
July 2000

57

© Xephon plc 2000

3 Web-based ping from AIX
15 Check mail utility – part 2
21 Mailto - an AIX Web server

extension
41 Building freeware and shareware
45 New features of RS/6000 hardware

and software
52 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.



    2

AIX Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies.  A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence).  To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl@xephon.com

North American office
Xephon/QNA
Post Office Box 350100, Westminster CO
80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors  on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
in the UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com/
aixupdate.html (you’ll need the user-id
shown on your address label to access it).



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Web-based ping from AIX

In this article I explore the subject of implementing a Web-based
‘ping’ utility and take a look at the thinking and tricks and techniques
behind it. By dissecting a script for such a tool, I hope to share with
you some tips that may be of use to you for writing your own scripts
(Web-based or otherwise).

This is an AIX-based tool that can assist in the management of
multiple machines on an intranet or the Internet running either AIX or
other operating systems. From time to time, machines go off-line for
maintenance and other reasons. When this happens it’s normal to ping
the machines to check whether they’ve come back on-line. The actual
response time of the ping is rarely noted, what most users want to
know is whether the machine is alive or dead. This tool enhances ping
by giving it a graphical Web-based front-end that reports on the status
of all machines of interest at a glance. This is best illustrated by a
screenshot of the result as it appears on a browser (see Figure 1).

Figure 1: The utility’s graphical front end



4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

HOW IT WORKS

The tool consists of a single shell script, ping.cgi, that generates
HTML dynamically (the script conforms with the CGI standard) plus
a collection of small graphics in GIF format, which make the result
easier on the eye.

The script pings each machine you specify using a timeout of one
second. An HTML table is then generated by the script using the
results.

A full listing of the script and the HTML is included later in the article.
In ‘pseudo code’, this is what the script does:

1 Create an HTML header.

2 Create HTML to define the start of a table.

3 Carry out the following procedure for each machine whose status
is required:

– Ping the machine.

– If the machine is alive, set the result to a picture of a green
tick.

– If the machine is dead, set the result to a picture of a red cross.

– Create an HTML table row entry for this machine.

4 End the table.

5 End the HTML.

This pseudo-code translates directly into the function DO_main that
appears at the top of ping.cgi:

DO_main ()
{
    DO_HTML_Header
    DO_HTML_Table_Start

    for PLATFORM in rs6k sun hpv9 hpv10 digital vax alpha as400
    do
        DO_Timed_Ping $PLATFORM
        DO_Set_Graphic_According_to_Ping_Result $?
        DO_HTML_Table_Row



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

    done

    DO_HTML_Table_End
    DO_HTML_Footer
}

I find that functions are a convenient way of giving a script both
structure and readability. However, after implementing DO_main,
remember to call it at the end of the script!

I’ll now examine each function called by DO_main in more detail,
looking at them in the order in which they appear:

• DO_HTML_Header

• DO_HTML_Table_Start

• DO_Timed_Ping

• DO_Set_Graphic_According_to_Ping_Result

• DO_HTML_Table_Row

• DO_HTML_Table_End

• DO_HTML_Footer.

Many of the functions use the echo command. By echoing HTML
directly to stdout and running the script from a browser via CGI, the
HTML generated is displayed on the user’s browser.

DO_HTML_HEADER
DO_HTML_Header ()
{
    echo "<html>"
    echo "<head>"
    echo "  <title>Pings</title>"
    echo "</head>"
    echo ""
    echo "<body>"
    echo "<h1 align=center>Pings</h1>"
    echo "<p>"
}

This function generates the tags required at the top of a page of HTML
and aligns the title of the page on the centre.



6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

DO_HTML_TABLE_START
DO_HTML_Table_Start ()
{
    echo "<table border align=center cellspacing=0 cellpadding=5>"
    echo "  <caption align=bottom> ping results</caption>"
    echo "    <tr>"
    echo "       <th align=center>Host name</th>"
    echo "       <th align=center><IMG SRC=images/question.gif></th>"
    echo "       <th align=center>IP Address</th>"
    echo "       <th align=center>Supplier</th>"
    echo "       <th align=center>Model</th>"
    echo "       <th align=center>OS type</th>"
    echo "    </tr>"
}

As the name suggests, this function generates the tags required to
begin a table definition in HTML in preparation for the table rows that
follow.

DO_TIMED_PING
DO_Timed_Ping ()
{
    DO_Timeit 1 "ping ${1} 56 1" >/dev/null 2>&1
    return $?
}

This function takes a machine domain name (or IP address) as a
parameter and issues a ping command with a timeout of one second.
This timeout is important to ensure that the script executes in a timely
manner, even when some or all the machines on the list are down. On
most networks, a ping will return in a matter of 10 milliseconds, so a
timeout of one second is plenty. If you intend to use this script to
monitor machines on a WAN, you may want to use a bigger timeout.
The output of ping is ignored except for the return status indicating
either success (‘0’) or failure (‘1’). The return status is passed back in
$? to the calling function, DO_Timed_Ping, which in turn calls
DO_Timeit (which is covered later in this article).

DO_SET_GRAPHIC_ACCORDING_TO_PING_RESULT
DO_Set_Graphic_According_to_Ping_Result ()
{
    if [ $1 -ne 0 ]



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

    then
        GRAPHIC="images/no.gif"
    else
        GRAPHIC="images/yes.gif"
    fi
}

This function simply takes the return value of the ping, which is
passed to the function as parameter $1, and sets the environment
variable GRAPHIC to the name of a file containing either a picture of
a green tick or a red cross (yes.gif or no.gif respectively), depending
on the value of $1. (Note the use of the continuation character, ‘➤ ’,
which indicates a formatting line break that’s not present in the
original source code.)

DO_HTML_TABLE_ROW
DO_HTML_Table_Row ()
{
    case ${PLATFORM} in
        rs6k)
            HOST_TYPE="RS-6000-250"
            OSYS_NAME="AIX 3.2.5"
            TEST_TARG=UNIX
            PICCY=images/logos/ibmsmall.gif
            ;;

(The code is truncated; see the listing at the end for the full source.)

        *)
            HOST_TYPE="Unknown"
            OSYS_NAME="Unknown"
            TEST_TARG=Unsupported
            PICCY=
            ;;

    esac

    IP_ADDR=`nslookup ${PLATFORM} | grep -v Alias | tail -2 | head -1 |
    ➤   cut -c10-`

    echo "    <tr>"
    echo "     <td align=left><b>${PLATFORM}</b></td>"
    echo "     <td align=center><IMG SRC=${GRAPHIC}></td>"
    echo "     <td align=left>${IP_ADDR}</td>"
    echo "     <td align=center><IMG SRC=${PICCY}></td>"
    echo "     <td align=left>${HOST_TYPE}</td>"
    echo "     <td align=left>${OSYS_NAME}</td>"



8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

    echo "    </tr>"
}

As the name suggests, this function generates the tags for a table row.
The first part of the script sets up the environment variables that are
used by the second part, which generates the actual HTML. The line
beginning IP_ADDR finds the IP address of the domain name passed
in the environment variable, PLATFORM.

DO_TIMEIT
DO_Timeit()
{
        interval=$1 export interval
        shift
        $* &
        pid=$! export pid
    (
        sleep $interval
        kill -HUP $pid >/dev/null 2>&1
    ) &
    wait $pid
}

DO_Timeit is a generic function that can be used in many scripts. It
allows any command to be executed, along with a full set of parameters
and a timeout. ping, for example, should return a result quickly on a
fast network if the machine to be ‘pung’ is in good health, but will take
more than a few seconds to return if the machine is dead. Just as
importantly, if the command executes quickly, we don’t want to wait
for the timeout to expire.

The first parameter (passed in $1) is the timeout value in seconds. This
is copied to the environment variable INTERVAL for use later. The
shift command moves all parameters that were in $2, $3, and $4 left
by one to $1, $2, and $3. This is a way of getting rid of $1, leaving the
actual command to be executed in $1, with parameters in $2, $3, etc.
The strange looking command:

$* &

executes the command itself – the ampersand (‘&’) is there to request
the command to be executed in the background as another AIX
process. At this point, $! contains the process ID. This is copied to the
environment variable pid.



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

Now comes the important part – the timeout. To kill or not to kill – that
is the question! As mentioned earlier, we have to code the function so
it doesn’t wait for the timeout to expire if the command itself returns
quickly. This is achieved by executing sleep followed by the kill
command as a separate process, so we end up with three processes
running simultaneously – the script itself, the command being executed
(in this case ping), and the sleep command.

So, the job of the ‘main’ function is to start the two background
processes, then wait for the ‘command process’ (ping) to finish –
hence the command wait $pid. If the command completes before the
timeout value, the DO_Timeit function completes and returns to the
calling function. This has the effect of killing the other process, which
is likely to be in the middle of executing the sleep command. On the
other hand, if the command doesn’t complete before the timeout
value, the process executing the sleep command will finish first and
kill the command process. This kill command kills the command that
was executed earlier (ping, in our case), and then the whole function
completes and returns to the caller. The parenthesis followed by
ampersand ensure that the sleep command followed by the kill
command execute one after the other in the same background process.

HTML OUTPUT FROM PING.CGI

This is the HTML generated by the script that resulted in the screenshot
shown in Figure 1.

<html>
<head>
<title>Pings</title>
</head>

<body>
<h1 align=center>Pings</h1>
<p>

<table border align=center cellspacing=0 cellpadding=5>
  <caption align=bottom> ping results</caption>
    <tr>
       <th align=center>Host name</th>
       <th align=center><IMG SRC=images/question.gif></th>
       <th align=center>IP Address</th>
       <th align=center>Supplier</th>



10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

       <th align=center>Model</th>
       <th align=center>OS type</th>
    </tr>

    <tr>
     <td align=left><b>rs6k</b></td>
     <td align=center><IMG SRC=images/yes.gif></td>
     <td align=left> 207.46.130.30</td>
     <td align=center><IMG SRC=images/logos/ibmsmall.gif></td>
     <td align=left>RS-6000-250</td>
     <td align=left>AIX 3.2.5</td>
    </tr>

    <tr>
     <td align=left><b>sun</b></td>
     <td align=center><IMG SRC=images/yes.gif></td>
     <td align=left> 207.46.130.31</td>
     <td align=center><IMG SRC=images/logos/sunsmall.gif></td>
     <td align=left>Sparc 4</td>
     <td align=left>SunOS 5.4</td>
    </tr>

    <tr>
     <td align=left><b>hpv9</b></td>
     <td align=center><IMG SRC=images/no.gif></td>
     <td align=left> 207.46.130.32</td>
     <td align=center><IMG SRC=images/logos/hpsmall.gif></td>
     <td align=left>HP 9000</td>
     <td align=left>HP-UX 9.5</td>
    </tr>

    <tr>
     <td align=left><b>hpv10</b></td>
     <td align=center><IMG SRC=images/yes.gif></td>
     <td align=left> 207.46.130.33</td>
     <td align=center><IMG SRC=images/logos/hpsmall.gif></td>
     <td align=left>HP 9000</td>
     <td align=left>HP-UX v10</td>
    </tr>

    <tr>
     <td align=left><b>digital</b></td>
     <td align=center><IMG SRC=images/yes.gif></td>
     <td align=left> 207.46.130.37</td>
     <td align=center><IMG SRC=images/logos/decsmall.gif></td>
     <td align=left>Alpha 200</td>
     <td align=left>OSF-1 3.2C</td>
    </tr>

    <tr>



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

     <td align=left><b>vax</b></td>
     <td align=center><IMG SRC=images/yes.gif></td>
     <td align=left> 207.46.130.35</td>
     <td align=center><IMG SRC=images/logos/decsmall.gif></td>
     <td align=left>VAX 3100</td>
     <td align=left>VMS 5.5</td>
    </tr>

    <tr>
     <td align=left><b>alpha</b></td>
     <td align=center><IMG SRC=images/yes.gif></td>
     <td align=left> 207.46.130.34</td>
     <td align=center><IMG SRC=images/logos/decsmall.gif></td>
     <td align=left>Alpha 200</td>
     <td align=left>Open VMS 6</td>
    </tr>

    <tr>
     <td align=left><b>as400</b></td>
     <td align=center><IMG SRC=images/no.gif></td>
     <td align=left> 207.46.130.36</td>
     <td align=center><IMG SRC=images/logos/ibmsmall.gif></td>
     <td align=left>AS/400</td>
     <td align=left>OS-400</td>
    </tr>

    <tr>
     <td align=left><b>scrumpy</b></td>
     <td align=center><IMG SRC=images/yes.gif></td>
     <td align=left> 207.46.130.21</td>
     <td align=center><IMG SRC=images/logos/intel3.gif></td>
     <td align=left>Pentium PC</td>
     <td align=left>Windows NT Server</td>
    </tr>

</TABLE>
</body>
</html>

PING.CGI
#!/bin/ksh

set -x

DO_main ()
{
    DO_HTML_Header
    DO_HTML_Table_Start



12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

    for PLATFORM in rs6k sun hpv9 hpv10 digital vax alpha as400 scrumpy
    do
        DO_Timed_Ping $PLATFORM
        DO_Set_Graphic_According_to_Ping_Result $?
        DO_HTML_Table_Row
    done

    DO_HTML_Table_End
    DO_HTML_Footer
}

DO_Timed_Ping ()
{
    DO_Timeit 1 "ping ${1} 56 1" >/dev/null 2>&1
    return $?
}

DO_Set_Graphic_According_to_Ping_Result ()
{
    if [ $1 -ne 0 ]
    then
        GRAPHIC="images/no.gif"
    else
        GRAPHIC="images/yes.gif"
    fi
}

DO_Timeit()
{
        interval=$1 export interval
        shift
        $* &
        pid=$! export pid
    (
        sleep $interval
        kill -HUP $pid >/dev/null 2>&1
    ) &
    wait $pid
}

DO_HTML_Header ()
{
#    echo "Content-type: Text/HTML"
#    echo
    echo "<html>"
    echo "<head>"
    echo "<title>Pings</title>"
    echo "</head>"
    echo ""
    echo "<body>"



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

    echo "<h1 align=center>Pings</h1>"

    echo "<p>"
}

DO_HTML_Table_Start ()
{
    echo "<table border align=center cellspacing=0 cellpadding=5>"
    echo "  <caption align=bottom> ping results</caption>"
    echo "    <tr>"
    echo "       <th align=center>Host name</th>"
    echo "       <th align=center><IMG SRC=images/question.gif></th>"
    echo "       <th align=center>IP Address</th>"
    echo "       <th align=center>Supplier</th>"
    echo "       <th align=center>Model</th>"
    echo "       <th align=center>OS type</th>"
    echo "    </tr>"
}

DO_HTML_Table_End ()
{
      echo "</TABLE>"
}

DO_HTML_Footer ()
{
      echo "</body>"
      echo "</html>"
}

DO_HTML_Table_Row ()
{
    case ${PLATFORM} in
        alpha)
            HOST_TYPE="Alpha 200"
            OSYS_NAME="Open VMS 6"
            TEST_TARG=VMS
            PICCY=images/logos/decsmall.gif
            ;;
        as400)
            HOST_TYPE="AS/400"
            OSYS_NAME="OS-400"
            TEST_TARG=OS400
            PICCY=images/logos/ibmsmall.gif
            ;;

        digital)
            HOST_TYPE="Alpha 200"
            OSYS_NAME="OSF-1 3.2C"
            TEST_TARG=UNIX



14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

            PICCY=images/logos/decsmall.gif
            ;;

        hpv9)
            HOST_TYPE="HP 9000"
            OSYS_NAME="HP-UX 9.5"
            TEST_TARG=UNIX
            PICCY=images/logos/hpsmall.gif
            ;;

        hpv10)
            HOST_TYPE="HP 9000"
            OSYS_NAME="HP-UX v10"
            TEST_TARG=UNIX
            PICCY=images/logos/hpsmall.gif
            ;;

        scrumpy)
            HOST_TYPE="Pentium PC"
            OSYS_NAME="Windows NT Server"
            TEST_TARG=WNTS
            PICCY=images/logos/intel3.gif
            ;;

        rs6k)
            HOST_TYPE="RS-6000-250"
            OSYS_NAME="AIX 3.2.5"
            TEST_TARG=UNIX
            PICCY=images/logos/ibmsmall.gif
            ;;

        rslab)
            HOST_TYPE="RS-6000-250"
            OSYS_NAME="AIX 3.2.5"
            TEST_TARG=UNIX
            PICCY=images/logos/ibmsmall.gif
            ;;

        sun)
            HOST_TYPE="Sparc 4"
            OSYS_NAME="SunOS 5.4"
            TEST_TARG=UNIX
            PICCY=images/logos/sunsmall.gif
            ;;

        vax)
            HOST_TYPE="VAX 3100"
            OSYS_NAME="VMS 5.5"
            TEST_TARG=VMS
            PICCY=images/logos/decsmall.gif
            ;;



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

        *)
            HOST_TYPE="Unknown"
            OSYS_NAME="Unknown"
            TEST_TARG=Unsupported
            PICCY=
            ;;

    esac

    IP_ADDR=`nslookup ${PLATFORM} | grep -v Alias | tail -2 | head -1 |
    ➤   cut -c10-`

    echo "    <tr>"
    echo "     <td align=left><b>${PLATFORM}</b></td>"
    echo "     <td align=center><IMG SRC=${GRAPHIC}></td>"
    echo "     <td align=left>${IP_ADDR}</td>"
    echo "     <td align=center><IMG SRC=${PICCY}></td>"
    echo "     <td align=left>${HOST_TYPE}</td>"
    echo "     <td align=left>${OSYS_NAME}</td>"
    echo "    </tr>"
}

# DO_main $* >/dev/null 2>&1
DO_main $*

exit 0

GIF FILES

Note that this script doesn’t provide the .gif files that are used in the
final presentation. One source for such files is the various vendor Web
sites – www.ibm.com, www.sun.com, etc. There you should find
appropriate graphics, though permission may be required to use them.

John Rainford (UK) © Xephon 2000

Check mail utility – part 2

This month’s instalment concludes this article on the check mail
utility (the first and only other instalment appeared in last month’s
issue).



16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

LISTING KCHKMD.SH
######################################################################
# Name       : kchkmd.sh ( kill check mail daemon )
#
# Description: Kills the daemon process chkmd.sh that checks mail.
#
# Notes      : 1. The script contains the following functions:
#                 o main
#                 o InitializeVariables
#                 o InstanceCheck
#                 o RootUser
#                 o DisplayMessage
#                 o MoveCursor
#                 o ProcessExit
#
#              2. The script must be run from the root account.
#
#              3. It may take a while to kill the daemon as the
#                 daemon receives signal 15 and waits for all its
#                 child proceses to complete.
######################################################################
# Name       : InitializeVariables
#
# Description: Initializes all the required variables
######################################################################
InitializeVariables ()
{
#
# define message prefixes
#
ERROR="kchkmd.sh:ERROR:"
INFO="kchkmd.sh:INFO:"
#
# define escape sequences
#
ESC="\0033["
RVON=_[7m                  # reverse video on
RVOFF=_[27m                # reverse video off
BOLDON=_[1m                # bold on
BOLDOFF=_[22m              # bold off
BON=_[5m                   # blinking on
BOFF=_[25m                 # blinking off
#
# define return codes
#
TRUE=0
FALSE=1
#
# define exit codes



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

#
FEC=1
SEC=0
#
# define messages
#
NOT_ROOT_USER="Must execute the script from root account${RVOFF}"
DAEMON_NOT_RUNNING="Deamon process is not running${RVOFF}"
KILLING_DAEMON="Killing daemon process${RVOFF}"
DAEMON_KILLED="Successfully killed daemon process${RVOFF}"
DAEMON_NOT_KILLED="Failed to kill daemon process${RVOFF}"
OS_ERROR="\${ERR_MSG}${RVOFF}"
}
######################################################################
# Name       : MoveCursor
#
# Input      : Y and X coordinates
#
# Returns    : None
#
# Description: Moves the cursor to the required location (Y, X).
#
# Notes      : 1. The function must be run in ksh for print to work.
######################################################################
MoveCursor ( )
{
YCOR=$1
XCOR=$2
echo "${ESC}${YCOR};${XCOR}H"
}
######################################################################
# Name       : DisplayMessage
#
# Description: Displays a message.
#
# Input      : 1. Message type (E = Error, I = Informative)
#              2. Error Code as defined in DefineMessages ().
#              3. Message to be acknowledged flag
#
# Notes      : 1. The user must acknowledge the message if the
#                 acknowledgement flag is set to Y.
######################################################################
DisplayMessage ( )
{
MESSAGE_TYPE=$1
MESSAGE_TEXT=`eval echo $2`
ACK_MESSAGE="$3"
if [ "${ACK_MESSAGE}" = "" ]
then
    ACK_MESSAGE="Y"



18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi
clear
MoveCursor 24 1
if [ "${MESSAGE_TYPE}" = "E" ]
then
    echo "`eval echo ${RVON}${ERROR}`${MESSAGE_TEXT}\c"
else
    echo "`eval echo ${RVON}${INFO}`${MESSAGE_TEXT}\c"
fi
#
# let the user acknowledge the message
#
if [ "${ACK_MESSAGE}" = "Y" ]
then
    read DUMMY
fi
return ${TRUE}
}
######################################################################
# Name       : ProcessExit
#
# Description: The function processes a graceful exit.
#
# Input      : 1. Exit Code
######################################################################
ProcessExit ()
{
#
# assign parameters
#
EXIT_CODE="$1"
exit $EXIT_CODE
}
######################################################################
# Name       : InstanceCheck
#
# Description: Checks to see if the mail check daemon is running.
#
# Returns    : $TRUE if daemon process is running
#              $FALSE otherwise.
######################################################################
InstanceCheck ()
{
if ps -eaf | grep "chkmd.sh" | grep -v "grep" > /dev/null 2>&1
then
    #
    # an instance is running
    #
    return $TRUE
else



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

    return $FALSE
fi
}
######################################################################
# Name       : RootUser
#
# Description: Checks to see if the user is root.
#
# Returns    : TRUE if user is root
#              FALSE otherwise.
######################################################################
RootUser ()
{
USER=`id | cut -d'(' -f2 | cut -d')' -f1`
if [ "${USER}" = "root" ]
then
    return $TRUE
else
    return $FALSE
fi
}
######################################################################
# Name       : KillDaemonProcess
#
# Description: Kills the daemon process.
#
# Returns    : $TRUE or
#              $FALSE.
######################################################################
KillDaemonProcess ()
{
PID=`ps -eaf | grep "chkmd.sh" | grep -v "grep" | grep -v "kchkmd" |
➤   awk {'print $2'}`
kill -15 $PID
while true
do
    if ps -eaf | grep "chkmd.sh" | grep -v "grep" | grep -v "kchkmd"
        ➤   > /dev/null 2>&1
    then
        #
        # still waiting for child process to complete
        #
        :
    else
        return $TRUE
    fi
done
}



20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

######################################################################
# Name       : main
#
# Description: Invokes all other functions.
#
# Notes      : The function calls the following functions:
#              o InitializeVariables
#              o InstanceCheck
#              o RootUser
#              o KillDaemonProcess
#              o DisplayMessage
#              o ProcessExit
######################################################################
main ()
{
InitializeVariables
if ! RootUser
then
    DisplayMessage E "${NOT_ROOT_USER}"
    ProcessExit $FEC
fi
if ! InstanceCheck
then
    DisplayMessage E "${DAEMON_NOT_RUNNING}"
    ProcessExit $FEC
fi
DisplayMessage I "${KILLING_DAEMON}"
if ! KillDaemonProcess
then
    DisplayMessage E "${DAEMON_NOT_KILLED}"
    ProcessExit $FEC
else
    DisplayMessage I "${DAEMON_KILLED}"
fi
ProcessExit $SEC
}
#
# invoke main
#
main

Arif Zaman
DBA/Administrator
High-Tech Software (UK) © Xephon 2000



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

Mailto - an AIX Web server extension

INTRODUCTION

Mailto is a CGI Web server extension written in C. We run this
program under AIX 4.2 with Netscape Enterprise Server 3.62, but it
should work with any other AIX-compatible Web server.

Mailto’s purpose is to gather, format, and send information from a
standard Web form to one or more e-mail addresses. The e-mail is
formatted either automatically or using a sophisticated command-
driven process. Mailto’s rich instruction set means you don’t have to
write a custom program to handle every form that you post on the Web.

Mailto can be invoked simply by assigning its name and path to a
FORM’s ACTION attribute, specifying the e-mail address of the
recipient using a hidden INPUT tag. An optional hidden INPUT tag
can be used to set the subject of the e-mail. An example of these tags
appears below. While Mailto’s preferred METHOD is POST, it also
works with GET.

<FORM ACTION="http://www.server.name/CgiDirPath/Mailto" METHOD=POST>
<INPUT TYPE=HIDDEN NAME=_TO VALUE="Receiver_Email_address">
<INPUT TYPE=HIDDEN NAME=_SUBJECT VALUE="Message subject matter">

The body of the message is built using the name and content of all
INPUT, SELECT, and TEXTAREA tags on the form other than those
whose name starts with an underscore character (‘_’). The latter are
used by Mailto to control processing, as we shall see later.

Name-value pairs are listed in the same order as their associated tags
appear on the form. By default, the name and value are separated by
an equal sign (‘=’) preceded and followed by a space. Each name-
value pair is separated by a line break. This may be changed using
_SUFFIX_NAME and _SUFFIX_VALUE, which contain character
strings to be inserted respectively after the name and value of all
name-value pairs.

Additional text may be inserted before or after any name-value pair
using one or more _WRITE or _WRITE_COND instructions before or



22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

after the associated tag. To omit a name-value pair from a message,
add the _INVISIBLE attribute to the tag. To omit a value only if the
user has left the field blank, use _INVISIBLE_COND.

Automatic processing of name-value pairs is disabled when the
attribute _INVISIBLE is applied to user input tags. In such
circumstances, a more natural style of prose can be generated in the
message body using the _WRITE and WRITE_COND instructions.
Output text encoded with these statements may contain references to
form fields; each reference is replaced by the value of the named
<INPUT>, <SELECT>, or <TEXTAREA>.

Six field attributes may be applied to input tags to force special
processing, such as conversion of the user’s input to uppercase or
lowercase, conditional or unconditional exclusion of a field from the
message body, restriction of a field to numeric data, and enforcement
of mandatory fields (fields the user must complete). Another subset of
instructions enables full control over the mail message’s headers, such
as From:, To:, Subject:, Cc:, Bcc:, and Reply-To:.

Mailto also implements a sophisticated ‘IF block’ conditional structure
to test the content of input fields. This feature allows selective printing
and message formatting based on user input data. For example, an IF
block may be used to check input data in order to select the most
appropriate URL to which to redirect the user when the program
terminates.

There are no restrictions on the number of user input tags a form may
contain. Mailto-extended data validation and error reporting also has
the benefit of easing the burden of testing and debugging – on-screen
error messages always offer a direct link to on-line help files, and the
program also implements a debug mode in which messages are not
mailed but displayed on the browser screen, along with extensive
debugging information.

Mailto is very safe to use on the ’Net, as sendmail is invoked
internally through a pipe, not a system call, and no static buffers are
ever used – everything is managed through dynamic memory allocation.
A log file also traces all calls. Use of the program may be restricted to
forms from known domain names by using a validation list.



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

PROGRAM INSTALLATION AND CUSTOMIZATION

Installing Mailto is fairly straightforward. Begin with program
customization, enabling optional features, and setting path and file
names according to your site-specific standards. Customization
guidelines are given below. When you have finished this part, compile
the source code using the command:

cc -o Mailto Mailto.c

and place the executable file in the Web server’s CGI directory. The
last task is to copy the on-line HTML help file into a convenient Web
directory.

Customizable statements are located near the top of the program, right
after ‘include’ statements. Default settings are shown below.

#define MAILPGM "/usr/sbin/sendmail -t -oi -oem"  /* Invoke sendmail */
#define TMPFILE "/tmp/Mailto.tmp"          /* Temporary work file    */
#define LOGFILE "/usr/log/Mailto.log"      /* Log file absolute path */
#define NSQFILE "/usr/log/Mailto.noseq"    /* Save file: _$NOSEQ fct */
#define ONLNOTE 0                          /* On-line help file      */
#define HLPHTTP "http://www.server.name"   /* URL-serv to help file  */
#define HLPHTML "/FullWebPath/Mailto.htm"  /* URL-file to help file  */
#define DFLTSND "Web@Some.Net"             /* Default sender e-mail  */
#define DFLTSUB "No title."                /* Default e-mail subject */
#define DOMCHCK 0                          /* Referrer domain check  */
#define DOMLIST \
{\
        ".domain.name.suffix",\
}                                         /* List authorized domains */

MAILPGM is the absolute path to sendmail’s executable file, appended
with appropriate options (-t -oi -oem are mandatory). TMPFILE is the
full path name of a work file that’s created by Mailto whenever
necessary (the person responsible for running the Web server needs
permission to create files in the directory in which TMPFILE resides).

LOGFILE is the full path name of the log file and NSQFILE is the full
path name of the file used to save the current _$NOSEQ settings. Both
files, which are initially empty, should exist and the person who runs
the Web server should be granted read and write permissions to them
using either base Unix permissions or AIX ACL extended permissions.

If you do not intend to install the on-line help file, assign the value ‘0’
to ONLNOTE and ignore both HLPHTTP and HLPHTML. Otherwise,



24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

set ONLNOTE to ‘1’ and assign the URL of the server hosting Mailto’s
on-line HTML help file to HLPHTTP and the path to the help file to
HLPHTML.

DFLTSND is the fully-qualified e-mail address of the default sender,
which is used on the From: message header when one is not explicitly
set. DFLTSUB is the default string assigned to the Subject: header
when one is not set explicitly using _SUBJECT.

Assign the value ‘1’ to DOMCHCK if you wish to enable referrer
domain checking. This setting restricts Mailto usage to pages on
domains, sub-domains, or machines explicitly listed in DOMLIST.
When DOMCHCK is ‘0’, Mailto can be called from anywhere on the
’Net.

ON-LINE HELP AND DEBUG MODE

Users don’t need to memorize URLs either to execute the program or
view on-line documentation. While Mailto is invoked using the URL
http://www.server.name/CgiDirPath/Mailto, the URL to access to the
on-line help is obtained by adding PATHINFO/help to the server’s
URL, as shown below. Error reporting screens always offer a direct
link to this help file.

http://www.server.name/CgiDirPath/Mailto/help

FORM tags that invoke Mailto using the following ACTION attribute:

ACTION="http://www.server.name/CgiDirPath/Mailto"

result in normal processing, while adding either /debug or /debug/ to
the end of the URL invokes the program in debug mode (see the
examples below). In this mode, the formatted message is not mailed
to the user but is displayed on the user’s screen, along with extensive
debugging information. Note that the two forms of the command are
not identical – /debug/ provides more extensive information than /
debug.

ACTION="http://www.server.name/CgiDirPath/Mailto/debug"

ACTION="http://www.server.name/CgiDirPath/Mailto/debug/"



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

MAILTO INSTRUCTION SET

Mailto processing is controlled by instructions embedded in Web
forms using special INPUT tags. These tags must conform to the
following rules:

• The INPUT tag must have the attribute TYPE="HIDDEN" to
ensure the field is not rendered on screen.

• The value of the NAME attribute must be a string containing only
uppercase characters preceded by an underscore (‘_’) – the string
is the name of the instruction to be performed on the server.

• The attribute VALUE is assigned a string that’s used by the
targeted instruction.

Below is an example of an embedded instruction (the continuation
character, ‘➤ ’, indicates a formatting line break):

<INPUT TYPE="HIDDEN" NAME="_SUBJECT" VALUE="Reservation
                                            ➤   acknowledgement">

Consequently, avoid using an underscore as the first character of the
names of other <INPUT>, <SELECT>, and <TEXTAREA> fields, as
these will be mistaken for Mailto statements.

Instructions are grouped into three sets: mailing instructions, message
formatting instructions, and control instructions. The table in Figure
1 opposite lists all available instruction codes by category along with
their default value and a short description, where applicable.

Every form processed by Mailto must contain at least one _TO or
_TO_1X1 instruction that identifies the message receiver. Apart from
this, no other instruction is mandatory. When applicable, the default
values listed in the table are used.

All instructions may occur more than once in a form. However,
including multiple instances of the instructions _FROM, _LINE,
_MARGIN, _MAX_GAP, _SUFFIX_NAME, _SUFFIX_VALUE and
_XFR_URL outside of a conditional construct is simply redundant.
When Mailto comes across more than one instance of any of the above
instructions, it checks all instances for correct syntax and discards all
but the last one.



26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: Summary of commands

URL of page to transfer to when Mailto 
terminates

None_XFR_URL

Name of a field that cannot be left blankNone_MANDATORY

Name of a field that should be numerical onlyNone_NUMERICAL

Name of a field to be translated into uppercaseNone_UPPERCASE

Name of a field to be translated into lowercaseNone_LOWERCASE

Name of a field to be excluded from messageNone_INVISIBLE

Name of a field to be excluded if left blankNone_INVISIBLE_COND

{Field-Name}.OP.StringNone_IF

{Field-Name}.OP.StringNone_AND

{Field-Name}.OP.StringNone_OR

{Field-Name}.OP.StringNone_ELSE_IF

Optional commentNone_ELSE

Optional commentNone_END_IF

Argument (control instruction)DefaultInstruction

Ditto, if all referenced fields are non-blankNull string_WRITE_COND

Text to be printed at current positionNull string_WRITE

String printed following field content‘\n’_SUFFIX_VALUE

String printed following field name‘ = ’_SUFFIX_NAME

Maximum gap from right margin when folding a 
long line

Value of _LINE_MAX_GAP

Left margin size in characters0_MARGIN

Maximum message line width in characters80_LINE

Instruction Default Argument (formatting instruction)

E-mail address where a reply is expectedNone_REPLY_TO

E-mail address to forward a dissimulated 
carbon copy

None_BCC

E-mail address to forward a manifest carbon 
copy

None_CC

Mail subject matter‘No title.’_SUBJECT

Sender’s e-mail address‘Web@Some.Net’_FROM

E-mail address of one receiver for private 
separate mailing

None_TO_1X1

E-mail address of one receiver for public group 
mailing

None_TO

Argument (mailing instruction)DefaultInstruction



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

Except for instructions that are executed in an IF block and ones that
are context-sensitive (_WRITE and _WRITE_COND), all other
instructions are order- and position-independent. However, to increase
legibility and ease of debugging, I consider it good programming
practice to group all Mailto commands at the start of a form immediately
after the <FORM> tag.

When coding tags, remember that strings assigned to keywords are
case-sensitive. Any character with an ISO-8859-1 code may appear
both in strings assigned to NAME and VALUE attributes. However,
Mailto will scan all such strings and replace all non-printable characters
(codes 0x00 to 0x1f and 0x80 to 0xa0) with blanks, with the exception
of line breaks (code 0x0a), which are preserved.

REFERENCES TO USER INPUT AND CONTEXT VARIABLES

Data entered in a particular field can be referenced elsewhere on the
form by enclosing the field name between a pair of braces. For
example, {Street-Address} refers to the information typed in the field
named ‘Street-Address’.

Some instructions (_TO, _TO_1X1, _FROM, _CC, _BCC, and
_REPLY_TO) accept only a single reference without any surrounding
text. For example, the tag:

<INPUT TYPE="HIDDEN" NAME="_FROM" VALUE="{Sender-Email}">

tells Mailto that the e-mail address to use on the From: header is the
one typed or selected by user in the <INPUT>, <SELECT>, or
<TEXTAREA> field named ‘Sender-Email’.

A single reference may also appear in the argument of _IF, _AND,
_OR, and _ELSE_IF conditional instructions. Consider the following
tag:

<INPUT TYPE="HIDDEN" NAME="_IF" VALUE="{City}.EQ.Leeds">

This evaluates to TRUE if the value of the field named ‘City’ is ‘Leeds’
(‘EQ’ is the operator for ‘equals’). The syntax and use of IF blocks is
explained later.

Other instructions (_SUBJECT, _WRITE, and _WRITE_COND) may



28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

include any number of references embedded in text or otherwise. For
example:

VALUE="You will be enrolled in group {No-Grp} of course
       ➤   {No-Crs};\n"

is a valid argument for the instruction NAME="_WRITE". Under
Mailto processing, the references {No-Grp} and {No-Crs} are replaced
by the value of the fields named No-Grp and No-Crs.

A reference is said to be ‘objectless’ when no input field has the same
name as the reference. In such cases, no substitution is possible and
the objectless reference is left in place and appears ‘as is’ in the
message body.

A reference is said to be ‘multi-object’ when many input fields have
the same name as the reference. A multi-object reference is replaced
by the string obtained by concatenating the contents of all non-empty
occurrences of the named field. The string is prefixed with an opening

Figure 2: Context variables

_$NOSEQ Dynamic form sequence number 37

_$REFERER URL of calling page http://www.srv. 
nam/Path/Ex.htm

_$SEC Seconds decimal figure 47

_$MIN Minutes decimal figure 17

_$HRS Hours decimal figure 16

_$TIME Current time 16:17:47

_$WKDAY Day of the week as a literal Saturday

_$YRDAY Day of the year as a decimal 070

_$MONTH Month of the year as a literal March

_$DD Day of the month as a decimal 11

_$MM Month of the year as a decimal 03

_$YY Year of the century 00

_$YEAR Year 2000

_$DATE Current date 2000/03/11

Variable Description Example



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

brace (‘{’) and suffixed with a closing brace (‘}’). The field values are
concatenated in the order in which they appear in the form, and are
separated from each other by the string ‘ & ’ (notice the space on either
side of the ampersand).

Mailto supports a variety of context variables, which are referenced
in the same way as user input fields. Mailto replaces a reference to a
context variable (such as {_$DATE}) that occurs in the text part of a
_SUBJECT, _WRITE, or _WRITE_COND statement with the current
value of the named variable.

You may use this feature to include in the message body the current
date and time, the day of the week, the URL of the calling page, or even
a sequence number that is incremented by one each time Mailto is
invoked from a particular page. Figure 2 on page 35 lists all context
variables implemented in Mailto.

You may include literal left and right braces in a _SUBJECT, _WRITE,
and _WRITE_COND statement by ‘escaping’ them (\{ and \}); this
stops them being interpreted as reference initiators and terminators.
Similarly, a literal ‘\’ should be escaped as ‘\\’. Note that, of all Mailto
instructions, only _FROM can be the target of a reference (as in
{_FROM}).

MAILING INSTRUCTIONS

There are seven mailing instructions: _TO, _TO_1X1, _FROM,
_SUBJECT, _CC, _BCC, and _REPLY_TO. They are used to set the
corresponding mail headers of the e-mail message under construction.

Except for _SUBJECT, whose argument is a string of characters (with
or without embedded references), all other mailing instructions have
either an e-mail address or a reference to a field where the user has
typed or selected such an address as an argument. Note that only the
first occurrence of the named field is considered when a reference is
used in this context.

Only one address or reference is allowed per statement. To specify
more, just use additional statements. Always use fully qualified
addresses, including both the user name and domain name – if you
omit the domain name, your mail server may append a default one



30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

(usually the domain name of the server) to the user name. Mailto
checks the syntax of all addresses, but cannot verify that an address
with a valid form really is associated with a user.

<INPUT TYPE=HIDDEN NAME=_TO VALUE="Email">
<INPUT TYPE=HIDDEN NAME=_TO_1X1 VALUE="Email">

At least one _TO or _TO_1X1 instruction is mandatory in all Web
forms. Use as many of these statements as are required to list all
addressees. The argument is either an e-mail address or a reference to
a field containing such an address

Addresses from all _TO statements are concatenated and the resulting
string is assigned to the envelope’s To: header. Copies of the message,
wrapped in identical envelopes, are shipped to all the addressees, who
are all aware of each other. Copies of the message are also sent to all
addressees listed in _TO_1X1 statements, but in this case the envelope’s
To: header lists only the recipient, without mentioning any other _TO
or _TO_1X1 addressees. Examples are given below.

<INPUT TYPE=HIDDEN NAME=_TO VALUE="Mary_Poppins@Magik.land.uk">
<INPUT TYPE=HIDDEN NAME=_TO VALUE="{Your-email-addr}">
<INPUT TYPE=HIDDEN NAME=_TO_1X1 VALUE="Ali.Baba@hotmail.com">

The _FROM instruction is optional; its argument, which is either an
e-mail address or a reference to a field bearing such an address,
identifies the sender of the message. This information sets the value
of the message envelope’s From: header. When the form does not
include a _FROM statement, Mailto uses the default sender address
defined at installation time. If multiple _FROM statements are
encountered, only the last one is retained for processing.

<INPUT TYPE=HIDDEN NAME=_FROM VALUE="Email">

Using {_FROM} on a _CC, _BCC, _REPLY_TO, _SUBJECT, and
_WRITE statements recalls the sender’s e-mail address, which may be
taken from a _FROM statement, a reference to a field, or the default.
You may also use {_FROM} in a WRITE_COND statement, though
the default value is never used in this context and this instruction is
discarded if the sender’s e-mail is not explicitly defined.

<INPUT TYPE=HIDDEN NAME=_FROM VALUE="Very.clean@mister.net">
<INPUT TYPE=HIDDEN NAME=_FROM VALUE="{User_Email_Address}">



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

Use one or more _SUBJECT statements to define the exact wording
of the message envelope’s Subject: header. This text is obtained by
concatenating the VALUE of all _SUBJECT statements in the form in
the order in which they appear and without adding any demarcation
character. Use the string ‘\n’ to add line breaks to the text. You may
also embed references to <INPUT>, <SELECT>, and <TEXTAREA>
fields to recall their value. References to context variables are also
allowed.

<INPUT TYPE=HIDDEN NAME=_SUBJECT VALUE="Message title">

A line may be wrapped if it exceeds either the default maximum line
width or the width explicitly set by a _LINE statement. Refer to the
_MAX_GAP instruction for an explanation of where forced line
breaks occur within lines exceeding the limit. Under debug mode, a
line that is broken up is right-padded with a backslash (‘\’) to indicate
that the line break results from the maximum line width. Note that a
line width of ten characters is used when the value of a _LINE
statement is less than this.

Always maintain a one-blank character margin after the initial Subject:
line and continuation lines, if required by mail utilities. When either
no _SUBJECT statement is encoded or all references lead to empty
strings, Mailto uses the subject ‘No title.’ (or another default subject
defined at installation time). Here are some examples.

<INPUT TYPE=HIDDEN NAME=_SUBJECT VALUE="Information request">
<INPUT TYPE=HIDDEN NAME=_SUBJECT VALUE="on {Topic} - {_$DATE}.">

When necessary, use _CC and _BCC instructions to identify where to
ship carbon copies of the message. The argument of these statements
is either a single explicit e-mail address or a reference to a field
containing such an address. If the sender (either the default sender or
an explicit one) is also to receive a copy, use the construct:
VALUE={_FROM}.

<INPUT TYPE=HIDDEN NAME=_CC VALUE="Email">
<INPUT TYPE=HIDDEN NAME=_BCC VALUE="Email">

Use as many _CC and _BCC statements as are necessary to list all
recipients. The message’s envelope contains no information about
_BCC recipients, though the Cc: header lists all addresses from _CC
instructions. Some examples are:



32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

<INPUT TYPE=HIDDEN NAME=_BCC VALUE="Abc.Xyz@cdc.com">
<INPUT TYPE=HIDDEN NAME=_CC VALUE="{Supervisor}">
<INPUT TYPE=HIDDEN NAME=_CC VALUE="{_FROM}">

The optional _REPLY_TO instruction is used to include all return
addresses that should be available to a recipient replying to the
message. The argument of this statement is either a single explicit
e-mail address or a reference to a field bearing such an address. If the
sender’s address, either the default address or an explicit one, is also
one of the return addresses, you can use a VALUE={_FROM} construct
to list it. Use as many _REPLY_TO statements as are necessary to list
all return addresses. Some examples follow.

<INPUT TYPE=HIDDEN NAME=_REPLY_TO VALUE="Adam@Old.paradise.com">
<INPUT TYPE=HIDDEN NAME=_REPLY_TO VALUE="{Selected-Email}">
<INPUT TYPE=HIDDEN NAME=_REPLY_TO VALUE="{_FROM}">

MESSAGE FORMATTING INSTRUCTIONS

Formatting instructions belong in one of two groups. The first
includes the following instruction:

• _LINE

• _MARGIN

• _MAX_GAP

• _SUFFIX_NAME

• _SUFFIX_VALUE.

These statements set the value of parameters used to build the message
overall; they include line width, left margin, demarcation characters,
and how far from the right margin to look for a suitable place to split
an oversized line.

Default values apply to statements that are not included in the form.
When multiple occurrences of the same statement are encountered,
only the last one is used, though all are checked for syntax errors.

The second group of formatting instructions has only two members:
_WRITE and _WRITE_COND. These statements either complement
or supersede the name-content pairs from user input fields.



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

The message body is built according to the following rules:

• All <INPUT>, <SELECT>, and <TEXTAREA> fields are
reported other than those explicitly excluded by the _INVISIBLE
attribute.

• The field name is printed, followed either by the string ‘ = ’
(including the leading and trailing spaces) or the string specified
in a _SUFFIX_NAME statement, then the field content, and lastly
either a line break character (‘\n’) or the string defined in a
_SUFFIX_VALUE statement.

Name-value pairs are reported in the same order as their tags appear
in the form. To omit a field when it’s left blank, use the
_INVISIBLE_COND attribute. Additional text may be printed before
or after any name-value pair by including one or more _WRITE or
_WRITE_COND instructions before or after the tag.

Text in write statements may embed any number of references to user
input fields or context variables. A _WRITE_COND statement is not
processed if one or more fields referenced in its argument are blank.
Applying the _INVISIBLE attribute to all user fields and using
_WRITE and _WRITE_COND statements allows a message to be
written in natural prose, something that’s nor possible using automatic
processing of name-value pairs.

A long string does not have to be encoded in a single instruction – it
may be more convenient to distribute the text among a number of
consecutive statements. Line breaks are never implied – they must be
set explicitly with a ‘\n’ in a _WRITE, _WRITE_COND,
_SUFFIX_NAME, or _SUFFIX_VALUE statement.

You may also embed a tab character (‘\t’) in _SUFFIX_NAME,
_WRITE, and _WRITE_COND statements when the rest of the line is
to be aligned on the right margin, with the ‘leading character’ or ‘tab
leader’ being the first character following the tab sequence (often a dot
or a space character). In any line, there should be no more than one tab
(Mailto silently ignores any other tabs on the same line).

The use of tabs makes sense only if the message is to be displayed or
printed with a non-proportional fixed-width font. For example, let’s



34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

assume a form contains three user fields named ‘Yellow’, ‘Orange’,
and ‘Red’ that have values ‘Light’, ‘Dark’, and ‘Medium’ respectively.
The output below is produced if the user fields are processed according
to the following Mailto instructions (which appear before the form
elements):

<INPUT TYPE=HIDDEN NAME=_SUFFIX_NAME VALUE=" \t. ">
<INPUT TYPE=HIDDEN NAME=_SUFFIX_VALUE VALUE="\n">
<INPUT TYPE=HIDDEN NAME=_LINE VALUE=40>
<INPUT TYPE=HIDDEN NAME=_WRITE VALUE="Parm Name \t Parm Value\n">
<INPUT TYPE=HIDDEN NAME=_WRITE VALUE="\t-\n\n">

This produces the output:

Parm Name                     Parm Value
----------------------------------------

Yellow ........................... Light
Orange ............................ Dark
Red ............................. Medium

Mailto ensures that lines never exceed the default or explicit maximum
line width. Oversized lines are split, and such lines are marked with
a trailing backslash character in debug mode. Splits occur at word
boundaries whenever possible; however, when it is impossible to
locate a word boundary within a reasonable distance from the end of
the line, lines are cut right after the last allowable position, even if this
means splitting a word. The acceptable distance is set using a
_MAX_GAP statement.

<INPUT TYPE=HIDDEN NAME=_LINE VALUE="Nbr-of-characters">

Use the _LINE statement to set the maximum line width of the
message body in characters. This figure must be a non-zero positive
integer not exceeding 512, and must not include a sign, comma, or
decimal point. The line width also applies to the text of the Subject:
header, which is further restricted to being between 10 and 512.

Note that the line width excludes the left margin. When the form does
not include a _LINE statement, Mailto uses a default line width of 80.
If multiple _LINE statements are encountered, only the last one is used
(‘132’ in the example below).

<INPUT TYPE=HIDDEN NAME=_LINE VALUE="80">
<INPUT TYPE=HIDDEN NAME=_LINE VALUE="132">



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

The _MARGIN statement defines the left margin in characters. Its
argument must be a positive integer not exceeding 512, and excluding
a sign, comma, or decimal point. When there is no _MARGIN
statement in a form, a default margin size of zero applies and printing
starts at column one. If more than one _MARGIN statement occurs in
a form, all but the last one are ignored. When a non-zero left margin
is defined, each line of text is preceded by _MARGIN space characters.
Remember that the margin size is not included in the line width. Here
are examples:

<INPUT TYPE=HIDDEN NAME=_MARGIN VALUE="6">
<INPUT TYPE=HIDDEN NAME=_MARGIN VALUE="0">

As with other formatting instructions, the value of _MAX_GAP must
be a positive integer, without sign, comma, or decimal point, and not
exceeding 512. This figure is used when splitting a line exceeding the
maximum size. When _MAX_GAP is zero, the line is split right after
the last character, even if this breaks the last word of the line.

When _MAX_GAP is non-zero, Mailto breaks an oversized line at a
word boundary, if one occurs within _MAX_GAP characters of the end
of the line. In this case, the line break occurs right after a blank
character or the punctuation mark; otherwise it’s after the last character
on the line.

When a form does not include a _MAX_GAP instruction, Mailto uses
a default value equal to the line size (either the default value or one set
by a _LINE statement).

<INPUT TYPE=HIDDEN NAME=_MAX_GAP VALUE="20">
<INPUT TYPE=HIDDEN NAME=_MAX_GAP VALUE="0">

The _SUFFIX_NAME instruction defines the demarcation string to
print between the field name and its content when Mailto reports user
fields (the default is ‘ = ’). The demarcation string may include a new
line (‘\n’) or a tab (‘\t’) sequence.

For example, consider a form that contains three user fields, ‘Alpha’,
‘Beta’, and ‘Pi’, that have the values ‘aa’, ‘bbbb’, and ‘cccccc’
respectively. When _SUFFIX_NAME, _SUFFIX_VALUE, and _LINE
are set as follows:

<INPUT TYPE=HIDDEN NAME=_SUFFIX_NAME VALUE=" \t- ">



36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

<INPUT TYPE=HIDDEN NAME=_SUFFIX_VALUE VALUE=";\n">
<INPUT TYPE=HIDDEN NAME=_LINE VALUE=27>

The name-content pairs reported are:

Alpha ----------------- aa;
Beta ---------------- bbbb;
Pi ---------------- cccccc;

Other examples of _SUFFIX_NAME statements are shown below.

<INPUT TYPE=HIDDEN NAME=_SUFFIX_NAME VALUE=" : ">
<INPUT TYPE=HIDDEN NAME=_SUFFIX_NAME VALUE=" is ">
<INPUT TYPE=HIDDEN NAME=_SUFFIX_NAME VALUE=" \t. ">

The _SUFFIX_VALUE statement defines what should be printed right
after the field content to demarcate successive name-content pairs. If
this instruction is omitted, the default value is ‘\n’. Within the
demarcation string, use ‘\n’ to force a line break and ‘\t’ to right-align
the remainder of the current line. Some examples are shown below.

<INPUT TYPE=HIDDEN NAME=_SUFFIX_VALUE VALUE=".\n">
<INPUT TYPE=HIDDEN NAME=_SUFFIX_VALUE VALUE="\n\n">

The context-sensitive instructions _WRITE and _WRITE_COND are
used to insert text into the message body. Place them before or after
a user input tag respectively to precede or follow the name-value pair
with the text encoded as argument. In addition to references to user-
input fields and context variables, the string argument may also
include ‘\n’ and ‘\t’.

CONTROL INSTRUCTIONS

There are thirteen control instructions available as follows:

• One redirection instruction

• Six attribute enabling statements

• Six ‘IF block’ constructors.

_XFR_URL is the redirection instruction; it defines the page to which
the user is redirected when Mailto finishes processing the current
form. All types of URL are allowed, including static HTML page
addresses and CGI program calls (note, however, that the value of the
_XFR_URL statement is not syntax checked). When a form does not



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

include an _XFR_URL statement, no redirection occurs and the user
is left with a default termination message on screen.

Even if relative URLs work, I strongly recommend that you always
use absolute URLs. This is mandatory when the target page is
password-protected. Examples of this type of statement are shown
below.

<INPUT TYPE=HIDDEN NAME=_XFR_URL VALUE="http://www.Eden.com/
                                        ➤   Abel/msg.htm ">
<INPUT TYPE=HIDDEN NAME=_XFR_URL VALUE="/Sales/Ok.html">
<INPUT TYPE=HIDDEN NAME=_XFR_URL VALUE="/cgi-bin/dbu?key=179&
                                        ➤   n=x ">

The control statements that are used to enable attributes are:

• _MANDATORY

• _NUMERICAL

• _LOWERCASE

• _UPPERCASE

• _INVISIBLE

• _INVISIBLE_COND.

A control statement invokes special processing on the field named in
the VALUE attribute. Through this mechanism, you may request user
input to be converted to uppercase or lowercase, a field to be excluded
from message body either unconditionally or if it’s blank, that the user
is required to complete a field, and that a field is restricted to numerical
data. It is a good practice to group control statements near the top of
the form before all user input fields.

If a particular control statement applies to many fields, use separate
statements for each. When a statement applies to all fields, you may
indicate this with the shortcut VALUE=_ALL. This, however, cannot
be used with the statement _MANDATORY.

_MANDATORY requires the user to complete the target field, while
_NUMERICAL restricts it to numeric data. Appropriate error messages
are issued when a user fails to comply with these requirements. A field
is considered to be complete when one of its occurrences (if more than



38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

one field in the form has the same name) contains at least one non-
blank character. A numerical field may contain only digits, blanks
(which are discarded), a plus or minus sign at the very start or end of
the field, and a decimal point or comma.

_UPPERCASE and _LOWERCASE convert data in the named fields
in the way their names suggest. If both are applied to the same field,
the last one prevails. Mailto omits fields that are the target of an
_INVISIBLE statement from the message body; it also omits a field
that is the target of an _INVISIBLE_COND attribute if all occurrences
of the field are blank. _INVISIBLE supersedes _INVISIBLE_COND
when both are applied to the same field.

Note that a user field may be the target of many different attributes and
that an attribute applies to all occurrences of the target field, if more
than one field on the form has the target name. I recommend that you
group control statements near the top of the form before user input
fields, especially before Mailto instructions embedding a reference to
a user field that is the target of a control statement. This ensures that
all special processing is performed on user fields before they are
referenced elsewhere.

If the target of a control statement is an empty or non-existent field,
Mailto silently ignores the statement, as long as it is not _MANDATORY.
Note that, among all Mailto instructions, only _FROM can be the
target of a control statement, as long as the statement is not
_NUMERICAL.

<INPUT TYPE=HIDDEN NAME=_MANDATORY VALUE="_FROM">
<INPUT TYPE=HIDDEN NAME=_MANDATORY VALUE="AGE">
<INPUT TYPE=HIDDEN NAME=_NUMERICAL VALUE="AGE">
<INPUT TYPE=HIDDEN NAME=_INVISIBLE_COND VALUE="_ALL">
<INPUT TYPE=HIDDEN NAME=_INVISIBLE VALUE="Submit">
<INPUT TYPE=HIDDEN NAME=_UPPERCASE VALUE="State">
<INPUT TYPE=HIDDEN NAME=_LOWERCASE VALUE="code">

IF blocks comprise the last group of control instructions. Their
operation codes are:

• _IF

• _AND



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

• _OR

• _ELSE_IF

• _ELSE

• _END_IF.

These statements are used to frame other Mailto instructions that
should be processed only when certain conditions are met.

Use IF blocks to select, for example, a different addressee, subject
title, or redirection URL, depending on the content of a field. IF blocks
are also frequently used to frame _WRITE statements when some text
or the content of some fields should be printed only when some fields
have certain values.

IF block constructors are used to frame other Mailto instructions
whose processing should be conditional. A conditional block is
always initiated by an _IF statement and terminated by an _END_IF
statement. Between those two statements only other Mailto instructions
may appear – <INPUT>, <SELECT>, and <TEXTAREA> fields
would be reported as errors.

In its simplest form, a conditional block consists of a single logical
section where a group of Mailto statements is preceded by an _IF and
followed by an _END_IF. If the condition evaluates to True, the
statements are processed, otherwise they are bypassed after the usual
syntax check.

In its most general form, a conditional block comprises any number
of logical sections that are initiated by an _IF or _ELSE_IF statement
(or an _ELSE, if it’s the last statement). A logical section finishes
where a new one starts or the block is terminated by an _END_IF
statement.

If the condition of the _IF statement evaluates to True, statements in
the enclosed section are processed and those in all other sections are
bypassed. If it evaluates to False, the _IF section is bypassed, and the
next _ELSE_IF section is evaluated. As soon as one of the _ELSE_IF
statements evaluates to True, instructions in it are executed and all
other _ELSE_IF sections to the closing _END_IF statement are



40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

bypassed. If all conditional proposals evaluate to False, statements in
the optional _ELSE section are processed.

Conditional proposals are either simple or compound. A simple
condition is encoded using a single _IF or _ELSE_IF statement.
Compound proposals require an initial _IF or _ELSE_IF constructor
followed by any number of _AND and _OR statements. As usual,
_AND has precedence over _OR; hence:

w OR x AND y OR z

is interpreted as:

w OR (x AND y) OR z.

Parentheses are not allowed.

Conditional proposals encoded on _IF, _AND, _OR, and _ELSE_IF
statements are expressed as VALUE="{Field-Name}.OP.String".
‘Field-Name’ is the name of an <INPUT>, <SELECT>, or
<TEXTAREA> field whose content is to be compared, character by
character, with the literal ‘String’. The logical operator ‘.OP.’, which
is inserted tightly between its arguments (in other words, without
spaces), defines what relationship must exist between ‘Field-Name’
and ‘String’ for the condition to be true. The operator codes available
are listed below.

.LT. Less than

.LE. Less than or equal

.EQ. Equal

.GE. Greater than or equal

.GT. Greater than

.NE. Not equal.

When multiple occurrences of ‘Field-Name’ exist, the condition is
true if and only if all instances match the condition. In the following
example, an IF block structure is used to generate the most appropriate
letter heading for each type of user:

<INPUT TYPE=HIDDEN NAME=_IF VALUE="{sex}.EQ.male">
<INPUT TYPE=HIDDEN NAME=_AND VALUE="{Status}.EQ.single">



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

<INPUT TYPE=HIDDEN NAME=_WRITE VALUE="Dear Mr {Name},\n\n">
<INPUT TYPE=HIDDEN NAME=_ELSE_IF VALUE="{sex}.EQ.female">
<INPUT TYPE=HIDDEN NAME=_AND VALUE="{Status}.EQ.single">
<INPUT TYPE=HIDDEN NAME=_WRITE VALUE="Dear Mrs {Name},\n\n">
<INPUT TYPE=HIDDEN NAME=_ELSE_IF VALUE="{Status}.EQ.married">
<INPUT TYPE=HIDDEN NAME=_WRITE VALUE="Dear Mr and Mrs {Name},\n\n">
<INPUT TYPE=HIDDEN NAME=_ELSE>
<INPUT TYPE=HIDDEN NAME=_WRITE VALUE="To whom it may concern,\n\n">
<INPUT TYPE=HIDDEN NAME=_END_IF>

The code for this utility appears (in its entirety) in next month’s issue
of AIX Update.

Pierre Croisetiere
System Analyst (Canada) © Xephon 2000

Building freeware and shareware

Not all freeware and shareware, such as that found on Groupe Bull’s
archive (http://www-frec.bull.com/docs/download.htm), is smit-
installable. Often, you are required to download the software, unpack
it, read the documentation, compile the source code, install the
executable, and then … hopefully … be able to use it!

DOWNLOADING

Often the software needs to be downloaded from an FTP site, such as
UCLA’s download site (ftp://aixpdslib.seas.ucla.edu/). In days gone
by, you used the ftp command to initiate an anonymous FTP connection.
Even if you didn’t have an account with the freeware’s host, it would
let you download files. This meant that you used the user name
anonymous and your e-mail address in place of the password. The file
to be downloaded would probably be a binary file, so binary mode
would need to be set, as in the following example:

$ cd /tmp
$ ftp aixpdslib.seas.ucla.edu
Name (aixpdslib.seas.ucla.edu:klauser): anonymous
Password: <your e-mail address>



42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ftp> cd pub
ftp> binary
ftp> get <file to be downloaded>
ftp> quit
$ ls
<downloaded file>
$

Today things are much more straightforward – you just use your
favourite browser and the full FTP address of the file, including the
protocol identifier ‘ftp://’.

In either case, you need to have enough disk space for the downloaded
file(s). For that matter, you need to take into account that uncompressed
files will need even more space.

UNPACKING

The downloaded file will often be in a compressed format. This not
only uses less disk space on the freeware’s host system, it also means
faster downloading, as fewer bytes are transferred from their system
to yours. The ending of the file name tells you which compression tool
(or tools) was (or were) used.

‘.Z’ means the standard Unix compress command was used. Use
uncompress to uncompress the file. More likely you will see ‘.gz’,
‘.tgz’, or ‘.tar.gz’, which means that the gzip program was used.
Regrettably, gzip (and its companion gunzip) do not belong to AIX’s
command suite. This GNU tool is found at most FTP sites, including
the above-mentioned ftp://aixpdslib.seas.ucla.edu/.

To uncompress a ‘gzipped’ file, simply use gunzip. For example:

$ gunzip filename.gz

In this example, this creates a new file with the base name as the file
name. Typically, the base file is a bundle that was assembled with the
tar utility, so its name ends in ‘.tar’. In fact, the ‘.tgz’  extension is a
shorthand for ‘.tar.gz’. The ‘.tar’  extension is not necessary, but is
commonly used.

To extract all the files stored in a tar archive, use the tar command:

$ tar -xvf filename.tar



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

This is likely to create many files as it unravels the bundle. You will
usually see a subdirectory with the software name and version
number. Change to this subdirectory and look for a README,
README.TXT, or README.FIRST file.

PRELIMINARY DOCUMENTATION

The README file should tell you a bit about the package, what other
packages it requires, and how to build it. Checking the README files
can help you learn about the techniques used by others in putting
together their packages, techniques you may find handy in your own
work.

Some packages include a file named INSTALL. This file, as you would
expect, contains information on how to build and install the package.
Follow the instructions.

COMPILING

Free software has been around for years, so there are some standards
for building packages. The key problem is that software written for a
variety of systems needs to handle platform differences. For example,
the threading libraries on Sun’s Solaris differ from those on AIX. The
‘Holy Grail’ of the free software movement has been to find a way to
automatically detect and handle these platform differences. Of course,
if everyone just adopted AIX or Linux, the issue would go away!
(Alas, this argument is also used by Microsoft….)

One of the most common ways to deal with platform differences is to
use a ‘configure’ script. This checks for system dependencies and
outputs a makefile that is used by the make program to build the
software. With a configure file, the basic commands for building the
program are:

$ ./configure
$ make
$ make install

The make command should build the program code, compile, link,
and perform other necessary steps. The last step should be to copy the



44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

program files that were built to their proper locations. You will
typically need to be a super-user to install files.

Older software that uses the X Window system for graphics often
comes with a file named Imakefile. Like the configure script, this file
holds a set of rules for building a platform-specific makefile that can
be used by make. If you see an Imakefile, the basic commands to
perform a build are:

$ xmkmf
$ make
$ make install

In this case, the xmkmf script runs the imake command that generates
a makefile that’s used by make.

With these commands, you can build most software packages. For
more on this, check the on-line documentation on make, imake, and
the GNU ‘configure’ system.

INSTALLATION

The command make install will usually install freeware and shareware
in the directory /usr/local and its subdirectories. As I regard /usr as an
AIX operating system directory belonging to rootvg, I have it soft-
linked to my data volume group:

$ ln -s /data/UNIX/usr/local/AIX/usr/local

USE IT

That’s it! Use your new software and enjoy it!

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 2000



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

New features of RS/6000 hardware and software

This article describes the various additions and enhancements to
RS/6000 hardware and related software announced by IBM on 9 May,
2000. This is a very significant announcement, containing systems
that replace current low to mid-range RS/6000 servers. The servers
announced, which have an ‘80’ in their model names, are based on the
same RS64-III copper-based microprocessor that’s used in the current
high-end Model 80 server. The new models significantly improve
both the performance and ‘RAS’ (Reliability, Availability,
Serviceability) of the models they replace.

RS/6000 ENTERPRISE SERVER F80

The deskside Enterprise Server Model F80 replaces the Model F50,
a 32-bit server that is similar in design to the F80. It can be configured
with one to six RS64-III processors mounted on one to three processor
cards. The 1-, 2-, and 4-way machines use the 450 MHz processor,
while the 6-way system uses the 500 MHz version of the CPU. The
processor is configured with a 128 KB L1 data cache and 128 KB L1
instruction cache, plus a 2 MB L2 cache for the 1-way version and a
4 MB L2 cache for the 2- ,4-, and 6-way versions.

The processors are the same or faster versions of the 450 MHz
processors used in the S80. The system can address up to 16 GB of
SDRAM using two memory cards that take 128 MB, 256 MB, and 512
MB memory DIMMs. The DIMMs must be installed in units of four.
If the maximum 16 GB of memory is expected to be needed it makes
sense to configure the system with 512 MB DIMMs so as to avoid
discarding the original ones in future. For 1-way systems, eight
DIMM positions are available on the single processor card that can
accommodate up to 4 GB of RAM. Two 128 MB DIMMs are required
for a 256 MB entry-level system.

A special memory feature is ‘chip-kill’ protection, which is common
to all F, H, M, and S80 models. Memory that supports this feature
scatters bits across four 72-bit ECC words, enabling the identification



46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and isolation of a failed memory chip until the customer decides to
replace it. Without this function, multiple bit errors in a single ECC
word would cause a system ‘check stop’. The combined system
bandwidth of this model, which uses two independent system buses,
is 4 GB per second.

The F80 has 12 media bays organized in two ‘six-pack’ enclosures
similar to the ones used in Models F50, H50, H70, and S80. The six-
packs can house SCSI or SSA hot-swappable disks with maximum
capacity of 18.2 GB, providing a total internal storage capacity of
218.4 GB. Two additional bays are available for optional boot disks.
A CD-ROM drive and a 1.44 MB 3.5-inch diskette drive are included,
as is an additional bay that can be used to install tape drive. The
computer has an integrated 10/100 Ethernet adapter as well as two
integrated Ultra2 SCSI adapters (internal and external). Ten hot-plug
PCI slots are available for 32-bit and 64-bit I/O, graphics, and
communication cards. Six PCI slots operate at 66 MHz with 3.3 volt
power and a transfer rate of 528 MB per second and the remaining four
operate at 33 MHz with 5 volt power and a transfer rate of 132 MB per
second. The system has four serial and one parallel port, as well as a
keyboard and mouse ports.

The power supply features ‘autoranging’ of either 110-127 volts AC
or 200-240 volts AC. The system can be fitted with optional redundant
power supplies and cooling fans. A service processor, which is
included as a standard, provides the following functions:

• Environmental monitoring and alerting of AC/DC voltage, fan
speed, and temperature.

• Early power off warning and error log analysis and alert.

• Automatic dial-out calls for system operators or IBM personnel.

• Automatic reboot after power loss, hardware checkstop, machine
check interrupts, or operating system failure.

The system also supports ‘Dynamic CPU De-allocation’, a feature
that enables AIX to isolate a faulty processor and automatically
migrate jobs that are using it, thus allowing the system to take the
processor off-line for maintenance.



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

A field upgrade from Model F50 is available that allows the re-use of
the following components:

• Memory DIMMs (including 32 MB and 64 MB DIMMs in units
of four).

• Hard disks (with carrier change).

• Most PCI adapters.

The F80 does not support ISA slots, which means that ISA adapters
installed in the F50 cannot be moved to the upgraded machine. The
upgraded F80 chassis has the same serial number as the replaced F50
machine, allowing the re-use of existing software licenses and
continued financial depreciation of the system.

The following table shows the performance of the F80 compared with
that of the F50 using the relative OLTP performance estimate for
commercial processing.

F50 F80      Improvement

1-way 10.0  23 130%

2-way 17.9  50 160%

4-way 32.8  87.7 167%

6-way N/A 111.9 241% (compared with 4-way
      F50)

RS/6000 ENTERPRISE SERVER H80

The Enterprise Server Model H80 is a rack-mounted system that
replaces (and is similar to) both the 32-bit H50 and 64-bit H70 servers.
The CPU and memory of this machine is identical to that of the F80
and is packaged in a ‘CEC drawer’ five EIA units (5U) high. The H80
CEC drawer has two redundant hot-swappable power supplies and
two redundant hot-swappable cooling fans.

The machine’s I/O subsystem is also packaged in a primary I/O
drawer 5U high. It contains a CD-ROM drive and a 1.44 MB 3.5-inch
diskette drive, plus an additional bay that can be used for a tape drive.
The drawer also contains an integrated 10/100 Ethernet adapter and
two integrated Ultra2 SCSI adapters (internal and external). Fourteen



48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

hot-pluggable PCI slots are available for 32- and 64-bit I/O, graphics,
and comms cards comprising ten 3.3 V, 66 MHz, 528 MB per second
slots and four 33MHz, 5 V, 132 MB per second slots. The drawer has
four serial and one parallel port, plus keyboard and mouse ports. The
power supply supports 110-127 volts AC or –48 volts DC. Both CEC
and I/O drawer can be fitted with optional redundant power supplies
if an AC power supply is selected. Redundant power supplies are
included when the DC power option is chosen. The system supports
both a service processor and Dynamic CPU De-allocation. A second
I/O drawer is available as a PRPQ option. The CEC and I/O drawers
are connected using the same Remote IO cables as the Model S80.

Field upgrades from both Model H50 and H70 are available, allowing
the re-use of memory DIMMs (including 32 MB and 64 MB DIMMs
in units of four), internal hard disks (only two SCSI to Primary I/O
drawer), external disk drawers, system rack, and most PCI adapters.
Like the F80, the H80 doesn’t support ISA cards. As with the F80
upgrade, the new H80 chassis has the same serial number as the
replaced machine.

The following table shows the performance of the F80 compared with
that of the H70 using the relative OLTP performance estimate for
commercial processing.

H70 H80      Improvement

1-way 16.7  23 37%

2-way 31.9  50 57%

4-way 57.1  87.7 53%

6-way N/A 111.9 96% (compared with 4-way H70)

RS/6000 ENTERPRISE SERVER M80

The rack-mounted Enterprise Server Model M80 replaces the current
64-bit Model S7A. It can be configured with two to eight RS64-III
processors mounted on one to four processor cards. All configurations
use the 500 MHz version of the RS64-III. The processor is configured
with 128 KB L1 data cache and 128 KB L1 instruction cache plus 4
MB L2 cache. The system can be configured with up to 32 GB of
SDRAM using two memory cards that accept 128 MB, 256 MB, and



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

512 MB memory DIMMs. The DIMMs must be installed in units of
eight. If a maximum memory of 32 GB is eventually needed, it’s a
good idea to configure the system with 512 MB DIMMs in order to
avoid discarding original DIMMs in future.

The CPU and memory is packaged in an 8U CEC drawer. Both the
CEC and primary I/O drawer are fitted with two redundant hot-
swappable power supplies and cooling fans. The system features an
integrated system switch connecting the processors, memory, and
I/O that has an aggregated transfer bandwidth of no less than 18 GB
per second.

Up to four I/O drawers, identical to one used on the H80, can be
attached to the system, providing a maximum of 56 PCI slots (16 32-
bit and 40 64-bit). Bootable SCSI disks can replace two slots in the
first I/O drawer.

The following table shows the performance of the M80 compared
with that of the S7A using the relative OLTP performance estimate for
commercial processing.

S7A M80      Improvement

4-way 46 100 117%

8-way N/A 193.3  70% (compared with 12-way
      S7A)

19" RACK OPTIONS

Two new system racks, used to consolidate installation of RS/6000
systems and peripheral equipment, were also announced. The model
T00 has a height of 36U (1.8 metres) and the model T42 has a height
of 42U (2 metres). The previously available S00 rack, with a height
of 32U, is still available. Up to three Model H80 units can be installed
in a T00 Rack, while the Model T42 rack supports the installation of
up to three Model M80s.

Both models include optional front doors, removable side panels, and
‘ruggedized’ components for earthquake protection. It is possible to
join multiple racks into ‘suites’. The Model T00 supports both AC and
DC configurations, while the Model T42 supports DC only.



50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

RS/6000 HA-H80 AND HA-M80 CLUSTER SERVER SOLUTIONS

The HA-F80, HA-H80, and HA-M80 Cluster Server solutions are
pre-packaged high availability systems that contain two servers plus
a Model 7133 Serial Disk (two for HA-M80), which is installed in a
single rack in the case of the H80 and M80. The systems are
configured with redundant power supplies, dual boot disks, dual
advanced serial RAID PCI SSA disk adapters, and dual LAN adapters.
The disk subsystem contains four 9.1 GB, 18.2 GB, or 36 GB disks
and dual data paths as well as a redundant power supply. The system
runs under AIX 4.3.1 with HACMP providing high availability for
applications by monitoring and detecting system hardware and software
failures, including ones affecting the processor, network adapter,
power supply, and applications. In case of a failure, HACMP starts
pre-defined recovery actions to a designated back-up component or
server. HACMP also facilitates the graceful recovery and reintegration
of a failed server with an operational cluster.

The system is expandable and is designed for easy growth. It is also
possible to add disks to the 7133 subsystem supplied. Pre-configured
HACMP scripts for popular databases and applications, such as DB2,
Oracle, Informix, BAAN, and SAP, are to be provided by IBM at its
Web site.

AIX 4.3.3 MAINTENANCE LEVEL 04/2000

All the newly announced models run only AIX 4.3.3 or later. A special
maintenance level, announced in April this year, is now available to
support the new models and fix numerous existing bugs. This
maintenance level can be downloaded from the Internet using IBM’s
fixdist utility.

AIX 4.3 BONUS PACK ENHANCEMENTS

The contents of AIX Bonus Pack CD, which ships with every copy of
AIX 4.3, have been refreshed. The following products were updated
to their latest releases:



© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

• IBM AIX Developer Kit Java 2 Technology Edition Version
1.2.2, based on Sun’s Java SDK 1.2.2 reference port, and including
IBM enhancements, such as a just-in-time compiler and mixed
mode interpreter, and a re-engineered JVM that passed all tests in
the Java Compatibility Kit (JCK).

• Geodesic’s Great Circle V4.0.6.1 (30-day ‘try-and-buy’), which
is a collection of C and C++ debugging libraries that link to object
code and use garbage collection technology to find and eliminate
memory leaks and errors in an application’s code automatically.
The new version includes enhanced components to test and
analyse C and C++ applications for memory problems during
development and run-time.

• SecureWay-SSL Version 3.3, which now uses the same certificate
support services as AIX IP Security Version 4.3.3 and is ‘Euro-
ready’.

• Netscape Communicator 4.7, which provides support for Hebrew
and Arabic HTML.

REFERENCES

1 IBM announcement letters at http://www.ibmlink.ibm.com.

Alex Polak
System Engineer
APS (Israel) © Xephon 2000



AIX news

Bull has announced new Escala mid-range
AIX servers. The EPC610 and EPC810 are
rack-mounted six- and eight-way clusterable
nodes. Each clustered system supports up to
32 nodes and can be mixed and matched with
other node types within the EPC family.
Both use 64-bit RS64-III copper chip
technology.

The minimum configuration is two 450 MHz
processors for the EPC610 and two 500 MHz
processors for the EPC810. Other features
include hot-pluggable PCI adapters and
support for CPU de-allocation.

Out now, prices are available on request
from the vendor.

For further information contact:
Bull Information Systems, 300 Concord
Road, Billerica, MA 01821, USA
Tel: +1 978 294 6000
Fax: +1 978 294 4908
Web: http://www.bull.com

Bull Information Systems Ltd, Computer
House, Great West Road, Brentford,
Middlesex TW8 9DH, UK
Tel: +44 181 568 9191
Fax: +44 181 568 1581

* * *

ParaSoft has announced CodeWizard 3.1,
the latest version of its code analysis tool for
C++, which now has additional rules for C
developers and enhanced customization
capabilities for the RuleWizard module.
Originally developed for C++, the analysis
tool enforces standards, providing

information about the size and complexity of
code. It’s designed to help assess and then
correct the coding style, which is said to
make code easier to debug.

Out now on AIX 3.4 and 4 (and a number of
other versions of Unix), prices start at
US$1,000.

For further information contact:
ParaSoft, 2031 South Myrtle Avenue,
Monrovia, CA 91016, USA
Tel: +1 888 305 0041
Fax: +1 626 305 3036
Web: http://www.parasoft.com

ParaSoft Ltd, Suite 144, 52 Upper Street,
Islington Green, London N1 0QH, United
Kingdom
Tel: +44 171 288 6600
Fax: +44 171 288 6602

* * *

Veritas has announced plans to port and
optimize its storage management software,
including Volume Manager and File System,
to AIX Monterey for PowerPC and Intel IA-
64 systems. This is the first time the company
has ported its product to AIX – it has
supported most other Unix systems for some
time.

For further information contact:
Vision Software Tools Inc, 2101 Webster
Street, 8th Floor, Oakland, CA 94612, USA
Tel: +1 510 238 4100
Fax: +1 510 238 4118
Web: http://www.vision-soft.com

x xephon


	Web-based ping from AIX
	Check mail utility – part 2
	Mailto - an AIX Web server extension
	Building freeware and shareware
	AIX news

