56

June 2000

]
In this issue

3 Version control for fileson Al X
servers

9 Check mail utility
28 RAID and AIX

38 ZeroFault —amemory debugging
tool for AlIX

52 AIX news

© Xephon plc 2000

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

AlX Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl @xephon.com

North American office

Xephon/QNA

Post Office Box 350100, Westminster CO
80035-0100, USA

Telephone: (303) 410 9344

Fax: (303) 438 0290

Contributions

If you have anything original to say about
AlX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? Thearticle need not bevery long
—two or three paragraphs could be sufficient.
Not only will you actively be hel ping thefree
exchange of information, which benefits all
AlX users, but youwill alsogain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee — Xephon pays at the rate of
£170 ($250) per 1000 words for origina
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon' sWeb site, whereyou can download
Notesfor contributorsineither textformor as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer

Readers are cautioned that, although the in-
formationinthisjournal is presented in good
faith, neither Xephon nor theorganizationsor
individuals that supplied information in this
journal giveany warranty or make any repre-
sentationsasto theaccuracy of thematerial it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevancetotheir circumstancesof all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues

A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
inthe UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In al
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

Al X Update on-line

Code from AlIX Update is available from
Xephon's Web page at www.xephon.conv
aixupdate.html (you’ll need the user-id
shown on your address label to accessiit).

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 labels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

Version control for files on AlX servers

The company | work for has about 200 remote Al X servers, and we
areresponsiblefor carrying out softwaredistributionto those servers,
One of the most important aspects of thistask isto keep all serversat
the same version level. For this purpose, | have written the script
compare.sh (see the listing below). For more than two years this
script has successfully carried out version control on our remote
servers.

compar e.sh needsthree pieces of information, which are all entered
interactively once the script is running. These are the reference
server’s name, the ‘plan’ name (the plan is a file that includes the
namesof all serversto becomparedwiththereferenceserver), andthe
parallel compare (rexec) limit number. Basically, weneed afew fixed
directories to be compared and the differences to be written to afile
(server _name.out) for each server (note that, as the directory names
are hard-coded, you' || need to change them to suit your installation’s
own requirements). The name, date, and size of applications are the
criteria by which we determine whether an application is different
from its equivalent one on the reference server. For example, let's
check the contents of directory 101.out on server 101 with reference
server 918. The output of the script is asfollows:

101 77792 21 Mar 17:17 /u/winappsnt/gturig00.app

101 130718 28 Feb 17:15 /u/winappsnt/gturkg00.app
101 70638 18 Jan 17:02 /u/winappsnt/gtursg00.app

101 78382 14 Jan 15:58 /u/winappsnt/gturpg00.app

101 44168 14 Jan 15:56 /u/winappsnt/gturag00.app

101 0 12 Oct 14:46 /u/winappsnt/futbank.txt

101 3000 26 Jan 13:25 /u/vggen/load/gtcell.tab

101 190399 21 Mar 17:11 /u/vggen/load/turiciO.ibmcpp
101 4418 21 Mar 17:11 /u/vggen/load/turici0O.bnd

101 188717 26 Jan 13:26 /u/vggen/load/turmcuO.ibmcpp
101 4817 26 Jan 13:26 /u/vggen/load/turmcu0.bnd

101 184222 18 Jan 16:55 /u/vggen/load/turscu0.ibmcpp
101 4817 18 Jan 16:55 /u/vggen/load/turscu0.bnd

101 184502 18 Jan 16:55 /u/vggen/load/turkcu0.ibmcpp
101 4817 18 Jan 16:55 /u/vggen/load/turkcu0.bnd

101 194021 14 Jan 15:58 /u/vggen/load/turpciO.ibmcpp
101 8819 14 Jan 15:58 /u/vggen/Toad/turpciO.bnd

101 68002 14 Jan 15:57 /u/vggen/load/turpcdO.ibmcpp
101 175449 14 Jan 15:55 /u/vggen/load/turkciO.ibmcpp
101 3633 14 Jan 15:55 /u/vggen/load/turkciO.bnd

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

As can be seen above, applications on server 101 whose version
differsfromthat ontheremote server arelisted. Thelisting comprises
the server name, the size of the mismatched application, its date, and
its path. Note that all of the applications above either do not exist on
our reference server, or have adifferent size or date from oneson the
reference server. If arexec on a remote server fails, the names of
serversthat arenot availablearelistedinafilecalled closed.out. There
aresevera waysof displayingtheseoutputfiles. | programmed auser-
friendly tool in Delphi to see the output inan NT environment using
NFS.

Note the use of the continuation character, ‘0’ in the code below to
indicateaformatting linebreak that’s not present intheoriginal code.

COMPARE.SH

#!/bin/ksh

By Adnan Akbas Jan'98

A version control script that compares files in specific directories
in AIX servers with ones on a reference server.

cnt=0
plan=plan_all
max_1limit=15

THHHHHHHEHHHHHHEHEHHHHEHEHEHHHHEHEHE
main program i
THHHHHHHEHHHEHHHHEHHEEHHHERHHEERHHEEE

THHHHHHHHHHHHHHHHHHHHEHHHAHHHHAHHHEHHAHHHHAHHAAHHHERAAHHHAHEE

checking if there is a compare running now... i

THHHHHHHHEHHHHHHHHHHHEHHHHHHHHHHHEEHEHAHHHHHHEEHHHHHHHHHHEEEERHHHH

1s -1 /u/ftpuser/compare/aixcomp???.msgl 2>/dev/null | wc -1 | read
O msgl_num
if [[$msgl_num -gt 0 J] ; then
clear
1s /u/ftpuser/compare/aixcomp???.msg]l
print " "
print "AIX compare script currently running..."
print " "
print "Do you want to start a new compare?”
read key?" y / n "
if [[$key = y* || $key = Y* 11 ; then
rm -f /u/ftpuser/compare/aixcomp???.msgl
else

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

print "Wait till script terminates and try again..."
exit 3
fi
fi

THHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHHHHHHHHHHEHHHHHHHHHHHHRHEE

asking the reference server i

THHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHEHHHHHHHHHEEEHHHHHHHHHEEEHHHHHHHEEEE

clear
print -n "Enter your reference server..."
read subel junk

THHHHHEHHEHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHEEHERHEHERHERHERHERHERHEHE
asking the plan... i
THHEHHEHHEHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHEEHERHERHERHERHERHERHERHEHE

The 'plan' is a file with a 1ist of the servers to be compared
clear
print \\nDefault plan = $plan
read chk_plan?"To change press 1; to accept press ENTER."
if [[$chk_plan -eq 1 11 ; then
print \\nPTans to use :\\n
1s plan*
print \\n
read plan?"Enter the plan name :"
if [[! -s $plan 11 ; then
print \\nThis plan does not exist or is empty. Please check.
print \\nAfter checking the plan, re-start the script.\\n
exit 1
fi # check that plan exist and is not empty.
fi # check whether plan has changed.

cat $plan | wc -1 | read subelist_max

THHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHHHHHHHHHEHHHAHHHHAHHHAREEE

asking parallel rexec limit...

THHHHHHHHHHHHHHHHHHHEHHHHHHHHHHEHEHHHHHHHHHEEEHHHHHHHHEEEEHHHHHHEEEE

clear
print \\nDefault maximum parallel compare Timit is $max_limit
read chk_com?"To change press 1; to accept press ENTER."
if [[$chk_com -eq 1 1] ; then
read max_limit?"Enter parallel compare Timit: "
if [[$max_limit -1t 1 || $max_limit -gt $subelist_max 1] ; then
print \\nParallel compare Timit must be between 1-$subelist_max.
print \\nAfter checking the Timit, re-start the script.\\n
exit
fi # check whether rcp is meaningless.
fi ## check whether rexec has changed.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

THHHHHHHEHHEHHEHHEHHEHHEHHEHEEHEEHEEHHEHEEHEEHERHERHERHERHERHERHERHERHE
clear logs? i

THHHHHHHHHHEHHHHEHHHHHHHHHHHERHHHHEHHHEHHHEHAHERAAHHERAHHEERHHHEE

print ; print
read yanit?"Do you want to delete compare (*.out) logs? (y/n) "
if [[$yanit = y* || $yanit = Y*]] ; then

print "Deleting compare (*.out) logs..."

rm -f /u/winapps/dsyu/compare/*.out

rm -f /u/ftpuser/compare/*.out

print "Compare logs deleted.”

read anykey?"To continue, press ENTER..."
else

print "Compare logs are not deleted.”

read anykey?"To continue, press ENTER..."
fi

clear
print
print "Please wait..."
print

THHHHHHHHHHHHHHHHHHHHEHHHHHHHHHHHEHHHHHEHEEHHHAHHHEERRAHHHHE

taking data from the reference server... i

THHHHHHHHHEHEHHHHHHHHHEHHHHHHHHHHHEHEHHHHHHHHHEHEHHHHHHHHEEEEERHHH

Alphabetical grouping needed for "1s -1t" not to return a
"The parameter 1ist is too long" error.

rexec an${subel} '1s -1t /u/winappsnt/[a-e,A-E]*"'

O >/u/ftpuser/compare/${subel}l.out

rexec an${subel} '1s -1t /u/winappsnt/[f-m,F-M]*'

O >>/u/ftpuser/compare/${subel}l.out

rexec an${subel} '1s -1t /u/winappsnt/[n-z,N-Z]*"'

O >>/u/ftpuser/compare/${subel}l.out

rexec an${subel} 'ls -1t /u/vggen/load/[a-e,A-E]*'
O >>/u/ftpuser/compare/${subel}l.out

rexec an${subel} 'Is -1t /u/vggen/load/[f-m,F-M]*"'
O >>/u/ftpuser/compare/${subel}l.out

rexec an${subel} 'Is -1t /u/vggen/load/[n-z,N-Z]*"'
O >>/u/ftpuser/compare/${subel}l.out

rexec an${subel} 'l1s -1t /u/vggen/forms/[a-m,A-M]*'
O >> /u/ftpuser/compare/${subel}l.out

rexec an${subel} 'Is -1t /u/vggen/forms/[n-z,N-Z]1*"'
O >> /u/ftpuser/compare/${subel}l.out

take the required fields from the output (size date name)

awk '{print $5, $6, $7, $8, $9}'

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

O /u/ftpuser/compare/${subel}l.out>/u/ftpuser/compare/${subel}.out

THHHHHHHHHHHHEHHHEHHHEEHHEEHHHEHHEEHHEEHEERHHEEHHEERHHEEHHEEHHEERRHEEEE
function doit &
THHHHHHHHEHHEEHHHERHHERHHEEHHEERHHEEHHEERHEEHHEEHHEERHEERHHEERHEERHEEEE

function doit {

msgl_file=/u/ftpuser/compare/aixcomp${sube2}.msgl
touch $msgl_file
print "$cnt / $subelist_max - comparing on $sube2..."

First rexec returns a code that determines whether the server
is available. If the server is off-1ine, then the server name
is written to the file 'closed.out'.

Alphabetical grouping is needed for '1s -1t', otherwise it returns a
"The parameter 1list is too long" error.

rexec an${sube?2} '1s -1t /u/winappsnt/[a-e,A-E]*’
O >/u/ftpuser/compare/${sube2}2.out 2> /dev/null

if [[$2 =0 11 ; then
rexec an${sube2} 'Is -1t /u/winappsnt/[f-m,F-M]*"

O >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null
rexec an${sube?2} '1s -1t /u/winappsnt/[n-z,N-Z]*'
O >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null

rexec an${sube2} 'ls -1t /u/vggen/load/[a-e,A-E]*"'
O >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null

rexec an${sube2} '1s -1t /u/vggen/load/[f-m,F-M]*'
O >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null

rexec an${sube2} '1s -1t /u/vggen/load/[n-z,N-Z1*'
O >>/u/ftpuser/compare/${sube2}2.out 2> /dev/null

rexec an${sube2} 'ls -1t /u/vggen/forms/[a-m,A-M]*"
O >> /u/ftpuser/compare/${sube2}2.out 2> /dev/null

rexec an${sube2} '1s -1t /u/vggen/forms/[n-z,N-Z]*"'
O >> /u/ftpuser/compare/

${sube2}2.0ut 2> /dev/null

taking the required fields of the output (size date name)
awk "{print $5, $6, $7, $8, $9}'

O /u/ftpuser/compare/${sube2}?2.out
O >/u/ftpuser/compare/${sube2}.out

THHHHHHHHHHEHEHHHHEHEHEHHRHEHEHEHERHEHEHEHERHRHHERERHRHEHERERHRHEHEEE
compare
11

diff -w /u/ftpuser/compare/${subel}.out

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

O /u/ftpuser/compare/${sube2}.out |

grep -E "~>|~<" | grep -vE "~> total|~< total™ | awk
O 'gsub("<™,"$subel’) gsub(">", " '$sube2")" >

O /u/winapps/dsyu/compare/${sube2}.out

rm -f /u/ftpuser/compare/${sube2}*.out
else
print "$sube2" >> /u/winapps/dsyu/compare/closed.out
i
rm -f $msgl_file
}

THHHHHHHHHHEHEHEHHHHEHEHEHHRHEHEHEHEHHRHEHEHERHRHEHEHERHRHEHEHERHRHERHEHE
function Wait

THHHHHHHHHHHHHHHHEHHHHEEAHHHEEAHHHEHHHEHHHAHHHEHAHERRAHHEERHHHEE

function Wait {
1s -1 /u/ftpuser/compare/aixcomp???.msgl 2>/dev/null | wc -1 |
O read comp
while (($comp > $max_limit)) ; do

print "ZZZzzz parallel compare is $comp”

sleep 20

1s -1 /u/ftpuser/compare/aixcomp???.msgl | wc -1 | read comp
done
}

for sube2 in “cat /u/ftpuser/${plan}” ; do
Wait
let cnt+=1
doit &

done

THHHHHHHHHHHHHHHHHHHHHEHHHHHERHHHHEHHHEHHHEHAHERAAHHERAHHEERHAHEE

Writing the parallel compare number on the screen ... 1

THHHHHHHHHHHHHHHHHHHHEHHAHHHHAHHEAHHAHHHHAAHAAAHHHEAAAHHHAHEE

1s -1 /u/ftpuser/compare/aixcomp*.msgl 2>/dev/null | wc -1 |

O read active_comp

print " "

while [[$active_comp -gt 0 1] ; do
print "$(tput cuul) $active_comp compare is working now."
sleep 2
1s -1 /u/ftpuser/compare/aixcomp*.msgl 2>/dev/null | wc -1 |
O read active_comp

done

Adnan Akbas
System Programmer
Pamukbank (Turkey) © Xephon 2000

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Check mail utility

INTRODUCTION

This utility checks for new mail at a given interval and notifies the
recipient of any that’s arrived. Notification is via a reverse video
window that appears in the middle of the screen at all terminals to
which the recipient is connected. While the serviceis also available
when the user isin a shell, the notification is then only a string that
appears on the command line. This utility was developed to replace
the existing mail notification mechanism.

UTILITY COMPONENTS
chkmd.sh — check mail daemon script

N

schkmd.sh — start check mail daemon script
3 kchkmd.sh —kill check mail daemon script

4 newmail.c—aC program that displays areverse video window
on the screen that notifies the user of new mail.

Note the use of the continuation character (‘) in the code below to
indicateaformattinglinebreak that’ snot present intheorigianal code.

LISTING OF CHKMD.SH
THHHHHHHHHHHHHHHHHEHHHHHHHHHHHHEHHHHHHHHHHHEEEHHHHHHHHEEEHHHHHHHEEEE

Name : chkmd.sh (check mail daemon)

Description: The script checks for new mail sent to a user,

¥ checking at regular intervals, and notifies the
i user of new mail using a reverse-video window.
#

Notes : 1. The script must be started by schkmd.sh

i 2. The script contains the following functions:
0 main

ProcessMail
InitializeVariables
InitializeMaillList
CheckMail
Handlelnterrupt

=
O O o oo

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

i o NotifyuserOfNewMaiT

1 0o ProcessMail

i 0 ProcessExit.
THHHHHHHEHHHEHHHEEHHEEHHHERHHEEHHEEHHEEHHEERHEEERHEERHHEERHHEERHERRHHEEE
Name : InitializeVariables

#

Description: The function initializes all variables.

THHHHHHHHEHEHHHHHHHHHEHHHHHHHHHHHEHEHHHHHHHHEEHEHHHHHHHEEEERRHHH

InitializeVariables ()

{

INDEX=1 # working index

MAIL_DIR="/var/spool/mail"

MLI=1 # index to mail 1ist array
MATL_LIST_ARRAY[$MLI]="" # mail list array holding recipient’'s name

and Tatest message id
TEMP_FILE="/tmp/chkmd_$$.tmp"
return codes
TRUE=0
FALSE=1
define signal
SIGTERM=15; export SIGTERM
SIGINT=2; export SIGINT

}

1 i i
Name : Handlelnterrupt

i

Description: The function calls ProcessExit.
HHHHHHHEHHHEHHHEEHHEEHHHERHHEEHHEEHHEEHEEEHEEERHEHRHHERHHEERHEERHHEEE
HandleInterrupt ()

{

DATETIME="date "+%d/%m/%Y %H:%M:%S""

echo "chkmd.sh:ERROR:Program terminated on ${DATETIME}" >> ${LOG_FILE}
ProcessExit $FEC

}
THHHHHHHEHHEHHEHHEHHEHHEHHEHHEHEEHEEHEEHERHEHERHERHERHERHERHERHERHEHHE
Name : ProcessExit

#

Description: The function implements a graceful exit.
HHHHHHHEHHHEHHHEEHHEEHHHERHHEEHHEEHHEERHEEREHEEERHEHRHHEERHHERRHEHRHHEEE
ProcessExit ()

{

EXIT_CODE="$1"

rm -f ${TEMP_FILE}

1

write 1og message

#

echo "chkmd.sh:INFO:Exiting the daemon”™ >> ${LOG_FILE}

exit $EXIT_CODE

}
THHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHHHEHEHEHERHERHERHERHERHERHERHEHE

Name : Processkey

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

i

Description: The function checks that the daemon was started

¥ by the program schkmd.sh.

i

Returns : $TRUE or $FALSE

i

Notes : 1. The variable $KEY, which contains the parent PID,
¥ is exported by schkmd.sh. If the daemon chkmd.sh
i is not started by schkmd.sh, the $KEY and $PPID
i don't match.

THHHHHHHHHHHHHHHHHHHHHHHHHHEHHRHHRHHHHEHHRHHERSHRSEHEHERHRERHEHHREHEE
ProcessKey ()
{
trap "Handlelnterrupt " $SIGTERM # process this signal
i
exported variable $KEY and the parent process id of this process
must match
#
if ["${KEY}" != $PPID]
then
return $FALSE
else
return $TRUE
fi
}
THHHHHHHHHHHHEHHHHHHHEEHEHHEHHREHRHERHERERHHEEERHERHEHEREHRSEERHEERHREHEE
Name : NotifyUserOfNewMail

Description: The function notifies a user of new mail.

Input : 1. User Id

#

Returns : $TRUE or

it $FALSE

##

Notes : 1. The function uses the following command to notify
i the user:

#

i newmail > ${TERMINAL_ID}

i

¥ where 'newmail' is an executable of a ¢ program in
/usr/bin written using the curses library.

1
NotifyUserOfNewMail ()

{

trap "HandlelInterrupt " $SIGTERM 4 process this signal

##

assign parameter

#
P_USER="$1"
#

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

process users who are currently connected to the system
i
w -h | awk {'print $1 " ™ $2'} | while read USER TERMINAL_ID
do
if ["${USER}" = "${P_USER}" 1]
then
/usr/bin/newmail > /dev/${TERMINAL_ID}

fi
done
return $TRUE
}
##
Name InitializeMaillList
1
Description: Initializes the array $MAIL_LIST_ARRAY[] with user-id,
i latest message-id, and user processed flag with a
i value of N.
3
{# Returns : $TRUE or $FALSE.

THHHHHEHHHHEHHHEHHHHEHEHEHHHHEHEHEHHHEHEHEHHHEHEHERHEHEHEHERHEHEHEEE
InitializeMaillList ()

{

trap "Handlelnterrupt " $SIGTERM # process this signal
i

switch to main mail directory
i

cd ${MAIL_DIR}

i

get all the file names

i

1s -1 > ${TEMP_FILE}

i

retrieve latest mail ids and store with corresponding mail users
i
MLI=1
cat $TEMP_FILE | while read MAIL_FILE_NAME
do
MSG_ID="tail ${MAIL_FILE_NAME} | grep "Message-Id" |
O awk {'print $2'}°
i
user id:message id:remove flag(Y or N)
i
MAIL_LIST_ARRAY[$MLI]="${MAIL_FILE_NAME}:${MSG_ID}:N"
MLI="expr $MLI + 1°
done
return $TRUE
}
THHHHHHHEHHHHHHHEHHHHHEHHRHHHHHHHEHHEHERHHRHRHEHRERHRHERHERHRRHEEE
Name : ProcessMail
i

Description: Processes mail to establish whether is is new. If yes,

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

i it invokes NotifyuserOfNewMail().

i

Input : 1. User Id

2. Mail Id

i

Returns : $TRUE or $FALSE

i

Notes : 1.The function calls the following functions:
i o NotifyUserOfNewMail.

THHHHHHHHHHHHEHHEEHHHEHHHERHHEEHHEERHEEEHHEEHHEERHEERHEEEHHEERHERRHHEEE
ProcessMail ()

{

trap "HandleInterrupt " $SIGTERM # process this signal
i

Assign parameters

i

P_USERID="$1"

P_NEW_MSG_ID="%2"

i

Process the input details againt $MAIL_LIST_ARRAY[] array

i

INDEX=1
while ["${MAIL_LIST_ARRAY[$INDEX]}" != ""]
do
MAIL_USER_ID="echo ${MAIL_LIST_ARRAY[$INDEX]} | cut -d':' -fl°
LAST_MSG_ID="echo ${MAIL_LIST_ARRAY[$INDEX]} | cut -d':"' -f2°
if ["${MAIL_USER_ID}" = "${P_USERID}" 1]
then
#
Update the mail 1ist
#
MATL_LIST_ARRAY[$INDEX]="${P_USERID}:${P_NEW_MSG_ID}:Y"
it
Found the recipient; now compare the message id
#
if ["${LAST_MSG_ID}" = "${P_NEW_MSG_ID}"]
then
#
No mew mail received
it
return $TRUE
else
#
New mail received
it
NotifyUserOfNewMail "${MAIL_USER_ID}"
return $TRUE
fi
fi
INDEX="expr $INDEX + 1°
done

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

1

Necipient not found in the list; add recipient to 1ist and notify

¥

MATL_LIST_ARRAY[L$INDEXI="${P_USERID}:${P_NEW _MSG_ID}:Y"
NotifyUserOfNewMail "${MAIL_USER_ID}"
return $TRUE

}

THHHHHHHHEHEHHHHHHHHHEHHHHHHHHHHHEHEHHHHHHHHEEHEHHHHHHHEEEERRHHH

Name
#

: UpdateMaillist

Description: The function updates the mail T1ist held in

i $MAIL_LIST_ARRAY.

#

Returns : $TRUE

1

Notes : 1. Removes an entry for a user that's not been
i processed by CheckMail().

1 i i
UpdateMaillList ()

{

trap "Handlelnterrupt " $SIGTERM # process this signal

¥

Define local variables

1

USER_PROCESSED_FLAG=""

INDEX=1

TEMP_MAIL _LIST_ARRAY[$INDEX]=""

¥

Copy the mail 1ist into temporary array

#
while [
do

"${MAIL_LIST_ARRAY[$INDEX]I}"™ I= ""]

TEMP_MAIL_LIST_ARRAY[$INDEXI="${MAIL_LIST_ARRAY[$INDEX]I}"
INDEX="expr $INDEX + 1°

done

1

Update $MAIL_LIST_ARRAY[] with users that have been processed
from $TEMP_MAIL_LIST_ARRAY[]

3
INDEX=1
MLI=1
while ["${TEMP_MAIL_LIST_ARRAY[$INDEXI}" != "" 1]
do
USER_PROCESSED_FLAG="echo ${TEMP_MAIL_LIST_ARRAY[$INDEX]} |
O cut -d':' -f3°
if ["${USER_PROCESSED_FLAG}" = "Y"]
then
3
User has been processed; update Tist
1
MAIL_LIST_ARRAY[$MLI]="${TEMP_MAIL_LIST_ARRAY[$INDEX]}"
14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MLI="expr $MLI + 1°

fi
INDEX="expr $INDEX + 1°
done
return $TRUE
}
THHHHHHHHEHEHHEHHEHHEHHEHHEHHEHHEHHEEHHEHEEHEEHEEHEEHEHEHERHERHERHEHHE
Name : CheckMail
i
Description: Retrieves the Tast mail id for each recipient and
¥ invokes ProcessMail().
i
Returns : $TRUE or $FALSE
i
Notes : 1. The function calls the following functions:
i o ProcessMail.

THHHHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHEEHEHEHEHEHHERHERHEHHEHHE
CheckMail()

{
trap "Handlelnterrupt " $SIGTERM # process this signal

i

Define Tocal variables

i
MAIL_FILE_NAME=""
MSG_ID=""
i
Switch to main mail directory
i
cd ${MAIL_DIR}
i
Get all the file names
i
1s -1 > ${TEMP_FILE}
i
Retrieve Tatest mail id
i
cat $TEMP_FILE | while read MAIL_FILE_NAME
do
MSG_ID="tail ${MAIL_FILE_NAME} | grep "Message-Id" | awk
O {'print $2'}°
ProcessMail "${MAIL_FILE_NAME}" "${MSG_ID}"
done
return $TRUE
}

THHHHHHHHHHHHHHHHHHHHEHHHHHEHHHEHAHHHAHHHEHHHEEHHHERRAHHERRRHHEE

Name : main

##

Description: Invokes all other functions.

#

Notes : 1. The function calls the following functions:
i o InitializeVariables

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

15

i 0 ProcessKey

i o InitializeMailList

i o CheckMail

o UpdateMaillist

i

i# 2. $TIME_INTERVAL is exported from schkmd.sh.

THHHHHHHHHHEHHHHHHHHHEHHHHHHHHHHHEHHHHHHHHHHEHHHHHHHEEEERHHHHH

main ()

{
InitializeVariables
trap : $SIGTERM # pass this signal to child

trap "Handlelnterrupt " $SIGINT # process this signal
trap "HandleInterrupt " $SIGTERM # process this signal
if | ProcessKey

then
clear
echo "chkmd.sh:ERROR:Use schkmd.sh program to start daemon"
exit $FEC

fi

InitializeMaillList
while true

do
CheckMail
UpdateMaillList
sleep ${TIME_INTERVAL}
done
}
#
invoke main
3
main

LISTING OF SCHKMD.SH
THHHHHHHHEHEHHHHHHHHHEHHHHHHHHHHHEHEHHHHHHHHEEHEHAHHHHHHEEEEEHHHH

Name : schkmd.sh (start check mail daemon)

Description: The script starts the daemon script that checks mail.

Input : 1. Time interval (in seconds, default = 60 seconds).
1

Notes : 1. The script is run from the command line as follows:
schkmd.sh t=<interval time for checking new mail>
i

i 2. It contains the following functions:

0 main

o InitializeVariables

i o InitializelLogFile

o InstanceCheck

0 PraseCommandLine

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

i o ValidateCommandLineArgumentValues

o StartDaemonProcess

it o RootUser

o DisplayMessage

i o Writelog

i 0o MoveCursor

¥ o HandlelInterrupt

0o ProcessExit

i

3. It starts chkmd.sh as a background task and exits.
i

i 4. Log file chkmd.log is maintained in /tmp, if the
i file doesn't exist, it is created.

i

it 5. If the time parameter is not supplied, a default
i is used.

THHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEAHHAAHHAHHAAHHHAAHHHAREE

Name : InitializeVariables

i

Description: Initializes all the required variables
THHHHHHHHHHHHHHHHHHHHHHHHHHHEHEHEHHRHRHHEEHEHRHRHEHEERERHRHEHEREEHEE

InitializeVariables ()

{

KEY="$$"; export KEY

INDEX=1 # working index
TIME_INTERVAL=""; export TIME_INTERVAL # time interval
DEFAULT_TIME_INTERVAL=60 # default is 60 seconds
TEMP_FILE="/tmp/chkmd.tmp" # temporary file

LOG_FILE="/tmp/chkmd.log"; export LOG_FILE # Tog file name

chkmd.sh process id file

CHKMD_PROCID_FILE="/tmp/chkmd.pid™ ; export CHKMD_PROCID_FILE
define message prefixes

ERROR="schkmd.sh:ERROR:"

INFO="schkmd.sh:INFO:"

define escape sequences

ESC="\0033["

RVON=_[7m # reverse video on
RVOFF=_[27m # reverse video off
BOLDON=_[1m # bold on
BOLDOFF=_[22m # bold off
BON=_[5m # blinking on
BOFF=_[25m # blinking off

define return codes

TRUE=0

FALSE=1

define exit codes

FEC=1

SEC=0

define signal

SIGHUP=1 ; export SIGHUP

SIGINT=2 ; export SIGINT

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

SIGQUIT=3 ; export SIGQUIT

SIGTERM=15 ; export SIGTERM

SIGSTOP=17 ; export SIGSTOP

SIGTSTP=18 ; export SIGTSTP

define messages

INTERRUPT="Process interrupted\; Quitting early${RVOFF}"
INVALID_ARGC="Wrong number of arguments${RVOFF}"
USAGE="Usage:schkmd.sh \[t=\<time in seconds\> 1=\<log file\>

O \]J${RVOFF}"

DAEMON_NOT_STARTED="Failed to start daemon${RVOFF}"
NOT_ROOT_USER="Must execute the script from root account${RVOFF}"
DAEMON_ALREADY_RUNNING="An instance of daemon is aleady running${RVOFF}"
STARTING_DAEMON="Starting daemon chkmd.sh${RVOFF}"
DAEMON_STARTED="Successfully started daemon${RVOFF}"
INVALID_ARG_TYPE="\${ARG_TYPE}, is an invalid argument type${RVOFF}"
DUP_ARG="Multiple occurrence of argument type, \${ARG_TYPE}${RVOFF}"
TIME_NOT_NUMERIC="Time interval value must be numeric${RVOFF}"
TIME_NOT_VALID="Time interval value is not valid${RVOFF}"
NO_CHKMD_PROG="Program chkmd.sh does not exist in /usr/bin

O directory${RVOFF}"

CHKMD_NOT_EXECUTABLE="Program /usr/bin/chkmd.sh is not

O executable${RVOFF}"

NO_NEWMSG_PROG="Program newmsg does not exist in /usr/bin

O directory${RVOFF}"

NEWMSG_NOT_EXECUTABLE="Program /usr/bin/newmsg is not

O executable${RVOFF}"

SYSERROR="\${ERR_MSG}${RVOFF}"

}

1 i i
Name : Handlelnterrupt

i

Description: Calls ProcessExit.

i i i i
HandlelInterrupt ()

{

DATETIME="date "+%d/%m/%Y %H:%M:%S""

echo "chkmd.sh:ERROR:Program terminated on ${DATETIME}" >> ${LOG_FILE}
ProcessExit $FEC

}
##
Name MoveCursor

i

Input : Y and X coordinates

#

Returns : None

i#

Description: Moves the cursor to the required location (Y, X).
Notes : 1. This function must run in ksh for print to work.

THHHHHHHHEHEHHHHHHHHHEHHHHHHHHHHHEHEHHHHHHHHEEHEHAHHHHHHEEEEEHHHH

MoveCursor ()

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

{
trap "HandlelInterrupt "™ $SIGTERM

YCOR=$%1

XCOR=$2

echo "${ESC}${YCOR};${XCOR}IH"

}
THHHHHHHHEHEHHEHHEHHEHHEHHEHHEHHEHHEEHHEHEEHEEHEEHEEHEHEHERHERHERHEHHE
Name : DisplayMessage

i

Description: Displays message.

i

Input : 1. Message type (E = Error, I = Informative)

i 2. Error Code as defined in DefineMessages ().
i 3. Message to be acknowledged flag

i

Notes : 1. The user must acknowledge the message if the
¥ acknowledgement flag is set to Y.

THHHHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHEEHEHEEHEHEHEHERHERHEHHEHHE
DisplayMessage ()
{
trap "HandlelInterrupt "™ $SIGTERM
MESSAGE_TYPE=$1
MESSAGE_TEXT="eval echo $2°
ACK_MESSAGE="¢$3"
if ["${ACK_MESSAGE}" = ""]
then
ACK_MESSAGE="Y"
fi
clear
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then
echo "“eval echo ${RVON}${ERROR} ${MESSAGE_TEXT}\c"
else
echo "“eval echo ${RVON}${INFO} ${MESSAGE_TEXT}\c"
fi
let the user acknowledge the message
if ["${ACK_MESSAGE}" = "Y"]
then
read DUMMY
fi
return ${TRUE}
}
THHHHHEHHEHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHERHEHEHERHERHERHERHERHEHE
Name : ProcessExit
i
Description: Processes a graceful exit.
i
Input : 1. Exit code
THHHHHEHHEHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHERHEHEHERHERHERHERHERHEHE

ProcessExit ()

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

{

assign parameters
EXIT_CODE="¢$1"

exit $EXIT_CODE

}
THHHHHEHEHHEHEHEHHHHEHEHEHHRHEHEHEHHRHEHEHEHERHEHEHERHRHEHEHERHRHEHEHEE
Name : Writelog

1

Description: Writes a message in the log file $LOG_FILE.
#

Input : 1. Message type
i 2. Message text
#

Returns : $TRUE

THHHHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHERHERHERHERHERHERHERHERHERHEHHE
WritelLog ()
{
trap "Handlelnterrupt "™ $SIGTERM
#
assign parameters
1
MESSAGE_TYPE="$1"
MESSAGE_TEXT="$2"
DATETIME="date "+%d/%m/%Y %H:%M:%S""
#
write log
1
if ["${MESSAGE_TYPE}" = "E"]
then
echo "${ERROR}${DATETIME} :${MESSAGE_TEXT}" >> ${LOG_FILE}
else
echo "${INFO}${DATETIME}:${MESSAGE_TEXT}" >> ${LOG_FILE}
fi
return $TRUE
}
##
Name InstanceCheck
1
Description: Checks whether any other instance of the program is
running.

i
Returns : $TRUE if no other instance is running
$FALSE otherwise.

THHHHHHHEHHEHHHHEEHEHHEHHEHERHEEHERHRHEREERHERHERHEHERSERHERHERHEEHEEE
InstanceCheck ()
{
trap "Handlelnterrupt "™ $SIGTERM
if ps -eaf | grep "chkmd.sh" | grep -v "grep" > /dev/null 2>&1
then
an instance is running
return $FALSE

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

else
return $TRUE

fi

}
THHHHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHERHEHEHEHEHHERHERHEHHEHHE
Name : RootUser

i

Description: Checks whether the user is root.

i

Returns : TRUE if user is root

¥ FALSE otherwise.

THHHHHHHHHHHHHHHHHHHHHHHHHHEHERHHRHHHHEHERHRERHEHEHERHHRERHEHHREHEE
RootUser ()

{

trap "Handlelnterrupt "™ $SIGTERM

USER="1d | cut -d'(' -f2 | cut -d")" -fI°

if ["${USER}" = "root"]

then
return $TRUE
else
return $FALSE
fi
}
11 s
Name : ParseCommandLine
#
Description: Parses the command line parameters.
i
Returns : $TRUE or $FALSE
i
Notes : 1. The following command line parameters are expected:
t=<time in seconds>
i 1=<logfile name>
i
¥ 2. The following variables are assigned:
i
i Parameter Variable Assigned
t TIME_INTERVAL
it 1 LOG_FILE

THHHHHHHHHHHHEHHEEHHHEHHHERHHEEHHEERHEEEHHEEHHEERHEEHHEERHHERHERRHHEEE
ParseCommandLine ()
{
trap "Handlelnterrupt "™ $SIGTERM
#
establish argument count
i
if [${ARGC} -gt 1 1]
then
DisplayMessage E "${INVALID_ARGC}"
DisplayMessage E "${USAGE}"
return $FALSE

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

fi

1
process arguments
#
INDEX=1
while [! $INDEX -gt $ARGC 1]
do
1
extract next argument line
#
ARG_LINE="echo "${ARGV}" | cut -d' " -f${INDEX}"
#
extract argument type
1
ARG_TYPE="echo ${ARG_LINE} | cut -cl-2°
case "${ARG_TYPE}" 1in
t=) #
check for duplicate argument type
#
if ["${ARG_TYPE}" = "t=" -a "${TIME_INTERVAL}" != ""]
then
DisplayMessage E "${DUP_ARG}";
elif ["${ARG_TYPE}" = "t=" -a "${TIME_INTERVAL}" = ""]
then
#
store this argument value
i
TIME_INTERVAL="echo "${ARG_LINE}" | cut -d'=' -f2°;
fi;;
*) DisplayMessage E "${INVALID_ARG_TYPE}";
DisplayMessage I "${USAGE}";
return $FALSE;;
esac
INDEX="expr $INDEX + 1°
done
return $TRUE
}
THHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHHHEHEHEHERHERHERHERHERHERHERHEHE
Name : ValidateCommandLineArgumentValues
#
Description: Validates command 1line arguments.
#
{# Returns : $TRUE or
i $FALSE.

THHHHHHHHHHEHHHHHHHHHHEHHHHHEHHHHEHHHEHHHEHHHERAAHHERAHHEERAHEE

ValidateCommandLineArgumentValues ()

{

trap "Handlelnterrupt "™ $SIGTERM

i

check whether time interval is null
i

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if ["${TIME_INTERVAL}" = "" 1]
then
TIME_INTERVAL = "${DEFAULT_TIME_INTERVAL}"

fi

i

check that it is numeric

i

if ! [“expr ${TIME_INTERVAL} + 1 2> /dev/null"™]

then
DisplayMessage E "${TIME_NOT_NUMERIC}"
return $FALSE

fi

i

check for greater than zero

i

if | [${TIME_INTERVAL} -gt 0]

then
DisplayMessage E "${TIME_NOT_VALID}"
return $FALSE

fi

return $TRUE

}

THHHHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHERHEHERHEHEHHEHHERHEHHEHEHE

Name : InitializeLogFile

i

Description: Initializes the log file.

i

Returns : $TRUE or

i $FALSE.

THHHEHHHHEHEHEHHHHEHEHEHHHHEHEHEHEHHEHEHEHERHRHEHEHERHRHEHEHERHRHEHEHEE
InitializelLogFile ()

{
trap "Handlelnterrupt "™ $SIGTERM
i
does the log file exists
i
if [-s ${LOG_FILE} 1]
then
do not initialize it
else
echo " Log File for Check Mail Daemon"™ > ${LOG_FILE}
echo " " >> ${LOG_FILE}
fi
return $TRUE
}
THHHHHHHHHHHHEHHEEHHHEHHHERHHEEHHEERHEEEHHEEHHEERHEERHHEEEHHEERHERRHHEEE
Name : StartDaemonProcess
i

Description: Starts the script chkmd.sh at the background.

i
Returns : $TRUE or

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

i $FALSE
THHHHHEHHHHEHHHEHHHHEHHHEHHHHEHEHEHHHEHEHEHHHEHEHERHEHEHEHERHRHEHEEE
StartDaemonProcess ()
{
trap "Handlelnterrupt " $SIGTERM
3
check the deamon program
1
if [! -s /usr/bin/chkmd.sh]
then
DisplayMessage E "${NO_CHKMD_PROG}"
return $FALSE
elif [! -x /usr/bin/chkmd.sh]
then
DisplayMessage E "${CHKMD_NOT_EXECUTABLE}"
return $FALSE
elif [! -s /usr/bin/newmsg]
then
DisplayMessage E "${NO_NEWMSG_PROG}"
return $FALSE
elif [! -x /usr/bin/newmsg]
then
DisplayMessage E "${NEWMSG_NOT_EXECUTABLE}"
return $FALSE
fi
1
start the daemon at the background
#
nohup /usr/bin/chkmd.sh & > /dev/null 2>&1
3
store the process id for chkmd.sh
1
echo "$!"™ > ${CHKMD_PROCID_FILE}
CHKMD_PID="cat ${CHKMD_PROCID_FILE}"
if ps -eaf | grep $CHKMD_PID | grep -v "grep" > /dev/null 2>&1
then
return $TRUE
else
return $FALSE
fi
}
THHHHHEHEHHEHEHEHHHHEHEHEHHRHEHEHEHHRHEHEHEHHRHEHEHERHRHEHEHERHRHEHEHE
Name : main
1
Description: The function invokes all other functions.

¥

Notes : The function calls following functions:
i o InitializeVariables

i o ParseComamndLine

1 o ValidateCommandLineArgumentValues

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

i o InitializelLogFile

i o InstanceCheck

i o RootUser

i o StartDaemonProcess

i o DisplayMessage

i o Writelog

i 0 ProcessExit
THHHHHEHHEHHHHEHHEHHEHHEHHEHHEHHEHHEHHEHHEHEEHERHEHERHERHERHERHERHEHE
main ()

{

InitializeVariables

if | RootUser

then
DisplayMessage E "${NOT_ROOT_USER}"
ProcessExit $FEC

fi
if | ParseCommandLine
then
ProcessExit $FEC
fi
if ! ValidateCommandLineArgumentValues
then
ProcessExit $FEC
fi
if | InitializelLogFile
then
ProcessExit $FEC
fi
if | InstanceCheck
then
WritelLog E "Another instance of the program is running"”
DisplayMessage E "${DAEMON_ALREADY_RUNNING}"
ProcessExit $FEC
fi

WriteLog I "Starting Daemon”

DisplayMessage I "${STARTING_DAEMON}"

if | StartDaemonProcess

then
WritelLog E "Failed to start daemon program”
DisplayMessage E "${DAEMON_NOT_STARTED}"
ProcessExit $FEC

else
WritelLog I "Successfully started daemon program”
DisplayMessage I "${DAEMON_STARTED}"

fi

ProcessExit $SEC

}

i

capture argument count and values in global variables

i

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

25

ARGC=""$#"

ARGV="$@"

i

invoke main
i

main

LISTING NEWMAIL.C

/***

* Name : newmail.c (new mail)

*

* Description: Writes a message in a window on a terminal.

*

* Notes : 1. The program is executed by the check mail daemon,
* chkmd.sh, to notify the user of new mail.

***/

/* include curses header file */

#finclude <curses.h>

/*

* module constants for window
*/

ffdefine WINHEIGHT 6

ffdefine WINWIDTH 40

{#fdefine WIN_XCOR 15

ffdefine WIN_YCOR 8

/*

* module constants for exit codes
*/

ffdefine SEC 0

ffdefine FEC 1

/***

* Name : main
*
* Description: Main function.
*
* Notes : 1. Exit codes are as follows:
* Success SEC
* Failure FEC
***/
main ()
{
WINDOW *wptr; /* pointer to the window structure */
int i;
/*
* initialize the screen
*/
initscr();

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/*
* create a new window
*/
wptr = newwin(WINHEIGHT ,WINWIDTH,WIN_YCOR,WIN_XCOR);

if (wptr == (WINDOW *) NULL)
exit (FEC);
box(wptr,0,0);
wattron (wptr, A_REVERSE);
/*
* reverse the video for the whole window (80 by 6);
*/
for (i = 0; 1 < WINHEIGHT*WINWIDTH; i ++)
waddstr(wptr,™ ");
/*
* refresh the window
*/
wrefresh(wptr);
/*
* add message to window
*/
wmove(wptr,0,0);
wmove(wptr,0,5);
Waddstr(wptr’"********* NEW MAIL **********");
wmove(wptr,1,5);
wmove (wptr,2,5);
waddstr(wptr,"” You have new maill!l™);
wmove(wptr,4,5);
waddstr(wptr,” Press ctrl-1 to refresh screen");
/*
* refresh window
*/
wrefresh(wptr);
/*
* remove all the window resources
*/
endwin ();
/*
* exit
*/
exit (SEC);
}

This article concludes in next month’s issue of AlX Update.

Arif Zaman
DBA/Administrator
High-Tech Software (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

RAID and AIX

In the beginning, disk storage was all about the number of attached
physical drives. Thesedriveswereattached to the system and divided
intofilesystems. Most small systemshad only asingledriveattached,
though large ones would have multiple drives that were attached
through one or more controllers. Regardless of the sizeand number of
devices, al systemshad two thingsin common: spacewaslimited and
prices were high!

ThisarticleexplainsthevariousRAID configurationsthat areavailable
and their relationship to the AIX operating system. It will let you
compare their characteristics and, hopefully, help you to decide the
best one for your disk subsystem.

RAID BASICS

For along time storage needs grew faster than storage device prices
fell, sothedemandfor larger filesystemsforced systemadministrators
to get creative. The concept of RAID storage was born. The original
RAID was simple: a Redundant Array of Inexpensive Disks lashed
together to appear asasinglelargedevicetothehost computer system.
The various levels of RAID differ in such respects as the number of
disks, the way datais read and written to disk, and their throughput,
reliability, availability, and price.

While RAID drives were initially based on the idea that a group of
smaller drivesischeaper than asinglelargeone, thisisbecoming less
and less true. Beyond the potential cost savings, RAID also allows
aggregatedisk performanceto exceed by far the speed and throughput
of asingle disk device. Properly configured, RAID technology also
toleratesindividual device failure, allowing continuous operationin
gpite of the occasional disk failure.

Using RAID technology to build abig disk subsystemisnot asimple
matter. You must understand the user’s needs, the application
characteristics, theoverall systemloading, therequiredreliability and
uptime, and the cost factors, and have the technical knowledge and

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

skills necessary to implement this technology. While vendors may
lead you to believe that using RAID isas simple as signing a cheque
and plugging in a few cables, knowledge of the advantages and
disadvantages of the various RAID levels will improve the
configuration and quality of your disk subsystem.

RAID O

RAID level 0, or just plain RAID 0, isthe simplest form of RAID. It
combines several small disk devices to create a single large virtual
disk device. This concatenation may be donein hardware by a smart
disk controller or it may beimplemented in softwareviathe operating
systemwithitsdisk devicedrivers. It'srareto find ahardware RAID
Odisk controller —most RAID 0implementationsare software-based.

Inthe configuration shownin Figure1, four disk drivesare combined
to form a single logical drive. A single controller manages all four
devicesandtheoperating system seesasinglelogical drivecontaining
four timesthe space of asingledisk drive. Dataiswritten to the disk
devicessequentially, asdenoted by the shaded regionsin Figure 1. As
onedrivefills up, datais written to the next disk drive.

Thisset-up hasonly oneadvantage: increased space. Thespeed of this
logical deviceisthe same asthat of any disk deviceinthe RAID set,
asthedisk I/O occurstoonly onedriveat atime. If any one of thedisk

Controller

Figure 1. A simple RAID 0 configuration

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

devices in the RAID set fails, the whole logical volume fails. The
actual reliability of thewholelogical volumeisfour timesworsethan
that of any one disk driveiniit.

While the reliability of RAID 0 is fixed, its performance can be
increased by striping. Instead of writing data sequentially to the disk
drives, data can be striped across all the drives, asshown in Figure 2.

Controller
N N N N
N N N N
N~ N~ N~ N~
Figure 2. A striped RAID 0 configuration

In this set-up, asingle 1/O to the logical volume is divided into four
separate operations, onefor each disk driveinthe RAID set. All four
disk drivesoperateinparallel, deliveringfour timesthedatathroughput
to the system in the same amount of time.

Tuning the stripe size is very important — if it’'stoo large, many 1/O
operationswill fitinasinglestripeand, hence, berestrictedtoasingle
disk drive. If the stripeistoo small, too many physical operationswill
beinitiatedfor eachlogical operation, whichwill saturatethecontroller.
This is where application knowledge is a necessity. Oracle, for
example, blocksall 1/0into 8K B operations, which meansthat afour-
drive RAID 0 set with a 2K B stripe size would balance each Oracle
read or write across all four disk drivesin the RAID set.

Striping distributes I/O evenly across the disk drives by dividing up
asingle /O to thelogical volume into separate disk operations. This
can result in disaster at the controller if al disk drives are attached to

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Controller O Controller 1
Figure 3: A striped RAID 0 with multiple controllers

a single controller. To avoid this problem, the drives should be
distributed across multiple controllers, asillustrated in Figure 3.

Intheexamplein Figure3, I/Otraffic acrosseach controller ishal ved.
An even better solution would be to provide each disk with its own
private disk controller. In general, aSCSI controller can handleup to
five disk drives. However, none of the drivesin a RAID set should
havetoshareaSCSI controller. Adding morecontrollersand managing
1/O distribution across them can be critical when the last bit of
performance needs to be wrung out of a RAID configuration.

Performance and reliability

In its simplest form, RAID 0 only offers increased disk capacity.
When used in conjunction with striping, RAID 0 also provides
increased performance and throughput. RAID O offers neither
redundancy nor recovery features, and it is the least expensive form
of RAID storage.

AlX and RAID O

RAID Oisaninherent featureof A1 X’ sJournaled File System. Aslong
as more than one physical volume (disk) is assigned to a logical
volume, AlX supports RAID 0. If the filesystem uses a multi-disk
spanned volume group, then RAID 0 is supported. Unlike other
popular Unix derivatives, AlX lets you expand a filesystem by

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

spanningit over thelogical volume. If thelogical volumeistoo small,
then it too can be expanded, even if this means installing another
physical disk whose capacity isadded to thelogical volume. IfAIX’s
logical volumeisto be striped, then AIX 4.2.1 allows stripe sizes of
4KB, 8KB, 16KB, 32KB, 64KB, and 128KB.

RAID 1

RAID 1 is better known as mirroring. In a RAID 1 configuration,
every disk deviceismirrored on at least one other disk. Every write
operation to a RAID 1 set results in write operations to each disk

Controller

N~ N~
Figure 4: RAID 1 configuration with two mirrored sets

Controller 0 Controller 1

N~ N~
Figure 5: RAID 1 with two mirrored sets and two controllers

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

deviceinthemirror set. However, aread fromaRAID 1 set resultsin
just asingle read from an available disk device. Figure 4 shows four
disk drives arranged as two mirrored sets.

Asaresult of itsnature, RAID 1 doublesthe amount of physical disk
capacity without increasing the amount of available virtual disk
space. For this reason the use of multiple controllersis an absolute
necessity for effective RAID 1 configurations — see Figure 5, which
issimilar to Figure 4 except that two disk controllers are used.

Inthisconfiguration, the mirrored disksuse separate controllers. This
increases both output and reliability as explained in the next section.

Performance and reliability

RAID 1 configurationsareimmunetothefailureof asingledisk drive.
In the event of a drive falling, the system simply isolates the failed
drive and transfersread and write operations to the remaining drives.
A RAID 1 set running with one or more failed or missing disk drives
issaid to be running in ‘ degraded mode’ . When the faulty drives are
replaced, data in the remaining unmirrored drive or drives must be
copied to the new drive. This operation is known as ‘synching the
mirror’ and cantakesometime, especially if theaffecteddriveislarge.
Again, while disk accessis uninterrupted, the I/O operations needed
to copy the data to the new drive steal bandwidth from user data
access, possibly decreasing overall disk subsystem performance.

Using two controllers with mirrored disks increases both output and
reliability. An additional controller increases output by reducing the
volume of datathat must passthrough asingle controller. Reliability
Is increased because, in the event of a single controller failing, the
remaining controller still provides aconnection to acopy of the data.
Notice, however, that the data is not mirrored unless access is
available to both halves of the mirrored set.

If you are committed to using RAID 1 technology to increase your
system’s reliability, don’'t be tempted to cut corners by not using
enough disk controllers. I'd even go a step further and recommend
using separate power suppliesfor each half of themirror. Redundancy
must exist at every level of the system, from drives and cables to

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

controllersand power supplies, beforeyou truly haveafully mirrored
disk subsystem.

AlX and RAID 1

Whether you're creating a new logical volume using the mklv
command or making copies of an existing one with mklvcopy, AlX
supports up to three copies of alogical volume. One copy means an
unmirrored logical volume. Two or three copies mean a mirrored
logical volume. You are allowed to determine which physical disks
areto be used for mirroring and whether copies of alogical partition
should be allocated to separate disks. You are also allowed to state
which scheduling policy should beused for writing logical partitions.
A seria write policy meansthat write procedures are carried out one
after another on all the logical partitions and their copies. The write
operationisnot completeuntil al logical partitionshave beenwritten
to. A parallél write policy starts the write operation on all physical
partitionsin alogical partition at the same time. The operation ends
whenthewriteoperationtothephysical partitionthat takesthelongest
to completefinishes. If thelogical volumeisstriped, Al X 4.2.1allows
stripe sizes of 4K, 8K, 16K, 32K, 64K, and 128K.

RAID 0+1

Pure RAID 1 suffersfrom the same problem as pure RAID 0O: datais
written sequentially acrossthe disk volumes, potentially making one
drivebusy whileothersonthesideof themirror areidle. Thisproblem
can be avoided by striping the mirrored set, just as the volumes of a
RAID 0O set are striped. Theoretically, RAID 1 mirrors physical disks
on a one-for-one basis. In redlity, big logical disk devices are built
using RAID 0 technology and then mirrored for redundancy using
RAID 1technology. ThisconfigurationisknownasRAID 0+1, since
it combines RAID 0’s ability to aggregate capacity with RAID 1's
mirroring.

Unlike RAID 0, RAID 1 and RAID 0+1 are often implemented in
hardware using smart mirroring controllers. The controller manages
multiple physical disk devicesand presentsasinglelogical deviceto
the operating system.

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Performance and reliability

RAID 0 and RAID 1 exist at opposite ends of the RAID spectrum.
RAID 0 offers large disk volumes with no redundancy or immunity
from failure, but at a low price. RAID 1 offers complete data
redundancy and robust immunity fromfailure, but at ahigh cost. Both
configurations can be tuned by adding controllers and using striping
to distribute 1/0O load across as many disk drives as possible.

RAID 0+1 uses the best of both configurations, providing large
volumes, high reliability, and failure immunity. However, it does not
solve the price problem.

AlX and RAID 0+1

AlX 4.3.3 now supports RAID 0+1 entirely in software. This means
that no special hardware is needed. AlX 4.3.3's mklv has a new -s
option that specifies that no partitions from one mirror are to share
disks with partitions from a second or third mirror. Another new
command is replacepv, which alows one to replace a physical
volume. If amirrorisfoundthat isnot stale, thentheall ocated physical
partitions and their data are transferred to the destination physical
volume. Thisenhancement isnot just of interest to RAID 0+1 users,
but to users of al RAID configurations.

RAID 3

RAID 3 and RAID 5 use ‘parity’ datato provide redundancy in the
RAID volume. In ssimple terms, parity can be thought of as a binary
checksum —asingle bit of information that tells you whether all the
other bits are correct. In more complex schemes, parity bits can both
detect and help correct data errors.

RAID 3takesasimpleapproachtousing parityinaRAID configuration.
Givenaset of ndrives, it usesonedriveto hold parity informationand
stripesthedataacrosstheremaining n—1drives. Thus, inafour-drive
RAID 3 s¢t, threedriveshold actual datawhilethefourthisdedicated
to parity data. Such a configuration is often denoted as‘3+1'.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

Performance and reliability

Theparity datacontainsenoughinformationtoallow datatoberebuilt
iIf one of the data drives fails. In the previously mentioned RAID 3
‘3+1’ configuration, aquarter of the total number of disksisused for
parity. Thisresultsin a25% overhead, compared with RAID 1’'s50%.

Reading and writing data to a RAID 3 volume can get complicated
depending on the state of the data set. Reading from ahealthy RAID
3 data set is not complicated. Writing to it means that, in addition to
writing theactual data, thesystem al so needsto calculateand writethe
parity block. Becausetheparity block al so containsparity information
from other data blocks, our write also involves at | east one additional
read to be able to calculate the parity block. That's quite a lot of
overhead for just a simple write operation. For write-intensive
applications, the parity drive cannot keep up, resulting in the RAID
system slowing as aresult of a parity disk bottleneck.

RAID 3 cantoleratethe completel ossof asingledrivebut not without
performance penalties. In ‘degraded mode’, aread fromagood drive
resultsinnoadditional overhead. However, readingfromanunhealthy
block means that reads from other blocks and parity calculations are
involved before the datais retrieved.

Eventually thefailed driveisreplaced and thesystem must reconstruct
it, block by block. This occurs either in the background, resulting in
datatraffic delays, or the RAID 3 dataset isisolated from the system
whiletherebuild processtakesplace. Thiscan beaseriousconcernfor
large RAID volumes. In simpleterms, while afaulty drive can be hot
swapped in just 30 seconds you may haveto endure six hours of poor
performance while the degraded RAID set isrebuilt.

RAID 5

Theproblemswiththesingleparity driveinRAID 3 hascaused almost
al RAID 3 systems to shift to RAID 5 technology. RAID 5 is
operationally identical to RAID 3inthat several blocksinadatastripe
share a common parity block. The parity block is written whenever
any dataintheblock iswrittenandthe parity dataisusedtoreconstruct
blocksread from afailed drive. Asyet, thereisno difference between
the two types of RAID.

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The big difference between RAID 3 and RAID 5 is that the latter
distributes parity blocksthroughout all the drives using an algorithm
to decidewhere aparticular stripe’s parity block should reside within
the drive array. Figure 6 shows the same RAID volume converted
from RAID 3to RAID 5:

Controller

Figure 6: RAID 5

Performance and reliability

Except for eliminating the parity drive problem, RAID 5 suffersfrom
all thesameproblemsasRAID 3: slow writes, sensitivity to |/O block
sizes, and potentially lengthy rebuilds of degraded RAID sets. Inspite
of theseproblems, RAID 5isvery popul ar asan economical redundant
storage solution. Some of thewritelatency inherent with RAID 5 can
be mitigated using a cached controller.

RAID 5 configurations are particularly sensitive to disk controller
overloading. While the number of I/Os initiated to the RAID disk
subsystem may not be enough to overload a single drive, they can
often overwhelm the disk controller, which must manage al the I/0O
requeststo all disk drives.

For this reason, it is critical that drives combined into a RAID disk
subsystem are managed by separate disk controllers. That way,
multiple 1/Os initiated by the computer system are spread across
multiple disk controllers, which then access the individua disk

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

drives. Thispreventsany onecontroller from being overloaded. \When
you are deciding which RAID 5 system to buy, pay close attention to
theinternal controller architecture behind the RAID controller. If all
thedisk drivesinaRAID set areonthe samedevicechainonasingle
disk controller, you could be heading for trouble.

AlX and RAID 5

AlX asan operating system does not directly support RAID 5. If the
reliability of RAID 5isneeded, then hardware support in the form of
the IBM 7133 SSA Subsystem, IBM 7135 RAIDiant Array, or IBM
7137 RAID Array disk subsystem needs to be used.

CONCLUSION

Now that you’ vebeenintroducedto thevariousRAID levelsand how
they are directly or indirectly supported by IBM’s AlX, you can
hopefully design a disk subsystem that satisfies the needs of your
users, system administrators, and management (which, after all,
controls the money faucet!).

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 2000

ZeroFault —a memory debugging tool for AIX

ZeroFault is a software tool developed by Austin, Texas-based The
Kernel Group. The company has worked for a number of years with
IBM’s RS/6000 division and has built up considerable knowledge of
the AIX operating system. This has been put to use in the design of
many of the company’s products, including ZeroFault.

ZeroFault’s operation is based on the implementation of a Virtual
Machine. The program’sinput (an executable program created by the
user) is examined and rewritten during the course of execution. The

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

obj ect code producedincludesextensiveteststhat check eachmemory
access. When memory-related errors are detected by ZeroFault, the
location of the error and the origin of the allocated memory block are
reported to the user.

Theuse of aVirtual Machine has many advantagesthat are uniqueto
this type of application debugging:

Only instructions that are actually executed are instrumented.
Thiscontributesto significant reductionsinruntimesand overall
memory usage.

It's possible to enable and disable the tests performed by the
application during the execution of users' programs. Thisisvery
handy for detecting errors that occur late in the life-cycle of
programs being tested.

When an error is detected, the problem is reported and the
erroneous instruction is restored to its original form. Error
reporting is suppressed when the erroneous instruction is re-
executed — this effectively prevents the reporting of duplicate
errors.

Theapplicationisabletoinstrument dynamically-loaded modules
invokedwiththeload() system call automatically. Thisautomatic
instrumentationisvery useful with complex applicationsthat use
dynamically loaded modules heavily.

It is possible to test applications that contain no debugging
information, such as ‘stripped executables' . This enables the
analysis of the actual software version that is delivered to the
customer.

ZeroFault does not require the recompilation or relinking of
applications being tested. This is very handy for tests that are
performed by the customer or another organization that does not
have access to the source code.

SUPPORTED ENVIRONMENTS
ZeroFault runs on AlX versions 3.2.5, 4.1, 4.2, and 4.3. Any AlX-

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

compatible system is supported, provided that the application being
testediseither aPOWER- or PowerPC X COFF-formatted executabl e,
One shortcoming is that, at present, only 32-bit executables are
supported.

ZeroFault hasmodest system requirements. 32 MB RAM, 100 M B of
swap space, and 10 M B of hard di sk space. Theapplication’sinstallation
kit can be downloaded from ftp://ftp.zerofault.com, and a separate
installation kit is available for each major version of AlX. A demo
version of the product isalso available from IBM’s Bonus Pack CD,
which issupplied with every Al X licence. ZeroFault can beinstalled
using either the standard smit-based installation screens or the zf-
custom-install script, enabling installation even by users that don’t
have access to the root password.

Two licensing modes are available: node-locked desktop licensing
and floating server-based licensing, using alicence server that can be
downloaded from TKG’sftp site. Thedocumentationisdistributedin
HTML format andisinstalledinthedirectory /usr/lpp/ZeroFault/doc.

Thecost of asinglenode-locked licenseis(at thetimeof writing) US$
4,950, with a compulsory US$ 990 annual maintenance fee.

USER INTERFACE

ZeroFault hasaMotif-based GUI and is, therefore, most useful when
run from a graphical workstation. Batch-oriented usageis, however,
possibleusingthezf rpt reportingtool. In order to use ZeroFault, the
user must add the directory that contains its executable to his or her
PATH shell variable. The application that requires testing is then
invoked by preceding its command with the zf command (including
any necessary flags).

The main error pane of ZeroFault’'s GUI displays detected errorsin
outline. Linesthat start with an arrow are individual messages, while
onesthat start with abox symbol areagroup of similar messagesthat
arecondensed. Thedefault display showserrorsinsummary (coll apsed)
form, hidingdetails.A verbosedisplay containsadditional information,
such asmemory locations and adetail ed traceback of the error. Other
conventions and features of the GUI are as follows:

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

e Memory error types are displayed using acronyms that are
printed in capital letters.

o Left-clicking once on acondensed message expandsthegroupto
show theindividual messagesin it. Another click condensesthe
messageshback toagroup. Thesameal soworksfor error messages
and tracebacks.

* Thesourcecodeassociated with an error can beviewed if thefile
name is displayed in the expanded traceback. Hold down the
SHIFT key and | eft-click thefilenametoinvokethe sourcecode,
which is displayed in the bottom pane of ZeroFault's GUI.

» Clickthe'FindLeaks buttontodisplay theapplication’smemory
leaks — ZeroFault will display a list of the allocated memory
blocks that are not referenced by any pointer.

 The'Sort’ and‘ Condenseby’ menus, alongwithmessagefiltering
functions, are used to change the order and appearance of error

Mmessages.

MEMORY ERRORS DETECTED

ZeroFaultisableto detect andidentify many errorsrelated to memory
usage. Errorswith descriptionsthat start withtheword‘Bad' indicate
that the memory referenced by the program has not been all ocated by
the process; errors with descriptions that start with the word
‘Uninitialized’ indicate that the memory used by the program has not
been initialized. I'll describe each error detected by ZeroFault,
illustrating each with a very short program and the associated report
produced by ZeroFault.

BMR (Bad Memory Read)

Thismessageisproduced whenaprogramtriestoreadfromamemory
location that is not allocated for its use. Some possible causes of this
error include trying to read beyond the end of an allocated block,
reading fromamemory locationthat wasall ocated and thenfreed, and
tryingtoreadfromrandomIocations. Thefollowing program produces
this error:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

#include <stdlib.h>
void main(int argc, char **argv)({
char *p = (char *)malloc(10);

bzero (p,10); /* Only characters 0 to 9 are initialized */
printf("p[10]=%d\n"™, p[10]);
}

ZeroFault reports the following information:

BMR exl main
Read address: 0x2040a012 -> 0x2040a012
Read len: 1
Read traceback: main
main +0x00040(64) "exl.c":6

Could not find any block near it

BMW (Bad Memory Write)

This message is produced when a program writes to a memory
location that isnot allocated for itsuse. Thisisasevereerror that can
surface as intermittent memory errors in the later stages of the
program’s life-cycle. The following program produces this error:

#include <stdlib.h>
void main(int argc, char **argv){
char *p = (char)malloc(10); /* Only 0 to 9 are allocated */

bzero (p,10);
p[10]="a";
}

ZeroFault reports the following information:

BMW ex? main
Write addr: 0x2040a012 -> 0x2040a012
Write len: 1
Write traceback: main
main +0x0003c(60) "ex2.c":6
Could not find any block near it

UMR (Uninitialized Memory Read)

This error message is produced when a program performs a read
operation using amemory location that isnot initialized by either the
system or the application. Thefollowing program producesthiserror:

fHinclude <stdlib.h>
void main(int argc, char **argv){

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

char *p = (char *)malloc(10);
char c;

bzero (p,9); /* Only characters 0 to 8 are initialized */
c=p[9]1; /* p[9] is uninitialized */
}

ZeroFault reports the following information:

UMR ex3 main
Access address: 0x2040a011 -> 0x2040a011
Access Tlen: 1
Access traceback: main
main +0x00038(56) "ex3.c":7
Access is in block at addr 0x2040a008 -> 0x2040a011
Block len is 10

Block allocation traceback: malloc main
malloc +0x00000(0) "malloc.c"
main +0x00018(24) "ex3.c":3

Notice that the report includes the size and traceback of an allocated
memory block that islocated near the uninitialized memory location.

USTKR (Uninitialized Stack Read)

This error is produced when a program tries to access an automatic
variable that’s located on the program’s stack before the variable is
explicitly initialized. The following program produces this error:

ffinclude <stdlib.h>
void main(int argc, char **argv){

char a, b;

a=b; /* Variable b is uninitialized at this point */
}

ZeroFault reports the following information:

USTKR ex4 main
Current sp: 0x2ff221e0
Read address: 0x2ff22221
Read len: 1
Read traceback: main
main +0x0000c(12) "ex4.c":4

UFCP (Uninitialized Function Call Parameter)

ZeroFault checksthat parameterspassed to both Al X system callsand
many library calls have been properly allocated and initialized,
reportingfailurestodo so. Thefollowing program producesthiserror:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

#include <stdlib.h>
void main(int argc, char **argv){
char *p = (char *)malloc(10);

bzero(p,9);
write(l,p,10); /* Only characters 0 to 8 are initialized */

}
ZeroFault reports the following information:
UFCP libc.a(shr.o) 0x000037d0 write main

Function call: kwrite
Parameter name: buf
Parameter address: 0x2040a008 -> 0x2040a011

Parameter len: 10

Traceback: 0x000037d0 write main
0x000037d0 <no_symbol>
write +0x0010c(268) "write.c"
main +0x00040(64) "ex5.c":6

Parameter is in block at 0x2040a008
Block len is 10

Block allocation traceback: malloc main
malloc +0x00000(0) "malloc.c"
main +0x00018(24) "ex5.c":3

BFCP (Bad Function Call Parameter)

This error is reported when unallocated parameters are passed to
system and library function calls. The following program produces
this error:

Hinclude <stdio.h>
#Hinclude <stdlib.h>

void main(int argc, char **argv){
char *p=NULL;
printf("%s\n", p);

}
ZeroFault reports the following information:
BFCP libc.a(shr.o) strlen _doprnt printf main

Function call: strlen
Parameter name: string
Parameter address: 0x0 -> 0xO0
Parameter len: 1

Traceback: strlen _doprnt printf main
strlen +0x00000(0) "strlen.s"
_doprnt +0x01638(5688) "doprnt.c"
printf +0x000b8(184) "printf.c"

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

main +0x0002c(44) "exl2.c™:6
Could not find any block near it

BFCT (Bad Function Call Target)

Thiserror ariseswhenthetarget of afunctioncall isamemory location
inwhichthefunction placestheresult of itscomputation andthetarget
areaiseither unallocated or contains all ocated blocks of insufficient
length. The following program produces this error:

#include <stdlib.h>
void main(int argc, char **argv){
char *s = (char *)malloc(10);

bzero (s,20); /* The length of the target is only 10 bytes */
}

ZeroFault reports the following information:

BFCT ex’/ bzero main
Function call: bzero
Parameter name: target
Parameter address: 0x2040a008 -> 0x2040a01b
Parameter len: 20

Traceback: bzero main
bzero +0x00000(0) "memset.s"
main +0x0002c(44) "ex7.c":5

Write began in block at addr 0x2040a008 -> 0x2040a011
Block Ten is 10

Block allocation traceback: malloc main
malloc +0x00000(0) "malloc.c"
main +0x00018(24) "ex7.c":3

BFREE (Bad Free)

Thiserror isreported when aprogramtriesto releaseamemory block
that is referenced by an invalid pointer. The following program
produces this error:

f##include <stdio.h>

void main(int argc, char **argv){
FILE *f = fopen("tmp","w");

fprintf(f, "™ Hello ");

fclose(f);
free(f); /* The FILE structure was freed by fclose() */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

ZeroFault reports the following information:

BFREE ex9 main
Free of unallocated address 0xf000ca60
Traceback: main
main +0x00050(80) "ex9.c":8
Could not find any block near access address

DFREE (Double Free)

Thiserror isreported when aprogramtriesto rel ease amemory block
that has already been released. The following program producesthis
error:

f##include <stdlib.h>

void main(int argc, char **argv){

char *s=(char *) malloc (10);

free(s);

free(s); /* s has already been freed */
}

ZeroFault reports the following information:

DFREE ex10 main
Block addr 0x2040a008 -> 0x2040a011
Block len is 10
Error traceback: main

main +0x00034(52) "ex10.c":6
AlTocation traceback: main

main +0x00018(24) "ex10.c":4
Free traceback: main

main +0x00028(40) "ex10.c™:5

BREALL (Bad Realloc)

This error is reported when a program tries to change the size of an
allocated memory block usingrealloc(), but callsthefunctionwith an
illegal pointer. Thiserror issometimesdetected by A1 X and causesan
‘|OT/Abort trap(coredump)’ with the following message:

Catastrophe in realloc: invalid storage ptr

The following program produces this error:

f##include <stdlib.h>

void main(int argc, char **argv) {
char s[101, *p;

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

p = (char)realloc(s,20); /* s does not point to
an allocated block */
}

ZeroFault reports the following information:

BREALL main
Realloc of unallocated address 0x2ff22220
Traceback: main
main +0x0001c(28) "exll.c":6
Could not find any block near access address

RNULL (Null Pointer Read)

Thiserror isreported when aprogram attemptsto read memory using
apointer that referencesmemory location zero. Thefollowing program
produces this error:

f##include <stdio.h>
f##include <stdlib.h>
f##include <strings.h>

void main(int argc, char ** argv) {
char *p=0;
putchar(*p);

}

ZeroFault reports the following information:

RNULL rnull main
Access address 0x00000000
Access Ten 1
Error traceback: main
main +0x0003c(60)"rnull.c":7

WNULL (Null Pointer Write)

Thiserror isreported when aprogram attemptsto update apointer that
referencesmemory location zero. Thisisawaysdetected by A1 X and
it causes a segmentation violation error. The following program
produces this error:

f#finclude <stdio.h>
fFinclude <stdlib.h>
f#include <strings.h>

void main(int argc, char ** argv) {
char *p=0;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

*p=lcl;
}

ZeroFault reports the following information:

SEGV main
Fault address 0x00000000
Traceback: main
main +0x0001c(28)"wnull.c":7

WNULL wnull main
Access address 0x00000000
Access len 1
Error traceback: main
main +0x0001c(28)"wnull.c":7

UNREF_BLOCK (Unreferenced Block)

When a user’s program allocates a memory block and then destroys
thepointer toitwithout first freeingtheblock, a‘ memory leak’ occurs.
Such blocks can neither be used nor freed and are known as
‘unreferenced memory blocks'. Thefollowing program producesthis
error:

void f()
{
char *p=(char *) malloc(10);
/* the pointer to the memory block
is Tost when the function exits */

}
main(int argc, char **argv)
{
int i;
for (i=0;i<10;7++)
fO);
}

ZeroFault reports the following information (the report is for ten
leaks, but only two are shown below):
UNREF_BLOCK unref f main

Block addr 0x2040a008 -> 0x2040a011
Block len 10

Allocation traceback: f main
f +0x00010(16)"unref.c":4
main +0x00028(40)"unref.c":11

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

WM SG (Warning M essage)
M essages of thistype are produced when aprocess attemptsto define

signal handlersfor signalsthat are used by ZeroFault or to closefile
descriptorsthat are used by the product for internal communication.

SEGV (Signal SIGSEGYV received)

WhenaS GSEGV signal isreceived by theuser’sprogram, ZeroFault
generates this error message and terminates.

FINDING MEMORY LEAKS

ZeroFaulttracksevery memory allocationand de-all ocationperformed
by the processbeing examined. All memory manipulation carried out
by standard C functions, such as malloc, realloc, and free, and by
C++'s new and delete operators are recorded. The best way to
Investigate memory usage by the program you’ re debugging isto use
the* Snapshot’ technique. | will demonstrate thistechnique using the
following C++ program:

#include <iostream.h>

class Store {
struct store {
void *ptr;
store *next;
}s
store *top;
pubTlic:

Store():top(0) {

void insert(void *ptr);
}s

void Store::insert(void *ptr)
{

store *s = new store;
s->next = top;

top = s;

s->ptr = ptr;

return;

int

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

main(int argc, char **argv)
{
Store store;
char c;

cout<<"Press Enter to continue the program\n";
cin>>c;

for (int i = 0; i < 10; i++) {
int *f = new int;
store.insert(f);

}

cout<<"Press ENTER to terminate the program\n";

cin>>c;

return 0;
}

The program isinvoked using ZeroFault; when the program stopsto
wait for an input, the user takes a memory snapshot by pressing the
“*Snapshot’ button on the GUI. A second snapshot is taken after the
programreceivesaninput but beforeit runsto completion. Finally, the
two snapshots are compared using the GUI’s * Compare Snapshots

button. ZeroFault displays a couple of windows that show which
memory allocationsdiffer between thetwo snapshots. For thesample
program above, the second snapshot would contain 18 allocated
memory blocks containing 108 bytesthat were all ocated between the
two snapshots. It is possible to display an expanded listing showing
the size and traceback of each allocation. It isworth mentioning that
thenamesof C++ methodsand operatorsappear in‘ demangledform’,
exactly as they appear in the source code. By pressing the ‘ Show
Leaks button, the user is able to display alist of allocated memory
blocksthat areunreferenced—thesampleprogramhas19unreferenced
memory blocks containing 152 bytes, these blocks were allocated by
the C++ run-time system.

COMPARISON WITH DEBUGGING MALLOC

| ssue 54 of Al X Updatecontainsan articleof mineentitled Debugging
Malloc in AlX 4.3.3. This describes an AIX 4.3.3 utility that has
functionality similar tothat of ZeroFault. Figure 1 overleaf summarizes
the features of these two utilities, highlighting their similarities and
differences.

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Property Debug Malloc ZeroFault

Price Included $4,950 plus $990
with AIX 4.3 maintenance

AIX versions supported 4.3 only 3.25,4.1,
4.2,4.3
64-bit binary support Unclear No
Mode of operation Malloc Virtual
library Machine
replacement code
instrumen-
tation
Graphical User Interface No Yes
Demands relinking/recompiling No No
Works on stripped executables and libraries Yes Yes
Works with any threads package Yes Yes
Works with third-party applications and libraries Yes Yes
Works with C, C++, Fortran, Pascal, Yes Yes
Assembler, etc
Works with dynamically loaded libraries and Yes Yes
modules
Memory leak detection Yes Yes
Reads or writes unallocated heap memory Yes Yes
Reads or writes unallocated stack and static No Yes
memory
Reads uninitialized stack, heap, and static No Yes
memory
Attempts to free or reallocate unallocated Yes Yes
memory
Passing of invalid arguments to system calls and No Yes

common functions
Automatic ‘demangling’ of C++ names No Yes

Figure 1. Comparison of Debug Malloc and ZeroFault

Alex Polak
System Engineer
APS (Israel) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

AlX news

McAfee has announced VirusScan Version
4.5, which protects systemsagainst | nternet-
bornevirusesand maliciouscodefoundine-
mail, Internet downloads, ActiveX, Java
Applets, and JavaScripts. Thenew versionis
integrated with ePolicy Orchestrator,
enabling virus policy management and
updating over the Internet.

Another improvement is that the size of
updatefileshasbeenreducedtojust 100K B,
which (the company claims) means that
updates are delivered as much as 20 times
faster than using previous distribution
methods, as only the newest portion of virus
signature files are downloaded.

Out now, the product supports Al X, Linux,
Windows, NetWare, Solaris, HP-UX, SCO
OpenServer, and MacOS. The Active Virus
Defense suite starts at US$30 per node for
5,000 nodes.

For further information contact:

Network Associates Inc, 3965 Freedom
Circle, SantaClara, CA 95054, USA

Tel: +1 408 988 3832

Fax: +1 408 970 9727

Web: http://www.nai.com

Network Associates, 227 Bath Road,
Slough, Berkshire SL1 5PP, UK

Tel: +44 1753 217500

Fax: +44 1753 217520

* % %

IBM has released VisualAge C++
Professional for AIX Version 5.0, the latest
version of its IDE for C++, which includes
both a traditional makefile-based compiler

and an incremental compiler. The package
supports the latest ANSI 98 C++ standard,
including a complete ANSI Standard
TemplateLibrary, and al so supportsboth 32-
bit and 64-bit optimization.

Included in the product is the latest C
compiler for Al X, with support for RS/6000
SMP and OpenMP, a new distributed
debugger for local or remote debugging, and
a new performance analysis tool for C and
C++ applications. Other features include a
set of Open Class Libraries, an integrated
and configurable IDE, a set of visual tools
including Visua Builder and Data Access
Builder, and HTML-based on-line help.

Other enhancements include keyboard
mappings for VI and Emacs within the IDE
and support for multiple code stores for use
with the incremental compiler.

Out now, it costs US$2,500 per seat with
upgrades priced at US$1,250.

IBM also announced Content Manager, for
integrating and sharing digital content.
According to the company, the software
handles datain any format, including XML,
HTML,images, audio, andvideo. It provides
a single open programming interface for
rapid application development and
scalability. It can search across a variety of
content and data repositories.

Out now, it runson AlX and NT and prices
start at US$15,000 per workstation/server
and US$2,000 per concurrent user.

For further details, contact your local IBM
representative.

xephon

	Version control for files on AIX servers
	Check mail utility
	RAID and AIX
	ZeroFault – a memory debugging tool for AIX
	AIX news

