
January 2000

51

© Xephon plc 2000

3 Distributing user passwords to AIX
servers

14 Using the bc programmable
calculator

30 SSCCARS (part 3)
50 Script locking mechanism
52 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl@xephon.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
in the UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com/
aixupdate (you’ll need the user-id shown on
your address label to access it).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Distributing user passwords to AIX servers

BACKGROUND.

The passwd file in the /etc/security directory contains entries for user
passwords. Password entries in this file are built using three random
characters generated by AIX. This means that on different sites the
same password results in different entries in the /etc/security/passwd
file.

However, if you transfer a password from one AIX machine to
another, you will get the same password on both machines. This is an
easy way to distribute user passwords to all AIX systems.

I developed two scripts that make use of this. The benefits of using
these scripts are:

• You’ve always got the same password on all AIX servers.

• You have to enter the password on only one machine.

• You only have to enter your password twice (including
confirmation), which reduces typing errors.

• Automating the replication process saves time.

• The administrator doesn’t know the user’s password, which is
probably the same as the network password.

DETAILS OF THE /ETC/SECURITY/PASSWD FILE

This file contains the following entries for each user:

user_identification:
 password = password_string
 lastupdate = update_string
 flags = flag_string

If the user has never logged in, password_string will be an asterisk
(‘*’) and the other two entries (lastupdate and flags) will be missing.

When replicating passwords, the lastupdate entry has to be changed,
as it contains date and time information necessary to calculate when

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

the password has to be changed. The entry flags also have to be
changed, as AIX uses them to check whether the password has to be
changed immediately on next logon (ADMCHG).

Whenever the password file changes, you must copy it to /etc/
security/opasswd to ensure that you conform to AIX standards.

TO CHANGE A PASSWORD ON ALL AIX SERVERS

• The user changes his or her password on the machine where the
script dist_passwd resides.

• Someone logs on as root and starts the script dist_passwd
(‘distribute password’). This script takes two parameters: the
user-id of the user whose password has changed and root’s
password.

The script searches the password file for an entry belonging to the
nominated user. If an entry is not found, an error message is generated
and execution stops. If the entry is found, the script creates a temporary
file and enters a loop; during each iteration, the temporary file is sent
to an AIX server using FTP. On reception of the file, the remote server
starts the remote execution of the second script, passwd_chg. This
script reads the temporary file and updates the password file (if it
contains the user entry). It also creates a result file. After executing the
script, it transfers the result file (using FTP) and displays the result on
your monitor.

NOTES

1 If the user doesn’t exist on an AIX machine, then the user has not
been created on that machine.

2 The two scripts use other scripts that are published in other
editions of AIX Update:

– testftp, which checks the success of an FTP operation (see
AIX Update, March 1999)

– logmsg, a ‘script logging system’ (see AIX Update, March
1997).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

Note the use of the continuation character, ‘➤ ’, in the code below to
indicate that one line of code maps to more than one line of print.

DIST_PASSWD
Name script : /home/oper/dist_passwd
Last change : 10-06-99 pst creation script
Description : Distribute a password on this machine to all other
AIX servers
#--

if [$# -ne 2]
then echo "\nMissing parameters: user and/or root's password\n"
 echo "Example: dist_passwd pos9909 password_of_root\n"
 exit
fi

if ["$*" = "?"]
then echo "\nRequired parameters : user"
 echo " : password of root"
 echo "Example: dist_passwd pos9909 password_of_root\n"
 exit
fi

if [`whoami` != "root"]
then
 echo "\nOnly root is allowed to execute this script:"
 echo "After the script terminates, please logon as root.\n"
 exit 1
fi

The next lines prevent damage to the file /.netrc:
check whether another script is using FTP;
if yes, then wait until it stops.
while [-f /home/data/netrc.busy]
 do
 n1=`cat /home/data/netrc.busy`
 echo "FTP of project $n1 is busy, waiting one minute."
 sleep 60
 done

we're using FTP, so lock FTP to other scripts
echo "change_passwd" > /home/data/netrc.busy

Initialize variables
my_machine=`hostname`
user_found="no"
number=0
ftp_ok=0

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ftp_error=0
rexec_ok=0
rexec_error=0
passwd_ok=0
passwd_error=0

while read variable contains var_string
 do
 if ["$variable" = "$1:"]
 then
 # We've got the user section, set user_found to get entries
 user_found="yes"
 user=$1
 fi
 if ["$user_found" = "yes"]
 then
 case "$variable" in
 password)
 password=$var_string
 ;;
 lastupdate)
 # Last entry in the user section, fill the temp file
 echo "$user $password $var_string" >/tmp/dist_passwd
 # Get the current time (needed for statistics)
 begin_time=`date +"%H%M%S`
 echo "Time Output commands"
 # Go to all servers exept this one
 for site in `cat /home/data/all_aix_servers | grep -v
 ➤ $my_machine`
 do
 let number=$number+1
 echo "`date +"%H:%M:%S"` - Distributing password
 ➤ entries to $site"
 # Create the FTP file /.netrc
 echo "machine $site login root password $2"
 ➤ >/tmp/passwd_ftp.netrc
 echo "macdef init"
 ➤ >>/tmp/passwd_ftp.netrc
 echo "put /tmp/dist_passwd"
 ➤ >>/tmp/passwd_ftp.netrc
 echo "quit"
 ➤ >>/tmp/passwd_ftp.netrc
 echo ""
 ➤ >>/tmp/passwd_ftp.netrc
 cp /tmp/passwd_ftp.netrc /.netrc
 chmod 600 /.netrc
 # Make sure you've got no output of previous FTP
 rm /tmp/passwd_ftp_outp 1>/dev/null 2>&1
 # Use FTP to sent the temporary password file
 ftp -v $site 1>/tmp/passwd_ftp_outp 2>&1

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

 # Check that the FTP succeeded
 testftp /tmp/passwd_ftp_outp $site sys
 RETC=$?
 if ["$RETC" -ne 0]
 then
 let ftp_error=$ftp_error+1
 let passwd_error=$passwd_error+1
 echo "`date +"%H:%M:%S"` - FTP to $site failed"
 echo "`date +"%H:%M:%S"` - Password has NOT changed
 ➤ at $site. \n"
 echo "FTP to $site failed"
 ➤ >>/tmp/passwd_err
 echo "Information follows:"
 ➤ >>/tmp/passwd_err
 cat /tmp/passwd_ftp_outp
 ➤ >>/tmp/passwd_err
 echo "Remote command has not been executed"
 ➤ >>/tmp/passwd_err
 echo "Password NOT changed!\n"
 ➤ >>/tmp/passwd_err
 else
 let ftp_ok=$ftp_ok+1
 echo "`date +"%H:%M:%S"` - The password will be
 ➤ changed using the remote command passwd_chg"
 # call on the remote site the script which actually
 # changes the password
 rexec $site /home/oper/passwd_chg
 ➤ 2>/tmp/passwd_err2
 RETC=$?
 if ["$RETC" -ne 0]
 then
 let rexec_error=$rexec_error+1
 let passwd_error=$passwd_error+1
 echo "`date +"%H:%M:%S"` - Rexec command to
 ➤ $site failed"
 echo "`date +"%H:%M:%S"` - Password NOT
 ➤ changed! \n"
 echo "Rexec command to $site failed"
 ➤ >>/tmp/passwd_err
 echo "Returncode=$RETC"
 ➤ >>/tmp/passwd_err
 echo "Information follows:"
 ➤ >>/tmp/passwd_err
 cat /tmp/passwd_err2
 ➤ >>/tmp/passwd_err
 echo "Password NOT changed!\n"
 ➤ >>/tmp/passwd_err
 rm /tmp/passwd_err2
 else
 let rexec_ok=$rexec_ok+1

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 echo "`date +"%H:%M:%S"` - Getting the result
 ➤ of the remote command"
 echo "machine $site login root password $2"
 ➤ >/.netrc
 echo "macdef init" >>/.netrc
 echo "get /tmp/dist_passwd.return" >>/.netrc
 echo "quit" >>/.netrc
 echo "" >>/.netrc
 # Get the result of the remote exec command
 ftp -v $site 1>/dev/null 2>&1
 # Display the result
 echo "`date +"%H:%M:%S"` - \c"
 cat /tmp/dist_passwd.return
 # statistics
 check_it=`cat /tmp/dist_passwd.return | grep
 ➤ NOT`
 rm /tmp/dist_passwd.return
 if [-z "$check_it"]
 then
 let passwd_ok=$passwd_ok+1
 else
 let passwd_error=$passwd_error+1
 fi
 echo
 fi
 fi
 rm /tmp/passwd_ftp_outp
 done
 end_time=`date +"%H%M%S`
 # Remove temporary files
 rm /tmp/dist_passwd
 rm /home/logging/sys.log 2>/dev/null
 rm /.netrc 2>/dev/null
 rm /home/data/netrc.busy 2>/dev/null
 if [-s /tmp/passwd_err]
 then
 # There are errors: display them
 pg /tmp/passwd_err
 rm /tmp/passwd_err
 fi
 # Show statistics
 begin_hour=`echo $begin_time |cut -c1-2`
 begin_min=`echo $begin_time |cut -c3-4`
 begin_sec=`echo $begin_time |cut -c5-6`
 end_hour=`echo $end_time |cut -c1-2`
 end_min=`echo $end_time |cut -c3-4`
 end_sec=`echo $end_time |cut -c5-6`
 let number_hour=end_hour-begin_hour
 let number_min=end_min-begin_min
 let number_sec=end_sec-begin_sec

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

 if [$number_sec -lt 0]
 then
 let number_min=$number_min-1
 let number_sec=60+$number_sec
 fi
 if [$number_min -lt 0]
 then
 let number_hour=$number_hour-1
 let number_min=60+$number_min
 fi
 if [$number_hour -lt 0]
 then
 let number_hour=$number_hour+24
 fi
 let average=\($number_sec+60*$number_min+3600*number_hour\)
 ➤ /$number
 echo "Statistics:"
 echo "Number of sites processed : $number"
 echo "Number of ftps ok : $ftp_ok"
 echo "Number of wrong ftps : $ftp_error"
 echo "Number of rexecs ok : $rexec_ok"
 echo "Number of wrong rexecs : $rexec_error"
 echo "Number of passwords changed : $passwd_ok"
 echo "Number of passwords not changed : $passwd_error"
 echo "Average processing time / site : $average seconds"
 exit 0 ;;
 *) ;;
 esac
fi
done </etc/security/passwd
remove temporary files
rm /home/logging/sys.log 2>/dev/null
rm /.netrc 2>/dev/null

remove lock FTP
rm /home/data/netrc.busy 2>/dev/null

echo "User \"$1\" not found in /etc/security/passwd"
echo "Please check user \"$1\"! "

exit 1

PASSWD_CHG
Name script : /home/oper/passwd_chg
Last change : 22-06-94 pst creation
Description : Change user entry in /etc/security/passwd
#--
remove_ADM ()

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

{
remove ADMCHG from a string of flags
case $# in
 0) ;;
 *) var_string=""
 first="yes"
 while [$# -gt 0]
 do
 if ["$1" != "ADMCHG"]
 then
 if ["$first" = "yes"]
 then
 var_string="$1"
 first="no"
 else
 var_string="$var_string,$1"
 fi
 fi
 shift 1
 done
 ;;
esac
}

Get user and entries that have to be replaced
read user password lastupdate </tmp/dist_passwd

Make new password file
>/etc/security/new_password_file

user_found="no"
while read variable contains var_string
 do
 if ["$variable" = "$user:"]
 then
 # We've got the user, replace the entries in the next loops
 user_found="yes"
 user_processed="yes"
 fi
 if ["$user_found" = "yes"]
 then
 case "$variable" in
 password)
 if ["$var_string" != "*"]
 then
 # User is initialized, so replace password
 var_string=$password
 else
 # User has never been initialized
 # Add user entries (add password + lastupdate)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

 echo " password = $password"
 ➤ >>/etc/security/new_password_file
 echo " lastupdate = $lastupdate"
 ➤ >>/etc/security/new_password_file
 # Initialize next variable, so it can be written
 # in the loop
 variable="flags"
 var_string=""
 # Finish changing user, and don't alter other
 # entries
 user_found="no"
 fi ;;
 lastupdate)
 var_string=$lastupdate ;;
 flags)
 remove_ADM `echo $var_string | tr ',' ' '`
 # Normal last entry in the user section
 # Do not change other users
 user_found="no" ;;
 *) ;;
 esac
 fi
 # Is this a user section?
 check_user_entry=`echo $variable | grep :`
 if [-n "$check_user_entry"]
 then
 # Yes, so fill the file with user section
 echo "$variable" >>/etc/security/new_password_file
 else
 # No, so fill the file with user entry
 echo " $variable $contains $var_string"
 ➤ >>/etc/security/new_password_file
 fi
done </etc/security/passwd

if ["$user_processed" = "yes"]
then
 # Copy the old password file to opasswd to conform with AIX
 # standards
 cp /etc/security/passwd /etc/security/opasswd
 # Replace the complete password file by the one generated to
 # minimize login errors
 mv /etc/security/new_password_file /etc/security/passwd
 logmsg $0 "Password changed for user $user"
 # Fill the result file
 echo "The password of $user is changed in `hostname`"
 ➤ >/tmp/dist_passwd.return
else
 # User not found: give message
 logmsg $0 "User-id $user doesn't exist in /etc/passwd: password

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 ➤ NOT changed!"
 echo "User-id NOT in /etc/passwd: the password is NOT changed in
 ➤ `hostname`!" >/tmp/dist_passwd.return
 rm /etc/security/new_password_file
fi

remove input
rm /tmp/dist_passwd

The file /home/data/all_aix_servers contains a list of all AIX servers.
In our example, it consists of the following lines:

aftopt.amf.schuitema
afts1.amf.schuitema
afts2.amf.schuitema
aftvi1.amf.schuitema
wdns7.wdn.schuitema

EXAMPLES PASSWORD ENTRIES

Before changing the password:

root:
 password = hDoRLuc0QfYNA
 lastupdate = 922092027
 flags =

user001:
 password = *

user002:
 password = 8H3GmteZWdtCA
 lastupdate = 810296852
 flags = NOCHECK,ADMCHG,ADMIN

After changing the password:

root:
 password = wmzE7uRQGbJPM
 lastupdate = 923549108
 flags =

user001:
 password = vWFJtM1hQPXGs
 lastupdate = 922974551
 flags =

user002:
 password = IdXtyTl2oNyMI

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

 lastupdate = 921592532
 flags = NOCHECK,ADMIN

Screen output of the script:

Time Output commands
17:02:12 - Distributing password entries to aftopt.amf.schuitema
17:02:17 - The password will be changed using the remote command
 passwd_chg
17:02:22 - Rexec command to aftopt.amf.schuitema went wrong
17:02:22 - Password NOT changed!

17:02:22 - Distributing password entries to afts2.amf.schuitema
17:02:23 - FTP to afts2.aft.schuitema went wrong
17:02:23 - Password is NOT changed in afts2.amf.schuitema!

17:02:23 - Distributing password entries to aftvi1.amf.schuitema
17:02:24 - The password will be changed using the remote command
 passwd_chg
17:02:26 - Getting the result of the remote command
17:02:27 - Userid NOT in /etc/passwd: the password is NOT changed in
 aftvi1!

17:02:27 - Distributing password entries to wdns7.wdn.schuitema
17:02:28 - The password will be changed using the remote command
 passwd_chg
17:02:31 - Getting the result of the remote command
17:02:32 - The password of pos9909 is changed in wdns7

Rexec command to aftopt.amf.schuitema failed
Returncode=1
Information follows:
Login incorrect.
Password NOT changed!

Rexec command to aftopt.amf.schuitema failed
Returncode=1
Information follows:
Login incorrect.
Password NOT changed!

FTP to afts2.amf.schuitema failed
Information follows:
ftp: Unknown host afts2.amf.schuitema
?Invalid command
?Invalid command
?Invalid command
.
.
.

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

?Invalid command
?Invalid command
?Invalid command
?Invalid command
Remote command has not been executed
Password is NOT changed!

(EOF):

Statistics:
Number of sites processed : 4
Number of ftps ok : 3
Number of wrong ftps : 1
Number of rexecs ok : 2
Number of wrong rexecs : 1
Number of passwords changed : 1
Number of passwords not changed : 3
Average processing time / site : 5 seconds

$

Output in the logging system of 2 sites:
07/06/99 17:02:30 17552 root /home/oper/passwd_chg ------- Password
changed for user pos9900

07/06/99 17:02:25 23578 root /home/oper/passwd_chg ------- Userid
pos9900 doesn't exist in /etc/passwd: password NOT changed!

Teun Post
Unix/Oracle Specialist
Schuitema NV (The Netherlands) © Xephon 2000

Using the bc programmable calculator

The bc utility is a programmable calculator. It performs several types
of calculation and also provides simple looping logic. It also benefits
from being much easier to use than the expr expression evaluator used
in shell scripting.

Start bc by typing the command bc from a command line. Once bc
starts, you’re in the context of the bc calculator until you type quit.
Below is a simple example bc session. In the listing, the expression

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

‘4+2’ is entered by the user, to which bc responds by outputting ‘6’.
Finally the user types quit and presses Return to exit bc.

$ bc
4+2
6
quit
$

Variables in bc can be used to hold values. Some versions of bc allow
only single-character variables, though later versions allow multi-
character variable names. In all the examples in this article, I use
single-character variables so as to maintain compatibility with earlier
versions. In the example below, the user makes the following
assignments: a=4, b=5, and c=b-a. Notice that the assignments do not
result in any output from bc. Finally the user types c on a line by itself
and bc outputs ‘1’, the result stored in c after the assignment c=b-a.
The bc calculator displays the result of any calculation that is not
assigned to a variable. Typing an expression or a variable without an
assignment causes the result to be output to the screen.

$ bc
a=4
b=5
c=b-a
c
1
quit
$

A special temporary variable in bc holds the last number output. This
variable is ‘dot’ (‘.’). In the next example, the user enters 4+2 and bc
outputs 6. The user then enters ‘.’ and bc again outputs 6, the value
held in the temporary variable. The variable itself can be used in an
expression, as in .+1, to which bc outputs 7. Typing ‘.’ will again
output 7, as this is now the last value output and thus has been assigned
to ‘.’. Finally the user enters an assignment, c=4, and then enters ‘.’
again. The output from bc is, again, 7. It is important to remember that
‘.’ represents the last number output, not the last variable assignment.

$ bc
4+2
6
.
.+1

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

7
.
7
c=4
.
7
quit
$

The number of decimal places printed by bc is controlled by the
variable scale. Predefined internal bc variables, such as scale, violate
the one-character variable name rule even in early versions of bc. The
default value of scale is 0. As shown below, the result of dividing 7 by
16 is displayed using different values of scale, starting with scale=5
and ending with scale=0. As can be seen, bc truncates values rather
than rounding them.

$ bc
scale=5
7/16
0.43750
scale=3
7/16
0.437
scale=2
7/16
0.43
scale=0
7/16
0
quit
$

Some standard bc operators are demonstrated in the next listing.
Addition (‘+’), subtraction (‘-’), multiplication (‘*’), and division (‘/
’) are fairly standard. Further down the list are remainder division
(‘%’) and exponentiation (‘^’).

In remainder division, the result of the calculation is the remainder of
the division rather than the quotient, hence:

• 5%2 is 1

• 15%13 is 2

• 6%3 is 0

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

• 27%5 is 2.

The exponentiation operator raises the left-hand operand to the power
of the right-hand one, so:

• 3^2 is 9

• 2^3 is 8.

The bc assignment operator assigns a value to a variable. They are
similar to the assignment and compound assignment operators in C.
The first two examples in the listing below are simple assignment
(‘=’). The compound plus-equal operator(‘+=’) adds the value on the
right-hand side of the assignment to the variable on the left-hand side
and stores the result in the variable on the left-hand side of the
assignment. Thus a+=2 is shorthand for a=a+2. The remaining
compound assignment operators (‘-=’, ‘*=’, ‘/=’, ‘^=’, ‘%=’) all
behave in analogous ways. When reading the listing below remember
that the effect of the compound operator on the variable a is to alter its
value.

$ bc
a = 7
b = 3
a += 2
a
9
a -= 4
a
5
a *= 2
a
10
a /= b
a
3
a ^= 3
a
27
a %= 5
a
2
quit
$

The bc increment and decrement operators are also similar to C,

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

though they have a side-effect in bc. Normally an increment or
decrement operator simply adds or subtracts ‘1’ from a variable, as in
x++, or --y. Using an increment or decrement operator in bc also
causes the value of the variable to be echoed to the screen. In the case
of pre-increment or pre-decrement (++x and --x), the variable is
changed and then its value echoed to the screen. In the case of post
increment and decrement operators (x++ and x--), the value of the
variable is echoed to the screen and then changed. Examples of these
effects are shown below.

$ bc
x=1
x++
1
x
2
++x
3
x
3
x-—
3
x
2
--x
1
x
1
quit
$

Output to the screen for increment or decrement operators can be
suppressed by using the void keyword, as in:

$ bc
x=1
void x++
x
2
void ++x
x
3
quit
$

It seems to me that an assignment operator is more efficient than an
increment or decrement operator in cases where you don’t want to

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

display the result. Typing x+=1 or x-=1 requires fewer keystrokes
than void x++ or void x--.

Comparison operators are used to construct if structures. The available
operators are: ‘equal to’ (‘==’), ‘less than’ (‘<’), ‘greater than’ (‘>’),
‘greater than or equal to’ (‘>=’), ‘less than or equal to’ (‘<=’), and ‘not
equal’ (‘!=’). The entire test should be enclosed in parentheses, and
parentheses can be used to group tests. Comparison tests can be
combined using ‘and’ (‘&&’) and ‘or’ (‘||’), as in:

if (((x < 5) && (y != 7)) || (z=4))

More examples of if tests are provided later in this article.

There are two types of flow control loop in bc: for loops and while
loops. A for loop takes the form:

for(initialization; test ; end of loop expression){
 statements;
}

In the next example, x=0 sets x’s initial value to zero, x<5 controls
how long the for loop executes, and ++x indicates what to do at the
end of each loop. Everything within the curly braces is executed. In
this case, the value of x is displayed on screen, resulting in a display
of ‘0’ to ‘4’. Note that a statement may be terminated either with a
semicolon (‘;’) or a newline character (the example uses a semicolon).
Also note that the increment operator within a for loop does not cause
the variable to be displayed. The behaviour of increment and decrement
operators is slightly inconsistent in bc, and it is necessary to display
the value of x explicitly below.

$ bc
for(x=0;x<5;++x){
 x;
}
0
1
2
3
4
quit
$

A while loop is another control loop available in bc. Its format is:

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

while(condition){
 statements;
}

The loop in the example below produces the same result as the
preceding for loop. This time the loop takes advantage of the display
and increment behaviour of x++ to display the value and increment
it.

$ bc
x=0
while(x<5){
 x++;
}
0
1
2
3
4
quit
$

Just a quick warning for experienced C programmers: some versions
of bc insist that the opening curly brace that starts the body of a for,
while, or if block appears on the same line as the command. This is also
true of function definitions, which I will cover in a moment. Hence the
next example won’t work on some versions of bc because the opening
curly brace starts on a new line.

$ bc
x=0
while(x<10)
{
 x++;
}
quit
$

Text can be output to the screen by surrounding it with quotes, as in
the following example. When you are using bc interactively at a
terminal this is not much use, though it will become useful in writing
bc programs. Output text is not appended with a new line, making it
possible to display information as in:

$ bc
x = 7
"The value of x is "; x;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

The value of x is 7
quit
$

The variable ‘.’ holds only the last number that was output, so printing
text on the screen does not affect its value.

A function in bc is a block of named code that can be executed as a
subroutine within bc. The block can be passed values on which it
operates and, given that bc is a calculator program, it can return a
numeric value. In the next example, the function s() is defined as
taking a single value. The function performs a calculation and returns
the square of the value. When the function is typed in to bc, as shown
below, bc defines the function but does nothing with it. If your version
of bc supports identifiers longer than one character, it would be better
to name this function square(). The keyword return causes x*x to be
returned by s().

$ bc
define s(x){
 return(x * x);
}

To call the function, you must pass it a value. The listing below defines
the function and then uses it to calculate the square of 3 and place it
in a. Variable a is then printed. Next, the square of 8 is calculated and
printed directly to the screen.

$ bc
define s(x){
 return(x * x);
}
a = s(3)
a
9
s(8)
64
quit

Once you type quit and exit bc, the function definition is lost.

The variable x in the function definition of s(x) is a temporary variable
or place holder. What happens to this x does not affect any other
variable named x in the bc program. In the next code example, the
instance of x that’s set to 1 outside the function s() is not affected by

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

what happens to the other instance of x inside the function definition,
even though s() changes the value of its instance of x inside the
function.

$ bc
define s(x){
 x*=x;
 return(x);
}
x=1
a = s(3)
a
9
s(8)
64
x
1
quit

Now you have all the parts that you need to create a bc program. The
first example program uses the function s() developed in the earlier
listing. Using vi, create the following script (excluding the line
numbers, which are just for explanation). The first thing you’ll notice
is that comments (lines 1 and 6) use the same convention as C, and
comprise any text between an opening slash-asterisk (‘/*’) and a
closing asterisk-slash (‘*/’). Comments can span multiple lines, and
some versions of bc support the character ‘#’ to indicate the start of a
one-line comment. The semicolon at the end of line 3 is optional as bc
treats either a semicolon or a newline as the end of a statement, though
the ones in lines 8 and 10 are not. Aside from the fancy text formatting,
there are no surprises in the script. Save this script with a name such
as sqr.

 1 /* s() returns the square of a number */
 2 define s(x){
 3 return(x*x);
 4 }
 5
 6 /* find the square of 2 and 8 */
 7 x=2
 8 "The area of a square with ";x;" ft sides is ";s(x);" sq ft";
 9 x=8
10 "The area of a square with ";x;" ft sides is ";s(x);" sq ft";
11
12 quit

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

Execute the script by typing bc sqr, as shown below. If bc is followed
by a file name, the file is used as the input to bc.

$ bc sqr
The area of a square with 2
 ft sides is 4
 sq ft
The area of a square with 8
 ft sides is 64
 sq ft

This example is fine if you want to know the squares of two and eight,
though what is needed is something more flexible, something that
takes an argument and calculates a square from it.

The first step is to use something called a ‘here’ document. In the
example below, sqr is converted into a here document. A line has been
added at the top of the program that reads bc <<END-OF-INPUT and
one at the bottom that reads END-OF-INPUT. sqr is no longer a bc
program, it’s now a shell script, and you must change its mode to allow
execution using chmod a+x sqr. The instruction in line 1 reads: ‘run
bc and use the rest of this file as input to bc until you encounter a line
containing END-OF-INPUT.’ When sqr is run, the shell first starts bc,
then reads line 2 and subsequent lines of the script, feeding them to bc.
When line 15 is fed to bc, bc stops running as the line contains quit.
The shell reads line 16 and recognizes the END-OF-INPUT tag that
it is expecting and stops feeding lines to bc (which is fortunate, as bc
has stopped running). So far, all we have is another method of showing
the squares of two and eight, so not much has changed.

 1 bc <<END-OF-INPUT
 2 /* s() returns the square of a number */
 3 define s(x){
 4 return(x*x);
 5 }
 6
 7 /* use s on 2 and 8 */
 8 x=2
 9 "The area of a square with ";x;" ft sides is ";s(x);" sq ft";
10 x=8
11 "The area of a square with ";x;" ft sides is ";s(x);" sq ft";
12
15 quit
16 END-OF-INPUT

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

In the next example, sqr has been turned into a script that accepts input
arguments and processes them correctly. In lines 3 to 7, the number of
arguments on the command line is tested. The program must be started
using the command sqr followed by a number. If there is no argument
or more than one argument, an error results. Note that the error
checking does not test whether the argument passed really is a
number, it merely tests that a single argument exists, though you could
improve its error handling by implementing code that validates that
the argument is a number. If you invoke sqr with a non-numeric
argument, as in:

sqr hello

bc either treats the argument as zero and returns 0 or displays an error.

The call to start bc with a here document begins at line 9, and is the
same as discussed previously. Line 16 assigns the argument from the
command line to x, and then the function s() is called.

 1 # sqr - takes a numeric argument and outputs its square
 2
 3 if [$# != 1]
 4 then
 5 echo "A number argument is required"
 6 exit
 7 fi
 8
 9 bc <<END-OF-INPUT
10 /* s() returns the square of a number */
11 define s(x){
12 return(x*x);
13 }
14
15 /* use s on the argument from the command line */
16 x=$1
17 "The area of a square with ";x;" ft sides is ";s(x);" sq ft";
18
19 quit
20 END-OF-INPUT

The listing below illustrates the use of sqr.

$ sqr 9
The area of a square with 9
 ft sides is 81
$ sqr 15
The area of a square with 15

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

 ft sides is 225
 sq ft
$

addgrg gives bc a real workout. It is a procedure to add a number of
days to a date and is invoked with two arguments, a date in yyyymmdd
format and a number of days (positive or negative) to be added to the
date. The listing of addgrg below follows the old bc convention of
using only single-character names for variables and functions, so
functions have cryptic names like as y() and j(). If your version of bc
supports longer names, use ones like days_in_year() or
cvt_grg_to_jul(). The script starts with a test to ensure that two
arguments exist on the command line. Again, I check only for the
existence of two arguments, and don’t verify their correctness. Most
of the bc script defines functions, and the main part of the program,
where the arguments are used, doesn’t begin until line 101. There are
some additional features of a bc program that you will see here.
Consider the function y() defined in lines 12 to 27. The first oddity is
the existence of y as the name of a function and a variable. The
designer of bc realized the limitation of one-character names and
made sure that, although two functions cannot have the same name,
a function can have the same name as a variable. Without this feature,
bc would run out of names quickly.

Another new feature appears in line 13. The variable x is declared as
auto. By default, all variables in bc except placeholders (described
earlier) are global and available to all parts of the program. The auto
declaration causes a temporary variable named x to be created that is
valid only in the context of the function in which it is declared. In y(),
x is created, used, then thrown away when y() returns. If a bc program
encounters a global variable and an auto variable with the same name,
the auto variable is used, if available. In this example, the existence
of a global variable named x does not affect the use of a local version
of x inside the function y().

The third new feature appears in lines 15 to 17. While I mentioned if
tests earlier, this is the first example of their syntax. Everything within
the curly braces is executed if x==0 is true.

Briefly, y() in lines 11 to 27 checks whether a year is a leap year. The
function returns the number of days in the given year (365 or 366).

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The rules for a leap year are (both must be satisfied):

1 A leap year is evenly divisible by 4.

2 A leap year is not evenly divisible by 100 unless it is also evenly
divisible by 400.

Testing these rules is simplified by turning them upside down and
testing for evenly divisible by 400, then by 100, then by 4, and taking
the result as soon as you have a match.

The function m() in lines 28 to 41 receives a year and a month as input
and uses the ‘30 days hath September…’ rule to return 30 or 31. If the
month is February, y() is called to find the number of days in the year.
The return value of y() is tested to allow m() to return 29 or 28.

The function g() (lines 42 to 55) converts a date in Julian format to
Gregorian format. Julian format is yyyyddd where ddd is the ordinal
day of the year. For example Jan 1, 1999 is 1999001, February 2, 1998
is 1998033 and December 31, 2000 is 2000366 (yes, 2000 is a leap
year). The date in Julian format is converted to a Gregorian format,
yyyymmdd, by calculating the days in each month and reducing the
ordinal number of days of the date until the month is found.

The function j() (lines 56 to 61) is the inverse of g(). It converts a date
in Gregorian format to Julian format by adding the days in all
preceding months in the year to the day of the month to obtain the ddd
portion of the date.

The function b() (lines 70 to 90) should have had a better name. It adds
positive or negative days to a Julian format date. The reason that
yyyymmdd dates are converted to yyyyddd format is that it’s much
easier to perform arithmetic using the latter format, which just
requires adding the days and then checking whether you need to wrap
forward or backward to another year.

The logic in b() probably requires some explanation. First, the days
are added. After addition, the number of days value will be in one of
three states. The number could be greater than the number of days in
the year in question, indicating that the addition has thrown the date
forward to a later year. Alternatively, it could be a value less than 1,
indicating that a negative value was added and has thrown the date

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

back to an earlier year. Finally the days could fall within the year. If
the number of days falls within the year, then no further processing is
needed and the logic in lines 77 to 81 and 82 to 86 is skipped. These
two pieces of logic handle the first two states respectively.

Working out the new year is just a matter of repeated subtraction (or
addition) of the number of days in future (or past) years; this process
is repeated until the number of calculated days is reduced to a value
between 1 and 365 (or 366).

Function a() (lines 91 to 98) is the main function of the program. a()
is passed a date in Gregorian format and a number of days (in fact, it’s
just passed the same arguments that are on the command line for the
addgrg script). a() calls j() to convert the date to Julian format, then
calls b() to add the days to the date in Julian format, and calls g() to
convert the result back to Gregorian format.

Line 101, the main logic of the program, calls function a(), passing it
the two arguments it was passed on the command line.

The listing below is available for download from AIX Update’s Web
site (http://www.xephon.com/aixupdate.html). However, note that
you need to strip out line numbers for the utility to work.

ADDGRG
 1 # addgrg yyyymmdd days - adds 'days' to yyyymmdd
 2
 3 if [$# != 2]
 4 then
 5 echo "Not enough arguments"
 6 echo "Syntax addgrg yyyymmdd [-]days"
 7 exit
 8 fi
 9
10 bc <<END-OF-INPUT
11 /* return days in a four digit year */
12 define y(y){
13 auto x;
14 x = y % 400;
15 if (x == 0) {
16 return(366);
17 }
18 x = y % 100;
19 if (x == 0){

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

20 return(365);
21 }
22 x = y % 4;
23 if (x == 0){
24 return(366);
25 }
26 return (365);
27 }
28 /* return days in a month when yyyy and month are passed */
29 define m(y,m){
30 auto x,d;
31 if (m==1||m==3||m==5||m==7||m==8||m==10||m==12){
32 return(31); /* 31 days */
33 }
34 if (m==4||m==6||m==9||m==11) { /* 30 days */
35 return(30);
36 }
37 if(y(y)==366){ /* except February */
38 return(29);
39 }
40 return(28);
41 }
42 /* convert julian (yyyyddd) to gregorian (yyyymmdd)*/
43 define g(j){
44 auto y,d,m,n,g;
45 y = j/1000; /* extract the year */
46 d = j % 1000; /* extract the ddd portion */
47 for (m=1 ; d > 0 ; ++m){ /* for each month */
48 n = m(y,m); /* subtract the days of the month */
49 d -= n; /* until days are zero or less */
50 }
51 void --m; /* back up one month */
52 d+=n; /* add back the last days subtracted */
53 g= (y*10000)+(m*100)+d; /* build a yyyymmdd format date */
54 return(g);
55 }
56 /* convert gregorian (yyyymmdd) to julian(yyyyddd)*/
57 define j(g){
58 auto y,m,d,x,i,j;
59 y=g/10000; /* extract year */
60 m=(g/100) % 100; /* month */
61 d=g%100; /* and day */
62 for(x=1;x<m;++x){ /* for each previous month */
63 i=m(y,x); /* add days of the month */
64 d+=i; /* add to days in this month */
65 }
66 j= (y*1000)+d; /* build yyyyddd format */
67 return(j);
68
69 }

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

70 /* add positive or negative days to julian date */
71 define b(j,a) {
72 auto y,d,r;
73 y=j/1000;
74 d=j%1000;
75 d+=a;
76 i=y(y);
77 while(d>i){ /* while calculated days > days in the year */
78 y+=1; /* increment the year */
79 d-=i; /* subtract days in the year */
80 i=y(y); /* and try days in this year */
81 }
82 while(d<1){ /* while calculated days < 1 */
83 y-=1; /* go back 1 year */
84 i=y(y); /* get the days in the year */
85 d+=i; /* add to the calculated days and try again */
86 }
87 r= (y*1000)+d;
88 return(r);
89
90 }
91 /* add positive or negative days to a greg date */
92 define a(g,a){
93 auto j,r;
94 j=j(g); /* convert to julian format */
95 j=b(j,a); /* add days to julian format */
96 r=g(j) /* convert back to gregorian format */
97 return(r);
98 }
99
100 /* call add to greg using the two command line arguments */
101 a($1,$2)
102
103 quit
104 END-OF-INPUT

The bc script is very legible compared with an equivalent shell script
using expr and all the extra characters that expr requires. Below is a
sample output from a series of test runs on addgrg that focus on leap
years and boundary conditions.

$ addgrg 19980101 -1
19971231
addgrg 20000101 60
20000301
addgrg 20000101 59
20000229
addgrg 19000101 365
19010101

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

addgrg 20001231 -365
20000101
$

If you do a lot of numeric work that’s programmable, learning to
program bc scripts should make calculations much simpler.

A final note on dates: both the date formats used in addgrg are in the
Gregorian calendar. The yyyyddd format should really be called the
ordinal day date format, though the convention of calling it the ‘Julian
date’ or ‘Julian format date’ has stuck. It is, however, neither a date in
the Julian calendar nor one in the period of the Julian calendar.

Mo Budlong (USA) © Xephon 2000

SSCCARS (part 3)

This month’s instalment continues this series of articles on utilities
that comprise a source code management system.

CHKOUT.SH

chkout.sh is the check out module. It has an interface to an Oracle
database called ‘SMART’ and uses the UpdateSmart library function
to store the checkout details of the updatable copy of the source.

CHKOUT.SH

#! /bin/ksh
###
Name : chkout.sh
#
Overview : Allows the user to check out:
o A read-only copy of the latest version of a source
o A read-only copy of a specific version of a source
o An updateable copy of a source.
#
It also allows the authorized user to cancel
any booking of the modifiable copy of the source.
#

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

Notes 1 Requests for read-only copies of a source are
always met.
#
2 Requests for updateable copies of a source are
met only if the source is not already checked out.
#
3 If a copy of the required source exists in the
target directory, the program displays an error
message.
#
4 If the target directory is not writeable by
user, the program displays an error message.
#
5 The required source must have a pre-defined file
extension.
#
6 The program always copies the source with the
highest version in response to a request for a
read-only copy; otherwise the copy of the
source has the highest version plus one.
#
7 A pre-requisite of this program is that all
existing source code has a version number.
#
8 Only the authorized user (root) may cancel
a booking of a modifiable copy of a source.
#
9 When a copy of a source is made for update,
it locks the source by calling execsu with the
ACTION variable set to 'CR'. This creates and
maintains a zero-byte file of the same name in
directory $LOCK_DIR. When a request to cancel a
booking is made, the zero-byte file is removed,
thus freeing the source. This is done by calling
execsu with the ACTION variable set to 'RM'.
#
10 Users are not allowed to copy source files to any
of the restricted directories listed in
$RESTRICTED_DIR_LIST.
#
11 All the allowed file extensions are held in
the variable FILE_EXTS.
#
12 If a new file extension is added, a subdirectory
with the same name must be created in the
$SOURCE_DIR directory, otherwise the source file
cannot be found.
#
13 A log entry is written whenever a copy of the
source is made for update or an existing booking

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

for an update is cancelled.
#
14 The script contains following functions:
o main
o DisplayMenu
o ProcessExit
o ProcessMenuOption
o DefineModuleVariables
o ProcessReadOnlyLatestCopy
o ProcessReadOnlySpecificCopy
o ProcessUpdateableCopy
o CheckLocation
o GetSourceFileNameFromLov
o ProcessFileExtension.
###
###
Name : DisplayMenu
#
Overview : The function displays menu
###
DisplayMenu ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
OPTION=
clear
echo ""
echo ""
echo " ##"
echo " # ${CHKOUT} #"
echo " # #"
echo " # 5 Get latest copy (read-only) #"
echo " # 10 Get specific version (read-only) #"
echo " # 15 Get modifiable copy #"
echo " # 25 Main menu #"
echo " # 99 Exit #"
echo " # #"
echo " # Please acknowledge message displayed #"
echo " ##"
echo " Enter option--->\c"
read OPTION
}
###
Name : ProcessMenuOption
#
Overview : Process a menu option
#
Notes 1 The function calls the following functions:
o DisplayMenu
o ProcessReadOnlyLatestCopy
o ProcessReadOnlySpecificCopy

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

o ProcessUpdateableCopy
o CancelCheckedOutBooking
###
ProcessMenuOption ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
while true
do
 DisplayMenu
 case "${OPTION}" in
 5) if ProcessReadOnlyLatestCopy
 then
 DisplayMessage I "${READ_LATEST_CHECKOUT_DONE}" ;
 else
 if ["${FUNCTION_ABORTED}" = "Y"]
 then
 FUNCTION_ABORTED=N ;
 DisplayMessage I "${FUNCTION_ABORTING}" ;
 else
 DisplayMessage E "${READ_LATEST_CHECKOUT_FAILED}" ;
 fi ;
 fi;;
 10) if ProcessReadOnlySpecificCopy
 then
 DisplayMessage I "${READ_SPECIFIC_CHECKOUT_DONE}" ;
 else
 if ["${FUNCTION_ABORTED}" = "Y"]
 then
 FUNCTION_ABORTED=N ;
 DisplayMessage I "${FUNCTION_ABORTING}" ;
 else
 DisplayMessage E "${READ_SPECIFIC_CHECKOUT_FAILED}" ;
 fi ;
 fi;;
 15) if ProcessUpdateableCopy
 then
 DisplayMessage I "${UPDATE_CHECKOUT_DONE}" ;
 else
 if ["${FUNCTION_ABORTED}" = "Y"]
 then
 FUNCTION_ABORTED=N ;
 DisplayMessage I "${FUNCTION_ABORTING}" ;
 else
 DisplayMessage E "${UPDATE_CHECKOUT_FAILED}" ;
 fi ;
 fi ;;
 25) return $TRUE ;;
 99) ProcessExit $SEC ;;
 "") if ["${FUNCTION_INTERRUPTED}" = "Y"]
 then

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 FUNCTION_INTERRUPTED=N;
 else
 DisplayMessage E "${INVALID_ENTRY}" ;
 fi ;;
 *) DisplayMessage E "${INVALID_ENTRY}"
 esac
done
}
###
Name : ProcessReadOnlyLatestCopy
#
Overview : Makes a read-only copy of the latest version of the
requested source file.
#
Returns : $TRUE or $FALSE
#
Notes 1 No log entry is written for this action.
#
2 The function calls following functions:
o GetSourceName
o CheckLocation
o ProcessFileExtension
o GetDirectoryName
o GetLatestVersion READ
o CopySource.
###
ProcessReadOnlyLatestCopy ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
get source name
if ! GetSourceName "CO"
then
 return $FALSE
fi
check current location
if ! CheckLocation
then
 return $FALSE
fi
process file extension
if ! ProcessFileExtension "E"
then
 return $FALSE
fi
get target directory name
if ! GetDirectoryName "CO"
then
 return $FALSE
fi
get latest version number for the source

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

if ! GetLatestVersion READ
then
 return $FALSE
fi
establish file details
REQ_DIR="${SOURCE_DIR}/${SOURCE_EXT}"
REQ_FILE="${REQ_DIR}/${REQ_SOURCE}"
TARGET_FILE="${TARGET_DIR}/${REQ_SOURCE}"
check that the required file exists
if [! -f "${REQ_FILE}"]
then
 FILE_NAME=${REQ_SOURCE}
 DIR_NAME=${REQ_DIR}
 DisplayMessage E "${NO_SOURCE_FOUND}"
 return $FALSE
fi
check for required file in target directory
if [-f "${TARGET_FILE}"]
then
 SLEEP_DURATION=5
 FILE_NAME=${REQ_SOURCE}
 DIR_NAME=${TARGET_DIR}
 DisplayMessage E "${SOURCE_EXISTS}"
 return $FALSE
fi
copy the source
if ! CopySource ${REQ_FILE} ${TARGET_FILE}
then
 return $FALSE
fi
}
###
Name : ProcessReadOnlySpecificCopy
#
Overview : This function makes a read-only copy of a specific
version of a given source.
#
Returns : $TRUE or $FALSE
#
Notes 1 No log entry is written for this action.
#
2 The function calls following functions:
o GetSourceName
o CheckLocation
o ProcessFileExtension
o GetDirectoryName
o CopySource.
###
ProcessReadOnlySpecificCopy ()
{

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
get source name
if ! GetSourceName "CO"
then
 return $FALSE
fi
check for user current location
if ! CheckLocation
then
 return $FALSE
fi
process file extension
if ! ProcessFileExtension "E"
then
 return $FALSE
fi
get source version number
if ! GetSourceVersionNumber
then
 return $FALSE
fi
get target directory name
if ! GetDirectoryName "CO"
then
 return $FALSE
fi
establish file details
REQ_SOURCE="${SOURCE_NAME_WITHOUT_EXT}_${VERSION_NUMBER}.${SOURCE_EXT}"
REQ_DIR="${SOURCE_DIR}/${SOURCE_EXT}"
REQ_FILE="${REQ_DIR}/${REQ_SOURCE}"
TARGET_FILE="${TARGET_DIR}/${REQ_SOURCE}"
check for file existence for required file
if [! -f "${REQ_FILE}"]
then
 FILE_NAME=${REQ_SOURCE}
 DIR_NAME=${REQ_DIR}
 DisplayMessage E "${NO_SOURCE_FOUND}"
 return $FALSE
fi
check for required file in target directory
if [-f "${TARGET_FILE}"]
then
 FILE_NAME=${REQ_SOURCE}
 DIR_NAME=${REQ_DIR}
 DisplayMessage E "${SOURCE_EXISTS}"
 return $FALSE
fi
copy the source
if ! CopySource "$REQ_FILE" "${TARGET_FILE}"
then

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

 return $FALSE
fi
return $TRUE
}
###
Name : ProcessUpdateableCopy
#
Overview : This function makes an updateable copy of the
requested source file.
#
Returns : $TRUE or $FALSE
#
Notes 1 The function checks $LOCK_DIR to establish whether
the source is already checked out. If it is, an
error message is displayed.
#
2 A log entry is written when the source is successfully
copied.
#
3 The function calls following functions:
o GetSourceName
o CheckLocation
o ProcessFileExtension
o GetDirectoryName
o GetLatestVersion UPDATE
o CheckLock
o LockSource
o CopySource
o FreeLock.
###
ProcessUpdateableCopy ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
get source file name
if ! GetSourceName "CO"
then
 return $FALSE
fi
check for user current location
if ! CheckLocation
then
 return $FALSE
fi
process source file extension
if ! ProcessFileExtension "E"
then
 return $FALSE
fi
get target directory
if ! GetDirectoryName "CO"

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

then
 return $FALSE
fi
get latest version of the source
if ! GetLatestVersion UPDATE
then
 return $FALSE
fi
check for lock on the requested source
if CheckLock "${TARGET_SOURCE}"
then
 # source is already locked
 DisplayMessage E "${SOURCE_ALREADY_LOCKED}"
 return $FALSE
fi
establish file details
REQ_DIR="${SOURCE_DIR}/${SOURCE_EXT}"
REQ_FILE="${REQ_DIR}/${REQ_SOURCE}"
TARGET_FILE="${TARGET_DIR}/${TARGET_SOURCE}"
SOURCE_VERSION=`echo $TARGET_SOURCE | sed 's/.*_//' | cut -d'.' -f1`
check for file existence for required file
if [! -f "${REQ_FILE}"]
then
 DisplayMessage E "${NO_SOURCE_FOUND}"
 return $FALSE
fi
check for required file in target directory
if [-f "${TARGET_FILE}"]
then
 DisplayMessage E "${SOURCE_EXISTS}"
 return $FALSE
fi
check database status
if ! SmartDatabaseStatus
then
 DisplayMessage E "${DB_NOT_OK}"
 return $FALSE
fi
lock the source
if ! LockSource ${TARGET_SOURCE}
then
 return $FALSE
fi
copy the source
if ! CopySource "${REQ_FILE}" "${TARGET_FILE}"
then
 # free the lock
 FreeLock ${TARGET_SOURCE}
 return $FALSE
fi

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

write log
${SSCCARS_BIN}/execsu "WL" ${LOG_FILE} ${LOG_DIR} ${LOG_DAY} \
 ${LOG_TIME} ${USERID} ${TARGET_SOURCE} "CHECKED OUT" > \
 ${TEMP_FILE2} 2>&1
if [$? -ne 0]
then
 ERROR_MSG=`cat ${TEMP_FILE2} | head -1`
 DisplayMessage E "${EXECSU_ERROR}"
 # undo everything; remove copied source file
 rm -f "${TARGET_FILE}"
 # remove the lock
 FreeLock "${TARGET_SOURCE}"
 return $FALSE
fi
update SMART database
if UpdateSmart "CO"
then
 DisplayMessage I "${SMART_UPDATED}"
else
 DisplayMessage E "${SMART_NOT_UPDATED}"
fi
return $TRUE
}
###
Name : DefineModuleVariables
#
Overview : Defines all the module's variables
###
DefineModuleVariables ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
define error handling variables
PROG="chkout.sh"
define ordinary variables
OPTION= # selected menu option
REPLY=
MESSAGE=
ACTION= # used to specify the type of action to be carried out
 # by execsu (ACTION = R to remove a file,
 # ACTION = C to copy a file, etc)
define variables required to obtain the latest version of the source
FILE_MATCH=
REQ_FILE_LIST=
FILE_COUNT=
FILE_NAME=
define temporary files
TEMP_FILE1="${TEMP_DIR}/chkout_1_$$.dat"
TEMP_FILE2="${TEMP_DIR}/chkout_2_$$.dat"
}
###

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Name : ProcessExit
Overview : Removes all temporary files and makes a graceful exit.
#
Input : exit code ($SEC or $FEC)
###
ProcessExit ()
{
rm -f ${TEMP_DIR}/*chkout*
EXIT_CODE="$1"
GLOBAL_EXIT=Y
exit $EXIT_CODE
}
###
Name : GetSourceVersionNumber
#
Overview : Gets the required source version number from the user.
###
GetSourceVersionNumber ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
VERSION_NUMBER=""
while true
do
 clear
 echo "Enter required source version number (q to quit):\c"
 read VERSION_NUMBER
 case $VERSION_NUMBER in
 "") if ["${FUNCTION_INTERRUPTED}" = "Y"]
 then
 FUNCTION_INTERRUPTED=N:
 else
 DisplayMessage E "${INVALID_ENTRY}" ;
 fi ;;
 q|Q) FUNCTION_ABORTED=Y ; return $FALSE ;;
 *) # check for numeric
 if ([`expr $VERSION_NUMBER + 0` -eq $VERSION_NUMBER]) \
 > /dev/null 2>&1
 then
 break ;
 else
 DisplayMessage E "${NOT_NUMERIC}" ;
 fi ;;
 esac
done
}
###
Name : main
#
Overview : Calls all other functions.
###

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

main ()
{
DefineModuleVariables
ProcessMenuOption
}
invoke main
main

CHKIN.SH

chkin.sh is the ‘check-in’ module. The module has an interface to an
Oracle database called ‘SMART’. It uses the UpdateSmart library
function to store the relevant check-in details in the database.

CHKIN.SH

#! /bin/ksh
###
Name : chkin.sh
#
Overview : Checks in a modified copy of the source code that
was checked out earlier or a copy of the new
source.
#
Notes 1 The modified source code is copied from the current
directory if a target directory is not specified.
#
2 The required source code must have a pre-defined file
extension.
#
3 The program checks in the copy of the modified
source that was checked out earlier.
#
4 New source code that's checked in is given a
version number of 1, so abc.sql becomes abc_1.sql.
#
5 All the allowed file extensions are held in the
variable FILE_EXTS.
#
6 If a new file extension is added, a subdirectory
of that name must also exist in the directory
$SOURCE_DIR, else the source file won't be found.
#
7 A log entry is written whenever a copy of the
modified source or a new source is checked in.
#
8 Source to be checked in is moved and not copied.
#

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

9 The script contains following functions:
o DisplayCheckinMenuOptions
o ProcessCheckinMenuOptions
o CheckinNewSource
o GetSourceDetails
o CheckinExistingSource.
###
###
Name : SeekConfirmation
#
Overview : Gets confirmation for a message in MESSAGE
###
SeekConfirmation ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
while true
do
 echo "$MESSAGE"
 read REPLY
 case $REPLY in
 y|Y) break ;;
 n|N) break;;
 *) echo "Invaid option";
 clear;;
 esac
done
}
###
Name : DefineModuleVariables
#
Overview : Define all the module variables.
###
DefineModuleVariables ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
define error handling variables
PROG="chkin.sh"
TEMP_FILE="${TEMP_DIR}/chkin_$$.dat"
}
###
Name : DisplayCheckinMenuOptions
#
Overview : Displays menu options.
###
DisplayCheckinMenuOptions ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
clear
echo ""
echo ""

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

echo " ###"
echo " # ${CHKIN} #"
echo " # #"
echo " # 5. Check in existing source #"
echo " # 10. Check in new source #"
echo " # 15. Main menu #"
echo " # 99. Exit #"
echo " # #"
echo " # Please acknowledge the displayed message #"
echo " ###"
echo " Enter option --->\c"
read OPTION
}
###
Name : ProcessCheckinMenuOption
#
Overview : Processes selected menu option.
###
ProcessCheckinMenuOption ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
while true
do
 clear
 OPTION=""
 DisplayCheckinMenuOptions
 case $OPTION in
 5) if CheckinExistingSource
 then
 DisplayMessage I "${CHECKED_IN}" ;
 else
 if ["${FUNCTION_ABORTED}" = "Y"]
 then
 FUNCTION_ABORTED=N ;
 DisplayMessage I "${FUNCTION_ABORTING}" ;
 else
 DisplayMessage E "${NOT_CHECKED_IN}" ;
 fi;
 fi;;
 10) if CheckinNewSource
 then
 DisplayMessage I "${CHECKED_IN}" ;
 else
 if ["${FUNCTION_ABORTED}" = "Y"]
 then
 FUNCTION_ABORTED=N ;
 DisplayMessage I "${FUNCTION_ABORTING}" ;
 else
 DisplayMessage E "${NOT_CHECKED_IN}" ;
 fi;

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 fi;;
 15) rm -f ${TEMP_DIR}/*chkin* ;
 return $TRUE ;;
 99) GLOBAL_EXIT=Y;
 return $TRUE ;;
 *) if ["${FUNCTION_INTERRUPTED}" = "Y"]
 then
 FUNCTION_INTERRUPTED=N ;
 else
 DisplayMessage E "${INVALID_ENTRY}";
 fi ;;
 esac
done
}
###
Name : CheckinExistingSource
#
Overview : Checks in an existing checked out source.
#
Returns : $TRUE or $FALSE
#
Notes 1 Requires full source name (with the checked out
version number and file extension).
###
CheckinExistingSource ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
get source name
if ! GetSourceName "CI"
then
 return $FALSE
fi
check user location
if ! CheckLocation
then
 return $FALSE
fi
process file extension
if ! ProcessFileExtension "E"
then
 return $FALSE
fi
get directory name
if ! GetDirectoryName "CI"
then
 return $FALSE
fi
DisplayMessage I "${WORKING}" N
check whether checked out
if ! CheckLock "${SOURCE_NAME}"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

then
 DisplayMessage E "${SOURCE_NOT_CHECKED_OUT}"
 return $FALSE
fi
establish file details
TARGET_DIR="${SOURCE_DIR}/${SOURCE_EXT}"
TARGET_SOURCE="${SOURCE_NAME}"
TARGET_FILE="${TARGET_DIR}/${SOURCE_NAME}"
REQ_FILE="${REQ_DIR}/${SOURCE_NAME}"
SOURCE_VERSION=`echo ${SOURCE_NAME} | sed 's/.*_//' | cut -d'.' -f1`
ExtractSourceName ${SOURCE_NAME}
perform sanity check; check for target directory existence
if [! -d ${TARGET_DIR}]
then
 DIR_NAME="${TARGET_DIR}"
 SLEEP_DURATION=5
 DisplayMessage E "${DIR_NOT_EXIST}"
 return $FALSE
fi
check target file exists
if [-f ${TARGET_FILE}]
then
 FILE_NAME="${SOURCE_NAME}"
 DIR_NAME="${TARGET_DIR}"
 DisplayMessage E "${SOURCE_EXISTS}"
 return $FALSE
fi
check required file exists
if [! -f ${REQ_FILE}]
then
 FILE_NAME="${SOURCE_NAME}"
 DIR_NAME="${REQ_DIR}"
 DisplayMessage E "${NO_SOURCE_FOUND}"
 return $FALSE
fi
check database status
if ! SmartDatabaseStatus
then
 DisplayMessage E "${DB_NOT_OK}"
 return $FALSE
fi
check in the source
${SSCCARS_BIN}/execsu "CI" "${REQ_FILE}" "${TARGET_FILE}" > \
 ${TEMP_FILE} 2>&1
if [$? -ne 0]
then
 ERROR_MSG=`cat ${TEMP_FILE} | head -1`
 DisplayMessage E "${EXECSU_ERROR}"
 return $FALSE
fi

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

free the lock
if ! FreeLock "${SOURCE_NAME}"
then
 DisplayMessage E "${LOCK_NOT_REMOVED}"
 RemoveCopiedSourceFile "${TARGET_SOURCE}" "${TARGET_DIR}"
 LockSource ${SOURCE_NAME}
 return $FALSE
fi
update the log
${SSCCARS_BIN}/execsu "UL" "${LOG_FILE}" "${LOG_DIR}" "${LOG_DAY}" \
 "${LOG_TIME}" "${USERID}" "${SOURCE_NAME}" "CHECKED IN" > \
 ${TEMP_FILE} 2>&1
if [$? -ne 0]
then
 ERROR_MSG=`cat ${TEMP_FILE} | head -1`
 DisplayMessage E "${EXECSU_ERROR}"
 LockSource "${SOURCE_NAME}"
 RemoveCopiedSourceFile "${TARGET_SOURCE}" "${TARGET_DIR}"
 return $FALSE
fi
update SMART database
if UpdateSmart "CIE"
then
 DisplayMessage I "${SMART_UPDATED}"
else
 DisplayMessage E "${SMART_NOT_UPDATED}"
fi
return $TRUE
}
###
Name : CheckinNewSource
#
Overview : The function checks in a new source.
#
Notes 1 Requires full source name with the checked out version
number and file extension.
###
CheckinNewSource ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
get source name
if ! GetSourceName "CIN"
then
 return $FALSE
fi
check user location
if ! CheckLocation
then
 return $FALSE
fi

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

process file extension
if ! ProcessFileExtension "E"
then
 return $FALSE
fi
get directory name
if ! GetDirectoryName "CI"
then
 return $FALSE
fi
get source details
if ! GetSourceDetails
then
 return $FALSE
fi
DisplayMessage I "${WORKING}" N
establish file details
TARGET_DIR="${SOURCE_DIR}/${SOURCE_EXT}"
TARGET_SOURCE="${SOURCE_NAME_WITHOUT_EXT}_1.${SOURCE_EXT}"
TARGET_FILE="${TARGET_DIR}/${TARGET_SOURCE}"
REQ_FILE="${REQ_DIR}/${SOURCE_NAME}"
perform sanity check; check target directory exists
if [! -d ${TARGET_DIR}]
then
 DIR_NAME="${TARGET_DIR}"
 SLEEP_DURATION=5
 DisplayMessage E "${DIR_NOT_EXIST}"
 return $FALSE
fi
check required file exists
if [! -f ${REQ_FILE}]
then
 SLEEP_DURATION=5
 FILE_NAME="${SOURCE_NAME}"
 DIR_NAME="${REQ_DIR}"
 DisplayMessage E "${NO_SOURCE_FOUND}"
 return $FALSE
fi
check target file exists
if [-f ${TARGET_FILE}]
then
 SLEEP_DURATION=5
 FILE_NAME="${TARGET_SOURCE}"
 DIR_NAME="${TARGET_DIR}"
 DisplayMessage E "${SOURCE_EXISTS}"
 return $FALSE
fi
check database status
if ! SmartDatabaseStatus
then

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 DisplayMessage E "${DB_NOT_OK}"
 return $FALSE
fi
check in the new source
${SSCCARS_BIN}/execsu "CI" "${REQ_FILE}" "${TARGET_FILE}" > \
 ${TEMP_FILE} 2>&1
if [$? -ne 0]
then
 ERROR_MSG=`cat ${TEMP_FILE} | head -1`
 DisplayMessage E "${EXECSU_ERROR}"
 return $FALSE
fi
write log
${SSCCARS_BIN}/execsu "WL" ${LOG_FILE} ${LOG_DIR} ${LOG_DAY} \
 ${LOG_TIME} ${USERID} ${SOURCE_NAME} "CHECKED IN NEW SOURCE" > \
 ${TEMP_FILE} 2>&1
if [$? -ne 0]
then
 ERROR_MSG=`cat ${TEMP_FILE} | head -1`
 DisplayMessage E "${EXECSU_ERROR}"
 RemoveCopiedSourceFile "${TARGET_SOURCE}" "${TARGET_DIR}"
 return $FALSE
fi
register source
${SSCCARS_BIN}/execsu "RS" "${DATA_FILE}" "${LOG_DIR}" \
 "${SOURCE_NAME}" "${SOURCE_FULL_NAME}" "${SOURCE_DESCRIPTION}" > \
 ${TEMP_FILE} 2>&1
if [$? -ne 0]
then
 ERROR_MSG=`cat ${TEMP_FILE} | head -1`
 DisplayMessage E "${EXECSU_ERROR}"
 RemoveCopiedSourceFile "${TARGET_SOURCE}" "${TARGET_DIR}"
 return $FALSE
fi
update SMART database
if UpdateSmart "CIN"
then
 DisplayMessage I "${SMART_UPDATED}"
else
 DisplayMessage E "${SMART_NOT_UPDATED}"
fi
return $TRUE
}
###
Name : GetSourceDetails
#
Overview : Gets the full source name and description of the
new source being checked in by the user.
#
Notes 1 The full source name may have no more than 30

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

characters.
#
2 The source description may have no more than
2000 characters.
###
GetSourceDetails ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP
get full name of source
while true
do
 clear
 echo "Enter the full source name (trigger or procedure name),"
 echo "which may have up to 30 charters (q to quit):\c"
 read SOURCE_FULL_NAME
 case ${SOURCE_FULL_NAME} in
 "") if ["${FUNCTION_INTERRUPTED}" = "Y"]
 then
 FUNCTION_INTERRUPTED=N ;
 else
 DisplayMessage E "${INVALID_ENTRY}" ;
 fi ;;
 q|Q) FUNCTION_ABORTED=Y ; return $FALSE ;;
 *) SOURCE_FULL_NAME="`echo $SOURCE_FULL_NAME | cut -c1-30`" ;
 break ;;
 esac
done
get source description
while true
do
 clear
 echo "Enter a short (up to 2000 characters) description"
 echo "for the source (q to quit):\c"
 read SOURCE_DESCRIPTION
 case "$SOURCE_DESCRIPTION" in
 "") if ["${FUNCTION_INTERRUPTED}" = "Y"]
 then
 FUNCTION_INTERRUPTED=N ;
 else
 DisplayMessage E "${INVALID_ENTRY}" ;
 fi ;;
 q|Q) FUNCTION_INTERRUPTED="Y" ; return $FALSE ;;
 *) # accept only first 2000 characters
 SOURCE_DESCRIPTION="`echo $SOURCE_DESCRIPTION | \
 cut -c 1-2000`" ;
 break ;;
 esac
done
}
###

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Name : main
#
Overview : Calls all other functions.
###
main ()
{
DefineModuleVariables
ProcessCheckinMenuOption
}
invoke main
main

There are two more instalments of this article, which concludes in the
March issue.

Arif Zama
DBA/Administrator
High-Tech Software (UK) © Xephon 2000

Script locking mechanism

Two or more instances of a script can execute at the same time if more
than one instance of cron is running, or if the interval at which the
script is being executed is too small, or simply as a result of user errors.
The side-effects of running a script multiple times can, of course, be
disastrous.

To prevent this happening, one must create a locking mechanism.
Most locking mechanisms rely on a temporary file, called a lockfile.
If the lockfile exists, the program acts accordingly.

The code below is a little more sophisticated – it creates a lockfile
containing the process id. The next time your script is started, the
locking code checks whether the lockfile exists. If it does, the code
then checks whether the process id in the lockfile is still valid. If a valid
process id is detected, the code exits. On the other hand, if the process
id isn’t valid, the code allows your script to continue execution.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

As the lockfile is recreated (when necessary) by the script, your script
can be restarted (say, after a kill command, etc), without the need to
remove the lockfile manually.

To use this code, simply copy it and paste it in the start section of your
favourite scripts.

SCRIPT LOCKING CODE
START OF LOCKING MECHANISM

myname=$(basename $0)
lockfile=/tmp/.lock.${myname}

prevent script from running multiple times simultaneously.
if [[-f ${lockfile}]]; then
 pid=$(cat ${lockfile})
 # Check if pid still there
 npid=$(ps -opid= -p ${pid})
 if [[${npid} != ""]]; then
 # Check arguments of command running
 ps -oargs -p ${npid} | grep -i ${myname} > /dev/null
 rc=$?
 if ((${rc} == 0)); then
 echo $0" : script is still running"
 exit 1
 fi
 fi
fi
create new lock file
echo $$ > ${lockfile}

END OF LOCKING MECHANISM

© Xephon 2000

AIX news

IBM has announced C for AIX Version 5.0,
which offers improved portability through
support for the OpenMP industry
specification in 32-bit and 64-bit versions,
easier debugging with a new graphical
source debugger, enhanced SMP support
through automatic and explicit parallelism,
support for ANSI C and Unicode, and
profile-directed feedback and inter-
procedural analysis to optimize performance
of C applications.

The new compiler supports run-time
dynamic linking provided by AIX Version
4.2.1 or later, and also provides improved
prototyping and cross-platform
compatibility with VisualAge products.
Other benefits include a 64-bit integer data
type, a 128-bit floating-point data type, and
run-time address checking.

Available now, prices start at US$780 for
new users and US$340 for upgrades.

The company also launched the Power
GXT300P Graphics Accelerator for IBM
RS/6000 systems. It’s a short PCI adapter
card requiring one PCI slot. Available now,
prices are available on request from IBM.

For further information contact your local
IBM representative.

* * *

Computer Associates has released eTrust
Access Control 5.0 for Unix, which is an
uprated version of CA’s ACX/ACWNT
(SeOS). The software enables Unix users to
protect corporate data and applications with
security policies that prohibit unauthorized

system access. Version 5.0 enables complete
access control from a single point via a
graphical user interface. It has profile
groups, which allow security to be based on
role or group membership.

The product now supports AIX 4.3.2 and
other 64-bit Unixes, including HP-UX 11.0,
Solaris 7, and IRIX 6.5 (a version is also
available for NT). Out now, prices are
available on request from the vendor.

For further information contact:
Computer Associates International, 1
Computer Associates Plaza, Islandia, NY
11788, USA
Tel: +1 516 342 5224
Fax: +1 516 342 5734
Web: http://www.cai.com

Computer Associates Plc, Computer
Associates House, 183-187 Bath Road,
Slough, Berks SL1 4AA, UK
Tel: +44 1753 577733
Fax: +1 1753 825464

* * *

Following the US Government’s decision to
make the export of cryptographic products
and solutions using encryption stronger than
56-bit DES outside the United States and
Canada easier, IBM has announced that Host
On-Demand, Personal Communications,
and Communications Server for AIX can
now include 128-bit and/or 168-bit Triple
DES encryption support for Secure Sockets
Layer (SSL). Customers in the finance,
insurance, and healthcare sectores along
with United States subsidiaries and on-line
merchants are the main beneficiaries of this.

x xephon

	Distributing user passwords to AIX servers
	Using the bc programmable calculator
	SSCCARS (part 3)
	Script locking mechanism
	AIX news

