52

February 2000

]
In this issue

3 Understanding the more command
13 A collection of utilities
27 SSCCARS (part 4)

41 Getting an entry from a
configuration file

44 Removing files by timestamp
96 AIlX news

© Xephon plc 2000

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

AlX Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl @xephon.com

North American office

Xephon/QNA

1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150

USA

Telephone: 940 455 7050

Contributions

If you have anything original to say about
AlIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not bevery long
—two or three paragraphs could be sufficient.
Not only will you actively be helping thefree
exchange of information, which benefits all
AlX users, but youwill al'sogainprofessional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee — Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’ sWeb site, whereyou can downl oad
Notesfor contributorsineither textformor as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer

Readers are cautioned that, although the in-
formationinthisjournal ispresented in good
faith, neither Xephon nor theorganizationsor
individuals that supplied information in this
journal giveany warranty or make any repre-
sentationsasto theaccuracy of thematerial it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevancetotheir circumstancesof all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues

A year’s subscription to AlX Update, com-
prising twelve monthly issues, costs £180.00
inthe UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

Al X Update on-line

Code from AIX Update is available from
Xephon's Web page at www.xephon.conv
aixupdate (you'll need the user-id shown on
your address |abel to accessit).

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
theprior permission of thecopyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promation, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 |abels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

Understanding the more command

Themorecommandisaneconomical way toview text dataonescreen
at atime. Thetwo most common ways of invoking thiscommand are
to enter it at the command linefollowed by afilename and to pipethe
output of another command into more.

MORE COMMAND BASICS

mor edisplayseach screen and waitsfor auser input. Theword* more’
appears as the last line of the screen to inform the user that there is
more text to view. Pressing the spacebar advancesto the next screen
of text, while pressing Enter advances the text by aline.

Paging forwardsthrough afileisnot the only method mor e supports.
Once the screens are available and the ‘more’ prompt is being
displayed, there are several subcommands that allow more to scroll
backwards, search for strings, and mark positionsfor later reference.

The basic syntax of the more command is:
more flags file

whereflagsareoneor moreoptional flagsandfileisthefilethat more
IS to process.

FILE EXAMINATION
Suppose you have alarge text file called readme.now. If you enter:

more readme.now

the more command displays ascreenful of text minustwo linesused
for thedisplay’s status area. The more prompt at the bottom indicates
the percentage of thefile displayed so far.

As mentioned above, you may also pipe output into more. Using the
example above, entering:

more readme.now

Isthe equivalent of entering:

cat readme.now | more

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

whichwritesthe contents of thefileto themor e command rather than
to the display. But what if the datais not in afile?

Suppose you have adirectory that contains hundreds of files, such as
/usr/bin, whichtypically containshundredsof executablefiles. If you
enter:

1s -1 /usr/bin

thelscommand builds alist of filesfound in /usr/bin and scrollsthe
entire list off your display. However, if you enter:

s -1 /usr/bin | more

the s command pipes the list of filesinto more, which displays the
first screen of data, then pauses. At this point, you can enter a
subcommand to search for aparticular line, to scroll up or down, €tc.
In contrast with using mor e to display afile, thereisno indication of
what percentage of output has been displayed. One reason for thisis
that the volume of datato be output may not be known at this stage.

FLAGS FOR THE MORE COMMAND

Prior toinvoking themorecommand, you can enter flagsthat alter the
behaviour of the mor e session, affecting its display and performance
and automating tasks.

The list below summarizes flags that can be used with the more
command.

Subcommand Description
-d Displays 'Keys Help'.
-1 Ignores case in search patterns.
-N Disables 1line numbering.
-n i Specifies number of lines per screen.
-p subcmd Issues specified subcommand.
-S Compresses multiple blank Tines to one blank Tine.
-V Disables display of nonprintable characters.
-x tabs Defines tab stops at the specified position.
-z Displays backspace, carriage return, and tab characters.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The -d flag displays the following message at the bottom of each
screen:

[Press space to continue, q to quit, h for help]

The-i flagisusedtoignorethecaseof search patternsspecified during
the more session. The drawback is that you have to specify thisflag
when invoking more.

The-N flag isused to disable line numbering. The default behaviour
Isto track line numbers as files are processed (for instance, to allow
line numbersto be passed to vi). However, with very largefilesline
number tracking can affect performance. If thevi editor isinvoked in
a session started with the -N flag, the vi session is initialized at the
beginning of thefile.

The-n flagisusedin conjunctionwithanumber to specify thenumber
of lines per screen.

The-pflagisusedin conjunctionwithamoresubcommandtoinvoke
that subcommand. Thisisuseful if you codeacustommorecommand
in ascript file. For example:

more -p 25% projdata.txt
displays projdata.txt, starting approximately one quarter into thefile,
The following example:

more -p /Notes projdata.txt

displays projdata.txt starting at the first occurrence of the word
‘Notes'.

The-sflagisused to compress multipleblank linesto onefor display.
Thisisuseful when viewingtext filesthat are, for instance, formatted
for output to a printer.

The -v flag is used to disable the display of non-printable characters,
Note that the default behaviour of the more command is to display
non-ASCIl and control characters other than the backspace, CR
(carriage return), and Tab.

The-x flagisusedin conjunction with acolumn setting to definetabs

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

duringamor esession. Thedefault settingisfor atab stop every eight
columns.

The -z flag is used to display the backspace, CR, and tab control
characters (as mentioned above, the default is not to display these
control characters).

SUBCOMMANDS

Once more displays the desired file, subcommands can be used to
moveabout, editthefile, and runAlX commands. Somesubcommands
are set up to mimic vi editor commands, which helps you remember
them if you're familiar with vi. The focusline isthe line containing
the target data, which is typically displayed on the third line of the
screen.

Althoughthissectiondiscussessubcommandsthat areavailablewhen
mor eisinvokedwith afilename, most al so apply whenmor edisplays
output piped from another command.

The list below summarizes subcommands that can be used with the
mor e command. Note that you substitute a number for the # sign.

e (,Q,o0r:q
Quits from the more session.
o f,"spacebar’, or Ctrl+F
Scrolls forward one screen.

e DborCtrl+B
Scrolls back one screen.
e d

Scrolls down half a screen.
o #d or #Ctrl+D

Sets half- screen line value and scrolls down that many lines.
e U

Scrolls up half a screen.

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

#u or #Ctrl+U

Sets the half-screen line value and scrolls up that many lines.
J

Scrolls forward one line.

#, #, or #Ctrl+E

Scrolls forward a specified number of lines.
Kk

Scrolls back one line.

#k or #Ctrl+Y

Scrolls back a specified number of lines.

g

Moves back to thefirst linein thefile.

#J

Moves to the specified line number.

G

Moves forward to the last linein thefile.
#G

Moves to the specified line number.

#p or #%

Moves the specified percentage into thefile.
/pattern

Searches forward for a specified pattern.
?pattern

Searches backward for a specified pattern.
[!pattern

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Searches forward for the first line not containing the specified
pattern.

?1pattern

Searches backward for the first line not containing the specified
pattern.

n

Performs the next search using the previous search pattern and
search direction.

ma-z
Marks a position for later reference.
‘a-z

Moves to a specified reference point.
' (two single quotes)

Returns to the starting point after a move to a marked position,
full file, percentage, or a search operation.

lcommand or :!command

Runs the specified AIX command.

h

Displays the more command help screen.
Y

Edits the current file using vi editor.

r or Ctrl+L

Refreshes the display.

g quits the more session. You can also quit with Q or :q.

Usef and b (or Ctrl+F and Ctrl+B) to scroll the display forward or
backward one screen. Since the most common use of the more
command isto pageforward through afile, the spacebar hasal so been
set up to advance the display forward one screen.

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Usethed andu (or Ctrl+D and Ctrl+U) to scroll the display down or
up half a screen.

If you precede the d or u subcommand with anumber, mor e setsthe
‘half page value' to the number of lines you specified (the setting
persists for the duration of the session). So, if you enter 7d, more
scrollsdown sevenlines, and seven linesagain whenever d ispressed
in that session. This also causes more to scroll up seven lines
whenever u is pressed.

This type of scrolling is useful when you wish to view data in
increments other than full screens, particularly ‘stanza -like data,
which has afixed periodicity in terms of rows.

Usej and k to scroll through the fileline by line. | scrollsforward a
line and k scrolls back aline. The Enter key has also been set up to
scroll forward one line. You can also use Ctrl+Y and the Ctrl+E to
move up and down through the file line by line.

If you precede the command with a number, more will scroll that
many lines.

Thecommand G isusedto moveforwardtothelastlineof thefile, and
g to move back to the first line. If you precede the command with a
number, mor e scrolls up or down to that line number.

You canalsomovethrough afilepercentage-wiseusingthecommands
p and %. For example, if you issue the command 50p or 50%
anywherein afile, moretakesyou approximately to the midpoint of
the file. If you were on the last screen and typed 10%, more would
takeyoutothescreenthat’ sapproximately one-tenthintothefilefrom
thetop. Thiscan beuseful if youwant to movequickly throughalarge
file without regard to line numbers,

Notes:

1 The specified percentage moves the focus to that position from
the top of thefile, not from your current location in thefile.

2 All percentagesused by moreare cal cul ated using the number of
characters, not the number of lines. For most data, individual
linesprobably contai napproximately equal numbersof characters.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

However, if you have a file with 60 lines of 132 characters
followed by 300 lines of eight characters, thefileis‘top heavy’
and would skew the percentages towards the top of thefile.

3 Thepercentagethat appearswith the more prompt representsthe
amount of the file that has been displayed so far, including the
current screen. Thismay differ fromthe percentageyou specified
with the p or % subcommand, which movesthe focus, whichis
aline near thetop of the screen, to thelinethat dividesthefile by
thepercentagespecified. Thediscrepancy isparticularly noticeable
when smaller files are displayed.

SEARCHES

Sear ching forwar ds and backwar ds using a pattern

Useaforwarddlash(‘/") followed by asearch patternto search thefile
forward from the current focus. Use the question mark (*?) and a
search pattern to search for text appearing before the current focus.

For example, if your current focusisapproximately mid-way through
the file, and you enter the command sequence:

/VARIABLE

more positions the focus at the first occurrence of ‘VARIABLE’
found below your starting point.

If you enter:
?VARIABLE

morefindsthefirst occurrence of ‘VARIABLE' before your starting
point.

Sear ching forwar ds and backwards for no occurrence of pattern

If you precedethesearch patternwithanexclamationmark (*!’), more
looks for the first line that doesn’t contain a string that matches the
specified search pattern. Specifying /! pattern searches forwards and
?1pattern searches backwards. For example, if you were to enter:

/VINCLUDE

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

mor eskipsseveral consecutivelinesthat containthestring‘ INCLUDE’
and displays the first line that doesn't.

Repeat search

Usethen key totell moreto position thefocus at the next occurrence
of the specified search string. If the direction of the last search was
backwards, the n key causes the search to be repeated in the same
direction.

ADVANCED MOVEMENT

Marking a screen

Usethem key followed by acharacter from*a to‘z’ tomark aposition
for later reference. Thenusethe*"” (single quote) key followed by the
desired character to cause more to position the line of focus at that
reference point.

Type*" (two single quotes, not adouble quote) to return to the focus
line prior to the move to the marked line (this works only if the
movement is greater than a page).

For example, if the current focus line were to display a screen
containing aconversion table or ‘key’, you could type mk and more
will mark thepositionas‘k’. Later, whileviewing ascreen containing
a data item for which you would like to see the conversion, type 'k
(singlequotek) and morewill redisplay thescreen containing thekey.
Toreturn to thetext, type ' (two single quotes).

The use of two single quotesis not restricted to moving to a marked
line, and they can also be used to return after movements using the
commands g or G, percentages P or %, and searches.

MISCELLANEOUS SUBCOMMANDS

Start an Al X command

Usetheexclamation mark (‘!") followed by an AlX command to open
anew shell and runthe specified command. You canalsousethe:!cmd
combination (colon, exclamation mark, command) if desired.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

For example, if youwouldliketoinitiate abackground processcalled
mytask during amoresession, enter 'mytask& at the more prompt.
You will see amessage that the command is executed.

Display the more command help screen

Usetheh key to display help screensfor themorecommand. Usethe
spacebar to view successive screensand q followed by the Enter key
to return to the mor e session.

Start thevi editor

Usethev key to begin editing the current file using the vi editor. The
default behaviour of the more command is to position the editor
cursor at the same line asmor €'sfocus when v is typed. If you want
the editor to initialize with line number 1 being displayed each time
vi isinvoked, use the -N flag when invoking the mor e command.

Refresh the display

Usether key to refresh the display. Thisis useful when an external
process is making changes to the data currently displayed. You can
also use Ctrl+L to perform this operation.

SUMMARY

There’'s more to the more command than just scrolling forward
through afile. Once you practise using mor e, you will probably find
yourself using the command frequently. It isagood way to inspect a
filewithout theimplicit dangersof editing it. It isalso one of thefew
way's to inspect the output of certain commands without overtaxing
disk resources.

David Chakmakian
Programmer (USA) © Xephon 2000

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

A collection of utilities

Unix has many fascinating small utilitiesthat do one or more simple
jobs. Many aredesigned to work in conjunction with other programs.
Most of these commands work well as part of a pipe, and are
frequently combined with other commands in order to get some job
done.

The commands aretoo simplefor each to warrant awhol e article, but
they arealso far too useful toignore. Thisarticlewill cover several of
these ‘small fry’ commands.

TAIL

The tail command displays the last ten lines of a file on standard
output (usually the terminal). The number can be modified by using
a—nn switch, wherenn isthenumber of linesto display. For example:

tail -20 log.txt

displaysthelast 20 linesof log.txt. If aplussign (‘+') isused instead
of adash (*-'), the number of lines specified isunderstood to be from
the beginning of thefile. For example:

tail +20 Tog.txt

skipslines1to 19 of log.txt and display all linesfrom thetwentiethto
the end of thefile.

tail isparticularly useful for looking at thelast entriesinalogfile. To
thisend, it hasavery useful -f option. If tail isused with thisflag, the
file being displayed is not closed, but is instead kept open. The tail
program sleeps for one second, then wakes and checks whether new
lineswere added to thefile. If they were, the new linesare displayed.
This option is useful for monitoring alog file that is actively being
written to. Assuming that log.txt is alog file in use by one or more
programs, then:

tail -f log.txt

displaysthelast 10 lines of log.txt, and then updates the screen each

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

second with any new recordsthat are added to log.txt. | first used tail
-f to monitor afile that was being filled with transactions by cash
registers as cashiers rang up purchases. tail really is an excellent
debugging tool. For testing purposes, we set up the register, rang up
different types of transaction, and then examined the result on the
Unix screen, immediately. Inthisway wewere quickly abletoisolate
transactions that were being written to the file incorrectly.

Becausetail routesits output to standard output, it ispossibleto pipe
the results into another process. At one point when debugging the
registers, wewereconcernedthat they werewriting garbagecharacters
and/or nulls to the transaction file. The tail utility processesfiles as
text, soit’snot possibleto see nullsand other non-printable characters
in the data. We used tail to pump the datato od (‘ octal display’) and
then display the data in hex, so that we could examine it for null
characters. If tail -f isused at the beginning of the pipe, thetransaction
remains open and constantly pumps data to od, where the bytes are
translated into hex and displayed.

tail -f trx.txt|od -xc

You may want to try the following example to test tail. Move to a
directory whereyou can create somefileswithout interfering withany
production data. Next create a process that writesto alog file. The
Korn shell isAIX’s default shell —if you are not already running it,
start it by typing ksh and pressing ‘ Enter’. Typethelinesin Listing 1
below. Asyou enter each line, the ‘>’ prompt appears, indicating that
more input isexpected. Thelinesin Listing 1 are numbered to allow
themto beidentified easily, though the numbers should not appear on
the screen. The initial ‘$ on line 1 and the *>" on lines 2 to 6 are
provided as promptsfor your input — you type everything to theright
of the first character. The command creates a process that sleeps for
two seconds and then awakens and appends the date and time to
log.txt. The processissubmittedinthe background by enclosing all of
the commandsin parenthesesin lines 1 and 6, and ending with afinal
ampersand (‘&) inline 6. When you press Enter at the end of line 6,
the processis submitted in the background and runs asadetached job
with noterminal towriteto. It doesn’'t need aterminal sinceit’swriting
tolog.txt. Online 7, the operating system responds by giving you the
job number of the job that is now running in the background. In the

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

example, it's ‘657’. Make a note of the job number that appears on
your terminal, as you will need it later to kill the process.

LISTING 1: PUMPING DATA INTOA LOG FILE

$ (while true

do

sleep 2

echo “date” >>log.txt
done

)&
1] 657

O NOYYOT B WN B
AV VvV VYV YV

Now that log.txt is being filled with a date and time stamp every two
seconds, enter the following command:

tail -f log.txt

Asyou watch the screen, log.txt isgradually filled with information,
and tail -f continues to display the information on the screen asin
Listing 2.

LISTING 2: SAMPLE OUTPUT FOR TAIL -F

$ tail -f log.txt

Sun Apr 12 14:03:01 PDT 1998
Sun Apr 12 14:03:03 PDT 1998
Sun Apr 12 14:03:05 PDT 1998
Sun Apr 12 14:03:07 PDT 1998

Press Control-C or the Delete key to stop your tail -f process,
depending on how your terminal is set up.

Finally you need to stop the background processthat islogging lines
tothelog.txtfile. Usingthejob number that you noted after theprocess
started, type:

ki1l 657

The systemwill usually respond with amessagethat the specified job
has been terminated, as in the following example (the continuation
character, ‘0, indicatesthat one line of code maps to more than one
line of print):

$ kill 657

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

[1] + Terminated (while true;do;sleep 2;echo “date’
O >>log.txt;done)&
$

DATE

While date is commonly used to set the date and time, it can also be
used to extract the date and time in numerous formats.

The simplest form of the command is the default one:

$ date
Sun Apr 12 14:03:01 PDT 1998

A simplelogging script could becreated usingthisformat asinListing
3. After you haveedited thiswith vi, saveit as‘logit.sh’. Then change
its permissions by typing chmod a+x logit.sh to make the script
executable.

LISTING 3: LOGIT.SH

logit.sh

log all the arguments passed on the command line along
with the date and time stamp

echo “date” $@ >> log.txt

Run logit.sh by typing:
$ logit.sh This is a line to Tlog

If you then use cat to type the contents of log.txt, the file should
contain:

$ cat log.txt
Sun Apr 12 14:03:01 PDT 1998 This is a line to log

Thedatemay also beformatted by usinga‘+’ followed by formatting
characters, asin:

$ date +%D
04/12/98

% D isadate formatting character that indicatesthat the dateisto be
output in mm/dd/yy format. Some of the other formatting characters
arelisted below. Your version of date may not support all of them, and
may support othersnot listed below. Check your man pagesfor alist
of formatting characters.

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

%A
%a
%B
%b
%C
%D
%d
%H
%l
%i
%M
%m
%N
%p
%R
%or
%S
%T
%U

%u
Yow
%Y
%y
%Z

The full weekday name (Sunday, Monday, etc).
The abbreviated weekday name (Sun, Mon, etc).
The full month name (January, February, etc).
The abbreviated month name (Jan, Feb, etc).
The first two digits of the year (00 to 99).

The date in the form mnvdd/yy.

The two-digit day of the month (01 to 31).

The hour in 24-hour format (00 to 23).

The hour in 12-hour format (01 to 12).

The numeric day of the year (001 to 366).

The minute (00 to 59).

The month number (01 to 12).

A ‘newline character.

The equivaent of ‘AM’ or ‘PM’.

The 24-hour time (for example, 13:22).

The 12-hour time with AM/PM (for example, 11:53:29 AM).
The second (00 to 59).

The 24-hour time (14:53:29).

Theweek number intheyear (00-53), where Sunday isthefirst
day of theweek and all daysbeforethefirst Sunday of ayear are
in week 0.

The weekday number (Monday = 1, Sunday = 7).
The weekday number (Sunday = O, Saturday = 6).
The year in four-digit format (1999).

The year in two-digit format (99).

The time zone name (PDT, EDT, etc).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

Itisoften necessary toinclude spacesinadateformat, soitiscommon
to include the date format string in quotes. In thefollowing example,
the quotes are necessary because of the space in the format string.

$ date "+%D %R"
04/12/98 13:22

The ability to format date fields can be used to create log file names
that contain a date stamp.

In Listing 4, anew version of logit.sh, createsalog file name using
the year, month, day, and hour. This ensures that log files don’t
become too large to be handled easily.

LISTING 4: LOGGING NAMESWITH A DATE STAMP

Togit.sh

log all the arguments passed on the command line, in an
hourly log file.

logtime="date "+%y%m%d%H""

logfile=${logtime}.Tlog

echo “date” $@ >> $logfile

This could include the minute if sufficient events are logged to
warrant it, in which case use the code in Listing 5.

LISTING 5: LOG FILE NAMES THAT INCLUDE THE MINUTE

Togit.sh

log all the arguments passed on the command line.
logtime="date "+%y%m%hd%H%M""

logfile=${logtime}.Tlog

echo “date” $@ >> $Tlogfile

One advantage of using the dateto createlog file namesisthe natural
sort order provided by thelscommand. If thefile nameis created by
concatenating theyear, month, day, and hour (or hour and minute), the
log files are sorted by time of creation when an Iscommand is used.

READ

Theread commandishbuiltintothe Kornshell. Itspurposeisto allow
input informationtobereadfrom standardinput (usually thekeyboard).

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Type the following command, then enter a single word (with no
spaces) asin the example below. The command read x causes input
to be read from standard input and assigned to the variable $x, which
Is then echoed to the screen.

$ read x; echo $x
hello

hello

$

read is used in shell scripts to accept user input and assign it to a
variable. Listing 6, Smpmenu, is atwo-option menu that uses read
to accept theuser’sinput. Linenumbersareincluded for convenience,
though they are not part of the script.

A menu is generated in lines 7 to 18. After line 19 reads the user
selection into variable x, one of two possible actions is executed at
lines 20 to 23 and 25 to 28. Thisrepeats until the user entersa‘9’ as
the menu selection. Thisiscontrolled by line 5, which statesthat if $x
iIsnot equal (-ne) to ‘9", the loop continues to execute.

Notetheadditional readsinlines22 and 27 —whilethey seemto have
no variable nominated for input, the read command uses the default
variable REPLY if novariableisnamed. Lines22 and 27 givethe user
the opportunity to see the last page of output before the screen is
cleared.

LISTING 6: SSIMPMENU USING ‘READ’

simpmenu
a simple menu program

x=1
while [$x -ne 9 1]
do
clear
echo
echo
echo "Enter your selection”
echo
echo
echo "1 Display directory"”
echo "2 Display processes”
echo
echo

0O NOYOL B WN -

el e e el e e
DA WN R O

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

17 echo "9 Exit"

18

19 read x

20 if [$x -eq 1]

21 then

22 1s -T|more ; echo "Press Enter" ; read
23 fi

24

25 if [$x -eq 2 1]

26 then

27 ps -ef|more ; echo "Press Enter" ; read
28 fi

29 done

Usingthedefault variableREPLY, thefirst exercisecoul d beshortened
to:

$ read; echo $REPLY
hello

hello

$

The read command can be used to read and fill more than one
variable. Try entering the following command and then typing four
words separated by spaces.

$ read x y z; echo $x; echo $y; echo $z
one two three four

one

two

three four

$

Theread commandreadsinall of thewordsonalineand assignsthem
oneby onetothevariableslisted after ther ead command. If thereare
more words than there are variables, the remaining words are all
assignedtothelast variable. Intheaboveexample, $x="one’, $y="two’,
and $z="three four’.

Thisistrueevenwith only onevariable, asinthe examplebelow. The
$xvariableisthelast variableassociated withread, and so it takesthe
value ‘one two three four’.

$ read x; echo $x

one two three four

one two three four
$

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

You can break up the list in $x by using a for statement, as in the
example below.

$ read x; for name in $x; do echo $name; done
one two three four

one

two

three

four

$

Listing 7, multmenu, showsascript that allowsauser to enter several
menu selections separated by spaces. Lines 20 to 34 break the user
selection into parts, each being processed in multiple passes.

LISTING 7 MULTMENU ALLOWS MULTIPLE MENU PICKS

1 # multmenu

2 # a multiple menu program

3

4 x=1

5 while [$x -ne 9 1]

6 do

7 clear

8 echo

9 echo

10 echo "Enter your selection”
11 echo

12 echo

13 echo "1 Display directory”
14 echo "2 Display processes"”
15 echo

16 echo

17 echo "9 Exit"

18 read x

19 for pick in $x

20 do

21 if [$pick -eq 1 1]

22 then

23 1s -1|more ; echo "Press Enter" ; read
24 fi

25 if [$pick -eq 2 1]

26 then

27 ps -ef|more ; echo "Press Enter" ; read
28 fi

29 if [$pick -eq 9 1]
30 then
31 exit

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

32 fi
33 done
34 done

Thereisone other powerful trick that workswith read. It is possible
to start a process running that produces output, and then read that
output asif it werecoming fromthekeyboard. Thisrequirestwo steps:

1 The process hasto be started in a special way

2 Theread command has to be informed that it is reading from
another process rather than the keyboard.

Listing 8, oldest.sh, usesthistechnique. Thels-tr command liststhe
filesinadirectory inchronological order, startingwiththeoldest. Line
4 in the script launches the Is -tr command using a pipe bar and an
ampersand ‘|&’ . The ampersand indicates that the command isto be
detached and runinthebackground. The pipeindicatesthat apipeline
IS to be created between the oldest.sh process and the detached
process. Line6issuesaread withthe-p flag, meaningthat itisto read
fromapiperather than standardinput. r ead readseverything uptothe
first newline character, thus reading the first line output by Is-tr.

LISTING 8: READING FROM ANOTHER PROCESS

oldest.sh
names the oldest file

s -tr|&

read -p x

NOoOY o B W N

8 echo "The oldest file is" $x

Another example of using read appearsin the next sectiononwc. As
you'll see, read is useful for more than just simple input.

wC

Thewc command provides a count of words, lines, and charactersin
adocument. In Listing 9, log.txt contains 154 lines, 918 words, and
4431 characters. |s-l revealsthesizeof thefileto be 4431 bytes, which
matches the character count produced by wc.

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LISTING 9: USING WC

$ wc log.txt
154 918 4431 log.txt
$ 1s -1 Tog.txt
“rw-r--r-- 1 mjb group 4431 Apr 12 14:35 Tog.txt

The wc word counter defines a word as any non-blank sequence of
letters or numbers.

You may limit the output of wc to a count of only words, lines, or
characters using the -w, -1, and -c switches respectively. The default
istodisplay all threevalues. Thedisplay output of wcincludesthefile
name so you can output theresultsfor morethan onefileby usingwild
cards on the command line. The following example displaystheline
counts for all filesthat start with ‘log’, along with atotal.

$ we -1 Tog*
154 Tog.txt
5 Tlogit.sh

159 total

The wec utility is useful for authors. Listing 10, ueditor, is my own
personal editor. It doesn’t care about the quality of the content, but it
does provide prods and praise until | have produced 2000 words. It
includesline numbersfor explanation. The scriptisinvoked using the
command ueditor article.txt. Line 3 shows wc being used to count
words. The terminator ‘|&’ causes the wc command to start as a
background task and opens a pipe from the background task back to
ueditor in such away that the output of the task can be read asinput
by ueditor . The output isread in line 4. The command wc -w outputs
two fields: the word count and the file name. These are read into
separate variables, $wrdsand $name, inline4. Thevaluein $wrdsis
testedinline 5 —if it’sless than (-1t) 2000, words of encouragement
are printed. If $wrds is 2000 or more, the message contains some
praise for the humble and hard-working author.

LISTING 10: UEDITOR

ueditor

checks if the article has 2000 words yet
wc -w $1|&

read -p $wrds $name

if [$wrds -1t 2000]

OB W N

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

then
echo "Only" $wrds "words! More, more I'm still not satisfied."

6
7
8 else
9 echo $name "™ is a brilliant piecel™”
1

0 fi

DU

If the directory only files contains, it is easy enough to issue the
command Is -Isto get the size of filesin bytes and blocks:

$ 1s -1s

total 6

2 -rw-r--r-- 1 mjb group 3 Feb 04 23:31 minutes.txt
4 -rw-r--r-- 1 mjb group 1201 Feb 04 23:25 note.txt

Thefirst column containsthe size of thefilein 512-byte blocks, and
the sixth column gives the size in bytes. Files in this directory
consume six blocks that contain only 1204 bytes.

Thismethod of all ocating chunksof disk spacetoafile, evenif thefile
doesn’'t use al the space, isusedin all major operating systemsin one
form or another. Some convenient number of bytesis selected asthe
minimum that can be allocated to afile. Thisisan allocation unit. If
the file does not use all the space in an allocation unit, what thereis
of thefileisrecorded at the beginning of the unit and the remainder
of the unit is set aside for further expansion of thefile. If thefileis
expanded, as long as it doesn’'t exceed the number of bytesin an
alocation unit, all the new bytes are stored in the empty reserved
space on the disk. Once the file size exceeds its initial allocation,
another alocation unit is grabbed and reserved for the file. The
spillover from the first allocation unit is tucked at the start of the
second allocation unit and so on. Earlier Unix systems used an
allocation unit of 512 bytes. These 512 bytes came to be known asa
block. As disk sizes grew, the basic allocation unit was increased to
1024 byteson most systems (larger on some), but many utilities, such
asls, still report file size or disk usein 512-byte blocks. So the three-
byte file uses two blocks.

In the following example, the directory in question includes a
subdirectory, perl. The two blocks allocated to the per| directory are
only theblocksused by thedirectory entry itself, not onesused by files
contained in the directory.

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

$ 1s -1s

total 6
2 -rw-r--r-- 1 mjb group 3 Feb 04 23:31 minutes.txt
4 -rw-r--r-- 1 mjb group 1201 Feb 04 23:25 note.txt
2 drwxr-xrx 2 mjb group 128 Jan 29 18:53 perl

We couldfigureout thesizesby doing anls-Isperl, but supposethere
is another directory under perl, and so on?

The answer to this dilemmais the Unix utility du. How do you du?
Thedu utility analysesdirectoriesand subdirectoriesrecursively and
displaysblocksused. Thedisplay bel ow providesinformationthat the
directory being processed contains a perl subdirectory. This, in turn,
contains asubdirectory, src. The src directory containsfilestotalling
1540 blocks. The perl directory count includes all the blocksin src
plusthe blocksused by filesin perl. Finally, thetop-level includesall
blocksbelow it plusblocksused by filesused in the current directory.

$ du

1540 ./perl/src
5648 ./per]
5654 .

Using the -a option causes the detail of each file to be displayed.

$ du -a

1500 ./perl/src/big.prl
40 ./perl/src/prog.pri
1540 ./perl/src

4108 ./perl/perl.tar
5648 ./per]

2 ./minutes.txt

4 ./note.txt

5654 .

The du command cuts through a lot of what |s commands do and
provides size information plus a reasonable display of the directory
tree.

TR
The tr utility translates one set of characters into another set.

The command:

tr abc def <test.txt

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

processes the records from test.txt and trandatesato d, btoe and c
tof. At first glance this doesn’t seem very useful unless you want to
practisevery amateur cryptography; however, tr hasadditional options
that make it much more useful. Two examples should sufficeto give
you a fedl for the command. The characters to be translated can be
expressed asarange. Inthefirst example below, adirectory isoutput
through tr, which translates a to A, b to B, and so on, converting
everything to uppercase.

$ 1s -Is|tr [a-z] [A-Z]

TOTAL 6
2 -RW-R--R-- 1 MJB GROUP 3 FEB 04 23:31 MINUTES.TXT
4 -RW-R--R-- 1 MJB GROUP 1201 FEB 04 23:25 NOTE.TXT

2 DRWXR-XRX 2 MJB GROUP 128 JAN 29 18:53 PERL

One use for case conversion isto work around a problem caused by
some utilitiesthat copy MS-DOSfiles. They copy thefilesusingM S
DOS suppercase convention, and thefile namesneed to be converted
to lowercase to follow Unix’s naming style and work correctly. The
command bel ow changesall filenamestolowercase. It takeseachfile
name and echoes it through a pipe using tr to change the case. The
result is used as the target of an mv command.

$ for name in *

> do

> mv $name “echo $name|tr [A-Z] [a-z]°
> done

$

tr’'s-sswitch causesrepeated instances of acharacter to betranslated
tojust oneinstance. Inthefollowing example, thefiletest.txt contains
a line with multiple spaces between words. While the tr command
seemsto do nothing—after all, it just translatesaspaceto aspace—the
-s switch sgueezes multiple spaces into a single output space. The
resulting test2.txt has single spaces between words.

$ cat test.txt

How are you today?

$ tr -s """ " < test.txt >test2.txt
$ type test2.txt

How are you today?

Mo Budlong (USA) © Xephon 2000

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SSCCARS (part 4)

Thisisthe penultimate part of this article on a group of utilities that
together compriseasource code management system. Thefirst part of
thisarticleappearedintheNovember 1999issueof Al X Update (I ssue
49) and the final part appears in next month’s issue (Issue 53).

EXECSU.C

execsu isa C module that performs tasks that require root privilege,
such as copying a source file to or from adirectory that may only be
written to by root.

Notethe use of the continuation character, ‘0’ inthe codeto indicate
that one line of code maps to more than one line of print.

EXECSU.C

/**

* Author : Arif Zaman
*

Name ¢ execsu.c

Description : Perform tasks that require superuser privilege.

Arguments : 1 An action type, the ones available being:
CR = Create a Tock file in Tock directory.
RM = Remove a file from any source-related

directory.

WL = Write a Tog entry.
UL = Update a Tog.
CI = Copy the source being checked in.
RS = Register the source.

A file name.

A directory name.

The date for Tog message.

The time for Tog message.

The user-id for the log message.

The module name being checked in or out.
The 1og message.

00 NOYOlL B WMN

Notes : 1 The program is owned by root and has its uid
bit set. Any process executing it effectively

b R I S e . R B . I RO B . S

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

becomes root, the owner of the program.

2 The uid bit can be set for the shell script but
the shell ignores it completely; it has to be a
compiled program.

3 The program is used mainly in conjunction with the
various in-house source code control utilities.

4 The number of command 1ine arguments varies
according to the type of action required.
***/
ffinclude <stdio.h>
/*
* FUNCTION PROTOTYPE
*/
short main (int argc, char *argv[]);
short ParseCommandLine (int arg_count, char **argval);
short ProcessAction (void);
short ProcessSourceDetails (void);
short WriteSourceDetails (void);
short WritelLog (void);
short CheckWordSplit (char *1ine);
char * StriplLeadingSpaces (char *string);
/*
* MODULE CONSTANTS
*/
ffdefine SUCCESS 0
ffdefine FAILURE 1
#fdefine USAGE "Usage: execsu <action> <file name> <directory name>
O <checkin/out date> < check in/out time> <check in/out userid>
O <module name> <comment>\n"
fdefine TRUE 1
{fdefine FALSE O
/*
* GLOBAL VARIABLES
* variables for manipulating Tock and log files
*/
char action_typel[3]; /* mandatory command line arguments */
char file_name[60];
char dir_name [60];
char chk_in_out_date[15]; /* used for action type WL and UL */
char chk_in_out_time[20];
char chk_in_out_uid[30];
char chk_in_out_module[30];
char chk_in_out_comment[100];

X % % % % % %k %k F X %

char source_full_name[31]; /* used for action type RS */
char source_short_name[21]; /* used for action type RS */
char source_description[2001];

char source_details[81]; /* source details record */

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

short total_char_processed ; /* number of character processed */
char source_name_file[100]; /* file for source details */
short wuse_hypen;

/**

* Name : main

*

* Description : Calls all other functions.
*

* Returns : SUCCESS or FAILURE

***/

short main (int argc, char *argv[1)
{
if (ParseCommandLine (argc,argv) != SUCCESS)
return FAILURE;
if (ProcessAction () != SUCCESS)
return FAILURE;
return SUCCESS;

/**
* Name : ParseCommandLine
*

* Description : The function parses the command line.
*

* Returns : SUCCESS or FAILURE

***/

short ParseCommandLine(int arg_count, char **argval)

{
/*
* check argument count
*/
if (arg_count > 9)
{
printf(USAGE);
return FAILURE;
}
/*
* copy arguments
*/

strcpy (action_type,*(argval+l));
strcpy (file_name,*(argval+2));
strcpy (dir_name,*(argval+3));
if ((strcmp (action_type,"WL") = 0) ||
(strcmp (action_type,"UL") == 0))
/*
* copy additional arguments
*/
{
strcpy (chk_in_out_date,*(argval+4));
strcpy (chk_in_out_time,*(argval+5));

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

29

strcpy (chk_in_out_uid,*(argval+6));
strcpy (chk_in_out_module,*(argval+7));
strcpy (chk_in_out_comment,*(argval+8));

}

else if (strcmp (action_type,"RS™) == 0)

/*

* copy additional arguments

*/

{
strcpy (source_short_name,*(argval+4));
strcpy (source_full_name,*(argval+5));
strcpy (source_description,*(argval+6));

}

return SUCCESS;

}

/**

* Name : ProcessAction

* Description : Acts according to the action types below.

* CR - Create a lock file in the target directory.
* RM - Remove a file from a directory.

* WL - Write a log message in a specified file in
* target directory.

* UL - Update log file.

* CI - Check in a source.

* Returns : SUCCESS or FAILURE

***/

short ProcessAction (void)

{

FILE *fptr; /* general file pointer */
short rc; /* return code */
short 1;
char lTock_file[100]; /* used for CR action */
char source_file[100]; /* used for action type = CI */
char target_file[100];
char system_command[100]; /* shell command */
if (strcmp(action_type,"CR") == 0)
{

/*

* create a lock file and generate Tock file name

*/

strcpy(lock_file,dir_name);
strcat(lock_file,"/");
strcat(lock_file,file_name);

/*

* open and close the file

* for creating a zero byte file

*/

if ((fptr = fopen(lock file,"w")) == NULL)

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

{

printf("execsu:ERROR: Failed to create the file %s\n",lock _file);

return FAILURE;
}
fclose(fptr);
return SUCCESS;
}
else if (strcmp(action_type,"RM") == 0)
{
/*
* remove a file from a directory
*/
strcpy(system_command,” rm ");
strcat(system_command,dir_name);
strcat(system_command,"/");
strcat(system_command,file_name);
rc = system(system_command) ;
if (rc == SUCCESS)
return SUCCESS;
else
{
printf("execsu:ERROR: Failed to remove file %s in %s
O directory\n", file_name,dir_name);
return FAILURE;
}
}
else if (strcmp (action_type ,"CI") == 0)
{
/*
* check in the source
*/
strcpy(target_file,dir_name);
strcpy(source_file,file_name);
strcpy(system_command,"mv ");
strcat(system_command,source_file);
strcat(system_command," ");
strcat(system_command,target_file);
rc = system(system_command);
if (rc == SUCCESS)
{
/*

*

change the ownership to root
change the group to system
change the permission to 744

*

*/

strcpy(system_command,"chown root ");
strcat(system_command,target_file);
system(system_command) ;
strcpy(system_command,"chgrp system ");
strcat(system_command,target_file);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

31

system(system_command) ;
strcpy(system_command,"chmod 744 ");
strcat(system_command,target_file);
system(system_command) ;
return SUCCESS;
}
else
{
printf("execsu:ERROR: Failed to move the source file %s\n",
file_name);
return FAILURE;
}
}
else if (strcmp(action_type,"RS") == 0)
{
/*
* write source details in the file
*/
if (ProcessSourceDetails () != SUCCESS)
return FAILURE;
}
else if ((strcmp(action_type,"WL") == 0) ||
(strcmp(action_type,"UL") == 0))
{
if (WriteLog() != SUCCESS)
return FAILURE;

}
return SUCCESS;
}
/**
* Name : ProcessSourceDetails
*
* Description : The function writes the source details to the
* specified data file.
*
* Returns : SUCCESS
*
* Notes : 1 The maximum length of a source detail record is
* 80 and it has the following Tayout:
* File Name Full Name Description
* 22 32 26
* 26
* 26
* 22
* 2 The number of records that have to be written
* for source details depends on the length of
*

source description, the maximum being 100.
***/

short ProcessSourceDetails(void)
{

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

short source_desc_len;
short numchars; /* characters in multi-record description
char *curloc; /* Tocation of source description
short char_remaining ; /* characters still to be processed
short i;
char formatted_source_desc[2001]; /* for description formatting
char “*word_location ;
char string[2001] ;
/*
* format source description (a white space is a word delimiter)
*/
word_Tlocation = source_description;
memset(formatted_source_desc,'\0',2001);
while (TRUE)
{
memset(string, '\0',2001);
sscanf(word_location,"%s",string);
if (! strlen(string))

break ;
strcat(formatted_source_desc,string);
strcat(formatted_source_desc," ");

word_location=word_location + strlen(string) + 1 ;
}
/*
* prepare source registration data file name
*/
strcpy(source_name_file,dir_name);
strcat(source_name_file,"/");
strcat(source_name_file,file_name);
/*
* prepare record with source details
*/
memset(source_details,'\0',81);
strcpy(source_details,source_short_name);
/*
* right pad the string to 20 (file name) + 2 spaces
*/
for (i = strlen(source_details);i <22 ; i++)
source_details[i] = ' ';
source_details[i+1] "\0";
/*
* append source full name (30 characters + 2 spaces)
*/
strcat(source_details,source_full_name);
/*
* Jeft pad the record for first 54 characters
*/
for (i = strlen(source_details) ; i < 54; i++)
source_details[i] = ' ';
source_details[i+1] = "\0';

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/

33

source_desc_len = strlen(formatted_source_desc);
total_char_processed = 0;

char_remaining = source_desc_Tlen ;
curloc=formatted_source_desc;
numchars=source_desc_Tlen ;

while (TRUE)

{

}
/

use_hypen = 0;
if (char_remaining < 27)

break ;
/*
* curloc = StriplLeadingSpaces(
* &formatted_source_desc[total_char_processed]);
*/

numchars = CheckWordSplit(
&formatted_source_desc[total_char_processed]);

/*

* numchars=CheckWordSplit(curloc);

*/

strncat(source_details,
&formatted_source_desc[total_char_processed],numchars);

total_char_processed = total_char_processed + numchars;

if (use_hypen == 1)

strncat(source_details,”"-");
/*

*

right pad the description to its entire length

* for (i = strlen(source_details) ; i < 80; i++)
* source_details[i]l = ' ';

* source_details[i+1] = "\0';

*/

strncat(source_details,”"\n");

/*

* write this record

*/

if (WriteSourceDetails () != SUCCESS)
return FAILURE;
memset(source_details,'\0',80);

/*

* left pad the new record up to 54 characters

*/

for (i = strlen(source_details) ; i < 54; i++)

source_details[i] = ' ';

source_details[i+1] = "\0';

char_remaining = source_desc_len - total_char_processed ;
*

* append the description record
*/

curloc = StriplLeadingSpaces(

&formatted_source_desc[total_char_processed]);

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

}

strncat(source_details,curloc,char_remaining);
for (i = strlen(source_details) ; i < 80; i++)
source_details[i] = ' ";
source_details[i+1] = "\0";
strncat(source_details,"\n\n");
if (WriteSourceDetails () != SUCCESS)
return FAILURE;
return SUCCESS;

/**

*

* o o %

Name : WriteSourceDetails
Description : Writes the source details to specified data file.
Returns : SUCCESS or FAILURE

***/

short WriteSourceDetails(void)

{

}

FILE *dfp; /* pointer to source data file */

if ((dfp = fopen(source_name_file,"a")) == NULL)

{
printf("execsu:ERROR: Failed to open file %s\n",source_name_file);
return FAILURE;

}

fputs(source_details,dfp);

fclose(dfp);

return SUCCESS;

/**

*
*

*
*
*
*
*

*
*

Name : CheckWordSplit

Description : Checks the source description record from the
location provided for number of characters that
will fit within a space reserved for 26 characters
in source description file without a word split

occurring at the end.

Returns : Number of characters to avoid a word split.

***/

short CheckWordSplit(char *1ine)

{

short char_processed = 0 ; /* characters in word */
short total_length = 0 ; /* length of description read so far */
char word[2000]; /* word delimited by white space */

if (strlen(line) < 27)
return strlen(line);
while (TRUE)
{
/*
* read the next word

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

35

*/
sscanf(line,"%s",word);
char_processed = strlen(word) + 1;
if (char_processed > 26)
{
/*
* found long word; return 25 and set global use_hypen to "1’
*/
use_hypen = 1;
return (25);
}
total_Tlength= total_length + char_processed;
line=line + char_processed ;
if (total_length < 27)

continue;
else
return (total_length - char_processed);
}

}
/**
* Name : StriplLeadingSpaces
*
* Description : Strips leading spaces from a string
*
* Returns : Pointer to string
*
* Notes : 1 The variable total_char_processed is declared in
* ProcesssSourceDetails () and is treated as global
*
* 2 The variable total_char_processed is incremented
*

for each leading space.
***/
char * StriplLeadingSpaces (char *string)
{
short 1i;
short Teading_space ;
for (i= 0; i <strlen(string); i++)

{
if (*(string + i) !I= " ")
return (string + i) ;
total_char_processed = total_char_processed + 1;
}
}
/**
* Name : Writelog
*

* Description : The function writes a 1og message as follows:

* 0 Action type WL writes a log message at the end
* of the log file.

* 0 Action type UL writes a Tog message just below

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

the previous one for the same source.
Returns : SUCCESS or FAILURE
Notes : 1 WL Togs a message when source is checked out.

2 UL Togs a message when source is checked in.

3 The log file is updated by reading the log file,
writing it to a temporary file, and then copying
the temporary file back to the Tog file.

***/

X% o % % % %k 3k X X %

short WritelLog (void)

{
char log_file[100];
char Tog_message[100];

char 1ine[100]; /* 1ine read from log file */
char dummy[501]; /* word read from log file */
char comment[30]; /* first word of the comment */
char module[50]; /* source name read from the line */
char p_module[20]; /* module as argument */
char p_userid[20]; /* user id as argument */
short 1log_updated = FALSE;

short 1i;

char temp_file [50]; /* temporary file for writing Tog */
char system_command[100];

short rc; /* return code from system command */
FILE *1fp; /* pointer to Tog file */
FILE *tfp; /* pointer to temporary file */
/*

* prepare log file name

*/

strcpy(log_file,dir_name);
strcat(log_file,"/");
strcat(log_file,file_name);

/*

* prepare temporary file name

*/

strcpy(temp_file,"/tmp/™);
strcat(temp_file,"execsu_tmp.dat");
/*

* prepare the log message

*/
strcpy(log_message,chk_in_out_date);
strcat(log_message,”™ ");
strcat(log_message,chk_in_out_time);
strcat(log_message," ")

/*

* turn user id into 15-character string
*/

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

38

strcpy(p_userid,chk_in_out_uid);

for (i=strlen(chk_in_out_uid);i < 15; i++)
chk_in_out_uid[i] = " ";

chk_in_out_uid[i]= "\0";

strcat(log_message,chk_in_out_uid);

/*

* turn module name into fixed Tength of 22

*/

strcpy(p_module,chk_in_out_module);

for (i=strlen(chk_in_out_module);i<22; i++)
chk_in_out_modulel[i] = " ";

chk_in_out_module[i]l= "\0';

strcat(log_message,chk_in_out_module);

strcat(log_message,chk_in_out_comment);

/*

* open the log file in read mode

*/

if ((1fp = fopen(log_file,"a")) == NULL)
{

printf("execsu:ERROR: Failed to open file %s\n",log file);
return FAILURE;

}
if (strcmp(action_type,"WL") == 0)
{

/*

* write a 1og message at the end of file for the check-out
*/
while (TRUE)
{
memset(T1ine, "\0"',100);
fgets(1line,100,1fp);
if (strlen(line) == 0)

{
/ *
* end of file reached; write the new Tog message
*/
strcat(log_message,"\n\n\n");
fputs(log_message,1fp);
fflush(1fp);
fclose(1fp);
return SUCCESS;
}
}
}
if (strcmp(action_type,”UL") == 0)
{
/ *
* write a Tog message for the check-in below the corresponding
* one for the check-out; open both 1og and temporary files
*/
© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if ((1fp = fopen(log_file,"r")) == NULL)

{
printf("execsu:ERROR: Failed to open file %s\n",log_file);
return FAILURE;

}

if ((tfp = fopen(temp_file,"w")) == NULL)

{

printf("execsu:ERROR: Failed to open file %s\n",temp_file);
return FAILURE;

}

/*
* read and copy the header (5 lines)
*/

for (i=1; i<6; i++)

{

memset(Tine,'\0',100);
fgets(1ine,100,1fp);
fputs(line,tfp);
}
while (TRUE)
{
memset(Tine,'\0',100);
memset(module, '\0"',50);
fgets(1ine,100,1fp);
if (strlen(line) == 0)
break;
else
fputs(line,tfp);
/*
* scan line for the checked-in module name
*/
sscanf(line,"%s%s%s%s%s" ,dummy ,dummy,dummy,module,dummy) ;
if (strcmp(p_module,module) == 0)
{
/*
* found CHECK OUT Tine, under which the new log message
* is to be written; first we check whether the 1line
* contains any other comments.
*/
memset(Tine,'\0',100);
memset(comment, '\0',30);
fgets(1ine,100,1fp);
if (strlen(line) == 0)
break;
sscanf(line,"%s%s%s%s%s" ,dummy,dummy,dummy,module,comment);
if ((strcmp(comment,"UNMODIFIED") == 0) ||
(strcmp(comment,"LOCKED") == 0))
{
/*
* write the log line

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

}

}

*/
fputs(line,tfp);

}
else
{
/*
* found CHECK OUT 1ine, under which the new 1og message
* for check-in is written; first we check whether the Tine
* contains any other comments.
*/
strcat(log_message,"\n\n");
fputs(log_message,tfp);
fflush(tfp);
log_updated = TRUE;
}
}

fclose(1fp);
fclose(tfp);
if (log_updated == TRUE)

{

}

/*
* move the temporary file with updated Tog to log file
*/
strcpy(system_command,"mv ");
strcat(system_command,temp_file);
strcat(system_command,” ");
strcat(system_command,log_file);
rc = system(system_command);
if (rc != SUCCESS)
{

printf("execsu:ERROR: Failed to copy temporary file %s\n",

temp_file);

return FAILURE;

}

else

{

}

printf("execsu:ERROR: Failed to update log file %s\n",log_file);
return FAILURE;

return SUCCESS;

Arif Zamam
DBA/Administrator

High-Tech Software

40

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

© Xephon 2000

Getting an entry from a configuration file

In a Windows system, it’s fairly straightforward to extract an entry
from a section of a configuration file. While thisis very useful, the
same is not so easy in an AIX environment. Hence, one misty
morning, wedecidedtowriteautility, calledget_entry, that bringsthe
same functionality to AlX. This allows you to make several
configuration files and extract information from them.

EXAMPLE

Consider the following configuration file, called system.ini, which
contains the following lines:

[tcpip]
host_address=140.88.76.5
host_name=AIX_systeml
dns_server=140.20.6.2
ip_routing_active=no
use_proxy=no

[test_section]

user = me and myself
script -

rubbish = yes

use_proxy = always

Thefilecomprisesentries(linesthat contain anequalssign, ‘="), and
entries that are bounded by lines containing square brackets (‘[' and
‘1) comprise sections. Each section begins with aword enclosed in
square brackets and ends with ablank line. In this example we have
two sections (the first has five entries and the second has four).

The following commands result in the following actions:
get_entry tcpip use_proxy system.ini
returns the word ‘no’ and the return code zero.

get_entry test_section user system.ini

returnsthe string ‘meand myself’ (without the single quotes) and the
error code zero.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

get_entry test_section not_to_find system.ini

returns no characters and the error code ‘1’ (‘entry not found’).

get_entry test_2 use_proxy system.ini

returns no characters and the error code ‘2’ (‘ section not found’).

get_entry test_3 system.ini
returns the error code ‘3 (‘missing parameter’) and the following
lines:

Missing parameter(s):
- section : the section that contains the entry
- entry : the name of the entry to show
- config file : the configuration file to be used

Example:
get_entry tcpip host_address /home/data/system.ini

Note the use of the continuation character, ‘0’, in the code below to
indicate that one line of code maps to more than one line of print.

GET_ENTRY

Name script : /home/oper/get_entry

Last change : 09-06-1997 pos9900 creation

Description : Get an entry from a section of a config file

example : get_entry subsetl script ini_file
e
Check that we have all the required parameters

if [$# -ne 3 -0 "$1" = "?"]

then if ["$1" I= "2"]

then echo "\nMissing parameter(s):"
else echo "\n Help get_entry \n "
echo "Required parameters:"

fi
echo " - section : the section that contains the entry"”
echo " - entry : the name of the entry to show"
echo " - config file : the configuration file to be used \n"
echo "Example : get_entry tcpip host_address
O /home/data/system.ini \n"
exit 3

fi

Initialize : entry not found, but parameters are 0K
entry_found=0

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

while

read varl
do
Check whether we've found the required subset
if ["$varl™ = "[$1]1" 1]
then # OK subset found
entry_found=1
fi

Empty line: another subset is coming

if [$entry_found -eq 1 -a "$varl"™ = ""]
then # Another subset, but entry still not found
exit 1
fi

Just looking for an entry in the subset
if [$entry_found -eq 1 1]
then var2="echo $varl | awk -F= '{print $1}'"

if ["$var2" = "$2" -0 "$var2" = "$2 "]
then # Got it, echo it and leave
if ["$var2" = "$2 "]

then # Entries formatted as 'entry
echo $varl | awk -F= "{print $2}'

something'
| cut -c2-

else # Entries formatted as 'entry=something_else"

echo $varl | awk -F= "{print $2}'
fi
exit 0
fi
fi
done <$3

Still searching for the subset, but end of file reached, so exit 2

exit 2

end

script

Teun Post
Unix specialist

Schuit

ema NV (The Netherlands)

© Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

43

Removing files by timestamp

It would be nice to have acommand that removesfilesfrom a given
directory based on aspecified dateand time. refbot.shisashell script
that accomplishes this task. The script removes from a specified
directory all the files that were modified before the date specified as
the argument to the script. The script can be run ininteractive mode,
where the script seeks the user’s approval prior to removing files.

OVERVIEW
I nput:

1 D=<directory name>
Thisinput is mandatory.
2 d=<ddmmyyyyhhmiss>
Date and time. This input is mandatory.
3 i=<y\n>
Interactive flag. Thisinput is optional (the defaultis‘Y’).
4 |=<logfile name>
Logfilename. Thisinputisoptional (thedefaultis/tmp/refbot.log).

USAGE

Notethe use of the continuation character (‘0’) below to indicate that
one line of code maps to more than one line of print.

refbot.sh D=/home/jones_e/work d=13081999120000 i=y
O 1=/admin/refbot.log

PROCESSING

Below is an overview of the structure of the program, which may
prove useful to those wishing to customize the utility to their own
needs.

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Switch to specified directory
Prepare a list of all the files
FOR each file
Establish whether file qualifies for removal
IF the file is to be removed
IF the file owner is the current user or the current
user is root
IF interactive mode is on
IF user approves to removal
IF file is directory
remove the directory with contents
ELSE
Remove the file
Write a Tog
END IF
END IF
ELSE
Remove the file
Write a log
END IF
END IF
END IF

REFBOT.SH

#! /usr/bin/ksh
HHHHEHHEHHEHHEHHEHHEHHEHHEHEEHEEHEEHEEHEEHEEHEEHEEHERHERHERHERHERHEE

Name : refbot.sh (remove file based on time)

i

Overview : The script removes file(s) from a given directory
based on date and time.

#

Input : 1 Directory name (no default)

i 2 Date and Time (no default)

i 3 Interactive flag (default to Y)

i 4 log file (default to /tmp/refbot.log)

#

Notes 1 The script removes the file(s) which were modified or
accessed prior to input date and time.

#

2 The syntax for the command is as follows:

i refbot.sh D=<directory name> t=<ddmmyyyyhhmiss>
i=<y|n> 1=<file name>

#

i eg refbot.sh D=/tmp t=01081999120022 i=n

1=/home/admin/log/refbot.log

i

3 The script contains the following functions:

0 main

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

i o InitializeVariables

i 0o ParseCommandLine

o ValidateArguments

o LeapYear

i o RemoveFiles

i o FileToBeRemoved

i 0 FileQualifyForRemoval

i 0 ProcessExit

i# o Handlelnterrupt

i o DisplayMessage

#

i 4 The user must acknowledge all displayed messages.

#

i# 5 Files or directories not owned by ordinary user are not
removed. However, all the files and/or directories that
i qualify for removal will be removed if the user is

root.

#

i 6 If a directory qualifies for removal, the utility uses

i the rm -r command to remove the directory and its

contents.

#

Date Author Description

b ommm oo
09/08/99 A Zaman Initial Build

#

26/08/99 A Zaman Improved handling of directory removal
#
THHHHHEHHHHEHEHEHHHHEHEHEHHEHEHERERHHEHERERHRHEHERERHRHEHERERHEHEHEHE

THHHHHHHHHHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHEEHEEHEEHEEHEEHERHERHERHEE
Name : InitializeVariables

#

Overview : Initializes all required variables.
THHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHEEHERHERHERHERHERHEE
InitializeVariables ()

{

extract user id

USERID="1id | tr ") T | cut -d':" -f2°

define date and time
DATETIME="date "+%d/%m/%Y at %H:%M:%S""

define temporary files
FILE_LIST=/tmp/refbot_$$_1.dat
QUALIFIED_FILE_LIST=/tmp/refbot_$$ 2.dat
TEMP_FILE_1=/tmp/refbot_$$_1.tmp
TEMP_FILE_2=/tmp/refbot_$$_2.tmp

Log file

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DEFAULT_LOG_FILE="/tmp/refbot.log"

Return codes

TRUE=0

FALSE=1

SEC=0

FEC=1

Define escape sequences

ESC="\0033["

RVON=_[7m # Reverse video on
RVOFF=_[27m # Reverse video off
BOLDON=_[1m # Bold on
BOLDOFF=_[22m # Bold off

BON=_[5m # B1inking on
BOFF=_[25m # Blinking off

Input parameter variables

DIR_NAME= # Directory name
DATE= # Date and time
INTERACTIVE= # Interactive flag
LOG_FILE= # Log file
SLEEP_DURATION=3 # Number of seconds for sleep

ERROR="${RVON}${BON}refbot.sh:ERROR:${BOFF}"
INFO="${RVON}refbot.sh:INFO: "

#f Messages

WORKING="Working...${RVOFF}"

INTERRUPT="Program interrupted! Quitting...${RVOFF}"
ROOT_USER="Script must be executed from root account${RVOFF}"
WORKING="Working...${RVOFF}"

USAGE="Usage\:refbot.sh D=\<directory name\> d=\<date\>

O i=\<y\|n\> 1=\<file\>${RVOFF}"

DIR_REQ="Please provide a directory using option D${RVOFF}"
DATE_REQ="Please provide a date using option d${RVOFF}"
DUP_ARG="Duplicate argument${RVOFF}"

INVALID_ARGC="Wrong number of arguments${RVOFF}"
INVALID_ARG_TYPE="\${ARG_TYPE}, 1is an invalid argument${RVOFF}"
INVALID_OPTION="\${OPTION}, is an invalid option${RVOFF}"
INVALID_ENTRY="Invalid entry${RVOFF}"

INVALID_DATE="Invalid date${RVOFF}"

INVALID_DIR="Invalid directory, \${DIR_NAME}${RVOFF}"
INVALID_TIME="Invalid time${RVOFF}"

INVALID_MONTH_LEN="Month must be in two-digit format${RVOFF}"
INVALID_DAY_LEN="Day must be in two-digit format${RVOFF}"
INVALID_YEAR_LEN="Year must be in four-digit format${RVOFF}"
INVALID_HOUR_LEN="Hour must be in two-digit format${RVOFF}"
INVALID_MIN_LEN="Minute must be in two-digit format${RVOFF}"
INVALID_SEC_LEN="Second must be in two-digit format${RVOFF}"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

47

INVALID_DAY="Invalid day${RVOFF}"

INVALID_MONTH="Invalid month${RVOFF}"

INVALID_YEAR="Invalid year${RVOFF}"

INVALID_HOUR="Invalid hour${RVOFF}"

INVALID_MINUTES="Invalid minutes${RVOFF}"
INVALID_SECONDS="Invalid second${RVOFF}"
DATE_NOT_NUMERIC="Date, \${DATE} must be numeric${RVOFF}"
TIME_NOT_NUMERIC="Time, \${TIME} must be numeric${RVOFF}"
INVALID_FLAG="\${INTERACTIVE}, is an invalid value for option
O Ji${RVOFF}"

LOG_NOT_INITIALIZED="Failed to initialize log file,

O \${LOG_FILE}${RVOFF}"

LOG_NOT_WRITABLE="Log file, \${LOG_FILE} is not writable by
O wuser${RVOFF}"

0S_ERROR="\${SYSERROR}${RVOFF}"
DIR_NOT_ACCESSABLE="Directory, \${DIR} is not accessible${RVOFF}"
DIR_EMPTY="Directory, \${DIR} is empty${RVOFF}"
NO_FILE_REMOVED="No file qualifies for removal in directory,
O \${DIR} ${RVOFF}"

REQ_USER="Must execute the script from root account${RVOFF}"

Signals

SIGNEXIT=0 ; export SIGNEXIT # normal exit
SIGHUP=1 ; export SIGHUP # session disconnected
SIGINT=2 ; export SIGINT # ctrl-c

SIGTERM=15 ; export SIGTERM # ki1l command
SIGTSTP=18 ; export SIGTSTP # ctrl-z

}

1
Name : Handlelnterrupt

i

Overview : Call ProcessExit.
THHHHHHHEEHHHHEEHEHHHHHHHERHHHHEEHERHHHEHHERHHHHEEHERHHHEEHERRHEHEEEEE
HandleInterrupt ()

{
DisplayMessage I "${INTERRUPT}"

ProcessExit $FEC

}
THHHHHHHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEEHHEEHEEHEEHEEHEEHERHERHERHE
Name : MoveCursor

#

Input : Y and X coordinates

#

Overview : Moves the cursor to the required location (Y, X).

i
Notes 1 The function must run in ksh for print to work. Print
i# is used to move the cursor as echo doesn't work.

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

THHHHHHHHHHHHHHHHHHHHEHHHHHHHHHHEEHHHHHHHHHEEHHHHHHHEEERRHHHHHHEE

MoveCursor ()
{
trap "Handlelnterrupt™ $SIGINT $SIGTERM $SIGHUP $SIGTSTP

YCOR=$1
XCOR=$2

echo "${ESC}${YCOR};${XCOR}H"

}
HHHHEHHEHHEHHEHHEHHEHHEHHEHEEHEEHEEHEEHEEHEEHEEHEEHEHERHERHERHERHE
Name : DisplayMessage

i

Overview : Display message

#

Input : 1 Message type (E = Error, I = Information)

i 2 Error Code, defined in DefineMessages ().

i 3 Message to acknowledge flag

i

Notes 1 User must acknowledge all messages except "WORKING'.

THHHHHHHHHHHHHHEHHHHHHHHREEHHERHRHRERHEERHREREEHEERHRHRERREREERHEE
DisplayMessage ()

{

trap "Handlelnterrupt™ $SIGINT $SIGTERM $SIGHUP $SIGTSTP

MESSAGE_TYPE=$1
MESSAGE_TEXT="eval echo $2°
ACK_MESSAGE="$3"
if ["${ACK_MESSAGE}" = ""]
then
ACK_MESSAGE="Y"

fi
clear
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then

echo "“eval echo ${ERROR} ${MESSAGE_TEXT}\c"
else

echo "“eval echo ${INFO} ${MESSAGE_TEXT}\c"
fi

Let user acknowledge the message
if ["${ACK_MESSAGE}" = "Y"]
then
read DUMMY
fi
return ${TRUE}
}

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

THHHHHHHHHHHHHHHHHHHEHHHHHHHHHHHEHHHAHHHHHHHEHHHHHHHHEERAHHHHHHHEE

Name : ProcessExit
i#

Overview : Processes menu options.

THHHHHHHHHHHHHHHHHHHEHHHHHHHEHEHHHAAAHHEAAHAAHHEARAHHHAEE

ProcessExit ()

{
EXIT_CODE="$1"

rm -f $FILE_LIST

rm -f $QUALIFIED_FILE_LIST
rm -f $TEMP_FILE_1

rm -f $TEMP_FILE_ 2

clear

exit ${EXIT_CODE}

}
THHHHHHEHHHHHHEHHHEHEHEHHEHEHEHEHEHREREHEHEHRHREREHHEHRHREREREHEHEHHE
Name : LeapYear

i

Overview : Establishes whether a given year is a leap year.

#

Input : Year

#

Returns : $TRUE for Teap year
i $FALSE otherwise

THHHHHHHHHHHHHHEHHHEHHHEHHHEHHHHHHHEHHHEHHEHHEHHHEHHERHHEHHERHHEEE
LeapYear ()

{

trap "Handlelnterrupt™ $SIGINT $SIGTERM $SIGHUP $SIGTSTP

Assign the parameter
P_YEAR="$1"

Divide $P_YEAR by 4 to establish leap year
RESULT="bc <K!
scale=2
$YEAR/4
N
if ["“echo $RESULT | cut -d'." -f2°" = "00"]
then
year is leap year
return $TRUE
else
year is not a leap year
return $FALSE
fi
}

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

THHHHHHHHHHHHHHHHHHHHEHHHHHHHHHHEEHHAHHHHHHHEEHHHHHHHHHEEEERHHHHEE

Name : ValidateArguments

#

Overview : Validate arguments values.

#

Returns : $TRUE or $FALSE

i

Notes 1 The function validates the following arguments' values:
o directory (mandatory)

o date (mandatory)

i o interactive flag (optional)
o log file (optional)

THHHHHHHEHHEHHEHHEHHEHHEHHEHEEHEEHEEHEEHHEHEEHEEHHEHERHERHERHERHERHE
ValidateArguments ()

{

trap "Handlelnterrupt™ $SIGINT $SIGTERM $SIGHUP $SIGTSTP

f# Validate directory

if [-z "${DIR_NAME}" 1]

then
DisplayMessage E "${DIR_REQ}"
return $FALSE

fi

if [! -d $DIR_NAME]

then
DisplayMessage E "${INVALID_DIR}"
return $FALSE

fi

Validate date (eg DDMMYYYYHHMISS)
if [-z "${DATE}"]
then
DisplayMessage E "${DATE_REQ}"
return $FALSE
fi

Validate numeric
if ([“expr $DATE + 0" -eq $DATE 1) > /dev/null 2>&1
then

: # ok

else
DisplayMessage E "${DATE_NOT_NUMERIC}"
return $FALSE

fi

Validate overall Tength

LEN="expr "$DATE"™ : '.*'°
if I ([$LEN -eq 14])
then

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

DisplayMessage E "${INVALID_ DATE}"
return $FALSE
fi

Verify the date format is <ddmmyyyy>
DAY="echo "$DATE" | cut -cl-2°
MON="echo "$DATE"™ | cut -c3-4°
YEAR="echo "$DATE" | cut -c5-8°

Validate day

LEN="expr "$DAY" : '.*'°
if ! ([$LEN -eq 2 1)
then

DisplayMessage E "${INVALID_DAY_LEN}"
return $FALSE

fi
if ! ([$DAY -gt 0 -a $DAY -1t 32 1)
then
DisplayMessage E "${INVALID_DAY}"
return $FALSE
fi

Validate month

LEN="expr "$MON" : '.*'"
if ! ([$LEN -eq 2 1)
then

DisplayMessage E "${INVALID_MONTH_LEN}"
return $FALSE

fi
if I ([$MON -gt 0 -a $MON -1t 13])
then
DisplayMessage E "${INVALID_MONTH}"
return $FALSE
fi

Validate year

LEN="expr "$YEAR" : '.*'"
if I ([$LEN -eq 4 1)
then

DisplayMessage E "${INVALID_YEAR_LEN}"
return $FALSE

fi

if ! ([$YEAR -gt 0])

then
DisplayMessage E "${INVALID_YEAR}"
return $FALSE

fi

Validate month
LEN="expr "$MON" : '.*'"

52 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if ! ([$LEN -eq 2])

then
DisplayMessage E "${INVALID_MONTH_LEN}"
return $FALSE

fi
if ! ([$MON -gt 0 -a $MON -1t 13])
then
DisplayMessage E "${INVALID_MONTH}"
return $FALSE
fi

Validate year

LEN="expr "S$YEAR"™ : '.*'°
if I ([$LEN -eq 4 1)
then

DisplayMessage E "${INVALID_YEAR_LEN}"
return $FALSE

fi

if ! ([$YEAR -gt 0])

then
DisplayMessage E "${INVALID_YEAR}"
return $FALSE

fi

Validate day and month (other than February)
if [$MON -eq 01 -o $MON -eq 03 -o $MON -eq 05 -o \
$MON -eq 07 -o $MON -eq 08 -o $MON -eq 10 -o \
$MON -eq 12 1]
then
if ! ([$DAY -gt 0 -a $DAY -1t 32 1)
then
DisplayMessage E "${INVALID_DAY}"
return $FALSE
fi

elif [$MON -eq 04 -o $MON -eq 06 -o $MON -eq 09 -0 \
$MON -eq 11]
then
if ! ([$DAY -gt 0 -a $DAY -1t 31])
then
DisplayMessage E "${INVALID_DAY}"
return $FALSE
fi
fi

Validate month of February
if LeapYear "${YEAR}"
then

if [$MON -eq 02]

then

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

if ! ([$DAY -gt 0 -a $DAY -1t 30])
then
DisplayMessage E "${INVALID_DAY}"
return $FALSE
fi
fi
else
Not a leap year
if [$MON -eq 02]

then
if ! ([$DAY -gt 0 -a $DAY -1t 29 1)
then
DisplayMessage E "${INVALID_DAY}"
return $FALSE
fi
fi

fi

Validate time (eg HHMMSS)

Verify the date format is <ddmmyyyyhhmiss>
HOUR="echo "$DATE" | cut -c9-10°

MIN ="echo "$DATE" | cut -cll-12°

SEC ="echo "$DATE" | cut -c13-14°

Valixdate hours

LEN="expr "$HOUR" : '.*'"
if ! ([$LEN -eq 2 1)
then

DisplayMessage E "${INVALID_HOUR_LEN}"
return $FALSE
fi

if I ([$HOUR -eq 0 -o $HOUR -1t 24 1)
then
DisplayMessage E "${INVALID_HOUR}"
return $FALSE
fi

Validate minutes

LEN="expr "$MIN" : ' .*'"°
if ! ([$LEN -eq 2 1)
then

DisplayMessage E "${INVALID_MIN_LEN}"
return $FALSE

54 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

fi
if 1 ([$MIN -eq 0 -o $MIN -1t 60])
then
DisplayMessage E "${INVALID_MINUTES}"
return $FALSE
fi

Validate seconds

LEN="expr "$SEC" : '.*'"
if ! ([$LEN -eq 2 1)
then

DisplayMessage E "${INVALID_SEC_LEN}"
return $FALSE
fi
if I ([$SEC -eq 0 -o $SEC -1t 60 1)
then
DisplayMessage E "${INVALID_SECONDS}"
return $FALSE
fi

Validate interactive flag
case ${INTERACTIVE} in
ylY[n[N) ;3
"") INTERACTIVE="Y";;

*) DisplayMessage E "${INVALID_FLAG}" ;

return $FALSE ;;
esac

Validate log file

if ["${LOG_FILE}" = ""]

then
LOG_FILE="${DEFAULT_LOG_FILE}"

fi

return $TRUE
}

This article concludes in next month’s issue of AlX Update.

Arif Zaman

DBA/Administrator

High-Tech Software Ltd (UK) © Xephon 2000
© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 55

AlX news

Softworks has announced SST-Resource
Availability Version 3.4, which monitors
and reportson storage resources. Among the
improvements in the new version are better
reporting of storage utilization and wider
platform coverage for Oracle and ADSM.
Also new is the measurement of storage
consumption at the user or application level.

In addition to AlX, the software supports
logical and physical storage systemsused by
0S/390, MV S, anumber of variantsof Unix,
and NT. Out now, pricesstart at US$57,000.

For further information contact:
Softworks Computer Concepts, 5845
Richmond Highway, Suite 200, Alexandria,
VA 22303, USA

Tel: +1 703 317 2424

Fax: +1 703 317 3229

Web: http://www.softworkscc.com

Softworks International Limited, Clayton
House, 3-7 Vaughan Road, Harpenden,
Hertfordshire, AL5 4EF, England

Tel: +44 1582 464800

Fax:+44 1582 767941

* % %

Candle has launched Roma E-business
Platform 2000, part of its CandleNet family
of e-business lifecycle products that also
includes Service Provider Platform and
E-Business Assurance Network.

Roma E-business Platform is an application
‘integration backplane’ into which
applications can be ‘plugged’ . This helps
reduce the new development overhead

associated with fielding new functionality.
The platform supports Java, C, C++,
COBOL, and COM/CORBA. Applications
can be both XML-compliant and LDAP-
enabled. Besides AlX, operating system
support includes OS/390, AS/400, Solaris,
and NT.

Theproduct isexpectedinthefirst quarter of
2000 and details on pricing are available on
request from the vendor.

For further information contact:

Candle Corp, 2425 Olympic Blvd, Santa
Monica, CA 90404, USA

Tel: +1 310 829 5800

Fax: +1 310 582 4287

Web: http://www.candle.com

Candle Ltd, 1 Archipelago, Lyon Way,
Frimley, Camberley, Surrey GU16 5ER, UK
Tel: +44 1276 4147000

Fax: +44 1276 414777

* % %

IBM has announced DCE Version 3.1 for
AlX and Solaris. Featuresincludeacommon
code base between the two OS platforms,
Kerberos V5 interoperability, DCE audit
information enhancements, password
strength enhancements, public key
certificatelogin, and Global Directory Agent
(GDA) using the Lightweight Directory
Access Protocol (LDAP).

Out now, it costs US$4,000.

For further information contact your local
IBM representative.

QO

xephon

	Understanding the more command
	A collection of utilities
	SSCCARS (part 4)
	Getting an entry from a configuration file
	Removing files by timestamp
	AIX news

