
February 2000

52

© Xephon plc 2000

3 Understanding the more command
13 A collection of utilities
27 SSCCARS (part 4)
41 Getting an entry from a

configuration file
44 Removing files by timestamp
56 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl@xephon.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
in the UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com/
aixupdate (you’ll need the user-id shown on
your address label to access it).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Understanding the more command

The more command is an economical way to view text data one screen
at a time. The two most common ways of invoking this command are
to enter it at the command line followed by a filename and to pipe the
output of another command into more.

MORE COMMAND BASICS

more displays each screen and waits for a user input. The word ‘more’
appears as the last line of the screen to inform the user that there is
more text to view. Pressing the spacebar advances to the next screen
of text, while pressing Enter advances the text by a line.

Paging forwards through a file is not the only method more supports.
Once the screens are available and the ‘more’ prompt is being
displayed, there are several subcommands that allow more to scroll
backwards, search for strings, and mark positions for later reference.

The basic syntax of the more command is:

more flags file

where flags are one or more optional flags and file is the file that more
is to process.

FILE EXAMINATION

Suppose you have a large text file called readme.now. If you enter:

more readme.now

the more command displays a screenful of text minus two lines used
for the display’s status area. The more prompt at the bottom indicates
the percentage of the file displayed so far.

As mentioned above, you may also pipe output into more. Using the
example above, entering:

more readme.now

is the equivalent of entering:

cat readme.now | more

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

which writes the contents of the file to the more command rather than
to the display. But what if the data is not in a file?

Suppose you have a directory that contains hundreds of files, such as
/usr/bin, which typically contains hundreds of executable files. If you
enter:

ls -l /usr/bin

the ls command builds a list of files found in /usr/bin and scrolls the
entire list off your display. However, if you enter:

ls -l /usr/bin | more

the ls command pipes the list of files into more, which displays the
first screen of data, then pauses. At this point, you can enter a
subcommand to search for a particular line, to scroll up or down, etc.
In contrast with using more to display a file, there is no indication of
what percentage of output has been displayed. One reason for this is
that the volume of data to be output may not be known at this stage.

FLAGS FOR THE MORE COMMAND

Prior to invoking the more command, you can enter flags that alter the
behaviour of the more session, affecting its display and performance
and automating tasks.

The list below summarizes flags that can be used with the more
command.

Subcommand Description

 -d Displays 'Keys Help'.

 -i Ignores case in search patterns.

 -N Disables line numbering.

 -n # Specifies number of lines per screen.

 -p subcmd Issues specified subcommand.

 -s Compresses multiple blank lines to one blank line.

 -v Disables display of nonprintable characters.

 -x tabs Defines tab stops at the specified position.

 -z Displays backspace, carriage return, and tab characters.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

The -d flag displays the following message at the bottom of each
screen:

[Press space to continue, q to quit, h for help]

The -i flag is used to ignore the case of search patterns specified during
the more session. The drawback is that you have to specify this flag
when invoking more.

The -N flag is used to disable line numbering. The default behaviour
is to track line numbers as files are processed (for instance, to allow
line numbers to be passed to vi). However, with very large files line
number tracking can affect performance. If the vi editor is invoked in
a session started with the -N flag, the vi session is initialized at the
beginning of the file.

The -n flag is used in conjunction with a number to specify the number
of lines per screen.

The -p flag is used in conjunction with a more subcommand to invoke
that subcommand. This is useful if you code a custom more command
in a script file. For example:

more -p 25% projdata.txt

displays projdata.txt, starting approximately one quarter into the file.

The following example:

more -p /Notes projdata.txt

displays projdata.txt starting at the first occurrence of the word
‘Notes’.

The -s flag is used to compress multiple blank lines to one for display.
This is useful when viewing text files that are, for instance, formatted
for output to a printer.

The -v flag is used to disable the display of non-printable characters.
Note that the default behaviour of the more command is to display
non-ASCII and control characters other than the backspace, CR
(carriage return), and Tab.

The -x flag is used in conjunction with a column setting to define tabs

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

during a more session. The default setting is for a tab stop every eight
columns.

The -z flag is used to display the backspace, CR, and tab control
characters (as mentioned above, the default is not to display these
control characters).

SUBCOMMANDS

Once more displays the desired file, subcommands can be used to
move about, edit the file, and run AIX commands. Some subcommands
are set up to mimic vi editor commands, which helps you remember
them if you’re familiar with vi. The focus line is the line containing
the target data, which is typically displayed on the third line of the
screen.

Although this section discusses subcommands that are available when
more is invoked with a file name, most also apply when more displays
output piped from another command.

The list below summarizes subcommands that can be used with the
more command. Note that you substitute a number for the # sign.

• q, Q, or :q

Quits from the more session.

• f, ‘spacebar’, or Ctrl+F

Scrolls forward one screen.

• b or Ctrl+B

Scrolls back one screen.

• d

Scrolls down half a screen.

• #d or #Ctrl+D

Sets half- screen line value and scrolls down that many lines.

• u

Scrolls up half a screen.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

• #u or #Ctrl+U

Sets the half-screen line value and scrolls up that many lines.

• j

Scrolls forward one line.

• #j, #, or #Ctrl+E

Scrolls forward a specified number of lines.

• k

Scrolls back one line.

• #k or #Ctrl+Y

Scrolls back a specified number of lines.

• g

Moves back to the first line in the file.

• #g

Moves to the specified line number.

• G

Moves forward to the last line in the file.

• #G

Moves to the specified line number.

• #p or #%

Moves the specified percentage into the file.

• /pattern

Searches forward for a specified pattern.

• ?pattern

Searches backward for a specified pattern.

• /!pattern

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Searches forward for the first line not containing the specified
pattern.

• ?!pattern

Searches backward for the first line not containing the specified
pattern.

• n

Performs the next search using the previous search pattern and
search direction.

• ma-z

Marks a position for later reference.

• 'a-z

Moves to a specified reference point.

• '' (two single quotes)

Returns to the starting point after a move to a marked position,
full file, percentage, or a search operation.

• !command or :!command

Runs the specified AIX command.

• h

Displays the more command help screen.

• v

Edits the current file using vi editor.

• r or Ctrl+L

Refreshes the display.

q quits the more session. You can also quit with Q or :q.

Use f and b (or Ctrl+F and Ctrl+B) to scroll the display forward or
backward one screen. Since the most common use of the more
command is to page forward through a file, the spacebar has also been
set up to advance the display forward one screen.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

Use the d and u (or Ctrl+D and Ctrl+U) to scroll the display down or
up half a screen.

If you precede the d or u subcommand with a number, more sets the
‘half page value’ to the number of lines you specified (the setting
persists for the duration of the session). So, if you enter 7d, more
scrolls down seven lines, and seven lines again whenever d is pressed
in that session. This also causes more to scroll up seven lines
whenever u is pressed.

This type of scrolling is useful when you wish to view data in
increments other than full screens, particularly ‘stanza’-like data,
which has a fixed periodicity in terms of rows.

Use j and k to scroll through the file line by line. j scrolls forward a
line and k scrolls back a line. The Enter key has also been set up to
scroll forward one line. You can also use Ctrl+Y and the Ctrl+E to
move up and down through the file line by line.

If you precede the command with a number, more will scroll that
many lines.

The command G is used to move forward to the last line of the file, and
g to move back to the first line. If you precede the command with a
number, more scrolls up or down to that line number.

You can also move through a file percentage-wise using the commands
p and %. For example, if you issue the command 50p or 50%
anywhere in a file, more takes you approximately to the midpoint of
the file. If you were on the last screen and typed 10%, more would
take you to the screen that’s approximately one-tenth into the file from
the top. This can be useful if you want to move quickly through a large
file without regard to line numbers.

Notes:

1 The specified percentage moves the focus to that position from
the top of the file, not from your current location in the file.

2 All percentages used by more are calculated using the number of
characters, not the number of lines. For most data, individual
lines probably contain approximately equal numbers of characters.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

However, if you have a file with 60 lines of 132 characters
followed by 300 lines of eight characters, the file is ‘top heavy’
and would skew the percentages towards the top of the file.

3 The percentage that appears with the more prompt represents the
amount of the file that has been displayed so far, including the
current screen. This may differ from the percentage you specified
with the p or % subcommand, which moves the focus, which is
a line near the top of the screen, to the line that divides the file by
the percentage specified. The discrepancy is particularly noticeable
when smaller files are displayed.

SEARCHES

Searching forwards and backwards using a pattern

Use a forward slash (‘/’) followed by a search pattern to search the file
forward from the current focus. Use the question mark (‘?’) and a
search pattern to search for text appearing before the current focus.

For example, if your current focus is approximately mid-way through
the file, and you enter the command sequence:

/VARIABLE

more positions the focus at the first occurrence of ‘VARIABLE’
found below your starting point.

If you enter:

?VARIABLE

more finds the first occurrence of ‘VARIABLE’ before your starting
point.

Searching forwards and backwards for no occurrence of pattern
If you precede the search pattern with an exclamation mark (‘!’), more
looks for the first line that doesn’t contain a string that matches the
specified search pattern. Specifying /!pattern searches forwards and
?!pattern searches backwards. For example, if you were to enter:

/!INCLUDE

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

more skips several consecutive lines that contain the string ‘INCLUDE’
and displays the first line that doesn’t.

Repeat search
Use the n key to tell more to position the focus at the next occurrence
of the specified search string. If the direction of the last search was
backwards, the n key causes the search to be repeated in the same
direction.

ADVANCED MOVEMENT

Marking a screen

Use the m key followed by a character from ‘a’ to ‘z’ to mark a position
for later reference. Then use the ‘'’ (single quote) key followed by the
desired character to cause more to position the line of focus at that
reference point.

Type ‘''’ (two single quotes, not a double quote) to return to the focus
line prior to the move to the marked line (this works only if the
movement is greater than a page).

For example, if the current focus line were to display a screen
containing a conversion table or ‘key’, you could type mk and more
will mark the position as ‘k’. Later, while viewing a screen containing
a data item for which you would like to see the conversion, type 'k
(single quote k) and more will redisplay the screen containing the key.
To return to the text, type '' (two single quotes).

The use of two single quotes is not restricted to moving to a marked
line, and they can also be used to return after movements using the
commands g or G, percentages P or %, and searches.

MISCELLANEOUS SUBCOMMANDS

Start an AIX command
Use the exclamation mark (‘!’) followed by an AIX command to open
a new shell and run the specified command. You can also use the :!cmd
combination (colon, exclamation mark, command) if desired.

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

For example, if you would like to initiate a background process called
mytask during a more session, enter !mytask& at the more prompt.
You will see a message that the command is executed.

Display the more command help screen
Use the h key to display help screens for the more command. Use the
spacebar to view successive screens and q followed by the Enter key
to return to the more session.

Start the vi editor
Use the v key to begin editing the current file using the vi editor. The
default behaviour of the more command is to position the editor
cursor at the same line as more’s focus when v is typed. If you want
the editor to initialize with line number 1 being displayed each time
vi is invoked, use the -N flag when invoking the more command.

Refresh the display
Use the r key to refresh the display. This is useful when an external
process is making changes to the data currently displayed. You can
also use Ctrl+L to perform this operation.

SUMMARY

There’s more to the more command than just scrolling forward
through a file. Once you practise using more, you will probably find
yourself using the command frequently. It is a good way to inspect a
file without the implicit dangers of editing it. It is also one of the few
ways to inspect the output of certain commands without overtaxing
disk resources.

David Chakmakian
Programmer (USA) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

A collection of utilities

Unix has many fascinating small utilities that do one or more simple
jobs. Many are designed to work in conjunction with other programs.
Most of these commands work well as part of a pipe, and are
frequently combined with other commands in order to get some job
done.

The commands are too simple for each to warrant a whole article, but
they are also far too useful to ignore. This article will cover several of
these ‘small fry’ commands.

TAIL

The tail command displays the last ten lines of a file on standard
output (usually the terminal). The number can be modified by using
a –nn switch, where nn is the number of lines to display. For example:

tail -20 log.txt

displays the last 20 lines of log.txt. If a plus sign (‘+’) is used instead
of a dash (‘-’), the number of lines specified is understood to be from
the beginning of the file. For example:

tail +20 log.txt

skips lines 1 to 19 of log.txt and display all lines from the twentieth to
the end of the file.

tail is particularly useful for looking at the last entries in a log file. To
this end, it has a very useful -f option. If tail is used with this flag, the
file being displayed is not closed, but is instead kept open. The tail
program sleeps for one second, then wakes and checks whether new
lines were added to the file. If they were, the new lines are displayed.
This option is useful for monitoring a log file that is actively being
written to. Assuming that log.txt is a log file in use by one or more
programs, then:

tail -f log.txt

displays the last 10 lines of log.txt, and then updates the screen each

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

second with any new records that are added to log.txt. I first used tail
-f to monitor a file that was being filled with transactions by cash
registers as cashiers rang up purchases. tail really is an excellent
debugging tool. For testing purposes, we set up the register, rang up
different types of transaction, and then examined the result on the
Unix screen, immediately. In this way we were quickly able to isolate
transactions that were being written to the file incorrectly.

Because tail routes its output to standard output, it is possible to pipe
the results into another process. At one point when debugging the
registers, we were concerned that they were writing garbage characters
and/or nulls to the transaction file. The tail utility processes files as
text, so it’s not possible to see nulls and other non-printable characters
in the data. We used tail to pump the data to od (‘octal display’) and
then display the data in hex, so that we could examine it for null
characters. If tail -f is used at the beginning of the pipe, the transaction
remains open and constantly pumps data to od, where the bytes are
translated into hex and displayed.

tail -f trx.txt|od -xc

You may want to try the following example to test tail. Move to a
directory where you can create some files without interfering with any
production data. Next create a process that writes to a log file. The
Korn shell is AIX’s default shell – if you are not already running it,
start it by typing ksh and pressing ‘Enter’. Type the lines in Listing 1
below. As you enter each line, the ‘>’ prompt appears, indicating that
more input is expected. The lines in Listing 1 are numbered to allow
them to be identified easily, though the numbers should not appear on
the screen. The initial ‘$’ on line 1 and the ‘>’ on lines 2 to 6 are
provided as prompts for your input – you type everything to the right
of the first character. The command creates a process that sleeps for
two seconds and then awakens and appends the date and time to
log.txt. The process is submitted in the background by enclosing all of
the commands in parentheses in lines 1 and 6, and ending with a final
ampersand (‘&’) in line 6. When you press Enter at the end of line 6,
the process is submitted in the background and runs as a detached job
with no terminal to write to. It doesn’t need a terminal since it’s writing
to log.txt. On line 7, the operating system responds by giving you the
job number of the job that is now running in the background. In the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

example, it’s ‘657’. Make a note of the job number that appears on
your terminal, as you will need it later to kill the process.

LISTING 1: PUMPING DATA INTO A LOG FILE
1 $ (while true
2 > do
3 > sleep 2
4 > echo `date` >>log.txt
5 > done
6 >)&
7 [1] 657
8 $

Now that log.txt is being filled with a date and time stamp every two
seconds, enter the following command:

tail -f log.txt

As you watch the screen, log.txt is gradually filled with information,
and tail -f continues to display the information on the screen as in
Listing 2.

LISTING 2: SAMPLE OUTPUT FOR TAIL -F
$ tail -f log.txt
Sun Apr 12 14:03:01 PDT 1998
Sun Apr 12 14:03:03 PDT 1998
Sun Apr 12 14:03:05 PDT 1998
Sun Apr 12 14:03:07 PDT 1998

Press Control-C or the Delete key to stop your tail -f process,
depending on how your terminal is set up.

Finally you need to stop the background process that is logging lines
to the log.txt file. Using the job number that you noted after the process
started, type:

kill 657

The system will usually respond with a message that the specified job
has been terminated, as in the following example (the continuation
character, ‘➤ ’, indicates that one line of code maps to more than one
line of print):

$ kill 657

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

[1] + Terminated (while true;do;sleep 2;echo `date`
➤ >>log.txt;done)&
$

DATE

While date is commonly used to set the date and time, it can also be
used to extract the date and time in numerous formats.

The simplest form of the command is the default one:

$ date
Sun Apr 12 14:03:01 PDT 1998

A simple logging script could be created using this format as in Listing
3. After you have edited this with vi, save it as ‘logit.sh’. Then change
its permissions by typing chmod a+x logit.sh to make the script
executable.

LISTING 3: LOGIT.SH
logit.sh
log all the arguments passed on the command line along
with the date and time stamp
echo `date` $@ >> log.txt

Run logit.sh by typing:

$ logit.sh This is a line to log

If you then use cat to type the contents of log.txt, the file should
contain:

$ cat log.txt
Sun Apr 12 14:03:01 PDT 1998 This is a line to log

The date may also be formatted by using a ‘+’ followed by formatting
characters, as in:

$ date +%D
04/12/98

%D is a date formatting character that indicates that the date is to be
output in mm/dd/yy format. Some of the other formatting characters
are listed below. Your version of date may not support all of them, and
may support others not listed below. Check your man pages for a list
of formatting characters.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

%A The full weekday name (Sunday, Monday, etc).

%a The abbreviated weekday name (Sun, Mon, etc).

%B The full month name (January, February, etc).

%b The abbreviated month name (Jan, Feb, etc).

%C The first two digits of the year (00 to 99).

%D The date in the form mm/dd/yy.

%d The two-digit day of the month (01 to 31).

%H The hour in 24-hour format (00 to 23).

%I The hour in 12-hour format (01 to 12).

%j The numeric day of the year (001 to 366).

%M The minute (00 to 59).

%m The month number (01 to 12).

%n A ‘newline’ character.

%p The equivalent of ‘AM’ or ‘PM’.

%R The 24-hour time (for example, 13:22).

%r The 12-hour time with AM/PM (for example, 11:53:29 AM).

%S The second (00 to 59).

%T The 24-hour time (14:53:29).

%U The week number in the year (00-53), where Sunday is the first
day of the week and all days before the first Sunday of a year are
in week 0.

%u The weekday number (Monday = 1, Sunday = 7).

%w The weekday number (Sunday = 0, Saturday = 6).

%Y The year in four-digit format (1999).

%y The year in two-digit format (99).

%Z The time zone name (PDT, EDT, etc).

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

It is often necessary to include spaces in a date format, so it is common
to include the date format string in quotes. In the following example,
the quotes are necessary because of the space in the format string.

$ date "+%D %R"
04/12/98 13:22

The ability to format date fields can be used to create log file names
that contain a date stamp.

In Listing 4, a new version of logit.sh, creates a log file name using
the year, month, day, and hour. This ensures that log files don’t
become too large to be handled easily.

LISTING 4: LOGGING NAMES WITH A DATE STAMP

logit.sh
log all the arguments passed on the command line, in an
hourly log file.
logtime=`date "+%y%m%d%H"`
logfile=${logtime}.log
echo `date` $@ >> $logfile

This could include the minute if sufficient events are logged to
warrant it, in which case use the code in Listing 5.

LISTING 5: LOG FILE NAMES THAT INCLUDE THE MINUTE
logit.sh
log all the arguments passed on the command line.
logtime=`date "+%y%m%d%H%M"`
logfile=${logtime}.log
echo `date` $@ >> $logfile

One advantage of using the date to create log file names is the natural
sort order provided by the ls command. If the file name is created by
concatenating the year, month, day, and hour (or hour and minute), the
log files are sorted by time of creation when an ls command is used.

READ

The read command is built into the Korn shell. Its purpose is to allow
input information to be read from standard input (usually the keyboard).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

Type the following command, then enter a single word (with no
spaces) as in the example below. The command read x causes input
to be read from standard input and assigned to the variable $x, which
is then echoed to the screen.

$ read x; echo $x
hello
hello
$

read is used in shell scripts to accept user input and assign it to a
variable. Listing 6, simpmenu, is a two-option menu that uses read
to accept the user’s input. Line numbers are included for convenience,
though they are not part of the script.

A menu is generated in lines 7 to 18. After line 19 reads the user
selection into variable x, one of two possible actions is executed at
lines 20 to 23 and 25 to 28. This repeats until the user enters a ‘9’ as
the menu selection. This is controlled by line 5, which states that if $x
is not equal (-ne) to ‘9’, the loop continues to execute.

Note the additional reads in lines 22 and 27 – while they seem to have
no variable nominated for input, the read command uses the default
variable REPLY if no variable is named. Lines 22 and 27 give the user
the opportunity to see the last page of output before the screen is
cleared.

LISTING 6: SIMPMENU USING ‘READ’
 1 # simpmenu
 2 # a simple menu program
 3
 4 x=1
 5 while [$x -ne 9]
 6 do
 7 clear
 8 echo
 9 echo
10 echo "Enter your selection"
11 echo
12 echo
13 echo "1 Display directory"
14 echo "2 Display processes"
15 echo
16 echo

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

17 echo "9 Exit"
18
19 read x
20 if [$x -eq 1]
21 then
22 ls -l|more ; echo "Press Enter" ; read
23 fi
24
25 if [$x -eq 2]
26 then
27 ps -ef|more ; echo "Press Enter" ; read
28 fi
29 done

Using the default variable REPLY, the first exercise could be shortened
to:

$ read; echo $REPLY
hello
hello
$

The read command can be used to read and fill more than one
variable. Try entering the following command and then typing four
words separated by spaces.

$ read x y z; echo $x; echo $y; echo $z
one two three four
one
two
three four
$

The read command reads in all of the words on a line and assigns them
one by one to the variables listed after the read command. If there are
more words than there are variables, the remaining words are all
assigned to the last variable. In the above example, $x=‘one’, $y=‘two’,
and $z=‘three four’.

This is true even with only one variable, as in the example below. The
$x variable is the last variable associated with read, and so it takes the
value ‘one two three four’.

$ read x; echo $x
one two three four
one two three four
$

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

You can break up the list in $x by using a for statement, as in the
example below.

$ read x; for name in $x; do echo $name; done
one two three four
one
two
three
four
$

Listing 7, multmenu, shows a script that allows a user to enter several
menu selections separated by spaces. Lines 20 to 34 break the user
selection into parts, each being processed in multiple passes.

LISTING 7 MULTMENU ALLOWS MULTIPLE MENU PICKS

 1 # multmenu
 2 # a multiple menu program
 3
 4 x=1
 5 while [$x -ne 9]
 6 do
 7 clear
 8 echo
 9 echo
10 echo "Enter your selection"
11 echo
12 echo
13 echo "1 Display directory"
14 echo "2 Display processes"
15 echo
16 echo
17 echo "9 Exit"
18 read x
19 for pick in $x
20 do
21 if [$pick -eq 1]
22 then
23 ls -l|more ; echo "Press Enter" ; read
24 fi
25 if [$pick -eq 2]
26 then
27 ps -ef|more ; echo "Press Enter" ; read
28 fi
29 if [$pick -eq 9]
30 then
31 exit

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

32 fi
33 done
34 done

There is one other powerful trick that works with read. It is possible
to start a process running that produces output, and then read that
output as if it were coming from the keyboard. This requires two steps:

1 The process has to be started in a special way

2 The read command has to be informed that it is reading from
another process rather than the keyboard.

Listing 8, oldest.sh, uses this technique. The ls -tr command lists the
files in a directory in chronological order, starting with the oldest. Line
4 in the script launches the ls -tr command using a pipe bar and an
ampersand ‘|&’. The ampersand indicates that the command is to be
detached and run in the background. The pipe indicates that a pipeline
is to be created between the oldest.sh process and the detached
process. Line 6 issues a read with the -p flag, meaning that it is to read
from a pipe rather than standard input. read reads everything up to the
first newline character, thus reading the first line output by ls -tr.

LISTING 8: READING FROM ANOTHER PROCESS
1 # oldest.sh
2 # names the oldest file
3
4 ls -tr|&
5
6 read -p x
7
8 echo "The oldest file is" $x

Another example of using read appears in the next section on wc. As
you’ll see, read is useful for more than just simple input.

WC

The wc command provides a count of words, lines, and characters in
a document. In Listing 9, log.txt contains 154 lines, 918 words, and
4431 characters. ls -l reveals the size of the file to be 4431 bytes, which
matches the character count produced by wc.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

LISTING 9: USING WC
$ wc log.txt
 154 918 4431 log.txt
$ ls -l log.txt
-rw-r--r-- 1 mjb group 4431 Apr 12 14:35 log.txt

The wc word counter defines a word as any non-blank sequence of
letters or numbers.

You may limit the output of wc to a count of only words, lines, or
characters using the -w, -l, and -c switches respectively. The default
is to display all three values. The display output of wc includes the file
name so you can output the results for more than one file by using wild
cards on the command line. The following example displays the line
counts for all files that start with ‘log’, along with a total.

$ wc -l log*
 154 log.txt
 5 logit.sh
 159 total

The wc utility is useful for authors. Listing 10, ueditor, is my own
personal editor. It doesn’t care about the quality of the content, but it
does provide prods and praise until I have produced 2000 words. It
includes line numbers for explanation. The script is invoked using the
command ueditor article.txt. Line 3 shows wc being used to count
words. The terminator ‘|&’ causes the wc command to start as a
background task and opens a pipe from the background task back to
ueditor in such a way that the output of the task can be read as input
by ueditor. The output is read in line 4. The command wc -w outputs
two fields: the word count and the file name. These are read into
separate variables, $wrds and $name, in line 4. The value in $wrds is
tested in line 5 – if it’s less than (-lt) 2000, words of encouragement
are printed. If $wrds is 2000 or more, the message contains some
praise for the humble and hard-working author.

LISTING 10: UEDITOR
1 # ueditor
2 # checks if the article has 2000 words yet
3 wc -w $1|&
4 read -p $wrds $name
5 if [$wrds -lt 2000]

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

6 then
7 echo "Only" $wrds "words! More, more I'm still not satisfied."
8 else
9 echo $name " is a brilliant piece!"
10 fi

DU

If the directory only files contains, it is easy enough to issue the
command ls -ls to get the size of files in bytes and blocks:

$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Feb 04 23:31 minutes.txt
 4 -rw-r--r-- 1 mjb group 1201 Feb 04 23:25 note.txt

The first column contains the size of the file in 512-byte blocks, and
the sixth column gives the size in bytes. Files in this directory
consume six blocks that contain only 1204 bytes.

This method of allocating chunks of disk space to a file, even if the file
doesn’t use all the space, is used in all major operating systems in one
form or another. Some convenient number of bytes is selected as the
minimum that can be allocated to a file. This is an allocation unit. If
the file does not use all the space in an allocation unit, what there is
of the file is recorded at the beginning of the unit and the remainder
of the unit is set aside for further expansion of the file. If the file is
expanded, as long as it doesn’t exceed the number of bytes in an
allocation unit, all the new bytes are stored in the empty reserved
space on the disk. Once the file size exceeds its initial allocation,
another allocation unit is grabbed and reserved for the file. The
spillover from the first allocation unit is tucked at the start of the
second allocation unit and so on. Earlier Unix systems used an
allocation unit of 512 bytes. These 512 bytes came to be known as a
block. As disk sizes grew, the basic allocation unit was increased to
1024 bytes on most systems (larger on some), but many utilities, such
as ls, still report file size or disk use in 512-byte blocks. So the three-
byte file uses two blocks.

In the following example, the directory in question includes a
subdirectory, perl. The two blocks allocated to the perl directory are
only the blocks used by the directory entry itself, not ones used by files
contained in the directory.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Feb 04 23:31 minutes.txt
 4 -rw-r--r-- 1 mjb group 1201 Feb 04 23:25 note.txt
 2 drwxr-xrx 2 mjb group 128 Jan 29 18:53 perl

We could figure out the sizes by doing an ls -ls perl, but suppose there
is another directory under perl, and so on?

The answer to this dilemma is the Unix utility du. How do you du?
The du utility analyses directories and subdirectories recursively and
displays blocks used. The display below provides information that the
directory being processed contains a perl subdirectory. This, in turn,
contains a subdirectory, src. The src directory contains files totalling
1540 blocks. The perl directory count includes all the blocks in src
plus the blocks used by files in perl. Finally, the top-level includes all
blocks below it plus blocks used by files used in the current directory.

$ du
1540 ./perl/src
5648 ./perl
5654 .

Using the -a option causes the detail of each file to be displayed.

$ du -a
1500 ./perl/src/big.prl
40 ./perl/src/prog.prl
1540 ./perl/src
4108 ./perl/perl.tar
5648 ./perl
2 ./minutes.txt
4 ./note.txt
5654 .

The du command cuts through a lot of what ls commands do and
provides size information plus a reasonable display of the directory
tree.

TR

The tr utility translates one set of characters into another set.

The command:

tr abc def <test.txt

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

processes the records from test.txt and translates a to d, b to e, and c
to f. At first glance this doesn’t seem very useful unless you want to
practise very amateur cryptography; however, tr has additional options
that make it much more useful. Two examples should suffice to give
you a feel for the command. The characters to be translated can be
expressed as a range. In the first example below, a directory is output
through tr, which translates a to A, b to B, and so on, converting
everything to uppercase.

$ ls -ls|tr [a-z] [A-Z]
TOTAL 6
 2 -RW-R--R-- 1 MJB GROUP 3 FEB 04 23:31 MINUTES.TXT
 4 -RW-R--R-- 1 MJB GROUP 1201 FEB 04 23:25 NOTE.TXT
 2 DRWXR-XRX 2 MJB GROUP 128 JAN 29 18:53 PERL

One use for case conversion is to work around a problem caused by
some utilities that copy MS-DOS files. They copy the files using MS-
DOS’s uppercase convention, and the file names need to be converted
to lowercase to follow Unix’s naming style and work correctly. The
command below changes all file names to lowercase. It takes each file
name and echoes it through a pipe using tr to change the case. The
result is used as the target of an mv command.

$ for name in *
> do
> mv $name `echo $name|tr [A-Z] [a-z]`
> done
$

tr’s -s switch causes repeated instances of a character to be translated
to just one instance. In the following example, the file test.txt contains
a line with multiple spaces between words. While the tr command
seems to do nothing – after all, it just translates a space to a space – the
-s switch squeezes multiple spaces into a single output space. The
resulting test2.txt has single spaces between words.

$ cat test.txt
How are you today?
$ tr -s " " " " < test.txt >test2.txt
$ type test2.txt
How are you today?

Mo Budlong (USA) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

SSCCARS (part 4)

This is the penultimate part of this article on a group of utilities that
together comprise a source code management system. The first part of
this article appeared in the November 1999 issue of AIX Update (Issue
49) and the final part appears in next month’s issue (Issue 53).

EXECSU.C

execsu is a C module that performs tasks that require root privilege,
such as copying a source file to or from a directory that may only be
written to by root.

Note the use of the continuation character, ‘➤ ’, in the code to indicate
that one line of code maps to more than one line of print.

EXECSU.C
/**
* Author : Arif Zaman
*
* Name : execsu.c
*
* Description : Perform tasks that require superuser privilege.
*
* Arguments : 1 An action type, the ones available being:
* CR = Create a lock file in lock directory.
* RM = Remove a file from any source-related
* directory.
* WL = Write a log entry.
* UL = Update a log.
* CI = Copy the source being checked in.
* RS = Register the source.
*
* 2 A file name.
* 3 A directory name.
* 4 The date for log message.
* 5 The time for log message.
* 6 The user-id for the log message.
* 7 The module name being checked in or out.
* 8 The log message.
*
* Notes : 1 The program is owned by root and has its uid
* bit set. Any process executing it effectively

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* becomes root, the owner of the program.
*
* 2 The uid bit can be set for the shell script but
* the shell ignores it completely; it has to be a
* compiled program.
*
* 3 The program is used mainly in conjunction with the
* various in-house source code control utilities.
*
* 4 The number of command line arguments varies
* according to the type of action required.
***/
#include <stdio.h>
/*
 * FUNCTION PROTOTYPE
 */
short main (int argc, char *argv[]);
short ParseCommandLine (int arg_count, char **argval);
short ProcessAction (void);
short ProcessSourceDetails (void);
short WriteSourceDetails (void);
short WriteLog (void);
short CheckWordSplit (char *line);
char * StripLeadingSpaces (char *string);
/*
 * MODULE CONSTANTS
 */
#define SUCCESS 0
#define FAILURE 1
#define USAGE "Usage: execsu <action> <file name> <directory name>
➤ <checkin/out date> < check in/out time> <check in/out userid>
➤ <module name> <comment>\n"
#define TRUE 1
#define FALSE 0
/*
 * GLOBAL VARIABLES
 * variables for manipulating lock and log files
 */
char action_type[3]; /* mandatory command line arguments */
char file_name[60];
char dir_name [60];
char chk_in_out_date[15]; /* used for action type WL and UL */
char chk_in_out_time[20];
char chk_in_out_uid[30];
char chk_in_out_module[30];
char chk_in_out_comment[100];
char source_full_name[31]; /* used for action type RS */
char source_short_name[21]; /* used for action type RS */
char source_description[2001];
char source_details[81]; /* source details record */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

short total_char_processed ; /* number of character processed */
char source_name_file[100]; /* file for source details */
short use_hypen;

/**
* Name : main
*
* Description : Calls all other functions.
*
* Returns : SUCCESS or FAILURE
***/
short main (int argc, char *argv[])
{
 if (ParseCommandLine (argc,argv) != SUCCESS)
 return FAILURE;
 if (ProcessAction () != SUCCESS)
 return FAILURE;
 return SUCCESS;
}
/**
* Name : ParseCommandLine
*
* Description : The function parses the command line.
*
* Returns : SUCCESS or FAILURE
***/
short ParseCommandLine(int arg_count, char **argval)
{
 /*
 * check argument count
 */
 if (arg_count > 9)
 {
 printf(USAGE);
 return FAILURE;
 }
 /*
 * copy arguments
 */
 strcpy (action_type,*(argval+1));
 strcpy (file_name,*(argval+2));
 strcpy (dir_name,*(argval+3));
 if ((strcmp (action_type,"WL") == 0) ||
 (strcmp (action_type,"UL") == 0))
 /*
 * copy additional arguments
 */
 {
 strcpy (chk_in_out_date,*(argval+4));
 strcpy (chk_in_out_time,*(argval+5));

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 strcpy (chk_in_out_uid,*(argval+6));
 strcpy (chk_in_out_module,*(argval+7));
 strcpy (chk_in_out_comment,*(argval+8));
 }
 else if (strcmp (action_type,"RS") == 0)
 /*
 * copy additional arguments
 */
 {
 strcpy (source_short_name,*(argval+4));
 strcpy (source_full_name,*(argval+5));
 strcpy (source_description,*(argval+6));
 }
 return SUCCESS;
}
/**
* Name : ProcessAction
*
* Description : Acts according to the action types below.
* CR - Create a lock file in the target directory.
* RM - Remove a file from a directory.
* WL - Write a log message in a specified file in
* target directory.
* UL - Update log file.
* CI - Check in a source.
*
* Returns : SUCCESS or FAILURE
***/
short ProcessAction (void)
{
 FILE *fptr; /* general file pointer */
 short rc; /* return code */
 short i;
 char lock_file[100]; /* used for CR action */
 char source_file[100]; /* used for action type = CI */
 char target_file[100];
 char system_command[100]; /* shell command */
 if (strcmp(action_type,"CR") == 0)
 {
 /*
 * create a lock file and generate lock file name
 */
 strcpy(lock_file,dir_name);
 strcat(lock_file,"/");
 strcat(lock_file,file_name);
 /*
 * open and close the file
 * for creating a zero byte file
 */
 if ((fptr = fopen(lock_file,"w")) == NULL)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

 {
 printf("execsu:ERROR: Failed to create the file %s\n",lock_file);
 return FAILURE;
 }
 fclose(fptr);
 return SUCCESS;
 }
 else if (strcmp(action_type,"RM") == 0)
 {
 /*
 * remove a file from a directory
 */
 strcpy(system_command," rm ");
 strcat(system_command,dir_name);
 strcat(system_command,"/");
 strcat(system_command,file_name);
 rc = system(system_command);
 if (rc == SUCCESS)
 return SUCCESS;
 else
 {
 printf("execsu:ERROR: Failed to remove file %s in %s
 ➤ directory\n", file_name,dir_name);
 return FAILURE;
 }
 }
 else if (strcmp (action_type ,"CI") == 0)
 {
 /*
 * check in the source
 */
 strcpy(target_file,dir_name);
 strcpy(source_file,file_name);
 strcpy(system_command,"mv ");
 strcat(system_command,source_file);
 strcat(system_command," ");
 strcat(system_command,target_file);
 rc = system(system_command);
 if (rc == SUCCESS)
 {
 /*
 * change the ownership to root
 * change the group to system
 * change the permission to 744
 */
 strcpy(system_command,"chown root ");
 strcat(system_command,target_file);
 system(system_command);
 strcpy(system_command,"chgrp system ");
 strcat(system_command,target_file);

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 system(system_command);
 strcpy(system_command,"chmod 744 ");
 strcat(system_command,target_file);
 system(system_command);
 return SUCCESS;
 }
 else
 {
 printf("execsu:ERROR: Failed to move the source file %s\n",
 file_name);
 return FAILURE;
 }
 }
 else if (strcmp(action_type,"RS") == 0)
 {
 /*
 * write source details in the file
 */
 if (ProcessSourceDetails () != SUCCESS)
 return FAILURE;
 }
 else if ((strcmp(action_type,"WL") == 0) ||
 (strcmp(action_type,"UL") == 0))
 {
 if (WriteLog() != SUCCESS)
 return FAILURE;
 }
 return SUCCESS;
}
/**
* Name : ProcessSourceDetails
*
* Description : The function writes the source details to the
* specified data file.
*
* Returns : SUCCESS
*
* Notes : 1 The maximum length of a source detail record is
* 80 and it has the following layout:
* File Name Full Name Description
* 22 32 26
* 26
* 26
* 22
* 2 The number of records that have to be written
* for source details depends on the length of
* source description, the maximum being 100.
***/
short ProcessSourceDetails(void)
{

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

 short source_desc_len;
 short numchars; /* characters in multi-record description */
 char *curloc; /* location of source description */
 short char_remaining ; /* characters still to be processed */
 short i;
 char formatted_source_desc[2001]; /* for description formatting */
 char *word_location ;
 char string[2001] ;
 /*
 * format source description (a white space is a word delimiter)
 */
 word_location = source_description;
 memset(formatted_source_desc,'\0',2001);
 while (TRUE)
 {
 memset(string,'\0',2001);
 sscanf(word_location,"%s",string);
 if (! strlen(string))
 break ;
 strcat(formatted_source_desc,string);
 strcat(formatted_source_desc," ");
 word_location=word_location + strlen(string) + 1 ;
 }
 /*
 * prepare source registration data file name
 */
 strcpy(source_name_file,dir_name);
 strcat(source_name_file,"/");
 strcat(source_name_file,file_name);
 /*
 * prepare record with source details
 */
 memset(source_details,'\0',81);
 strcpy(source_details,source_short_name);
 /*
 * right pad the string to 20 (file name) + 2 spaces
 */
 for (i = strlen(source_details);i <22 ; i++)
 source_details[i] = ' ';
 source_details[i+1] = '\0';
 /*
 * append source full name (30 characters + 2 spaces)
 */
 strcat(source_details,source_full_name);
 /*
 * left pad the record for first 54 characters
 */
 for (i = strlen(source_details) ; i < 54; i++)
 source_details[i] = ' ';
 source_details[i+1] = '\0';

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 source_desc_len = strlen(formatted_source_desc);
 total_char_processed = 0;
 char_remaining = source_desc_len ;
 curloc=formatted_source_desc;
 numchars=source_desc_len ;
 while (TRUE)
 {
 use_hypen = 0;
 if (char_remaining < 27)
 break ;
 /*
 * curloc = StripLeadingSpaces(
 * &formatted_source_desc[total_char_processed]);
 */
 numchars = CheckWordSplit(
 &formatted_source_desc[total_char_processed]);
 /*
 * numchars=CheckWordSplit(curloc);
 */
 strncat(source_details,
 &formatted_source_desc[total_char_processed],numchars);
 total_char_processed = total_char_processed + numchars;
 if (use_hypen == 1)
 strncat(source_details,"-");
 /*
 * right pad the description to its entire length
 * for (i = strlen(source_details) ; i < 80; i++)
 * source_details[i] = ' ';
 * source_details[i+1] = '\0';
 */
 strncat(source_details,"\n");
 /*
 * write this record
 */
 if (WriteSourceDetails () != SUCCESS)
 return FAILURE;
 memset(source_details,'\0',80);
 /*
 * left pad the new record up to 54 characters
 */
 for (i = strlen(source_details) ; i < 54; i++)
 source_details[i] = ' ';
 source_details[i+1] = '\0';
 char_remaining = source_desc_len - total_char_processed ;
 }
 /*
 * append the description record
 */
 curloc = StripLeadingSpaces(
 &formatted_source_desc[total_char_processed]);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

 strncat(source_details,curloc,char_remaining);
 for (i = strlen(source_details) ; i < 80; i++)
 source_details[i] = ' ';
 source_details[i+1] = '\0';
 strncat(source_details,"\n\n");
 if (WriteSourceDetails () != SUCCESS)
 return FAILURE;
 return SUCCESS;
}
/**
* Name : WriteSourceDetails
*
* Description : Writes the source details to specified data file.
*
* Returns : SUCCESS or FAILURE
***/
short WriteSourceDetails(void)
{
 FILE *dfp; /* pointer to source data file */
 if ((dfp = fopen(source_name_file,"a")) == NULL)
 {
 printf("execsu:ERROR: Failed to open file %s\n",source_name_file);
 return FAILURE;
 }
 fputs(source_details,dfp);
 fclose(dfp);
 return SUCCESS;
}
/**
* Name : CheckWordSplit
*
* Description : Checks the source description record from the
* location provided for number of characters that
* will fit within a space reserved for 26 characters
* in source description file without a word split
* occurring at the end.
*
* Returns : Number of characters to avoid a word split.
***/
short CheckWordSplit(char *line)
{
 short char_processed = 0 ; /* characters in word */
 short total_length = 0 ; /* length of description read so far */
 char word[2000]; /* word delimited by white space */
 if (strlen(line) < 27)
 return strlen(line);
 while (TRUE)
 {
 /*
 * read the next word

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 */
 sscanf(line,"%s",word);
 char_processed = strlen(word) + 1;
 if (char_processed > 26)
 {
 /*
 * found long word; return 25 and set global use_hypen to '1'
 */
 use_hypen = 1;
 return (25);
 }
 total_length= total_length + char_processed;
 line=line + char_processed ;
 if (total_length < 27)
 continue;
 else
 return (total_length - char_processed);
 }
}
/**
* Name : StripLeadingSpaces
*
* Description : Strips leading spaces from a string
*
* Returns : Pointer to string
*
* Notes : 1 The variable total_char_processed is declared in
* ProcesssSourceDetails () and is treated as global
*
* 2 The variable total_char_processed is incremented
* for each leading space.
***/
char * StripLeadingSpaces (char *string)
{
 short i;
 short leading_space ;
 for (i= 0; i <strlen(string); i++)
 {
 if (*(string + i) != ' ')
 return (string + i) ;
 total_char_processed = total_char_processed + 1;
 }
}
/**
* Name : WriteLog
*
* Description : The function writes a log message as follows:
* o Action type WL writes a log message at the end
* of the log file.
* o Action type UL writes a log message just below

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

* the previous one for the same source.
*
* Returns : SUCCESS or FAILURE
*
* Notes : 1 WL logs a message when source is checked out.
*
* 2 UL logs a message when source is checked in.
*
* 3 The log file is updated by reading the log file,
* writing it to a temporary file, and then copying
* the temporary file back to the log file.
***/
short WriteLog (void)
{
 char log_file[100];
 char log_message[100];
 char line[100]; /* line read from log file */
 char dummy[50]; /* word read from log file */
 char comment[30]; /* first word of the comment */
 char module[50]; /* source name read from the line */
 char p_module[20]; /* module as argument */
 char p_userid[20]; /* user id as argument */
 short log_updated = FALSE;
 short i;
 char temp_file [50]; /* temporary file for writing log */
 char system_command[100];
 short rc; /* return code from system command */
 FILE *lfp; /* pointer to log file */
 FILE *tfp; /* pointer to temporary file */
 /*
 * prepare log file name
 */
 strcpy(log_file,dir_name);
 strcat(log_file,"/");
 strcat(log_file,file_name);
 /*
 * prepare temporary file name
 */
 strcpy(temp_file,"/tmp/");
 strcat(temp_file,"execsu_tmp.dat");
 /*
 * prepare the log message
 */
 strcpy(log_message,chk_in_out_date);
 strcat(log_message," ");
 strcat(log_message,chk_in_out_time);
 strcat(log_message," ");
 /*
 * turn user id into 15-character string
 */

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 strcpy(p_userid,chk_in_out_uid);
 for (i=strlen(chk_in_out_uid);i < 15; i++)
 chk_in_out_uid[i] = ' ';
 chk_in_out_uid[i]= '\0';
 strcat(log_message,chk_in_out_uid);
 /*
 * turn module name into fixed length of 22
 */
 strcpy(p_module,chk_in_out_module);
 for (i=strlen(chk_in_out_module);i<22; i++)
 chk_in_out_module[i] = ' ';
 chk_in_out_module[i]= '\0';
 strcat(log_message,chk_in_out_module);
 strcat(log_message,chk_in_out_comment);
 /*
 * open the log file in read mode
 */
 if ((lfp = fopen(log_file,"a")) == NULL)
 {
 printf("execsu:ERROR: Failed to open file %s\n",log_file);
 return FAILURE;
 }
 if (strcmp(action_type,"WL") == 0)
 {
 /*
 * write a log message at the end of file for the check-out
 */
 while (TRUE)
 {
 memset(line,'\0',100);
 fgets(line,100,lfp);
 if (strlen(line) == 0)
 {
 /*
 * end of file reached; write the new log message
 */
 strcat(log_message,"\n\n\n");
 fputs(log_message,lfp);
 fflush(lfp);
 fclose(lfp);
 return SUCCESS;
 }
 }
 }
 if (strcmp(action_type,"UL") == 0)
 {
 /*
 * write a log message for the check-in below the corresponding
 * one for the check-out; open both log and temporary files
 */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

 if ((lfp = fopen(log_file,"r")) == NULL)
 {
 printf("execsu:ERROR: Failed to open file %s\n",log_file);
 return FAILURE;
 }
 if ((tfp = fopen(temp_file,"w")) == NULL)
 {
 printf("execsu:ERROR: Failed to open file %s\n",temp_file);
 return FAILURE;
 }
 /*
 * read and copy the header (5 lines)
 */
 for (i=1; i<6; i++)
 {
 memset(line,'\0',100);
 fgets(line,100,lfp);
 fputs(line,tfp);
 }
 while (TRUE)
 {
 memset(line,'\0',100);
 memset(module,'\0',50);
 fgets(line,100,lfp);
 if (strlen(line) == 0)
 break;
 else
 fputs(line,tfp);
 /*
 * scan line for the checked-in module name
 */
 sscanf(line,"%s%s%s%s%s",dummy,dummy,dummy,module,dummy);
 if (strcmp(p_module,module) == 0)
 {
 /*
 * found CHECK OUT line, under which the new log message
 * is to be written; first we check whether the line
 * contains any other comments.
 */
 memset(line,'\0',100);
 memset(comment,'\0',30);
 fgets(line,100,lfp);
 if (strlen(line) == 0)
 break;
 sscanf(line,"%s%s%s%s%s",dummy,dummy,dummy,module,comment);
 if ((strcmp(comment,"UNMODIFIED") == 0) ||
 (strcmp(comment,"LOCKED") == 0))
 {
 /*
 * write the log line

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 */
 fputs(line,tfp);
 }
 else
 {
 /*
 * found CHECK OUT line, under which the new log message
 * for check-in is written; first we check whether the line
 * contains any other comments.
 */
 strcat(log_message,"\n\n");
 fputs(log_message,tfp);
 fflush(tfp);
 log_updated = TRUE;
 }
 }
 }
 fclose(lfp);
 fclose(tfp);
 if (log_updated == TRUE)
 {
 /*
 * move the temporary file with updated log to log file
 */
 strcpy(system_command,"mv ");
 strcat(system_command,temp_file);
 strcat(system_command," ");
 strcat(system_command,log_file);
 rc = system(system_command);
 if (rc != SUCCESS)
 {
 printf("execsu:ERROR: Failed to copy temporary file %s\n",
 temp_file);
 return FAILURE;
 }
 }
 else
 {
 printf("execsu:ERROR: Failed to update log file %s\n",log_file);
 return FAILURE;
 }
 }
 return SUCCESS;
}

Arif Zamam
DBA/Administrator
High-Tech Software © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

Getting an entry from a configuration file

In a Windows system, it’s fairly straightforward to extract an entry
from a section of a configuration file. While this is very useful, the
same is not so easy in an AIX environment. Hence, one misty
morning, we decided to write a utility, called get_entry, that brings the
same functionality to AIX. This allows you to make several
configuration files and extract information from them.

EXAMPLE

Consider the following configuration file, called system.ini, which
contains the following lines:

[tcpip]
host_address=140.88.76.5
host_name=AIX_system1
dns_server=140.20.6.2
ip_routing_active=no
use_proxy=no

[test_section]
user = me and myself
script =
rubbish = yes
use_proxy = always

The file comprises entries (lines that contain an equals sign, ‘=’), and
entries that are bounded by lines containing square brackets (‘[’ and
‘]’) comprise sections. Each section begins with a word enclosed in
square brackets and ends with a blank line. In this example we have
two sections (the first has five entries and the second has four).

The following commands result in the following actions:

get_entry tcpip use_proxy system.ini

returns the word ‘no’ and the return code zero.

get_entry test_section user system.ini

returns the string ‘me and myself’ (without the single quotes) and the
error code zero.

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

get_entry test_section not_to_find system.ini

returns no characters and the error code ‘1’ (‘entry not found’).

get_entry test_2 use_proxy system.ini

returns no characters and the error code ‘2’ (‘section not found’).

get_entry test_3 system.ini

returns the error code ‘3’ (‘missing parameter’) and the following
lines:

Missing parameter(s):
 - section : the section that contains the entry
 - entry : the name of the entry to show
 - config file : the configuration file to be used

Example:

get_entry tcpip host_address /home/data/system.ini

Note the use of the continuation character, ‘➤ ’, in the code below to
indicate that one line of code maps to more than one line of print.

GET_ENTRY
Name script : /home/oper/get_entry
Last change : 09-06-1997 pos9900 creation
Description : Get an entry from a section of a config file
example : get_entry subset1 script ini_file
#--

Check that we have all the required parameters
if [$# -ne 3 -o "$1" = "?"]
then if ["$1" != "?"]
 then echo "\nMissing parameter(s):"
 else echo "\n Help get_entry \n "
 echo "Required parameters:"
 fi
 echo " - section : the section that contains the entry"
 echo " - entry : the name of the entry to show"
 echo " - config file : the configuration file to be used \n"
 echo "Example : get_entry tcpip host_address
 ➤ /home/data/system.ini \n"
 exit 3
 fi

Initialize : entry not found, but parameters are OK
entry_found=0

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

while read var1
 do
 # Check whether we've found the required subset
 if ["$var1" = "[$1]"]
 then # OK subset found
 entry_found=1
 fi

 # Empty line: another subset is coming
 if [$entry_found -eq 1 -a "$var1" = ""]
 then # Another subset, but entry still not found
 exit 1
 fi

 # Just looking for an entry in the subset
 if [$entry_found -eq 1]
 then var2=`echo $var1 | awk -F= '{print $1}'`
 if ["$var2" = "$2" -o "$var2" = "$2 "]
 then # Got it, echo it and leave
 if ["$var2" = "$2 "]
 then # Entries formatted as 'entry = something'
 echo $var1 | awk -F= '{print $2}' | cut -c2-
 else # Entries formatted as 'entry=something_else'
 echo $var1 | awk -F= '{print $2}'
 fi
 exit 0
 fi
 fi
 done <$3

Still searching for the subset, but end of file reached, so exit 2
exit 2

end script

Teun Post
Unix specialist
Schuitema NV (The Netherlands) © Xephon 2000

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Removing files by timestamp

It would be nice to have a command that removes files from a given
directory based on a specified date and time. refbot.sh is a shell script
that accomplishes this task. The script removes from a specified
directory all the files that were modified before the date specified as
the argument to the script. The script can be run in interactive mode,
where the script seeks the user’s approval prior to removing files.

OVERVIEW

Input:

1 D=<directory name>

This input is mandatory.

2 d=<ddmmyyyyhhmiss>

Date and time. This input is mandatory.

3 i=<y\n>

Interactive flag. This input is optional (the default is ‘Y’).

4 l=<logfile name>

Log file name. This input is optional (the default is /tmp/refbot.log).

USAGE

Note the use of the continuation character (‘➤ ’) below to indicate that
one line of code maps to more than one line of print.

refbot.sh D=/home/jones_e/work d=13081999120000 i=y
➤ l=/admin/refbot.log

PROCESSING

Below is an overview of the structure of the program, which may
prove useful to those wishing to customize the utility to their own
needs.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

Switch to specified directory
Prepare a list of all the files
FOR each file
 Establish whether file qualifies for removal
 IF the file is to be removed
 IF the file owner is the current user or the current
user is root
 IF interactive mode is on
 IF user approves to removal
 IF file is directory
 remove the directory with contents
 ELSE
 Remove the file
 Write a log
 END IF
 END IF
 ELSE
 Remove the file
 Write a log
 END IF
 END IF
 END IF

REFBOT.SH
#! /usr/bin/ksh
###
Name : refbot.sh (remove file based on time)
#
Overview : The script removes file(s) from a given directory
based on date and time.
#
Input : 1 Directory name (no default)
2 Date and Time (no default)
3 Interactive flag (default to Y)
4 log file (default to /tmp/refbot.log)
#
Notes 1 The script removes the file(s) which were modified or
accessed prior to input date and time.
#
2 The syntax for the command is as follows:
refbot.sh D=<directory name> t=<ddmmyyyyhhmiss>
i=<y|n> l=<file name>
#
eg refbot.sh D=/tmp t=01081999120022 i=n
l=/home/admin/log/refbot.log
#
3 The script contains the following functions:
o main

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

o InitializeVariables
o ParseCommandLine
o ValidateArguments
o LeapYear
o RemoveFiles
o FileToBeRemoved
o FileQualifyForRemoval
o ProcessExit
o HandleInterrupt
o DisplayMessage
#
4 The user must acknowledge all displayed messages.
#
5 Files or directories not owned by ordinary user are not
removed. However, all the files and/or directories that
qualify for removal will be removed if the user is
root.
#
6 If a directory qualifies for removal, the utility uses
the rm -r command to remove the directory and its
contents.
#
Date Author Description
--
09/08/99 A Zaman Initial Build
#
26/08/99 A Zaman Improved handling of directory removal
#
###

###
Name : InitializeVariables
#
Overview : Initializes all required variables.
###
InitializeVariables ()
{
extract user id
USERID=`id | tr "()" "::" | cut -d':' -f2`

define date and time
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`

define temporary files
FILE_LIST=/tmp/refbot_$$_1.dat
QUALIFIED_FILE_LIST=/tmp/refbot_$$_2.dat
TEMP_FILE_1=/tmp/refbot_$$_1.tmp
TEMP_FILE_2=/tmp/refbot_$$_2.tmp

Log file

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

DEFAULT_LOG_FILE="/tmp/refbot.log"

Return codes
TRUE=0
FALSE=1
SEC=0
FEC=1
Define escape sequences
ESC="\0033["
RVON=_[7m # Reverse video on
RVOFF=_[27m # Reverse video off
BOLDON=_[1m # Bold on

BOLDOFF=_[22m # Bold off
BON=_[5m # Blinking on
BOFF=_[25m # Blinking off

Input parameter variables
DIR_NAME= # Directory name
DATE= # Date and time
INTERACTIVE= # Interactive flag
LOG_FILE= # Log file

SLEEP_DURATION=3 # Number of seconds for sleep
ERROR="${RVON}${BON}refbot.sh:ERROR:${BOFF}"
INFO="${RVON}refbot.sh:INFO: "

Messages
WORKING="Working...${RVOFF}"
INTERRUPT="Program interrupted! Quitting...${RVOFF}"
ROOT_USER="Script must be executed from root account${RVOFF}"
WORKING="Working...${RVOFF}"
USAGE="Usage\:refbot.sh D=\<directory name\> d=\<date\>
➤ i=\<y\|n\> l=\<file\>${RVOFF}"
DIR_REQ="Please provide a directory using option D${RVOFF}"
DATE_REQ="Please provide a date using option d${RVOFF}"
DUP_ARG="Duplicate argument${RVOFF}"
INVALID_ARGC="Wrong number of arguments${RVOFF}"
INVALID_ARG_TYPE="\${ARG_TYPE}, is an invalid argument${RVOFF}"
INVALID_OPTION="\${OPTION}, is an invalid option${RVOFF}"
INVALID_ENTRY="Invalid entry${RVOFF}"
INVALID_DATE="Invalid date${RVOFF}"
INVALID_DIR="Invalid directory, \${DIR_NAME}${RVOFF}"
INVALID_TIME="Invalid time${RVOFF}"
INVALID_MONTH_LEN="Month must be in two-digit format${RVOFF}"
INVALID_DAY_LEN="Day must be in two-digit format${RVOFF}"
INVALID_YEAR_LEN="Year must be in four-digit format${RVOFF}"
INVALID_HOUR_LEN="Hour must be in two-digit format${RVOFF}"
INVALID_MIN_LEN="Minute must be in two-digit format${RVOFF}"
INVALID_SEC_LEN="Second must be in two-digit format${RVOFF}"

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

INVALID_DAY="Invalid day${RVOFF}"
INVALID_MONTH="Invalid month${RVOFF}"
INVALID_YEAR="Invalid year${RVOFF}"
INVALID_HOUR="Invalid hour${RVOFF}"
INVALID_MINUTES="Invalid minutes${RVOFF}"
INVALID_SECONDS="Invalid second${RVOFF}"
DATE_NOT_NUMERIC="Date, \${DATE} must be numeric${RVOFF}"
TIME_NOT_NUMERIC="Time, \${TIME} must be numeric${RVOFF}"
INVALID_FLAG="\${INTERACTIVE}, is an invalid value for option
➤ i${RVOFF}"
LOG_NOT_INITIALIZED="Failed to initialize log file,
➤ \${LOG_FILE}${RVOFF}"
LOG_NOT_WRITABLE="Log file, \${LOG_FILE} is not writable by
➤ user${RVOFF}"
OS_ERROR="\${SYSERROR}${RVOFF}"
DIR_NOT_ACCESSABLE="Directory, \${DIR} is not accessible${RVOFF}"
DIR_EMPTY="Directory, \${DIR} is empty${RVOFF}"
NO_FILE_REMOVED="No file qualifies for removal in directory,
➤ \${DIR} ${RVOFF}"
REQ_USER="Must execute the script from root account${RVOFF}"

Signals
SIGNEXIT=0 ; export SIGNEXIT # normal exit
SIGHUP=1 ; export SIGHUP # session disconnected
SIGINT=2 ; export SIGINT # ctrl-c
SIGTERM=15 ; export SIGTERM # kill command
SIGTSTP=18 ; export SIGTSTP # ctrl-z
}

###
Name : HandleInterrupt
#
Overview : Call ProcessExit.
###
HandleInterrupt ()
{
DisplayMessage I "${INTERRUPT}"

ProcessExit $FEC
}

###
Name : MoveCursor
#
Input : Y and X coordinates
#
Overview : Moves the cursor to the required location (Y, X).
#
Notes 1 The function must run in ksh for print to work. Print
is used to move the cursor as echo doesn't work.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

###
MoveCursor ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP

YCOR=$1
XCOR=$2

echo "${ESC}${YCOR};${XCOR}H"
}

###
Name : DisplayMessage
#
Overview : Display message
#
Input : 1 Message type (E = Error, I = Information)
2 Error Code, defined in DefineMessages ().
3 Message to acknowledge flag
#
Notes 1 User must acknowledge all messages except 'WORKING'.
###
DisplayMessage ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP

MESSAGE_TYPE=$1
MESSAGE_TEXT=`eval echo $2`
ACK_MESSAGE="$3"
if ["${ACK_MESSAGE}" = ""]
then
 ACK_MESSAGE="Y"
fi
clear
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then
 echo "`eval echo ${ERROR}`${MESSAGE_TEXT}\c"
else
 echo "`eval echo ${INFO}`${MESSAGE_TEXT}\c"
fi

Let user acknowledge the message
if ["${ACK_MESSAGE}" = "Y"]
then
 read DUMMY
fi
return ${TRUE}
}

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

###
Name : ProcessExit
#
Overview : Processes menu options.
###
ProcessExit ()
{
EXIT_CODE="$1"

rm -f $FILE_LIST
rm -f $QUALIFIED_FILE_LIST
rm -f $TEMP_FILE_1
rm -f $TEMP_FILE_2

clear

exit ${EXIT_CODE}
}

###
Name : LeapYear
#
Overview : Establishes whether a given year is a leap year.
#
Input : Year
#
Returns : $TRUE for leap year
$FALSE otherwise
###
LeapYear ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP

Assign the parameter
P_YEAR="$1"

Divide $P_YEAR by 4 to establish leap year
RESULT=`bc <<!
scale=2
$YEAR/4
!`
if ["`echo $RESULT | cut -d'.' -f2`" = "00"]
then
 # year is leap year
 return $TRUE
else
 # year is not a leap year
 return $FALSE
fi
}

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

###
Name : ValidateArguments
#
Overview : Validate arguments values.
#
Returns : $TRUE or $FALSE
#
Notes 1 The function validates the following arguments' values:
o directory (mandatory)
o date (mandatory)
o interactive flag (optional)
o log file (optional)
###
ValidateArguments ()
{
trap "HandleInterrupt" $SIGINT $SIGTERM $SIGHUP $SIGTSTP

Validate directory
if [-z "${DIR_NAME}"]
then
 DisplayMessage E "${DIR_REQ}"
 return $FALSE
fi
if [! -d $DIR_NAME]
then
 DisplayMessage E "${INVALID_DIR}"
 return $FALSE
fi

Validate date (eg DDMMYYYYHHMISS)
if [-z "${DATE}"]
then
 DisplayMessage E "${DATE_REQ}"
 return $FALSE
fi

Validate numeric
if ([`expr $DATE + 0` -eq $DATE]) > /dev/null 2>&1
then
 : # ok
else
 DisplayMessage E "${DATE_NOT_NUMERIC}"
 return $FALSE
fi

Validate overall length
LEN=`expr "$DATE" : '.*'`
if ! ([$LEN -eq 14])
then

52 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 DisplayMessage E "${INVALID_DATE}"
 return $FALSE
fi

Verify the date format is <ddmmyyyy>
DAY=`echo "$DATE" | cut -c1-2`
MON=`echo "$DATE" | cut -c3-4`
YEAR=`echo "$DATE" | cut -c5-8`

Validate day
LEN=`expr "$DAY" : '.*'`
if ! ([$LEN -eq 2])
then
 DisplayMessage E "${INVALID_DAY_LEN}"
 return $FALSE
fi
if ! ([$DAY -gt 0 -a $DAY -lt 32])
then
 DisplayMessage E "${INVALID_DAY}"
 return $FALSE
fi

Validate month
LEN=`expr "$MON" : '.*'`
if ! ([$LEN -eq 2])
then
 DisplayMessage E "${INVALID_MONTH_LEN}"
 return $FALSE
fi
if ! ([$MON -gt 0 -a $MON -lt 13])
then
 DisplayMessage E "${INVALID_MONTH}"
 return $FALSE
fi

Validate year
LEN=`expr "$YEAR" : '.*'`
if ! ([$LEN -eq 4])
then
 DisplayMessage E "${INVALID_YEAR_LEN}"
 return $FALSE
fi
if ! ([$YEAR -gt 0])
then
 DisplayMessage E "${INVALID_YEAR}"
 return $FALSE
fi

Validate month
LEN=`expr "$MON" : '.*'`

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 53

if ! ([$LEN -eq 2])
then
 DisplayMessage E "${INVALID_MONTH_LEN}"
 return $FALSE
fi
if ! ([$MON -gt 0 -a $MON -lt 13])
then
 DisplayMessage E "${INVALID_MONTH}"
 return $FALSE
fi

Validate year
LEN=`expr "$YEAR" : '.*'`
if ! ([$LEN -eq 4])
then
 DisplayMessage E "${INVALID_YEAR_LEN}"
 return $FALSE
fi
if ! ([$YEAR -gt 0])
then
 DisplayMessage E "${INVALID_YEAR}"
 return $FALSE
fi

Validate day and month (other than February)
if [$MON -eq 01 -o $MON -eq 03 -o $MON -eq 05 -o \
 $MON -eq 07 -o $MON -eq 08 -o $MON -eq 10 -o \
 $MON -eq 12]
then
 if ! ([$DAY -gt 0 -a $DAY -lt 32])
 then
 DisplayMessage E "${INVALID_DAY}"
 return $FALSE
 fi

elif [$MON -eq 04 -o $MON -eq 06 -o $MON -eq 09 -o \
 $MON -eq 11]
then
 if ! ([$DAY -gt 0 -a $DAY -lt 31])
 then
 DisplayMessage E "${INVALID_DAY}"
 return $FALSE
 fi
fi

Validate month of February
if LeapYear "${YEAR}"
then
 if [$MON -eq 02]
 then

54 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 if ! ([$DAY -gt 0 -a $DAY -lt 30])
 then
 DisplayMessage E "${INVALID_DAY}"
 return $FALSE
 fi
 fi
else #
 # Not a leap year
 if [$MON -eq 02]
 then
 if ! ([$DAY -gt 0 -a $DAY -lt 29])
 then
 DisplayMessage E "${INVALID_DAY}"
 return $FALSE
 fi
 fi
fi

Validate time (eg HHMMSS)

Verify the date format is <ddmmyyyyhhmiss>
HOUR=`echo "$DATE" | cut -c9-10`
MIN =`echo "$DATE" | cut -c11-12`
SEC =`echo "$DATE" | cut -c13-14`

Valixdate hours
LEN=`expr "$HOUR" : '.*'`
if ! ([$LEN -eq 2])
then
 DisplayMessage E "${INVALID_HOUR_LEN}"
 return $FALSE
fi

if ! ([$HOUR -eq 0 -o $HOUR -lt 24])
then
 DisplayMessage E "${INVALID_HOUR}"
 return $FALSE
fi

Validate minutes
LEN=`expr "$MIN" : '.*'`
if ! ([$LEN -eq 2])
then
 DisplayMessage E "${INVALID_MIN_LEN}"
 return $FALSE

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 55

fi
if ! ([$MIN -eq 0 -o $MIN -lt 60])
then
 DisplayMessage E "${INVALID_MINUTES}"
 return $FALSE
fi

Validate seconds
LEN=`expr "$SEC" : '.*'`
if ! ([$LEN -eq 2])
then
 DisplayMessage E "${INVALID_SEC_LEN}"
 return $FALSE
fi
if ! ([$SEC -eq 0 -o $SEC -lt 60])
then
 DisplayMessage E "${INVALID_SECONDS}"
 return $FALSE
fi

Validate interactive flag
case ${INTERACTIVE} in
 y|Y|n|N) : ;;
 "") INTERACTIVE="Y";;
 *) DisplayMessage E "${INVALID_FLAG}" ;
 return $FALSE ;;
esac

Validate log file
if ["${LOG_FILE}" = ""]
then
 LOG_FILE="${DEFAULT_LOG_FILE}"
fi

return $TRUE
}

This article concludes in next month’s issue of AIX Update.

Arif Zaman
DBA/Administrator
High-Tech Software Ltd (UK) © Xephon 2000

AIX news

Softworks has announced SST-Resource
Availability Version 3.4, which monitors
and reports on storage resources. Among the
improvements in the new version are better
reporting of storage utilization and wider
platform coverage for Oracle and ADSM.
Also new is the measurement of storage
consumption at the user or application level.

In addition to AIX, the software supports
logical and physical storage systems used by
OS/390, MVS, a number of variants of Unix,
and NT. Out now, prices start at US$57,000.

For further information contact:
Softworks Computer Concepts, 5845
Richmond Highway, Suite 200, Alexandria,
VA 22303, USA
Tel: +1 703 317 2424
Fax: +1 703 317 3229
Web: http://www.softworkscc.com

Softworks International Limited, Clayton
House, 3-7 Vaughan Road, Harpenden,
Hertfordshire, AL5 4EF, England
Tel: +44 1582 464800
Fax:+44 1582 767941

* * *

Candle has launched Roma E-business
Platform 2000, part of its CandleNet family
of e-business lifecycle products that also
includes Service Provider Platform and
E-Business Assurance Network.

Roma E-business Platform is an application
‘integration backplane’ into which
applications can be ‘plugged’. This helps
reduce the new development overhead

associated with fielding new functionality.
The platform supports Java, C, C++,
COBOL, and COM/CORBA. Applications
can be both XML-compliant and LDAP-
enabled. Besides AIX, operating system
support includes OS/390, AS/400, Solaris,
and NT.

The product is expected in the first quarter of
2000 and details on pricing are available on
request from the vendor.

For further information contact:
Candle Corp, 2425 Olympic Blvd, Santa
Monica, CA 90404, USA
Tel: +1 310 829 5800
Fax: +1 310 582 4287
Web: http://www.candle.com

Candle Ltd, 1 Archipelago, Lyon Way,
Frimley, Camberley, Surrey GU16 5ER, UK
Tel: +44 1276 4147000
Fax: +44 1276 414777

* * *

IBM has announced DCE Version 3.1 for
AIX and Solaris. Features include a common
code base between the two OS platforms,
Kerberos V5 interoperability, DCE audit
information enhancements, password
strength enhancements, public key
certificate login, and Global Directory Agent
(GDA) using the Lightweight Directory
Access Protocol (LDAP).

Out now, it costs US$4,000.

For further information contact your local
IBM representative.

x xephon

	Understanding the more command
	A collection of utilities
	SSCCARS (part 4)
	Getting an entry from a configuration file
	Removing files by timestamp
	AIX news

