
June 2000

56

© Xephon plc 2000

3 Version control for files on AIX
servers

9 Check mail utility
28 RAID and AIX
38 ZeroFault – a memory debugging

tool for AIX
52 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl@xephon.com

North American office
Xephon/QNA
Post Office Box 350100, Westminster CO
80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
in the UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com/
aixupdate.html (you’ll need the user-id
shown on your address label to access it).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Version control for files on AIX servers

The company I work for has about 200 remote AIX servers, and we
are responsible for carrying out software distribution to those servers.
One of the most important aspects of this task is to keep all servers at
the same version level. For this purpose, I have written the script
compare.sh (see the listing below). For more than two years this
script has successfully carried out version control on our remote
servers.

compare.sh needs three pieces of information, which are all entered
interactively once the script is running. These are the reference
server’s name, the ‘plan’ name (the plan is a file that includes the
names of all servers to be compared with the reference server), and the
parallel compare (rexec) limit number. Basically, we need a few fixed
directories to be compared and the differences to be written to a file
(server_name.out) for each server (note that, as the directory names
are hard-coded, you’ll need to change them to suit your installation’s
own requirements). The name, date, and size of applications are the
criteria by which we determine whether an application is different
from its equivalent one on the reference server. For example, let’s
check the contents of directory 101.out on server 101 with reference
server 918. The output of the script is as follows:

101 77792 21 Mar 17:17 /u/winappsnt/gturig00.app
101 130718 28 Feb 17:15 /u/winappsnt/gturkg00.app
101 70638 18 Jan 17:02 /u/winappsnt/gtursg00.app
101 78382 14 Jan 15:58 /u/winappsnt/gturpg00.app
101 44168 14 Jan 15:56 /u/winappsnt/gturag00.app
101 0 12 Oct 14:46 /u/winappsnt/futbank.txt
101 3000 26 Jan 13:25 /u/vggen/load/gtcell.tab
101 190399 21 Mar 17:11 /u/vggen/load/turici0.ibmcpp
101 4418 21 Mar 17:11 /u/vggen/load/turici0.bnd
101 188717 26 Jan 13:26 /u/vggen/load/turmcu0.ibmcpp
101 4817 26 Jan 13:26 /u/vggen/load/turmcu0.bnd
101 184222 18 Jan 16:55 /u/vggen/load/turscu0.ibmcpp
101 4817 18 Jan 16:55 /u/vggen/load/turscu0.bnd
101 184502 18 Jan 16:55 /u/vggen/load/turkcu0.ibmcpp
101 4817 18 Jan 16:55 /u/vggen/load/turkcu0.bnd
101 194021 14 Jan 15:58 /u/vggen/load/turpci0.ibmcpp
101 8819 14 Jan 15:58 /u/vggen/load/turpci0.bnd
101 68002 14 Jan 15:57 /u/vggen/load/turpcd0.ibmcpp
101 175449 14 Jan 15:55 /u/vggen/load/turkci0.ibmcpp
101 3633 14 Jan 15:55 /u/vggen/load/turkci0.bnd

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

As can be seen above, applications on server 101 whose version
differs from that on the remote server are listed. The listing comprises
the server name, the size of the mismatched application, its date, and
its path. Note that all of the applications above either do not exist on
our reference server, or have a different size or date from ones on the
reference server. If a rexec on a remote server fails, the names of
servers that are not available are listed in a file called closed.out. There
are several ways of displaying these output files. I programmed a user-
friendly tool in Delphi to see the output in an NT environment using
NFS.

Note the use of the continuation character, ‘➤ ’, in the code below to
indicate a formatting line break that’s not present in the original code.

COMPARE.SH
#!/bin/ksh
By Adnan Akbas Jan'98
A version control script that compares files in specific directories
in AIX servers with ones on a reference server.

cnt=0
plan=plan_all
max_limit=15

###################################
main program
###################################

##
checking if there is a compare running now...
##

ls -l /u/ftpuser/compare/aixcomp???.msgl 2>/dev/null | wc -l | read
➤ msgl_num
if [[$msgl_num -gt 0]] ; then
 clear
 ls /u/ftpuser/compare/aixcomp???.msgl
 print " "
 print "AIX compare script currently running..."
 print " "
 print "Do you want to start a new compare?"
 read key?" y / n "
 if [[$key = y* || $key = Y*]] ; then
 rm -f /u/ftpuser/compare/aixcomp???.msgl
 else

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

 print "Wait till script terminates and try again..."
 exit 3
 fi
fi

##
asking the reference server
##

clear
print -n "Enter your reference server..."
read sube1 junk

##
asking the plan...
##

The 'plan' is a file with a list of the servers to be compared
clear
print \\nDefault plan = $plan
read chk_plan?"To change press 1; to accept press ENTER."
if [[$chk_plan -eq 1]] ; then
 print \\nPlans to use :\\n
 ls plan*
 print \\n
 read plan?"Enter the plan name :"
 if [[! -s $plan]] ; then
 print \\nThis plan does not exist or is empty. Please check.
 print \\nAfter checking the plan, re-start the script.\\n
 exit 1
 fi # check that plan exist and is not empty.
fi # check whether plan has changed.

cat $plan | wc -l | read subelist_max

##
asking parallel rexec limit...
##

clear
print \\nDefault maximum parallel compare limit is $max_limit
read chk_com?"To change press 1; to accept press ENTER."
if [[$chk_com -eq 1]] ; then
 read max_limit?"Enter parallel compare limit: "
 if [[$max_limit -lt 1 || $max_limit -gt $subelist_max]] ; then
 print \\nParallel compare limit must be between 1-$subelist_max.
 print \\nAfter checking the limit, re-start the script.\\n
 exit
 fi # check whether rcp is meaningless.
fi # check whether rexec has changed.

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

##
clear logs?
##

print ; print
read yanit?"Do you want to delete compare (*.out) logs? (y/n) "
if [[$yanit = y* || $yanit = Y*]] ; then
 print "Deleting compare (*.out) logs..."
 rm -f /u/winapps/dsyu/compare/*.out
 rm -f /u/ftpuser/compare/*.out

print "Compare logs deleted."
 read anykey?"To continue, press ENTER..."
else
 print "Compare logs are not deleted."
 read anykey?"To continue, press ENTER..."
fi

clear
print
print "Please wait..."
print

##
taking data from the reference server...
##

Alphabetical grouping needed for "ls -lt" not to return a
"The parameter list is too long" error.

rexec an${sube1} 'ls -lt /u/winappsnt/[a-e,A-E]*'
➤ >/u/ftpuser/compare/${sube1}1.out
rexec an${sube1} 'ls -lt /u/winappsnt/[f-m,F-M]*'
➤ >>/u/ftpuser/compare/${sube1}1.out
rexec an${sube1} 'ls -lt /u/winappsnt/[n-z,N-Z]*'
➤ >>/u/ftpuser/compare/${sube1}1.out
rexec an${sube1} 'ls -lt /u/vggen/load/[a-e,A-E]*'
➤ >>/u/ftpuser/compare/${sube1}1.out
rexec an${sube1} 'ls -lt /u/vggen/load/[f-m,F-M]*'
➤ >>/u/ftpuser/compare/${sube1}1.out
rexec an${sube1} 'ls -lt /u/vggen/load/[n-z,N-Z]*'
➤ >>/u/ftpuser/compare/${sube1}1.out
rexec an${sube1} 'ls -lt /u/vggen/forms/[a-m,A-M]*'
➤ >> /u/ftpuser/compare/${sube1}1.out
rexec an${sube1} 'ls -lt /u/vggen/forms/[n-z,N-Z]*'
➤ >> /u/ftpuser/compare/${sube1}1.out

take the required fields from the output (size date name)

awk '{print $5, $6, $7, $8, $9}'

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

➤ /u/ftpuser/compare/${sube1}1.out>/u/ftpuser/compare/${sube1}.out

###
function doit
###

function doit {

 msgl_file=/u/ftpuser/compare/aixcomp${sube2}.msgl
 touch $msgl_file
 print "$cnt / $subelist_max - comparing on $sube2..."

First rexec returns a code that determines whether the server
is available. If the server is off-line, then the server name
is written to the file 'closed.out'.

Alphabetical grouping is needed for 'ls -lt', otherwise it returns a
"The parameter list is too long" error.

rexec an${sube2} 'ls -lt /u/winappsnt/[a-e,A-E]*'
➤ >/u/ftpuser/compare/${sube2}2.out 2> /dev/null

 if [[$? = 0]] ; then
 rexec an${sube2} 'ls -lt /u/winappsnt/[f-m,F-M]*'
➤ >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null
 rexec an${sube2} 'ls -lt /u/winappsnt/[n-z,N-Z]*'
➤ >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null
 rexec an${sube2} 'ls -lt /u/vggen/load/[a-e,A-E]*'
➤ >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null
 rexec an${sube2} 'ls -lt /u/vggen/load/[f-m,F-M]*'
➤ >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null
 rexec an${sube2} 'ls -lt /u/vggen/load/[n-z,N-Z]*'
➤ >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null
 rexec an${sube2} 'ls -lt /u/vggen/forms/[a-m,A-M]*'
➤ >> /u/ftpuser/compare/${sube2}2.out 2> /dev/null
 rexec an${sube2} 'ls -lt /u/vggen/forms/[n-z,N-Z]*'
➤ >> /u/ftpuser/compare/
 ${sube2}2.out 2> /dev/null

taking the required fields of the output (size date name)

 awk '{print $5, $6, $7, $8, $9}'
 ➤ /u/ftpuser/compare/${sube2}2.out
 ➤ >/u/ftpuser/compare/${sube2}.out

##
compare
##

 diff -w /u/ftpuser/compare/${sube1}.out

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 ➤ /u/ftpuser/compare/${sube2}.out |
 grep -E "^>|^<" | grep -vE "^> total|^< total" | awk
 ➤ 'gsub("<",'$sube1') gsub(">",'$sube2')' >
 ➤ /u/winapps/dsyu/compare/${sube2}.out

 rm -f /u/ftpuser/compare/${sube2}*.out
 else
 print "$sube2" >> /u/winapps/dsyu/compare/closed.out
 fi
 rm -f $msgl_file
}

###
function Wait
###

function Wait {
ls -l /u/ftpuser/compare/aixcomp???.msgl 2>/dev/null | wc -l |
➤ read comp
while (($comp > $max_limit)) ; do
 print "ZZZzzz parallel compare is $comp"
 sleep 20
 ls -l /u/ftpuser/compare/aixcomp???.msgl | wc -l | read comp
done
}

for sube2 in `cat /u/ftpuser/${plan}` ; do
 Wait
 let cnt+=1
 doit &
done

##
Writing the parallel compare number on the screen ...
##

ls -l /u/ftpuser/compare/aixcomp*.msgl 2>/dev/null | wc -l |
➤ read active_comp
print " "
while [[$active_comp -gt 0]] ; do
 print "$(tput cuu1) $active_comp compare is working now."
 sleep 2
 ls -l /u/ftpuser/compare/aixcomp*.msgl 2>/dev/null | wc -l |
 ➤ read active_comp
done

Adnan Akbas
System Programmer
Pamukbank (Turkey) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

Check mail utility

INTRODUCTION

This utility checks for new mail at a given interval and notifies the
recipient of any that’s arrived. Notification is via a reverse video
window that appears in the middle of the screen at all terminals to
which the recipient is connected. While the service is also available
when the user is in a shell, the notification is then only a string that
appears on the command line. This utility was developed to replace
the existing mail notification mechanism.

UTILITY COMPONENTS

1 chkmd.sh – check mail daemon script

2 schkmd.sh – start check mail daemon script

3 kchkmd.sh – kill check mail daemon script

4 newmail.c – a C program that displays a reverse video window
on the screen that notifies the user of new mail.

Note the use of the continuation character (‘➤ ’) in the code below to
indicate a formatting line break that’s not present in the origianal code.

LISTING OF CHKMD.SH
##
Name : chkmd.sh (check mail daemon)
#
Description: The script checks for new mail sent to a user,
checking at regular intervals, and notifies the
user of new mail using a reverse-video window.
#
Notes : 1. The script must be started by schkmd.sh
2. The script contains the following functions:
o main
o ProcessMail
o InitializeVariables
o InitializeMailList
o CheckMail
o HandleInterrupt

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

o NotifyuserOfNewMail
o ProcessMail
o ProcessExit.
##
Name : InitializeVariables
#
Description: The function initializes all variables.
##
InitializeVariables ()
{
INDEX=1 # working index
MAIL_DIR="/var/spool/mail"
MLI=1 # index to mail list array
MAIL_LIST_ARRAY[$MLI]="" # mail list array holding recipient's name
 # and latest message id
TEMP_FILE="/tmp/chkmd_$$.tmp"
return codes
TRUE=0
FALSE=1
define signal
SIGTERM=15; export SIGTERM
SIGINT=2; export SIGINT
}
##
Name : HandleInterrupt
#
Description: The function calls ProcessExit.
##
HandleInterrupt ()
{
DATETIME=`date "+%d/%m/%Y %H:%M:%S"`
echo "chkmd.sh:ERROR:Program terminated on ${DATETIME}" >> ${LOG_FILE}
ProcessExit $FEC
}
##
Name : ProcessExit
#
Description: The function implements a graceful exit.
##
ProcessExit ()
{
EXIT_CODE="$1"
rm -f ${TEMP_FILE}
#
write log message
#
echo "chkmd.sh:INFO:Exiting the daemon" >> ${LOG_FILE}
exit $EXIT_CODE
}
##
Name : Processkey

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

#
Description: The function checks that the daemon was started
by the program schkmd.sh.
#
Returns : $TRUE or $FALSE
#
Notes : 1. The variable $KEY, which contains the parent PID,
is exported by schkmd.sh. If the daemon chkmd.sh
is not started by schkmd.sh, the $KEY and $PPID
don't match.
##
ProcessKey ()
{
trap "HandleInterrupt " $SIGTERM # process this signal
#
exported variable $KEY and the parent process id of this process
must match
#
if ["${KEY}" != $PPID]
then
 return $FALSE
else
 return $TRUE
fi
}
##
Name : NotifyUserOfNewMail
#
Description: The function notifies a user of new mail.
#
Input : 1. User Id
#
Returns : $TRUE or
$FALSE
#
Notes : 1. The function uses the following command to notify
the user:
#
newmail > ${TERMINAL_ID}
#
where 'newmail' is an executable of a c program in
/usr/bin written using the curses library.
##
NotifyUserOfNewMail ()
{
trap "HandleInterrupt " $SIGTERM # process this signal
#
assign parameter
#
P_USER="$1"
#

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

process users who are currently connected to the system
#
w -h | awk {'print $1 " " $2'} | while read USER TERMINAL_ID
do
 if ["${USER}" = "${P_USER}"]
 then
 /usr/bin/newmail > /dev/${TERMINAL_ID}
 fi
done
return $TRUE
}
##
Name : InitializeMailList
#
Description: Initializes the array $MAIL_LIST_ARRAY[] with user-id,
latest message-id, and user processed flag with a
value of N.
#
Returns : $TRUE or $FALSE.
##
InitializeMailList ()
{
trap "HandleInterrupt " $SIGTERM # process this signal
#
switch to main mail directory
#
cd ${MAIL_DIR}
#
get all the file names
#
ls -1 > ${TEMP_FILE}
#
retrieve latest mail ids and store with corresponding mail users
#
MLI=1
cat $TEMP_FILE | while read MAIL_FILE_NAME
do
 MSG_ID=`tail ${MAIL_FILE_NAME} | grep "Message-Id" |
 ➤ awk {'print $2'}`
 #
 # user id:message id:remove flag(Y or N)
 #
 MAIL_LIST_ARRAY[$MLI]="${MAIL_FILE_NAME}:${MSG_ID}:N"
 MLI=`expr $MLI + 1`
done
return $TRUE
}
##
Name : ProcessMail
#
Description: Processes mail to establish whether is is new. If yes,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

it invokes NotifyuserOfNewMail().
#
Input : 1. User Id
2. Mail Id
#
Returns : $TRUE or $FALSE
#
Notes : 1.The function calls the following functions:
o NotifyUserOfNewMail.
##
ProcessMail ()
{
trap "HandleInterrupt " $SIGTERM # process this signal
#
Assign parameters
#
P_USERID="$1"
P_NEW_MSG_ID="$2"
#
Process the input details againt $MAIL_LIST_ARRAY[] array
#
INDEX=1
while ["${MAIL_LIST_ARRAY[$INDEX]}" != ""]
do
 MAIL_USER_ID=`echo ${MAIL_LIST_ARRAY[$INDEX]} | cut -d':' -f1`
 LAST_MSG_ID=`echo ${MAIL_LIST_ARRAY[$INDEX]} | cut -d':' -f2`
 if ["${MAIL_USER_ID}" = "${P_USERID}"]
 then
 #
 # Update the mail list
 #
 MAIL_LIST_ARRAY[$INDEX]="${P_USERID}:${P_NEW_MSG_ID}:Y"
 #
 # Found the recipient; now compare the message id
 #
 if ["${LAST_MSG_ID}" = "${P_NEW_MSG_ID}"]
 then
 #
 # No mew mail received
 #
 return $TRUE
 else
 #
 # New mail received
 #
 NotifyUserOfNewMail "${MAIL_USER_ID}"
 return $TRUE
 fi
 fi
 INDEX=`expr $INDEX + 1`
done

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

#
Necipient not found in the list; add recipient to list and notify
#
MAIL_LIST_ARRAY[$INDEX]="${P_USERID}:${P_NEW_MSG_ID}:Y"
NotifyUserOfNewMail "${MAIL_USER_ID}"
return $TRUE
}
##
Name : UpdateMailList
#
Description: The function updates the mail list held in
$MAIL_LIST_ARRAY.
#
Returns : $TRUE
#
Notes : 1. Removes an entry for a user that's not been
processed by CheckMail().
##
UpdateMailList ()
{
trap "HandleInterrupt " $SIGTERM # process this signal
#
Define local variables
#
USER_PROCESSED_FLAG=""
INDEX=1
TEMP_MAIL_LIST_ARRAY[$INDEX]=""
#
Copy the mail list into temporary array
#
while ["${MAIL_LIST_ARRAY[$INDEX]}" != ""]
do
 TEMP_MAIL_LIST_ARRAY[$INDEX]="${MAIL_LIST_ARRAY[$INDEX]}"
 INDEX=`expr $INDEX + 1`
done
#
Update $MAIL_LIST_ARRAY[] with users that have been processed
from $TEMP_MAIL_LIST_ARRAY[]
#
INDEX=1
MLI=1
while ["${TEMP_MAIL_LIST_ARRAY[$INDEX]}" != ""]
do
 USER_PROCESSED_FLAG=`echo ${TEMP_MAIL_LIST_ARRAY[$INDEX]} |
 ➤ cut -d':' -f3`
 if ["${USER_PROCESSED_FLAG}" = "Y"]
 then
 #
 # User has been processed; update list
 #
 MAIL_LIST_ARRAY[$MLI]="${TEMP_MAIL_LIST_ARRAY[$INDEX]}"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

 MLI=`expr $MLI + 1`
 fi
 INDEX=`expr $INDEX + 1`
done
return $TRUE
}
##
Name : CheckMail
#
Description: Retrieves the last mail id for each recipient and
invokes ProcessMail().
#
Returns : $TRUE or $FALSE
#
Notes : 1. The function calls the following functions:
o ProcessMail.
##
CheckMail()
{
trap "HandleInterrupt " $SIGTERM # process this signal
#
Define local variables
#
MAIL_FILE_NAME=""
MSG_ID=""
#
Switch to main mail directory
#
cd ${MAIL_DIR}
#
Get all the file names
#
ls -1 > ${TEMP_FILE}
#
Retrieve latest mail id
#
cat $TEMP_FILE | while read MAIL_FILE_NAME
do
 MSG_ID=`tail ${MAIL_FILE_NAME} | grep "Message-Id" | awk
 ➤ {'print $2'}`
 ProcessMail "${MAIL_FILE_NAME}" "${MSG_ID}"
done
return $TRUE
}
##
Name : main
#
Description: Invokes all other functions.
#
Notes : 1. The function calls the following functions:
o InitializeVariables

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

o ProcessKey
o InitializeMailList
o CheckMail
o UpdateMailList
#
2. $TIME_INTERVAL is exported from schkmd.sh.
##
main ()
{
InitializeVariables
trap : $SIGTERM # pass this signal to child
trap "HandleInterrupt " $SIGINT # process this signal
trap "HandleInterrupt " $SIGTERM # process this signal
if ! ProcessKey
then
 clear
 echo "chkmd.sh:ERROR:Use schkmd.sh program to start daemon"
 exit $FEC
fi
InitializeMailList
while true
do
 CheckMail
 UpdateMailList
 sleep ${TIME_INTERVAL}
done
}
#
invoke main
#
main

LISTING OF SCHKMD.SH
##
Name : schkmd.sh (start check mail daemon)
#
Description: The script starts the daemon script that checks mail.
#
Input : 1. Time interval (in seconds, default = 60 seconds).
#
Notes : 1. The script is run from the command line as follows:
schkmd.sh t=<interval time for checking new mail>
#
2. It contains the following functions:
o main
o InitializeVariables
o InitializeLogFile
o InstanceCheck
o PraseCommandLine

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

o ValidateCommandLineArgumentValues
o StartDaemonProcess
o RootUser
o DisplayMessage
o WriteLog
o MoveCursor
o HandleInterrupt
o ProcessExit
#
3. It starts chkmd.sh as a background task and exits.
#
4. Log file chkmd.log is maintained in /tmp, if the
file doesn't exist, it is created.
#
5. If the time parameter is not supplied, a default
is used.
##
Name : InitializeVariables
#
Description: Initializes all the required variables
##
InitializeVariables ()
{
KEY="$$"; export KEY
INDEX=1 # working index
TIME_INTERVAL=""; export TIME_INTERVAL # time interval
DEFAULT_TIME_INTERVAL=60 # default is 60 seconds
TEMP_FILE="/tmp/chkmd.tmp" # temporary file
LOG_FILE="/tmp/chkmd.log"; export LOG_FILE # log file name
chkmd.sh process id file
CHKMD_PROCID_FILE="/tmp/chkmd.pid" ; export CHKMD_PROCID_FILE
define message prefixes
ERROR="schkmd.sh:ERROR:"
INFO="schkmd.sh:INFO:"
define escape sequences
ESC="\0033["
RVON=_[7m # reverse video on
RVOFF=_[27m # reverse video off
BOLDON=_[1m # bold on
BOLDOFF=_[22m # bold off
BON=_[5m # blinking on
BOFF=_[25m # blinking off
define return codes
TRUE=0
FALSE=1
define exit codes
FEC=1
SEC=0
define signal
SIGHUP=1 ; export SIGHUP
SIGINT=2 ; export SIGINT

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SIGQUIT=3 ; export SIGQUIT
SIGTERM=15 ; export SIGTERM
SIGSTOP=17 ; export SIGSTOP
SIGTSTP=18 ; export SIGTSTP
define messages
INTERRUPT="Process interrupted\; Quitting early${RVOFF}"
INVALID_ARGC="Wrong number of arguments${RVOFF}"
USAGE="Usage:schkmd.sh \[t=\<time in seconds\> l=\<log file\>
➤ \]${RVOFF}"
DAEMON_NOT_STARTED="Failed to start daemon${RVOFF}"
NOT_ROOT_USER="Must execute the script from root account${RVOFF}"
DAEMON_ALREADY_RUNNING="An instance of daemon is aleady running${RVOFF}"
STARTING_DAEMON="Starting daemon chkmd.sh${RVOFF}"
DAEMON_STARTED="Successfully started daemon${RVOFF}"
INVALID_ARG_TYPE="\${ARG_TYPE}, is an invalid argument type${RVOFF}"
DUP_ARG="Multiple occurrence of argument type, \${ARG_TYPE}${RVOFF}"
TIME_NOT_NUMERIC="Time interval value must be numeric${RVOFF}"
TIME_NOT_VALID="Time interval value is not valid${RVOFF}"
NO_CHKMD_PROG="Program chkmd.sh does not exist in /usr/bin
➤ directory${RVOFF}"
CHKMD_NOT_EXECUTABLE="Program /usr/bin/chkmd.sh is not
➤ executable${RVOFF}"
NO_NEWMSG_PROG="Program newmsg does not exist in /usr/bin
➤ directory${RVOFF}"
NEWMSG_NOT_EXECUTABLE="Program /usr/bin/newmsg is not
➤ executable${RVOFF}"
SYSERROR="\${ERR_MSG}${RVOFF}"
}
##
Name : HandleInterrupt
#
Description: Calls ProcessExit.
##
HandleInterrupt ()
{
DATETIME=`date "+%d/%m/%Y %H:%M:%S"`
echo "chkmd.sh:ERROR:Program terminated on ${DATETIME}" >> ${LOG_FILE}
ProcessExit $FEC
}
##
Name : MoveCursor
#
Input : Y and X coordinates
#
Returns : None
#
Description: Moves the cursor to the required location (Y, X).
#
Notes : 1. This function must run in ksh for print to work.
##
MoveCursor ()

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

{
trap "HandleInterrupt " $SIGTERM
YCOR=$1
XCOR=$2
echo "${ESC}${YCOR};${XCOR}H"
}
##
Name : DisplayMessage
#
Description: Displays message.
#
Input : 1. Message type (E = Error, I = Informative)
2. Error Code as defined in DefineMessages ().
3. Message to be acknowledged flag
#
Notes : 1. The user must acknowledge the message if the
acknowledgement flag is set to Y.
##
DisplayMessage ()
{
trap "HandleInterrupt " $SIGTERM
MESSAGE_TYPE=$1
MESSAGE_TEXT=`eval echo $2`
ACK_MESSAGE="$3"
if ["${ACK_MESSAGE}" = ""]
then
 ACK_MESSAGE="Y"
fi
clear
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then
 echo "`eval echo ${RVON}${ERROR}`${MESSAGE_TEXT}\c"
else
 echo "`eval echo ${RVON}${INFO}`${MESSAGE_TEXT}\c"
fi
let the user acknowledge the message
if ["${ACK_MESSAGE}" = "Y"]
then
 read DUMMY
fi
return ${TRUE}
}
##
Name : ProcessExit
#
Description: Processes a graceful exit.
#
Input : 1. Exit code
##
ProcessExit ()

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

{
assign parameters
EXIT_CODE="$1"
exit $EXIT_CODE
}
##
Name : WriteLog
#
Description: Writes a message in the log file $LOG_FILE.
#
Input : 1. Message type
2. Message text
#
Returns : $TRUE
##
WriteLog ()
{
trap "HandleInterrupt " $SIGTERM
#
assign parameters
#
MESSAGE_TYPE="$1"
MESSAGE_TEXT="$2"
DATETIME=`date "+%d/%m/%Y %H:%M:%S"`
#
write log
#
if ["${MESSAGE_TYPE}" = "E"]
then
 echo "${ERROR}${DATETIME}:${MESSAGE_TEXT}" >> ${LOG_FILE}
else
 echo "${INFO}${DATETIME}:${MESSAGE_TEXT}" >> ${LOG_FILE}
fi
return $TRUE
}
##
Name : InstanceCheck
#
Description: Checks whether any other instance of the program is
running.
#
Returns : $TRUE if no other instance is running
$FALSE otherwise.
##
InstanceCheck ()
{
trap "HandleInterrupt " $SIGTERM
if ps -eaf | grep "chkmd.sh" | grep -v "grep" > /dev/null 2>&1
then
an instance is running
 return $FALSE

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

else
 return $TRUE
fi
}
##
Name : RootUser
#
Description: Checks whether the user is root.
#
Returns : TRUE if user is root
FALSE otherwise.
##
RootUser ()
{
trap "HandleInterrupt " $SIGTERM
USER=`id | cut -d'(' -f2 | cut -d')' -f1`
if ["${USER}" = "root"]
then
 return $TRUE
else
 return $FALSE
fi
}
##
Name : ParseCommandLine
#
Description: Parses the command line parameters.
#
Returns : $TRUE or $FALSE
#
Notes : 1. The following command line parameters are expected:
t=<time in seconds>
l=<logfile name>
#
2. The following variables are assigned:
#
Parameter Variable Assigned
t TIME_INTERVAL
l LOG_FILE
##
ParseCommandLine ()
{
trap "HandleInterrupt " $SIGTERM
#
establish argument count
#
if [${ARGC} -gt 1]
then
 DisplayMessage E "${INVALID_ARGC}"
 DisplayMessage E "${USAGE}"
 return $FALSE

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

fi
#
process arguments
#
INDEX=1
while [! $INDEX -gt $ARGC]
do
 #
 # extract next argument line
 #
 ARG_LINE=`echo "${ARGV}" | cut -d' ' -f${INDEX}`
 #
 # extract argument type
 #
 ARG_TYPE=`echo ${ARG_LINE} | cut -c1-2`
 case "${ARG_TYPE}" in
 t=) #
 # check for duplicate argument type
 #
 if ["${ARG_TYPE}" = "t=" -a "${TIME_INTERVAL}" != ""]
 then
 DisplayMessage E "${DUP_ARG}";
 elif ["${ARG_TYPE}" = "t=" -a "${TIME_INTERVAL}" = ""]
 then
 #
 # store this argument value
 #
 TIME_INTERVAL=`echo "${ARG_LINE}" | cut -d'=' -f2`;
 fi;;
 *) DisplayMessage E "${INVALID_ARG_TYPE}";
 DisplayMessage I "${USAGE}";
 return $FALSE;;
 esac
 INDEX=`expr $INDEX + 1`
done
return $TRUE
}
##
Name : ValidateCommandLineArgumentValues
#
Description: Validates command line arguments.
#
Returns : $TRUE or
$FALSE.
##
ValidateCommandLineArgumentValues ()
{
trap "HandleInterrupt " $SIGTERM
#
check whether time interval is null
#

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

if ["${TIME_INTERVAL}" = ""]
then
 TIME_INTERVAL = "${DEFAULT_TIME_INTERVAL}"
fi
#
check that it is numeric
#
if ! [`expr ${TIME_INTERVAL} + 1 2> /dev/null`]
then
 DisplayMessage E "${TIME_NOT_NUMERIC}"
 return $FALSE
fi
#
check for greater than zero
#
if ! [${TIME_INTERVAL} -gt 0]
then
 DisplayMessage E "${TIME_NOT_VALID}"
 return $FALSE
fi
return $TRUE
}
##
Name : InitializeLogFile
#
Description: Initializes the log file.
#
Returns : $TRUE or
$FALSE.
##
InitializeLogFile ()
{
trap "HandleInterrupt " $SIGTERM
#
does the log file exists
#
if [-s ${LOG_FILE}]
then
 : # do not initialize it
else
 echo " Log File for Check Mail Daemon" > ${LOG_FILE}
 echo " ==============================" >> ${LOG_FILE}
fi
return $TRUE
}
##
Name : StartDaemonProcess
#
Description: Starts the script chkmd.sh at the background.
#
Returns : $TRUE or

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

$FALSE
##
StartDaemonProcess ()
{
trap "HandleInterrupt " $SIGTERM
#
check the deamon program
#
if [! -s /usr/bin/chkmd.sh]
then
 DisplayMessage E "${NO_CHKMD_PROG}"
 return $FALSE
elif [! -x /usr/bin/chkmd.sh]
then
 DisplayMessage E "${CHKMD_NOT_EXECUTABLE}"
 return $FALSE
elif [! -s /usr/bin/newmsg]
then
 DisplayMessage E "${NO_NEWMSG_PROG}"
 return $FALSE
elif [! -x /usr/bin/newmsg]
then
 DisplayMessage E "${NEWMSG_NOT_EXECUTABLE}"
 return $FALSE
fi
#
start the daemon at the background
#
nohup /usr/bin/chkmd.sh & > /dev/null 2>&1
#
store the process id for chkmd.sh
#
echo "$!" > ${CHKMD_PROCID_FILE}
CHKMD_PID=`cat ${CHKMD_PROCID_FILE}`
if ps -eaf | grep $CHKMD_PID | grep -v "grep" > /dev/null 2>&1
then
 return $TRUE
else
 return $FALSE
fi
}
##
Name : main
#
Description: The function invokes all other functions.
#
Notes : The function calls following functions:
o InitializeVariables
o ParseComamndLine
o ValidateCommandLineArgumentValues

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

o InitializeLogFile
o InstanceCheck
o RootUser
o StartDaemonProcess
o DisplayMessage
o WriteLog
o ProcessExit
##
main ()
{
InitializeVariables
if ! RootUser
then
 DisplayMessage E "${NOT_ROOT_USER}"
 ProcessExit $FEC
fi
if ! ParseCommandLine
then
 ProcessExit $FEC
fi
if ! ValidateCommandLineArgumentValues
then
 ProcessExit $FEC
fi
if ! InitializeLogFile
then
 ProcessExit $FEC
fi
if ! InstanceCheck
then
 WriteLog E "Another instance of the program is running"
 DisplayMessage E "${DAEMON_ALREADY_RUNNING}"
 ProcessExit $FEC
fi
WriteLog I "Starting Daemon"
DisplayMessage I "${STARTING_DAEMON}"
if ! StartDaemonProcess
then
 WriteLog E "Failed to start daemon program"
 DisplayMessage E "${DAEMON_NOT_STARTED}"
 ProcessExit $FEC
else
 WriteLog I "Successfully started daemon program"
 DisplayMessage I "${DAEMON_STARTED}"
fi
ProcessExit $SEC
}
#
capture argument count and values in global variables
#

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ARGC="$#"
ARGV="$@"
#
invoke main
#
main

LISTING NEWMAIL.C
/***
* Name : newmail.c (new mail)
*
* Description: Writes a message in a window on a terminal.
*
* Notes : 1. The program is executed by the check mail daemon,
* chkmd.sh, to notify the user of new mail.
***/
/* include curses header file */
#include <curses.h>
/*
 * module constants for window
 */
#define WINHEIGHT 6
#define WINWIDTH 40
#define WIN_XCOR 15
#define WIN_YCOR 8
/*
 * module constants for exit codes
 */
#define SEC 0
#define FEC 1
/***
* Name : main
*
* Description: Main function.
*
* Notes : 1. Exit codes are as follows:
* Success SEC
* Failure FEC
***/
main ()
{
WINDOW *wptr; /* pointer to the window structure */

int i;
/*
 * initialize the screen
 */
initscr();

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

/*
 * create a new window
 */
wptr = newwin(WINHEIGHT,WINWIDTH,WIN_YCOR,WIN_XCOR);

if (wptr == (WINDOW *) NULL)
 exit (FEC);
box(wptr,0,0);
wattron (wptr, A_REVERSE);
/*
 * reverse the video for the whole window (80 by 6);
 */
for (i = 0; i < WINHEIGHT*WINWIDTH; i ++)
 waddstr(wptr," ");
/*
 * refresh the window
 */
wrefresh(wptr);
/*
 * add message to window
 */
wmove(wptr,0,0);
wmove(wptr,0,5);
waddstr(wptr,"********* NEW MAIL **********");
wmove(wptr,1,5);
wmove(wptr,2,5);
waddstr(wptr," You have new mail!");
wmove(wptr,4,5);
waddstr(wptr," Press ctrl-l to refresh screen");
/*
 * refresh window
 */
wrefresh(wptr);
/*
 * remove all the window resources
 */
endwin ();
/*
 * exit
 */
exit (SEC);
}

This article concludes in next month’s issue of AIX Update.

Arif Zaman
DBA/Administrator
High-Tech Software (UK) © Xephon 2000

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

RAID and AIX

In the beginning, disk storage was all about the number of attached
physical drives. These drives were attached to the system and divided
into filesystems. Most small systems had only a single drive attached,
though large ones would have multiple drives that were attached
through one or more controllers. Regardless of the size and number of
devices, all systems had two things in common: space was limited and
prices were high!

This article explains the various RAID configurations that are available
and their relationship to the AIX operating system. It will let you
compare their characteristics and, hopefully, help you to decide the
best one for your disk subsystem.

RAID BASICS

For a long time storage needs grew faster than storage device prices
fell, so the demand for larger filesystems forced system administrators
to get creative. The concept of RAID storage was born. The original
RAID was simple: a Redundant Array of Inexpensive Disks lashed
together to appear as a single large device to the host computer system.
The various levels of RAID differ in such respects as the number of
disks, the way data is read and written to disk, and their throughput,
reliability, availability, and price.

While RAID drives were initially based on the idea that a group of
smaller drives is cheaper than a single large one, this is becoming less
and less true. Beyond the potential cost savings, RAID also allows
aggregate disk performance to exceed by far the speed and throughput
of a single disk device. Properly configured, RAID technology also
tolerates individual device failure, allowing continuous operation in
spite of the occasional disk failure.

Using RAID technology to build a big disk subsystem is not a simple
matter. You must understand the user’s needs, the application
characteristics, the overall system loading, the required reliability and
uptime, and the cost factors, and have the technical knowledge and

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

skills necessary to implement this technology. While vendors may
lead you to believe that using RAID is as simple as signing a cheque
and plugging in a few cables, knowledge of the advantages and
disadvantages of the various RAID levels will improve the
configuration and quality of your disk subsystem.

RAID 0

RAID level 0, or just plain RAID 0, is the simplest form of RAID. It
combines several small disk devices to create a single large virtual
disk device. This concatenation may be done in hardware by a smart
disk controller or it may be implemented in software via the operating
system with its disk device drivers. It’s rare to find a hardware RAID
0 disk controller – most RAID 0 implementations are software-based.

In the configuration shown in Figure 1, four disk drives are combined
to form a single logical drive. A single controller manages all four
devices and the operating system sees a single logical drive containing
four times the space of a single disk drive. Data is written to the disk
devices sequentially, as denoted by the shaded regions in Figure 1. As
one drive fills up, data is written to the next disk drive.

This set-up has only one advantage: increased space. The speed of this
logical device is the same as that of any disk device in the RAID set,
as the disk I/O occurs to only one drive at a time. If any one of the disk

Figure 1: A simple RAID 0 configuration

Controller

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

devices in the RAID set fails, the whole logical volume fails. The
actual reliability of the whole logical volume is four times worse than
that of any one disk drive in it.

While the reliability of RAID 0 is fixed, its performance can be
increased by striping. Instead of writing data sequentially to the disk
drives, data can be striped across all the drives, as shown in Figure 2.

Figure 2: A striped RAID 0 configuration

Controller

In this set-up, a single I/O to the logical volume is divided into four
separate operations, one for each disk drive in the RAID set. All four
disk drives operate in parallel, delivering four times the data throughput
to the system in the same amount of time.

Tuning the stripe size is very important – if it’s too large, many I/O
operations will fit in a single stripe and, hence, be restricted to a single
disk drive. If the stripe is too small, too many physical operations will
be initiated for each logical operation, which will saturate the controller.
This is where application knowledge is a necessity. Oracle, for
example, blocks all I/O into 8KB operations, which means that a four-
drive RAID 0 set with a 2KB stripe size would balance each Oracle
read or write across all four disk drives in the RAID set.

Striping distributes I/O evenly across the disk drives by dividing up
a single I/O to the logical volume into separate disk operations. This
can result in disaster at the controller if all disk drives are attached to

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

a single controller. To avoid this problem, the drives should be
distributed across multiple controllers, as illustrated in Figure 3.

In the example in Figure 3, I/O traffic across each controller is halved.
An even better solution would be to provide each disk with its own
private disk controller. In general, a SCSI controller can handle up to
five disk drives. However, none of the drives in a RAID set should
have to share a SCSI controller. Adding more controllers and managing
I/O distribution across them can be critical when the last bit of
performance needs to be wrung out of a RAID configuration.

Performance and reliability
In its simplest form, RAID 0 only offers increased disk capacity.
When used in conjunction with striping, RAID 0 also provides
increased performance and throughput. RAID 0 offers neither
redundancy nor recovery features, and it is the least expensive form
of RAID storage.

AIX and RAID 0
RAID 0 is an inherent feature of AIX’s Journaled File System. As long
as more than one physical volume (disk) is assigned to a logical
volume, AIX supports RAID 0. If the filesystem uses a multi-disk
spanned volume group, then RAID 0 is supported. Unlike other
popular Unix derivatives, AIX lets you expand a filesystem by

Figure 3: A striped RAID 0 with multiple controllers

Controller 0 Controller 1

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

spanning it over the logical volume. If the logical volume is too small,
then it too can be expanded, even if this means installing another
physical disk whose capacity is added to the logical volume. If AIX’s
logical volume is to be striped, then AIX 4.2.1 allows stripe sizes of
4KB, 8KB, 16KB, 32KB, 64KB, and 128KB.

RAID 1

RAID 1 is better known as mirroring. In a RAID 1 configuration,
every disk device is mirrored on at least one other disk. Every write
operation to a RAID 1 set results in write operations to each disk

Figure 4: RAID 1 configuration with two mirrored sets

Figure 5: RAID 1 with two mirrored sets and two controllers

Controller

Controller 0 Controller 1

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

device in the mirror set. However, a read from a RAID 1 set results in
just a single read from an available disk device. Figure 4 shows four
disk drives arranged as two mirrored sets.

As a result of its nature, RAID 1 doubles the amount of physical disk
capacity without increasing the amount of available virtual disk
space. For this reason the use of multiple controllers is an absolute
necessity for effective RAID 1 configurations – see Figure 5, which
is similar to Figure 4 except that two disk controllers are used.

In this configuration, the mirrored disks use separate controllers. This
increases both output and reliability as explained in the next section.

Performance and reliability

RAID 1 configurations are immune to the failure of a single disk drive.
In the event of a drive failing, the system simply isolates the failed
drive and transfers read and write operations to the remaining drives.
A RAID 1 set running with one or more failed or missing disk drives
is said to be running in ‘degraded mode’. When the faulty drives are
replaced, data in the remaining unmirrored drive or drives must be
copied to the new drive. This operation is known as ‘synching the
mirror’ and can take some time, especially if the affected drive is large.
Again, while disk access is uninterrupted, the I/O operations needed
to copy the data to the new drive steal bandwidth from user data
access, possibly decreasing overall disk subsystem performance.

Using two controllers with mirrored disks increases both output and
reliability. An additional controller increases output by reducing the
volume of data that must pass through a single controller. Reliability
is increased because, in the event of a single controller failing, the
remaining controller still provides a connection to a copy of the data.
Notice, however, that the data is not mirrored unless access is
available to both halves of the mirrored set.

If you are committed to using RAID 1 technology to increase your
system’s reliability, don’t be tempted to cut corners by not using
enough disk controllers. I’d even go a step further and recommend
using separate power supplies for each half of the mirror. Redundancy
must exist at every level of the system, from drives and cables to

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

controllers and power supplies, before you truly have a fully mirrored
disk subsystem.

AIX and RAID 1
Whether you’re creating a new logical volume using the mklv
command or making copies of an existing one with mklvcopy, AIX
supports up to three copies of a logical volume. One copy means an
unmirrored logical volume. Two or three copies mean a mirrored
logical volume. You are allowed to determine which physical disks
are to be used for mirroring and whether copies of a logical partition
should be allocated to separate disks. You are also allowed to state
which scheduling policy should be used for writing logical partitions.
A serial write policy means that write procedures are carried out one
after another on all the logical partitions and their copies. The write
operation is not complete until all logical partitions have been written
to. A parallel write policy starts the write operation on all physical
partitions in a logical partition at the same time. The operation ends
when the write operation to the physical partition that takes the longest
to complete finishes. If the logical volume is striped, AIX 4.2.1 allows
stripe sizes of 4K, 8K, 16K, 32K, 64K, and 128K.

RAID 0+1

Pure RAID 1 suffers from the same problem as pure RAID 0: data is
written sequentially across the disk volumes, potentially making one
drive busy while others on the side of the mirror are idle. This problem
can be avoided by striping the mirrored set, just as the volumes of a
RAID 0 set are striped. Theoretically, RAID 1 mirrors physical disks
on a one-for-one basis. In reality, big logical disk devices are built
using RAID 0 technology and then mirrored for redundancy using
RAID 1 technology. This configuration is known as RAID 0+1, since
it combines RAID 0’s ability to aggregate capacity with RAID 1’s
mirroring.

Unlike RAID 0, RAID 1 and RAID 0+1 are often implemented in
hardware using smart mirroring controllers. The controller manages
multiple physical disk devices and presents a single logical device to
the operating system.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

Performance and reliability
RAID 0 and RAID 1 exist at opposite ends of the RAID spectrum.
RAID 0 offers large disk volumes with no redundancy or immunity
from failure, but at a low price. RAID 1 offers complete data
redundancy and robust immunity from failure, but at a high cost. Both
configurations can be tuned by adding controllers and using striping
to distribute I/O load across as many disk drives as possible.

RAID 0+1 uses the best of both configurations, providing large
volumes, high reliability, and failure immunity. However, it does not
solve the price problem.

AIX and RAID 0+1

AIX 4.3.3 now supports RAID 0+1 entirely in software. This means
that no special hardware is needed. AIX 4.3.3’s mklv has a new -s
option that specifies that no partitions from one mirror are to share
disks with partitions from a second or third mirror. Another new
command is replacepv, which allows one to replace a physical
volume. If a mirror is found that is not stale, then the allocated physical
partitions and their data are transferred to the destination physical
volume. This enhancement is not just of interest to RAID 0+1 users,
but to users of all RAID configurations.

RAID 3

RAID 3 and RAID 5 use ‘parity’ data to provide redundancy in the
RAID volume. In simple terms, parity can be thought of as a binary
checksum – a single bit of information that tells you whether all the
other bits are correct. In more complex schemes, parity bits can both
detect and help correct data errors.

RAID 3 takes a simple approach to using parity in a RAID configuration.
Given a set of n drives, it uses one drive to hold parity information and
stripes the data across the remaining n – 1 drives. Thus, in a four-drive
RAID 3 set, three drives hold actual data while the fourth is dedicated
to parity data. Such a configuration is often denoted as ‘3+1’.

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Performance and reliability
The parity data contains enough information to allow data to be rebuilt
if one of the data drives fails. In the previously mentioned RAID 3
‘3+1’ configuration, a quarter of the total number of disks is used for
parity. This results in a 25% overhead, compared with RAID 1’s 50%.

Reading and writing data to a RAID 3 volume can get complicated
depending on the state of the data set. Reading from a healthy RAID
3 data set is not complicated. Writing to it means that, in addition to
writing the actual data, the system also needs to calculate and write the
parity block. Because the parity block also contains parity information
from other data blocks, our write also involves at least one additional
read to be able to calculate the parity block. That’s quite a lot of
overhead for just a simple write operation. For write-intensive
applications, the parity drive cannot keep up, resulting in the RAID
system slowing as a result of a parity disk bottleneck.

RAID 3 can tolerate the complete loss of a single drive but not without
performance penalties. In ‘degraded mode’, a read from a good drive
results in no additional overhead. However, reading from an unhealthy
block means that reads from other blocks and parity calculations are
involved before the data is retrieved.

Eventually the failed drive is replaced and the system must reconstruct
it, block by block. This occurs either in the background, resulting in
data traffic delays, or the RAID 3 data set is isolated from the system
while the rebuild process takes place. This can be a serious concern for
large RAID volumes. In simple terms, while a faulty drive can be hot
swapped in just 30 seconds you may have to endure six hours of poor
performance while the degraded RAID set is rebuilt.

RAID 5

The problems with the single parity drive in RAID 3 has caused almost
all RAID 3 systems to shift to RAID 5 technology. RAID 5 is
operationally identical to RAID 3 in that several blocks in a data stripe
share a common parity block. The parity block is written whenever
any data in the block is written and the parity data is used to reconstruct
blocks read from a failed drive. As yet, there is no difference between
the two types of RAID.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

The big difference between RAID 3 and RAID 5 is that the latter
distributes parity blocks throughout all the drives using an algorithm
to decide where a particular stripe’s parity block should reside within
the drive array. Figure 6 shows the same RAID volume converted
from RAID 3 to RAID 5:

Performance and reliability

Except for eliminating the parity drive problem, RAID 5 suffers from
all the same problems as RAID 3: slow writes, sensitivity to I/O block
sizes, and potentially lengthy rebuilds of degraded RAID sets. In spite
of these problems, RAID 5 is very popular as an economical redundant
storage solution. Some of the write latency inherent with RAID 5 can
be mitigated using a cached controller.

RAID 5 configurations are particularly sensitive to disk controller
overloading. While the number of I/Os initiated to the RAID disk
subsystem may not be enough to overload a single drive, they can
often overwhelm the disk controller, which must manage all the I/O
requests to all disk drives.

For this reason, it is critical that drives combined into a RAID disk
subsystem are managed by separate disk controllers. That way,
multiple I/Os initiated by the computer system are spread across
multiple disk controllers, which then access the individual disk

Figure 6: RAID 5

Controller

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

drives. This prevents any one controller from being overloaded. When
you are deciding which RAID 5 system to buy, pay close attention to
the internal controller architecture behind the RAID controller. If all
the disk drives in a RAID set are on the same device chain on a single
disk controller, you could be heading for trouble.

AIX and RAID 5
AIX as an operating system does not directly support RAID 5. If the
reliability of RAID 5 is needed, then hardware support in the form of
the IBM 7133 SSA Subsystem, IBM 7135 RAIDiant Array, or IBM
7137 RAID Array disk subsystem needs to be used.

CONCLUSION

Now that you’ve been introduced to the various RAID levels and how
they are directly or indirectly supported by IBM’s AIX, you can
hopefully design a disk subsystem that satisfies the needs of your
users, system administrators, and management (which, after all,
controls the money faucet!).

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 2000

ZeroFault – a memory debugging tool for AIX

ZeroFault is a software tool developed by Austin, Texas-based The
Kernel Group. The company has worked for a number of years with
IBM’s RS/6000 division and has built up considerable knowledge of
the AIX operating system. This has been put to use in the design of
many of the company’s products, including ZeroFault.

ZeroFault’s operation is based on the implementation of a Virtual
Machine. The program’s input (an executable program created by the
user) is examined and rewritten during the course of execution. The

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

object code produced includes extensive tests that check each memory
access. When memory-related errors are detected by ZeroFault, the
location of the error and the origin of the allocated memory block are
reported to the user.

The use of a Virtual Machine has many advantages that are unique to
this type of application debugging:

• Only instructions that are actually executed are instrumented.
This contributes to significant reductions in run times and overall
memory usage.

• It’s possible to enable and disable the tests performed by the
application during the execution of users’ programs. This is very
handy for detecting errors that occur late in the life-cycle of
programs being tested.

• When an error is detected, the problem is reported and the
erroneous instruction is restored to its original form. Error
reporting is suppressed when the erroneous instruction is re-
executed – this effectively prevents the reporting of duplicate
errors.

• The application is able to instrument dynamically-loaded modules
invoked with the load() system call automatically. This automatic
instrumentation is very useful with complex applications that use
dynamically loaded modules heavily.

• It is possible to test applications that contain no debugging
information, such as ‘stripped executables’. This enables the
analysis of the actual software version that is delivered to the
customer.

• ZeroFault does not require the recompilation or relinking of
applications being tested. This is very handy for tests that are
performed by the customer or another organization that does not
have access to the source code.

SUPPORTED ENVIRONMENTS

ZeroFault runs on AIX versions 3.2.5, 4.1, 4.2, and 4.3. Any AIX-

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

compatible system is supported, provided that the application being
tested is either a POWER- or PowerPC XCOFF-formatted executable.
One shortcoming is that, at present, only 32-bit executables are
supported.

ZeroFault has modest system requirements: 32 MB RAM, 100 MB of
swap space, and 10 MB of hard disk space. The application’s installation
kit can be downloaded from ftp://ftp.zerofault.com, and a separate
installation kit is available for each major version of AIX. A demo
version of the product is also available from IBM’s Bonus Pack CD,
which is supplied with every AIX licence. ZeroFault can be installed
using either the standard smit-based installation screens or the zf-
custom-install script, enabling installation even by users that don’t
have access to the root password.

Two licensing modes are available: node-locked desktop licensing
and floating server-based licensing, using a licence server that can be
downloaded from TKG’s ftp site. The documentation is distributed in
HTML format and is installed in the directory /usr/lpp/ZeroFault/doc.

The cost of a single node-locked license is (at the time of writing) US$
4,950, with a compulsory US$ 990 annual maintenance fee.

USER INTERFACE

ZeroFault has a Motif-based GUI and is, therefore, most useful when
run from a graphical workstation. Batch-oriented usage is, however,
possible using the zf_rpt reporting tool. In order to use ZeroFault, the
user must add the directory that contains its executable to his or her
PATH shell variable. The application that requires testing is then
invoked by preceding its command with the zf command (including
any necessary flags).

The main error pane of ZeroFault’s GUI displays detected errors in
outline. Lines that start with an arrow are individual messages, while
ones that start with a box symbol are a group of similar messages that
are condensed. The default display shows errors in summary (collapsed)
form, hiding details. A verbose display contains additional information,
such as memory locations and a detailed traceback of the error. Other
conventions and features of the GUI are as follows:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

• Memory error types are displayed using acronyms that are
printed in capital letters.

• Left-clicking once on a condensed message expands the group to
show the individual messages in it. Another click condenses the
messages back to a group. The same also works for error messages
and tracebacks.

• The source code associated with an error can be viewed if the file
name is displayed in the expanded traceback. Hold down the
SHIFT key and left-click the file name to invoke the source code,
which is displayed in the bottom pane of ZeroFault’s GUI.

• Click the ‘Find Leaks’ button to display the application’s memory
leaks – ZeroFault will display a list of the allocated memory
blocks that are not referenced by any pointer.

• The ‘Sort’ and ‘Condense by’ menus, along with message filtering
functions, are used to change the order and appearance of error
messages.

MEMORY ERRORS DETECTED

ZeroFault is able to detect and identify many errors related to memory
usage. Errors with descriptions that start with the word ‘Bad’ indicate
that the memory referenced by the program has not been allocated by
the process; errors with descriptions that start with the word
‘Uninitialized’ indicate that the memory used by the program has not
been initialized. I’ll describe each error detected by ZeroFault,
illustrating each with a very short program and the associated report
produced by ZeroFault.

BMR (Bad Memory Read)
This message is produced when a program tries to read from a memory
location that is not allocated for its use. Some possible causes of this
error include trying to read beyond the end of an allocated block,
reading from a memory location that was allocated and then freed, and
trying to read from random locations. The following program produces
this error:

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

#include <stdlib.h>
void main(int argc, char **argv){
 char *p = (char *)malloc(10);

 bzero (p,10); /* Only characters 0 to 9 are initialized */
 printf("p[10]=%d\n", p[10]);
}

ZeroFault reports the following information:

BMR ex1 main
 Read address: 0x2040a012 -> 0x2040a012
 Read len: 1
 Read traceback: main
 main +0x00040(64) "ex1.c":6
 Could not find any block near it

BMW (Bad Memory Write)

This message is produced when a program writes to a memory
location that is not allocated for its use. This is a severe error that can
surface as intermittent memory errors in the later stages of the
program’s life-cycle. The following program produces this error:

#include <stdlib.h>
void main(int argc, char **argv){
 char *p = (char)malloc(10); /* Only 0 to 9 are allocated */

 bzero (p,10);
 p[10]='a';
}

ZeroFault reports the following information:

BMW ex2 main
 Write addr: 0x2040a012 -> 0x2040a012
 Write len: 1
 Write traceback: main
 main +0x0003c(60) "ex2.c":6
 Could not find any block near it

UMR (Uninitialized Memory Read)

This error message is produced when a program performs a read
operation using a memory location that is not initialized by either the
system or the application. The following program produces this error:

#include <stdlib.h>
void main(int argc, char **argv){

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

 char *p = (char *)malloc(10);
 char c;

 bzero (p,9); /* Only characters 0 to 8 are initialized */
 c=p[9]; /* p[9] is uninitialized */
}

ZeroFault reports the following information:

UMR ex3 main
 Access address: 0x2040a011 -> 0x2040a011
 Access len: 1
 Access traceback: main
 main +0x00038(56) "ex3.c":7
 Access is in block at addr 0x2040a008 -> 0x2040a011
 Block len is 10
 Block allocation traceback: malloc main
 malloc +0x00000(0) "malloc.c"
 main +0x00018(24) "ex3.c":3

Notice that the report includes the size and traceback of an allocated
memory block that is located near the uninitialized memory location.

USTKR (Uninitialized Stack Read)

This error is produced when a program tries to access an automatic
variable that’s located on the program’s stack before the variable is
explicitly initialized. The following program produces this error:

#include <stdlib.h>
void main(int argc, char **argv){
 char a, b;
 a=b; /* Variable b is uninitialized at this point */
}

ZeroFault reports the following information:

USTKR ex4 main
 Current sp: 0x2ff221e0
 Read address: 0x2ff22221
 Read len: 1
 Read traceback: main
 main +0x0000c(12) "ex4.c":4

UFCP (Uninitialized Function Call Parameter)

ZeroFault checks that parameters passed to both AIX system calls and
many library calls have been properly allocated and initialized,
reporting failures to do so. The following program produces this error:

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

#include <stdlib.h>
void main(int argc, char **argv){
 char *p = (char *)malloc(10);

 bzero(p,9);
 write(1,p,10); /* Only characters 0 to 8 are initialized */
}

ZeroFault reports the following information:

UFCP libc.a(shr.o) 0x000037d0 write main
 Function call: kwrite
 Parameter name: buf
 Parameter address: 0x2040a008 -> 0x2040a011
 Parameter len: 10
 Traceback: 0x000037d0 write main
 0x000037d0 <no_symbol>
 write +0x0010c(268) "write.c"
 main +0x00040(64) "ex5.c":6
 Parameter is in block at 0x2040a008
 Block len is 10
 Block allocation traceback: malloc main
 malloc +0x00000(0) "malloc.c"
 main +0x00018(24) "ex5.c":3

BFCP (Bad Function Call Parameter)

This error is reported when unallocated parameters are passed to
system and library function calls. The following program produces
this error:

#include <stdio.h>
#include <stdlib.h>

void main(int argc, char **argv){
 char *p=NULL;
 printf("%s\n", p);
}

ZeroFault reports the following information:

BFCP libc.a(shr.o) strlen _doprnt printf main
 Function call: strlen
 Parameter name: string
 Parameter address: 0x0 -> 0x0
 Parameter len: 1
 Traceback: strlen _doprnt printf main
 strlen +0x00000(0) "strlen.s"
 _doprnt +0x01638(5688) "doprnt.c"
 printf +0x000b8(184) "printf.c"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

 main +0x0002c(44) "ex12.c":6
 Could not find any block near it

BFCT (Bad Function Call Target)
This error arises when the target of a function call is a memory location
in which the function places the result of its computation and the target
area is either unallocated or contains allocated blocks of insufficient
length. The following program produces this error:

#include <stdlib.h>
void main(int argc, char **argv){
 char *s = (char *)malloc(10);

 bzero (s,20); /* The length of the target is only 10 bytes */
}

ZeroFault reports the following information:

BFCT ex7 bzero main
 Function call: bzero
 Parameter name: target
 Parameter address: 0x2040a008 -> 0x2040a01b
 Parameter len: 20
 Traceback: bzero main
 bzero +0x00000(0) "memset.s"
 main +0x0002c(44) "ex7.c":5
 Write began in block at addr 0x2040a008 -> 0x2040a011
 Block len is 10
 Block allocation traceback: malloc main
 malloc +0x00000(0) "malloc.c"
 main +0x00018(24) "ex7.c":3

BFREE (Bad Free)

This error is reported when a program tries to release a memory block
that is referenced by an invalid pointer. The following program
produces this error:

#include <stdio.h>

void main(int argc, char **argv){
 FILE *f = fopen("tmp","w");

 fprintf(f, " Hello ");
 fclose(f);
 free(f); /* The FILE structure was freed by fclose() */
}

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ZeroFault reports the following information:

BFREE ex9 main
 Free of unallocated address 0xf000ca60
 Traceback: main
 main +0x00050(80) "ex9.c":8
 Could not find any block near access address

DFREE (Double Free)

This error is reported when a program tries to release a memory block
that has already been released. The following program produces this
error:

#include <stdlib.h>

void main(int argc, char **argv){
 char *s=(char *) malloc (10);
 free(s);
 free(s); /* s has already been freed */
}

ZeroFault reports the following information:

DFREE ex10 main
 Block addr 0x2040a008 -> 0x2040a011
 Block len is 10
 Error traceback: main
 main +0x00034(52) "ex10.c":6
 Allocation traceback: main
 main +0x00018(24) "ex10.c":4
 Free traceback: main
 main +0x00028(40) "ex10.c":5

BREALL (Bad Realloc)

This error is reported when a program tries to change the size of an
allocated memory block using realloc(), but calls the function with an
illegal pointer. This error is sometimes detected by AIX and causes an
‘IOT/Abort trap(coredump)’ with the following message:

Catastrophe in realloc: invalid storage ptr

The following program produces this error:

#include <stdlib.h>

void main(int argc, char **argv) {
 char s[10], *p;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

 p = (char)realloc(s,20); /* s does not point to
 an allocated block */
}

ZeroFault reports the following information:

BREALL main
 Realloc of unallocated address 0x2ff22220
 Traceback: main
 main +0x0001c(28) "ex11.c":6
 Could not find any block near access address

RNULL (Null Pointer Read)

This error is reported when a program attempts to read memory using
a pointer that references memory location zero. The following program
produces this error:

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

void main(int argc, char ** argv) {
 char *p=0;
 putchar(*p);
}

ZeroFault reports the following information:

RNULL rnull main
 Access address 0x00000000
 Access len 1
 Error traceback: main
 main +0x0003c(60)"rnull.c":7

WNULL (Null Pointer Write)

This error is reported when a program attempts to update a pointer that
references memory location zero. This is always detected by AIX and
it causes a segmentation violation error. The following program
produces this error:

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

void main(int argc, char ** argv) {
 char *p=0;

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 *p='c';
}

ZeroFault reports the following information:

SEGV main
 Fault address 0x00000000
 Traceback: main
 main +0x0001c(28)"wnull.c":7

WNULL wnull main
 Access address 0x00000000
 Access len 1
 Error traceback: main
 main +0x0001c(28)"wnull.c":7

UNREF_BLOCK (Unreferenced Block)

When a user’s program allocates a memory block and then destroys
the pointer to it without first freeing the block, a ‘memory leak’ occurs.
Such blocks can neither be used nor freed and are known as
‘unreferenced memory blocks’. The following program produces this
error:

void f()
{
 char *p=(char *) malloc(10);
 /* the pointer to the memory block
 is lost when the function exits */
}

main(int argc, char **argv)
{
 int i;
 for (i=0;i<10;i++)
 f();
}

ZeroFault reports the following information (the report is for ten
leaks, but only two are shown below):

UNREF_BLOCK unref f main
 Block addr 0x2040a008 -> 0x2040a011
 Block len 10
 Allocation traceback: f main
 f +0x00010(16)"unref.c":4
 main +0x00028(40)"unref.c":11

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

WMSG (Warning Message)
Messages of this type are produced when a process attempts to define
signal handlers for signals that are used by ZeroFault or to close file
descriptors that are used by the product for internal communication.

SEGV (Signal SIGSEGV received)
When a SIGSEGV signal is received by the user’s program, ZeroFault
generates this error message and terminates.

FINDING MEMORY LEAKS

ZeroFault tracks every memory allocation and de-allocation performed
by the process being examined. All memory manipulation carried out
by standard C functions, such as malloc, realloc, and free, and by
C++’s new and delete operators are recorded. The best way to
investigate memory usage by the program you’re debugging is to use
the ‘Snapshot’ technique. I will demonstrate this technique using the
following C++ program:

#include <iostream.h>

class Store {
 struct store {
 void *ptr;
 store *next;
 };

 store *top;
 public:
 Store():top(0) {
 }
 void insert(void *ptr);
};

void Store::insert(void *ptr)
{
 store *s = new store;
 s->next = top;
 top = s;
 s->ptr = ptr;
 return;
}

int

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

main(int argc, char **argv)
{
 Store store;
 char c;

 cout<<"Press Enter to continue the program\n";
 cin>>c;

 for (int i = 0; i < 10; i++) {
 int *f = new int;
 store.insert(f);
 }
 cout<<"Press ENTER to terminate the program\n";
 cin>>c;
 return 0;
}

The program is invoked using ZeroFault; when the program stops to
wait for an input, the user takes a memory snapshot by pressing the
‘Snapshot’ button on the GUI. A second snapshot is taken after the
program receives an input but before it runs to completion. Finally, the
two snapshots are compared using the GUI’s ‘Compare Snapshots’
button. ZeroFault displays a couple of windows that show which
memory allocations differ between the two snapshots. For the sample
program above, the second snapshot would contain 18 allocated
memory blocks containing 108 bytes that were allocated between the
two snapshots. It is possible to display an expanded listing showing
the size and traceback of each allocation. It is worth mentioning that
the names of C++ methods and operators appear in ‘demangled form’,
exactly as they appear in the source code. By pressing the ‘Show
Leaks’ button, the user is able to display a list of allocated memory
blocks that are unreferenced – the sample program has 19 unreferenced
memory blocks containing 152 bytes; these blocks were allocated by
the C++ run-time system.

COMPARISON WITH DEBUGGING MALLOC

Issue 54 of AIX Update contains an article of mine entitled Debugging
Malloc in AIX 4.3.3. This describes an AIX 4.3.3 utility that has
functionality similar to that of ZeroFault. Figure 1 overleaf summarizes
the features of these two utilities, highlighting their similarities and
differences.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

Alex Polak
System Engineer
APS (Israel) © Xephon 2000

Figure 1: Comparison of Debug Malloc and ZeroFault

YesNoAutomatic ‘demangling’ of C++ names

YesNoPassing of invalid arguments to system calls and
common functions

YesYesAttempts to free or reallocate unallocated
memory

YesNoReads uninitialized stack, heap, and static
memory

YesNoReads or writes unallocated stack and static
memory

YesYesReads or writes unallocated heap memory

YesYesMemory leak detection

YesYesWorks with dynamically loaded libraries and
modules

YesYesWorks with C, C++, Fortran, Pascal,
Assembler, etc

YesYesWorks with third-party applications and libraries

YesYesWorks with any threads package

YesYesWorks on stripped executables and libraries

NoNoDemands relinking/recompiling

YesNoGraphical User Interface

Virtual
Machine

code
instrumen-

tation

Malloc
library

replacement

Mode of operation

NoUnclear64-bit binary support

3.2.5, 4.1,
4.2, 4.3

4.3 onlyAIX versions supported

$4,950 plus $990
maintenance

Included
with AIX 4.3

Price

ZeroFaultDebug MallocProperty

AIX news

McAfee has announced VirusScan Version
4.5, which protects systems against Internet-
borne viruses and malicious code found in e-
mail, Internet downloads, ActiveX, Java
Applets, and Java Scripts. The new version is
integrated with ePolicy Orchestrator,
enabling virus policy management and
updating over the Internet.

Another improvement is that the size of
update files has been reduced to just 100 KB,
which (the company claims) means that
updates are delivered as much as 20 times
faster than using previous distribution
methods, as only the newest portion of virus
signature files are downloaded.

Out now, the product supports AIX, Linux,
Windows, NetWare, Solaris, HP-UX, SCO
OpenServer, and MacOS. The Active Virus
Defense suite starts at US$30 per node for
5,000 nodes.

For further information contact:
Network Associates Inc, 3965 Freedom
Circle, Santa Clara, CA 95054, USA
Tel: +1 408 988 3832
Fax: +1 408 970 9727
Web: http://www.nai.com

Network Associates, 227 Bath Road,
Slough, Berkshire SL1 5PP, UK
Tel: +44 1753 217500
Fax: +44 1753 217520

* * *

IBM has released VisualAge C++
Professional for AIX Version 5.0, the latest
version of its IDE for C++, which includes
both a traditional makefile-based compiler

and an incremental compiler. The package
supports the latest ANSI 98 C++ standard,
including a complete ANSI Standard
Template Library, and also supports both 32-
bit and 64-bit optimization.

Included in the product is the latest C
compiler for AIX, with support for RS/6000
SMP and OpenMP, a new distributed
debugger for local or remote debugging, and
a new performance analysis tool for C and
C++ applications. Other features include a
set of Open Class Libraries, an integrated
and configurable IDE, a set of visual tools
including Visual Builder and Data Access
Builder, and HTML-based on-line help.

Other enhancements include keyboard
mappings for VI and Emacs within the IDE
and support for multiple code stores for use
with the incremental compiler.

Out now, it costs US$2,500 per seat with
upgrades priced at US$1,250.

IBM also announced Content Manager, for
integrating and sharing digital content.
According to the company, the software
handles data in any format, including XML,
HTML, images, audio, and video. It provides
a single open programming interface for
rapid application development and
scalability. It can search across a variety of
content and data repositories.

Out now, it runs on AIX and NT and prices
start at US$15,000 per workstation/server
and US$2,000 per concurrent user.

For further details, contact your local IBM
representative.

x xephon

	Version control for files on AIX servers
	Check mail utility
	RAID and AIX
	ZeroFault – a memory debugging tool for AIX
	AIX news

