
© Xephon plc 2002

February 2002

76

3 Sifting through the new pSeries
hardware options – SP2 or not to
SP2?

7 An introduction to emacs – part 2
12 Processes explained
18 Introduction to the shell
21 AIX 5L routing enhancements
30 Shell-scripting tricks
48 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1998 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls and Richard Watson

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Sifting through the new pSeries hardware options
– SP2 or not to SP2?

The new hardware announcements from IBM can make it difficult to
decide a direction for RS/6000 SP2 systems growth and additions. I
began sifting through the announcements and questioning my third-
party vendor(s) for information on the new hardware, and ended up
with a fair amount of information to share.

My slant on gathering this information is not only which pSeries
machine to obtain or evaluate, but whether or not to continue to add
nodes to my SP2 environment, or to add externally PSSP clustered
boxes, or to abandon PSSP altogether for new projects. This decision
is further complicated by the fact that some of the new pSeries rack-
mountable machines cannot participate in PSSP clustering. This last
‘catch’ is somewhat disappointing to me because I have grown to
appreciate many of the PSSP benefits, even though admittedly there
is a fairly large learning curve for new administrators, depending on
the complexity of your environment.

REVIEW OF PSSP BENEFITS

PSSP has many value-added benefits over and above standard AIX,
including central hardware control and monitoring, Virtual Shared
Disks and recoverable VSDs, the SP switch, the system data repository,
centralized user and printer management, parallel programming
options, GPFS for filesystem sharing, and so on. The argument to
continue to use PSSP is a simple one.

For the current pSeries server specifications see Figure 1.

The focus of this chart is new rack-mountable pSeries machines.
There are a number of other ‘legacy’ models that are still available at
this point. As you can see, the SP2 node options, ie nodes to go in the
frame, have become limited. They compare loosely to between a high-
end 640 and mid-size 660, once everything is taken into account. If
you need a server with requirements that fall well below or above this

4
©

 2002. X
ephon U

K
 telephone 01635 33848, fax 01635 38345. U

SA
 telephone (303) 410 9344, fax (303) 438 0290.

Server CPU Speed(s) Processors Type SP - Attach

pSeries 610 375/450 MHz 1 or 2 P3-II NO
pSeries 640 375/450 MHz 1,2 or 4 P3-II NO
pSeries 660 – 6H0 450/600 MHz 1,2, or 4 RS64 III/IV YES
pSeries 660 – 6H1 450/600 MHz 1,2,4 or 6 RS64 III/IV YES
pSeries 660 – 6M1 500/750 MHz 2,4,6 or 8 RS64 III/IV YES
pSeries 680 450/600 MHz 4,6,12,18 or 24 RS64 III/IV YES
pSeries 690 1.1/1.3 GHz 8,16,24,32 Power4 YES(2002)
SP node Thin 375 MHz 2 or 4 Power3-II YES
SP node Wide 375 MHz 2 or 4 Power3-II YES
SP node High 375 MHz 4,8,12 or 16 Power3-II YES

F
igure 1: C

urrent pSeries server specifications

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

range, an SP2 Frame node is no longer an option. Note: as far as specs
go, there is a wealth of information for these servers and nodes at the
IBM Web site, http://www-1.ibm.com/servers/eserver/pseries/
hardware/factsfeatures.html.

MAKING A DECISION TO GO WITH AN ‘EXTERNAL’ NODE

Once you realize that one of the other pSeries models is more
appropriate for your project than the available SP2 nodes, there are
some things to consider:

• Switch – if you have a switch in your current SP2 environment,
and you want to control your new external node with PSSP, then
it will have to be switch-attached. This now becomes a question
of available switch ports. The traditional 100MB SP switch has
16 ports. Any free ports can be used to switch-attach the external
node. However, if your switch is fully used, this becomes a
quandary: you have to either purchase another switch or re-
consider using PSSP on the new node. For example, if you have
a 1-Frame SP2 with a switch, and eight wide nodes in the frame,
eight switch ports are available. If you have 2-Frames, a total of
12 wide nodes, for example, and one switch, then you have four
switch ports available. In this latter example, if there were a total
of 16 wide nodes and one switch, the purchase of a second switch
would be required to make available more switch ports. The
variations on this are many and need to be examined carefully.

• PSSP software licence fee – a PSSP licence must be obtained for
the externally PSSP-controlled node. This cost is not a factor for
‘normal’ SP2 nodes. The cost of this licensing, and the switch
adapter, can quickly wipe out any cost savings found in going
with the external node.

• Alternative partition – if you did not want to invest in another
switch, another approach would be to start another ‘PSSP Partition’
of just external PSSP nodes. This would require an additional
control workstation (this could be a ‘lightweight’ box).

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Depending on your needs for communication to some of the SP2
nodes you could then consider having a closed high-speed network
(ATM or GB Ethernet for example) between them.

SUMMARY

While it appears that the line of nodes available for SP2 frames has
come to the end of its evolution, there are plenty of alternatives to
continue to exploit PSSP and its benefits. Most research on the future
of PSSP indicates that it will be around in some form, probably
‘natively’ in AIX in the future, for a long time.

SPECIAL NOTES ON PSERIES 610 AND 690

The pSeries 610 and 690 machines, both recently announced, have a
couple of unique qualities that do not necessarily pertain to PSSP/
SP2, but are interesting to mention.

The 610, which is a small entry-level server that is available in a tower
or rack mounted, can boot Linux natively, as opposed to the Linux
affinity inherent in AIX 5L.

This is a first for RS/6000s.

The 690 is the first server to use the new POWER4 architecture, and
the first RS/6000 that will support logical partitioning. LPARs will
allow you to have multiple instances of AIX running in the same
physical box. For example you could have an ‘online LPAR’ and a
‘batch LPAR’, both of which could have CPU and memory resources
allocated to them accordingly. While the 690 is a large enterprise-
class server that many of our budgets will never stretch to, rumour has
it that LPARs will be supported on a number of new ‘smaller’
POWER4 servers due to be announced early in 2002.

David Miller
Database Architect
Baystate Health Systems (USA) © Xephon 2002

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

An introduction to emacs – part 2

This month we conclude our introductory look at emacs.

Search and replace

Emacs has several powerful ways to find the bit of text you require.
By far the favourite, however, is for simple searches that do not
require regexp matching, and is the Incremental Search (I-search),
bound to C-s (for looking forwards) and C-r (for looking backwards).
Move to the start of a document, and press C-s. Type in ‘Search’. As
you type, emacs jumps to the next word in the document after the
current location, where the word contains the letter(s) you’ve typed
thus far. So after pressing C-s S, you will have moved to the first
instance of ‘S’ in this file. As you proceed to enter more characters,
the more refined the search becomes, so you start matching ‘Sear’,
which might only match ‘Search’. If you press C-s again during an on-
going search, it jumps to the next occurrence of the current search-
string, so you can bounce forwards through the document looking for
‘Sear’ if you want to. Likewise, C-r behaves identically apart from
working backwards. Use a cursor or other motion key to stop
I-searching.

Replacing text is generally best performed by using regular expressions.
For example, if you were viewing this document in HTML form, you
could replace all the <h3> tags with <h4> by doing the following:

��������	
���������������������������

and you’ll find all occurrences, from the current point downwards,
become replaced. This is similar to:

���������������

in vi, except that emacs’ regular expressions are slightly more
complicated and differently behaved.

This is one small difference between emacs and Xemacs; by default,
Xemacs21 will recognize a highlighted region, restricting its search

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and replace activities to this region, while in emacs20 and emacs21
you need to enable transient-mark-mode to have the same effect.

It is possible to perform a query search and replace, by using M-%.
This is similar to ‘replace string’, except that at each found instance,
emacs queries whether you want to replace it.

Keyboard macros

Emacs has the ability to store keyboard events as macros for later
batch execution. To start recording a macro, press C-x (. Perform as
many keyboard operations as you wish, moving text around, inserting
things, and then close off the macro with C-x). You can now repeat
the same activities by pressing C-x e. To repeat it more than once, use
a prefix argument, such as C-u 10 C-x e.

An example, in full: take an ordinary HTML document, move to the
start of the last line, and type:

������������������������	������

The mini-buffer will now display ‘Keyboard macro defined’, and the
buffer contents will have changed such that the last two lines have
been joined together, and (importantly!) the cursor will be left at the
start of the previous line. Now repeat this as many times as there are
lines in the buffer, so that the whole document is one long line.

To restore the buffer to a semi-sanitized content, define another
keyboard macro, thus:

������������� !"��#$��%���� !"�������

This will I-search forwards for the next ‘<’ character, and immediately
before it, insert a new line, (importantly!) leaving the cursor just after
the ‘<’ character in question.

For an alternative method to achieve the above, you can also use
replace-regexp to replace all instances of C-j by the empty string (use
C-q C-j to obtain a literal newline in the mini-buffer; note that this will
probably be displayed by changing the mini-buffer to a blank line
while you type it, except in emacs21, which has a multi-line mini-
buffer by default), and then perform a search and replace back again,
to replace ‘<’ with C-q C-j <.

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Either method has its benefits; it’s normally hard work to debug a long
regexp if it doesn’t work the first time, but it can also be time-
consuming to retype a whole macro if the actions it performs are very
complex.

Configuration

Emacs stores its per-user configuration, a series of LISP s-expressions,
in a file, ~/.emacs (note: not .emacsrc). For those not yet happy with
emacs LISP, there is a handy customize interface in emacs21 and
Xemacs, which you can enter by typing M-x customize – see
Figure 1. In emacs20, you’d be best off learning LISP.

Within these, you can press TAB to jump to the next link, Enter to
enter a section, q to quit the buffer (cancel configuration), and press
the Set, Save, and Done buttons to assert a configuration. Now,
preserve it in your config file, and leave the configuration buffer.

Figure 1: Customizing

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Here is an example of what customize should write into your ~/.emacs
file:

�
&�'()���'�*	�+	,���

��--�
&�'()���'�*	�+	,����.	��	�����,/��&�'()�0��(12'���+'�(��
&'��	�'�

+'3

��--�4(&��+1+'�5+�����(&���
(1'	+1�(1�/�(1���&
��+1�'	1
�6

�2�	�'+
����+�����	�����'�

�2�,	
7&��,/�
(�/+1��1+��

�2�,����*(�&)��8�

�2�,�(.���&���,�(.����5&1
'+(1��9&('��,�(.���&���.���'�

�2�
&���1'��	1�&	����1*+�(1)�1'�:��� :�

�2���,&��(1����(��1+��

�2�5	�'��(
7�)(���'�'��5	�'��(
7��

�2�5+��	�	�'�)(���'�'��5+��	�	�'��

�2�5(1'��(
7�)(���'�'��5(1'��(
7��

�2�5�)��,	
7��(&1��)(���1+��

�2���(,	��5(1'��(
7�)(���'�1+���5(1'��(
7���

Reader exercise

Use the following:

��&���3�����;�<�������*�2�2

to insert a list of the files (excluding those with any spaces in the
name) in the current directory into the buffer. Use the emacs help
system to find out what M-! does, in particular what the purpose of the
leading C-u was.

Now use replace-regexp to convert the start of each line (‘^’) into the
string:

�	����5=:

ie the start of an HTML <a> tag.

Now devise a keyboard macro using C-k and C-y (amongst others) to
complete each of the lines, so that each file becomes a link to itself,
thus:

�	����5=:+1'�(6�*+:�+1'�(6�*+��	�

�	����5=:+1'�(6�')�:�+1'�(6�')���	�

�	����5=:+1'�(6�	''�:�+1'�(6�	''���	�

�	����5=:+1'�(6��5:�+1'�(6��5��	�

�	����5=:+1'�(6��:�+1'�(6����	�

�	����5=:+1'�(6'��:�+1'�(6'����	�

�	����5=:+1'�(6'�':�+1'�(6'�'��	�

�	����5=:��)	
�>	1�>�)	
�>)(���6�1�:���)	
�>	1�>�)	
�>)(���6�1���	�

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Dired

If you open a directory as though it were a file, by typing something
like C-x C-f C-a ~ RET, for example, you will see a new buffer, a sort
of file manager of buffers. Within this, you can highlight files, press
RET to open each file in its own buffer, or press d to mark them for
deletion (then X to commit the deletions).

CLOSING TASTER – EMACS LISP

You will have seen references to ‘functions’ and LISP above.

Emacs is based entirely on its own native dialect of LISP (see
www.LISP.org). This shows through in several ways, but most notably
in the fact that you can find out what pressing any key (combination)
does, and the answer always comes back in terms of a function. Right

Figure 2: Well-configured Xemacs session

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

now, C-h k e tells me that ‘e’ is bound to the ‘self-insert-command
function’, which inserts a character corresponding to the key pressed.
Try it. Try doing C-h k C-h k as well.

For a picture of a reasonably well-configured Xemacs session showing
Gnus, the calculator, and the calendar all at once, see Figure 2.

We have already seen references to M-x. This invokes a command in
emacs LISP, which is a function defined to be interactive. As an
example, consider this (from C-h k M-q):

��9��&1��25+����	�	��	���(�����+(12

?�1+�@

A(
&)�1'	'+(1�

$+���'���
&���1'����+(1B�+5�+'2��	
'+*�-�('���.+��B�5+���'����	�	��	��6

����25+����	�	��	��2�	1��25+������+(12�5(��)(���+15(�)	'+(16

This means that, if you were to type M-x fill-paragraph-or-region, it
would have the same effect as pressing M-q.

There is also M-:, which evaluates a given LISP expression, putting
the results in the mini-buffer.

For example, try doing this:

�����C������D�E���F�;�����

You should see the result, 48, in the mini-buffer.

To run a quick one-liner that inserts the results of an expression into
the current buffer, try:

�����+1���'��
&���1'�'+)���'�+1���

Tim Haynes
Open Source and Free Software Consultant (UK) © Xephon 2002

Processes explained

In AIX (and other flavours of Unix), a process is the means by which
a program gets executed. Any program that needs to be run on a
machine managed by Unix must be run in a process, which is a
collection of system resources.

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

A running program in a process can be replaced by a new program.

PROCESS CREATION

Process creation is a system activity. When we try to run a program,
a process is automatically created by the system, using the system call
fork (). If there is not enough memory in the system this process
creation can fail. If the creation of a new process will exceed the
process creation limit allocated to the system user, process creation
will fail. If creation of the process will exceed the overall process
creation limit of the system, the process creation will fail.

PROCESS IDENTIFIERS (OR PID)

Every process has a unique process ID, a non-negative integer. Since
the process ID is the only well-known identifier of a process that is
always unique, it is often used as an identifier to guarantee uniqueness.

SPECIAL PROCESS IDS

Process ID 0 is the scheduler process and is often known as the
swapper. No program on disk corresponds to this process. It is part of
the kernel and is known as a system process.

Process ID 1 is the init process and is invoked by the kernel at the end
of the bootstrap process. The program file for this program is /etc init.

Process ID 2 is the page daemon. This process is responsible for
supporting the paging of the virtual memory system. It’s a kernel
process.

PARENT PROCESS

Every process has got a parent process associated with it (although
there are exceptions to this, which we’ll discuss later). When a process
is being created, it must be created by another process and this
creating process is called the parent process, which equally has a
unique ID.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CHILD PROCESS

When a process is being created to execute a program, this is usually
viewed as a parent process.

Now, when this newly-created process goes on to create one or more
processes, these processes are called child processes.

ORPHAN PROCESS

A process whose parent terminates is called an orphan process and is
inherited by the init process.

ZOMBIE PROCESS

Once a process has been killed, the process turns itself into a zombie
process. In this state, it is appropriately described as dead but not
buried. This means that the process has no swapping image, but
continues to exist in the process table, which gives it a dubious and
not very useful status.

The zombie process can have its entry removed from the process table
by its parent. The zombie can never be made executable again since
it has no swapping image.

PROCESS TABLE

A process table is a fixed size array of structures where the control
information about a process is stored. The size of this array places a
fixed limit on the maximum number of processes that can exist at a
time and can give rise to process table overflow errors.

PROCESS GROUP

In addition to having a process ID, each process also belongs to a
process group. A process group is a collection of one or more
processes. Each process group has a unique process group ID.

Process group IDs are similar to process IDs. The function getpgrp()
returns the process group ID of the calling process.

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

PROCESS LEADER

Each process group can have a process group leader. The leader is
identified by having its process group ID equal to its process ID.

PROCESS VERSUS PROGRAM

A process is a collection of identifiable entities within which a
program is executed. The relationship between the process and
program is not one-to-one because a process can execute more than
one program at a time. It is also possible to remove a currently
executing program from a process and start the execution of a new
program in its place.

Foreground process

A foreground process is a process that runs from a terminal and ties
up the terminal during its entire execution period. If the terminal is
closed, the job will be killed.

Background process

A background process is a process that runs from a terminal but does
not tie up the terminal during its entire execution period. If the
terminal is closed, the job may or may not be killed.

If the nohup command is used to execute the job, the job will continue
to execute even if the terminal is closed, otherwise the job will be
killed. In the case of a job running with the nohup command, if the
terminal is closed, the process is inherited by process ID 1 (known as
the init process). A background process is started with an ampersand
sign (&) at the end of the command.

PROCESS NICHE VALUE

Not all processes are created equal under Unix. Unix maintains a
queue of processes ordered by priority.

Foreground processes, such as a user typing a command at a prompt,
often receive a higher priority than background processes. However,
one may want to run background processes at an even lower priority.

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This is done using the command nice. The nice command modifies
the scheduling priority of time-sharing processes. A process with a
high nice number runs at a low priority, getting relatively little of the
processor’s attention. Similarly, jobs with a low nice number run at
a high priority. When a command is issued with nice being mentioned,
it is assigned a default priority that corresponds to a default nice value
of 20. The nice values range from 0 to 20.

PROCESS CONTROLLING TERMINAL

The process controlling terminal is the terminal from which the
process was started. In the ps listing, this is usually given as a tty or
terminal ID. The tty command can be used to report to which
‘terminal’ you’re currently connected. A controlling terminal is not
required for a process to run. A background process always runs
without a controlling terminal.

KILLING A PROCESS

A process can be killed using the kill command with a process number
as an argument. For example:

7+���;D�

The kill command sends a particular kill signal to the specified
process. For instance, it will send signal 15 (known as TERM) to the

Signal name Signal number

TERM 15

KILL 9

TSTP 24

QUIT 3

HUP 1

INT 2

Figure 1: Signal name and signal number relationship

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

specified process in this example.

The kill command can be issued with a signal number (kill
-signal_number) or signal name (kill -signal_name). The relationship
between signal name and signal number is shown in Figure 1.

The command kill -l will list all the signal names.

However, a kill command may not always succeed in killing a process
because the process in question can catch this signal and choose to
ignore it. Therefore, a sure way to kill a process is to use signal_9.

When designing a program, it is a good idea and practice to design a
signal handling routine that would process a caught signal in an
appropriate manner. The program catches these signals usually to
protect the execution of a critical section of the code.

PROCESS AND PROCESSOR

In a multiprocessor environment, a process can be bound to a specific
processor, meaning that that processor will execute the process. When
a process is not bound specifically to a processor, the scheduler will
bind that process to a processor at random.

DAEMON PROCESS

Daemons are processes that live for a long time. They are often started
when the system is bootstrapped and terminate only when the system
is shut down, These processes are said to run in the background,
because they do not have a controlling terminal.

Daemon process characteristics are:

• Runs with super privilege (a user ID of 0).

• Has no controlling terminals – the terminal name is set to
question mark.

• Parented by the init process.

CODING RULES FOR DAEMON PROGRAMS

Coding rules for daemon programs are:

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1 The first thing to do is call fork and have the parent exit. This
does several things.

If the daemon was started as a simple shell command, having the
parent terminate makes the shell think the command is complete.

2 Call setsid() to create a new session.

3 Change the current working directory to the root directory.

4 Set the file mode creation mask to 0.

5 Close all unneeded file descriptors.

SAMPLE DAEMON PROGRAM

G+1
�&���������/��'/���6��

G+1
�&���������/���'	'6��

G+1
�&��������5
1'�6��

+1'����	�)(1�+1'����*(+���

H

����+��'����������+�-

+5���������+���=��5(�7�����������8���

����������'&�1���;�-

������+5������+���3=���8���

���������+'��8����-�����F���	��1'����+�'��F�

�F��
�+����
(1'+1&�����F�

��'�+���-������������F��,�
()�������+(1����	���������������F�

��+���:�:��-��������F��
�	1����.(�7+1����+��
'(�/���������F�

&)	�7��8�-�����������F��
��	���5+����)(����
��	'+(1��)	�7��F�

��'&�1��8��-

I

Arif Zaman
Analyst/Programmer
High-Tech Software (UK) © Xephon 2002

Introduction to the shell

The shell is the outermost layer of the operating system and is actually
a programming language that is used to control processes and files, as
well as to start and control other programs. The shell manages the
interaction between the user and the operating system by prompting

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

the user for input. It interprets that input for the operating system, and
then handles any resulting output. The shell runs from the moment
you log in until you log off.

Normally, you interact with the shell by entering a command, and wait
for the shell to respond by displaying a new prompt before you enter
the next command.

It is also possible to put a sequence of commands in a file and have
the shell run these commands one after the other. When you use the
shell to run commands from a file, you are using it in a non-interactive
way. The shell will read commands from the file, rather than prompt
you and read what you type.

A file that contains a sequence of commands is called a shell program
or shell script. The shell has a number of features that make it similar
to high-level programming languages. These include:

• Variables.

• Flow control constructs, such as if-then statements and loops.

• Signal handling.

These features make it possible to create shell programs that consist
of more than just a list of simple commands. Shell scripts can provide
an easy means of carrying out tedious tasks, large or complicated
sequences of commands, and routine tasks, and, by following certain
rules, the command sequences in a script can be carried out simply by
typing the name of the shell script file.

SHELLS AVAILABLE

Several shells are available to interface with AIX, and a particular
shell is chosen by invoking the command with which it is associated.
Although the shell plays a special role in the operating system, it is
really just a program, and can be run like any other program.

AIX Version 4 is provided with the following shells:

• Korn shell (invoked with the ksh command). This is the standard
shell that appears when you log in. It is more sophisticated than

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the Bourne and C shells and incorporates many of their features,
plus other enhancements.

• Bourne shell (invoked with the bsh or sh command).

• Restricted shell (a subset of the Bourne shell, invoked with the
Rsh command). It is used as a security feature to limit user access
to a subset of AIX commands and is not used in shell programming.

• C shell (invoked with the csh command).

• Trusted shell (invoked with the tsh command). It is an enhanced
security shell not used in shell programming.

• Remote shell (invoked with the rsh command). Normally used
for logging on to remote hosts and is used in shell programming
only to remotely execute a command.

COMMAND TERMINATORS AND PIPELINES

In shell scripts you can put several commands on the same line by
separating them with any of the command terminators. There are no
hard and fast rules and it is purely a matter of personal preference.

Since the new-line character is normally treated as a command
terminator, you must do something special when you want to break up
a command that is too long to fit on a single line; for example you may
want to split the command so that your script is easier to read. To do
this, type \ just before you press <CR>, and then continue typing the
command. A new-line character that is preceded by a \ is said to be
‘escaped’.

In much the same way, you can place a pipe symbol at the end of a line
and continue the pipeline on the next line if you want to make the
script easier to read.

Tonto Kowalski
Guru (UAE) © Xephon 2002

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

AIX 5L routing enhancements

In AIX 5L (5.1) several new features were added to the TCP/IP stack
and some enhancements were made. Of these, perhaps the ones that
will be of the greatest use to the majority of the AIX community are
the enhancements to routing, specifically multipath routing (sometimes
referred to as equal cost multipath routing), and dead gateway
detection. This article explains the concepts of these, and demonstrates
their usage in making your routing table more efficient and robust.

MULTIPATH ROUTING

An example network diagram is shown in Figure 1.

In this example our AIX box has a Token Ring interface 11.1.1.1, and
an Ethernet interface 10.1.1.1, both of which have a subnet mask of
255.255.255.0. The default route goes via the Ethernet interface to
10.1.1.2. The current routing table is shown below:

�(&'+1��'	,���

A��'+1	'+(1������!	'�.	/��������$�	������5���������� 5�����������!�(&��

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

��5	&�'����������;86;6;6D��������!������8�������JE���18����������

;86;6;�D���������;86;6;6;���������������������D��K���18����������

;;6;6;�D���������;;6;6;6;��������������������;DL;E��'�8����������

;DL�J������������;DL68686;��������������M�����EML����(8����������

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;����������������;�������������"������8��������8���(8�;MJEM����

Note: to retain the simplicity of the routing table, Path MTU discovery
has been turned off (see no options tcp_pmtu_discover and
udp_pmtu_discover).

But, with two possible routes to the default router, it would be nice if
we could balance the load between the Token Ring and Ethernet
networks. The question is, how?

One possible way of sharing the load between the two adapters is to
add specific host routes or network routes to manually route to certain
destinations via a certain interface. In the network diagram in

22
©

 2002. X
ephon U

K
 telephone 01635 33848, fax 01635 38345. U

SA
 telephone (303) 410 9344, fax (303) 438 0290.

F
igure 1: E

xam
ple netw

ork diagram

AIX 5L

11.1.1.1

10.1.1.1 Router

13.1.1/2411.1.1/24

13.1.1.513.1.1.4

13.1.1.3

11.1.1.5
11.1.1.4

11.1.1.3

13.1.1.211.1.1.2

12.1.1.210.1.1.2

12.1.1.3

12.1.1.412.1.1.5

10.1.1.510.1.1.410.1.1.3

10.1.1/24

12.1.1/24

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1 it would be reasonably easy to use the Ethernet adapter to
route to the 12.1.1/24 network and the Token Ring adapter to route to
the 13.1.1/24 network; it would just be a case of adding two network
routes, which would give us a few extra lines of netstat -rn output:

;D6;6;�D���������;86;6;6D��������!������8��������8���18����������

;�6;6;�D���������;;6;6;6D��������!������8��������8��'�8����������

In the case of this example network, this is an easy split, but there are
still problems – for example, what if 90% of all traffic goes over the
12.1.1/24 network; suddenly we’re not balancing equally. Again we
could intervene manually by adding host routes via certain adapters
instead of network routes. In which case we’d probably end up with
something along the lines of:

;D6;6;6����������;86;6;6D��������!"�����8��������8���18����������

;D6;6;6����������;;6;6;6D��������!"�����8��������8��'�8����������

;D6;6;6K���������;86;6;6D��������!"�����8��������8���18����������

;�6;6;6����������;;6;6;6D��������!"�����8��������8��'�8����������

;�6;6;6����������;86;6;6D��������!"�����8��������8���18����������

;�6;6;6K���������;;6;6;6D��������!"�����8��������8��'�8����������

This approach takes a lot of effort, even on a small network. With a
medium-sized network of only 100 hosts of so, this would just take
too much work to manage properly, and the routing table would be too
unruly to work with easily.

Perhaps these are the reasons why most system managers don’t
actually make this effort in trying to balance the load between the two
adapters, and instead just use a default route. This was the story in
AIX 4.3 and versions previous to that, but now, in AIX 5L, things have
changed.

Prior to AIX 5L a route had to be unique, identified by its destination
and netmask. With multipath routing this criterion is no longer used.
We are now able to add multiple routes to the same destination, which
AIX then routes through based on a ‘round-robin’ method.

The simplest implementation we could use would be to simply add a
second default route via our tr0 adapter:

G��(&'��	���8�;;6;6;6D

;;6;6;6D�1�'�8���	'�.	/�;;6;6;6D

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

G�1�'�'	'���1

�(&'+1��'	,���

A��'+1	'+(1������!	'�.	/��������$�	������5���������� 5�����������!�(&��

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

��5	&�'����������;;6;6;6D��������!������8�������JE��'�8��������������=�

��5	&�'����������;86;6;6D��������!������8�������JE���18����������

;86;6;�D���������;86;6;6;���������������������D��K���18����������

;;6;6;�D���������;;6;6;6;��������������������;DL;E��'�8����������

;DL�J������������;DL68686;��������������M�����EML����(8����������

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;����������������;�������������"������8��������8���(8�;MJEM����

The ‘=>’ symbol tells us that this route is a duplicate. We can test
whether AIX is routing on a round-robin-basis using something
simple such as traceroute, eg:

G�'�	
��(&'��;D6;6;6�

'�/+1��'(���'��(&�
��5(��;D6;6;6�

�(&�
����(&���,��;;6;6;6;

'�	
��(&'��'(�;D6;6;6���;D6;6;6���5�()�;;6;6;6;��;;6;6;6;�B��8��(���)	�

(&'�(+1������=�;�ED

�;��;;6;6;6D��;;6;6;6D���;8�)�����)�����)�

�D��;D6;6;6���;D6;6;6�����L�)���L�)���L�)�

then run it again (note the different source address used):

G�'�	
��(&'��;D6;6;6�

'�/+1��'(���'��(&�
��5(��;D6;6;6�

�(&�
����(&���,��;86;6;6;

'�	
��(&'��'(�;D6;6;6���;D6;6;6���5�()�;86;6;6;��;86;6;6;�B��8��(���)	�

(&'�(+1������=�;K88

�;��;86;6;6D��;;6;6;6D���;8�)�����)�����)�

�D��;D6;6;6���;D6;6;6����L�)���L�)���L�)�

One important point to note about multipath routing is that it cannot
be used in conjunction with path mtu discovery (PMTU), so this must
be turned off beforehand.

A common question that came up from people running 4.3 is, could
they balance the load by configuring two interfaces in the same
subnet? This not only didn’t work, but was almost completely useless.
In 4.3 only the first interface that came up would get the ‘interface’
route – identified by a single U in the flags.

Let’s look at an example:

G�1�'�'	'��+1

%)����'&���%�'.(�7���������������������� �7'�� �������N�7'��N�������(��

'�8���;�ED���+17G������86�6	
6M�65�6�����;8ME�����8�������M�����8�����8

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

'�8���;�ED��;86;86;8���;86;86;86;��������;8ME�����8�������M�����8�����8

'�;���;�ED���+17G������86�6	
6M�6	�6	8����D;K�����8������JL�����8�����8

'�;���;�ED��;86;86;8���;86;86;86D���������D;K�����8������JL�����8�����8

�(8���;MJEM��+17G;������������������������;EJ�����8�����D8D�����8�����8

�(8���;MJEM�;DL��������;DL68686;����������;EJ�����8�����D8D�����8�����8

�(8���;MJEM���;���������������������������;EJ�����8�����D8D�����8�����8

G�1�'�'	'���1

�(&'+1��'	,���

A��'+1	'+(1������!	'�.	/��������$�	������5���������� 5�����������!�(&��

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

;86;86;8�D�������;86;86;86;�������������D�������;8��'�8����������

;DL�J������������;DL68686;��������������M������;JJ���(8����������

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;����������������;�������������"������8��������8���(8�;MJEM����

Notice in this example there is no reference to tr1 in the netstat -rn
output, because adding another interface route on tr1 would cause a
duplication of routes, which 4.3 did not support. More crucially, if
traffic came in for tr1, it would be returned over the tr0 interface – thus
rendering tr1 redundant.

In 5.1 this has been resolved: multiple interfaces in the same subnet
are supported, and multipath routing will load-balance between them.
Using the same netstat -in as before, our netstat -rn would now look
like:

�(&'+1��'	,���

A��'+1	'+(1������!	'�.	/��������$�	������5���������� 5�����������!�(&��

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

��5	&�'����������;;6;6;6D��������!������8�������JE��'�8��������������=�

��5	&�'����������;86;6;6D��������!������8�������JE���18����������

;86;6;�D���������;86;6;6;���������������������D��K���18����������

;;6;6;�D���������;;6;6;6;��������������������;DL;E��'�8��������������=�

;;6;6;�D���������;;6;6;6����������������D�������;8��'�;����������

;DL�J������������;DL68686;��������������M�����EML����(8����������

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;����������������;�������������"������8��������8���(8�;MJEM����

This would load-balance between tr0 and tr1 on the 11.1.1 subnet, but
only over tr0 and en0 from the default route. So in order to additionally
balance our default route using tr1 we need to add another default
route.

Our problem here is that our normal command to add the default
route:

G��(&'��	���8�;;6;6;6D

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

would add the route over the tr0 interface – and we already have that
route. Therefore a new flag has been added to the route command to
let us specify which interface we want the route to use. This is the
-if flag. We’d add the route in question with:

G��(&'��	���8�;;6;6;6D��+5�'�;

resulting in the routing table:

�(&'+1��'	,���

A��'+1	'+(1������!	'�.	/��������$�	������5���������� 5�����������!�(&��

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

��5	&�'����������;;6;6;6D��������!������8�������JE��'�8��������������=�

��5	&�'����������;;6;6;6D��������!������8�������;D��'�;��������������=�

��5	&�'����������;86;6;6D��������!������8�������JE���18����������

;86;6;�D���������;86;6;6;���������������������D��K���18����������

;;6;6;�D���������;;6;6;6;��������������������;DL;E��'�8��������������=�

;;6;6;�D���������;;6;6;6����������������D�������;8��'�;����������

;DL�J������������;DL68686;��������������M�����EML����(8����������

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;����������������;����������������"��������8��������8���(8�;MJEM����

Now we’re balancing our load over three adapters. The next question
is, what happens if one of our next-hop routers goes down? This
brings us neatly on to our next topic, Dead Gateway Detection.

DEAD GATEWAY DETECTION

Dead Gateway Detection (DGD), as the name would suggest, is
designed to detect whether one of your gateways is dead. It does this
in a few different ways, and the default is off.

The idea of DGD working out whether your gateway is alive or dead
is, in itself, fairly useless. The key feature is that if you’ve got another
route to the same destination (ie you’re using multipath routing) then
it will switch all the traffic over to the alternative route. The two
methods of detecting whether the gateway is dead are through passive
dead gateway detection and active dead gateway detection.

Passive Dead Gateway Detection (PDGD) is either on or off, and
affects all of the routes in the table. It’s turned on via the no command:

G�1(��	�<�������	��+*�>���

�	��+*�>����=�8

G�1(��(��	��+*�>���=;

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

PDGD relies on hints from the other communication layers to
determine whether a gateway is alive or not, such as excessive TCP
retransmissions, or getting no response from ARP attempts.

However, if the protocols in use can’t give hints about the gateway
(for example a UDP connection) then it will not be possible to
determine whether the gateway is alive or dead. This means that
PDGD can be quite slow to detect that, in fact, a gateway is dead, or
that a dead gateway has come back up again. One advantage of this
method though is that it requires very little additional overhead, and
so is recommended for machines that are deemed ‘non-critical’.

Active Dead Gateway Detection (ADGD), as the name suggests,
actively goes out and tests whether the gateways are up or down, by
the simple means of pinging them. Although there is no official set
method of performing Dead Gateway Detection, the recommendations
in RFCs 1122 and 816 advise that pinging should not be used, or kept
to an absolute minimum, so in choosing this method AIX is not fully
compliant with the RFC.

ADGD is done on a per route basis, and is activated by another
additional flag for the route command, -active_dgd. Routes which
have ADGD set are visible by the new ‘A’ flag in the netstat -rn
listing.

As an example, we can delete one of our default routes, and re-add it
with the active_dgd flag:

G��(&'������'��8�;;6;6;6D��+5�'�;

'�;�1�'�8���	'�.	/�;;6;6;6D

G��(&'��	���8�;;6;6;6D��+5�'�;��	
'+*�>���

�	
'+*�>����1�'�8���	'�.	/�;;6;6;6D

G�1�'�'	'���1

�(&'+1��'	,���

A��'+1	'+(1������!	'�.	/��������$�	������5���������� 5�����������!�(&��

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

��5	&�'����������;;6;6;6D��������!������8�������JE��'�8��������������=�

��5	&�'����������;;6;6;6D��������!������8��������8��'�;��������������=�

��5	&�'����������;86;6;6D��������!������8�������JE���18����������

;86;6;�D���������;86;6;6;���������������������D��K���18����������

;;6;6;�D���������;;6;6;6;��������������������;DL;E��'�8��������������=�

;;6;6;�D���������;;6;6;6����������������D�������;8��'�;����������

;DL�J������������;DL68686;��������������M�����EML����(8����������

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;����������������;�������������"������8��������8���(8�;MJEM����

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

As already discussed, ADGD works by simply pinging the routers. By
default a ping will occur every five seconds to every route that has
ADGD enabled on it. If after three successive pings it fails to get a
response, the router is deemed dead.

Before looking at how AIX interprets this, it’s important to think
about how much extra traffic this pinging will generate. On a single
machine, pinging its default router, the answer is not a lot. With a large
network of AIX boxes with lots of ADGD-enabled routes, we could
get quite a ping-storm going, with a noticeable impact on network
performance. Because of this potential hit in network performance,
plan carefully which machines and routes need ADGD, or just use it
on machines that are deemed ‘critical’. AGDG and PDGD aren’t
exclusive to one another, so ADGD can be used on ‘critical’ routes,
while PDGD can be used on the others.

Helpfully enough, pinging every three seconds is only the default
value, and the DGD options can be tuned with the no options:

G�1(��	�<���������

���>�	
7�'�>�(�'�=��

���>��'�/>'+)��=�K

���>�+1�>'+)��=�K

�	��+*�>����=�8

Let’s look at these in detail:

• dgd_packets_lost are the number of pings that aren’t responded
to for the route to be thought of as dead.

• dgd_retry_time is the number of minutes before the route is put
back to its normal state (if it’s still down it’ll fail over again).

• dgd_ping_time is the number of seconds between each ping.

• Passive_dgd, as discussed, if set to 1, will turn on PDGD.

In both PDGD and ADGD, the way in which AIX interprets a route
as being dead is the same. In AIX 5L, each route also has a cost
attached to it (this will be familiar to anyone who’s worked with RIP-
2 or OSPF). AIX will simply then take the lowest-cost route possible
to the required destination.

If there’s only one possible route to the destination in question, then
adding a cost to the route will make no difference – if there’s only one

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

route to the destination, then it’s always going to have the lowest cost.
If we have multiple routes to the same destination, as in the previous
examples, then changing the costs of certain routes will have a marked
result. If not specified, routes will have a cost of 0 – use the -hopcount
flag to assign a route. In order to see the costs assigned to the routes,
the ‘C’ flag is added to the netstat -rn.

As an example, we’ll delete another one of our default routes, and then
re-add it with a cost of 16:

G��(&'������'��8�;86;6;6D��+5��18

�18�1�'�8���	'�.	/�;86;6;6D

G��(&'��	���8�;86;6;6D��+5��18���(�
(&1'�;M

��1�'�8���	'�.	/�;86;6;6D

G�1�'�'	'���1�

�(&'+1��'	,���

A��'+1	'+(1���!	'�.	/��������$�	�������5����������� 5����(�'��(15+�>�(�'

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

��5	&�'�������;;6;6;6D���������!��������8��������8��'�8�����8���������8

��5	&�'�������;;6;6;6D���������!��������8������D����'�;�����8���������8

��5	&�'�������;86;6;6D���������!��������8�������JE���18����;M��������;M

;86;6;�D������;86;6;6;������������������������D��K���18�����8���������8

;;6;6;�D������;;6;6;6;�����������������������;DL;E��'�8�����8���������8

;;6;6;�D������;;6;6;6�������������������D�������;8��'�;�����8���������8

;DL�J���������;DL68686;�����������������M�����EML����(8�����8���������8

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;�������������;��������������"��������8��������8���(8�����8���������8

When a dead route has been detected, the kernel assigns the highest
cost possible to the route, which will show as MAX (this is equivalent
to a cost of 2,147,483,647) in the netstat -rnC output. When
choosing the lowest-cost route, obviously the kernel is going to avoid
the MAX cost routes and choose the lowest cost options.

We’ve got a very obvious flaw in our current routing table: we have
set ADGD on the default route on tr1. But if the 11.1.1.2 router goes
down then we would still use the route to 11.1.1.2 on tr0!

As an example, we’ll set ADGD on the default route on tr0 as well and
then take the 11.1.1.2 router down. After a matter of seconds, our
resulting routing table looks like:

G�1�'�'	'���1�

�(&'+1��'	,���

A��'+1	'+(1���!	'�.	/��������$�	�������5����������� 5����(�'��(15+�>�(�'

�(&'�������5(����('(
(��$)+�/�D�� 1'��1�'��

��5	&�'�������;;6;6;6D���������!��������8�������;���'�8�����O���������O

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

��5	&�'�������;;6;6;6D���������!��������8������D����'�;�����O���������O

��5	&�'�������;86;6;6D���������!��������8�������EK���18����;M��������;M

;86;6;�D������;86;6;6;������������������������D��K���18�����8���������8

;;6;6;�D������;;6;6;6;�����������������������;DL;E��'�8�����8���������8

;;6;6;�D������;;6;6;6�������������������D�������;8��'�;�����8���������8

;DL�J���������;DL68686;�����������������M�����EML����(8�����8���������8

�(&'�������5(����('(
(��$)+�/�D��� 1'��1�'�*M��

��;�������������;��������������"��������8��������8���(8�����8���������8

So all traffic needing the default route will go out of en0 on to the
router 10.1.1.2. In five minutes’ time, the routes will be given their
original costs again, and the ping will be retried to see if they are still
dead.

Dead gateway detection and multipath routing offer us some useful
features; not only the obvious functions of having multiple routes to
the same destination for load balancing, and detecting that a gateway
is down, but by combining these we can configure some routes or
interfaces to be used only in exceptional circumstances.

This is a new function to AIX 5L and there were a few defects in the
initial release. Although these have been addressed, it’s recommended
running on the latest maintenance level.

(UK) © Xephon 2002

Shell-scripting tricks

SHELL INTRODUCTION

If you have any command line interaction with your Unix server, the
chances are that it involves a shell somewhere – such things as sh,
bash, csh, ksh, and the less frequently encountered zsh, scsh, and es.

All these are different packages that handle the commands you type,
spawning processes, and passing data back and forth between them.
They differ in such areas as key combinations, behaviour (and set) of
output redirector syntaxes, variable editing, which platforms come
with which shells by default, and so on.

This article provides the backing terminology to take you from simply

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

entering commands to constructing longer and more complex
instructions, by understanding the building blocks behind shell
scripting. Throughout this document, the bash shell is used; the vast
majority of examples presented will also work in vanilla Bourne sh;
bash’s open-source nature means that it is freely available, and indeed
it is making its presence felt at many installations.

SHELL LOOK AND FEEL

The shell is responsible for handling how commands look, and the
editor keypresses that can be used to generate them. Generally, there
are two ‘modes’ for a shell – it can either be in edit mode, which
resembles vi, or it uses a readline and feels like a one-line version of
emacs. Modern shells seem to default to the latter; they all have the
option to rebind the keys, with either:

��'��(�*+

in ksh and bash, or:

,+1�7�/��*

in [t]csh.

The most useful keys to know about are probably the following
(readline versions presented first):

• Cursor left/right will move back and forth along the line a
character at a time. In vi-mode, use Esc to get into command
mode and use h and l correspondingly.

• Cursor-up/down will cycle through the command history one
line at a time. In vi-mode, use Esc to get into command mode and
use k and j respectively.

• ^A, ^E will take you to the start or end of a line. In vi-mode, use
Esc and then I (to jump back into insert-at-start-of-line) or Esc+|
or ^ to move to the start of line. Use $ to move to the end, and A
to append after the end of the line.

• M-f, M-v will move you forwards or backwards a word. In vi-
mode, Esc to enter command mode, then either W or w, or B or
b, to move forwards and backwards by (big or small) words.

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• ^R will start interactively asking for letters out of previous
commands in the history, so you can press ‘l s’ for the last
command including those letters, and then press ̂ R again for the
previous match, or add more characters. (Use a cursor-key or ̂ E
to bring this command to the fore.)

SHELL VARIABLES

All shells support the idea of having both local and environment
variables. They are set as follows:

• set var=value (csh)

• var=value (sh/bash)

• setenv var value (csh)

• export var (sh/bash).

The difference is that the (current) shell alone will see shell variables;
however, environment variables are inherited down the process tree.

For example:

+1+'�;��C�	�	
����DE��C�	�	
������8�

��������<�������������<�	�	
������;�

��������<�������������<�	�	
������D�

��������<�������������<�	�	
��������

��������<�������������<�	�	
��������

��������<�������������2�	�	
�����M��

��������<�,(�D�J�

is the process tree of my apache and boa Web servers; I invoked this
from /etc/init.d/apache with the LD_PRELOAD variable set to include
‘/lib/libsafe.so.1’. Each of the child processes now also has that
environment variable, but boa has not.

The presence of a shell or environment variable is determined by
typing ‘set’ on its own. The presence of an environment variable only
is determined by running the ‘env’ command. This is an important
difference; if you were to debug a situation where one command saw
a variable but something that the first command spawns does not see
it, then typing ‘set’ to answer ‘is the environment variable FOO set?’
would be a logical error. Use env for this purpose. It is also conventional

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

(unlike in the above) for environmental variables to be written in
upper case.

There is also an ‘unset’ feature to all these shells that works both for
shell and environment variables. Bash, kshm, and zsh also support
shortening ‘FOO=value; export FOO’ into the more succinct:

���(�'�$NN=*	�&�

Shells typically reserve certain variable names for their own purposes.
These include:

• $$ – the pid of the current shell process

• $? – the exit status of the last command: typically 0 means it
exited successfully, non-zero indicates an error.

• $1..$9 – when writing a shell script, these are the parameters
passed on the command line.

• $* – when writing a shell script, this is all the parameters on the
command line.

• IGNOREEOF – if you send the shell an EOF signal (by pressing
^D), then, with this variable set, it will say “Type exit to log out”;
with it unset, it will log out.

• $() – surprise! This isn’t a variable; see below under backticks.

• $(()) – surprise! This isn’t a variable; some shells (notably bash/
zsh) use it to denote arithmetic operations.

JOB CONTROL

One of the features of the shell is to provide control over the processes
you spawn.

When you tell the machine to run ‘ls’, for example, the shell receives
your input (the command), searches a path for the ‘ls’ executable,
forks, executes the command, and ensures that output comes to your
current tty.

Straight away we meet the first differences between the various shells:
the path-searching mechanism is through an environment variable

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

called ‘PATH’ in sh, bash, and ksh; in csh, tcsh, and zsh, it’s done
through an array variable called path, and you have to run ‘rehash’ in
order for the shell to update its hash of what commands are available
where in the path.

In the case of something as simple as ‘ls’, obviously no special job-
control is required. However, if you had a shell script that took half
a day to run, the last thing you would want is to tie up your terminal
window waiting for the output. This is where all the shells support the
following:

• Use of & to background a process – output still comes to this tty.

• ^C (technically, whatever ‘stty intr’ is set to) to terminate the
currently running process.

• ^Z to suspend the currently running process.

• A ‘jobs’ command to show what processes are currently running
from this shell.

• ‘bg’ and ‘fg’ to take the currently suspended process and resume
running in the background, or to take a backgrounded process
and bring it to the foreground.

Hence, the following:

,	��P�������;D8

QR

?;@C���'(���������������������������;D8

,	��P�,�

?;@C�������;D8�S

,	��P�T(,�

?;@C���&11+1������������������������;D8�S

,	��P�������D�8�S

?D@�;DJ;

,	��P�T(,�

?;@����&11+1������������������������;D8�S

?D@C���&11+1������������������������D�8�S

,	��P

shows the bash shell starting a sleep process for two minutes, that
process being backgrounded, a second sleep being started for four
minutes already in the background, and two listings of the jobs
present in that shell instance.

Normally, any one of these jobs can be brought to the fore by typing:

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

5���1

for some suitable n; in some shells, it can be abbreviated to just ‘%n’.
You can also terminate a particular one by using ‘kill %n’.

OUTPUT REDIRECTION

Shells do a lot of parsing of the command line before the command(s)
being executed actually see it. The most obvious of these is the stdin/
stdout redirection; a command’s output can be sent to another file, or
appended to it, or piped to another command; its input, by the same
token, can be from a file or a pipe on the left.

For example:

,	��P���

�U��������������6	&���������6�')�V��������6�(��������6'��

�	7�5+����������6�*+��������6�	''���������6��5�������6'�'

�	7�5+��V�������6�')��������6�	''�V�������6��

,	��P�����;

�U�

�	7�5+��

�	7�5+��V

�����6	&�

�����6�*+

�����6�')�

�����6�')�V

�����6�	''�

�����6�	''�V

�����6�(�

�����6��5

�����6��

�����6'��

�����6'�'

,	��P�����;�<�.
��.

�����;�

,	��P�����;�<�.
��.���1(�+1��

,	��P

Here we have four commands executed, showing the first phases of
how to build up a lengthy command line. The essential thing to watch
is the nature of the data at each stage: when we execute ‘ls’, the
command runs, and produces one layout of data (multi-columned).
When we change to ‘ls -1’, the data is just one column wide. Then we
feed that column of data into the wc command, and it produces one
(indented) number, the number of words in the input stream (which
came in from the pipe). Finally, we take that one number of output,

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and either create a new file, or truncate any existing one, called
‘nolines’, with just that number as its contents.

It is also worthwhile noting that the command line that the ‘ls’ process
sees is only ‘ls -1’; the command line that ‘wc’ sees is ‘wc -w’. It is
the shell itself that splits the command line into these three components,
spawns the processes in the right order, and joins the stdout of one to
the stdin of the next, finally putting the output directly into a file.

Presumably there was some ulterior motive for wanting to do this.

The redirection operators

There are five redirection operators of interest, all of which appear
after a given command on the command line:

• > – creates a new file, or truncates an existing one, putting stdout
into that file.

• >> – appends to an existing file, or creates a new one if necessary,
putting stdout into that file.

• < – links the process’s stdin from a file of data.

• << – used to describe ‘here-documents’, where everything from
‘<<EOF’ until a line containing ‘EOF’ on its own is read and
parsed as stdin to the command.

• | – used to pipe the output from the command on the left to the
command on the right.

Noclobber

The behaviour of > and >> above is shell and option-dependent. In csh
on Solaris, for example, the default used to be to have ‘set noclobber’
set, meaning that > required there to be no file of the destination name
present, and that >> required the file to exist before appending to it.
It is possible to invert this behaviour by appending a ! to each operator,
eg >>! for ‘append or create as necessary’. However, it would also be
sane to ‘unset noclobber’ in your ~/.cshrc.

Streams

Mention has been made above of ‘stdin’ and ‘stdout’. C programmers

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

will know already what they are: streams of data, similar to file
handles, where stdin is the link to the input (tty), stdout is your
process’s link to the output (tty), and stderr is a link to the error device
(probably also a tty). The idea is that any utility behaving as a filter
(eg ‘wc’ in the above) will read stdin, put primary output on stdout,
and report any errors it encounters to stderr.

Needless to say, your shell can also handle stderr: the canonical way
to reference it is with ‘2>’ or ‘2|’. It can also be bundled with stdout
so that both streams can be processed by the same command later.

For example:

,	��P������7

������7��%(��&
��5+���(���+��
'(�/

,	��P������7������*�1&��

������7��%(��&
��5+���(���+��
'(�/

,	��P������7�D�����*�1&��

,	��P

The first two lines show stderr not being handled at all, and therefore
still going to the terminal; in the third line, the same ‘error’ occurs, but
it is explicitly handled and ignored.

The various shells differ regarding how they go about joining the
various streams, but commonly either ‘|&’ and ‘>&’ and ‘>>&’ (the
csh variants) or ‘command > file 2>&1’ or ‘command | command
2>&1’ (sh/bash variants) are supported. Typically, zsh supports both.

ESCAPING FROM THE SHELL

As mentioned above, the shell does a lot of interpretation of the
command lines you give it. This revolves around a set of shell-specific
characters: not only the redirectors above, but also the !, $, ", ', (), and
even the humble space character, are all parsed specially.

If you need to pass these characters to a shell command, you have to
escape it from the shell itself. For one character, it suffices to prepend
a single \ character in front of it. For something longer, you can choose
between "" around the string, in which case any variables present
between the "" will be expanded, and ‘’, in which case variable
references will not be expanded.

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

USEFUL COMMANDS

There are several commands of use for manipulating the data as it
flows through a command pipe. In particular, commonly used
commands and options include:

• ls – produces a list of files in the current directory. Notable
options include -F to append a character defining the file type,
-C to force multi-column display, -1 for single column, -l for a
long (detailed) listing, -t for output sorted by time, -S for output
sorted by size, -r for reversed sort, -h for sizes displayed in
sensible units.

• echo – just write out a string.

• cat – simply dumps the contents of the file to screen. With -s,
reduces multiple blank lines down to one; with -v, displays hex
representations of binary characters.

• uniq – eliminates consecutive duplicate lines; with -c, gives a
count of how many of each line there were.

• head and tail – prints the first (last) 10 lines (by default; use -N
for some other number) of either the file/s given, or stdin, to
stdout. Useful for sampling data without having to watch a
potentially large file go flying by on-screen.

• find – this is a more complex one; takes a list of start directories
or files, applies a set of predicates to each file found, and
performs an action on each. For example:

5+1�����'/���5�����*�����
�
	'�HI�W-������*�1&��

will find all files on the same partition as /, and cat them one after
the other, with results going into /dev/null. (This is a good way
to add 1 to the system load for stress purposes.)

• grep – searches a set of files or stdin for a regular expression (see
regex(5) or similar document on your system); by default the
whole line matching the regex is printed. For example,

�����5�<������'+)

will first produce a list of all the processes on the box, and then
display all those that contain the string ‘tim’ somewhere. This is

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

crudely used to find a user’s processes; learn how to use your
system’s ps command properly if that’s what you really want.

• cut – remove all but a range of fields or columns from a line.
Option -d' ' will set space as the delimiter, and -f will specify a
field range. For example, see:

,	��P�����;�<�
&'��
M�

+��

��

6	&�

6�*+

6�')�

6�	''�

6�	''�V

6�(�

6��5

6��

6'��

6'�'

,	��P

This shows cut displaying only the sixth onwards fields. The first
line of output was from ‘CVS’, which doesn’t have that many
characters, so is blank.

• sed – stream editor. Its main use is for performing regex-based
search & replace commands on each line of input, eg:

,	��P���

�U��������1(�+1�����������6�*+��������6�	''���������6�(��������6��

���������������6'�'

�	7�5+���������6	&��������6�')��������6�	''�V�������6��5�������6'��

,	��P��)�1(�+1��

,	��P�����;�<�����2��������5((��2

�U�

�	7�5+��

5((6	&�

5((6�*+

5((6�')�

5((6�	''�

5((6�	''�V

5((6�(�

5((6��5

5((6��

5((6'��

5((6'�'

shows all the references to ‘shell’ becoming ‘foo’ instead.

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• awk is used for field manipulation; an awk script is a series of
condition-expression pairs where the expression is evaluated
when the condition is true. For example,

,	��P�1�'�'	'��	1�<�	.7��$��2�Q&������+1'�P;2

&����������8������8�8686868

&����������8������8�8686868

&����������8������8�;EK6;�E6�E6;D8

&����������8������8�;DL68686;

&����������8������8�8686868

&����������8������8�8686868

shows awk splitting the output from netstat based on ‘:’, and then
whether the line starts with the string ‘udp’ or not determines
whether the first column is reprinted.

EXAMPLES FROM SCRATCH

Support fun

It’s 11pm when your pager alerts you to the fact that connections to
your Web server are intermittent. You log on to the server, and type
netstat -an to see all the socket states. However, the output flies by
for so long, you have to ^C it; you don’t get any picture whether the
problem is that there are too many sockets in ESTABLISHED state (ie
the Web server is misconfigured), in SYN_RECV state (the Web
server is not processing them fast enough), or in SYN_SENT state
(because the Web server proxy-passes certain requests backwards,
and the back-end server could be down).

Obviously, it would be nice to produce a small two-column table
showing how many sockets there are in each status; that way, peeling
off the above information would be trivial. The question is, how do
you get that data?

We see from the netstat command that we can obtain a single line per
socket with the status; we just need to remove surplus data and
calculate how many of each distinct type there are. Working from left
to right, we have:

,	��P�1�'�'	'��	1'��<���	���M

�
'+*�� 1'��1�'�
(11�
'+(1������*����	1����'	,�+�����

��('(���
*�X���1��X�#(
	��������������$(��+�1������������������'	'�

'
���������8������8�8686868�EE��������8686868�F���������������# ��%

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

'
���������8������8�8686868�EEK�������8686868�F���������������# ��%

'
���������8������8�8686868�;88DD�����8686868�F���������������# ��%

'
���������8������8�8686868�;;8�������8686868�F���������������# ��%

'
���������8������8�;DL68686;�;�������8686868�F���������������# ��%

'
���������8������8�;DL68686;�J8������8686868�F���������������# ��%

(This shows only the first six lines of output, as a sampler.) We’re
interested in only the last column of each line. We know that cut
would not make it easy to retrieve the last column unless we
experimented with the column position at which it started; however,
awk has exactly this facility, along with the ability to split on multiple
consecutive instances of the separator, by default:

,	��P�1�'�'	'��	1'��<�	.7�2��+1'�P%$2�<���	�

��'	,�+�����

�'	'�

��%

��%

��%

��%

��%

��%

666

Now we have exactly the sort of data stream that lends itself to being
counted, so we’re looking at seeing how many of each there are. If we
sort the list and then run it through ‘uniq -c’, we’ll get the following:

,	��P�1�'�'	'��	1'��<�	.7�2��+1'�P%$2�<��(�'�<�&1+9��

�����;;����Y# �"A

�����;K�# ��%

������;��'	'�

������D�� �>Z� �

������;���'	,�+�����

As a last refinement, the output wants sorting again numerically:

,	��P�1�'�'	'��	1'��<�	.7�2��+1'�P%$2�<��(�'�<�&1+9��
�<��(�'��1

������;�$ %>Z� �D

������;��'	'�

������;���'	,�+�����

������D��#N�>Z� �

������L�� �>Z� �

�����;;����Y# �"A

�����;K�# ��%

,	��P

Voila! we have exactly the information required to debug the Web
server’s problems.

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Sysadmin fun

You’ve just installed a clean build of the latest version of your
favourite OS and are in the process of restoring your users’ data across
to the new box when you find that all the users’ files are owned by uid
and gids, instead of usernames/groups. Unfortunately, the new version
of your OS has also edited /etc/passwd,group,shadow so that there is
a new uid for your httpd and various other services, so you can’t just
blindly copy across the old passwd, group, shadow files.

There are two ways in which to fix this, depending on whether your
users’ passwords are predictable or not. If so, you notice that there are
two directories where every user is listed: /home, and /var/spool/mail.
It doesn’t really matter which of these you choose, but I’d recommend
the latter (assuming everyone has mbox delivery) on the grounds that
you don’t have subdirectories to confuse the issue.

Here there are another two ways to fix things: if you’re on an older
Unix system without the GNU tools, you have to manipulate ‘ls -l’
output, something like this:

,	��P������

'('	��M��M

��.��.00����;�K8;���)	+�������M�JL8MK�A�
�;;�;E�K��'+)

,	��P�������<�	.7�2%$�����+1'�:	��&�����&:B�P�B�P%$2

	��&�����&�K8;�'+)

,	��P

This works by taking the output from ‘ls -l’, and printing a string
composed of an ‘adduser’ command and various fields from the ls
-l output. There is a condition applied, that the number of fields (NF,
in awk) is >3 before it prints the combination of fields.

This can then be piped through ‘sh’ and all the output commands will
be executed.

The alternative, for those with GNU find, is:

,	��P������

'('	��ML��

��.��.00����;�K8;���)	+�������ME8KD8K�A�
�;;�D8�;M�'+)

,	��P�5+1��F��'/���5�3��1)���(('����+1'5�	��&�����&���W1�<���

	��&����K8;�'+)

,	��P

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Not just ASCII

While it will get most people far, there’s more to passing data between
programs than just looking at the ASCII and pulling out columns from
certain rows and mixing them around a bit. Consider the differences
between:

5+1��6�<�
�+(����*���()�.���������

and:

'	��
*�5���6�<�'	����5��������()�.���������

In the former case, all that’s being passed to cpio is a list of files, such
as ‘./file1 ./file2’ and so on. In the second case, the data flowing
through the pipe is a tar archive – the contents of the files, whatever
that may be, in a binary archive format.

SHELL FEATURES

Backticks

Instead of passing output into input like a pipe, it’s possible to use one
command’s output as arguments to another. For example:

,	��P���

�U���������1(�+1�����������6�')���������6�	''�6V;6K6V�������6��5

�����6'�'

�	7�5+����������6	&��������6�')�V�������6�	''�V�������������6��

�	7�5+��V�������6�*+�������6�	''��������6�(�����������������6'��

,	��P����<�.
��.

�����;M

,	��P�1(5+���=2���<�.
��.2

,	��P��
�(�P1(5+���

;M

,	��P

Here we have the ‘ls | wc -w’ being executed first, then the results
(‘16’) put on the command line so it becomes a simple ‘nofiles=16’
command.

There are two problems with this:

1 You can’t nest backticks: if you were to want to do something
like:

���2�+�1)��2.�+
�����:

44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

then it just won’t work. For this purpose, we have the $()
construct instead:

���P��+�1)��P�.�+
�������

2 Most shells have restrictions on the maximum number of
arguments you can have to any one command. For example:

���*	����((��)9&�&�

���������)�F

is quite likely to fail if you have a substantial mail-queue. The
answer to this is xargs. As a general rule, a command of the form

())	1��2
())	1�D2

is equivalent to:

())	1�D�<��	����
())	1�

The way xargs works is to take each line in the input stream and
substitute the placeholder (by default, end of line) with each of
those lines in turn.

Adding users in batch, revisited

The above command (find * -printf) has a fatal flaw: if the directory
in which you run it has lots of directory entries, the shell is going to
expand the ‘*’ into a list of matching directory entries, and then
complain it’s too long (typically 4096 words, tops). The following is
an improved version:

,	��P�5+1��6��'/���5��)	����'��;����+1'5�:	��&�����&���-��
�(����<

�	��.��0�'�+1���W1:�<��������2��6W����2

(and |sh to execute it for real). The shell does not have to expand any
global characters (* and ?), so will not complain. However, all the
lines that ‘find .’ returns will start ‘./’, so this pattern is removed with
sed.

For-loops

The shell has the ability to repeat commands; in csh, the appropriate
syntax is:

����5(��	
��+��F�

5(��	
�[��
�(�P+

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

5(��	
�[��1�

�U�

�	7�5+��

�	7�5+��V

�����6	&�

�����6�*+

�����6�')�

?�1+�@

�����6'�'

���

In all the other shells, the syntax is:

,	��P�5(��+�+1�F

���(

���
�(�P+

���(1�

�U�

�	7�5+��

�	7�5+��V

�����6	&�

�����6�*+

�����6�')�

?�1+�@

�����6'�'

,	��P

As an additional bonus, zsh supports a nice syntax:

\����5(��	
��+��F��H

���
�(�P+

I

All this does is the same as an ‘ls -1’. However, this is merely the tip
of the iceberg, when you can use it to run a filter on a load of files. For
example, starting from this directory:

,	��P��.�

V��+
'&�����7/���

,	��P���

1*8888�6'+55��
1*888;86'+55��
1*888;L6'+55��
1*888D86'+55

1*888�;6'+55

1*8888L6'+55��
1*888;K6'+55���(���6'+55�����
1*888DK6'+55

1*888�D6'+55

1*8888J6'+55��
1*888;M6'+55��
1*888;E6'+55���
�1��/6'+55

1*888��6'+55

It is easy to normalize the naming scheme down to a numeric system,
and, for that matter, change the file format in bulk, too:

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

,	��P�
=8-�5(��+�+1�F

���(

��
(1*��'�P+�1�.1)�P��
CC��6T��

���(1�

The resultant set of commands run is:

(1*��'�
1*8888�6'+55�1�.1)�86T��

(1*��'�
1*888;86'+55�1�.1)�;6T��

(1*��'�
1*888;L6'+55�1�.1)�D6T��

(1*��'�
1*888D86'+55�1�.1)��6T��

(1*��'�
1*888�;6'+55�1�.1)��6T��

and so on. This way it is trivial to build a script that takes a directory
load of images (eg from a digital camera), and creates a set of
thumbnails, where each thumbnail is defined as being 48*32 in size,
named ‘TN_something.jpg’; an index.html can then be produced in
batch mode as well, or even better, an index.php3 that generates
HTML on-the-fly, searching for TN_*.jpg and building a table of
pictures, each of which is a link to the bigger picture. No ‘magic
thumbnail generator’ software is required, just use your AIX/unix/
linux shell to fuller advantage.

MORE EXAMPLES

Xargs in action

To remove lots (>4000) of files in a directory, you can try:

�)���()���+��
'(�/�F

but the chances are it will fail with an error about too many arguments.

Instead, try:

����;���()���+��
'(�/�<��	�����1�D88��)

which will batch-up the incoming lines into groups of 200 and feed
them all to rm.

An example of it not all working

This command:

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�&�(��
�(�;DL68686;��(
	��(�'�����'
��(�'�

is probably not what someone intended to do; the file /etc/hosts is only
writable by root, at least normally, which explains the call to sudo at
the start of the line; however, what happens is that the shell parses this,
splitting first on the ‘>’ sign, so that the extent of the ‘sudo’ command
is the end of ‘localhost’, not including the >. If you want to do the
above correctly, you’ll be best off with the following instead:

�&��(('��
�2�
�(�;DL68686;��(
	��(�'�����'
��(�'�2

Exploiting shell parsing

Consider the commands:

,	��P�����('���,(��:5+1��6�<�
�+(��"�'	���(*:�<��\+���
�������*�'	��

,	��P�����('���,(��:5+1��6:<�
�+(��"�'	���(*��<��\+���
���V�,	
7&���

5((6'�\

In the first case, the shell picks up everything between the "", as one
‘word’ argument to the ssh command, along with the parameter
‘otherbox’. The results are a tar archive that comes through the ssh
command, with the resulting tarball being gzipped and appended to
tape. In other words, it will back up your remote homedirectory down
to local tape.

In the second case, however, only the ‘find .’ bit is executed remotely;
the cpio and gzip are both running locally here. The result is that only
those files listed on the remote host and present locally are backed up.

Surprisingly enough, there is a valid use for this construct: if you’re
subsequently going to synchronize files from the remote host and
want to know what’s going to be overwritten locally, maybe taking a
back-up first, then getting the list of files from the remote box may
make sense.

The way to understand these commands is to consider both where the
command is being split by the shell, and what the nature of the data
is between commands.

Tim Haynes
Open Source and Free Software Consultant (UK) © Xephon 2002

AIX news

IBM has begun shipping its Regatta eServer
p690, which boasts a system-on-a-chip
design, with each chip containing two 1GHz-
plus processors, a large memory cache, and
I/O interconnected with other components
using a new distributed switch design.

Using tools derived from IBM’s Project
eLiza programme, it includes multiple layers
of self-healing capabilities designed to allow
the system to continue operating through
component failures and system errors.

It can be operated as a single large server or
divided into as many as 16 virtual servers,
running any combination of AIX 5L and
Linux.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/eserver.

* * *

IBM has announced Tivoli Web Services
Manager V1.7, a Web performance
management tool, now including enterprise
application performance management, which
comes via a new level of Tivoli Application
Performance Management and addresses the
performance management of both Web-
based applications and enterprise
applications. It runs on AIX, Solaris, and
Windows NT/2000.

Many enhancements are focused on
addressing a wider range of Internet and
enterprise transactions, ease of use, and
industry standards. Also announced is
support for nine additional languages by
Tivoli Web Services Analyzer. The same
languages are also provided in Tivoli Web
Services Manager.

With Version 1.7, the ability of the Synthetic
Transaction Investigator to work with client-
side-generated dynamic content is improved.
In WebSphere environments where
WebSphere Site Analyzer is deployed, the
software can now provide reporting that
correlates the performance metrics it collects
with the Web metrics from WebSphere Site
Analyzer, showing how Web site traffic is
affecting Web site performance.

There are also more granular administrative
roles so that, in sites where different people
will be responsible for different components,
it’s now possible to define administrators
with unique administrative responsibilities.

For further information contact your local
IBM representative.
URL: http://www.tivoli.com/products.

* * *

IBM Global Services will add Veritas
products to its data infrastructure services for
major platforms including AIX, Linux, and
Windows, providing consulting,
implementation, support, and maintenance
services as part of its multi-vendor
coordinated point of contact for IT services
tailored for joint customers.

The full Veritas product range will be
available, providing management for disaster
recovery, data protection, storage
virtualization, high availability, and storage-
area networking.

For further information contact your local
IBM representative.
URL: http://www.veritas.com.

* * *

� xephon

	Sifting through the new pSeries hardware options - SP2 or not to SP2?
	An introduction to emacs - part 2
	Processes explained
	Introduction to the shell
	AIX 5L routing enhancements
	Shell-scripting tricks
	AIX news

