
May 2001

67

© Xephon plc 2001

3 Bottleneck basics
9 Verifying fileset-level integrity

14 Help for ESS fibre-attached drives
17 Enhancing the vi editor
23 Process identification utility
27 Standby system failover – part 2
33 An automated file transfer system for

AIX
46 Utility for documenting your system
52 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1995 issue, are available
separately to subscribers for £16.00 ($23.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aixupdate.html; you will need to supply
a word from the printed issue.

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls and Richard Watson

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors, or you can
download a copy from www.xephon.com/
contnote.html.

t

 3© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

Bottleneck basics

It’s a phone call most administrators never want to receive: the server
is slow, no one can check e-mail, and Web pages are loading slowly
or not at all! Too often administrators find themselves trying to climb
up the steep slope of increased demand. As a user base grows, the
demand placed on the server grows as well. This growth may be linear
and predictable, or it may be completely random or exponential.

There are ways to avoid the angry phone call altogether. Understanding
system bottlenecks and gathering statistical data can help you project
your system’s current and future needs. This can eliminate user
complaints – and prevent that phone from ringing.

WHAT CAUSES A BOTTLENECK?

Why does a system slow down in the first place? Slowdowns can
usually be attributed to one or more bottlenecks, which are caused
when part of the system is not running fast enough to keep up with the
demands placed on it. The most common bottlenecks occur for the
following reasons:

• Slow disks or disk arrays aren’t able to handle I/O requests
quickly enough.

• The system is starved of memory, so applications are forced to
swap to disk, which can slow response time drastically.

• The system is out of processor power.

• The network interface is overloaded.

So how can you tell which of these may be having a problem? By using
the various tools of the capacity planning trade – sar, netstat, and top.

SAR

sar is by far one of the most valuable tools an administrator has to
track past trends and predict future demand.

 4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

First you’ll need to configure it to begin collecting data. Edit the
system’s adm crontab: crontab -e adm.

Remove the comments so that you have these lines:

Ø 8-17 * * 1-5 /usr/lib/sa/sa1 12ØØ 3 &
Ø * * * Ø,6 /usr/lib/sa/sa1 &
Ø 18-7 * * 1-5 /usr/lib/sa/sa1
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:ØØ -e 18:Ø1 -i 36ØØ -ubcwyaqvm &

This will enable sar for system activity reporting. Your system will
now begin gathering data. For a detailed explanation of how to use
sar, please see the sar information pages. Here’s a quick list of sar’s
more useful features:

• sar running with no options shows CPU usage.

• sar -q shows your average queue size.

• sar -p and sar -g show paging activity.

• sar -d shows disk utilization.

• sar -f <filename> reads a previously saved file.

NETSTAT

One of sar’s shortcomings is that it will not trend network traffic for
you. This can be done using netstat. netstat -in will show you your
network interfaces, how much traffic they have passed since booting,
and any problems with them. For example:

netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
enØ 15ØØ 192.168.1ØØ.Ø 192.168.1ØØ.1 1477758588 Ø 28974736Ø8 Ø Ø Ø
en1 15ØØ 192.168.1Ø1.Ø 192.168.1Ø1.1 3228181693 157415 3365694Ø3Ø Ø Ø Ø

From this example, you can see that en0 and en1 are very busy, with
en1 having seen some incoming errors on its interface.

TOP

top was introduced in AIX Update, Issue 55, May 2000. It’s a Unix
utility that generates continuous reports on the state of your system,

 5© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

including a list of the fifteen processes that are consuming the most
CPU time.

SO WHERE’S THE SLOWDOWN?

Using tools such as sar, netstat, and top can help you determine
where a slowdown might be happening, or where one is about to
happen. Here are some examples of how you can use these tools:

• sar with no options

This will show how idle the CPUs are. If your CPUs are using a
lot of %usr or %sys, you may have to add extra CPUs to deal with
increased demand. If %wio is high, your system is waiting for
your I/O subsystems to catch up. You may have a slow disk or
array.

• sar -g

If you have many pgscans, your system is swapping. No swapping
is the only good swapping. Your system is probably short on
memory. Use sar -r to verify this.

• netstat -in

Look to see if an interface is overloaded with traffic. If so, you
may have to add another physical interface. Also, look for Ierrs,
Oerrs, and Collis. These should all be relatively low numbers if
not zero. High numbers in these columns can indicate network
problems such as speed or duplex autonegotiation issues, bad
cabling, or a bad switch port.

• top

If all else fails, look at top. What process is taking up the most
resources?

ANALYSE THE DATA AND MAKE RECOMMENDATIONS

So you’ve put together all of your reporting tools. You’re able to do
past trend analysis and future growth predictions based on sar. You
can also do real-time snapshots using top. What should you do to

 6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

make the system perform better now, as well as in the future?

It’s very important to note that, if you do identify and solve a
bottleneck, your solution can potentially cause even worse problems.
For example, if you have idle CPU and a busy disk, replacing the busy
disk with a fast disk can cause the CPU usage to spike. Remember,
capacity planning is a constant exercise, not a one-time activity. Here
are some scenarios:

• Busy I/O subsystems

Say you’ve determined by using sar -d that one or more of your
disks is very busy (more than 90 percent busy). Either move I/O
from that disk to a faster disk or array, or split up the I/O amongst
many arrays, depending on the data. Remember also that SCSI
interfaces can be overloaded as well. This is difficult to determine,
but it’s a good idea to add new SCSI interfaces and balance I/O
traffic accordingly. Improving I/O access can have a major
impact on CPU or network performance.

• Busy CPUs

Using sar, it may become apparent that your system is in heavy
%usr and %sys. Adding CPUs in this situation can help, but it may
not solve the problem. A poorly written application can consume
infinite amounts of CPU resources.

• Busy network

netstat -in may show your network interface to be very busy. Add
another physical interface, but beware of increased I/O and CPU
demands. Is the system swapping? Add more memory. Do
whatever you can to prevent the system from swapping. If
possible, create swap areas on fast disks.

APPLICATION SLOWDOWNS

Sometimes system hardware isn’t the problem at all. Remember that
applications are what consume system resources, and poorly written
applications can be very difficult to deal with. Here is some advice:

 7© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

• Beware of single-threaded applications. While a single-threaded
application is generally easier to develop, it’s also more costly to
run. Many applications developed in-house are single-threaded.
The worst example is the single-threaded non-forking application.
This is an application that’s not only single-threaded, but also
won’t fork copies of itself to consume resources more efficiently.
top will show only one instance of this daemon running. ps -eLf
will show only one thread. This can be a very challenging
application, because it may consume only a single CPU even if
you add more CPUs. Single-threaded applications that fork
copies of themselves are much easier to deal with, but are still not
as efficient as a multi-threaded application.

• Learn as much as possible about the application you’re dealing
with. Talk to the vendors or the authors because they’ll know
what tricks and tips will work best. Often, entries need to be made
in /etc/system so that an application can work at peak capacity.
ndd settings may also need to be tweaked based on your current
needs. Consider all of these performance suggestions before
adding new hardware.

PLANNING FOR FUTURE CAPACITY

Sometimes the best way to plan for the future is to look at your past
performance data. Using sar, you can ascertain a trend in the resource
consumption on your system. If your system CPU was 90 percent idle
three months ago, and now it’s 80 percent idle, it’s not unreasonable
to assume that in three months your system will only have 70 percent
idle CPU. Some parts of your system may grow at exponential rates,
such as I/O or network subsystems. That’s why it’s important to
constantly gather data, so you can see where you’ve been and where
you’re going. You may also want to consider writing scripts that can
monitor sar and alert you when certain thresholds are reached. If your
I/O is 70 percent busy for more than a week, it’s probably time to
consider a replacement or an upgrade.

Communication within your own organization can help you meet
future capacity as well. You need to know if your marketing department

 8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

is planning a big push to acquire more customers, or if a new
accounting system is going into place next week. Growth is then
predictable, because you can plan for increased access to your
database or for exponential growth in your Web server’s traffic.
Knowing how your customers will be using your servers will help you
provide better performance.

SCALING HORIZONTALLY AND VERTICALLY

For large-scale applications, it’s extremely important to be able to
scale your systems both horizontally and vertically. Horizontal scaling
allows you to add many boxes to serve the same application, while
vertical scaling allows you to break the application into pieces so that
each one can be scaled horizontally. A system designed to be both
horizontally and vertically scalable allows you to add servers as
demand increases. This way, you avoid the pitfalls of trying to scale
one big box, and can benefit from having many small boxes.

Here are some examples of horizontal and vertical scaling:

• Horizontal Web servers

Multiple Web servers are set up serving identical content, using
independent hardware on different networks. DNS round robin or
load balancing can be used.

• Horizontal and vertical e-mail solutions

Each component of the e-mail server (mx, SMTP, POP, Web
mail) can be run on its own independent server. Multiple individual
servers can be set up to balance the load. In this way, you can have
four mx servers, two SMTP servers, two POP servers, and one
Web mail server, or whatever configuration you need to meet
demand.

• Horizontal and vertical Web servers

Multiple Web servers can be set up – some that serve graphics,
and others that serve just CGI scripts. Servers can be added as
demand increases.

 9© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

STAYING AHEAD OF THE CURVE

Using reporting tools such as sar makes it possible to identify trends
on your system. Learning about the applications on your system and
communicating with your organization can also help when planning
future growth. Finally, designing a system that can scale both
horizontally and vertically can help you stay one step ahead of the
growth curve.

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 2001

Verifying fileset-level integrity

Lawrence Livermore National Laboratory has one of the largest IBM
SP complexes in the world, including the current world’s largest
supercomputer, ASCI White. As a system administrator in this
environment, it is important for me to be able to verify the integrity of
our installed software across our SP nodes, and in some cases,
between multiple SP clusters. While IBM has provided a program
called lppdiff as part of the PSSP software package, I have found
lppdiff to be both inefficient on large clusters, and unwieldy in its
output.

As an alternative, here is a Perl script called lppstat, which can be used
to easily and concisely identify fileset-level discrepancies between
two systems. While this utility was written for use on our large SP
clusters, it can be used to effectively compare fileset levels on any two
AIX systems.

lppstat analyses the output of the command lslpp -Lcq from two
systems. The syntax of the command is:

lppstat -m -e -v [host1|file1] [host2|file2]

I will refer to host1 as the ‘target’ system and host2 as the ‘default’
system. lppstat identifies three different types of discrepancy between
the target system and the default system, depending on which flags are
used. Any or all of these flags may be specified:

 10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• -v version comparison – identify filesets that are installed on both
the default and target system, but have different fileset levels.

• -m missing filesets – identifies filesets that are installed on the
default system but are not installed on the target system.

• -e extra filesets – identifies filesets that are not installed on the
default system but are installed on the target system.

lppstat provides multiple ways by which the target system can be
compared to the default system:

1 If no parameters are specified on the command line, lppstat will
compare the local host to a file called /etc/lppdefault containing
the output of the command lslpp -Lcq > lppdefault, which was
presumably generated on some other host and copied to the local
host.

2 If two hostnames are specified on the command line, they will be
compared to each other directly. This requires the hosts to be on
a common network and the rsh protocol to be enabled between
them.

3 If two filenames are specified on the command line, the contents
of these two files will be compared. This option allows two hosts
to be compared from a remote location, or multiple hosts to be
compared from a central location.

4 Any combination of hostname/filename can be specified on the
command line for multiple flexibility.

On our SP systems, I typically use lppstat as follows. I first identify
one node whose fileset levels I believe are current and generate the
lppdefault file on this node. I then install this file as /etc/lppdefault on
all nodes using rdist . You may consider using pcp or supper as
alternatives to rdist , or simply put the lppdefault file in a filesystem
which is available on all hosts, eg NFS or GPFS. I then run the
following command from the control workstation:

dsh -av lppstat -mev

This runs lppstat on all nodes and compares each node’s lpp levels to
those in the lppdefault file.

 11© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

I find lppstat to be a useful tool on the several thousand SP nodes I
administer. I believe it will prove valuable to any administrator of any
size SP system or collection of stand-alone AIX hosts.

#!/usr/bin/perl
#
list differences between lpp levels of two entities which can
either be hostnames or files containing lslpp -Lcq output
#
Usage: lppstat -m -e -v [host1/file1] [host2/file2]
-m lists missing filesets from host1/file1
-e lists extra filesets on host1/file1
-v lists version mismatches
one or more of these flags must be specified
default for host1/file1 is localhost
default for host2/file2 is /etc/lppdefault
#
require 5.ØØ3;
use Getopt::Std;
##
Globals
##
$path_lslpp = "/usr/bin/lslpp";
$path_rsh = "/usr/bin/rsh";
$path_lppdefault = "/etc/lppdefault";
##
MAIN
##
my ($sys, $def, $deflev, $syslev);
my (%system, %default);
handle arguments
getopts("mev") or usage();
($opt_m || $opt_e || $opt_v) or usage();
if ($#ARGV < Ø) {
 $sys = "localhost";
 $def = $path_lppdefault;
} elsif ($#ARGV == 1) {
 $sys = shift(@ARGV);
 $def = shift(@ARGV);
} else {
 usage();
}
build lpp hash for host1/file1
lslpp(\%system,$sys);
build lpp hash for host2/file2
lslpp(\%default,$def);
if ($opt_e) {
 foreach $key (keys %system) {

 12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if (!defined($default{$key})) {
 print("Extra fileset: $key:$system{$key}\n");
 }
 }
}
if ($opt_m) {
 foreach $key (keys %default) {
 if (!defined($system{$key})) {
 print("Missing fileset: $key:$default{$key}\n");
 }
 }
}
if ($opt_v) {
 foreach $key (keys %default) {
 if (defined $system{$key}) {
 ($deflev) = split(/:/, $default{$key});
 ($syslev) = split(/:/, $system{$key});
 if ($deflev ne $syslev) {
 print("Version mismatch: $key:$system{$key} (default is $deflev)\n");
 }
 }
 }
}
exit(Ø);
##
SUBS
##
sub lslpp
{
 my ($list,$source) = @_;
 my ($fset, $lev, $x);
 if ($source eq "localhost") {
 (open(LPP, "$main::path_lslpp -Lcq |"));
 } elsif (is_file($source)) {
 (open(LPP, "< $source"));
 } elsif (is_host($source)) {
 (open(LPP, "$main::path_rsh $source $main::path_lslpp -Lcq |"))
 } else {
 print("Error: $source is not a valid host or file\n");
 exit(1);
 }
 while (<LPP>) {
 #Pkg:Fileset:Level:State:PTF Id:Fix State:Type:Desc:
 chomp;
 ($x, $fset, $lev, $x, $x, $x, $x, $x) = split(/:/);
 ${$list}{"$fset"} = $lev;
 }
 close(LPP);
}

 13© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

sub is_file
{
 my ($fn) = @_;
 return -r $fn;
}
sub is_host
{
 my ($hn) = @_;
 my $dummy;
 return ($dummy = gethostbyname($hn));
}
sub usage
{
 print ("Usage: lppstat -m -e -v [host1/file1] [host2/file2]\n");
 print (" -m lists missing filesets from host1/file1\n");
 print (" -e lists extra filesets on host1/file1\n");
 print (" -v lists version mismatches\n");
 print (" one or more of these flags must be specified\n");
 print (" default for host1/file1 is localhost\n");
 print (" default for host2/file2 is /etc/lppdefault\n");
 print;
 exit(1);
}

Robin Goldstone (robing@llnl.gov)
System Administrator
Lawrence Livermore National Laboratory (USA) © Robin Goldstone 2001

E-mail alerts

Our e-mail alert service will notify you when new issues of AIX
Update have been placed on our Web site. If you’d like to sign
up, go to http://www.xephon.com/aixupdate.html and click
the ‘Receive an e-mail alert’ link. Or, send an e-mail to
majordomo@xephon.net with the words ‘subscribe’ and ‘aix-
update’ in the body of the message (without the quotes).

 14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Help for ESS fibre-attached drives

After three new IBM ESS ‘shark’ storage servers rolled in our door,
it quickly became apparent that some sort of utility was needed in
order to take the confusion out of matching AIX ‘hdisks’ to ESS
‘LUNs’.

BACKGROUND

To those who are not familiar with the IBM ESS, it is a very large and
scalable storage server for many different operating systems and their
associated hardware. It is not uncommon for a single ESS to be the
storage centre for many AIX, NT, AS/400, and other Unix hosts.

Contained in the ESS is a pair of H70 RS/6000s loaded with a scaled-
down version of AIX tuned especially for serving up fast disk I/O.
Each H70 node contains 3GB of memory to cache I/O activity, and
several fast SSA adapters for connection to the disk drives. The drives
themselves are standard high-speed SSA architecture, and can be
ordered in many different sizes to meet the total storage needs of the
buyer. Redundancy is a high priority with RAID technology used
throughout for data storage, and each hardware component being
backed up by another.

Connection from a given host to the ESS can be made primarily by
ultra-SCSI or fibre-channel adapters, with fibre being the faster but
more expensive alternative. Each volume of storage that can be
assigned to a host is assigned a ‘LUN’ or logical unit number. This
LUN is used to track the volume through the Web-based interface to
the ESS, known as the StorWatch Specialist.

Once a volume or LUN is assigned to an AIX host through the
StorWatch Specialist, the configuration manager (cfgmgr) needs to be
run to configure the new drive or hdisk. However, once this has been
done for several LUNs on a given host, it becomes increasingly
difficult to relate each LUN to its associated hdisk.

Essdrv.sh is a shell script that will easily take the guesswork out of

 15© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

mapping ESS LUNs to AIX hdisks, and, although written primarily
for fibre-attached AIX hosts, it could easily be modified for SCSI-
attached and other Unix hosts.

ESSDRV.SH

#!/bin/ksh
##
/usr/local/utils/essdrv.sh
#
by Adam Spangler
##
purpose: To give general information for fibre channel attached ESS
drives.
##
revisions:
#
##
clear
OUTFIL=/tmp/essdrv.out
TMPFIL=/tmp/essdrv.tmp

Build base sort file, initialize header to out file.

lsdev -Cc disk | grep FC | grep Available | sort -tk +1 -n > $TMPFIL

printf "\n%-12s%-18s%-8s%-12s%-9s%-15s\n" "HDISK" "VG" "PVID" "ADAPTER"
"LUN ID" "SIZE meg/gig" | tee $OUTFIL
echo "--
-----\n" | tee -a \ $OUTFIL

Start loop for disks in sort file to show information for each.
Disks that are "unreachable" are those that are in volume groups
that are varied off at the time this script is run.
Disks that are not "assigned" are not in a volume group yet
therefore certain information cannot be obtained.

for DISK in `cat $TMPFIL | awk '{print $1}'`
do
 LINE=`lspv | grep "$DISK "`
 VG=`echo $LINE | awk '{print $3}'`
 PVID=`echo $LINE | awk '{print $2}' | cut -c13-16`
 ADAPTER=`lsdev -Cc disk | grep "$DISK " | awk '{print $3}'`
 LUNID=`lsattr -El $DISK | grep lun_id | awk '{print $2}' | cut -c3-6`
 SIZE_INFO=`lspv $DISK 2>/dev/null | grep TOTAL`
 if [[`echo $SIZE_INFO | awk '{print $3}'` = "???????"]]
 then

 16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 SIZE_MEG="Disk is unreachable"
 SIZE_GIG=
 printf "%-12s%-18s%-8s%-12s%-8s%-1Øs%-1Øs\n" "$DISK" "$VG" "$PVID"
"$ADAPTER" \ "$LUNID" "$SIZE_MEG" | tee -a $OUTFIL
 elif [[`echo $VG` = "None"]]
 then
 SIZE_MEG="Disk not assigned"
 SIZE_GIG=
 printf "%-12s%-18s%-8s%-12s%-8s%-1Øs%-1Øs\n" "$DISK" "$VG" "$PVID"
"$ADAPTER" \ "$LUNID" "$SIZE_MEG" | tee -a $OUTFIL
 else
 SIZE_MEG=`lspv $DISK 2>/dev/null | grep TOTAL | awk '{print $4}' |
tr -d "("`
 SIZE_GIG=`echo $SIZE_MEG | awk '{print $1/1ØØØ}'`
 printf "%-12s%-18s%-8s%-12s%-9s%-1Øs%-1Øs\n" "$DISK" "$VG" "$PVID"
"$ADAPTER" \ "$LUNID" "$SIZE_MEG / $SIZE_GIG" | tee -a $OUTFIL
 fi
done
echo "\n\nOutfile is \"/tmp/showess.out\" if you wish to print.\n\n"
rm $TMPFIL

SAMPLE OUTPUT

An example of the output is shown below:

HDISK VG PVID ADAPTER LUN ID SIZE meg/gig

hdisk2 testdisk_vg 64b2 2Ø-58-Ø1 56ØØ Disk is unreachable
hdisk3 new_vg 3c29 1Ø-58-Ø1 54Ø3 7624 / 7.624
hdisk4 bprod_logvg Ø9b9 2Ø-58-Ø1 56Ø2 Disk is unreachable
hdisk5 new_vg b29a 1Ø-58-Ø1 57Ø3 7624 / 7.624
hdisk6 new_vg 98be 1Ø-58-Ø1 52Ø7 7624 / 7.624
hdisk7 new_vg 81e8 1Ø-58-Ø1 55Ø3 7624 / 7.624
hdisk8 new_vg 6f28 1Ø-58-Ø1 5ØØ7 7624 / 7.624
hdisk9 new_vg 6Øf9 1Ø-58-Ø1 53Ø7 7624 / 7.624
hdisk1Ø new_vg 1cf5 1Ø-58-Ø1 51Ø5 7624 / 7.624
hdisk11 new_vg f5e2 1Ø-58-Ø1 51Ø6 7624 / 7.624
hdisk12 Susans_vg 2487 2Ø-58-Ø1 52Ø1 3Ø496 / 3Ø.496
hdisk13 Susans_vg 2624 2Ø-58-Ø1 52Ø2 3Ø496 / 3Ø.496

Adam Spangler
Brinks Home Security (USA) © Xephon 2001

 17© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

Enhancing the vi editor

INTRODUCTION

I’m a fan of the vi editor, but I’ve found a few frustrations when using
it on a day-to-day basis. I have developed a few tools related to vi.
Some of these are useful especially in a software development
environment, eg when writing C programs. Others are for general use.

For scripts vir and vib to operate correctly, a change to the login script,
ie .profile, is required. For example, add the following line to .profile:

alias vi=vir

Here’s a summary of the scripts, covered in detail below:

• vib – creates a back-up file automatically allowing changes to be
‘undone’.

• vir – warns if a file is read-only before going into vi.

• vix – used to create a script file, setting the execute flag.

• vis – variation on vix, allowing a file to be edited from a user’s bin
directory.

IMPLEMENTATION NOTES

I’m staying with the ‘self-commenting’ method of writing scripts that
I’ve used in previous articles. Whilst it takes a little more effort when
writing a script, it makes the script so much more readable a number
of years later.

SCRIPTS

vib

A feature I miss with vi that I took for granted with editors in the past
is the ability to automatically create a back-up of the previous file.
This allows mistakes regretted after saving the file to be automatically

 18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

‘undone’ by renaming the .bak file to the current spoiled file. I
recommend placing an alias command in the user’s login script as
described above to ensure this script is run whenever the user executes
the vi command.

#!/bin/sh
vib

An enhancement to the vi editor to create a back-up of the
last file edited, thus allowing a kind of 'undo' facility
If a file called john.text is edited using the command:
vib john.text
... a file called john.text.bak will be created containing the
previous version of the file. Much of the complexity of this
script is to ensure the current '.bak' version of the file is only
overwritten if the file being edited is changed - ie if the user
"quits" vi, there is no need to overwrite any existing 'previous
version' of the file.
This file should be placed in $HOME/bin, PATH set to include $HOME/
bin and an alias command added to the login profile, eg:
alias vi=vir
#
Implementation notes

1. The DO_main function is used to make the script more readable
#
DO_main ()
{
 PrintUsage $1
 SaveFileToTemporaryFile $1
 EditFile $1 # Call vi
 if FileIsUnchanged $1
 then
 RemoveTemporaryFile $1
 else
 CopySavedTemporaryFileTo_BAK_File $1
 fi
}
PrintUsage ()
{
 ["$1" = ""] && echo "Usage: $Ø filename" && exit
}
SaveFileToTemporaryFile ()
{
 TFILE=/tmp/vib$$
 cp $1 $TFILE
}
EditFile ()
{

 19© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 vi $1
}
FileIsUnchanged ()
{
 diff $1 $TFILE >/dev/null
}
CopySavedTemporaryFileTo_BAK_File ()
{
 mv -f $TFILE $1.bak
}
RemoveTemporaryFile ()
{
 rm $TFILE
}
Do not remove the DO_Main call ...
DO_main $*
exit Ø

vir

When doing some serious software development using C under a
source code control system such as sccs, the programmer must
remember to check out a file for edit before editing. If a file is edited
without remembering to do this, the file will be read only. Vi has the
annoying feature of allowing an edit to take place, even though a file
is actually read only. OK, it’s fair to say that vi displays a warning at
the bottom of the screen, but it’s hard to notice and means you’re
already in vi so have to, at the very least, quit.

This script checks whether a file is read-only, displays a message if it
is, and gives the user a chance to cancel, eg ctrl-C, the script before
going into vi. For good measure, it also checks for the existence of a
file and again warns before going into vi. This feature is useful if a
filename is mistyped.

This last feature may seem like a trivial enhancement to vi. When I’m
‘in the groove’, programming away like crazy, I’ve found it much less
frustrating to hit ctrl-C if I mistype a filename than to be in vi with a
blank screen and have to quit out again.

#!/bin/sh
vir

An enhancement to the vi editor to check whether a file is
read-only BEFORE going into vi. When using a source code control

 20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

system such as sccs, eg when working in the C programming language,
it's quite easy to edit a whole file without realizing that vi is
unable to write back the end result.
A warning is printed. The user should press RETURN to continue, or
cancel with CTRL-C.
This file should be placed in $HOME/bin, PATH set to include $HOME/
bin and an alias command added to the login profile, eg:
alias vi=vir
#
Implementation notes

1. The DO_main function is used to make the script more readable
#
DO_main ()
{
 PrintUsage $1
 if FileNotFound $1
 then
 echo "$1 not found"
 sleep 1
 read x
 elif FileReadOnly $1
 then
 echo "!!!!! $1 read only !!!!!"
 sleep 1
 read x
 fi
EditFile $*
}
PrintUsage ()
{
 ["$1" = ""] && echo "Usage: $Ø filename" && exit
}
EditFile ()
{
 vi $*
}
FileNotFound ()
{
 [! -r "$1"]
}
FileReadOnly ()
{
 [! -w "$1"]
}
Do not remove the DO_Main call ...
DO_main $*
exit Ø

 21© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

vis

When the current directory is sitting somewhere deep in a source code
tree, I’ve found it useful to be able to edit scripts directly in my
personal bin directory. With this script, if I’m creating a new script, I
stay in the current directory and type vis [scriptname].

#!/bin/sh
vis

Allows a script to be edited from a user's bin directory
regardless of current directory
This file should be placed in $HOME/bin,
PATH set to include $HOME/bin
#
Implementation notes

1. The DO_main function is used to make the script more readable
#
DO_main ()
{
 PrintUsage $1
 GetFullPathNameOfScript $1
 EditScript
}
PrintUsage ()
{
 ["$1" = ""] && echo "Usage: $Ø filename" && exit
}
GetFullPathNameOfScript ()
{
 FULLPATHNAMEOFSCRIPT=`whence $1`
}
EditScript ()
{
 vi $FULLPATHNAMEOFSCRIPT
}
Do not remove the DO_Main call ...
DO_main $*
exit Ø

vix

Creating new scripts is a two-step process:

1 vi the script.

2 Use chmod to set the execute bit.

 22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This script essentially combines these two steps.

This may seem trivial, but in reality the two apparent steps are
normally more like four. They are:

1 vi the script.

2 Execute the script.

3 Realize that you’ve forgotton to do the chmod command.

4 Use chmod to set the execute bit.

#!/bin/sh
vix

Used to create a new script file, setting the execute bit after the
file has been created using vi
#
This file should be placed in $HOME/bin,
PATH set to include $HOME/bin
#
Implementation notes

1. The DO_main function is used to make the script more readable
#
DO_main ()
{
 PrintUsage $1
 EditFile $1
 MakeScriptExecutable $1
}
PrintUsage ()
{
 ["$1" = ""] && echo "Usage: $Ø filename" && exit
}
EditFile ()
{
 vi $1
}
MakeScriptExecutable ()
{
 chmod +x $1
}
Do not remove the DO_Main call ...
DO_main $*
exit Ø

John Rainford (UK) © Xephon 2001

 23© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

Process identification utility

Often you may notice a process run on your system, which for some
reason or other you wish to identify. It may be a process that is using
large amounts of CPU, or just a process you have not noticed before
and you wonder where it came from.

The pidTree script, when supplied with a process ID, displays all its
parent and child processes, in order to give you some clue as to where
the process in question came from. This is achieved by processing the
output of the ps command using an awk command, as shown below:

#!/usr/bin/ksh
#
Script: pidTree
Author: Roger Wickings
Aim: Display parents and children of a specified process ID
#

awk="/usr/bin/awk"
basename="/usr/bin/basename"
cat="/usr/bin/cat"
cut="/usr/bin/cut"
id="/usr/bin/id"
ps="/usr/bin/ps"
rm="/usr/bin/rm"
sed="/usr/bin/sed"
tr="/usr/bin/tr"

TMPDIR="/tmp"

functions

cleanUp()
{
 $rm -f $PSFILE 2>/dev/null
 return
}

initialization()
{
 if test "$TARGETS" = ""
 then
 TARGETS="1"
 fi

 24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 HIGHLIGHT="yes"
 new_targets=""
 for target in $TARGETS
 do
 if test "$target" = "-n"
 then
 HIGHLIGHT="no"
 else
 new_targets="$new_targets $target"
 fi
 done
 TARGETS=`echo "$new_targets" | $sed "s/[^Ø-9]//g" `

 USER=`$id | $tr "()" " " | $awk '{print $2}' `
 PSFILE="$TMPDIR/$SCRIPT.$USER.$$.ps"
 $ps -Ao pid,ppid,user,etime,time,vsz,tty,args |
 $cut -c1-1ØØ > $PSFILE
 return
}

listPids()
{
 echo
 for target in $TARGETS
 do
 (
 echo "PARM T $target"
 echo "PARM H $HIGHLIGHT"
 $cat $PSFILE
) |
 $awk 'BEGIN {
 psub = Ø
 }
 $1 == "PARM" {
 if ($2 == "T") { target = $3 }
 if ($2 == "H") { highlight = $3 }
 }
 $1 != "PARM" {
 psub += 1
 pid[psub] = $1
 ppid[psub] = $2
 line[psub] = $Ø
 }
 END {
 maxsub = psub

 parent = target ##### find parents #####
 pntsub = Ø

 25© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 olevel = Ø
 while (parent > Ø)
 {
 for (fsub = 1 ; fsub <= maxsub ; fsub++)
 {
 if (pid[fsub] == parent)
 {
 pntsub++
 pline[pntsub] = line[fsub]
 parent = ppid[fsub]
 break
 }
 }
 if (fsub > maxsub)
 {
 break
 }
 }
 if (pntsub == Ø)
 {
 if (highlight == "yes") { system("/usr/bin/tput smso") }
 print "Process id", target, "not found."
 if (highlight == "yes") { system("/usr/bin/tput rmso") }
 exit
 }
 else
 {
 print "Process id", target
 }
 for (; pntsub > 1 ; pntsub--)
 {
 olevel++
 printf "%-2s %s\n", olevel, pline[pntsub]
 }

 olevel++
 if (highlight == "yes") { system("/usr/bin/tput smso") }
 printf "%-2s %s\n", olevel, pline[1]
 if (highlight == "yes") { system("/usr/bin/tput rmso") }

 level = 2 ##### find children #####
 isub[1] = Ø
 itar[1] = target
 csub = maxsub
 while (level > Ø)
 {
 csub++
 if (csub > maxsub)
 {
 level--

 26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if (level == Ø)
 {
 break
 }
 csub = isub[level]
 ctar = itar[level]
 }
 else
 {
 if (ppid[csub] == ctar && pid[csub] != ctar)
 {
 printf "%-2s %s\n", olevel + level, line[csub]
 isub[level] = csub
 level++
 isub[level] = Ø
 itar[level] = pid[csub]
 ctar = pid[csub]
 csub = Ø
 }
 }
 }
 }'
 echo
 done
 return
}

start of main processing

SCRIPT=`$basename $Ø `
TARGETS=`echo "$*" | $sed "s/\"//g" `

initialization
listPids
cleanUp

exit Ø

The script is executed as follows:

pidTree 16584

which produces the following output:
Process id 16584
1 1 Ø root 95-19:5Ø:Ø6 16:55:23 688 - /etc/init
2 3642 1 root 95-19:48:38 ØØ:ØØ:Ø5 392 - /usr/sbin/srcmstr
3 12822 3642 root 95-19:44:51 ØØ:ØØ:Ø7 512 - /usr/dt/bin/dtlogin
4 91334 12822 root 11-22:25:22 ØØ:ØØ:Ø1 748 - dtlogin <ops_pc:Ø>
5 16584 91334 operator 11-22:22:5Ø ØØ:ØØ:ØØ 828 - /usr/dt/bin/dtsession
6 3413Ø 16584 operator 11-22:22:41 ØØ:ØØ:55 1Ø4Ø - /usr/dt/bin/dtterm

 27© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

7 45Ø92 3413Ø operator 11-22:22:39 ØØ:ØØ:ØØ 32Ø pts/8 /bin/ksh
8 356Ø4 45Ø92 operator 2-ØØ:15:43 ØØ:ØØ:31 528 pts/8 telnet gpØØ1ukb
6 36Ø78 16584 operator 11-22:22:41 ØØ:ØØ:ØØ 1Ø36 - /usr/dt/bin/dtterm
7 942Ø8 36Ø78 operator 11-22:22:39 ØØ:ØØ:ØØ 32Ø pts/12 /bin/ksh
8 4Ø842 942Ø8 operator 2-ØØ:14:47 ØØ:ØØ:ØØ 524 pts/12 telnet gpØØ1uka

By default the line displaying the target process is highlighted, but this
can be suppressed by specifying the -n option, eg pidTree -n 16584.

Additionally, pidTree will accept multiple pids and display the
appropriate tree for each pid specified, eg pidTree 16584 35604
94208.

Roger Wickings
Systems Programmer
FT Interactive Data (UK) © Xephon 2001

Standby system failover – part 2

This month we conclude the code to set up the standby failover system.

F50CUTOVER.SH

#!/bin/ksh
set -v
F5Øcutover.sh
#===#
DESCRIPTION:

The initial presumption here is that this primary F5Ø
is still running and able to respond enough to run this
script. If not, it should be shutoff and the network cable
removed. Then proceed with script 57Øcutover.sh to make the
standby 57Ø takeover the role of the primary system.
#
This will change the F5Ø into a passive system, giving
up its application(s). Its hostname will become
<hostname>_temp and its IP address will become
xx.xxx.xxx.239. (If you already use .239, choose some
other unused IP ending number.
#

 28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

INSTRUCTIONS FOR USE:

Contact the remote site and have the users logout.
Telnet into the remote F5Ø production machine, and then
execute this script using the root account, as follows:
/F5Øcutover.sh
#
NOTE:

Once the IP address gets changed in step CHANGE_IP,
you will be disconnected from the site. You must then
reconnect using the xx.xxx.xxx.239 address.
Once reconnected, execute this script passing
the step-argument as follows:
/F5Øcutover.sh RENAME_CRONS
#
This will resume the processing after the IP change.
#===#
date
if [$1 != ""] #if no argument is passed, assume step 1
then
 STEP=$1
else
 STEP="SHUTDOWN_SNA"
fi
#==#
date
This sample site has an SNA connection to a remote mainframe. So
the first thing we want to do is shutdown the SNA sessions.
if [${STEP} = "SHUTDOWN_SNA"]
then
 /SYSMGR/sna_shutdown
 STEP="CHANGE_IP"
fi
#==#
date
Here we are changing this F5Ø's hostname and IP address to
temporary values. Note that it is ESSENTIAL that this command
is 'nohupped' in the background (&). Once this step executes,
your remote Telnet session to the site will hang and you will
have to login again in a few moments to the "239" address to
continue this processing.
if [${STEP} = "CHANGE_IP"]
then
 set +v
 echo "Detaching the network interface..you will be disconnected.."
 echo "In a few moments, Telnet in again to the '239' temp IP address"
 echo "and then execute the following command:"
 echo "/F5Øcutover.sh RENAME_CRONS"
 echo ""

 29© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 nohup ksh /chg12to239 &
 sleep 1Ø
 exit Ø
 STEP="RENAME_CRONS"
fi
#==#
date
This is the step that you will start with when you log back
in remotely using the "239" address. See the instructions at
the beginning of this script for further details.
if [${STEP} = "RENAME_CRONS"] #save the production cron jobs
then
 mv /var/spool/cron/crontabs/root
 /var/spool/cron/crontabs/root_save
 mv /var/spool/cron/crontabs/some_account
 /var/spool/cron/crontabs/some_account_save
#...Now refresh the cron daemon...
 pidcrond=$(ps -aef | grep -v grep | grep "cron" |awk '{print $2}')
 kill -9 ${pidcrond}
 STEP="KILL_MISC"
fi
#==#
date
In this step we are killing any known running jobs that would be
holding open any files in filesystems that we later intend to
dismount. In other words, we want to avoid the message that says
'filesystem is busy' when we try to unmount them.
if [${STEP} = "KILL_MISC"]
then
 fuser -k /dev/some_app_LV # -k should kill all the PIDs found
 umount /some_app_filesystem #(see the associated LV above)
 if [$? -ne Ø]
 then
 set +v
 echo "Could not unmount the /some_app_filesystem filesystem."
 echo "Please fix this and restart from step KILL_MISC"
 echo "ie /F5Øcutover.sh KILL_MISC"
 echo "Terminating procedure..."
 exit 1
 fi
 STEP="UNMOUNT_ALL"
fi
#==#
date
#...Now we attempt to unmount all filesystems (except for the normally
#...busy system filesystems like /, /usr, /tmp, and so on.
if [${STEP} = "UNMOUNT_ALL"]
then
 umount -a
 STEP="VARY_OFF"

 30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi
#==#
date
if [${STEP} = "VARY_OFF"]
then
 varyoffvg datavg
 if [$? -ne Ø]
 then
 set +v
 echo "Could not varyoff VG datavg."
 echo "Please fix this and restart from step VARY_OFF"
 echo "i.e. /F5Øcutover VARY_OFF"
 echo "Terminating procedure..."
 exit 1
 fi
 STEP="EXPORT_VG"
fi
#==#
date
#...Now we give up the application vg by exporting it. This
#...will allow it to be taken over by the standby machine later.
if [${STEP} = "EXPORT_VG"]
then
 exportvg datavg
 if [$? -ne Ø]
 then
 set +v
 echo "Could not export VG datavg."
 echo "Please fix this and restart from step EXPORT_VG"
 echo "ie /F5Øcutover.sh EXPORT_VG"
 echo "Terminating procedure..."
 exit 1
 fi
fi
#==#
date
set +v
echo "The F5Øcutover procedure is now COMPLETE."
echo "You should now proceed with the 57Øcutover.sh"
echo "script on the standby machine to make it the new live machine."
#end of job.

570CUTOVER.SH

#!/bin/ksh
set -v
57Øcutover.sh
#===#
DESCRIPTION:

 31© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

This will change the standby 57Ø system into the F5Ø system
Its hostname will become the F5Ø's normal hostname, and its
IP address will become xx.xxx.xxx.12
#
INSTRUCTIONS FOR USE:

Telnet into the standby machine, and execute this script
using the root account, as follows:
/57Øcutover.sh
#
NOTE:

Once the IP address gets changed in STEP=CHANGE_IP, you
will be disconnected from the standby machine. You must
then reconnect using the xx.xxx.xxx.12 primary ip_address.
#
Once reconnected, execute this script passing the
step-argument as follows:
/57Øcutover.sh IMPORT_VG
#
This will resume the processing after the IP change.
#===#
date
if [[$1 != ""]] #if no argument specified, assume step 1
then
 STEP=$1
else
 STEP="SWITCH_AB"
fi
#==#
date
#...In this optional site-specific step, we want to ensure that the
#...remote staff person gives us a hand by switching the A/B box to
#...the "B"(57Ø) position, for the purpose of establishing the SNA to
#...remote mainframe connection required for the particular application
#...that runs on this machine.
if [${STEP} = "SWITCH_AB"]
then
 set +v
 echo "Please have the remote staff person switch the A/B box to the
57Ø position now."
 echo "\nHas this has been done? (y/n) \c"
 read answer overflow
 case ${answer} in
 "y"|"Y")
 echo "Proceeding to switch the IP address..."
 ;;
 *)
 echo "Exiting procedure. Please rerun this when you are"

 32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 echo "prepared to switch the A/B box."
 exit 1
 ;;
 esac
 STEP="CHANGE_IP"
fi
#==#
date
 set -v
Here we are changing this standby machine's hostname and
IP address to that of the production system.
Note that it is ESSENTIAL that this command is 'nohupped' in
the background (&).
Once this step executes, your remote Telnet session to the
site will hang, and you will have to login again in a few
moments to the "12" address to continue this processing.
if [${STEP} = "CHANGE_IP"]
then
 set +v
 echo "Detaching the network interface..you will be disconnected.."
 echo "In a few moments, please log back in again using the"
 echo "production system's IP address, and the execute this command:"
 echo "/57Øcutover IMPORT_VG"
 echo ""
 nohup ksh /chg13to12 &

 sleep 1Ø #let the IP address change
 exit Ø #get out (only to log back in moments later)
 STEP="IMPORT_VG"
fi
#==#
date
set -v
#...In this step, we are now attempting to takeover the external
#...disk data volume group normally owned by the production F5Ø
#...machine. See the ImportVG script for further comments.
if [${STEP} = "IMPORT_VG"]
then
 /ImportVG
 STEP="START_SNA"
fi
#==#
date
#...Here we are restarting the SNA sessions that this
#...particular production machine requires for its application.
if [${STEP} = "START_SNA"]
then
 /MBSYSMGR/restart_sna
 STEP="RENAME_CRONS"
fi

 33© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

#==#
date
#...Finally, we are activating the production cron jobs
#...as required by the production application(s). These cron
#...files are actually copied overnight from the real
#...production machine (see script box_to_box.sh) for further
#...details on this.
#...First we will save the standby system's cron files...
if [${STEP} = "RENAME_CRONS"]
then
 mv /var/spool/cron/crontabs/root /var/spool/cron/crontabs/
57Ø_root
mv /var/spool/cron/crontabs/some_account \
 /var/spool/cron/crontabs/57Ø_some_account
#...Now activate the production crons...
 mv /var/spool/cron/crontabs/F5Ø_root
 /var/spool/cron/crontabs/root
 mv /var/spool/cron/crontabs/F5Ø_some_account \
 /var/spool/cron/crontabs/some_account
#...Now refresh the cron daemon...
 pidcrond=$(ps -aef | grep -v grep | grep "cron" |awk '{print $2}')
 kill -9 ${pidcrond}
fi
#==#
date
At this time, the users should be able to reconnect to what
appears to be the normal production system again. In fact they
will now be running on the standby 57Ø machine but it will be
transparent to them.
set +v
#(end of job).

Michael G Stanton
Supervisor Mid-range Systems
Mercedes-Benz (USA) © Xephon 2001

An automated file transfer system for AIX

INTRODUCTION

The information technology industry is in a constant state of flux.
From host-centric systems we evolved to client/server computing.
With the advent of the Web, the focus has now shifted to n-tiered

 34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

architectures. Applications are presented on GUI clients served by
application servers. These application servers in turn access data from
database servers. Other middleware gateways are also used for
different functions.

With the distributed server architecture, there never has been a greater
need for moving data between multiple servers on a regular basis.
Some examples include consolidating log files, moving application
files to multiple application servers, centralizing errors to a common
server, etc.

The underlying protocol that makes this happen is the good old File
Transfer Protocol (FTP). A number of commercial packages have
been written around FTP, which can automate the task of transporting
files to different servers.

We solved this issue of moving data among different AIX servers by
writing a simple shell-based application called FTPTAB. The system
is completely written for use with the Korn shell and is very easily
ported to different versions of AIX. It has not been tested on other
flavours of Unix, but should not be too difficult as long as the Korn
shell is available.

The FTPTAB system provides the following features:

1 Job scheduling (daily, weekly, and monthly).

2 File transport (Gets and Puts).

3 Error logging.

4 Multiple threads based on individual login.

5 Pre- and post-processing.

6 ASCII and BINARY options.

7 Retry logic with timeouts.

SETTING UP AND USING FTPTAB

To set up the FTPTAB system, create an AIX login called ftpuser with
its home directory set to /usr/ftptab. Create the following directories
under /usr/ftptab:

 35© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

• run

• logs

• in

• out

Extract the scripts from this article into the /usr/ftptab/run directory
and make sure that this directory is placed in your path. Please
preserve the file names.

Set up a cron entry for the ftpuser to run the FTPTAB system every
10 minutes. Here is a sample cron entry:

Ø,1Ø,2Ø,3Ø,4Ø,5Ø * * * * ; cd /usr/ftptab/run ; ksh ftptab.sh

If you will need to control small and frequent FTP jobs then you can
set the cron to activate this script every minute. If you do so, change
the cron window variable in the ftptab_prof.sh script.

For each FTP job, create an entry in the configuration file
(ftptab_ftpuser.f). Each job must be on a separate line. Here is a
sample:

W:2::1:3Ø:1Ø.1Ø.2.4:ftptab_user:ftptab_pwd:P:/usr/ftptab/in:*.log:/usr/
ftptab/out:B:ftptab_pre.sh::3:3ØØ

This job reads as follows:

It will be executed every week (w) on Tuesdays (2) at 1:30 am. It will
contact the host 10.10.2.4 with the userid (ftptab_user) and password
(ftptab_pwd). It will take *.log files from /user/ftptab/out and put (P)
them in /usr/ftptab/in at the remote end. It will use the binary mode (B)
for the file transfer. Before running the actual FTP, it will also run a
preprocessing script (ftptab_pre.sh). This job will be attempted at
most 3 times. Each time it will try for up to 300 seconds before timing
out.

You can add as many entries in the configuration file as you need.
Please note that the system will single-thread through this file per user.
If this causes time conflicts with multiple jobs, you can run this system
under multiple logins because it always looks at the configuration file
for $LOGNAME.

 36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

UNDERSTANDING FTPTAB

The cron is the underlying scheduler used for this system. At each
cron invocation, the script ftptab.sh is executed. The script identifies
the configuration file for the current user and then processes it one job
at a time. If the execution schedule for the job matches the current date
and time within the cron window then the job is passed on to the
ftptab_driver.sh script for execution.

The ftptab_driver.sh script runs any preprocessing scripts identified
by the job. An example of pre-processing could be to compress files
before sending, to save on transmission time.

It then builds a .netrc file in the user’s home directory by calling the
bld_netrc.sh script. FTP expects that the .netrc file will be placed in
the user’s home directory to avoid prompting for userid and password
during the actual FTP session.

The actual FTP is then invoked by calling the ftptab_run.sh script.
This script is executed in the background so that the parent script can
monitor its execution. If the ftptab_run.sh does not finish within the
timeout period then the process is killed. If the retry count is higher
than 1 then the job is restarted. This avoids the problem caused by
hung FTP jobs. Do make sure that the timeout interval is set
appropriately, based on the amount of data being transmitted and the
available bandwidth between the two servers.

Upon successful completion of the ftptab_run.sh, a post-processing
script is executed if listed in the configuration file.

TROUBLESHOOTING FTPTAB

It is best to try a couple of monitored runs before placing this system
into production use. You should also get familiar with the configuration
file and each parameter listed.

The best place to troubleshoot any problems is to look at the logs
generated in the ‘logs’ directory. The logs are not too user-friendly but
do contain a lot of information about each run.

 37© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

FUTURE DIRECTIONS

Work is currently in progress to add a simple user interface to manage
the configuration file. We are also working on improving the error
logging.

FTPTAB_FTPUSER.F

##
#job_type:dow:dom:hour:min:rhost:ruser:rpassword:transfer:rdir:
(continued ..)
#files:ldir:mode:prescript:postscript:retry:safety
There should be a total of 17 fields (: separated)
#
job_type=D (Daily) | W (Weekly) | M (Monthly)
dow=Day of Week (Sunday Ø - Saturday 6)
dom=Day of Month (1 - 31)
hour=ØØ-23
min=ØØ-59
rhost=IP address or resolvable hostname of remote host
ruser=Remote User Id
rpassword=Remote Password
transfer=G|P|GD (get, put, get and remote delete. GD must not be
listed as DG
rdir=Remote directory
files=Filename (get or put) does support wildcards
ldir=Local directory
mode=A|B (Ascii or Binary)
prescript=
postscript=
retry=# of times to try (1-3)
safety=# of seconds to sleep before retry
#
Run awk -F: '{print NF}' to find the number of fields
W:2::1:3Ø:1Ø.1Ø.2.4:ftptab_user:ftptab_pwd:P:/usr/ftptab/in:*.log:/usr/
ftptab/out:B:/usr/ftptab/scripts/ftptab.sh::3:36ØØ
##

FTPTAB_PROF.SH

##
function ftptab_debug
{
 if [[-n "${FTPTAB_DEBUG}"]]
 then
 print "$*" >> $tracefile
 fi
}

 38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FTPTAB_DEBUG=ON # uncomment for debugging
export self=ftptab.$LOGNAME
export tracefile=/usr/ftptab/logs/$self.tr
export logfile=/usr/ftptab/logs/$self.log
export flistfile=/usr/ftptab/logs/$self.rmtfiles
export statusfile=/usr/ftptab/logs/$self.status
cron_window=1Ø
Note: Frequency of cron in minutes (should match exactly)
##

FTBTAB.SH

#!/bin/ksh
##
####################
Set up Variables
####################
. ftptab_prof.sh
##################################
Function checks
##################################
#############################
compares day of week
#############################
function weekly_check_func
{
 if ["$current_dow" -eq "$active_dow"]
 then
 ftptab_debug "WEEKLY MATCH"
 daily_check_func
 return $?
 else
 return 1
 fi
}
#############################
compares date of month
#############################
function monthly_check_func
{
 if ["$current_dom" -eq "$active_dom"]
 then
 ftptab_debug "MONTHLY MATCH"
 daily_check_func
 return $?
 else
 return 1
 fi
}

 39© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

#####################################
Converts hours and minutes into
total time in minutes. Compares
total curent time to total active
time and if less than variable or
equal to zero, then return Ø .
#####################################
function daily_check_func
{
 ((total_curr_minutes = ($current_hod * 6Ø) + $current_moh))
 ((total_active_minutes = ($active_hod * 6Ø) + $active_moh))
 ((minute_difference = $total_curr_minutes - $total_active_minutes))
 ftptab_debug "minute diff = $minute_difference"

 if [[$minute_difference -lt $cron_window && $minute_difference -ge
Ø]]
 then
 ftptab_debug "DAILY MATCH"
 return Ø
 else
 return 1
 fi
}
#####################################
Get the current date/time parms
#####################################
function current_datetime
{
 current_dow=`date +%w`
 # current day of week (sunday - saturday) (Ø-6)
 current_dom=`date +%d` # current day of month
 current_hod=`date +%H` # current hour of day
 current_moh=`date +%M` # current minute of hour
 export current_dow current_dom current_hod current_moh
}
##################################
MAIN SCRIPT
Get current Date information
##################################
###
save last 3 trace files Just in case
###
mv $tracefile.2 $tracefile.3 >/dev/null 2>&1
mv $tracefile.1 $tracefile.2 >/dev/null 2>&1
mv $tracefile $tracefile.1 >/dev/null 2>&1
###############################
Get date and time info from
file for comparison
###############################
cat ftptab_$LOGNAME.f | \

 40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 grep -v "^#" | \
 grep -v "^$" | \
 while read row
do
 IFS=:
 set - $row
 IFS=" "
 if [[$# -ne 17]]
 then
 print "$self: Invalid Row '$row' (`date`)" >> $tracefile
 continue
 fi
 current_datetime # get the current datetime
 jobtype=`echo $row | awk -F: ' { print $1 } '`
 active_dow=`echo $row | awk -F: ' { print $2 } '`
 active_dom=`echo $row | awk -F: ' { print $3 } '`
 active_hod=`echo $row | awk -F: ' { print $4 } '`
 active_moh=`echo $row | awk -F: ' { print $5 } '`
 argrow=`echo $row | cut -d: -f6-`
 ##################################
 # See if the FTP job needs to be #
 # run. #
 ##################################
 case $jobtype in
 D) daily_check_func
 if [[$? -ne Ø]]
 then
 continue
 fi
 ;;
 W) weekly_check_func
 if [[$? -ne Ø]]
 then
 continue
 fi
 ;;
 M) monthly_check_func
 if [[$? -ne Ø]]
 then
 continue
 fi
 ;;
 *) print -u2
 print -u2 " `date` : Invalid Job Type " >> $tracefile
 print -u2 " $row " >> $tracefile
 print -u2
 continue
 ;;
 esac
 ###

 41© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 # Got here means that the JOB needs to be run #
 ###
 ftptab_driver.sh $argrow 1>>$logfile 2>&1
done
##

FTBTAB_DRIVER.SH

#!/bin/ksh
##
argrow=$1
. ftptab_prof.sh
print "\n\nFTPTAB_DRIVER_START: `date`\n\t'$argrow'\n"
##############################
Parse out needed variables
##############################
rhosts=`echo $argrow | cut -d: -f1 `
prescript=`echo $argrow | cut -d: -f9 `
postscript=`echo $argrow | cut -d: -f1Ø `
retry=`echo $argrow | cut -d: -f 11 `
safety=`echo $argrow | cut -d: -f12 `
##############################
Execute PRESCRIPT
##############################
if [[-s "$prescript"]]
then
 print "\trunning '$prescript' ...\n"
 $prescript
 if [[$? -ne Ø]]
 then
 print "$prescript FAILED !! Will not execute FTPTAB ..."
 exit 1
 fi
 print "\tDone.\n"
fi
########################
Call script to build
netrc file
########################
print "\trunning 'bld_netrc.sh $argrow' ... \n"
bld_netrc.sh $argrow
if [$? -ne Ø]
then
 print -u2
 print -u2 "bld_netrc.sh FAILED !!"
 print -u2
 exit 1
fi
print "\tDone.\n"

 42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

print "\tNETRC:\n`cat $HOME/.netrc`\n\n"
##############################
Run the FTPTAB
##############################
while ((retry > Ø))
do
 print "\t.RETRY=$retry\n\trunning 'ftptab_run.sh $rhosts &' ...\n"
 echo "99" > $statusfile # initialize to FAILED status
 sessionsafety=$safety
 ftptab_run.sh $rhosts &
 childpid=$!
 print "\trunning 'sleep $sessionsafety' ...\n"
 ############################
 # Wake up every 6Ø seconds
 # and check if the ftp process
 # is still running.
 # Exit if not running or if
 # if sessionsafety expires.
 ############################
 while ((sessionsafety > Ø))
 do
 ps -fp $childpid
 if [[$? -ne Ø]] # the process does not exist so break
 then
 break
 fi
 sleep 6Ø
 ((sessionsafety = sessionsafety - 6Ø))
 print "\tsessionsafety=$sessionsafety"
 done
 ############################
 # if sessionsafety expired, then
 # kill the ftp job because it
 # could be hung.
 ############################
 if [[$sessionsafety -le Ø]]
 then
print "\tSafety expired. killing $childpid\n\t`ps -fp $childpid`\n"
 kill -9 $childpid
 fi
 ############################
 # Verify ftp status. If failed
 # then try again.
 ############################
 status=`cat $statusfile`
 print "FTPTAB_DRIVER: FTPTAB_RUN STATUS = $status"
 if [[$status -eq Ø]]
 then
 break
 fi

 43© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 ((retry = retry - 1))
done
##############################
Cleanup .netrc
##############################
print "\tRemoving HOME/.netrc ..."
rm $HOME/.netrc
print "\tDone.\n"
##############################
Execute POSTSCRIPT
##############################
if [[$status -eq Ø && -s "$postscript"]]
then
 print "\trunning '$postscript' ...\n"
 $postscript
 if [[$? -ne Ø]]
 then
 print "$postscript FAILED !! "
 exit 1
 fi
 print "\tDone.\n"
fi
print "FTPTAB_DRIVER_END: `date`\n\n"
exit Ø
##

BLD_NETRC.SH

#!/bin/ksh
##
########################
Set up variables
#######################
. ftptab_prof.sh
typeset -u transfer
typeset -u filetype
netrc=$HOME/.netrc
row="$1" # field 6 on from FTPTAB file
ftptab_debug "row='$row'"
IFS=:
set - $row
IFS="
"
rhost=$1
ruser=$2
rpasswd=$3
transfer=$4
rdir=$5
files=$6

 44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ldir=$7
filemode=$8
#########################
Set transfer variable
#########################
if ["$transfer" = "G"]
then
 transport=mget
else
 transport=mput
fi
#########################
Set file type
Change var name due to#
typeset to upper case
#########################
if ["$filemode" = "B"]
then
 filemode=binary
else
 filemode=ascii
fi
##
Create a netrc file in users home directory
with the correct parameters
##
> $netrc
echo "machine $rhost" >> $netrc
echo "login $ruser" >> $netrc
echo "password $rpasswd" >> $netrc
echo "macdef init" >> $netrc
echo "cd $rdir" >> $netrc
echo "lcd $ldir" >> $netrc
echo "$filemode " >>$netrc
echo "$transport $files" >>$netrc
echo "quit" >> $netrc
echo "\n" >> $netrc
exit $?
##

FTBTAB_RUN.SH

#!/bin/ksh
##
Script to run .netrc file
rhosts=$1
. ftptab_prof.sh
cd $HOME
chmod 6ØØ .netrc

 45© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

ftp -i $rhosts 1>$logfile.$$ 2>&1
rc1=$?
echo "FTPTAB_RUN: FTP STATUS (rc1)=$rc1"
######################################
#Check for FTP success
######################################
get the remote file count
remotefiles=`cat $flistfile | wc -l`
echo " Logfile = $logfile.$$ "
localfiles=`grep "226 Transfer complete" $logfile.$$ | wc -l`
echo " Localfiles = $localfiles"
convert to numeric format
((remotefiles = remotefiles))
Remove the 1 standard 226 messages from the output
(from the mdir command)
((localfiles = localfiles - 1))
print "FTPTAB_RUN: Remotefiles=$remotefiles Localfiles=$localfiles"
rc2=Ø
if [[$localfiles -ne $remotefiles]]
then
 rc2=1
fi
echo "FTPTAB_RUN: FILE COUNT STATUS (rc2)=$rc2"
((rc = rc1 + rc2))
echo "FTPTAB_RUN: EXIT CODE (rc)=$rc"
echo "$rc" > $statusfile
######################################
#Save the sessionlog to logfile
######################################
print "FTBTAB_RUN: Session Log\n"
cat $logfile.$$
#rm $logfile.$$
exit $rc
###t

FTPTAB_PRE.SH

##
cd /usr/ftptab/out
compress -v file1.dat
compress –v file2.dat
exit Ø
##

Mukesh Dang and Mike Tevlin
System Administrators(USA) © Xephon 2001

 46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Utility for documenting your system

You should always have a good system back-up (mksysb) of your
system, but there are often times when your system is down and you
need to quickly obtain information about it. The nodeReport script is
designed to record as much information as possible about your
system, in text format, for quick reference purposes.

When run, the nodeReport script writes to standard output an indexed
list of the commands followed by the output to each command. Ideally
this should be run on a weekly or monthly basis, with the output stored
on disk, on another system, on tape, on CD-ROM, or even as
hardcopy. In this way, all the information will be available quickly
when the system is down.

Here is the script:

#!/usr/bin/ksh
#
Script: nodeReport
Author: Roger Wickings
Aim: Display all node details with the aim of documenting the node
#

awk="/usr/bin/awk"
basename="/usr/bin/basename"
cat="/usr/bin/cat"
cut="/usr/bin/cut"
dc="/usr/bin/dc"
df="/usr/bin/df"
domainname="/usr/bin/domainname"
exportfs="/usr/sbin/exportfs"
find="/usr/bin/find"
grep="/usr/bin/grep"
hostid="/usr/bin/hostid"
id="/usr/bin/id"
ifconfig="/usr/sbin/ifconfig"
ls="/usr/bin/ls"
lsattr="/usr/sbin/lsattr"
lscfg="/usr/sbin/lscfg"
lsdev="/usr/sbin/lsdev"
lsfs="/usr/sbin/lsfs"
lslpp="/usr/bin/lslpp"
lslv="/usr/sbin/lslv"
lsps="/usr/sbin/lsps"

 47© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

lspv="/usr/sbin/lspv"
lssrc="/usr/bin/lssrc"
lsvg="/usr/sbin/lsvg"
lsvpcfg="/usr/sbin/lsvpcfg"
ps="/usr/bin/ps"
netstat="/usr/bin/netstat"
no="/usr/sbin/no"
rm="/usr/bin/rm"
sed="/usr/bin/sed"
sort="/usr/bin/sort"
tr="/usr/bin/tr"
uptime="/usr/bin/uptime"
uname="/usr/bin/uname"
xargs="/usr/bin/xargs"
ypwhich="/usr/bin/ypwhich"

CRONDIR="/var/spool/cron/crontabs"
TMPDIR="/tmp"

FILELIST="/etc/passwd /etc/group /etc/environment /etc/exports /etc/
hosts /etc/inittab /etc/qconfig /etc/resolv.conf /etc/netsvc.conf"

functions

createReport()
{
 initialization

 runCommand $hostid
 runCommand $uname -a
 runCommand $uptime
 runCommand $lscfg -v

 # Devices and drivers

 runCommand $lsdev -CH
 LIST=`$lsdev -C | $awk '{print $1}' `
 COMMAND="$lsattr -HE -l"
 runForEach

 runCommand $lslpp -L

 # Network

 runCommand $netstat -rn
 runCommand $netstat -in
 LIST=`$netstat -in | $awk '{print $1}' | $grep -v "Name" | $sort -u `
 COMMAND="$ifconfig"
 runForEach

 48 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 runCommand $no -a
 runCommand $exportfs
 runCommand $domainname
 runCommand $ypwhich

 # Space

 runCommand $df -k
 runCommand $lsfs
 runCommand $lsps -a
 runCommand $lsps -s
 runCommand $lsvpcfg

 runCommand $lsvg
 LIST=`$lsvg | $sort -u `
 COMMAND="$lsvg"
 runForEach
 COMMAND="$lsvg -l"
 runForEach

 runCommand $lspv
 LIST=`$lspv | $grep -v "None" | $awk '{print $1}' | $sort -u `
 COMMAND="$lspv"
 runForEach
 COMMAND="$lspv -l"
 runForEach

 LIST=`$lsvg | $xargs -iX $lsvg -l X | $awk '{print $1}' | $grep -v -e
"LV" -e ":$" | $sort -u `
 COMMAND="$lslv"
 runForEach
 COMMAND="$lslv -l"
 runForEach

 # Processes

 runCommand $lssrc -a
 runCommand $ps -Afl

 # Files

 LIST=`$ls $FILELIST 2>/dev/null `
 COMMAND="$cat"
 runForEach

 # Crontabs

 LIST=`$find $CRONDIR -type f -size +Øc -print `
 COMMAND="$cat"
 runForEach

 49© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 outReport

 return
}

initialization()
{
 NODE=`$uname -n `
 USER=`$id -un `

 INDEX="$TMPDIR/$SCRIPT.index.$$"
 REPORT="$TMPDIR/$SCRIPT.report.$$"

 COUNT="Ø"

 echo >> $INDEX
 echo " Ø. INDEX ($NODE)" >> $INDEX
 echo " Ø. INDEX ($NODE)" | $sed "s/./=/g" >> $INDEX

 return
}

outReport()
{
 $cat $INDEX
 echo
 $cat $REPORT
 echo "\nEnd-of-report."

 $rm -f $INDEX $REPORT

 return
}

runCommand()
{
 command="$*"

 exefile="$1"
 if test ! -x "$exefile"
 then
 return
 fi

 let COUNT=COUNT+1
 number=`echo "$COUNT 1ØØØ + p q" | $dc | $sed "s/^1/ /" | $sed "s/ Ø/
/" | $sed "s/ Ø/ /" `

 echo "$number. $command" >> $INDEX

 50 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 echo >> $REPORT
 echo "$number. $command ($NODE)" >> $REPORT
 echo "$number. $command ($NODE)" | $sed "s/./=/g" >> $REPORT
 echo >> $REPORT
 $command >> $REPORT 2>>
$REPORT

 return
}
runForEach()
{
 for value in $LIST
 do
 runCommand $COMMAND $value
 done
 return
}

start of main processing

SCRIPT=`$basename $Ø `

createReport

exit Ø

You can see that the function createReport contains all the commands
that are run, hence it can easily be amended to include any extra
commands that you think are important.

The report produced is in two parts – the index and the main body of
the output. I have listed a small portion of both parts below.

For most of our systems the full report is under 0.5MB.

The report index:

 Ø. INDEX (testbox1)
=======================
 1. /usr/bin/hostid
 2. /usr/bin/uname -a
 3. /usr/bin/uptime
 4. /usr/sbin/lscfg -v
 5. /usr/sbin/lsdev -CH
 6. /usr/sbin/lsattr -HE -l sysØ
 7. /usr/sbin/lsattr -HE -l sysplanarØ

The main body of the report:

 1. /usr/bin/hostid (testbox1)

 51© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

===================================

Øx91f6Ø9fb

 2. /usr/bin/uname -a (testbox1)
=====================================

AIX testbox1 3 4 ØØ43343A4CØØ

 3. /usr/bin/uptime (testbox1)
===================================

 11:11AM up 95 days, 2Ø:32, 32 users, load average: Ø.Ø5, Ø.Ø6, Ø.Ø5

 4. /usr/sbin/lscfg -v (testbox1)
======================================

INSTALLED RESOURCE LIST WITH VPD

The following resources are installed on our machine:

• Model architecture: chrp

• Model implementation: multiple processor, PCI bus

• sysplanar0 00-00 system planar

• mem0 00-00 memory

• proc0 00-00 processor.

Roger Wickings
Systems Programmer
FT Interactive Data (UK) © Xephon 2001

AIX Update on the Web

Code from individual articles of AIX Update, and complete
issues in Acrobat PDF format, can be accessed on our Web
site, at:

http://www.xephon.com/aixupdate.html

You will be asked to enter a word from the printed issue.

AIX news

IBM has announced Version 2.0 of its
WebSphere Host Integration Solution for
integrating existing applications with the
Web.

It has new and enhanced Web integration
capabilities and now includes WebSphere
Application Server, WebSphere Studio, and
IBM Screen Customizer to exploit legacy
data in new applications.

Offered for both intranets as registered users
and the Internet for concurrent users with
different product content, Version 2.0 is
priced per registered or concurrent user.

It’s made up of IBM Personal
Communications, WebSphere Host On-
Demand, WebSphere Host Publisher,
WebSphere Studio, Professional Edition,
WebSphere Application Server, Advanced
Edition, Screen Customizer, and
Communications Server for OS/2, AIX,
Windows NT, and Windows 2000,

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software/
webservers.

* * *

Perle Systems has added TruePort for AIX
applications across its range of serial servers,
which means the company now supports the
connection of serial devices to AIX
applications via Ethernet-based serial
servers.

It allows serial devices connected to a Perle
Serial Server to function as if directly
connected to the AIX server by mimicking
TTY port functionality. Applications written
for directly connected serial devices can be

deployed across an Ethernet LAN
environment without modification.

The software provides transparent access
from AIX applications to as many as 500
serial ports on Perle serial servers across a
TCP/IP network.

For further information contact:
Perle Systems, 700 Commerce Drive, 5th
Floor, Oak Brook, IL 60523, USA.
Tel: (630) 288 4879.
URL: http://www.perle.compress_releases/
press_trueport.htm.

* * *

Mercury Interactive has announced Version
7.0 of both its LoadRunner load testing
product and WinRunner for functional and
regression testing. They have new
capabilities, which help determine whether
applications will perform as expected and
will maintain that performance with
increased usage and rapid changes to content
and functionality.

Both are available on platforms including
AIX, HP-UX, Linux, NT, and Solaris.

The company has added a Web Transaction
Breakdown Monitor to LoadRunner, which
enables the latter to break down end-to-end
transaction response times for the client,
network, and server and provide the means to
drill-down to the exact page component that
may be causing performance slowdowns.

For further information contact:
Mercury Interactive, Building A, 1325
Borregas Ave, Sunnyvale, CA 94089, USA.
Tel: (408) 822 5200.
URL: http://www-svca.mercury
interactive.com/products/loadrunner/.

x xephon

	Bottleneck basics
	Verifying fileset-level integrity
	Help for ESS fibre-attached drives
	Enhancing the vi editor
	Process identification utility
	Standby system failover – part 2
	An automated file transfer system for AIX
	Utility for documenting your system
	AIX news

