
April 2000

54

© Xephon plc 2000

3 Using Go-Joe and GlobalHost for
AIX

8 Debugging malloc in AIX 4.3.3
18 Workload Manager
31 Scheduling software distribution

scripts
40 Memory Usage Report
56 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl@xephon.com

North American office
Xephon/QNA
Post Office Box 350100, Westminster CO
80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
in the UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com/
aixupdate (you’ll need the user-id shown on
your address label to access it).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Using Go-Joe and GlobalHost for AIX

The AIX Bonus Pack, which is included in the AIX distribution disks,
is a collection of IBM and third-party programs that complement and
enhance the basic facilities provided by the AIX operating environment.
‘Go-Joe’ and ‘GlobalHost for AIX’, both of which were developed by
GraphOn, are a couple of recent additions to it.

These programs provide special X server facilities, network protocols,
and a super-lightweight Java applet for running X-Windows-based
applications on thin clients.

PROBLEMS ADDRESSED BY THIS SOFTWARE

Most existing GUI-based AIX applications rely on the X-Window
system, which was developed about 15 years ago. The way X-
Windows functions assumes that the underlying system comprises the
user’s screen and input devices directly connected to a computer that
runs both the X server software and the client software that displays
output on the user’s screen. X applications communicate with X
servers by means of a special protocol that’s used to transmit requests
to manipulate various resources, such as windows, cursors, fonts,
‘pixmaps’, and graphics contexts. When both the client and the X
server are on the same machine, they communicate via a shared
memory mechanism that’s relatively efficient. However, the
widespread availability of desktop computers in recent years has
changed this architecture significantly. Nowadays, the client is typically
located on a remote server and its output is displayed on a local screen
by X server software that is installed on the user’s desktop machine.
This situation has many disadvantages.

The X server software has to be acquired and installed on the client,
usually at a cost of hundreds of dollars. The software puts a heavy
demand on the host’s resources, such as disk, memory, and CPU. The
software has to be customized to connect to the remote host and
invoke specific applications, and its operation also results in additional
traffic that clogs corporate networks.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

GO-JOE AND GLOBALHOST

GraphOn’s solution to this problem comprises three components. The
first, GlobalHost, is located on the server. GlobalHost replaces the
host’s X-server device driver layer (ddx) with software that
communicates directly with the remote client. Instead of directly
driving the client’s graphics hardware, the software drives a virtual
graphics card on the remote client.

The second component is, thus, the virtual graphics card, which is
implemented by Go-Joe, a Java applet that’s downloaded from the
host on-demand by clients running industry-standard Web browsers,
applet viewers, or Java-based hardware display devices, such as
IBM’s Network Station. Go-Joe’s thin-client applet viewer handles
keyboard and mouse input and displays the output of the X client on
the browser’s window.

These communicate by means of GraphOn’s proprietary RapidX
protocol, which is the third component. Using this protocol results in
a significant reduction in network bandwidth used compared with the
X protocol used by conventional X-Window systems. RapidX uses
three techniques to reduce traditional X protocol traffic: the first
replaces X11 primitives by more compact RapidX primitives, the
second uses two-dimensional data compression for transferred bitmaps,
and the third applies a general compression algorithm to reduce
transmitted data. The net result is impressive, especially when used on
low-bandwidth wide-area networks and dial-up connections.

INSTALLATION AND CUSTOMIZATION

The following file sets are needed to install GraphOn successfully:

• X11.dt.rte

• X11.apps.rte

• X11.apps.xterm

• X11.base.rte

• X11.font.coreX

• X11.vfb.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

In addition, file sets containing messages needed by the above file sets
should be installed for all locales that are to be used on the system.

For it to be possible to invoke the program from a remote browser, it
is necessary for it to interact with any previously installed and
configured Web server, such as Lotus Go Web server, Internet Fasttrack
Web sever, or IBM HTTP server (Apache).

The program itself is supplied in two file sets on the AIX Bonus Pack
CD-ROM:

• Graphon.client 2.2.0.0

• Graphon.server 1.0.8.0.

The product is installed in directory /usr/G11R6.

After installing Graphon’s file sets using smit, you should perform the
following customizations to configure GlobalHost:

1 Add the following line to /etc/services:

go-login 491/tcp #Graphon

2 Add the following line to /etc/inetd.conf:

Go-login stream tcp nowait root /usr/G11R6/bin/go-login
➤ /usr/G11R6/bin/goglobal -- -inetd

(Note that the above is a single line; ‘➤ ’ is the continuation
character.)

3 Force the inetd daemon to re-read its configuration file by
executing following command:

refresh –s inetd

The next step is to configure your Web server to allow it to connect to
GlobalHost. First, execute the script:

/usr/G11R6/client/Go-Joe_config

to place Go-Joe’s Java and HTML files in a directory that is accessible
to your Web server. You will be prompted for the name of the directory,
and the following assumes a typical installation for common Web
servers:

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Netscape Fast Track server:

/usr/ns-home/docs/Go-Joe

Lotus Go Web server:

/usr/lpp/internet/server_root/pub/Go-Joe

IBM HTTP server:

/usr/lpp/HTTPServer/share/htdocs/Go-Joe

The last step is to edit the file xsession.html that is located in this
directory. Find the line that contains the definition of the Java applet
parameter server:

<!--
 Parameter: server
 Specifies the server running the GlobalHost software.
 No default.
-->

<param name=server value=server_running_globalhost/go-login
 goes here>

Replace the string ‘server_running_globalhost/go-login goes here’
with the host name of your server (zeus, in my case).

<!--
 Parameter: server
 Specifies the server running the GlobalHost software.
 No default.
-->

<param name=server value=zeus>

To launch Go-Joe, simply start your Web browser or Java-enabled
device and navigate to the HTML file that loads the Java applet
(xsession.html in the example above). The exact location of this file
will vary according to how and where Go-Joe was installed, a typical
location being something like:

http://server_running_globalhost/Go-Joe/xsession.html

This file loads the Go-Joe applet, presenting you with a login banner
that allows you to specify your username and password for the
session. Click the Start X Session button to begin the X session to the
Unix host. The Go-Joe applet will then connect to the Unix host and
display the normal X session for the username that was entered.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

TIPS AND TRICKS

The first thing you should know is that the product ships with a bug.
The directory /usr/G11R6/etc/keytables/win95_jdksun_en.kt, which
is created during the installation, should be removed and replaced by
an identically named file that can be downloaded from the support
pages of the http://www.graphon.com Web site.

The Go-Joe applet is displayed in the browser’s default applet frame.
Its attributes can be changed by modifying the HEIGHT= and
WIDTH= values of the APPLET tag of the xsession.html file. Most
browsers allow the applet frame to be larger than the browser window
itself, providing scroll bars for moving around the virtual display.

You can improve your use of the available display area by disabling
your browser’s toolbars and command menus. This can be achieved
by creating an HTML file with embedded JavaScript that removes
these display features when you load xsession.html.

If you have a two-button mouse and are interested in emulating the
middle button, press both buttons simultaneously.

To display the output of an X-Window-based program running on a
remote host, define your DISPLAY environment variable as
hostname:n.0, where hostname is the name of system that’s running
your Go-Joe session and n is the number of the display for the session
in which you’re interested.

Go-Joe provides several diagnostic tools and outputs to help diagnose
problems that may arise as a result of misconfiguration or other
difficulties. These should be used whenever problems are encountered.

JAVA CONSOLE LOG

The output of your browser’s Java console can be very useful if the
applet terminates prematurely – as long as your browser provides
access to the console. When viewing the console, look out for
exceptions (the Java term for errors) that may be listed. Exceptions
may cause further exceptions as the applet continues to execute, and
it is the original exception that needs rectifying and not the one that
eventually causes execution to fail. In addition, the Go-Joe applet
occasionally prints messages on the status bar (though not all Java

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

environments show these messages, and the messages may be
overwritten by the system’s own status messages). These messages
are also sent to the Java console, where they should be visible even if
they are not visible on the status line.

The GlobalHost software redirects the standard error output of
GlobalInit and all the X clients started by the software (the window
manager and its children) to a file called /tmp/Xerr:n, where n is the
display number of the session. This file contains diagnostic messages
from both the GlobalInit program and X clients for the entire session.

The /tmp/xlogfile provides additional GlobalHost information (server
version number, keytable filename, etc).

REFERENCES

1 http://www.graphon.com

2 file://usr/G11R6/html/index.html.

Alex Polak
System Engineer
APS (Israel) © Xephon 2000

Debugging malloc in AIX 4.3.3

While mismanaged memory allocation is a frequent source of errors
in any substantial program, modern programming languages, such as
C and C++, still lack built-in features that could help find such errors.
This problem is aggravated by the fact that some of these errors are
undetected by the operating system and come to light only in production
environments. Another related issue is the tracking of allocated
memory and the discovery of so-called memory leaks. Memory areas
that are allocated but unused by the program add to the complexity of
memory management and adversely affect the performance of the
system.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

A number of third-party and public-domain tools and libraries are
available to combat the memory allocation problem. They include:

• ZeroFault from TKG

• Great Circle from Geodesics

• DBMALLOC, which is public domain

• MALLOCDEBUG, which is also public domain.

Each has its own approach and advantages. IBM recently joined this
list with the introduction of AIX 4.3.3’s Debug Malloc feature. This
article describes this feature, illustrating its abilities using short C
programs.

DEBUG MALLOC ACTIVATION

One nice feature of Debug Malloc is that you don’t need any special
compilation or linkage options to activate it. All you need to do is
define the following external variables before you invoke the program
to be debugged: MALLOCTYPE and MALLOCDEBUG. The first one
must be set to value ‘debug’ and the second one should contain a
comma-separated list of debugging checks to be invoked. For example,
if you are using the Korn shell (ksh), you should execute the following
commands (‘➤ ’, the continuation character, indicates a formatting
line break that’s not present in the original code):

export MALLOCTYPE=debug
export MALLOCDEBUG=align:2,postfree_checking,
➤ override_signal_handling

If you are using either the C shell (csh) or TC shell (tcsh) you should
execute the following commands:

setenv MALLOCTYPE debug
setenv MALLOCDEBUG align:2,postfree_checking,
➤ override_signal_handling

DEBUG MALLOC OPTIONS

The environment variable MALLOCDEBUG may contain any of the
following options, which can be specified in any order:

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

align:N
postfree_checking
validate_ptrs
override_signal_handling
allow_overreading
report_allocations
record_allocations

The options are described below.

• align:N

By default, malloc returns a pointer to a two-word boundary for
programs running in 32-bit mode or a four-word boundary for
programs running in 64-bit mode. The Debug Malloc align:N
option is used to change the default alignment and set it to any
power of 2 between 0 and 4096 inclusive. However, applications
using DCE components are restricted to an alignment value of 8.

The following formula can be used to determine the exact number
of bytes allowed for overreads/overwrites when Debug Malloc
makes an allocation request for size bytes, with N being the value
of MALLOCDEBUG’s align option:

(((size / N) + 1) *N) – size) % N

For instance, if N is set to ‘2’, Malloc Debug allocates the exact
number of bytes requested if size is even, disallowing all overreads
and/or overwrites. If size is odd, one byte is allocated for overreads
and overwrites.

If N is set to ‘0’, no overreads and/or overwrites are allowed by
Debug Malloc.

• postfree_checking

When this option is set, Debug Malloc detects attempts to access
memory that has been freed. When such an attempt is made,
Debug Malloc reports the error and aborts the program. This
option automatically enables the validate_ptrs option.

• validate_ptrs

This option causes free() to check its parameter to make sure that
it actually points to a memory block that was previously allocated

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

by malloc(), calloc(), or realloc() and that the block has not since
been freed. If an illegal value is detected, Debug Malloc prints an
error message and aborts the program.

• override_signal_handling

Debug Malloc uses the standard Unix SIGSEGV (segmentation
violation) and SIGIOT signals to stop the running program when
it detects memory usage violations. If the program blocks or
catches either of these signals, the Debug Malloc system will not
function properly. The override_signal_handling option instructs
Debug Malloc that the application being debugged needs special
handling in order to overcome this problem. When this option is
specified, Debug Malloc performs the following actions when
entering each call to a memory allocation function, such as
malloc(), realloc(), free(), or calloc():

1 Disable any existing signal handlers set by the application.

2 Set the action for SIGIOT and SIGSEGV signals to the
default values of SIG_DFL.

3 Unblock SIGIOT and SIGSEGV.

However, if the application’s signal handler modifies the actions
of SIGSEGV between the memory allocation routine calls and
performs an invalid memory access, Debug Malloc will not
report the error, the application will not abort, and no core file will
be produced.

Note that this option is ineffective in handling processes that use
threads as Debug Malloc uses the sigprocmask() system call,
while threaded programs tend to use the pthread_sigmask()
system call.

• allow_overreading

Debug Malloc will report any attempt to read memory that is
located past the allocated blocks. This option instructs Debug
Malloc to ignore errors of this kind in order to allow the uncovering
of other types of problem first.

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• record_allocations

When this option is specified, Debug Malloc maintains an
allocation record for each malloc() request. Each record contains
the following information:

– The original address returned to the caller by malloc()

– A six-function ‘traceback’ starting from the call to malloc().

Each allocation record is kept until the memory associated with
its allocation has been freed.

• report_allocations

This option causes Debug Malloc to report all allocations active
when the program exits. All memory areas that have not been
freed are reported and tagged with any information kept as a
result of specifying the record_allocations option.

DEBUG MALLOC OUTPUT

If Debug Malloc is enabled and the application runs to normal
completion, then Debug Malloc hasn’t detected any memory usage
problems. If a memory access or usage error is detected, the program’s
execution is terminated and a core file is produced. If the error is
caused by an illegal memory access, such as an attempt to write
outside an allocated area or read a freed area, then a segmentation
violation occurs and a SIGSEGV signal is sent to the program. If a
memory routine, such as malloc(), realloc(), free(), or calloc(), detects
an error, then a descriptive error message is reported to the user and
the standard C library abort() subroutine is called.

PERFORMANCE CONSIDERATIONS AND LIMITATIONS

When Debug Malloc is running, the memory allocation subsystem
consumes significantly more memory than usual. The size of each
malloc() request increases by:

4096 + 2 * sizeof(unsigned long)

and is then rounded up to the next multiple of PAGESIZE (4096). As

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

Debug Malloc places each individual allocated block on a separate
page, programs that make many requests for small amounts of
memory experience dramatically increased memory usage. Such
programs may fail if memory allocation requests fail as a result of a
lack of memory or paging space. The same is true of applications that
require a large amount of memory to run successfully.

Because of these performance considerations, it’s not advisable to use
Debug Malloc on a system-wide basis, for instance, by including the
definition:

MALLOCTYPE=debug

in either /etc/environment or another system-wide initialization file.
The same is true of running X server via the X or xinit commands
under Debug Malloc. Any attempt to do so will result in the X server
failing as a result of a lack of available memory. However, individual
X client applications can still be executed under Debug Malloc
without problem.

USING DEBUG MALLOC

In this section, I present a number of programs that demonstrate
various memory-related programming errors and show how Debug
Malloc can be used to detect them.

All the examples were compiled using IBM’s C and C++ compilers
Version 3.6.6.2 under AIX 4.3.3.2. All of them run without error when
MALLOCTYPE is undefined, and all were compiled using the -g
option that enables the inclusion of debugging information in the
executable created by the compiler.

All the samples were run with the following definitions of the
MALLOCTYPE and MALLOCDEBUG external variables:

export MALLOCTYPE=debug
export MALLOCDEBUG=align:0,postfree_checking,validate_ptrs,
➤ override_signal_handling,record_allocations

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MEMORY OVERREAD EXAMPLE
#include <stdlib.h>

main()
{
char *p = malloc(10);
int i;

 bzero(p, 10);
 for (i = 0 ; i <= 10 ; ++i) /* should be "i < 10" */
 /* Memory Overead generated here */
 printf("p[%d] = %d\n", i, p[i]);
}

When the dbx debugger is invoked, the following line is correctly
identified as the location of the error:

Segmentation fault in main at line 10

MEMORY OVERWRITE EXAMPLE
main()
{
 char *src = "hello world\n";
 int len = strlen(src);
 char dst = malloc(len); /* Should allocate len + 1 ! */
 int i;

 for (i = 0; i <= len; ++i)
 /* Memory overwrite Error in the next line */
 dst[i] = src[i];
}

This program terminates with a Segmentation fault(coredump)
message. When the dbx debugger is invoked, the following line is
correctly identified as the location of the error:

Segmentation fault in main at line 11

MEMORY REALLOCATION ERROR
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

main()
{

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

 char inbuf[BUFSIZ], outbuf[BUFSIZ];
 /* outbuf should be malloc()ed */
 char *foo = outbuf;
 int foolen = sizeof(outbuf);

 foo[0] = '\0';
 while (fgets(inbuf, sizeof(inbuf), stdin)) {
 if (strlen(inbuf) + strlen(foo) + 1 > foolen)
 /* Memory reallocation error in the following call */
 foo = realloc(foo, foolen += BUFSIZ);
 strcpy(foo + strlen(foo), inbuf);
 }
 fputs(foo, stdout);
}

The program terminates with following message:

Debug Malloc: free() called with pointer not allocated by malloc.
Malloc arena is 0x20001010 to 0x20101000, pointer passed in is
0x2ff21a70
ksh: 25170 IOT/Abort trap(coredump)

When the dbx debugger is invoked, the command where displays the
following traceback, correctly identifying the offending line:

raise(??) at 0xd1147d28
abort() at 0xd1141450
do_debug_free(??) at 0xd113b06c
do_debug_realloc(??, ??) at 0xd113af7c
realloc(??, ??) at 0xd113d874
main(), line 16 in "breall.c"

‘DOUBLE FREE’ ERROR
#include <stdio.h>

main()
{
 FILE *f = fopen("tmp", "w");
 if (f) {
 fprintf(f, "hello world\n");
 fclose(f);
 /* Double Free Error is generated here, the FILE */
 /* struct was freed by fclose() */
 free(f);
 }
}

The program terminates with following message:

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Debug Malloc: free() called with pointer not allocated by malloc.
Malloc arena is 0x20001010 to 0x20101000, pointer passed in is
0xf0533a60
IOT/Abort trap(coredump)

When the dbx debugger is invoked, the command where displays the
following traceback, correctly identifying the offending line:

raise(??) at 0xd1147d28
abort() at 0xd1141450
do_debug_free(??) at 0xd113b06c
main(), line 10 in "dfree.c"

MEMORY LEAK REPORT IN A C PROGRAM

main(int argc, char ** argv)
{
 char *t;
 int i;

 for (i = 0; i < 10; i++) {
 t = (char *)malloc(1024);
 if (argc > 1) free(t);
 }
}

When this program is invoked without a command line argument,
eleven allocations are reported by Debug Malloc. When the program
is invoked with at least one command line argument, Debug Malloc
reports only one allocation, which is made by the runtime system in
atexit().

MEMORY LEAK REPORT IN A C++ PROGRAM
class Store {
 struct store {
 void *ptr;
 store *next;
 };

 store *top;
 public:
 Store() : top(0) { }
 void insert(void *ptr);
};

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

void Store::insert(void *ptr) {
 store *s = new store;
 s->next = top;
 top = s;
 s->ptr = ptr;
 return;
}

int main(int argc, char ** argv) {
 if (argc>1) {
 Store store;

 for (int i = 0; i < 10; i++) {
 int *f = new int;
 store.insert(f);
 }
 }
 return 0;
}

When this program is invoked without a command line argument,
Debug Malloc reports 125 allocations made by various components
of C++’s run-time system. When the program is invoked with at least
one command line argument, Debug Malloc reports 145 allocations,
adding to the previous number the allocations performed by the
program using C++’s new operator. You should also note that allocations
made in the insert method of the Store class are reported by the
following traceback:

Allocation #5: 0x20122FF8
 Allocation traceback:
 0x2012301C .__start
 0x20123020 main
 0x20123024 insert__5StoreFPv
 0x20123028
 0x2012302C malloc

The identifier insert__5StoreFPv is the name of the insert method of
Store class after it’s been mangled by the C++ compiler.

A Polak
System Engineer
APS Israel (Israel) © Xephon 2000

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Workload Manager

INTRODUCTION

Resource management has become a fashionable thing to do. This is
largely a result of the current trend towards server consolidation.
Consolidation means big servers handling mixed workloads and, in
such environments, resource and workload management can bring
real benefits by ensuring that system and application response time
and throughput meet the performance objectives stipulated by the
business (or the Service Level Agreement). At the same time, resource
management may help in smoothing out some of the peaks and
troughs in demand, thus enabling the same job mix to run on a smaller,
more optimized system.

This article reviews Workload Manager (WLM), a tool that’s available
with AIX 4.3.3, and its use for commercial applications and server
consolidation. Before looking in detail at WLM, I introduce some of
the issues and principles involved in workload and resource
management. Afterwards, I discus other areas and applications where
resource management is performed outside the control of the operating
system.

WHAT IS RESOURCE MANAGEMENT?

What is understood by the term ‘resource management’ depends
somewhat on the background of the reader. For the purpose of this
article, the term is defined as the ability to allocate and/or limit
computing resources (CPU, memory, disk, I/O, and network
bandwidth) either manually or automatically, applying the restriction
to specific computing operations, programs, or groups of programs in
order to meet the performance and throughput objectives of the
organization.

Resource management presents a number of challenges. Once the
performance objectives of an application are specified, the system
must then decide how to run each application given that:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

1 The resource requirements of individual applications are generally
not known in advance

2 Toady’s tendency towards consolidation results in larger and
more varied workloads, so that applications end up competing for
the same resources.

WHY MANAGE RESOURCES?

At first sight, resource management seems like a ‘nice-to-have’
feature rather than something that offers real value. This is because
one of the primary roles of an operating systems is to manage and
optimize resource utilization. Thus, the scheduler allocates CPU
resources to each process or thread, and the virtual memory manager
resolves conflicts for use of real-memory. On closer inspection,
however, it can be seen that resource management can offer real
benefits for the IT service provider. In particular, optimization of
resources means that the existing computing infrastructure can be
used to its maximum and peaks and troughs in demand can be
absorbed gracefully.

The object of today’s drive towards consolidated application and data
servers is to run larger and more varied workloads on fewer platforms
while, at the same time, adapting to new demands and workloads.
Experience with computer systems provides system administrators
with a number of heuristic approaches to addressing different
performance problems. Unfortunately, these procedures seldom lead
to exactly the right solution and, even when do, the solutions apply
only to simple configurations. By contrast, the key object of resource
management is that the system manages itself in such a way that it
meets the stipulated business objectives without additional human
intervention.

MIXED WORKLOADS

With server consolidation comes a larger variety of workloads. This
means more types of job executing both at any one time and over a
period of time. For example, during the day the server may support on-

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

line transactions, internal communications (e-mail, news, workflow,
intranet), an Internet Web server, and resource planning software. At
night the overhead from transaction-based applications diminishes
and the system may run batch jobs, such as data mining queries,
database restructuring, and/or back-up operations. Weekly or monthly,
the payroll application is executed and, perhaps, an application is run
to produce management reports showing current trends etc.

In such environments, resource management comes into its own by
managing workloads and resources, thereby ensuring continued
operation and the maintenance of response-time objectives.

Resource management is closely related to workload management. In
fact, the boundary between the two is somewhat blurred, as it’s
impossible to manage resources without having an impact on the
relative progress of applications that are running. Resource and
workload management simplify performance management by
attempting to use all computing resources effectively. The system
must decide which resources to allocate to which job, deciding how
much of those resources to allocate and for how long.

The goals of resource and workload management are to:

• Optimize computing resource use.

• Provide acceptable response times and throughput for key
applications.

• Adapt to the fluctuating loads typical of today’s consolidated,
multi-application systems.

WHAT CONSUMES RESOURCES?

A number of terms that are in common use are, nevertheless, often ill-
defined. These include process, job, workload, task, client, and user.
In addition, their meaning often depends on the context in which they
are used.

From AIX’s point of view, processes and their threads consume CPU
time and memory, wait in the run queue, and open files. Processes may
be grouped together via a script, which is often run in the background.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

This collection of related processes, which may execute in parallel or
sequentially, is sometimes referred to as a job, a term that comes from
the mainframe world.

For databases, which are implemented by AIX processes, threads, and
files, it is whatever is at the end of an open database connection that
generates load, and hence affects resource consumption. This may be
a client workstation in a two-tier architecture or the middleware
comprising the second tier in a three-tier architecture. In the former,
the database can easily relate clients to resource consumption and may
then apply resource management and control. However, in a three-tier
architecture, clients are frequently multiplexed over a smaller number
of database connections. This hides the end-user from the database,
which can no longer distinguish between on-line requests and
background or batch jobs.

In three-tier architectures it is only the transaction monitor that is in
a position to equate generated load with users. The transaction
monitor can see all clients on the first tier and has knowledge of the
load generated by each incoming request. However, today’s transaction
monitors are concerned only with execution time, which relates
indirectly to CPU occupation. They do not take into account the
consumption of other system resources necessary to service a given
request.

MANAGED RESOURCES

There are a number of different types of computing resource that may
be managed by system administrators and resource management
applications; these are described below.

• CPU occupation

The instruments that may be used to control and limit an
application’s CPU utilization include:

– Percentage CPU occupation

This stipulates the minimum and/or maximum CPU
occupancy, expressed as a percentage. An example of the

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

way this is used is to ensure that a non-priority application
does not impede the functioning of a high-priority one while
ensuring that the low-priority application is not completely
blocked.

– Maximum CPU occupation

This is the upper limit to the CPU time that an application
may consume before being forcibly stopped or suspended by
the operating system. This is used to prevent an application
from ‘running-away’ in an infinite loop, or a batch job from
running over into the TP window, etc.

– Relative priority

By assigning different priorities to each application, it is
possible to provide rapid response times for those that
require it. In very high workload environments, a priority-
based schema may starve lower priority applications of
resources to the extent that they make little or no forward
progress. This can be remedied by also specifying the
minimum percentage CPU utilization for low-priority
applications.

– Allowable CPUs

In multiprocessor systems, it is possible to limit an application
to executing on a subset of the available CPUs. In this way,
certain CPUs may be dedicated to specific applications.

• Memory occupation

Limiting the amount of real-memory that an application may use
prevents real memory being monopolized by a small number of
applications that have large working sets. This enables the system
to ensure the response-time maxima of all running applications.

• Disk space occupation

While the cost of on-line storage continues to fall, disk space
remains a finite resource. Controlling the amount of disk space
each user may consume is one of the easiest resource management

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

mechanisms that can be implemented. Nearly all of today’s
computing systems offer some form of control on disk usage.

• I/O utilization

Disk space utilization is not only a crude form of resource
management, it also has little effect on system performance. A
more subtle, yet more powerful, control mechanism is to limit the
number of I/O operations and/or the amount of data transferred
between memory and I/O over a given period (typically one
second). This mechanism prevents processes being blocked and
waiting for I/O to complete as a result of another application
consuming all available bandwidth.

• Network occupation

This is an important yet difficult parameter to control. This is
because a network connection implies a client-server architecture
of some sort. So, if resource management is running on the server,
it can limit the amount of traffic originating from the server, but
has no effect on the amount being generated by clients. A number
of research projects are working on this problem and some
prototype implementations have been deployed.

RESOURCE MANAGEMENT IN AIX

The most common approach to workload management is to do
nothing and leave resource allocation to the operating system. AIX
uses the following mechanisms for resource management:

• The scheduler selects jobs to run when a CPU becomes available.
Both users and system administrators may set job priorities so
that certain applications receive preferential treatment.

• Threads or processes may be ‘bound’ to one or more CPUs so that
key applications run on reserved processors and are guaranteed
response times. The bind policy should be used cautiously – used
on its own, it does not reserve CPU time.

• The Virtual Memory Manager (VMM) controls both real and

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

virtual memory usage – when the swap space starts to become
insufficient, it automatically kills a few jobs.

• Disk quotas and user limits may be used to control the maximum
resources that a user may consume at a given moment.

• User resource limits may be specified by the ulimit command.
This command can be used to control file size, data size, physical
memory usage, stack size, and CPU time.

As the operating system is the only entity that has a complete and
detailed view of the state of the system, this approach has its merits.
Even though AIX’s external controls are somewhat simplistic, it still
implements a level of resource management. This means that, for
example, a long-running and CPU-intensive application will see its
relative priority decrease, allowing other jobs access to the CPU. This
technique is both attractive and simple, as no additional interfaces or
controls are needed. This approach may be completely adequate for
smaller systems that host a small number of fairly homogeneous jobs.
In short, if this model satisfies the business requirements, then it is the
recommended solution.

Hence, for light and moderately loaded systems, the resource
management provided for by the kernel is usually sufficient. Problems
may arise under heavy load, when the operating system must juggle
with available resources and conflicting requests. In such
circumstances, the work performed by the operating system increases
and the kernel itself places an increasing demand on the system
resources, which further degrades performance. When real memory is
in short supply the kernel may spend time swapping pages into and out
of paging space, which is known as thrashing. In such circumstances,
additional workload and resource management is required to guarantee
continued service and reasonable response times.

So, as the workload and its diversity increases, so AIX’s ability to
manage its own resources will reach its limits, and performance
(response-time and throughput) will tend to become more volatile.
This is where WLM comes in.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

AIX 4.3.3’S WORKLOAD MANAGER (WLM)

AIX’s WLM (Workload Manager) is bundled with AIX 4.3.3. It
provides additional resource and workload management, giving system
administrators closer control over the amount of CPU and physical
memory that may be consumed by different applications. Later
releases will also manage paging space and I/O. Though the new tool
is called ‘workload manager’, it expresses priorities and resource
limits in terms of the underlying system, and thus is more of a resource
manager than a workload manager. The use of WLM is optional and,
when WLM is disabled, the system behaves exactly as it did in earlier
releases of AIX. When configured, WLM consumes considerably less
than 1% of CPU.

WLM manages resources within a single AIX system. It does not
manage resources across the nodes of a cluster, though it may run on
each individual node. Much of the work on WLM, including its
implementation, has been and is being carried out by Bull in Grenoble,
France.

WLM CONCEPTS

WLM introduces a number of concepts new to AIX and, hence, some
new vocabulary also. WLM manages groups of processes called
classes. Resource allocation is controlled by shares and limits. Classes
may be grouped and prioritised in collections known as tiers.

Classes

When WLM is activated, the system administrator defines a number
of named classes. These may be specified at boot time or dynamically
when the system is running. As processes are created, they are placed
in a particular class. Placement in a given class is based on the user-
id (UID), group-id (GID), or application name (the full path name of
the executable binary), the choice being based on the first criterion
matched. Processes created using the fork() system call are placed in
the same class as their parent process, though placement is re-
evaluated if exec() is called.

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Each class has a name and an optional description. The class name
may have up to 16 characters. There are two pre-defined classes:

• Default class

This is a catch-all class for non-root processes. All classes that are
not assigned to a specific class are placed in the Default class.
Resource allocation for this class can be modified from its initial
values, as is the case with all other classes.

• System class

This is the corresponding class for root (system) processes that
haven’t been allocated to a specific class. By default, the System
class has a minimum memory limit of 1%.

Despite these catch-all classes, some processes and resources cannot
be managed by WLM. Two examples of this are shared memory pages
and processes that are already running when WLM is started. These
processes and resources are placed in a pseudo-class called
Unclassified. WLM does not manage processes in the Unclassified
class.

Tiers

To help prioritize the different classes, each class is placed in a tier. A
tier can be thought of as a priority level, with available levels ranging
from ‘0’ to ‘9’ (‘0’ having the highest priority). Resources are first
allocated to a class in tier ‘0’. Any remaining resources are then
allocated to classes (and hence processes) in tier ‘1’, etc.

Shares, targets, and limits

Each class is allocated a number of shares for each managed resource.
Resource allocation is expressed as the ratio of the number of shares
allocated to a class divided by the total number of shares allocated to
all active classes in the same tier. Hence, in a tier that contains three
classes (A, B, and C) with 10, 15, and 25 shares respectively, the
classes receive 20%, 30% and 50% of a given resource respectively.
Should a class D with 50 shares become active in the same tier, then
the resource allocations for A, B, C, and D would become 10%, 15%,
25%, and 50% respectively.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

A class may be allocated between 1 and 65,535 shares. Only active
classes (that is, classes with active processes) are used in resource
allocation calculations. The resource consumption of a class is the
sum of that of all processes in the class. So, if there are ten processes
in a class called database, and the database class has a CPU limit of
20%, then the sum of the CPU usage of all ten processes in the class
can’t exceed 20%. This means that one process can consume 20% of
CPU and the remaining nine 0%, or two processes can consume 10%
each with the remaining eight being idle, etc.

Shares are known as soft limits or targets, as they indicate the desired
resource allocation at any given time. When a new class becomes
active, the desired resource allocation percentages take a few seconds
to be achieved.

WLM also supports hard limits. A maximum hard limit is never
exceeded and a minimum hard limit is – if possible – always met or
exceeded (the reason for the ‘if possible’ qualifier is that a class may
not be able to meet a minimum CPU occupation limit – for example,
if a class contains only applications that are memory-bound and need
more working memory than is allocated or available, then the
applications are unable to run for lack of memory). Limits are
expressed as percentage values, the range being ‘0’ to ‘100’. The
default minimum value is ‘0’ and the default maximum is ‘100’.

Shares and limits may be modified without restarting WLM (at least,
in later releases of the product – the initial one does not support the
dynamic addition or suppression of classes). Hard limits should be
used with caution – inappropriate values can wreak havoc on system
performance.

WLM performs a number of sanity checks on values used for shares
and limits. For example, if the calculated percentage resource allocation
is less than the minimum resource limit, WLM uses the minimum as
the target, and a similar check is performed on the maximum value.

HOW WLM WORKS

While WLM focuses on processes and groups of processes, the AIX
scheduler operates on threads. So, how is the difference reconciled?

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

WLM maintains an internal priority for each class. As it monitors the
resource consumption of processes in a class, it modifies the class’s
priority. It then adds the class’s priority to the AIX scheduler priority
of all the threads in all the processes in the class. Thus, when resource
usage is below target, the priorities are increased, and when it’s above
target, they are decreased.

WLM does not control real-time or fixed priority processes. Only
processes with SCHED_OTHER threads are managed by WLM. In
addition wait threads and those that call plock() are not managed
either.

As far as control of memory allocation is concerned, processes in
classes that are at or below their minimum memory limit will not have
pages stolen from them (except by other processes in the same class
or in another class that is also below its minimum memory limit).
Pages pinned in memory are not assigned to a class.

WLM CONFIGURATION

WLM configuration is a key phase that requires careful consideration
as it directly impacts system and application response time under the
varying loads. WLM, which acts on scheduling priorities, as described
above, is thus known as a ‘fair-share scheduler’.

Before implementing resource management, you must translate the
performance requirements of your business applications into resource
usage limits under different loads. This translation process requires a
good understanding of the various factors that influence system
performance and the characteristics of the applications to be controlled.

Once the analysis phase is complete, WLM allocates a share of the
available resources to each application or group of applications.
WLM uses this share to modify AIX’s priorities dynamically during
the execution of each application, so that each group receives its
allocated share.

Assuming the necessary privileges, a user or system administrator can
move running processes from one class to another. This results in
memory usage being assigned to the new class and CPU usage being
recalculated.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

WLM ADMINISTRATION

There are three complementary ways of administering WLM:

• WebSM – the Web-based system administration tool. To go
directly to the WLM page, use the command:

wsm wlm

• smit – the tty or X-Windows system administration tool. Use the
command:

smit wlm

• You can use the Command Line Interface (CLI) and edit the
relevant configuration files.

smit and WebSM provide a graphical and less error-prone way of
creating and modifying files and executing the commands than is
available via manual configuration.

The files that contain WLM configuration information are known as
‘WLM property files’. It’s possible to have several sets of property
files for different circumstances – for example, one set may favour
interactive users during office hours, while a second ensures that
nightly batch jobs run to completion before the next morning’s on-line
users arrive at their desks.

Property files are usually placed in directories rooted at /etc/wlm. /etc/
wlm/current, which is a symbolic link that points to the directory that
actually contains the current set of property files (for example, the
current class definitions are held in /etc/wlm/current/classes). This
mechanism provides a flexible way of changing resource allocation
rules periodically by, say, using a shell or Perl script that is executed
by cron, changes the symbolic link, and reinitializes WLM.

WLM PROPERTY FILES

The following list of WLM’s property files may help you understand
their role in WLM’s administration. Each property set comprises five
flat text files that may be edited using a standard text editor. The files
are:

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• description

A short description of the WLM configuration. For example
‘nightly batch config’ or ‘prototype office-hours config’.

• classes

A description of each class and (optionally) the tier to which it
belongs. If the tier is not specified, the class defaults to ‘tier-0’
(the highest priority tier).

• shares

The memory and CPU shares allocated to each class.

• limits

Each class’s minimum and maximum hard limits for CPU and
memory. The default values are ‘0’ and ‘100’ respectively.

• rules

The selection rules for determining the class into which to place
newly started applications. The order in which rules are stated is
important as selection is based on the first match.

shares, limits, and rules may be modified while WLM is running.
However, if classes is changed, WLM must be restarted, and all
processes that are currently running are put in the Unclassified class.
This means that, in the first release of WLM, a reboot is required after
changing classes. This limitation is lifted in later releases, which
allow the assigning of existing processes to classes and the modification
of classes without a reboot.

This article concludes in next month’s issue of AIX Update.

Jez Wain
System Architect
Bull SA (France) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

Scheduling software distribution scripts

I have written a tool for software distribution to AIX servers that we
have successfully used for more than two years. I would like to share
this program with other AIX Update readers. The version of the
program included in this article is the ‘automatic’ one, which can be
used to schedule distribution scripts to run at a pre-defined date and
time. We generally schedule our distribution scripts to run at night, so
as not to overload the network.

This article includes three scripts: schedule, swd3_oto, and ftrvrg.
shedule.sh is the script that’s used to manage software distribution
scripts. schedule schedules swd3_oto for distribution, and swd3_oto
calls ftrvrg to carry out the actual file transfer. ftrvrg processes only
one file per invocation, sending it to a remote AIX server. It’s up to
swd3_oto to handle the transfer of more than one file to multiple
remote AIX servers.

The script swd3_oto.sh copies compressed tar files (kisim9000.Z,
etc) to remote AIX servers. swd3_oto.sh takes three parameters:

• plan name – the name of AIX servers

• cargo list – the data files to be distributed

• rcp limit – the maximum parallel rcp command.

Note the use of the continuation character, ‘➤ ’, in the code below to
indicate a formatting line break that doesn’t appear in the original
source code.

SCHEDULE.SH
#!/bin/ksh
By Adnan Akbas Dec'97 Ver.1.5
This script schedules software distribution scripts
to run on a desired date and time.

rev=$(tput rev)
nor=$(tput sgr0)
bol=$(tput bold)

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

script definition

 scr1=swd3_oto.sh
 scr2=script2.sh
 scr3=script3.sh
 scr4=script4.sh
 scr5=script5.sh

function warnmsg {
 print "\a\nbol*$nor"
}

function errormsg {
 print "\a\n$rev $* $nor\a"
}

Create a uniquely named cargo file.

function file_name_creator {
 'date' | read a b c d e f
 file_name_suffix=${b}${c}${d}
 cargo_list=/u/ftpuser/fileuse/cargo_lists/cargo_${file_name_suffix}
}

Check the content of the cargo file.

function cargo_contents_controler {
 while read cargo_item ; do
 if [[${cargo_item} != ""]] ; then
 if [[! -s /u/ftpuser/${cargo_item}]] ; then
 print "File name error.!!!"
 print "File: ${cargo_item} does not exist."
 print "Check file names and try again."
 exit
 fi
 chmod 664 /u/ftpuser/${cargo_item}
 else
 print "There are empty rows in the cargo list or the cargo
 ➤ list is empty."
 print "Check file names and try again."
 exit
 fi
 done < $cargo_list
}

clear
###
1. get script name.
###
echo " AUTOMATIC START "

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

echo " =============== "
echo " 1.) Aktarim......................swd3_oto.sh "
echo " 2.) script2......................script2.sh "
echo " 3.) script3......................script3.sh "
echo " 4.) script4......................script4.sh "
echo " 5.) script5......................script5.sh "
print; print
print -n Enter your choice ...
read choice
case $choice in
 1) scr=$scr1 ;;
 2) scr=$scr2 ;;
 3) scr=$scr3 ;;
 4) scr=$scr4 ;;
 5) scr=$scr5 ;;
 *) errormsg " Wrong Choice! "
 exit 1 ;;
esac
plan=plan_all
let max_rcp_limit=60
wc -l /u/ftpuser/plan_all | read subelist_max junk
###
2. get plan name.
##
clear
print \\nDefault plan = $plan , enter 1 to change and ENTER to accept.
read chk_plan
if [[$chk_plan -eq 1]] ; then
 print \\n rPlan names that can be used :\\n
 ls plan*
 print \\n
 print Plan Description: \\n
 print plan_all : All Servers \\n
 read plan?"Enter the distribution plan name:"
 if [[! -s $plan]] ; then
 print \\nYou've entered an invalid plan name. Please check again.
 print \\nAfter checking your plan, restart the script.\\n
 exit 2
 fi # check if plan exists and is not empty.
fi # check whether plan has changed.
###
3. get maximum rcp number at the same time
###
clear
print \\nDefault maximum rcp number= $max_rcp_limit, to change press 1,
 ➤ to accept press ENTER.
read chk_rcp
if [[$chk_rcp -eq 1]] ; then
 read max_rcp_limit?"Enter prallel rcp limit :"
 if [[$max_rcp_limit -lt 1 || $max_rcp_limit -gt $subelist_max]] ;

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 ➤ then
 print \\nParallel rcp limit must be between 1 and $subelist_max
 print \\nCheck rcp number and restart script.\\n
 exit 3
 fi # check whether rcp is 'meaningless'.
fi # check whether rcp has changed.
plan_name=$plan
rcp_number=$max_rcp_limit
###
4. get cargo list from user.
###
clear
print -r "Type file names that will be distributed to the cargo list."
print -r "Exit file after you have saved."
print "Press ENTER to continue."
read chk
file_name_creator
vi $cargo_list
cargo_contents_controler
cargo=${cargo_list##/*/}
###
5. get date from user
###
clear
print;
read isim?" Enter your name (for log): "
print;
print " Now: `date` "
print;
print " Enter the date you want to run your script: ..."
print;
read ay?" Month (jan - dec): "
read gun?" Day (01 - 31) : "
read saat?" Hour (00 -23) : "
read dakika?" Minute (00 - 59) : "
print;
###
6. Checking if the date entered is correct.
###
if [[$gun -le 31]] && [[$gun -ge 1]] && [[$saat -le 23]] &&
 ➤ [[$saat -ge n
 case "$ay" in
 (jan | feb | mar | apr | may | jun | jul | aug | sep | oct |
 ➤ nov | dec)
 clear
 print -n "Time entered : $gun $ay ${saat}:${dakika}:00
 ➤ $year ..." ;;
 (*)
 errormsg " date error ---> $gun $ay ${saat}:${dakika}:00
 ➤ $year "

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

 print; print
 print "After you have checked the date, restart the script."
 exit 4
 esac
else
 errormsg " date error ---> $gun $ay ${saat}:${dakika}:00 $year "
 print; print;
 print "After you have checked the date start the script again."
 exit 5
fi
print; print;
###
8. Final Check.
###
print \\nPlan name= $plan , Maximum rcp= $max_rcp_limit\\n
print Files to be distributed : \\n
cat $cargo_list
print \\nIf you comfirm press ENTER , to exit press 1
read chk_final
if [[$chk_final -eq 1]] ; then
 exit 6
fi
print;
###
9. schedule the script with its parameters.
###
echo /u/ftpuser/bin/$scr $plan_name $rcp_number $cargo_list | at
➤ ${saat}${dakik
###
10. recording jobs into a file.
###
if [[$? = 0]] ; then
 print "OTO $isim --> $scr SCHEDULED TO '$gun $ay
 ➤ ${saat}:${dakika}:00 $yeg
 print " using $plan_name rcp/rexec=$rcp_number
 ➤ $cargo " >> g
print >> /u/ftpuser/fileuse/process.log
fi
print; print; print;
print "Press ENTER"
read

SWD3_OTO.SH
#!/bin/ksh
SWD versiyon 2.1
by Adnan Akbas
auto-start version
###

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

parameter initilization
###
sleep 5
plan_all_curr=1
#
wc -l /u/ftpuser/plan_all | read subelist_max junk
#
done_branch=0
#
plan=${1}
#
max_rcp_limit=${2}
curr_rcp_num=0
#
cargo_list=${3}
#
'date' | read a b c d e f
file_name_suffix=${b}${c}${d}
#
cat $plan > /u/ftpuser/fileuse/tmp/plan_${file_name_suffix}
plan=/u/ftpuser/fileuse/tmp/plan_${file_name_suffix}
#
cat $cargo_list >
➤ /u/ftpuser/fileuse/cargo_lists/cargo_${file_name_suffix}
cargo_list=/u/ftpuser/fileuse/cargo_lists/cargo_${file_name_suffix}
wc -l $cargo_list | read c_l_size junk
#
function dist
{
 let cnt=0
 while read cargo_item ; do # cargo list control
 print " $sube_kodu / $done_branch --> $cargo_item
 ➤ tekrar : $don / "
 /home/ftpuser/bin/ftrvrg.sh $sube_kodu $cargo_item >
 ➤ /dev/null &
 wait
 kisim_no=${cargo_item#kisim}
 grep tamamlandixx
 ➤ /u/ftpuser/log/${sube_kodu}_${kisim_no}.log |gre2
 if [[$t2 -eq 1]] ; then
 let cnt+=1
 fi
 done < $cargo_list # cargo list control
 if [[$cnt -eq $c_l_size]] ; then
 print ${sube_kodu} >>
 ➤ /u/ftpuser/fileuse/tmp/full_ok_${file_name_suff}
 fi
}

function control

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

{
 let curr=$plan_all_curr
#
 tail +$curr plan_all | read sube_kodu
 let done_branch+=1
 grep $sube_kodu $plan > /dev/null # plan control start
 if [[$? = 0]] ;then # plan control
 ps -ef -o ruser,comm | grep ftpuser | grep rcp | wc -l |
 ➤ read curr_rcp_nt
 while [[$curr_rcp_num -ge $max_rcp_limit]] ; do
 sleep 40
 ps -ef -o ruser,comm | grep ftpuser | grep rcp | wc -l |
 ➤ read curr_rcp_m
 done # rcp control finish
 desicion=do_it
 fi # plan control finish
}

###
MAIN PROGRAM
###
tekrar=2
let don=1
while [[$don -le $tekrar]] ; do
 while [[$done_branch -lt $subelist_max]] ; do
 desicion=do_not_it
 control
 if [[$desicion = "do_it"]] ; then
 dist &
 fi # desicion
 let plan_all_curr+=1
 done
 let don+=1
 #
 done_branch=0
 #
 plan_all_curr=1
 #
 ###
 # Finished AIX servers subtracted from the plan.
 ###
 sort -n -u -o $plan $plan
 if [[-a /u/ftpuser/fileuse/tmp/full_ok_${file_name_suffix}]] ; then
 sort -n -u -o /u/ftpuser/fileuse/tmp/full_ok_${file_name_suffix}
 ➤ /u/ftpuse
r/fileuse/tmp/full_ok_${file_name_suffix}

comm -23 $plan /u/ftpuser/fileuse/tmp/full_ok_${file_name_suffix} >
➤ /u/ftpuser/fileuse/tmp/temp_${file_name_suffix}

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 cat /u/ftpuser/fileuse/tmp/temp_${file_name_suffix} > $plan
 fi
 wc -l $plan | read kalan junk
 if [[$kalan -lt 5]] ; then
 exit 0
 fi
 #
done # tekrarlar

FTRVRG.SH
#!/bin/ksh
Sends a file to a AIX server.
#
By Adnan Akbas.
#
usage='ftrvrg.sh server_name file_name'
version='0.09'

function trycmd {
 for trycmdcntr in 1 2 0 ; do
 "$@"
 let ret=$?
 if ((ret != 0)) ; then
 print "\a'$@' : error code=$ret"
 if [[$trycmdcntr = 0]] ; then
 return 1
 else
 sleep $((trycmdcntr*trycmdcntr*1))
 continue
 fi
 fi
 print "'$@' tamamlandixx."
 break
 done
 return 0
}

function transfer {
for try in 1 2 ; do
 print "\n $bn ${try}. deneme $(date)"
 trycmd rcp -p $fn AN$bn:$fn 2>&1
 let ret=$?
 if ((ret != 0)) ; then
 continue
 fi
 nfn=yad{fn#kisim}
 print "\n $bn Bitis $(date)"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

 exit 0
done
print '\a*** COPY OPERATION FAILED!!!\n\a'
return $ret
}
###
main program
###
if (($# > 3)) ; then
 print "Kullanim: $usage" >&2
 exit 2
fi
bn=${1:?"server name not given"}
fn=${2:?"file name not given"}
yad=${3:-part}
if [[! -r $fn]] ; then
 print "filename can not be read"
 exit 3
fi
###
#control
###
kisim_no=${fn#kisim}
logfile=/u/ftpuser/log/${bn}_${fn#kisim}
logfile=${logfile}.log

grep tamamlandixx /u/ftpuser/log/${bn}_${kisim_no}.log | grep -c
➤ AN${bn} | read2
if [$t2 = 0] ; then
###
checks if there is a rcp working for that server.
###
 ps -ef | grep ftpuser | grep rcp | grep AN${bn} > /dev/null 2>&1
 ret=$?
 if [[$ret != 0]] ; then
 transfer >$logfile 2>&1 </dev/null
 exit $?
 fi
 exit 5
else
 print $(date) was sent before >>$logfile
 exit 7
fi

Adnan Akbas
System programmer
Pamukbank (Turkey) © Xephon 2000

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Memory Usage Report

INTRODUCTION

Memory Usage Report (mur) is a shell script that extracts information
from the output of the ps vg command and uses it to prepare reports
on real and virtual memory usage by text and data segments for each
process running in the system. The accuracy of these reports thus
depend entirely on that of the output produced by ps vg. The script can
be run from any account, though the option to display the amount of
real memory in the system requires root privileges, as this depends on
the execution of bootinfo -r command. The script allows the user to
print the report and to select a process id from a list of current
processes, where applicable. The script also allows users to monitor
the growth of memory usage by a particular process during a given
time interval.

The script has options to display the following:

• Real memory in system

• Virtual memory (swap space) in system

• Real memory for text and data segments for one process

• Memory acquisition for a process

• Real memory for text and data segments for all processes

• Swap space for text and data segments for a process

• Swap space for text and data segments for all processes.

MUR.SH
##
Name : mur.sh (memory usage report)
#
Description: The script displays various memory-related statistics.
#
Notes : 1. The script contains following functions:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

#
o InitializeVariables
o HandleInterrupt
o PrintSpoolFile
o MoveCursor
o DisplayMessage
o DisplayMenu
o FormatUnderscores
o ProcessOption
o RootUser
o ProcessExit
o main
o GetRealMemory
o GetSwapSpaceDetails
o GetRealMemoryForTextAndDataForSpecificProcess
o MonitorSpecificProcessMemoryAquisition
o GetRealMemoryForTextAndDataForAllProcess
o GetVirtualMemoryForSpecificProcess
o GetVirtualMemoryForAllProcess
#
2. The script relies on the output from ps vg command and
therefore, the results displayed here are as accurate as
the output from ps vg command.
##
##
Name : InitializeVariables
#
Description: The function initializes all required variables.
##
InitializeVariables()
{
define locations
TEMP_FILE="/tmp/mur_$$.tmp"
TEMP_FILE_1="/tmp/mur_$$_1.tmp"
TEMP_FILE_2="/tmp/mur_$$_2.tmp"
REPORT_FILE="/tmp/mur_$$.dat"
#
escape sequences
ESC="\0033["
RVON=_[7m # revrese video on
RVOFF=_[27m # reverse video off
BOLDON=_[1m # bold on
BOLDOFF=_[22m # bold off
BON=_[5m # blinking on
BOFF=_[25m # blinking off
#
define Menu title
MUR="${RVON}Memory Usage Report${RVOFF}"

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

#
define exit codes
SEC=0
FEC=1
TRUE=0
FALSE=1
SLEEP_DURATION=4 # no of seconds allowed for sleep command
ERROR="${RVON}${BON}mur.sh:ERROR:${BOFF}"
INFO="${RVON}mur.sh:INFO: "
#
message
WORKING="Working..........${RVOFF}"
INTERRUPT="Program interrupted ! Quitting early${RVOFF}"
INVALID_OPTION="Invalid entry ${RVOFF}"
INVALID_ENTRY="Invalid entry ${RVOFF}"
PRINT_OK="Successfully submitted the print job${RVOFF}"
PRINT_NOT_OK="Failed to submit the print job${RVOFF}"
NOT_NUMERIC="Value must be numeric${RVOFF}"
OSERROR="\${ERR_MSG}${RVOFF}"
POLLING="Starting to poll the process${RVOFF}"
INVALID_PID="Process id \$PID is invalid${RVOFF}"
#
define signals
SIGTSTP=18 ; export SIGTSTP # ctrl-z
SIGHUP=1 ; export SIGHUP # when session disconnected
SIGINT=2 ; export SIGINT # ctrl-c
SIGTERM=15 ; export SIGTERM # kill command
}
##
Name : HandleInterrupt
#
Description: The function calls ProcessExit.
##
HandleInterrupt ()
{
DisplayMessage I "${INTERRUPT}"
ProcessExit $FEC
}
##
Name : MoveCursor
#
Input : Y and X coordinates
#
Returns : None
#
Description: Moves the cursor to the required location (Y, X).
#
Notes : 1. Must be run in ksh for print to work. Also, print

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

must be used to move the cursor because echo does
not seem to work.
##
MoveCursor ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
YCOR=$1
XCOR=$2
 echo "${ESC}${YCOR};${XCOR}H"
}
##
Name : DisplayMessage
#
Description: The function displays message
#
Input : 1. Message type (E = Error, I = Informative)
2. Error Code as defined in DefineMessages ().
##
DisplayMessage ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
MESSAGE_TYPE=$1
MESSAGE_TEXT=`eval echo $2`
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then
 echo "`eval echo ${ERROR}`${MESSAGE_TEXT}\c"
else
 echo "`eval echo ${INFO}`${MESSAGE_TEXT}\c"
fi
sleep ${SLEEP_DURATION}
return ${TRUE}
}
##
Name : FormatUnderscores
#
Description: The function assigns appropriate number of underscores(=)
to the variable UNDERSCORE to be used in conjunction with a
header.
#
Input : Line containing the header
##
FormatUnderscores ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
#
assign parameter
LINE="$1"

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

#
initialize UNDERSCORE
UNDERSCORE=
#
initialize index
IND=1
#
get no of characters in $LINE
NO_CHARS=`echo "$LINE" | wc -c`
#
subtract the carriage return
NO_CHARS=`expr $NO_CHARS - 1`
while ["$IND" -le "$NO_CHARS"]
do
 UNDERSCORE="${UNDERSCORE}="
 IND=`expr $IND + 1`
done
}
##
Name : PrintSpoolFile
#
Description: Prints the named file
#
Input : File name to be printed
##
PrintSpoolFile ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
FILE_TO_BE_PRINTED=$1
#
print file
while true
do
 clear
 echo "Do you wish to print the output file (Y/N)?:\c"
 read REPLY
 case $REPLY in
 n|N) return $TRUE ;;
 y|Y) break ;;
 *) : ;;
 esac
done
#
get printer name
while true
do
 clear
 echo "Enter printer name for lp command(q to quit):\c"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

 read PRINTER
 case $PRINTER in
 "") : ;;
 q|Q) break ;;
 *) lp -d$PRINTER ${FILE_TO_BE_PRINTED} > /dev/null 2>&1 ;
 if [$? -eq 0]
 then
 DisplayMessage I "${PRINT_OK}" ;
 break ;
 else
 DisplayMessage E "${PRINT_NOT_OK}" ;
 fi ;;
 esac
done
}
##
Name : DisplayMenu
#
Description: The function displays the menu.
##
DisplayMenu ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
clear
echo " ##"
echo " # $MUR #"
echo " # #"
echo " # 5. Real Memory in System #"
echo " # #"
echo " # 10. Virtual Memory(swap space) #"
echo " # in System #"
echo " # 15. Real Memory for Text & Data #"
echo " # Segment for a Process #"
echo " # 20. Monitor Memory Aquisition #"
echo " # for a Process #"
echo " # 25. Real Memory for Text & Data #"
echo " # Segment for All Processes #"
echo " # 30. Swap Space for Text & Data #"
echo " # Segment for a Process #"
echo " # 35. Swap Space for Text & Data #"
echo " # Segment for All Processes #"
echo " # #"
echo " # 99. Exit #"
echo " ##"
echo " Enter Option --->\c"
read OPTION
}
##

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Name : ProcessOption
#
Description: The function processes menu option.
##
ProcessOption()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
case $OPTION in
 5) GetRealMemory ;;
 10) GetSwapSpaceDetails;;
 15) GetRealMemoryForTextAndDataForSpecificProcess;;
 20) MonitorSpecificProcessMemoryAquisition;;
 25) GetRealMemoryForTextAndDataForAllProcess;;
 30) GetVirtualMemoryForSpecificProcess;;
 35) GetVirtualMemoryForAllProcess;;
 99) clear; ProcessExit $SEC;;
 *) DisplayMessage E "${INVALID_OPTION}"
esac
}
##
Name : DisplayListOfValues
#
Description: The function displays list of values for system processes.
and extracts the process id from the selected record.
##
DisplayListOfValues ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
PID= # value selected by user
echo " List of values for System Processes " > ${TEMP_FILE}
echo " =================================== " >> ${TEMP_FILE}
echo " Select Value by Deleting Line and Saving File\n" >>\
 ${TEMP_FILE}
ps -eaf >> ${TEMP_FILE}
cp ${TEMP_FILE} ${TEMP_FILE_1}
view ${TEMP_FILE}
PID=`diff ${TEMP_FILE} ${TEMP_FILE_1} | tail -1 | awk {'print $3'}`
COMMAND=`diff ${TEMP_FILE} ${TEMP_FILE_1} | tail -1 | cut -c 50-80 | \
 cut -d' ' -f1`
}
##
Name : GetProcessId
#
Description: The function gets a process id from the user.
##
GetProcessId ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

while true
do
 clear
 echo "Enter Process Id (l=list of values q=quit):\c"
 read PID
 case $PID in
 l|L) DisplayListOfValues ;
 if ["${PID}" = ""]
 then
 : ;
 else
 break ;
 fi ;;
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 *) break ;;
 esac
done
}
##
Name : GetCommand
#
Description: The function gets the command for a specific process.
#
Input : Process Id
#
Returns : $TRUE if a command is associated with the process id
$FALSE if no command is associated with the process id
##
GetCommand ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
P_PID="$1"
COMMAND=`ps -eaf | grep "${P_PID}" | grep -v "grep" | cut -c 48-80`
if ["${COMMAND}" = ""]
then
 return $FALSE
else
 return $TRUE
fi
}
##
Name : GetRealMemory
#
Description: The function obtains and displays amount of real memory for
the system.
#
Notes : The function requires root privilege because of invocation
of bootinfo -r command.

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

##
GetRealMemory ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
clear
MIKB=`su -c "bootinfo -r" 2> ${TEMP_FILE}` # memory in kilobytes
if [$? -ne 0]
then
 ERR_MSG=`cat ${TEMP_FILE}`
 DisplayMessage E "${OSERROR}"
 return $FALSE
fi
MIBY=`expr $MIKB * 1024` # memory in bytes
HEADER="Amount of Real Memory in System on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo " $HEADER" > ${REPORT_FILE}
echo " $UNDERSCORE" >> ${REPORT_FILE}
echo "$MIBY bytes " >> ${REPORT_FILE}
#
view the file
#
view ${REPORT_FILE}
#
print the file
#
PrintSpoolFile ${REPORT_FILE}
}
##
Name : GetSwapSpaceDetails
#
Description: The function obtains the swap space details.
##
GetSwapSpaceDetails ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
lsps -a | sed 1d | awk {'printf("%-19s%-12s%-10s",$2,$4,$6)'} > ${TEMP_FILE}
HEADER="Swap Space Details in System on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo " $HEADER" > ${REPORT_FILE}
echo " $UNDERSCORE\n" >> ${REPORT_FILE}
echo "Physical Volume Size Active" >> ${REPORT_FILE}
cat ${TEMP_FILE} >> ${REPORT_FILE}
#
view the file
#
view ${REPORT_FILE}

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

#
print the file
#
PrintSpoolFile ${REPORT_FILE}
}
##
Name : MonitorSpecificProcessMemoryAquisition
#
Description: The function is used to monitor real memory size for both
text and data segment for a specific process at a given time
interval for a period of time.
##
MonitorSpecificProcessMemoryAquisition ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
TIME_INTERVAL="" # required time interval
NO_POLLS= # number of iterations
#
get a process id
GetProcessId
#
get polling time interval
while true
do
 clear
 echo "Enter Time Interval, in seconds, for Polling the Process:\c"
 read TIME_INTERVAL
 case $TIME_INTERVAL in
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 *) if ([`expr $TIME_INTERVAL + 0` -eq $TIME_INTERVAL]) \
 > /dev/null 2>&1
 then
 break ;
 else
 DisplayMessage E "${INVALID_ENTRY}" ;
 fi;;
 esac
done
#
get number of polls
while true
do
 clear
 echo "Enter Number of Polls:\c"
 read NO_POLLS
 case $NO_POLLS in
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 *) if ([`expr $NO_POLLS + 0` -eq $NO_POLLS]) > /dev/null 2>&1

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 then
 break ;
 else
 DisplayMessage E "${INVALID_ENTRY}" ;
 fi;;
 esac
done
DisplayMessage I "${POLLING}" ;
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
HEADER="Real Memory Size(kbytes) for Text and Data Segment on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo "$HEADER" > ${REPORT_FILE}
echo "$UNDERSCORE" >> ${REPORT_FILE}
HEADER="Process Id = $PID"
FormatUnderscores "${HEADER}"
echo " $HEADER" >> ${REPORT_FILE}
echo " $UNDERSCORE" >> ${REPORT_FILE}
echo "Command Text Segment Data Segment">>${REPORT_FILE}
NO_CYCLE=0
while [$NO_CYCLE -lt $NO_POLLS]
do
 #
 # extract value for text and data segment togethers (RSS)
 TEXTDATASEG=`ps vg | grep " $PID " | grep -v "grep" | awk {'print $7'}`
 #
 # extract value for text segment only (TRS)
 TEXTSEG=`ps vg | grep " $PID " | grep -v "grep" | awk {'print $10'}`
 #
 # calculate value for data segment only
 DATASEG=`expr $TEXTDATASEG - $TEXTSEG`
 echo "$COMMAND $TEXTSEG $DATASEG" | \
 awk {'printf("%-30s%-14s%-10s\n",$1,$2,$3)'} > ${TEMP_FILE}
 cat ${TEMP_FILE} >> ${REPORT_FILE}
 #
 # view the file
 view ${REPORT_FILE}
 sleep $TIME_INTERVAL
 NO_CYCLE=`expr $NO_CYCLE + 1`
done
#
print the file
PrintSpoolFile ${REPORT_FILE}
}
##
Name : GetRealMemoryForTextAndDataForSpecificProcess
#
Description: The function obtains the real memory size for both text and
data segment for a specific process.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

##
GetRealMemoryForTextAndDataForSpecificProcess()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
while true
do
 clear
 echo "Enter Process Id (l=list of values q=quit):\c"
 read PID
 case $PID in
 q|Q) return $FALSE ;;
 l|L) DisplayListOfValues ;
 if ["${PID}" = ""]
 then
 : ;
 else
 break ;
 fi ;;
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 *) if ! GetCommand $PID
 then
 DisplayMessage E "${INVALID_PID}" ;
 else
 break ;
 fi ;;
 esac
done
#
extract value for text and data segment togethers (RSS)
TEXTDATASEG=`ps vg | grep " $PID " | grep -v "grep" | awk {'print $7'}`
#
extract value for text segment only (TRS)
TEXTSEG=`ps vg | grep " $PID " | grep -v "grep" | awk {'print $10'}`
#
calculate value for data segment only
DATASEG=`expr $TEXTDATASEG - $TEXTSEG`
echo "$COMMAND $TEXTSEG $DATASEG" | \
 awk {'printf("%-30s%-14s%-10s",$1,$2,$3)'} > ${TEMP_FILE}
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
HEADER="Real Memory Size(kbytes) for Text and Data Segment on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo "$HEADER" > ${REPORT_FILE}
echo "$UNDERSCORE" >> ${REPORT_FILE}
HEADER="Process Id = $PID"
FormatUnderscores "${HEADER}"
echo " $HEADER" >> ${REPORT_FILE}
echo " $UNDERSCORE" >> ${REPORT_FILE}
echo "Command Text Segment Data Segment">> ${REPORT_FILE}

52 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

cat ${TEMP_FILE} >> ${REPORT_FILE}
#
view the file
view ${REPORT_FILE}
#
print the file
PrintSpoolFile ${REPORT_FILE}
}
##
Name : GetRealMemoryForTextAndDataForAllProcess
#
Description: The function obtains the real memory size for both text and
data segment for all processes in the system.
##
GetRealMemoryForTextAndDataForAllProcess ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
TOT_TEXTSEG=0 # accumulative total for TEXT
TOT_DATASEG=0 # accumulative total for DATA
TOT_MEM_IN_USE=0 # total memory in use by all processes
DisplayMessage I "${WORKING}"
#
get process and memory details
ps vg | sed 1D | while read LINE
do
 #
 # extract value for text and data segment together for each process
 TEXTDATASEG=`echo "${LINE}" | awk {'print $7'}`
 if ["${TEXTDATASEG}" = ""]
 then
 #
 # daft record
 continue
 fi
 #
 # extract value for text segment only
 TEXTSEG=`echo "${LINE}" | awk {'print $10'}`
 #
 # calculate value for data segment only
 DATASEG=`expr $TEXTDATASEG - $TEXTSEG`
 #
 # accumulate these values
 TOT_TEXTSEG=`expr $TOT_TEXTSEG + $TEXTSEG`
 TOT_DATASEG=`expr $TOT_DATASEG + $DATASEG`
done
TOT_MEM_IN_USE=`expr $TOT_TEXTSEG + $TOT_DATASEG`
echo "${TOT_TEXTSEG} ${TOT_DATASEG}" | \
 awk {'printf("Text=%-14s Data=%-14s",$1,$2)'} > ${TEMP_FILE}

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 53

echo "Total memory in use = ${TOT_MEM_IN_USE}" >> ${TEMP_FILE}
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
HEADER="Memory Size(kbytes) for All Text and Data Segments on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo "$HEADER" > ${REPORT_FILE}
echo "$UNDERSCORE" >> ${REPORT_FILE}
cat ${TEMP_FILE} >> ${REPORT_FILE}
#
view the file
view ${REPORT_FILE}
#
print the file
PrintSpoolFile ${REPORT_FILE}
}
##
Name : GetVirtualMemoryForSpecificProcess
#
Description: The function obtains displays the virtual memory size
for a specific process.
##
GetVirtualMemoryForSpecificProcess ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
while true
do
 clear
 echo "Enter Process Id (l=list of values q=quit):\c"
 read PID
 case $PID in
 q|Q) return $FALSE ;;
 l|L) DisplayListOfValues ;
 if ["${PID}" = ""]
 then
 : ;
 else
 break ;
 fi ;;
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 *) break ;;
 esac
done
#
extract value for SIZE
SIZE=`ps vg | grep " $PID " | grep -v "grep" | awk {'print $6'}`
echo "$COMMAND $SIZE" | \
 awk {'printf("%-30s%-14s",$1,$2)'} > ${TEMP_FILE}
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
HEADER="Virtual Memory Size(kbytes) on ${DATETIME}"

54 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

FormatUnderscores "${HEADER}"
echo "$HEADER" > ${REPORT_FILE}
echo "$UNDERSCORE" >> ${REPORT_FILE}
HEADER="Process Id = $PID"
FormatUnderscores "${HEADER}"
echo " $HEADER" >> ${REPORT_FILE}
echo " $UNDERSCORE" >> ${REPORT_FILE}
echo "Command Size">> ${REPORT_FILE}
cat ${TEMP_FILE} >> ${REPORT_FILE}
#
view the file
view ${REPORT_FILE}
#
print the file
PrintSpoolFile ${REPORT_FILE}
}
##
Name : GetVirtualMemoryForAllProcess
#
Description: The function obtains and displays the total virtual memory
size for all processes in the system.
##
GetVirtualMemoryForAllProcess ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
TOTSIZE=0 # total virtual memory size in use
DisplayMessage I "${WORKING}"
#
extract value for SIZE
ps vg | sed 1D | while read LINE
do
 SIZE=`echo "${LINE}" | awk {'print $6'}`
 if ["${SIZE}" = ""]
 then
 #
 # daft record
 #
 continue
 fi
 TOTSIZE=`expr $TOTSIZE + $SIZE`
done
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
HEADER="Used Virtual Memory Size(kbytes) on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo "$HEADER" > ${REPORT_FILE}
echo "$UNDERSCORE" >> ${REPORT_FILE}
echo "${TOTSIZE}" >> ${REPORT_FILE}
#
view the file

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 55

view ${REPORT_FILE}
#
print the file
PrintSpoolFile ${REPORT_FILE}
}
##
Name : ProcessExit
#
Description: The function removes any temporary files and makes a graceful
exit.
#
Input : Exit Code
##
ProcessExit ()
{
EXIT_CODE="$1"
clear
rm -f ${REPORT_FILE}
rm -f ${TEMP_FILE_1}
exit ${EXIT_CODE}
}
##
Name : main
#
Description: The function invokes all other functions.
#
Notes : 1. The function invokes following functions:
o InitializeVariables
o DisplayMenu
o ProcessOption
##
main ()
{
InitializeVariables
while true
do
 DisplayMenu
 ProcessOption
done
}
#
invoke main
main

Arif Zaman
DBA/Developer
High-Tech Software Ltd (UK) © Xephon 2000

AIX news

IBM has announced Commerce Integrator
Version 1.1, which simplifies the integration
of Net.Commerce or WebSphere Commerce
Suite with back-end systems.

Version 1.1 requires Net.Commerce 3.2 or
WebSphere Commerce Suite 4.1. There are
two versions: Commerce Integrator Pro runs
on AIX, NT, and Solaris, while the Start
version is available only on NT. The Pro
version targets sites that need to access
information from multiple back-end
applications.

Out now, prices for the Pro version start at
US$50,000.

The company also announced a four-port 10/
100-BaseTX Ethernet PCI Adapter for the
RS/6000, providing four Ethernet ports on a
single PCI slot. The adapter is compatible
with both 32 and 64 bit PCI slots and
supports AIX Version 4.3.3 or later. Out
now, it costs US$1,500.

Finally, the company announced Network
Client Manager, which provides server-
based management for a broad range of
client platforms and applications. These
include PCs, NCs, and other thin-client
hardware, such as point-of-sale devices.
While the first release of the product runs on
NT only, AIX, OS/2 and Linux versions are
expected in the near future. Prices for these
versions are not available now.

For further information, contact your local
IBM representative.

* * *

Continuus Software has announced
Continuus/CM Version 5.0, the latest
version of the company’s task-based change
management software, promising extended
scalability and comprehensive migration
facilities.

Version 5.0 handles both content and
software change management employing a
‘second generation’ methodology for
automating tracking and communication of
changes across distributed development
teams. It’s designed to simplify the change
management process with a scalable
repository and a team-oriented workflow
approach to development.

Out now, versions are available for AIX and
also Windows 95, 98, NT, Solaris, HP-UX,
Compaq TRU64 Unix on Alpha, Siemens
SINIX, and SGI IRIX. Prices start at
US$19,500.

For further information contact:
Continuus Software Corporation, 108
Pacifica, 2nd Floor, Irvine, CA 92618, USA
Tel: +1 949 453 2200
Fax: +1 949 453 2276
Web: http://www.continuus.com

Continuus Software, 6 Bracknell Beeches,
Old Bracknell Lane, Bracknell, Berkshire
RG12 7BW, UK
Tel: +44 1344 788100
Fax: +44 1344 788111

x xephon

	 Using Go-Joe and GlobalHost for AIX
	Debugging malloc in AIX 4.3.3
	 Workload Manager
	 Scheduling software distribution scripts
	 Memory Usage Report
	 AIX news

