
© Xephon plc 2000

September 2000

59

3 Understanding file archiving
17 Hot-plug on F80s, H80s and M80s
20 AIX printing on MVS AFP printers (part 1)
48 A script to resize a filesystem
51 Mailto – HTML help file
52 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: harryl@xephon.com

North American office
Xephon/QNA
Post Office Box 350100, Westminster CO
80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
in the UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com/
aixupdate.html (you’ll need the user-id
shown on your address label to access it).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Understanding file archiving

There may be occasions when you have to send a large number of files
to another user, or you may want to conserve space or to consolidate
data. Working with individual files can tax resources beyond their
capacity – a problem that’s compounded if the files are spread across
a complex directory structure that must be preserved.

AIX provides a method to accomplish these tasks. You can use the tar
command to create archives that contain hundreds of files, and you
can process the archive files further with the compress, uncompress,
and zcat commands, which help to reduce the total space used by the
files.

THE TAR COMMAND

The tar command, which originally stood for ‘tape archive’, allows
you to create a new archive, add files to an existing archive, extract
files from an archive, or just view the contents of an archive. The tar
command can process simple directories and complex directory
structures.

The syntax of the command is as follows:

tar required flags optional flags file|directory

The tar command has two kinds of flag: required and optional.

Required flags
The tar command must have one of the following required flags to
indicate the operation that is to be performed.

-c Create an archive.

-t List the path of files in an archive.

-u Add files to an archive.

-x Extract files from an archive.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Optional flags
The following optional flags specify how the data is to be processed:

-f Specifies the archive file to be read or written. The default is
system-dependent, such as the file /dev/rmt0. If a minus sign
(‘-’) is specified as the archive file, standard input or standard
output is used.

-v Displays file names as they are processed.

Creating archive files

Suppose your current directory has 200 files named:

dev001.doc
dev002.doc
dev003.doc
 ...
dev198.doc
dev199.doc
dev200.doc

If you want to archive all 200 in a single archive, you can enter:

tar -cvf filegroup.tar dev*.doc

This creates the archive file filegroup.tar, which contains all files
matching the specification dev*.doc. The -c flag tells tar to create an
archive file, -v causes it to display all the file names as they are
processed (this can be used as a progress indicator), -f tells it the name
of the archive file (filegroup.tar), and the file specification tells it
which files to process.

Note that it’s not mandatory that the names of archive files end in .tar
– this is just a convention to help identify them.

You can also archive directories and subdirectories, including all their
files. Suppose userdata is a subdirectory of your current directory and
that it contains the following files:

userdata/admins/jjones.data
userdata/admins/kmartin.data
userdata/admins/rsmith.data
userdata/user/areese.fil
userdata/user/lkern.fil
userdata/user/swebber.fil
userdata/user/wmather.fil

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

If you want to archive all files in userdata, including the admins and
user subdirectories and all their files, you enter:

tar -cvf dirstruc.tar userdata

This creates archive file dirstruc.tar, which includes all specified
directories, subdirectories, and files. Specifying a directory instead of
a file tells tar to archive all subdirectories and files in that directory.

Adding files to an archive file

You can add files to an existing archive using the -u flag. Suppose you
have an archive named filegroup.tar and you want to add the file
dev201.doc to it. If you enter:

tar -uvf filegroup.tar dev201.doc

tar first inspects the archive to determine whether dev201.doc is
already in it. If it isn’t, tar opens the archive filegroup.tar and appends
the file to it.

Updating existing archived files

The -u flag can also be used to update an archive with the latest version
of a file that’s already in the archive. If the current version of a file on
your workstation has a modification date later than that of the file in
the archive, tar will append the later version to the archive.

If there is no change in the modification data and time of the specified
file, the file is not appended to the archive.

tar doesn’t have the ability to replace a file in an archive – all it can
do is append a later version of the file to the end of the archive. This
means that an archive may contain multiple versions of a file.

When extracting, tar will overlay an existing file with one being
extracted. This happens even if the existing file is the same as the one
being extracted, and it means that the version of a particular file that’s
closest to the end of an archive will become the current version when
the file is extracted.

Having multiple versions of a file in an archive may or may not be
troublesome. If you change a file frequently and append the revised
version of it to your existing archive each time, the archive will

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

contain many copies of the file. However, only the last one is
accessible via extraction. Hence, if you reduce the size of a particular
archived file and use the -u flag to update the archive, it will still
contain both the larger and the smaller version of the file, though only
the smaller one is utilized.

To get around this, you can rebuild archives completely rather than
altering them. This saves space in your archives.

Extracting archive files

You can choose to extract all files from an archive or just selected
ones. If an archive contains directories, you can extract the entire
structure or only some subdirectories and their files.

The tar command will preserve the owner and group of files in your
archive as long as your user-id has the authority to do this when the
command is issued (this may require root authority). If not, the
command extracts the files and sets their owner and group ids to those
of the user running the tar command.

To extract all files contained in the archive filegroup.tar, enter:

tar -xvf filegroup.tar

This results in all archived files being extracted to the current
directory. The -x flag tells tar to extract and -v tells it to display each
file name as it is extracted from the archive. Without -v, tar would just
return to the command prompt at the end of processing. For very large
archives, it is desirable to use the -v flag as a progress indicator. The
-f flag is used to indicate the archive file to extract (filegroup.tar, in
this instance).

To extract all directories and files in the archive dirstruc.tar, enter:

tar -xvf dirstruc.tar

This creates the directories in the current directory, if they don’t
already exist, and then places files in their appropriate directories on
your system.

Suppose you want to extract only one file (dev112.doc) that you know
is in a particular archive (filegroup.tar), rather than all the archive’s
contents. To do this, enter:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

tar -xvf filegroup.tar dev112.doc

This would place the specified file in the current directory and ignore
all other files in the archive. If you want to extract only the subdirectory
userdata/admins and its contents from dirstruc.tar, enter:

tar -xvf dirstruc.tar userdata/admins

This creates the userdata/admins subdirectory in the current directory,
if it doesn’t already exist, and extracts all relevant files to it. Specifying
a directory tells tar to extract the directory and all its subdirectories
and files recursively.

Viewing archive files

Suppose you don’t want to extract files from an archive, but want to
determine which files the archive contains, perhaps passing the file
names to another process or filter, such as grep or sort. To do this, use
the -t flag – if you enter:

tar -tvf dirstruc.tar

tar displays all directories, subdirectories, and files in the dirstruc.tar
archive file. The -t flag tells tar to display the names of files and
directories and to do no further processing on the archive files. Note
that, when the -t and the -v flags are used together, tar displays
additional information, such as the file size, modification time, user
and group ids, and file permissions of each entry in the archive.

As can be seen, tar is a very powerful utility that allows you to manage
your resources through creating, viewing, updating, and extracting
either all or some archived files. However, tar is only part of the file
archiving process.

THE COMPRESS COMMAND

The compress command can reduce the size of archive files. It takes
as input the name of the file that’s to be compressed, appending a ‘.Z’
to the name of the processed file to indicate that it’s compressed. If you
enter:

compress dirstruc.tar

compress compresses dirstruc.tar and renames it dirstruc.tar.Z.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The compress command can be very processor-intensive and a large
archive file can take several minutes to compress. Note that your user-
id must have the correct authority to compress each file, and that the
compress command works with many types of file, not just archives.

THE UNCOMPRESS COMMAND

The counterpart of the compress command is uncompress. With a
few exceptions, there’s not much one can do with a compressed file
without first uncompressing it.

The uncompress command takes as input the name of the compressed
file, removing the ‘.Z’ extension from the expanded file. If you enter:

uncompress dirstruc.tar.Z

uncompress expands the file, removes the ‘.Z’ extension, and replace
the input file. Like compress, uncompress can take several minutes
to expand a large archive file.

Note that, if a file is compressed by a root user and is then uncompressed
by another user who doesn’t have root privileges, the file will acquire
the owner and group ids of the user who uncompresses the file.

THE ZCAT COMMAND

zcat is another interesting utility. Although its output goes to the
display, there is a clever way of using it to process archive files that
is described later.

zcat takes a compressed file as input and displays the contents of the
file on the screen, without creating an uncompressed file. To view the
contents of the compressed file filegroup.tar.Z, enter:

zcat filegroup.tar.Z

zcat gives the results immediately, avoiding the potentially lengthy
delay of an uncompress operation. More importantly, it prevents the
utilization of resources which would be needed to contain an
uncompressed file.

Note that zcat displays the entire contents of each archived file, not
just the file names. If the files are large, zcat will display a lot of data.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

For this reason, you may want to pipe the output of the zcat command
to more for viewing a screen at a time.

PUTTING IT ALL TOGETHER

The zcat command is useful if you want to inspect the contents of a
compressed file quickly. However, you can use zcat to view file
names or extract data from a compressed archive without
uncompressing it first.

Consider the following command:

zcat filegroup.tar.Z | tar -xvf -

The first part of it processes a compressed archive using zcat. The
output of the zcat command – the contents of the archive file – are then
piped to the tar command. The -x flag tells tar to extract and the -v
flag tells it to display each file name as it’s processed. The -f flag
specifies the archive file to be processed, which is taken from the
standard input, as indicated by the minus sign. In this example,
standard input is the output of the zcat command.

The result is that files in the compressed archive are expanded into the
current directory without using the resources needed to process and
store the uncompressed archive.

The zcat and tar commands can thus be used to extract specific files
and directories from compressed archives by specifying the name of
the file or directory after the minus sign, as explained in the section
above on the tar command.

Note that zcat uses information found in the compression header prior
to each file in the archive to determine the file name to pass to the tar
command.

You can also use zcat and tar to view the list of compressed files in
an archive. Consider the following command:

zcat filegroup.tar.Z | tar -tvf -

In this case, piping the output of zcat to tar (invoked with the -t flag)
causes it to display the path names of all files archived and compressed
in filegroup.tar.Z on the screen.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

There may be occasions when the only way you can process a
compressed archive file is using zcat. If your file system is nearing
capacity, you may find yourself unable to uncompress a file in order
to process it. This is when zcat is a very valuable resource.

A PRACTICAL EXAMPLE

Here is a practical example of archiving operations in use.

Let us say you have a product named GreatJob that performs a very
important task for your users. GreatJob can be built in one of several
different ways, using different options and in several languages.

Assumptions:

1. You have the following directory trees on your build machine:

GreatJob.base
GreatJob.option1
GreatJob.option2
GreatJob.option3

2 You also have a directory tree for each language in which
GreatJob is available:

GreatJob.French
GreatJob.German
GreatJob.Japanese
GreatJob.Spanish

3 Each directory tree contains many subdirectories and hundreds of
files.

4 The product can be built by compiling GreatJob.base with no,
some, or all the options. It can be built in English, if no language
directory is specified, or in another language by specifying one of
the language directories.

Implementation:

1 To create your deliverable file, you first create an archive using
tar -cvf for each of the directory structures listed above. Then,
after using the compress command, you would have created the
following eight compressed archives:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

GreatJob.base.tar.Z
GreatJob.option1.tar.Z
GreatJob.option2.tar.Z
GreatJob.option3.tar.Z
GreatJob.French.tar.Z
GreatJob.German.tar.Z
GreatJob.Japanese.tar.Z
GreatJob.Spanish.tar.Z

2 Now you can write a build script that builds a version of the
product at any option level in any language specified by the user.
Let’s name the build script DoaGreatJob.Script.

3 You could now create an archive containing the eight compressed
archives and then add the build script.

tar -cvf GreatJobBuild.tar GreatJob.*.tar.Z
tar -uvf GreatJobBuild.tar DoaGreatJob.Script

You now have one file named GreatJobBuild.tar that you can store in
a library or to deliver to users.

Usage:

1 When someone needs to build a version of your product, first they
extract the files from your archive by entering:

tar -xvf GreatJobBuild.tar

which would write the eight compressed archive files, plus the
build script, to their workstation.

They can then run the build script, specifying the desired options
and languages. Suppose they wanted to build a Japanese version
with options 1 and 3; they might enter:

DoaGreatJob.Script -Japanese -Option1 -Option3

2 The build script, using various combinations of the zcat and tar
commands, would expand and extract only the following base,
option, and language compressed archives:

GreatJob.base.tar.Z
GreatJob.option1.tar.Z
GreatJob.option3.tar.Z
GreatJob.Japanese.tar.Z

The other four archives (option 2 and the other three languages)

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

would be available but not expanded, as they are not used for that
particular build of the product.

Fewer resources are needed to compile any version of the product than
if you first have to expand all the files in all the options and language
directories.

You have just seen how an administrator can use not only tar and
compress to create individual archives, but also to create archives of
existing archived files to simplify further the packaging of deliverables.

EXERCISES

The following exercises help you understand file archiving by giving
you hands-on experience with the commands described in this article.

Create subdirectory archexer off your home directory. Where the
exercise directs you to create files to be archived, you may use existing
files on your workstation. However, be careful to isolate them from
your environment, as you may create several copies of them during
the exercise.

1 CREATING, VIEWING, AND EXTRACTING FILE ARCHIVES

Step 1 Create files test001.txt, test002.txt, test003.txt, test004.txt,
and test005.txt in your exercise directory. Avoid using touch
to create them as the exercises benefit from the files containing
data. You may redirect the output of ls -l to create the files or
copy existing ones from your workstation.

Step 2 Enter:

tar -cvf filegroup.tar test*.txt

tar creates the archive filegroup.tar in your directory.

Step 3 Enter:

tar -tvf filegroup.tar

tar displays the files found in the archive on your screen.

Step 4 Create subdirectory exergroup, copy filegroup.tar to it, and
cd to the directory.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

Step 5 From archexer/exergroup, enter:

tar -xvf filegroup.tar test003.txt

tar extracts only test003.txt from your archive.

Step 6 Enter:

tar -xvf filegroup.tar

tar extracts all the files from the archive, overlaying existing
files of the same name – so use caution!

2 ADDING FILES TO AND UPDATING AN EXISTING ARCHIVE

Step 1 Return to the exercise directory and create a new file named
addthis.fil.

Step 2 From archexer, enter:

tar -uvf filegroup.tar addthis.fil

tar appends addthis.fil to the archive.

Step 3 Enter:

tar -tvf filegroup.tar

tar displays the names of files in the archive, including the
new file, on your screen.

Step 4 Edit test002.txt to modify its time-stamp.

Step 5 Enter:

tar -uvf filegroup.tar test002.txt

tar appends the revised test002.txt to the archive.

Step 6 Enter:

tar -tvf filegroup.tar

tar displays the names of files in the archive, including the
revised version of test002.txt. Note that the older version of
test002.txt is also listed. tar will overlay the first version of
test002.txt with the second one when the file is extracted from
the archive.

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Step 7 Enter:

tar -uvf filegroup.tar test001.txt

As test001.txt has not been modified since it was archived,
you just get your prompt back, indicating that the archive has
not been updated.

3 CREATING, VIEWING, AND EXTRACTING DIRECTORIES

Step 1 Create exerstruc as a subdirectory of archexer and cd to it.

Step 2 Create three directories (dir1, dir2, and dir3) in exerstruc.

Step 3 Copy the *.txt files in archexer to dir1, dir2, and dir3.

You now have the following directory structure:

archexer/exerstruc/dir1
archexer/exerstruc/dir2
archexer/exerstruc/dir3

Each dir* directory contains a copy of the five test files.

Step 4 Return to archexer and enter:

tar -cvf dirstruc.tar exerstruc

tar creates the archive dirstruc.tar, which contains all the
subdirectories and files in the exerstruc directory tree.

Step 5 Enter:

tar -tvf dirstruc.tar

tar displays the paths of all files in the archive, plus some
other information, such as permissions and time-stamps.

Step 6 From archexer enter:

rm -R exerstruc

This erases the contents of exerstruc and removes the
subdirectories in preparation for extraction.

Step 7 While still in archexer, enter:

tar -xvf dirstruc.tar exerstruc/dir2

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

tar creates the directory exerstruc/dir2 in archexer and
extracts the five test files to it, ignoring the other directories
in the archive.

Step 8 Return to archexer and enter:

tar -xvf dirstruc.tar

tar creates directories exerstruc/dir1 and exerstruc/dir3.
(exerstruc/dir2 was created in step 7). The command also
extracts data from the archive to the subdirectories.

4 COMPRESSING AND UNCOMPRESSING ARCHIVES

Step 1 Return to archexer and note the size of dirstruc.tar.

Step 2 Enter:

compress dirstruc.tar

compress reduces the size of the archive, and renames it
dirstruc.tar.Z.

Step 3 Enter:

uncompress dirstruc.tar.Z

uncompress expands the compressed archive and restores
its name to dirstruc.tar, removing the extension ‘.Z’.

5 USING ZCAT

Step 1 Before the exercise, recreate the compressed archive from
Exercise 4. From archexer, enter:

compress dirstruc.tar

This recreates dirstruc.tar.Z.

Step 2 Enter:

zcat dirstruc.tar.Z | more

zcat displays the contents of the compressed file, preceding
each file name with a compression header. Note that the
command does not change the compressed file. If necessary,
press ‘q’ exit more.

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Step 3 Enter:

zcat dirstruc.tar.Z | tar -tvf -

1 zcat expands the compressed archive and passes the
output to tar.

2 tar displays the path names of all subdirectories and
files found in dirstruc.tar.Z on the screen.

Step 4 Create subdirectory exerzcat, copy dirsruc.tar.Z to it, and cd
to the directory.

Step 5 From exerzcat, enter:

zcat dirstruc.tar.Z | tar -xvf -

1 zcat expands the compressed archive and passes its
output to tar.

2 tar extracts the directory structure, creating
subdirectories:

exerstruc/dir1
exerstruc/dir2
exerstruc/dir3

3 tar extracts files in their proper directories according to
the compressed archive.

Note that zcat performs all operations without using the resources
needed to uncompress or store an uncompressed archive file.

POST EXERCISE CLEAN UP

To delete all files created during the exercise, return to archexer’s
parent directory, and enter:

rm -R archexer

This deletes all directories and files recursively.

David Chakmakian
Programmer (USA) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

Hot-plug on F80s, H80s and M80s

Hot-plug support for selected PCI adapters is one of the features of the
new F80, H80, and M80 servers. Its purpose is to improve both the
reliability and versatility of RS/6000 servers by enabling the
replacement of failed or unused PCI interface cards with ones that are
functioning properly and required – without interrupting the operation
of the server. Both hardware and software modifications were needed
to implement this feature.

In order to support hot-plug hardware and software, the following
characteristics are needed: the ability to disconnect and re-connect the
electrical supply to the card, the ability to identify the slot containing
the card, and the ability to fasten the card into its slot securely without
affecting other hardware.

The I/O drawers of the new machines contain special plastic separators
that are designed to prevent electrical short-circuits and damage while
the adapters are added or removed. The hot-plug adapters are also
secured with special retainer clips, located on the top of the slots – this
eliminates the possibility of retainer screws being dropped while the
adapter is being removed.

LEDs
PCI slot
status Message

Off Off Slot power is off. It is safe to
remove or replace adapters.

On On Slot power is on. Do not remove
or replace adapters.

Slow flashing
(one a second)

Identify The slot has been identified by
the software; do not remove or
replace adapters at this time.

Quick flashing
(six to eight a
second)

Action The slot is ready for removing or
replacing adapters.

Figure 1: Summary of hot-plug LED signals

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Special hot-plug LEDs indicate the state of the adapter, enabling its
secure identification and replacement. The lights are visible from both
the outside and inside of the I/O drawer. Figure 1 summarizes the LED
signals.

Not all PCI adapters are hot-pluggable – you should always check the
manual PCI Adapter Placement Reference Guide (SA38-0538) for
information about specific adapters. You also should be aware that
adapters that are used to support certain hardware features, such as
system disks, I/O controllers, or graphics cards connected to the
console, cannot be replaced without shutting down the system.

Software support for manipulating slot power was introduced in AIX
4.3.3 via the AIX 4330-03 maintenance package (APAR IY09047),
which is included on all pre-installed systems and also on the April
2000 ‘Update CD’ that ships with AIX 4.3.3. In addition, APAR
IY09814, which includes additional fixes that where not available
before the AIX 4330-03 package shipped, also has to be installed.

Support has been implemented via two new commands, lsslot and
drslot, which are also incorporated in smit and WebSM. lsslot is used
to list slots and their characteristics and drslot is used to perform the
dynamic reconfiguration of system slots.

The following scenario illustrates the procedure for adding an adapter
to a live system.

1 The drslot command is used to transfer the chosen slot to the
‘identify’ state (the LED flashes slowly to indicate it’s in this
state). This allows the administrator to verify that the right slot
was selected.

2 The system administrator is then prompted to press Enter, which
causes the LED to change its state to ‘action’ (LED flashes
quickly).

3 The adapter can now be added to the system and all external
devices connected to it can be powered on.

4 Once this is done, the administrator should press Enter again to
turn the slot’s power on. The hot-plug LED will change its state

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

to ‘on’. The adapter is now integrated into the system and can be
configured using AIX’s configuration manager, cfmgr.

To remove an adapter, you must first remove its configuration from
AIX. Once the adapter is removed from the ODM, its power supply
should be turned off and the adapter should be physically removed
from the system.

Note that the addition of an adapter that wasn’t previously installed on
a particular system requires the installation of the adapter’s device
drivers.

REFERENCES

1 RS/6000 Enterprise Server Model M80 Installation Guide, SA38-
0576

2 RS/6000 Enterprise Server Model M80 User’s Guide, SA38-
2537

3 RS/6000 Enterprise Server Model M80 Service Guide, SA38-
2538

4 PCI Adapter Placement Reference Guide, SA38-0538

5 Supplemental Information for the PCI Adapter Placement
Reference, SA32-9077

6 PCI Hot Plug Management, AIX Version 4.3 System Management
Concepts, Operating Systems and Devices

7 Managing Hot Plug Connectors, AIX Version 4.3 System
Management Guide, Operating Systems and Devices.

Alex Polak
System Engineer
APS (Israel) © Xephon 2000

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

AIX printing on MVS AFP printers (part 1)

INTRODUCTION

Our company has migrated some MVS applications to AIX. As some
of these applications require JES2 services, particularly for printing
AFP documents on central, high throughput printers and distributed
enterprise printers, we have written an application that allows AIX to
send documents to the JES2 spool using AIX-specified spool
parameters. (AFP is IBM’s Advanced Function Presentation – a
software technology that allows sophisticated output on AFP-capable
mainframe printers.)

The application has two components: one, which runs under MVS, is
an LU6.2-generic transaction server running as a started task, and the
other, which runs under AIX, is a printing back-end program. Using
this application, you simply use AIX’s lp print command to print an
AIX document under MVS, specifying the print queue (option -d) and
JES2 spool parameters (option -o), which are in the form: 'class, dest,
form, formdef, pagedef'. For example, an AFP document with the
following JES2 spool parameters:

(CLASS=B, DEST=XPTO, PAGEDEF=PD99, FORMDEF=FD99)

may be printed using the command:

lp –dlaser –o'B,XPTO,,PD99,FD99' afp_document_name

A regular document with the following spool parameters:

(CLASS=B, DEST=XPTO, FORM=XER1)

may be printed using the following command:

lp –dlaser –o’B,XPTO,XER1’ non_afp_document_name

(‘laser’ is the name of the AIX print queue.)

The printer back-end program associated with the print queue
establishes an LU 6.2 session with the MVS started task. The MVS
started task accepts the LU6.2 request, extracts the transaction program
name specific to this service, and schedules a TCB to process the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

request. The scheduled program then authenticates the AIX user-id
using RACF (the IBM MVS security product), and dynamically
allocates a SYSOUT dataset with the required characteristics (class,
dest, form or pagedef, and formdef) to the user. After successful
allocation, the document is transmitted and written to the spool. In
case a transmission error occurs or the request is cancelled, the
document is deleted from the spool. On successful execution, JES2
selects a printer based on the specified class and dest. The spooled
document is then printed according to the specified form, or formdef
and pagedef. The last two are AFP parameters.

This application was tested and certified for AIX (4.1 and 4.2) and
MVS 4.3 to OS/390 2.4.

THE AIX COMPONENT

We created a printer back-end program called ‘laser’, which is
scheduled by the print subsystem after the print command executes.
On start-up, it receives two parameters as input: the -o option from the
AIX lp command and the name and full path of the document file.
After setting defaults, parsing and validating the input parameters,
and retrieving the user-id of the document owner and the number of
copies to print, the document file is scanned and the maximum line
size (a requirement for JES2 spool allocation) and the number of lines
are evaluated for transmission control and reporting. An LU6.2
session request is sent to the MVS transaction server requesting the
program ‘WRT2SPL’ to be executed. After successful LU6.2 allocation,
a block of data containing the JES2 options, the number of copies, the
user-id, and the maximum line length are transmitted. A confirmation
request is sent and, after successful notification, the file is sent line by
line. After each block of 512 bytes of data is transferred, a confirmation
is requested. On successful completion, the program ends with return
code ‘0’ and the input file is deleted from the AIX print queue. In case
of an error, the program ends with return code ‘-2’, which stops the
print queue and retains the input file in the queue.

During processing, the laser program reports on the status of the print
job and the percentage of the file transmitted to the AIX print
subsystem (this may be viewed with the AIX command lpq). The

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

status may be ‘CONNECT’ (when requesting the LU6.2 session),
‘SENDING’ (when transmitting spool parameters), and ‘RUNNING’
(when transmitting the document data).

When an error is detected, an e-mail is sent to the document’s owner
and to the root user (this is hard-coded in the program as ‘ADM_USER’,
see common.h). An example message to root is shown below.

From p17112 Wed Nov 24 09:54:01 1999
Date: Wed, 24 Nov 1999 09:54:00 GMT
From: xpto <p7112>
To: root@aixprod.intranet

A message from queuing system:

Stop signal received. Print job cancelled!

******* Print job description*******
Host name : aixprod
Printer queue : xerox
Job submitted at : Wed Nov 24 09:53:43 1999
Job Number : 794
Userid : p7112
Options : E
File : /tmp/xerox.out
Backend program : /sys/bin/wrt2spl
Submit command : -Plaser-j--

For non-AFP documents, which have no pagedef and formdef specified,
form-feed characters (‘\f’) are converted to JES2 channel commands.
For AFP documents, the first character of each line is assumed to be
a JES2 channel command.

THE MVS COMPONENT

We coded a generic MVS LU 6.2 transaction server that accepts an
LU6.2 request and extracts the requested transaction program name
and input parameters from the conversation request. A TCB is then
scheduled for the requested program.

When started, the transaction server:

• Opens an LU6.2 ACB.

• Schedules a timer for a periodic verification routine. On a VTAM

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

connection failure resulting from, for example, a VTAM restart
or LU6.2 ‘INACT/ACT’ operator command, the routine closes
the ACB and periodically attempts to re-open it.

• Waits for three different types of event on an ECB list:

– Timer expired. The verification routine runs and the timer is
rescheduled

– Console command. If an MVS stop command request is
received, the server stops. The MODIFY MVS command is
also accepted, but currently has no function

– LU6.2 request received. VTAM schedules an exit routine
(ATTNEXIT) for each request. This exit increments a ‘pending
request counter’ and posts an ECB for the server. The server
wakes up and executes the dispatch program for each LU6.2
pending request.

The dispatch program allocates a working area, receives the queued
LU6.2 conversation requests, and retrieves the transaction program
name and parameters (if present). Next it attaches TCP to the requested
program using the working area as the input parameter. This area
contains the LU6.2 conversation control blocks and the program input
parameters. An ‘ESTAI’ recovery routine is also established. In case
the transaction ends abnormally, an LU6.2 DEALLOC/ABNDPROG
verb is sent and the working area is released. The initial TCB program
is TCBINIT. Once running, TCBINIT calls the requested transaction
program, which releases the working area allocated by the dispatch
program when it terminates. The number of dispatched TCBs is
limited by the SNA mode definition.

We wrote the WRT2SPL transaction program for this print service.
When scheduled, this allocates and initializes dynamic memory and
receives the first data block from the AIX back-end print program.
This block contains the JES2 SYSOUT parameters and the user name
of the document’s owner. The transaction program then calls the
CHUSER program to change the TCB ACEE for that user name. The
user should have a valid account in RACF that’s not revoked. A spool
SYSOUT dataset is then dynamically allocated with the correct owner
and an initial disposition ‘DEL’ – this ensures the dataset is

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

automatically deleted by JES2 in case of abnormal server termination.
The data is then received and written to the JES2 SYSOUT dataset. The
data received is translated from ASCII to EBCDIC using the table
CONVTBL. On successful transmit/write, the SYSOUT dataset DISP
is changed from DEL to KEEP and closed.

BUILDING AND INSTALLING THE AIX COMPONENTS:

First compile the module common.c. This contains general-purpose
routines.

cc common.c -c -o common.o

Then compile and link the program laser.c.

cc laser.c common.o -o laser -g -l qb -l sna

DEFINING THE PRINT QUEUE

Using smit, choose the ‘Print Spooling’ option followed by ‘Add a
Print Queue’.

Specify QUEUE, QUEUE DEVICE, BACKEND PROGRAM
pathname, and BACKEND OUTPUT FILE. For example:

 Add a Print Queue

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Name of QUEUE to add [laser]
* Name of QUEUE DEVICE to add [laser]
* BACKEND PROGRAM pathname [/<exec_dir>/laser]
 ACTIVATE the queue? yes +
 Should this become the DEFAULT queue? no +
 Queuing DISCIPLINE first come first serve +
 ACCOUNTING FILE pathname [] /
 HOSTNAME of remote server []
 Name of QUEUE on remote server []
 Pathname of the SHORT FORM FILTER for queue [] +/
 status output
 Pathname of the LONG FORM FILTER for queue [] +/
 status output
 BACKEND OUTPUT FILE pathname [/<log_dir>/laser.log] /
 ACCESS MODE of backend output file write only +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

 Print HEADER pages? never +
 Print TRAILER pages? never +
 ALIGN page if printer has been idle? yes +
 Number of FORM FEEDS when printer goes idle [0]

<exec_dir> is the directory where the compiled laser program is
located and <log_dir> the directory of the printer log.

AIX SNA SERVER CONFIGURATION

Two LU6.2-independent LUs are needed, one for the AIX back-end
printer program and another for the MVS started task. The following
parameters need to be modified when you define the AIX SNA server
profiles below:

• AIXPROD1 – your independent local LU6.2 name.

• MVSPROD1 – the independent MVS LU6.2 name.

• NETA– your SNA network name.

• CPNAME – the partner LU that owns the control point name.

LOCAL_LU_LU6.2
prof_name = 'AIXPROD1'
local_lu_name = 'AIXPROD1'
local_lu_alias = 'AIXPROD1'
local_lu_dependent = no
local_lu_address =
sscp_id = *
link_station_prof_name = ''
conversation_security_list_profile_name = ''
rrm_enabled = no
comments = ''

PARTNER_LU6.2
prof_name = 'MVSPROD1'
fq_partner_lu_name = 'NETA.MVSPROD1'
partner_lu_alias = 'MVSPROD1'
session_security_supp = no
parallel_session_supp = yes
conversation_security_level = none
comments = ''

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PARTNER_LU6.2_LOCATION
prof_name = 'MVSPROD1'
fq_partner_lu_name = 'NETA.MVSPROD1'
partner_location_method = owning_cp
fq_partner_owning_cp_name = 'NETA.CPNAME'
local_node_is_network_server_for_len_node = no
fq_node_server_name = ''
local_lu_name = ''
link_station_profile_name = ''
comments = ''

SIDE_INFO
prof_name = 'MVSPROD1'
local_lu_or_control_pt_alias = 'AIXPROD1'
partner_lu_alias = 'MVSPROD1'
fq_partner_lu_name = ''
mode_name = 'LU62CONV'
remote_tp_name_in_hex = no
remote_tp_name = ''
comments = 'AIX to MVS printing'

MODE

prof_name = 'LU62CONV'
mode_name = 'LU62CONV'
max_sessions = 50
min_conwinner_sessions = 25
min_conloser_sessions = 25
auto_activate_limit = 5
max_adaptive_receive_pacing_window = 16
receive_pacing_window = 7
max_ru_size = 512
min_ru_size = 128
class_of_service_name = '#CONNECT'
comments = ''

Below are files that provide a sample VTAM configuration.

SAMPLE LU6.2 DEFINITION
**
** **
** VTAM APPLICATIONS **
** HOST APPLS: MVS DEVELOPMENT APPLICATION **
** **
**
 VBUILD TYPE=APPL

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

MVSPROD1 APPL APPC=YES,SRBEXIT=NO, X
 DSESLIM=20,DMINWNL=10,DMINWNR=10, X
 MODETAB=APPCTAB

SAMPLE APPCTAB MODETAB DEFINITION
LOGLU62 MODEENT LOGMODE=LOGLU62, *
 FMPROF=X'12', *
 TSPROF=X'04', *
 PRIPROT=X'B1', *
 SECPROT=X'B1', *
 COMPROT=X'70A0', *
 RUSIZES=X'8686', *
 PSNDPAC=X'03', *
 SRCVPAC=X'04', *
 SSNDPAC=X'05', *
 PSERVIC=X'06003800000C380000000000'

Below are files that provide a sample MVS configuration. Note that
the output load PDS should be an APF-authorized library.

SAMPLE JCL FOR THE MVS SERVER ASSEMBLY

//UNIXSRV JOB (0001),'ASM',CLASS=B,
// NOTIFY=&SYSUID,
// MSGCLASS=X
//*
//ASM PROC MBR= *MEMBER NAME
//ASM EXEC PGM=ASMA90,REGION=4M,
// PARM='DECK,NOOBJECT,ALIGN'
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=server_source_pds,DISP=SHR
//SYSUT1 DD UNIT=WORK,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=WORK,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=WORK,SPACE=(1700,(400,400))
//SYSPUNCH DD DSN=&&LOADSET,UNIT=WORK,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=server_source_pds(&MBR),DISP=SHR
//*
//LKED EXEC PGM=IEWL,COND=(7,LT,ASM),
// PARM='AC=1,LIST,LET,XREF,MAP'
//SYSLIB DD DSN=MVSSPPC.UNIXSRV.LOAD,DISP=SHR
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
//SYSUT1 DD UNIT=WORK,SPACE=(1024,(200,20))
//SYSLMOD DD DSN=authorized_server_load(&MBR),DISP=SHR
//SYSPRINT DD SYSOUT=*

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

// PEND
//*
//CHUSER EXEC ASM,MBR=CHUSER
//WRT2SPL EXEC ASM,MBR=WRT2SPL
//TCBINIT EXEC ASM,MBR=TCBINIT
//DISPATCH EXEC ASM,MBR=DISPATCH
//UNIXSRV EXEC ASM,MBR=UNIXSRV

SAMPLE JCL PROCEDURE TO RUN THE MVS SERVER
//UNIXSRV PROC
//*
//UNIXSRV EXEC PGM=UNIXSRV,TIME=1440,REGION=0K
//STEPLIB DD DISP=SHR,DSN=authorized_server_load

The application’s source code is listed below.

AIX PROGRAM LASER.C

/***/
/* PROGRAM: laser.c */
/* */
/* REQUIREMENTS: SNA Services/6000 */
/* LU6.2 Connection to remote system. */
/* */
/***/

/* Include Files */
#include ‘common.h’

int sfd;
long rid;
char hostname[64];
int total_bytes_written;
char prog_id[80];
char adm_user[10];
char file_name[80];
char options[80];

struct passwd *user;

int main(argc, argv, envp)
 int argc;
 char *argv[];
 char *envp[];

{
 FILE *fptr;
 char message[200];

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

 unsigned int i,j,step,count,percent,page_count,numparms;
 char mode;
 char buffer [512];
 int parmpos[20];

 struct {
 char userid[8];
 char class;
 char dest[18];
 char form[8];
 char formdef[6];
 char pagedef[6];
 char chars[4];
 char filler;
 short reg_len;
 short n_lines;
 short n_copies;
 } header;

 log_init();
 log_status(INIT);
 sprintf(prog_id,’%s’,argv[0]);
 user=getpwuid(getuid());
 sprintf(file_name,’%s’,argv[argc-1]);
 if (argc > 2)
 sprintf(options,’%s’,argv[1]);
 else
 sprintf(options,’*default parameters*’);

 gethostname(hostname,sizeof(hostname));
 sprintf(adm_user,ADM_USER);

 signal(SIGUSR1, (void (*)(int)) abender); /* catch sna signals */
 signal(SIGTERM, (void (*)(int)) abender); /* catch software signals */

 header.class=' ';
 for(i=0;i<sizeof(header.userid);i++) header.userid[i]=' ';
 for(i=0;i<sizeof(header.dest);i++) header.dest[i]=' ';
 for(i=0;i<sizeof(header.form);i++) header.form[i]=' ';
 for(i=0;i<sizeof(header.formdef);i++) header.formdef[i]=' ';
 for(i=0;i<sizeof(header.pagedef);i++) header.pagedef[i]=' ';
 for(i=0;i<sizeof(header.chars);i++) header.chars[i]=' ';

 get_userid(header.userid);
 if (argc == 3)
 {
 j=0;
 for(i=0;argv[1][i]!='\0';i++)
 if (argv[1][i]!=' ') {buffer[j]=argv[1][i];j++;}
 buffer[j]='\0';
 numparms=get_parm_pos(buffer,parmpos);

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if (numparms>0)
 get_parm(buffer,&(header.class),1);
 if (numparms>1)
 get_parm(&(buffer[parmpos[0]]),header.dest,sizeof(header.dest));
 if (numparms>2)
 get_parm(&(buffer[parmpos[1]]),header.form,sizeof(header.form));
 if (numparms>3)
 get_parm(&(buffer[parmpos[2]]),header.formdef,sizeof(header.formdef));
 if (numparms>4)
 get_parm(&(buffer[parmpos[3]]),header.pagedef,sizeof(header.pagedef));
 if (numparms>5)
 get_parm(&(buffer[parmpos[4]]),header.chars,sizeof(header.chars));
 }
 fptr = fopen (argv[argc-1], ‘r’);
 if (fptr==NULL) call_file_not_found();
 header.reg_len=0;
 header.n_lines=0;
 fgets (buffer, sizeof(buffer), fptr);
 while (!feof(fptr))
 {
 header.n_lines+=1;
 i=strlen(buffer);
 if (i>header.reg_len) {header.reg_len=i;};
 fgets (buffer, sizeof(buffer), fptr);
 }
 fclose(fptr);

 header.n_copies=get_copies();

 call_snaopen(‘MVSPROD1’);
 log_status(CONNECT);
 call_snalloc(‘‘,’WRT2SPL’,SYNC_CONF,WHEN_SESSION_ALLOC,SECUR_NONE,’’,’’,'M');
 log_status(SENDING);
 call_snawrit(sizeof(header), 0, (char *)&header, 'M');
 call_flush('M');
 call_confirm('M');
 log_status(RUNNING);
 fptr = fopen (argv[argc-1], ‘r’);
 if (fptr==NULL) call_file_not_found();
 page_count=1;
 log_pages(page_count);
 count=0;
 percent=0;
 step=header.n_lines/100;
 if (step==0) step=1;

 if ((header.pagedef[0]==' ')&&(header.formdef[0]==' '))
 {
 fgets (&(buffer[1]), sizeof(buffer)-1, fptr);
 buffer[0]=' ';
 while (!feof(fptr))

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

 {
 buffer[strlen(buffer)-1]=' ';
 if (buffer[1]=='\f') /* formfeed test */
 {
 page_count++;
 log_pages(page_count);
 buffer[0]='1';
 buffer[1]=' ';
 }
 call_snawrit(strlen(buffer),0,buffer,'M');
 count++;
 if (percent<count)
 {
 log_percent((char)((percent*100)/header.n_lines));
 percent=count+step;
 }
 if (total_bytes_written>512)
 {
 total_bytes_written=0;
 call_confirm('M');
 }
 buffer[0]=' ';
 fgets (&(buffer[1]), sizeof(buffer)-1, fptr);
 }
 }
 else
 {
 fgets ((buffer), sizeof(buffer), fptr);
 while (!feof(fptr))
 {
 buffer[strlen(buffer)-1]=' ';
 call_snawrit(strlen(buffer),0,buffer,'M');
 count++;
 if (percent<count)
 {
 log_percent((char)((percent*100)/header.n_lines));
 percent=count+step;
 }
 if (total_bytes_written>512)
 {
 total_bytes_written=0;
 call_confirm('M');
 }
 fgets ((buffer), sizeof(buffer), fptr);
 }
 }
 fclose (fptr);
 call_confirm('M');
 call_snadeal(DEAL_DEFAULT,DISCARD,'M');
 call_snaclse();
} /* End Main */

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

AIX PROGRAM COMMON.H
/* Include Files */
#include <fcntl.h>
#include <luxsna.h>
#include <errno.h>
#include <sys/signal.h>
#include <sys/time.h>
#include <sys/select.h>
#include <NLxio.h>
#include <stdio.h>
#include <pwd.h>
#include <IN/backend.h>
#include <IN/standard.h>
#include <unistd.h>

/* Global Defines */
#define OK 0
#define YES 1
#define NO 0
#define ERROR -1
#define SUCCESS 0
#define CONV_ID_LEN 8
#define MAX_LU_LEN 9
#define MAXPARMS 20

#define ADM_USER ‘root’

void call_file_not_found();
int get_parm(char *,char *,int);
int get_parm_pos(char *,int *);
int get_userid(char *);
int notify(char *);
int abender(int);
int handle_errors(int);
int call_snaopen(char *);
int call_snaclse();
int call_snalloc(char *,char *,int,int,int,char *,char *,int);
int call_snadeal(int,int,int);
int call_snawrit(int,int,char *,int);

int call_flush(int);
int call_confirm(int);

AIX PROGRAM COMMON.C
/***/
/* PROGRAM: Common programs of application UNIXSERV */
/* */
/* REQUIREMENTS: SNA Services/6000 Version 1.1.101.220 (or later) */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

/* LU6.2 Connection to remote system. */
/* */

#include ‘common.h’

extern int sfd;
extern long rid;
extern int errno;
extern int a64l();
extern char prog_id[80];
extern int total_bytes_written;
extern char hostname[64];
extern char adm_user[10];
extern char file_name[80];
extern char options[80];
extern struct passwd *user;

void call_file_not_found()
{
 char message[200];
 struct passwd *user;
 user=getpwuid(getuid());
 sprintf(message,’\n\n\nUnable to open input file !\n’);
 notify(message);
 exit(EXITBAD);
}

int get_parm(parm,var,size)
char *parm,*var;
int size;
{
 unsigned int i;
 for(i=0;((parm[i]!='\0')&&(parm[i]!=',')&&(i<size));i++) var[i]=parm[i];
 for(i=i;i<size;i++) var[i]=' ';
}

int get_parm_pos(str,parmpos)
char *str;
int *parmpos;
{
 int i,j;
 for (i=0;i<MAXPARMS;i++) parmpos[i]=0;
 j=0;
 for (i=0;((str[i]!='\0')&&(j<MAXPARMS));i++) if (str[i]==',')
 {parmpos[j]=i+1;j++;};
 return j+1;
}

get_userid(str)
char *str;
{

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 struct passwd *user;
 unsigned int i;
 user=getpwuid(getuid());
 for(i=0;((i<8)&&(user->pw_name[i]!='\0'));i++) str[i]=user->pw_name[i];
}

int notify(message)
char *message;
{
 char adm_msg[1024];
 sprintf(adm_msg,’%s\n******* Print job description*******\n’,
 message,adm_msg);
 sprintf(adm_msg,’%sHost name : %s\n’,adm_msg,hostname);
 sprintf(adm_msg,’%sPrinter queue : %s\n’,adm_msg,get_queue_name());
 sprintf(adm_msg,’%sJob submited at : %s\n’,adm_msg,get_qdate());
 sprintf(adm_msg,’%sJob number : %d\n’,adm_msg,get_job_number());
 sprintf(adm_msg,’%sUser id : %s\n’,adm_msg,user->pw_name);
 sprintf(adm_msg,’%sOptions : %s\n’,adm_msg,options);
 sprintf(adm_msg,’%sFile : %s\n’,adm_msg,file_name);
 sprintf(adm_msg,’%sBackend program : %s\n’,adm_msg,prog_id);
 sprintf(adm_msg,’%sSubmit command : %s\n’,adm_msg,get_cmd_line());
 sysnot(adm_user,hostname,adm_msg,DOMAIL);
 sprintf(adm_msg,’%s\n\nPlease contact your technical support.\n’,adm_msg);
 sysnot(user->pw_name,hostname,adm_msg,DOMAIL);
 printf(‘%s\n’,adm_msg);
}

int abender(signo)
int signo;
{
 struct passwd *user;
 char message[200];
 sprintf(message,’\nStop signal received. Print job cancelled!\n\n’);
 notify(message);
 if (signo == SIGUSR1)
 printf(‘%s: Error, received signal 1 from link station!\n’,prog_id);
 else
 if (signo == SIGTERM)
 printf(‘%s: Error, received software signal kill!\n’,prog_id);
 printf(‘%s: Attempting de-allocate with type = ABEND! \n’,prog_id);
 call_snadeal(DEAL_ABEND,0,0);
 printf(‘%s: About to send a SIGKILL to myself, bye! \n’,prog_id);
 kill(getpid(), SIGKILL);
}

int handle_errors(aix_err)
int aix_err;
{
 struct passwd *user;
 unsigned int i;
 char message[200];

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

 user=getpwuid(getuid());
 sprintf(message,’\nComunication failure with the MVS server.\n’);
 sprintf(message,’%sUnable to print\n’,message);
 notify(message);
 printf(‘%s: Error = %d\n’,prog_id,errno);
 if ((aix_err == SNA_PGMDEAL) || (aix_err == SNA_NRMDEAL))
 printf(‘%s: Conversation was de-allocated by the remote TP\n’,prog_id);
 printf(‘%s: Attempting deallocate with type = ABEND! \n’,prog_id);
 call_snadeal(DEAL_ABEND,0,0);
 printf(‘%s: Exiting program\n’,prog_id);
 exit(EXITBAD);
}

int call_snaopen(side_info)
unsigned char side_info[30];
{
 sfd = snaopen(side_info);
 if (sfd == ERROR)
 {
 printf(‘%s: Open of side_info (snaopen) %s failed !\n’,prog_id,side_info);
 handle_errors(errno);
 }
 return(SUCCESS);
}

int call_snaclse()
{
 int return_code;
 return_code = snaclse(sfd);
 if (return_code == ERROR)
 {
 printf(‘%s: Close file descriptor (snaclse) failed!\n’,prog_id);
 handle_errors(errno);
 }
 return(SUCCESS);
}

int call_snalloc(mode_name, tp_name, sync_level, ret_ctl, security,
 uid, pw, c_type)
char mode_name[9];
char tp_name[65];
int sync_level;
int ret_ctl;
int security;
char uid[SECUR_USERID_LEN];
char pw[SECUR_PASSWD_LEN];
int c_type;
{
 int return_code; /* return code */
 struct allo_str allo_str; /* allocate parameters */
 memset(&allo_str, 0, sizeof(allo_str));

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 allo_str.rid = rid;
 strcpy(allo_str.mode_name, mode_name);
 strcpy(allo_str.tpn, tp_name);
 allo_str.sync_level = sync_level;
 allo_str.return_control = ret_ctl;
 strncpy(allo_str.pgm.user_id, uid, SECUR_USERID_LEN-1);
 strncpy(allo_str.pgm.passwd, pw, SECUR_PASSWD_LEN-1);
 allo_str.type = (c_type=='B') ? BASIC_CONV : MAPPED_CONV;
 rid = snalloc(sfd, &allo_str, c_type);
 if (return_code == ERROR)
 {
 printf(‘%s: Conversation Allocation (snalloc) failed !\n’,prog_id);
 handle_errors(errno);
 }
 return(SUCCESS);
}

int call_snadeal(deal_type, deal_flag, c_type)
int deal_type;
int deal_flag;
int c_type;
{
 int return_code; /* return code */
 struct deal_str deal_str; /* allocate parameters */
 memset(&deal_str, 0, sizeof(deal_str));
 deal_str.rid = rid;
 deal_str.type = deal_type;
 deal_str.deal_flag = deal_flag;
 rid = snadeal(sfd, &deal_str, c_type);
 if (return_code == ERROR)
 {
 printf(‘%s: Conversation deallocation (snadeal) failed!\n’,prog_id);
 handle_errors(errno);
 }
 return(SUCCESS);
}

int call_snawrit(length, translate, ascii_buf, c_type)
int length;
int translate;
char ascii_buf[512]; /* temporary storage */
int c_type;
{
 int bytes_written; /* Bytes written */
 char buf[512]; /* Input buffer */
 char *data_ptr; /* Temporary data ptr */
 struct write_out write_out; /* Allocate parameters */
 memset(buf, 0, sizeof(buf));
 memset(&write_out, 0, sizeof(write_out));
 if (length > 0)
 {

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

 if (c_type == 'M')
 {
 if (translate == YES)
 length = NLxout(buf, ascii_buf, length);
 else
 memcpy(&buf,ascii_buf,length);
 }
 else
 {
 if (translate == YES)
 length = NLxout(&buf[2], ascii_buf, length);
 else
 memcpy(&buf,ascii_buf,length);
 buf[0] = 0;
 length=+2;
 buf[1] = length;
 }
 }
 bytes_written = snawrit(sfd, buf, length, rid, &write_out, c_type);
 if (bytes_written == ERROR)
 {
 printf(‘%s: Write Data (snawrit) failed !\n’,prog_id);
 handle_errors(errno);
 }
 total_bytes_written+=bytes_written;
 return(SUCCESS);
}

int call_flush(c_type)
int c_type;
{
 int return_code; /* return code */
 struct flush_str flush_str; /* flush parameters */
 memset(&flush_str, 0, sizeof(flush_str));
 flush_str.rid = rid;
 return_code = snactl(sfd, FLUSH, (int) &flush_str, c_type);
 if (return_code == ERROR)
 {
 printf(‘%s: Flush (snactl(FLUSH)) failed !\n’,prog_id);
 handle_errors(errno);
 }
 return(SUCCESS);
}

int call_confirm(c_type)
int c_type;
{
 int return_code; /* return code */
 struct confirm_str confirm_str; /* confirm parameters */
 memset(&confirm_str, 0, sizeof(confirm_str));
 confirm_str.rid = rid;

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 return_code = snactl(sfd, CONFIRM, (int) &confirm_str, c_type);
 if (return_code == ERROR)
 {
 printf(‘%s: Confirm (snactl(CONFIRM)) failed !\n’,prog_id);
 handle_errors(errno);
 }
 return(SUCCESS);
}

MVS PROGRAM UNIXSRV
 TITLE ' MVS COMMAND SERVER '
 ENTRY UNIXSRV
UNIXSRV RMODE 24 required for open acb macro
UNIXSRV AMODE 31
UNIXSRV CSECT
MAIN BAKR R14,0
 LA R10,0(R15,0)
 USING UNIXSRV,R10
 LA R13,SAVEAREA
 MVC 4(4,R13),=C'F1SA'
* test if already running
 ENQ (QNAME,RNAME,E,L'RNAME,SYSTEM),MF=(E,ENQLIST)
 LTR R15,R15
 BZ UNIQUE
*
 WTO 'UNIXSRV- ALREADY ACTIVE'
 SR R15,R15
 PR
*
UNIQUE LA R9,MAINRPL Establish addressability
 USING IFGRPL,R9 of MAIN routine RPL
 LA R8,MAINRPL6 Establish addressability
 USING ISTRPL6X,R8 of MAIN routine RPL Extension
*
**
* *
* Issue OPEN macro instruction to identify this program to VTAM. *
* The OPEN macro instruction references a VTAM ACB with label *
* ACB. The ACB is VTAM's representation of the LU. All VTAM *
* macros reference this ACB. *
* *
**
*
 XR R15,R15 Initialize register 15 = 0
 OPEN ACB
 LTR R15,R15 Test OPEN
 BZ OPENOK Branch if successful
 WTO 'UNIXSRV- UNABLE TO ESTABLISH COMMUNICATIONS'
 B MAINCODE Branch to MAIN return

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

*
**
* *
* Issue SETLOGON macro instruction to enable VTAM to accept *
* LU 6.2 session initiation request on behalf of the application *
* program. The RPL operand of this and other macro instructions *
* specifies the request parameter list (RPL) that is used to send *
* and receive VTAM information about macro instructions. *
* *
**
*
OPENOK DS 0H
 SETLOGON RPL=MAINRPL,OPTCD=START
 CLI RPLRTNCD,USFAOK RTNCD = X'00' ?
 BNE SETLOGFL branch if no
 CLI RPLFDB2,USFAOOK FDB2 = X'00'
 BNE SETLOGFL branch if yes
 WTO 'UNIXSRV- UP AND RUNNING'
 B MAINCODE branch if yes
SETLOGFL DS 0H
 WTO 'UNIXSRV- UNABLE TO ESTABLISH COMMUNICATIONS'
 B MAINCODE
*
**
* *
* Any user application will include some mechanism that is able *
* to initiate a transaction program. That mechanism will be *
* triggered by a reply from the following WTOR macro request. *
* A reply of 'START' launches code to start a conversation. *
* A reply of 'CLOSE' launches code to terminate the application. *
* *
**
*
MAINCODE DS 0H
*
 LA R1,0
 STH R1,REQCOUNT set request count to 0
*
 STIMER REAL,TIMER_EXIT,DINTVL=INTERVAL
 LA R6,COMADDR get comm area address
 EXTRACT (R6),FIELDS=COMM,MF=(E,EXTRACT)
*
 L R6,COMADDR get address of the area
 USING COM,R6 R9 used as a base reg for comm area
 ICM R7,15,COMCIBPT get cib address from comm area
*
 QEDIT ORIGIN=COMCIBPT,CIBCTR=5
 L R1,COMECBPT get address of the communications ECB
 ST R1,@COMECB put addr of modify ecb in list
*
 LA R1,TIMERECB get addr of FM5 received ECB

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ST R1,@TIMERECB
 LA R1,FMH5ECB get addr of FM5 received ECB
 O R1,=X'80000000' set high bit - last ecb in list
 ST R1,@FMH5ECB
*
LOOP DS 0H
 L R2,WAITFMH5
 LTR R2,R2
 BNZ NEXTFMH5
*
 WAIT ECBLIST=ECBS wait for a message
*
NEXTFMH5 DS 0H
 WTO 'UNIXSRV- WAKEUP TIME'
 L R4,WAITFMH5
 CVD R4,WORKAREA
 UNPK WORKAREA(5),WORKAREA+4(4)
 OI WORKAREA+4,X'F0'
 LA R1,WORKAREA
 MVC NUMFMH5(5),WORKAREA
 WTO TEXT=WTOWAIT * Issue statistics message
**
*
 L R1,TIMERECB get timer ecb
 N R1,=X'40000000' check for post
 BNZ TIME_OUT set, process timer
 XC TIMERECB,TIMERECB clear message ecb
*
 L R1,@COMECB Get CIB ECB address
 L R1,0(R1) get cib ecb
 N R1,=X'40000000' check for post
 BNZ CHK_CIB not set, check for oper cmd
*
 XC FMH5ECB,FMH5ECB clear message ecb
 L R2,WAITFMH5 test if any FMH5 is pending
 LTR R2,R2
 BZ LOOP
*
 WTO 'UNIXSRV- CONVERSATION REQUEST ACCEPTED'
 XC FMH5ECB,FMH5ECB clear message ecb
*
 LA R1,1
DECLOOP LR R3,R2
 SR R3,R1
 CS R2,R3,WAITFMH5
 BC 4,DECLOOP
*
 LH R1,REQCOUNT load,increment and save request count
 LA R1,1(R1)
 STH R1,REQCOUNT
*

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

 CALL DISPATCH,(MODLRPL,MODLRPL6,REQCOUNT)
 B LOOP
*
TIME_OUT DS 0H
 WTO 'UNIXSRV- TIMER ROUTINE SCHEDULED'
 XC TIMERECB,TIMERECB
 STIMER REAL,TIMER_EXIT,DINTVL=INTERVAL
*
 SETLOGON RPL=MAINRPL,OPTCD=START * Test VTAM link
 LTR R15,R15
 BNZ OPEN_ACB
 B LOOP
*
OPEN_ACB DS 0H
 OPEN ACB
 LTR R15,R15
 BNZ COMM_ERR
*
 SETLOGON RPL=MAINRPL,OPTCD=START
 CLI RPLRTNCD,USFAOK RTNCD = X'00' ?
 BNE COMM_ERR branch if no
 CLI RPLFDB2,USFAOOK FDB2 = X'00'
 BNE COMM_ERR branch if yes
 WTO 'UNIXSRV- COMMUNICATIONS RE-ESTABLISHED'
 WTO 'UNIXSRV- UP AND RUNNING'
 B LOOP
*
COMM_ERR DS 0H
 WTO 'UNIXSRV- UNABLE TO ESTABLISH COMMUNICATIONS'
 B LOOP
*
CHK_CIB DS 0H
 WTO 'UNIXSRV- CONSOLE COMMUNICATION ROUTINE SCHEDULED'
*
 QEDIT ORIGIN=COMCIBPT,BLOCK=(R7) free de cib
 L R6,COMADDR get address of the area
 USING COM,R6 R9 used as a base reg. for comm area
 ICM R7,15,COMCIBPT get cib address from comm area
 USING CIB,R7 base cib mapping
 CLI CIBVERB,CIBMODFY was it a modify?
 BE MODIFY yes, process it
 CLI CIBVERB,CIBSTOP was it a stop
 BNE LOOP no, then loop
 WTO 'UNIXSRV- STOP COMMAND ACCEPTED'
 B MAINEND
*
MODIFY DS 0H
 B LOOP
*
**
* *

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

* This termination routine makes the assumption that all *
* conversations have completed successfully. Therefore, the tasks *
* remaining are to CNOS the LOGMODE mode LU62CONV session limits *
* to zero and then CNOS the SNASVCMG limits to zero. Once *
* the CNOSes have completed, the ACB is CLOSED and the *
* application returns to the system. *
* *
**
*
MAINEND DS 0H
 CLI LUSTATE,LUCNOSD have session limits been set?
 BNE DOCLOSE branch if not
 MVC RPL6MODE,LOGMODE set RPL extension LOGMODE
 XC MAINAREA,MAINAREA initializing the AREA to zero
* will produce a CNOS structure
* with session limits set to zero
 LA R1,MAINAREA address AREA storage
*
 WTO 'UNIXSRV- RESETTING SESSION LIMITS FOR LU62CONV MODE'
*
 APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS, X
 ACB=ACB,RPL=MAINRPL,AAREA=MAINRPL6, X
 AREA=MAINAREA,RECLEN=SLCLEN, X
 OPTCD=SYN
*
 MVC RPL6MODE,=CL8'SNASVCMG' Set to CNOS the SNASVCMG mode
*
 WTO 'UNIXSRV- RESETTING SESSION LIMITS FOR SNASVCMG MODE'
*
 APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS, X
 ACB=ACB,RPL=MAINRPL,AAREA=MAINRPL6, X
 OPTCD=SYN
*
DOCLOSE DS 0H

 CLOSE ACB Close ACB
MAINRETN DS 0H
 DEQ (QNAME,RNAME,L'RNAME,SYSTEM),MF=(E,DEQLIST)
 PR
**
* *
* ATTN EXIT Routine *
* *
* ON ENTRY: *
* R1 - address of a 6-word parameter list, as documented in *
* in the LU 6.2 programming manual *
* R14 - Return address when processing is finished *
* R15 - Address of this ATTN exit. *
* *
**
*

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

TPENDEXIT DS 0H
 USING TPENDEXIT,R15 temporary base for this routine
 CNOP 0,4 full word alignment
 BAL R13,*+76 branch around save area
 DC 18F'0' set up save area chain
 STM R14,R12,12(R13) store current registers
 LR R12,R15 establish normal base register
 DROP R15 for this
 USING TPENDEXIT,R12 ATTN exit
 CNOP 0,4 full word alignment
 BAL R15,*+76 branch around save area
 DC 18F'0' save area for called routines
* and macro requests
 ST R15,8(0,R13) chain save areas
 ST R13,4(0,R15) together
 LR R13,R15 set R13 to second savearea
 LR R11,R1 preserve parameter address
*
 L R9,16(R11) load address of read-only RPL
 USING IFGRPL,R9 establish base register
 L R8,RPLAAREA load address of read only RPL6
 USING ISTRPL6X,R8 establish base register
*
 WTO 'UNIXSRV- TPEND EXIT SCHEDULED, COMUNICATIONS ALERT'
*
 L R13,4(0,R13) load address of first savearea
 LM R14,R12,12(R13) load original registers
 BR R14 branch back to VTAM
*
ATTNEXIT DS 0H
 USING ATTNEXIT,R15 temporary base for this routine
 CNOP 0,4 full word alignment
 BAL R13,*+76 branch around save area
 DC 18F'0' set up save area chain
 STM R14,R12,12(R13) store current registers
 LR R12,R15 establish normal base register
 DROP R15 for this
 USING ATTNEXIT,R12 ATTN exit
 CNOP 0,4 full word alignment
 BAL R15,*+76 branch around save area
 DC 18F'0' save area for called routines
* and macro requests
 ST R15,8(0,R13) chain save areas
 ST R13,4(0,R15) together
 LR R13,R15 set R13 to second savearea
 LR R11,R1 preserve parameter address
*
 L R9,16(R11) load address of read only RPL
 USING IFGRPL,R9 establish base register
 L R8,RPLAAREA load address of read only RPL6
 USING ISTRPL6X,R8 establish base register

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

*
LUOK DS 0H
 CLC RPL6MODE,LOGMODE is LOGMODE = LU62CONV
 BE MODEOK branch if yes
 CLC RPL6MODE,=CL8'SNASVCMG' is this SNASVCMG LOGMODE
 BE MODEOK branch if yes
 WTO 'UNIXSRV- #####DEFINITON ERROR#####'
 B ATTNRETN branch to EXIT return
*
MODEOK DS 0H
 CLC 12(4,R11),=CL4'CNOS' Is this a CNOS event?
 BE ATTNCNOS branch if yes to CNOS process
 CLC 12(4,R11),=CL4'FMH5' Is this an FMH-5 reception ?
 BE ATTNFMH5 branch if yes to FMH-5 process
 CLC 12(4,R11),=CL4'LOSS' Is this an UNBIND session
* event?
 BE ATTNLOSS branch if yes to LOSS process
*
ATTNCNOS DS 0H
*
 L R7,RPLAREA establish addressability to
 USING ISTSLCNS,R7 CNOS structure
 CLC SLCSESSL,=H'0' Is the a Reset Session limits?
 BE RESET branch if yes
 MVI LUSTATE,LUCNOSD else this request is setting
* limits which this sample
* program will just make note
* session limits have been CNOSed
 B ATTNRETN branch to return processing
RESET DS 0H
 MVI LUSTATE,LUNCNOS make note that session limits
* have been reset and that no
* limits are established.
 B ATTNRETN branch to return processing
 DROP R7 remove basing to CNOS
* structure
*
ATTNFMH5 DS 0H
 WTO 'UNIXSRV- CONVERSATION REQUEST RECEIVED AND QUEUED'
*
 L R4,=A(WAITFMH5)
 L R2,0(R4)
 LA R1,1
INCLOOP LR R3,R2
 AR R3,R1
 CS R2,R3,0(R4)
 BC 4,INCLOOP
*
 L R2,=A(FMH5ECB)
 POST (R2),1
 B ATTNRETN Branch to EXIT return

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

*
**
* *
* LOSS Processing Routine *
* *
**
*
ATTNLOSS DS 0H
 WTO 'UNIXSRV- SESSION LOST DETECTED'
 B ATTNRETN
*
**
* *
* ATTN return processing *
* *
**
*
ATTNRETN DS 0H
 L R13,4(0,R13) Load address of first savearea
 LM R14,R12,12(R13) Load original registers
 BR R14 Branch back to VTAM
*
 DROP R8,R9,R12 remove basing for passed
* structure
*
* Exit scheduled by the timer when expired
*
TIMER_EXIT DS 0H
*
 USING TIMER_EXIT,R15
 STM 14,12,12(13)
 LR R12,R15
 USING TIMER_EXIT,R12
*
 L R2,=A(TIMERECB)
 POST (R2),1
*
 L R14,12(0,R13)
 LM R0,R12,20(R13)
 BR R14
 DROP R12
**
 DS 0D * Double word work area for mathematics
WORKAREA DS CL8
*
WTOWAIT DC AL2(WTOWAITL)
 DC C'UNIXSRV- WAITING FMH5 IN QUEUE '
NUMFMH5 DS CL5
WTOWAITL EQU *-WTOWAIT-2
**
* MAIN routine data area *

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

**
*
REQCOUNT DS AL2
LUENTRY DS 0D
LUSTATE DC XL1'00'
LUNCNOS EQU X'00' session limits not established
LUCNOSD EQU X'80' session limits established
*
LOGMODE DC CL8'LU62CONV' LOGMODE name
SAVEAREA DS 20A
INTERVAL DC CL8'00010000' wake up every minute
WAITFMH5 DC F'0'
ECBS DS 0H
@COMECB DS A
@TIMERECB DS A
@FMH5ECB DS A
*
TIMERECB DC F'0'
FMH5ECB DC F'0'
* FMH-5
COMADDR DS F comm area address from extract
EXTRACT EXTRACT MF=L extract parameter list
*
QNAME DC CL8'UNIXSRV'
RNAME DC C'MVS COMMAND UNIXSRV'
DEQLIST DEQ (,,,SYSTEM),RET=NONE,MF=L
ENQLIST ENQ (,,,,SYSTEM),RET=USE,MF=L
*
**
* *
* VTAM and LU6.2-specific variable areas *
* *
**
*
ACB ACB AM=VTAM, X
 EXLST=EXLST, X
 APPLID=APPLID
EXLST EXLST AM=VTAM, X
 ATTN=ATTNEXIT, X
 TPEND=TPENDEXIT
*
APPLID DC AL1(8)
 DC CL8'MVSPROD1'
*
MAINRPL RPL AM=VTAM,ACB=ACB MAIN task RPL
MAINRPL6 ISTRPL6 MAIN task RPL6
MAINAREA DC XL(SLCLEN)'00' MAIN task AREA
*
 DS 0F
MODLRPL RPL AM=VTAM,ACB=ACB Model RPL
MODLRPL6 ISTRPL6 CONMODE=CS,FILL=LL,LOGMODE=LU62CONV Model RPL6

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

 LTORG
*
**
* *
* Program DSECTs *
* *
**
*
 IFGRPL AM=VTAM
 ISTFM5
 ISTSLCNS
SLCLEN EQU SLCEND-ISTSLCNS
 ISTUSFBC
 IFGACB AM=VTAM
*
COM DSECT
 IEZCOM , com area
CIB DSECT
 IEZCIB cib
*
**
* *
* Register EQUATES *
* *
**
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END

This article concludes in next month’s issue of AIX Update with the
remainder of the code for this utility.

Fernando Manuel Carvalho Nunes
System Programmer
Companhia de Seguros Bonanca (Portugal) © Xephon 2000

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A script to resize a filesystem

In order to take the drudgery out of resizing filesystems, I wrote a
script that allows an administrator simply to specify the desired
increase in megabytes. The script takes the PP size of the volume
group to which the target filesystem belongs into account and advises
how many available PPs would be consumed by the specified increase
before proceeding. The script also handles circumstances in which the
MAX LPs parameter needs to be increased to accommodate the
request. Finally, it displays the before and after statistics on disk space.

EXAMPLE:

In order to increase the /tmp filesystem by 32 megabytes, use the
following command:

CHFS 32 /tmp

CHFS
#!/bin/ksh
#
CHFS
#
Michael Stanton
Mercedes-Benz USA, LLC.
9/15/99
#
The CHFS script allows the size of a named filesystem to be increased
by a specified number of megabytes.
#
Sample usage:
To add 32 MB of space to the /tmp filesystem, issue the command:
CHFS 32 /tmp
#
Modification History
#=====================
01/31/2000 MGS Handle cases where the MAX LPs need to be increased.
#
#==
#
Check that two arguments were supplied
if [[$# -ne 2]]
then
 echo "Usage: CHFS <size in MB> <filesystem>"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

 echo "Example: CHFS 32 /tmp (increase /tmp by 32MB)"
 exit 1
fi
#--
size=$1
FS=$2
#
#--
Check that the filesystem specified exists
grep -q "${FS}:" /etc/filesystems
if [[$? -ne 0]]
then
 echo "\nThe filesystem ${FS} does not exist. Please check."
 exit 1
fi
#--

echo "Working..."

#--
Set some variables
typeset -i MAXLPS=0 LPS=0 PPSIZE=0 PPSLEFT=0 PPSTOADD=0
typeset -i FREEMBS=0 VGPPSAVAIL=0 DEFICIT=0
typeset -s LVNAME="" VGNAME="" answer=""

#--
#
Get settings for LVs, VGs, PPs, etc.
LVNAME=$(lsfs ${FS}|tail -1|awk '{print $1}'|cut -f3 -d '/')
MAXLPS=$(lslv ${LVNAME}|grep "MAX LPs"|awk '{print $3}')
LPS=$(lslv ${LVNAME}|grep "LPs"|grep -v MAX|awk '{print $2}')
PPSIZE=$(lslv ${LVNAME}|grep "MAX LPs"|awk '{print $6}')
VGNAME=$(lslv ${LVNAME}|head -1|awk '{print $6}')
VGPPSAVAIL=$(lsvg ${VGNAME}|grep "FREE PPs"|awk '{print $6}')
PPSLEFT=$((MAXLPS-LPS))
PPSTOADD=$((size/PPSIZE))
FREEMBS=$((VGPPSAVAIL * PPSIZE))
#
#--
if ((PPSTOADD > VGPPSAVAIL))
then
 echo "Not enough free PPs to satisfy your request for ${size} MBs."
 echo "There are only ${VGPPSAVAIL} PPs left (${FREEMBS} MBs) in
 ➤ ${VGNAME}."
 exit 0
fi

#--
echo "\nThe number of Free PPs in that VG (${VGNAME}) is:
 ➤ ${VGPPSAVAIL}."
echo "Your request of ${size} MBs will use up ${PPSTOADD} of those.\n"

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

answer="x"
while [["${answer}" = "x"]]
do
 echo "Do you want to continue? (y/n): \c"
 read answer rest
 case ${answer} in
 "y"|"Y")
 : # Continue
 ;;
 *)
 echo "Exiting procedure." # Exit the script
 exit 0
 ;;
 esac
done

#--
if ((PPSTOADD > PPSLEFT))
then
 DEFICIT=$((PPSTOADD - PPSLEFT)) # Calculate new value of MAXLPs

 echo "\nThe present MAX LPs for ${LVNAME} is set to: ${MAXLPS}."
 echo "To add ${size} MBs, the MAX LPs parameter must be increased"
 echo "for this logical volume (${LVNAME}) by ${DEFICIT} PPs.\n"

 answer="x"

 while [["${answer}" = "x"]]
 do
 echo "Increase the MAX LPs by ${DEFICIT} PPs? (y/n): \c"
 read answer rest
 case ${answer} in
 "y"|"Y")
 echo "Executing: chlv -x ${DEFICIT} ${LVNAME}"
 chlv -x $((DEFICIT + LPS)) ${LVNAME}
 if [$? -eq 0]
 then
 echo " MAX LPs has been increased."
 fi
 ;;
 *)
 echo "Exiting procedure."
 exit 0
 ;;
 esac
 done
fi

#--
before=$(df -k ${FS})

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

answer=""
echo "\nIncrease ${FS} by ${size} MB? (y/n): \c"
read answer extra
case ${answer} in
 "y"|"Y")
 echo "Working..."
 ;;
 *)
 echo "No changes will be made."
 exit 0
 ;;
esac

#--

chfs -a size="+$((2 * ${size}000))" ${FS} # Increase the filesystem

#--

after=$(df -k ${FS})
#
echo "\n(BEFORE)\n${before}" # Show the difference
echo "\n(AFTER) \n${after}\n"
#
#eoj

Michael G Stanton
Supervisor, Midrange Systems
Mercedes-Benz (USA) © Xephon 2000

Mailto – HTML help file

The code and documentation for Mailto were published in issues 57
and 58 of AIX Update, and it had been our intention to publish the
HTML help file in this issue. However, in view of the fact that this is
very similar to the printed documentation, we’ve decided not to
include it in this issue – you can download the file from:

http://www.xephon.com/extras/mailto.htm

AIX news

IBM has unveiled its WebSphere Edge
Server, which sits at local and remote
network boundaries and provides services
on behalf of back-end servers to improve
Web application performance, availability,
and scalability. It provides dynamic load
balancing across Web servers and
geographic sites, including content-based
routing for service differentiation among
incoming requests. It also provides Web
content caching and screening and filtering
of non-productive or undesirable URLs.

The integrated system includes enhanced
versions of proxy caching, a new
streamlined install/configuration process,
and a network dispatcher, providing high-
availability back-up, QoS routing based on
Type of Service (ToS) rules, Lotus Domino
Server scalability for POP3 and IMAP4
clients, and cross-port affinity. It runs on
AIX, NT, Windows 2000, Solaris 7, and
Linux. Out now, it costs US$8,000 for both
56-bit and 128-bit encryption versions.

Separately, the company announced Version
2.2 of its WebSphere Host Publisher for
AIX. It supports applications written for
3270, 5250, VT, Java, and databases that
provide a JDBC interface and it supports any
HTML-based browser.

Out now, it costs US$15,000.

For further information, contact your local
IBM representative.

* * *

StorageTek has announced that its 9500
Shared Virtual Array (SVA) 1.5 disk system
and Virtual Power Suite software now
support AIX, Solaris, HP-UX, and Windows
NT/2000 with Fibre Channel direct-attach
connection.

The Virtual Power Suite now has easier
centralized management, comprehensive
reporting, greater availability, and SnapShot
data duplication software. Specifically, it
now includes SVA Reporter, providing
information and reports from the 9500 SVA;
SVA NMP, allowing communication with
CA Unicenter; SVA Path, providing fail-
over path-balancing, and Power Peer-to-
Peer Remote Copy (PPRC) for real-time
backup, now with increased distance
capabilities, higher performance and
throughput, and faster initial
synchronization (from five minutes to two
minutes).

Availability and pricing weren’t announced.

For further information contact:
Storage Technology Corp, 2270 S 88th St,
Louisville, CO 80028, USA
Tel: +1 303 673 5151
Fax: +1 303 673 8876
Web: http://www.storagetek.com

Storage Technology Ltd, Storage Tek
House, Woking Business Park, Albert Drive,
Woking, Surrey GU21 5JY, UK
Tel: +44 1483 737333
Fax: +44 1483 737222

* * *

x xephon

	Understanding file archiving
	Hot-plug on F80s, H80s and M80s
	AIX printing on MVS AFP printers (part 1)
	A script to resize a filesystem
	Mailto – HTML help file
	AIX news

