
© Xephon plc 2002

March 2002

77

3 Shell script basics
11 Migrating from NT4.0 to AIX
15 Some tips for shell programming
30 Advanced emacs use
47 Hex to decimal and decimal to hex

conversion
48 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1998 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls and Richard Watson

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Shell script basics

SAMPLE SHELL SCRIPT

Shell programming is a useful skill to acquire, but to begin using it you
do not need to be a programmer, and you do not need to know much
more than you already know. To produce professionally written scripts
you will obviously need to learn and practise using the more complex
constructions, but initially this is not the case. A shell script is often
nothing more than a file containing a collection of already familiar
commands.

Consider the following shell script called simple_script:

����������	
�����

�������	���	�������	���	�

��	

�������	�������������	�����	�����	�����

���

When you run this file, each of the commands will be run in order,
much the same as if you had typed each at the shell prompt. You will
note that we have used the more ‘modern’ print command, which can
display text just like echo, but, as we shall see later, it allows formatting
not achievable by using echo. The traditionalists may quake in their
boots, but the majority of scripts I will describe will use print rather
than echo.

Create this simple shell script as shown above, and then run the file by
following the instructions in the next section (assuming that you don’t
know how to do this, or perhaps you are looking for alternative ways
to run commands).

RUNNING A SHELL SCRIPT

You should be aware that problems may arise when you try to execute
a script by calling it from some other command, such as the cron
daemon, for example. If the command calling the script executes in the

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Bourne shell, and your script contains commands that are specific to
the Korn shell, then you will get error messages. You can overcome this
by ensuring that the first line of the script is:

����������

The # and ! combination is not interpreted as a comment and the whole
line tells the system that the commands within the script are to be
executed in the Korn shell; it is considered good programming to
always start the first line of your scripts with this construction.

There are a number of different ways that a shell script, or any
executable command for that matter, can be run. The most obvious way
is by first changing its protection mode so that you have permission to
execute it. After making the script executable, you can then run it
whenever you want to by simply entering its name.

To make it executable use the chmod command. If you set the mode
of the file to 755, everyone will be able to read and execute it, but only
you will be able to modify it. You can alternatively use the +x flag to
make it executable by all users. You should be aware that when you
want to execute a shell script, the specified file must also have read
permission.

You can also run the command in your current shell by preceding it with
a dot (ie full stop or period). This method of running shell scripts is
covered in detail in the section on the .profile file.

A further, but less common, way to run the script is to use the exec
command, which executes the script directly without creating a new
process. In effect the current shell is replaced with the program
specified after the exec command on the command line. Once the
specified command has been run, it then returns to the parent of the
process that was running before the exec. Unless the executed program
is a shell, the command may return to the initialization process (init),
thus logging out the user. The reason for using exec to run commands
may become more apparent when the relationship between programs
and processes is explained in future articles.

Another way to run a shell script is by using the ksh command, which

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

instructs the operating system to run it as a Korn shell command. The
name of the shell script is used as an argument to the ksh command,
and to be able to run the shell script you must either be in the directory
that contains the script or you must specify its full pathname.

When you run a shell script this way, you do not need to use chmod to
make it executable. To run the shell script named simple_script, enter:

���������	
�����

This will run the script, provided that it is in your current directory.

Executing a shell script using ksh allows you to use options that alter
the way the shell operates. Any options you specify affect only the shell
script; they do not affect your login shell.

One of the options to ksh is -x, which instructs the shell to print each
line before it is run (after expanding any variables, etc). This can be
useful for debugging shell scripts since it allows you to trace the flow
of the script as it is running. When the -x option is used, any output
directed to standard output by the commands themselves is displayed
on the screen and intermixed with the lines that show which commands
are being run. Similarly you can put the set -x line anywhere in your
script and, with one caveat relating to functions (discussed in future
articles), from that point onwards in the script you can have your
commands displayed as they are executed.

You can, if you wish, use the sh command instead to run your script in
the Bourne shell, rather than using the Korn shell.

SHELL SCRIPTS VERSUS COMPILED PROGRAMS

When you create a program, one of the first things you must decide is
whether to write it as a shell script or in another programming language.
Basically, shell scripts just combine existing commands, and although
a shell script could be written in another language, the converse is not
true – many tasks cannot be performed easily (or at all) by a shell script.

In most circumstances, however, it is much easier to combine efficient
AIX commands than it is to write a C program. For instance, if you have

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

data to sort, then it may be worthwhile combining the sort program with
other commands to accomplish the task. Similarly, if the task involves
searching files for a word or phrase, you may be able to use the grep
command.

One of the benefits of using shell scripts is that they can be developed
quickly, and you don’t have to compile them every time you make a
modification. However, shell scripts generally run more slowly than
compiled programs, which is due in part to the fact that they are
interpreted rather than compiled; bad script writing also plays its part.

If execution speed is an issue, you will probably be better off creating
a C program. If the program is an interactive one requiring regular user
input, then a shell script is probably preferable since the speed of
execution is usually determined by the speed at which a user inputs data
rather than the execution speed of individual commands.

THE SEARCH PATH

When you enter the name of a command, the shell searches the
directories listed in your search path to find the file that is the
command. Your search path is listed in the shell variable PATH and the
string of characters assigned to PATH is a list of directory names
separated by colons. The shell looks in each of these directories in the
order they are listed, terminating the search as soon as the executable
file with the proper name is found.

As you are no doubt aware, you can display your search path by
entering:

	��������

������������������

In this simple example, the search path contains just two directories,
/usr/bin and /usr/sbin. When you enter the name of a command, the
shell will look for a file with the correct name in the directory /usr/bin.
If the executable file with that name is found in /usr/bin, the shell will
arrange for it to run. Otherwise the shell will continue to look for the
file in /usr/sbin.

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

If none of the directories in the path contain the name of the executable
file, and the command cannot be located as an alias or built-in
command (see below), the shell prints a message such as:

�����������������������

If this happens, you can usually run the shell script by specifying its full
pathname, or by using a relative pathname. For example:

����	��	�
��������	
�����

or:

!������	
�����

When you create a shell script, it will normally reside in your current
directory, which will be /home/userid for most users. Typing the full
pathname every time you want to run a shell script is cumbersome, and
a better way is to include the current directory in the search path. The
simplest way to do this is to begin the path with a colon; identical results
can be achieved with a period (full stop) followed by a colon, or a colon
followed by a period (full stop) followed by another colon.

If your work involves creating a number of executable shell scripts, it
is advisable to place them all in a bin sub-directory, residing in your
home directory. You may find that as soon as your userid is created,
AIX automatically places /home/userid/bin in your PATH, although
you will have to create the sub-directory bin.

Similarly, you may also find that AIX adds your current directory to the
end of the path, shown as ‘:.’ – this is usually determined by the system
administrator who edits the default .profile file copied from /etc/
security/.profile when your userid is created. Whether your current
directory should be at the end or the beginning of your path is
determined to a great extent by your normal working directory, or by
security requirements.

If, for example, you are working on a group project, and you need to
switch to a particular directory after you have logged in, it will be more
efficient for the operating system to search the current directory first if
you are continually executing commands located in this directory. In

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

this situation the colon is placed at the beginning of the path. If you are
a user who does not have a great number of executable shell scripts,
then it will be better if the colon is placed at the end of the path, so that
the operating system only searches your current directory as a last
resort.

By convention, directories containing commands are named bin, and
operating system shell scripts that are for use by many users are mainly
stored in the /usr/sbin directory. If you are working on a project where
a number of users need to execute customized shell scripts, then it is
advisable to place them in /usr/local/bin, a directory customarily
created for housing system-wide user-defined scripts.

It is advisable to avoid using the names of existing commands for your
shell scripts, since the shell script may be executed when you intended
to run the standard command. This may happen if your search path
starts with a colon and the shell looks for commands in the current
directory first.

There are a number of built-in commands that the shell runs without
using the search path. For example, the shell does not use the search
path to find the cd, export, set, test, and echo commands.

If you name a shell script with any of the above names, you will find
that the built-in command is run instead of your shell script (unless you
specify the full path name), regardless of what your search path is.

ALIASES

Aliases are commonly used to create your own names for commands,
along with their command line arguments, so that they are either easier
to remember, or, as in many cases because of idleness (sorry, efficiency!),
allow you to type in a shorter version of an easily remembered
command. If an alias is defined, the command for that alias is resolved/
substituted when you use the alias.

When the alias command is used without arguments, it lists the current
aliases that have been set. These are displayed, one per line, in the form:

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����"������

You can define an alias by using, for example, a command such as:

��������	"#���$��	��#

Any spaces contained within the alias must be inside quotes in order
to prevent the shell from interpreting command line options as additional
commands to be executed.

The quoting of alias values is also important. Using double quotation
marks will expand most metacharacters when the alias is defined,
whereas single quotes will only expand the metacharacters when the
alias is actually used.

For example, suppose you define the alias:

���������"%	�������� %

then, if you enter the alias command to display all the aliases, path will
be shown to equal echo $PATH. The actual expansion of $PATH will
not occur until path is used.

If, however, you had defined path with:

���������"#	�������� #

then the substitution would be made with the current value of PATH as
soon as path was defined, and on entering the alias command this value
would be shown as an argument to echo. Any subsequent changes to
your search path would not be shown when you later run the path
command.

The first character of an alias can be any printable character, but all
other characters must be alphanumeric. Do not use a metacharacter as
the first character (apart from possibly an underscore) since this will
cause conflict with the shell’s interpretation of the alias. The command
to be executed within the alias can be any shell script or AIX command,
and may include some metacharacters; the best rule is to avoid
metacharacters.

If an alias ends in a blank space or tab, the word following the alias is
also checked for alias substitution. For example:

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

���������"#���#&

���������"#$'(#

�������

will produce the appropriate directory listing.

To remove an alias, the unalias command is used. For example:

�����������

You should be aware that when you enter the name of a command to
be executed, the system will first check to see if it exists as an alias, even
before it checks to see whether it is a built-in shell command. If you
have an alias that has the same name as another command, then this
command will never be executed.

Using in sub-shells

To allow aliases to be used in sub-shells they must be exported, and this
can be achieved by first creating a file to contain the alias commands.
For example, you can create a file, which is conventionally called
.kshrc (for Korn shell users), locate it in your home directory, and place
in it commands such as:

��������	"%���$���	%

���������"%	�������� %

Once you have created the file, you must then set and export the ENV
system variable within your .profile file:

)����*+,"����	��	�
���!�����

You must now log off and log in again so that the system can read both
the .profile and .kshrc files. Whenever you log in, or create a sub-shell,
the .kshrc file is executed so that its alias contents are available as part
of your environment.

This type of file can also be used to contain function definitions, which
are discussed in a future article, and you could, if you wished, put in
other commands that you would like executed.

Tonto Kowalski
Guru (UAE) © Xephon 2002

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Migrating from NT4.0 to AIX

This article describes how to easily migrate Windows NT 4 users to
AIX (or even other Unix variants).

For a list of the users, firstly, under NT4.0, type:

�	���	����������-���	��!)

This creates a file called users.txt, which is then copied to the AIX
machine.

Next, the program nt40pawd is submitted (./nt40pawd).

You have to answer Y to the first question, /export/home to the second,
then answer Y to the third question, and ntadm to the last one.

A file, passwd.new, is created, and it must be added at the end of the
/etc/passwd file using the command:

���������!�	��--��	��������

NT40PAWD

������������	��

��./����

���0���0���12,�""�34�4�5

���������6�7*11�#8���	����9�������:�������	-;�#&

���������6�7*11�# :�������	- $�)��������	���������%�	���	���

������%;�#&

���)��0$34&

<

����	���	����	�����	���	�

��	��0�86*1
=>6�?�#��12,@/A#�4�BB���	���&

���	���	���	���	����������	��	��

�����#*�	���	����������	��	�����#&

����
����"�:6�7>+-&

����
����"����0�����
����4&

���0�����
����	C�/�4�5

���������6�7*11�#��	�����/�����	���	��;�*�������������!!!;�#&

���)��0$34&

<

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�����	�
����"�����
���&

�����#*�	���	���������������	��	�����#&

�����"�:6�7>+-&

�����"����0������4&

���0������	C�/�4�5

���������6�7*11�#���	��D������������	������������	��	�	��������

>7�������	�������;�#&

���������6�7*11�#*�������������!!!;�#&

���)��0$34&

<

�����#;�7��D�����������	�	����	����������)������	���	��E�0D��4�#&

����	
���	�"�:6�7>+-&

����	
���	�"�������0����	
���	?�/?�34&

����	
���	�"F���!�;��G��&

���0�#����	
���	#�	C�#�#�4�5

��������#*�	���	����)�������#&

�������	���	�"�:6�7>+-&

��������0�����	���	�4&

��������#7��D��������	���������������)	�����	���	�	�

����������DE�0D��4�#&

������	�	�"�:6�7>+-&

������	�	�"�������0���	�	?�/?�34&

<

�����	��"�%'���	�+�������	%&

���	���"�%�����(���	%&

����	���	��	��	������	

��	��0���66H7?�#-�������!�	�#�4�BB���	���&

��	��0�I��(>=*?�#-���	����	!���#�4�BB���	���&

������������	��	��	������	

����	�0��������"�:86*1
=>6�-�4�5

��������0��������4&

������	���D��	�)����������������	�	��	��	����������	��

����������"�G��	��>����0��������4&

�����6��������	�	���	�

������0�#������#��	�##�4�5

������J��	���"������0�;�K�?��������4&

���������	�������	��0�J��	���4�5

���������0����	4�"��	������0������	�
����4&

�������������	�0�#����	#��	�##�4�5

�����������������	�
���KK&

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

������������0����	4�"��	������0������	�
����4&

���������<

������������	��"F���!�;��G��&

������������0��	���0���	�4�-�L�4�5

���������������
��	��"�/&

����������������	�0����
��	��""�/�4�5

��������������������#��	����	�����	���	���@���	�A��������)�		�

	����������	�����#&

�����������������	�
��	��"�:6�7>+-&

��������������������0��	�
��	�4&

���������������0��	�
��	����	4�"��	������0��	�
��	�4&

������������������0�#��	�
��	����	#��	�##�4�5

�����������������������#@��	�
��	����	A�)��!��7��D���������	�	�

����	�����	E�0D��4�#&

���������������������	����	
�	����"�:6�7>+-&

���������������������	����	
�	����"�������0���	����	
�	���?�/?�34&

���������������������	����	
�	����"F���!�;��G��&

���������������������0�#���	����	
�	���#�	C�#�#�4�5

������������������������
��	��"�3&

������������������<

���������������<

���������������	��	�5

���������������������
��	��"�3&

���������������<

������������<

���������������0����
��	��""�3�4�5

���������������������I��(>=*�#��	�
��	�"���	�;�#&

������������������	��"���	�
��	�&

������������<

���������<

������������0��	���0���	�4�:"�L�4�5

������������0����	����	�4�"��	������0����	��4&

���������������0�#���	����	#�	C�##�4�5

������������������0�#����	
���	#�	C�#�#�4�5

����������������������	����"�����	���	�!�%�%�!����	�&

���������������������0�#���	�	#�	C�#�#�4�5

���������������������������0����	���?�/MNN4&

�������������������������0����4�5

�������������������������������6�7*11�#��	�	��������	�������������	

��	������������	�����;�#&

����������������������<

����������������������������0������	�
���?�����?�����	����4&

������������������<

���������������<

���������������	��	�5

����������������������	����"�%��	������%&

���������������<

�����������������������66H7

#���	��O������	�
��������������	������	�������	��;�#&

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

������������<

�����������������	�
���KK&

���������<

������<

���<

<

�����������	����	�

����	�0�86*1
=>6��4&

����	�0���66H7�4&

����	�0�I��(>=*�4&

��	�������������

)��0/4&

���

������	��>����5

���������0�������4�"�J
&

������0�������"F�%;;;;%�4�5

������������"�%%&

���<

���	�����0�������"F�#*�������������#�4�5

������������"�%%&

���<

���	�����0�������"F�%PPPP%�4�5

������������"�%%&

���<

��������&

<

For the groups, under Windows NT the command

�	���������������-������!)

must be typed.

The file group.txt is copied to the Unix machine. Under Unix, enter the
command to run the program groupnt on the text file:

������./������!)

A file group.new is created. Type:

��������!�	��--��	�������

This appends the new list to the existing list.

Claude Dunand
(France) © Xephon 2002

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Some tips for shell programming

WHAT HASH-BANG REALLY DOES (#!)

Once upon a time there was only one Unix shell. When a script was
written and executed, the Bourne shell read in the script and executed
the commands.

The Bourne shell had some limitations and it wasn’t long before a
proliferation of shells started to appear. Each shell had its own syntax
and some of them, such as the C shell, were very different from the
original Bourne shell.

This meant that if a script took advantage of the features of one shell
or another, the script had to be run using that particular shell.

Instead of typing:

���

The user had to know to type:

������������

or:

������������

To handle this, a clever change was made to the Unix kernel. This is
now available in most Unix systems. A script can be written that starts
with a hash-bang (#!) combination on the first line followed by the
name and path of the shell to use to execute the script.

The following script, named doit, uses this technique to specify the
Korn shell as the shell to use to execute it:

�����������

�

��������	��������	�	

�

The kernel starts reading in the script, doit, sees the hash-bang and
reads the rest of the line where it finds /bin/ksh. The kernel starts the
Korn shell and then feeds the doit script to it.

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Actually the kernel launches the Korn shell with doit as an argument
to it as if the user had typed:

������������

When /bin/ksh starts reading in the doit script it sees the first line
containing the hash-bang as a comment (because it starts with a hash)
and ignores it.

The full path to the shell to be run is required, because the kernel does
not search your PATH variable.

The hash-bang handler in the kernel does more than just run an
alternative shell. It actually takes the argument following the hash-
bang and uses it as a command. It then adds the name of the current file
as an argument to the command.

You can start a Perl script named doperl by using the hash-bang:

���������	��

��������	��	����������	�	

In this example, if you start the script by simply typing doperl, the
kernel spots the hash-bang, extracts the /bin/perl command, and then
runs this as if you had typed:

������	������	��

There are actually two mechanisms in play here that allow this to work.
The first is the kernel interpretation of the hash-bang (#!). The second
is the fact that Perl itself sees the first line as a comment and ignores
it.

You cannot use this technique for any scripting language that does not
treat a line starting with a hash (#) as a comment. If the language does
not treat a hash mark as the beginning of a comment, the language will
see the first line and try to do something with it. This will most likely
cause an error. This is not a very big problem because the hash mark
as a comment is used in almost every Unix scripting language.

This technique is not limited simply to running scripts, although that
is where it is most useful.

The following script, named helpme, types itself to the terminal when
you type the command helpme:

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����������

����������)�	����

�����������������	�

�������Q����	�6�	��

�������R����6�	��

�������'�6�	��

�������Q����	�������6�	��

This kernel trick also allows one argument after the name of the
command to execute. You could change the helpme file to use more,
as shown, but add the +2 argument to force more to start at line 2. This
will skip the initial line. This is the line containing the hash bang starter.
Be sure to use the correct path to your version of more:

�����������	�K9

����������)�	����

�����������������	�

�������Q����	�6�	��

�������R����6�	��

�������'�6�	��

�������Q����	�������6�	��

Typing helpme as a command causes the kernel to convert this to:

��������	�K9��	���	

and displays everything from line 2 onwards:

�	���	

����������)�	����

�����������������	�

�������Q����	�6�	��

�������R����6�	��

�������'�6�	��

�������Q����	�������6�	��

	�!

You can also create apparently useless activities such as a file that
removes itself:

����������

If you named this file flag, then running flag would cause the command
to be issued as if you had typed:

������������

You could use this in a script to flag that you are running something and
then later simply execute the script to remove it:

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�����������

��(�����	���	�����������	���������	�)���

���@$�������A

�	�

)�

��

����	�	��	���������	

	����#����������#�-����

�������K)�����

��������	��������	�	

����������	�����	����D�)	�������	���������	

����

����	���������	���������������	��	����	��

Before you start building long commands using this technique, know
that your system may have a limit on the number of characters in the
#! line. This will usually be about 32 characters.

TESTING COMMAND LINE ARGUMENTS AND USAGE

When you write a shell script it is common for the script to need
arguments for it to function correctly. It is necessary to validate those
arguments to ensure that they make sense for the script.

The simplest level of validation is ensuring that there are enough
arguments. For example, if you have created a shell script that requires
two file names to operate, then the minimum validation that you should
do is to test that there are two arguments on the command line. To test
this in Bourne and Korn shells, check the value of $#. This is a shell-
provided variable that contains the count of arguments on the command
line. This is the count of arguments other than the command itself.

It is also good practice to provide some sort of message as to why the
command failed. This is usually created in a usage() function. The
listing of twofiles tests that there are two arguments on the command
line:

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�����������

�������	�������������	��������	�����	������	������������	

���������	�����������������D��	��������	�����	�����	�

����	�04

5

�����	����#�����	�#

�����	���������#����	�������	�����	3����	9#

�����	���������#����	��	��������	�#

<

��	������	����	���������	�������	������������	

���@�����"�9�A

�	�

��������	

����)�

��

���	���	�SR���������������������	�����	�������	�	

������	������������������	�	

A safer programming practice is to validate as much as you can before
launching into your execution. The following version of twofiles
checks the argument count and then tests both files. If file1 doesn’t
exist (if [! -f $1]) an error message is set up and a usage message is
displayed. Then the program exits. The same is done for file2:

�����������

�������	������������	��������	�����	������	������������	

���������	�����������������D��	��������	�����	�����	�

��������������������	������	����	�����������		������	����

����	�04

5

�����	����#�����	�#

�����	���������#����	�������	�����	3����	9#

�����	���������#����	��	��������	�#

�����	����#�#

�����	�����	�����

<

��	������	����	���������	�������	������������	

���@�����"�9�A

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�	�

��������	

����)�

��

��	��������	���	�)���������	����������������	������	����	

��������	������������

���@���$���3�A

�	�

����	�����"�53<#�(��	�+��(����#

��������	

����)�

��

�����	��������	���

���@���$���9�A

�	�

����	�����"�59<#�(��	�+��(����#

��������	

����)�

��

���	���	�SR���������������������	�����	�������	�	

������	������������������	�	

Note that in the Korn shell you can also use the double bracket test
syntax, which is faster. The single bracket test syntax actually calls a
program named test to test the values. The double bracket test is built
into the Korn shell and does not have to call a separate program. The
double bracket test will not work in the Bourne shell:

���@@�����"�9�AA

or:

���@@���$���3�AA

or:

���@@���$���9�AA

Doing this type of thorough validation can prevent later errors in the
program logic when a file is suddenly found missing. It is good
programming practice.

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

SHELL SCRIPT ARGUMENTS

Before we launch into arguments and options we have to back up a bit
to discuss the Unix command line. This is a very short description of
some of the behaviour and features of the command line.

A Unix command line is a sequence of characters in the syntax of the
target shell language. Of the characters in a command line, some are
known as metacharacters. The metacharacters have a special meaning
to the shell. The metacharacters in the Korn shell are:

• ; – separates multiple commands on a command line.

• & – causes the preceding command to execute synchronously (at
the same time as the next command on the command line).

• () – commands enclosed in parentheses are launched in a separate
shell.

• | – pipes the output of the command to the left of the pipe to the
input of the command on the right of the pipe.

• > – redirects output to a file or device.

• < – redirects input from a file or device.

• newline – ends a command or set of commands.

• space – separator between command words.

• tab – separator between command words.

Some of these metacharacters can be used in combinations such as ‘||’
and ‘&&’. Consult your manual for a complete description.

With these metacharacters in mind, you can define a command line
word.

A command line word is a sequence of characters separated by one or
more non-quoted metacharacters. In the following example, the passwd
file is piped through cut and fields 1 and 3 are output based on a colon
delimiter.

In the following command line:

����	��������B���$��#�#�$��3?T�-������!)

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the words are:

cat

/etc/passwd

cut

-d

“:”

-f

1,3

usruid.txt

Note that the metacharacters |, >, and space have been removed.

The metacharacters &, |, (), ; and newline are used to separate or
terminate multiple commands within a command line.

Within the example command line, there are two commands separated
by the pipe (|) symbol.

����	��������

���$��#�#�$��3?T

The final portion of the command line (> usruid.txt) could be thought
of as the command, and output the result to usruid.txt; however,
redirection is not usually considered part of a command.

When a command executes a Unix program, utility, or shell script, it
is usual for the command to include arguments. In the example above
the argument to cat is /etc/passwd. The arguments to cut are -d, ":",
-f, and 1,3.

In general, arguments are all the words (note the definition of word
above) that follow an executable program name in a command.
Arguments within a command are separated from one another by
spaces or tabs (metacharacters).

Most Unix programs have been written with some standards as to how
arguments and options are arranged for the program’s use.

Options are the letters or numbers that follow a minus sign. These are

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

sometimes called switches. A simple example of arguments and
options would be the use of the cat command:

���$��$	�$�������!)

In the above example, the arguments are -v, -e, -t, and doodah.txt. The
options are the entries for -v, -e, and -t.

Just so you don’t have to run for your manual: the -v option asks cat
to display all characters (even non-printable ones). The -e option
specifies that the end of a line will be displayed as $. The -t option
specifies that a tab should be displayed as ^I instead of expanding the
tab into spaces on the screen.

Unfortunately no standard terminology has been developed to indicate
an option versus a non-option argument. To add some complexity to the
terminology problem, an option can itself have an argument. In the first
example using cut (repeated below), the -d option has an option
argument of ":", and the -f option has an option argument of 1,3:

���$��#�#�$��3?T

In order to clarify these, various manuals have adopted some sort of
standards for naming conventions for the parts of a Unix command.
These two examples are used to illustrate the parts:

���$��$	�$�������!)

����	��������B���$��#�#�$��3?T�-������!)

The program name itself, cat in the first example or cat and cut in the
second example, is called the name, progname, executable, or program-
name.

The non-option arguments to a command, doodah.txt in the first
example and /etc/passwd in the second, are called an operand, a
cmdarg, or an argument.

The options, -v, -e, and -t in the first example and -d and -f in the
second, are called options, opts, or switches.

The arguments to options ":" and 1,3 in the second example are called
option-arguments or optargs.

The standards used in creating Unix executables are:

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1 Command names must be between two and nine characters long.

Command names must include only lowercase letters and digits.

3 Option names (options above) must be one character long.

4 All options must be preceded by ‘-’.

5 Options with no arguments may be grouped after a single ‘-’. For
example -v, -e, and -t could also be written as -vet.

6 The first option-argument following an option must be preceded
by white space.

7 Option-arguments cannot be optional.

8 Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (eg
-f 1,3 or -o "xxx z yy").

9 All options must precede operands on the command line.

10 ‘-’ may be used to indicate the end of the options.

11 The order of the options relative to one another should not matter.

12 The relative order of the operands (cmdargs) may affect their
significance in ways determined by the command with which they
appear.

13 ‘-’ preceded and followed by white space should be used only to
mean standard input.

Not all Unix commands follow these rules, but all the newer ones do.
Older executables were written before the standard was established but
the executables were in such regular use that it was decided not to
change them. For example, cut will function with or without rule 6
requiring a space before the option-argument. Both of the following
commands will work on most systems:

����	��������B���$��#�#�$��3?T�-������!)

����	��������B���$���$�3?T�-������!)

The find command is another example of an older style program that
hangs on. It uses options that are longer than a single character,
violating rule 3, and allows options to appear after the operand,

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

violating rule 9. In the following example, dot (.) is the operand,
-name and -print are options, and data.txt is the option-argument for
-name:

�����!�$���	����!)�$����!

A rule has been added to many newer commands to allow switches
longer than one character. This rule allows a ‘-’ to precede an option
that is longer than a single character.

If find had been written recently, it would have looked more like the
following on the command line:

�����!�P���	����!)�P����!

Right about now I hear you saying, “What is all this blather leading up
to?”. Well Unix provides a handy tool for separating option arguments
and operands. It is the getopts function. The getopts() function
requires an argument of a string containing the list of valid option
characters, and a shell variable that will receive the result of searching
the arguments. The getopts() function can be called several times.
Each time it is called it steps forward through the list of arguments
picking up the next option. It can also pick up an option-argument, and
the index of the argument that it has processed. This is easy to illustrate.

First let’s spec out a small problem. In this problem we need a shell
script that will archive a file by copying it to an archive directory. The
default directory is /u/arch, but the path of the archive directory can be
changed on the command line. The archive program will also stop and
ask you for an OK to proceed, if it is about to overwrite an earlier
archive. This behaviour can be changed by an option that can be set to
overwrite without warning. The syntax for this command line for this
archive program would be:

�����@$�A�@$����	��������	����A����	���	

where the -r option will automatically replace an existing archive file
without warning. The default is to warn. The -a option is followed by
an alternative archive directory to use instead of /u/archive. Finally
filename is the name of the file to archive.

The following is a listing for arch that covers the processing of the
option arguments. It does not include the logic for doing the actual

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

archive operation. After the complete listing is a step-by-step analysis
of how the program works.

����������

��$$

����	�04�5

�	����#8���	�#

�	����#�����$�������	�������	��������������	���D#

�	����#�D��)�#

�	����#���������@$�A�@$����	��������	����A����	���	#

�	����#��	�	#

�	����#����$�����������������D��	����	����)������������	����	#

�	����#�������0�	��������������4#

�	����#����$����	����	�������	�����	�������	����	���D#

�	����#�������	���	�����	����	�����	����	���������	#

�)�

<

��$$

�	����	"#�#

����"#�������#

���	���	"##

����"#����#

����	��	������������

��

�������	�������

���������4��	����	"#�#&&

���������4�����"�S���12&&

��������O4�����	&&

����	���

���	

�����%)����S��>+7�$�3%

���	���	"�3

	����#���������#�����	���	�#���#�������#���#���	����	�#�	����	

�����#

���	������	����	���������D�����	�������������	���	�	

Portions of the listing with line numbers are used below for illustration.

The getopts() function does not always work correctly with the Korn
shell, so line 1 forces the script to run in the Bourne shell. The program
starts at lines 2 through 15 with a comment describing its actions that

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

also doubles as a usage function. The usage function is called when the
user makes a mistake.

�3�������������

�9�����$$

�T�������	�04�5

�.����	����#8���	�#

�N����	����#�����$�������	�������	��������������	���D#

�U����	����#�D��)�#

�M����	����#���������@$�A�@$����	��������	����A����	���	#

�L����	����#��	�	#

�V����	����#����$�����������������D��	����	����)������������	����	#

3/����	����#�������0�	��������������4#

33����	����#����$����	����	�������	�����	�������	����	���D#

39����	����#�������	���	�����	����	�����	����	���������	#

3T����)�

3.���<

3N�����$$$

At lines 17 and 18, shell variables are set up to contain the default
values to be used when archiving (the archive directory and a value
indicating whether to warn the user when replacing). Line 19 sets up
a variable to hold the file to be archived:

3M����	����	"#�#

3L�������"#�������#

3V������	���	"##

This program will have two possible options, -r and -a. The -a option
will require an option-argument that names the directory to use. An
options string should contain the list of single character identifiers to
be used for options or ra. In addition, if an option is to be followed by
an option argument, that option should be followed by a colon. So far
the option string to be used becomes ra:.

Finally, getopts will produce an error message if an invalid option is
placed on the command line. In order to suppress the error message,
start the option string with a colon, thus :ra:. That string is set up at line
21 of the script.

93�������"#����#

Whenever getopts() is called, it locates the next available option,
retrieves the character, and places it in the passed variable name. At line
23 this variable, $opt, is passed as the second argument to getopts()
after $optstr.

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The getopts function returns true as long as it continues to find
arguments that start with a leading hyphen. When it finds -r on the
command line it places r in $opt. When it finds -a, it places a in $opt.
Whenever getopts() finds an option that is expecting an option-
argument, it retrieves the argument and places it in a variable named
$OPTARG. The loop at lines 23 through 31 processes all options and
option-arguments by repetitively calling getopts().

Inside a case statement the various results are processed. If -r was
encountered, then r will appear in $opt and $replace is set to r. If -a was
encountered, then a will appear in $opt and the value in $OPTARG is
used to set the value of $arch. If anything else is encountered, the user
has entered an invalid option. This calls the usage() function. The
usage() displays a usage description message and exits the program:

9T�������	��	������������

9.�����

9N

9U����������	�������

9M������������4��	����	"#�#&&

9L������������4�����"�S���12&&

9V�����������O4�����	&&

T/�������	���

T3������	

The getopts() function also keeps one other variable, $OPTIND,
which contains the index of the next argument to be processed. When
the shell script is first started, $OPTIND is set to 1. If -r is processed
as the first argument, $OPTIND will contain 2. If -a is processed as the
second argument, and the name of an archive directory as the third
argument, $OPTIND will contain 4. On the next call to getopts,
getopts returns false and the loop at lines 23 through 31 ends. At this
point $OPTIND still contains the value 4. This value can now be used
as the index of the next argument, which will be the first argument that
does not start with a hyphen. This should be the name of the file to
archive.

At line 33 the shift command is used to shift all arguments by
$OPTIND – 1. This will cause the argument that was at position 4 ($4)
to be shifted to the left by 3 positions, so that it now becomes argument
$1. At line 35 this value is picked up and stored in $filename:

TT��������%)����S��>+7�$�3%

T.

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

TN������	���	"�3

At this point, a good script would do further error checking such as
checking that the file named in $filename does exist, and that the
archiving directory in $arch also exists. In this example the results of
the extracted values are displayed.

TM���	����#���������#�����	���	�#

�������������������������������#�������#���#���	����	�#�	����	

�����#

TL

TV������	������	����	���	���	�	

Using getopts() is an excellent way to create scripts that comply with
the Unix command standard. It also makes it possible to add features
to your scripts fairly easily. Assume that you wanted to enhance your
arch script to include an option to somehow put a date and time stamp
on an archive. The options are easy to add by extending the $optstr
variable to allow for a -d option. Add a variable and extend the case
statement as in the following example and you have easily added a -d
option to the arch command. Of course, you have to add the code to
handle $datestamp="Y", but the user interface is taken care of easily:

�	����	"#�#

����"#�������#

���	���	"##

��	����"#+#

����"#�����#

����	��	������������

��

�������	�������

���������4��	����	"#�#&&

���������4�����"�S���12&&

���������4���	����"#W#&&

��������O4�����	&&

����	���

���	

Using these tools and tips, I hope you will be able to create more
powerful scripts.

Mo Budlong
President
King Computer Services (USA) © Xephon 2002

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Advanced emacs use

(E-)LISP: SOMETHING TO LEARN

You will have seen references to ‘functions’ and lisp in my previous
article (An introduction to emacs, AIX Update, Issues 75 and 76,
January and February 2002), and in any further investigations into
emacs as well.

Emacs is based entirely on its own native dialect of lisp (see http://
www.lisp.org/). This shows through in several ways, but most notably
in the fact that you can ask it what pressing any key (combination)
performs, and the answer always comes back in terms of a function.
Right now, ‘C-h k e’ tells me that ‘e’ is bound to the ‘self-insert-
command function’, which inserts a character corresponding to the
key pressed. Try it. Try doing ‘C-h k C-h k’ as well. For reference, note
that pressing ‘C-h C-k’ works equally well with a menu selection
afterwards, not just a conventional keypress. There is no difference!

Emacs is a complete elisp environment where one of the side-effects
is text editing. This allows you to program or script in the environment
yourself, implementing or using entire packages of elisp source. There
are many modes already defined for handling different types of buffer;
there are whole packages provided that implement, amongst other
things, a telnet client for MOOs/MUDs, two e-mail clients, one of
which is both a news and an e-mail client in one (Gnus, see http://
www.gnus.org), a Web browser (W3), a calculator, a calendar, an
address-book, a shell... you name it, it’s probably been done already,
and if not, you have a whole lisp environment in which to do it.

Figure 1 shows a reasonably well configured Xemacs session showing
Gnus, the calculator, and the calendar all at once.

We have already seen references to ‘M-x’. This invokes a command in
emacs lisp, which is a function defined to be interactive. There is also
‘M-:’, which evaluates a given lisp expression, putting the results in the
minibuffer.

Try:

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

I$��0����	�$��	$�����4

which should put the current timestamp in the minibuffer.

Now try:

I$��0���	��0����	�$��	$�����44

which should insert the current timestamp into your current buffer.

These little fragments of code are lisp ‘s-expressions’. The first (in
these cases, only) word after the opening parenthesis is evaluated, with

Figure 1: A reasonably well configured Xemacs

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the following words as arguments. That is, in the example above it
evaluates the function current-time-string, which returns a string
‘object’ containing the current time, and passing the results to the
insert function, which returns a nil object, but has the side-effect of
altering the current buffer.

You can also evaluate any piece of lisp that you find, in a buffer. Type:

0����	�$��	$�����4

into the scratch buffer, and press ‘C-x C-e’. The minibuffer should
display the current time as a string. You can also insert the value into
the buffer by pressing ‘C-u C-x C-e’.

Given that all these s-expressions are ‘weighted’, having the first
argument evaluated, and because arithmetic operators are also regarded
as functions, it is apparent that this is a prefix language: if you were to
evaluate an expression such as:

0K�0O�T�9�4�0$�V�.44

you should not be surprised that 11 is the result. Note that there is no
ambiguity in what this means, and therefore no need for conventional
‘bracketing’ of sub-expressions against a variable evaluation order.
Note also that we speak of ‘evaluation’, ‘expressions’, ‘functions’, and
‘side-effects’, never of ‘executing’ (unless using M-x). These are the
terms used when talking about a functional programming language, as
distinct from an imperative language.

Detail and philosophy

Functions are themselves valid arguments to other functions in an
expression (this is a defining characteristic of a functional language).

Whole programs are expressible as nothing but a series of functions.
For example, consider this short snippet – the functional programmer’s
equivalent of ‘hello world’:

0�	��������0�4

��#1	�����	�������������+#

��0���0"�/��4

������3

������0O���0����0$���344444

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

0�	C�����3T4

0��������%����%03�T�N�M�V�3344

Obviously, the result returned from evaluating these three top-level
expressions is the list:

03�U�39/�N/./�TU9LL/�TVV3UL//4

(You should check this, evaluating all three expressions yourself, by
pressing C-x C-e after each of them in the scratch buffer.) However, it
is worthwhile studying the data as it flows through the above.

The fundamental unit of data in lisp is the symbol. Given that emacs
lisp is a Lisp-2, this means that each symbol has both a function and
a data ‘component’. The symbol known as fact in the above has both
aspects made clear: first, we define a function that does the job of a
factorial, and we store it in the function part of the symbol fact. Then
we gratuitously set the data part of the symbol to 13. The point is that
what you get out of the symbol depends on how you look at it later; in
this case, we take the function part by using #' as a quote (to delay it
against one level of evaluation), and map it across the list of integers
given. (The list of integers is also quoted, but as data, in order that it
does not evaluate '1' as a function.) The notation is that #' quotes as a
function, ' quotes as a data variable, and “” are used to quote a string
containing spaces.

The result of mapping a 1:1 function across a list of integers, is another
list, in this case of integers; however, you can still evaluate the symbol
name fact, eg by typing ‘M-: fact RET’, and it will tell you ‘13’, the
number that was assigned to it, in its data aspect.

A quick example

For various reasons, you want to produce a graph, but the data you have
is of the form:

����T/K9//

+��9VK33V

!!!

so you want to evaluate the second column, adding the two numbers
together, replacing it with just one number, that you can then feed to

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

gnuplot. But that column is not an expression that the lisp interpreter
will recognize.

The easiest way to effect this transformation is to define a keyboard
macro that is going to transform one line, and leave you at the start of
the next line.

This macro should jump forward to the first digit (eg by calling M-x
search-forward-regexp “[0-9]”).

The macro then inserts the text ‘(+ ’ in front of the first number, uses
M-f (or C-right) to jump forward to the existing ‘+’ symbol, deletes it
and replaces with a space, then goes to the end of the line and appends
a ‘)’.

The clever step: the keyboard macro uses ‘C-u C-x C-e’ to evaluate the
lisp expression (eg (+ 30 200)) at the current point, inserting the results
as it goes.

From there, the keyboard macro only has to remove the expression
(defined as everything between parentheses on the current line –
selecting the current line and running ‘M-x replace-regexp’ is one
approach, as is defining a region between ‘(’ and ‘)’ characters using
C-s and C-r), before moving on to the next line.

If this proves confusing, the intermediate stage above looks like:

����0K�T/�9//49T/

before the expression that was evaluated is removed. The point is that
this method combines both keyboard macros and emacs-lisp evaluation.
It would also be possible to write out the emacs lisp as one massive long
function, eg by using name-last-kbd-macro and insert-kbd-macro.

When the author did this, the resultant macro looked like:

0��	�%���

���@E;I$)�����	����E@�E/�E$�EV�EA��	�����	��E0�EK�E;6$�'$�����E;'$�

���E�E;'$	�E4�E;'$��E;'$)�E;'$	�'$�	��E;'$�E;'$��'$�����'$���'$����

���E;'$����������E;'$�A4

All you need for configuration

The above is all fine and well, but most people have other things to be

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

doing than pondering the philosophy of lisp. Here’s a set of expressions
I use in order to customize my emacs and Xemacs sessions. Take,
examine, clone, adjust to taste:

0�	C�����$����0�����#F�	����#�����$���44��������&����������	���D��

���&��	��	����$���

0���0�����$�����#X*����#�0	����$�	�����44����&������	�������������	�$

����0�����#F�!)	������#4�����������������������&�������	����	�����D

����0�����#F�!���	����#44����������������������&�������Y	

0�	�������	�$����	��04

��#����D����	������������	�����	������	�!#

��0��	�����	4

��0���	�$�	�����0����$���4�0����$��)4����44

��&������'$)�'$Y����	

0������$�	$�	D�@E;'$)�E;'$YA�%���	�$����	�4�����&��������

0���$�����%����$�����$���	$�����%����$����$���	4��&���	���	������2���?

���&������	����������	���

0�	C$�	��������	�$���$���	����4����������������&���	�����	?������

0���%������$�$�	�����%������	�����4����������&���������������������

0�	C��	����$����	$����%�00���$���$���	��!�/4

���&���������	����	������

����������������������������0�	��$���$���	��!�34

��&�������?������	�����

����������������������������0�����!�L/4������������&����	�����	������

����������������������������0�	����!�.9444

0�	C�������$����	$�����%00���$���$���	��!�/4���&�������	�����	�	

����������������������������0�	��$���$���	��!�34

����������������������������0���!�9/4

����������������������������0�	��!�3//4

����������������������������0�����!�L/4

����������������������������0�	����!�.9444

0�	C�)$���	$�����%���$��$���$����4������&����)����	?���������

0�	C$�	���������$�������MN4�����������������&�������������	�MN�����

0������D$��	4��������������������������������&���	�����	���������

0�	C����	$����	�$���	�4���������������������&����	������	���������

0�	�������$����$	��	����04�������������������&�)����	��	������	$�����

��#>��	���������D�����������������#

��0���	$)�������

������0�����#F�!���
	��	���#4

������0���$�����0����$���44

������0���	��#X$���$*��	�����#4

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

������0���	��0������0���0�������0�	�������$����$	��	���$C��	�44

������������������������������$����$	��	���$C��	�4�#;�#�4444

0�����	�$����$���	�34������������������������&����������	���?�����D�

As you use emacs more, expect to spend time setting configuration
variables, and producing small amounts of elisp to set them in your
~/.emacs file.

This example configuration file introduces several new lisp functions:

• setq is used to assign a value to a symbol; it stands for ‘set quote’,
as it’s a contraction of (set (quote symbolname) value).

• if introduces a 2-way condition statement; the structure is

0���0��������4

����0�	�$�����	4

����0	��	$�����	44

• load loads (reads & evaluates) a file of source code.

• defun starts a function definition; the structure is

0�	�����������$���	�0�����	��4

�#��������������	������	��������#

�0���D44

• indent-region – used to indent every line in the region (between the
mark (set using C-space) and current point).

• global-set-key – introduces a key binding, valid in global (ie all)
contexts. This is where emacs’ own syntax for representing a
keypress is important – the way we write ‘C-something’ is the
same format as emacs itself uses to parse it.

• hooks – a ‘hook’ is a list of functions to be evaluated on a given
condition: for example, gnus-startup-hook is evaluated when the
Gnus package starts up, and gnus-article-mode-hook runs when
Gnus’ article buffer is created. The add-hook function adds a
function to the list.

• display-time – a function that enables showing of the current
timestamp in the status bar.

• save-excursion – pushes the current point (and various other bits

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

and pieces) onto the stack, so that you can perform various actions
on the current buffer, and then, at the end of the function, return
to where you started. This is useful, for example, when you want
to write a function to add headers to an e-mail. When Gnus (or VM,
if that’s what you use) creates a new e-mail buffer, it runs various
hooks, so you can define a function that saves the current location
(useful if you have other functions creating the signature and
asserting a personality), jumps to the top of the buffer, inserts the
header you want (maybe including a random selection), and then
pops back to wherever it was when it was called.

• goto-char – moves the current point to the new location.

• point-min – the first character in the buffer.

• insert – inserts a piece of text at the current point location.

• concat – takes two strings, and produces the concatenation
thereof.

• nth – takes a number and a list, returning the number nth item of
that list.

• length – returns the length of a list.

The utility of ‘C-h a’ (hyper-apropos) in finding emacs-lisp functions
and variables pertaining to a given subject cannot be stressed enough.

EMACS AS A DEVELOPMENT ENVIRONMENT

Using emacs to compile things

If your current directory contains a Makefile, you can invoke Toolbar/
Tools/Compile, agree that ‘make -k’ is the command of choice to run,
and emacs will spawn that command, displaying output in a buffer.

It is traditional to demonstrate this with a standard Unix C build
process. However, a more imaginative and pertinent example might be
the writing of this document; it was originally authored in Latte, but
there is a Makefile in this directory that generates .html, .ps, .pdf, .tex,
and .dvi format documents all in batch mode. By putting:

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

0�	C�����������$�	��$�����������4�&���%���������������������	�����

on the end of ~/.emacs, and an appropriate (global-set-key) instruction
thereafter, a simple ‘C-x C-\’ will compile the entire document.

If running the make generates errors, then emacs will try to parse the
error output (this is particularly well implemented against gcc; other
Unixes’ cc implementations’ outputs might not be perfectly parsed);
you can use C-x ' in order to bounce to the next error, jump to the
corresponding source file, so you can edit it and try again.

CVS manipulation within emacs

Emacs supports ‘cvs-mode’, which is just like any other emacs mode,
except that it provides a means of interacting with the CVS system.
Specifically, if you open a file from a directory containing a CVS/
subdirectory, emacs will load the CVS-mode, so that, for example, this
document has a status line saying ‘(Latte CVS:1.1 Fill)’, for the full list
of modes involved in editing it.

With CVS-mode, you can open your document, edit away to your
heart’s content, re-run ‘M-x compile’ to make sure that it still builds,
and then use ‘C-x v v’ to check in your adjustments to the upstream
repository; emacs will even pop up a buffer in which you can type any
comments you wish to put in the CVS history.

The other options available under the CVS menu include reversion to
previous version, diff against previous version, history, Changelog
support, and register a new file into CVS. The Tools/Version Control
menu contains more details including the keyboard shortcuts for all
these and a few more.

Putting CVS-mode and the compile ability together makes for a very
powerful development environment – this document was developed in
exactly this fashion: edits, a quick compile to make sure it was still
valid, and changes committed regularly to CVS.

gnuclient

gnuclient is a commandline utility whereby you can keep one emacs
session open, and connect to it in order to evaluate lisp (eg to edit

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

another file), but from a (potentially remote) session.

For example, I have an Xemacs21 session running here, within which
the gnuserv-start function has been evaluated. There is now a gnuserv
process spawned from xemacs21 to handle connections made to that
Xemacs session:

Process tree:

%$)���0NUT4$K$X(�		LU0NU.4

��������������%$�������)0NUL4$K$	����930M//4

������������������������������%$)	����93$���	0ML94P����	��0MLT4

Socket listener:

������/��/�/!/!/!/�99.V/�������/!/!/!/�O�������=>6�*+������MLT�����	��

It is now possible to connect to this server and open a buffer editing a
file, remotely:

������������	��$��������������	���	

The file somefile will be opened in the (X)emacs session from which
the gnuserv process is started, but in a frame at the gnuclient end of the
connection – ie if you have a DISPLAY variable then it’ll use that,
otherwise it’ll be in the current term window; you can double-check
that it is the existing emacs session by pressing ‘C-x C-b’ to obtain a
buffer-list window. It’s even more fun to be editing the same buffer in
two frames simultaneously.

Of course, gnuclient also allows you to evaluate some elisp in an
already-running emacs session:

������������	��$�����������$	����%0��	��$��������#��#4%

This comes in handy if you want to run emacs in a loop from a shell
script or Makefile, but don’t want the overhead of having to load a 10
or 20MB image from disk for each iteration(!).

It is important to stress the need for security in dealing with this
process; the port is relatively wide open, so read up on the use of the
GNU_SECURE environment variable (it points to a file whose contents
are a list of permitted client hosts), or the X-based authority system that
can also be used. Beware that data travels across the network in

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

plaintext unless you go to some pains to tunnel it through, for example,
ssh.

AIX SPECIFICS

Availability

Emacs and Xemacs have both been packaged for various versions of
AIX. One place to download them from is http://www-1.ibm.com/
servers/aix/products/aixos/linux/download.html. Amongst other things,
one gotcha is the potential for a segfault if you don’t have your locale
set up correctly; see http://www.faqs.org/faqs/aix-faq/part4/section-
38.html for more, but note that it might help if you export LC_ALL=C.

Building your own

Gnu emacs is available from http://www.gnu.org/software/emacs/
emacs.html; Xemacs is available from http://www.xemacs.org.

Both use a standard GNU build procedure:

!���������	

��������	

�������������	�������

where ‘configure’ takes several options – there are the normal
‘-prefix=’ and target/admin/location options, and also -enable and
-with options recognized:

• -without-gcc – don’t use GCC to compile Emacs if GCC is found.

• -without-pop – don’t support POP mail retrieval with movemail.

• -with-kerberos – support Kerberos-authenticated POP.

• -with-kerberos5 – support Kerberos Version 5 authenticated POP.

• -with-hesiod – support Hesiod to get the POP server host.

• -with-mail-spool-directory=DIR – system mail spool is DIR.

• -with-x-toolkit=KIT – use an X toolkit (KIT = yes/lucid/athena/
motif/no).

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• -with-xpm – use -lXpm for displaying XPM images.

• -with-jpeg – use -ljpeg for displaying JPEG images.

• -with-tiff – use -ltiff for displaying TIFF images.

• -with-gif – use -lungif for displaying GIF images.

• -with-png – use -lpng for displaying PNG images.

• -without-toolkit-scroll-bars – don’t use Motif or Xaw3d scroll
bars.

• -without-xim – don’t use X11 XIM.

• -disable-largefile – omit support for large files.

• -with-x – use the X Window System.

Of course, you’ll need to have the relevant development packages
installed to compile with these options, eg libpng etc.

For Xemacs, the list is even more extensive:

• -with-gtk – support GTK on the X Window System. (experimental).

• -with-gnome – support GNOME on the X Window System.
(experimental).

• -with-x11 (*) – support the X Window System.

• -x-includes=DIR – search for X header files in DIR.

• -x-libraries=DIR – search for X libraries in DIR.

• -with-msw (*) – support MS Windows as a window system.

• -with-toolbars=no – don’t compile with any toolbar support.

• -with-wmcommand=no – compile without realized leader window
which will keep the WM_COMMAND property.

• -with-athena=TYPE – use TYPE Athena widgets.

• -with-menubars=TYPE – use TYPE menubars (lucid, motif, or
no).

• -with-scrollbars=TYPE – use TYPE scrollbars.

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• -with-dialogs=TYPE – use TYPE dialog boxes (lucid, motif,
athena, or no).

• -with-widgets=TYPE – use TYPE widgets (lucid, motif, athena,
or no).

• -with-dragndrop – compile in the generic drag and drop API.

• -with-cde – compile in support for CDE drag and drop.

• -with-offix – compile in support for OffiX drag and drop.

• -with-xmu=no (*) – for those unfortunates whose vendors don’t
ship Xmu.

• -external-widget – compile with external widget support.

• -with-tty=no – don’t support ttys.

• -with-ncurses (*) – use the ncurses library for tty support.

• -with-gpm (*) – compile in GPM mouse support for ttys.

• -with-xpm (*) – compile with support for XPM images.

• -with-png (*) – compile with support for PNG images.

• -with-jpeg (*) – compile with support for JPEG images.

• -with-tiff (*) – compile with support for TIFF images.

• -with-xface (*) – compile with support for X-Face mail headers.

• -with-gif=no – compile without the (builtin) support for GIF
images.

• -with-sound=TYPE[,TYPE[,...]] (*) – compile with sound support.
Valid types are ‘native’, ‘nas’, and ‘esd’.

• -native-sound-lib=LIB – native sound support library. Needed on
Suns.

• -with-database=TYPE (*) – compile with database support.

• -with-ldap (*) – compile with support for the LDAP protocol.

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• -with-postgresql (*) – compile with support for the PostgreSQL
RDBMS.

• -mail-locking=TYPE (*)

• -with-pop – support POP for mail retrieval.

• -with-kerberos – support Kerberos-authenticated POP.

• -with-hesiod – support Hesiod to get the POP server host.

• -with-tooltalk (*) – support the ToolTalk IPC protocol.

• -with-workshop – support the Sun WorkShop (formerly
Sparcworks) development environment.

• -with-socks – compile with support for SOCKS (an Internet
proxy).

• -with-dnet (*) – compile with support for DECnet.

• -with-modules – compile in experimental support for dynamically
loaded libraries (Dynamic Shared Objects).

• -with-netinstall – compile in support for installation over the
internet. Only functional on the MS Windows platforms.

• -with-ipv6-cname=yes – try IPv6 information first when
canonicalizing host names. This option has no effect unless
system supports getaddrinfo(3) and getnameinfo(3).

• -with-site-lisp=yes

• -with-site-modules=no

• -package-path=PATH – directories to search for packages.

• -infodir=DIR – directory to install Xemacs Info manuals and dir
in.

• -infopath=PATH – directories to search for Info documents.

• -moduledir=DIR – directory to install dynamic modules in.

Plus a batch of internationalization and debugging options.

Unsurprisingly, it’s pretty easy to run:

44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

!���������	�P��	��)"�����������)	����

���	

��������	�������

Users can optionally have more extensive customization options. For
example, compiling in GTK support means you can use the same
theme as for the rest of your desktop – no more boring black/white/grey
colours for emacs, themes and pixmaps instead.

If you intend to use Gnus as a mail/news client, it may well also be
useful to make sure JPEG and PNG files are supported; emacs can
display these inline, if supported when compiled. Who said emacs was
just a text editor?

If compiling Xemacs, in order to have a reasonable set of elisp
packages once you’ve started, download the sumo package set, which
you then unpack into one of the package directories specified above.

Xemacs packages

Xemacs has a complete package system all its own, which allows you
to keep all versions of installed packages up-to-date very easily.

Under the toolbar, run Packages/Tools/Add package site. This adds
an upstream site to the list. Then you run ‘Update package list’, to
synchronize the index of what’s available upstream.

Finally, select Packages/List & Install, to open a buffer window with
a table of packages, local and remotely available versions, and short
descriptions. For each package you can elect to remove, install, or
update it, and finally commit your changes with ‘x’. (See the key at the
bottom of the buffer.)

Figure 2 shows the Xemacs packaging system in operation.

This totally automates installing any of these packages – no more
downloading tarballs, unpacking, reading install instructions!

Compiling emacs lisp files

When you load an ordinary emacs elisp ‘.el’ file, emacs has to both load
and compile it before its functions are made available. You can

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 2: Xemacs packaging system in operation

precompile files in a directory with the byte-compile-file function. You
can also run this across a whole directory with byte-recompile-
directory. This will create a corresponding ‘.elc’ file for the given, or
all, ‘.el’ files, as appropriate, thus saving interpretation time when
reloading the file another time.

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Other resources

http://unix.about.com/cs/emacs/ contains links to an emacs FAQ,
manual, and lisp reference.

There is a comprehensive list of emacs lisp packages available at the
ELL, to be found at http://www.anc.ed.ac.uk/~stephen/emacs/ell.html.

Gnus, the mail and news client, has a complete site of its own. There’s
even a portal-style site with yet more links to the tutorials, to be found
at http://my.gnus.org/.

Tim Haynes
Open Source and Free Software Consultant (UK) © Xephon 2002

Call for papers

Why not share your expertise and earn money at the same
time? AIX Update is looking for technical articles and hints
and tips about AIX performance, as well as example scripts
that experienced AIX users have written to make their life, or
the lives of their users, easier.

Articles can be e-mailed to Trevor Eddolls at
trevore@xephon.com or sent to any of the addresses shown
on page 2. A copy of our Notes for contributors is available
from www.xephon.com/nfc.

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Hex to decimal and decimal to hex conversion

I read an article in Issue 72 of AIX Update entitled Number conversion
utility, which concerned itself with hex to decimal and decimal to hex
conversion. It employed a quite ingenious and rather lengthy script to
achieve this.

This is the way I am used to doing these conversions:

1 Dec to hex:

"-������#Z);�#�9//////

3	L.L/

2 Hex to dec:

"-������#Z�;�#�/)3	L.L/

9//////

This seems to me a bit more efficient.

The shell refuses to go over the 2^32 limit, (4 billion something), but
I imagine that that is, for most applications, not a problem.

Rens Groenewegen (Netherlands) © Rens Groenewegen 2002

AIX Update on the Web

Code from individual articles of AIX Update and complete
issues in PDF format can be accessed on our Web site at:

http://www.xephon.com/aix

You will be asked to enter a word from the printed issue.

AIX news

Rogue Wave Software has increased support
for new platform and database clients with
the introduction of the third version of Rogue
Wave SourcePro C++.

The new edition is now available on AIX 5L
Version 5.1, Windows XP Professional, Red
Hat Linux 7.1, and HP-UX 11i.

SourcePro C++ Edition 3 now provides
support to recent database releases, including
Oracle9i, DB2 7.2, Sybase 12.5, and
Informix 2.7.

It includes support for the latest XML
schema specification and for the SOAP 1.2
specification.

For further information contact:
Rogue Wave Software, 5500 Flatiron Pkwy,
Boulder, CO 80301, USA.
Tel: (303) 473 9118.
URL: http://www.roguewave.com/
products/sourcepro/.

* * *

IBM has announced multi-year contracts and
simplified ordering processes through its new
Software Maintenance acquisition model,
which includes technical support for IBM
distributed software.

Replacing the existing Software Subscription
for AIX and OS/400 and stand-alone
upgrades previously ordered under each
licensed program, the new scheme enables a
single site or worldwide enterprise to
maintain software entitlement to current or
future versions or releases of the eligible
products during the Software Maintenance
contract period.

One year of Software Maintenance is

included automatically for new licences, and
a three-year option is also available.

The company also announced that Software
Subscription for AIX has been restructured
to become IBM Enhanced AIX Operating
System Subscription, providing a one-year or
three-year prepay contract. An After-
Licence feature is also available that enables
customers to order upgrades to the current
releases or versions being marketed by IBM.

For further information contact your local
IBM representative.
URL: http://www-1.ibm.com/servers/
eserver.

* * *

Sybase has announced its New Era of
Networks Integration Package, designed to
integrate and streamline business processes
and information flow between departmental
systems.

It includes an integration server, New Era of
Networks e-Biz Integrator, and two
connection points that enable the integration
of two existing business applications or
systems. With each connection point, users
can choose from a library of New Era of
Networks Adapters designed to help
integration by providing pre-defined
connections to target applications or
systems.

The Integration Package is available now for
AIX, HP-UX, Solaris, and Windows.

For further information contact:.
Sybase, 5000 Hacienda Drive, Dublin, CA
94568, USA.
Tel: (925) 236 5000.
URL: http://www.sybase.com/products.

� xephon

	Shell script basics
	Migrating from NT4.0 to AIX
	Some tips for shell programming
	Advanced emacs use
	Hex to decimal and decimal to hex conversion
	AIX news

