDIT respectively, so you will have to explicitly set
the SAUDIT and OPERAUDIT specifications if you want to
benefit from the use of these options. You may even want to
check what is specified at your installation by using the LIST
operand of the SETROPTS command.

If you have SAUDIT and OPERAUDIT in effect, it indicates that
you want to log all accesses granted to these users because
of their special powers. Other superfluous logging for special

 60 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

userids will not occur – for example where profiles already allow
access to the special users, the activity to those profiles will not
be logged because of these SETROPTS specifications.

AUDITING CHANGES MADE TO PROFILES

You may wish to log changes to all profiles made by RACF
commands, such as ADDSD, ALTDSD, etc. This is not to be
confused with auditing resource accesses protected by the
profiles, which was discussed under the section AUDITING
RESOURCES AT THE PROFILE LEVEL above.

If you want to log changes made to profiles by RACF commands,
you can do so on a class by class basis. The command is:

SETROPTS AUDIT(DATASET)

This will record changes made to profiles in the DATASET class.
Other valid class names are any of the general resource
classes at your installation, or USER, or GROUP.

If you specify:

SETROPTS AUDIT(*)

you will see changes made to all profiles in all classes at your
installation. This is recommended, and has the added benefit
that if you were to activate a new class, it would automatically
be covered.

Note that the default for this option is NOAUDIT(*), so no logging
occurs for any of the classes unless you take specific action.

AUDITING FAILURES TO RACF COMMANDS

Just as you want to see violations for accesses to datasets and
other resources, you may want to see all failures of RACF
commands themselves. You can audit all violations detected by
RACF commands by specifying the following command (you
need to be authorized to use the command):

SETROPTS CMDVIOL

 61© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

This command will ignore violations caused to the list commands,
such as LISTUSER, but report on all other violations to RACF
commands. For example, it will report on violations that occur
because a user is not authorized to modify a particular profile.

SOME AUTOMATIC LOGGING

Certain events automatically get logged. For example, if
PROTECTALL(FAILURES) is in effect at your installation, and
a user with the SPECIAL attribute requests access to an
unprotected dataset, RACF will audit this event and issue a
warning message to the operator console.

In the above case, if it were a ‘trusted’ started task requesting
access to an unprotected dataset, the auditing would still occur,
but no warning message would be generated.

RACF also logs all activity to a profile in WARN mode if access
that would otherwise have been denied is being granted because
the profile is in WARN mode.

CONCLUSION

In this article we discussed various logging options. But logging
is meaningless if you do not follow through with reports from
these logs. These reports do not come out automatically. You
need to generate them using SAS or some other vendor’s
product that will extract useful data from these logs.

And you need to have procedures, policies, and practices in
place that will ensure the reports are reviewed by appropriate
people, on a regular basis, and action is taken whenever
necessary.

In general, the options you specify at the global level, using the
SETROPTS command, are more important than the
specifications in the profiles themselves. You can control
logging at the CLASS level, which ensures that you do not miss
any logging because of inappropriate specifications at the
profile level.

 62 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

And finally, a suggestion – even though SMF records (and
therefore, RACF logging activities) are retained for several
years at most installations, it would be a good idea to separate
the RACF portion of the log on a daily, weekly, monthly, and even
yearly basis. That way, if you ever need to go back and trace
some RACF activity you will not have to rely on the general SMF
records. Your log will be independent of the rest of the SMF
records.

Dinesh Dattani would welcome feedback, comments and
queries about this column. He can be contacted at
dinesh123@rogers.com.

Dinesh Dattani
Security Consultant
Toronto (Canada) © Xephon 2004

RACF news

Critical Path and Calendra have announced a
worldwide agreement for Critical Path to
integrate and offer Calendra’s technology as
part of Critical Path’s packaged identity
provisioning solutions.

The new offerings enable organizations to
provision users in accordance with business
approval processes and migrate large numbers
of accounts during application rollout in
heterogeneous environments. In addition, the
new solutions help customers to automate
change management and implement user self-
service in order to simplify and reduce the cost
of Help Desk operations.

Calendra has directory management
technology, Critical Path has an identity
management platform. Critical Path’s Meta-
Directory includes built-in connectors for
RACF mainframe security and other operating
system platforms, as well as databases from
Oracle, Sybase, and IBM; enterprise
applications such as SAP HR, Lotus Notes, and
Microsoft Exchange.

For further information contact:
Critical Path, 350 The Embarcadero, San
Francisco, CA 94105-1204, USA.
Tel: (415) 541 2500.
URL: http://www.criticalpath.net.
Calendra, 13800 Coppermine Road, Herndon,
VA 20171, USA.
Tel: (609) 273 1438.
URL: http://www.calendra.com.

* * *

OpenNetwork Technologies has announced
Version 5.1 of Universal Identity Platform
(Universal IdP). The new version provides
expanded capabilities with 13 new connectors
that automate the provisioning and de-
provisioning of user accounts and simplify
ongoing password management. Additionally,
Universal IdP 5.1 has expanded its Web Single
Sign-On (SSO) capabilities with added support
for Apache, SAP Portal, and the latest releases
of PeopleSoft and BEA WebLogic.

Universal IdP 5.1 leverages the data
synchronization capabilities of Microsoft
Identity Integration Server (MIIS) to enable
role-based provisioning across a broad range of
enterprise resources, including 13 new systems
not currently supported by MIIS. It integrates
MIIS with RACF, as well as AS/400, SAP
R/3, PeopleSoft, Solaris, AIX, and others.
Additionally, Universal IdP 5.1 includes a Web
Services framework that simplifies the
development of additional connectors to custom
applications.

For further information contact:
OpenNetwork Technologies, 13577 Feather
Sound Drive, Clearwater, FL 33762, USA.
Tel: (877) 561 9500.
URL: http://www.calendra.com.

* * *

x
xephon

	Extending RACF security through a simple LDAP server
	Drop-in RACF security, for your in-house utilities
	Obtaining RACF information the easy way
	RACF 101 - RACF commands
	Coding RACF exits using IBM C/C++
	RACF in focus - implementing audit features
	RACF news

