
© Xephon plc 2002

April 2002

78

3 Input and output redirection
15 AIX application management
25 Examples of shell scripts
35 Find the smit fast path to what you

want
40 SAN basics
43 AIX vulnerability
44 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1998 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls and Richard Watson

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Input and output redirection

You should be aware that in this article we discuss only how the input
and output for commands can be redirected, not the various ways in
which scripts can receive their input, which will be covered in detail
in a future article.

REDIRECTING STANDARD OUTPUT OF A SCRIPT

As you are no doubt aware, most commands get their input from
standard input, and send their output to standard output. By default,
standard input is received from your keyboard, and, if a command
requires data from standard input, it waits for you to enter information
via the keyboard. When a command sends data to standard output, the
data is normally sent to your terminal screen.

You can redirect the standard input and output of a shell script just as
you can for any other command. The output that appears on your screen
will be determined by how and where you redirect the output of
commands contained within the script itself.

In order to understand how this works, you should create three 2 or 3-
line text files; for the purpose of this example we will call them file1,
file2, and file3. It may be easier to see what happens in the following
examples, if one file contains only numbers, the second only lowercase
letters, and the third only uppercase.

Create a shell script called mysort, and enter the following lines:

��������	

��������	�

��������	�

Now run the shell script after making the file executable, and you will
see a sorted version of file1, followed by a sorted version of file2, then
the sorted file3. However, if you invoke mysort with the command:

���������������		

the output will be sent to the file all_three, instead of to your screen.

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Suppose you change the contents of mysort to:

��������	

��������	�������	������	�

��������	�

When you run this new version you will now see only the sorted version
of file1, followed by the sorted file3. The output of the second
command has been sent to the file file2_sorted.

If you now redirect the output of mysort with:

����������������

you will see that the outputs of the first and third commands go to
just_two, and that of the second command is sent to file2_sorted. In
other words, if you redirect the input or output of a command within
a shell script, then regardless of how the script is invoked, the input or
output of that command will always be redirected as specified within
the script.

REDIRECTING STANDARD ERROR

Commands normally send their error messages to a third data stream,
standard error, which is a data stream much like standard output, and
can also be directed to a file instead of the screen. Programs usually
write their regular output to standard output, and their error messages
to standard error.

Because standard output and standard error are entirely separate data
streams, data that a command sends to standard error appears on a
user’s screen even when standard output has been redirected.

Normally you don’t redirect a command’s standard error because you
want to see error messages displayed on your screen as and when they
occur. This is particularly important if you attempt to run a program
and it is unsuccessful. If you had redirected the standard error then you
would not know that the command had not executed until you
examined the output file.

File descriptors

There are occasions, however, when it is desirable to redirect standard

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

error. For example, the C compiler, cc, may write many lines of
warnings and error messages to standard error if the program you
attempt to compile has many syntax errors. Examining these messages
carefully while looking at your program can best be done if you have
saved these messages in a file rather than displaying them on the
screen.

For example, to compile a program called prog.c and send any error
messages to a file named errors, enter:

�������������	�����

In general, the notation 2> filename is used to redirect a command’s
standard error; spaces are not allowed between the 2 and the >
character, although they are allowed between the > and filename. The
2 preceding the > is a file descriptor which stands for standard error.

There are also other file descriptors associated with standard input and
standard output. These are 0 for standard input, and 1 for standard
output.

You can redirect standard output with the notation:

����������

or:

����������

If you want to redirect standard output and standard error to the same
file, there is a special way of doing this, which is achieved by using:

���

You can think of the notation 2>&1 as meaning, send standard error to
the same place that standard output is currently going to. Similarly,
1>&2 redirects standard output to the same place as standard error.
Any command such as:

�	����
���������������

will have both its standard input and standard output sent to filename.

If in the above example you reversed the order, namely:

�	����
����
�����������

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

then standard error would be directed to the same place that standard
output is currently connected, which would be the terminal screen
since the redirection of standard output to filename occurs on the
command line only after the initial redirection of standard error.

When some commands are executed, messages are sent to standard
error which are merely advisory messages rather than an indication of
a particular error condition. For example, when you run the find
command as an ordinary user, many annoying messages will be
displayed on your terminal stating that you do not have access to a
particular directory.

In such a situation it is not necessary to read the messages since they
merely prevent you from actually viewing the pathname of the file you
are looking for, which can become lost amongst the large number of
warning messages displayed on your screen.

Messages such as these can be discarded, and this can be achieved by
redirecting standard error to the /dev/null file, which discards all data
that is sent to it:

�����	������

Turning off standard error

An alternative to redirecting standard error to /dev/null is to turn it off
completely. To do this the command should be of the form:

�	����
�����

This particular format can be used to turn off standard output with:

�	����
����

and standard input with:

�	����
� ��

You can turn on standard input, standard output, or standard error, once
they have been turned off, by issuing the commands:

	!	�� ���	����� �����������������������

	!	������	����� ������������������������

	!	�������	����� ������������������	����

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The exec command is covered in greater detail later in this article.
Although the above discussions have been directed at entering
commands from the command line, they are equally applicable for use
in shell scripts. Turning off standard error is frequently used to get rid
of unwanted error or warning messages, for example when you want
to set the output of a command to a variable:

"#$%$#&'()*����������	�+,��������	������-

This will create a variable containing a list of files ending in ‘log’, but
will not contain any of the usual find warning messages which we
would also expect to see in the list if we had not redirected standard
error. The construction $(. . . .) is a form of command substitution and
will be covered in greater detail in a future article.

USING PIPELINES IN SCRIPTS

When the shell sees a command of the form:

�	����
���.

it knows that the command is not complete; if you are entering
commands from the command line, the shell will respond with the
secondary prompt until you type in the rest of the pipeline. If you enter
such a command in a script, you can continue with the pipeline on the
next line.

For example, if you enter who | on the command line, then the rest of
the command, grep userid, can be typed at the secondary prompt. In
a shell script, however, this may appear as:

����.

��	������

In general, any pipeline consisting of any number of commands may
be split across several lines, provided each new-line character occurs
after the ‘|’ symbol and before the next command in the pipeline. To
break up a pipeline anywhere else, a ‘\’ must precede the new-line
character, since the shell normally treats the new-line character as a
command terminator. A new-line character following the ‘|’ is a special
case, because there must always be a command following ‘|’.

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

REDIRECTION USING EXEC

The exec command can be used to rename or create new file descriptors.
To change standard input from the keyboard to a file, you can use the
command:

	!	�� �����

The commands to be executed will now be read from file, which should
contain a list of commands. After exec has finished executing the
commands, it will return to the parent of the process, which may result
in logging you off. Similarly, to change output redirection from the
terminal to a file, use the command:

	!	��������

Once the redirection is no longer required, reassign the input/output
back to the keyboard/terminal using the exec command with the virtual
file /dev/tty:

	!	�� ���	�����

or:

	!	������	�����

To see how this works, enter the commands:

	!	�������	/

�������	

�������	�

�����

	!	������	�����

You will note that each time you enter a command, no output is
displayed on the screen since it is all sent to file4. View the contents of
file4 and you will see that the output from each of the commands has
been appended to file4.

So when do we use exec in shell scripts? Quite often it is used within
the .profile file of users who are required to run a particular application,
but do not require a command prompt, either for security reasons or
because the user wouldn’t know what to do if confronted with the
prompt. Usually the last entry in .profile is something like:

	!	�����������	�

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

so that when the user exits the application they are immediately logged
off. This assumes that there is no possibility of the user ‘shelling out’
from the application, otherwise there is not much point in placing the
line in the user’s profile.

A further use of exec in scripts is when, for example, you want to
redirect the whole of standard output or standard error for the script to
log files. You can achieve this by placing lines similar to the following
at the top of the script:

	!	�������

	!	�����	�����

These commands are suitable provided that you want all script output
to be sent to the specified files. If this is not the case then you may have
to redirect output for specified commands to other files.

Command line control using xargs

While on the topic of I/O redirection, let us consider a very useful
command, xargs, which is used to manipulate the output from
commands and is used extensively both from the command line and
also within shell scripts.

When the system runs a command, the kernel provides a buffer to
preserve the command and all its arguments, and under certain
circumstances it is not difficult to exceed the buffer limit. For example,
when you are using filename generation characters to specify files to
be run against a command, the buffer size will be easily exceeded if a
large number of filenames is generated, each with a long pathname.

The xargs command can be used to get round this upper limit, and it
can be used to generate a series of commands from a list of filenames,
or from other information supplied to it. xargs will read successive
lines from its standard input, break the lines into words separated by
spaces, reassemble the words into commands, and then pass the
generated commands one by one to the shell for execution. It will
always discard empty lines.

The command lines generated by xargs differ from those generated by
the shell with wildcards in one important respect: xargs will not build

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

a command line longer than some reasonable upper limit. If the
command line is likely to exceed the length limitation, xargs will
distribute the filename list over two or more generated command lines.

As an example, xargs can be used to provide a handy check for
common filenames located in two directories. For example:

���
���0����.�*������
���0�!������������-

The list of filenames generated by the first ls command is converted by
xargs into a series of explicit ls commands, which are executed in the
other directory. Files that cannot be found result in the printing of an
error message, and turning off standard error will discard these
messages. The only output seen is the list of files that are common to
both directories.

There are a variety of options available to xargs for controlling
command line formatting. Suppose we wanted to copy an automatically
generated list of files to a specified directory. The normal command to
do this is:

�����������������������������
������

Unfortunately this does not match the xargs style of generating
commands. The solution, however, is to use the -i option:

���
����.�!�������1����1�
���

This causes xargs to substitute one word from standard input for each
occurrence of the character % in the command line; no spaces are
allowed between the -i and the %. This construction results in the
execution of a series of commands:

���������
������

���������
������

�

�

You can use any string or character following the -i option. For
example, you could use:

���
����.�!�������"#$%����"#$%�
���

The default string is a pair of braces, and the following command takes
advantage of this fact:

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

���
����.�!����������23�����23����

Another useful option to xargs is the -p option, which can be
effectively used only from the command line. This option causes xargs
to prompt for permission to execute each generated command before
passing the command to the shell. This could be used in the copying
example above, where the list generated may contain directory names
so that you can be given the option not to run the command against a
directory name.

The -n option also allows you to limit the number of arguments placed
on the generated command line. For example:

!�������������� %45

�����������������

�����������������

%45

This construction (explained in the next section) runs a series of diff
commands, each containing two filenames (generated by the -n2
argument):

����������������

����������������

����������������

HERE DOCUMENT

In the above example, the <<END and END words define a ‘here’
document, which uses the text entered between the two END keywords
as standard input for the xargs command, or any other command for
that matter. The keywords do not have to be END, but can be any string
or sequence of characters, inserted either directly into the here document,
or by using command substitution; END and EOF are commonly used
keywords.

When you run a command such as the previous xargs command from
the command line, you will be prompted with the secondary prompt
until such time as you enter the terminating second keyword.

If you run such a command in a shell script, you should ensure that the
first keyword is on the same line as the ‘<<’. The files, or other string

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

of characters, on which you want to run the command are then placed
on any number of following lines, and the terminating keyword is
placed on a line of its own, unless there is redirection.

If you intend to redirect the output of the command you are using with
xargs, and at the same time use the here document format, then the
redirection in a shell script can be done as follows:

!����������������	������ %45

�����������������������������������

%45

or:

!�������������� %45���	�����

�����������������������������������

%45

A common use of the here document in shell scripting is to use cat to
echo strings to the screen. For example:

���� 1

�������

�������

�

�

1

It is not necessary to enter only text strings within here documents; the
output of commands can also be supplied. For example:

���� 1�����	�����

6���	6

6���6

1

In this example the output generated from the date and who commands
is supplied by the here document as input to cat. This type of here
document uses backquotes (`) for command substitution. This is
covered in detail in a future article.

You may also see strange-looking here document constructions in shell
scripts. For example:

�	����	��������	����7� %8"

%8"

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

You may find something like this in a script which creates a system
back-up, and then tries to verify the back-up after rewinding the tape
and skipping to the tape block containing the backed up files; if we
encounter no error conditions during the restore (in this case just a
read) then we assume the back-up was successful. The seemingly blank
line actually contains a <CR>, which is required because the restore
command asks you to mount volume 1 and press Enter so that the here
document supplies the carriage return to the command and it then
continues without user intervention.

Here documents are frequently used to provide input for commands or
scripts that are run by cron. Since cron often runs commands at times
when a user would not normally be present to enter the input, the here
document allows the input to be supplied automatically.

As a further example, suppose an application is required to be started
without user intervention, and in order to start the application a login
is necessary. This login may need both a userid and password to be
entered before it can be started. This can be done with a here document
such as:

���������� �%45

����
�������

���������	�
�������

%45

The userid and associated password must be entered in the script as
above and will automatically be supplied to app_start. When app_start
first asks for the login name, it will be obtained from the first line of the
here document. Similarly, the password will be obtained from the
second line. In situations like this, the permissions on the script must
be carefully controlled to prevent unauthorized access to the file.

This type of script can be used to allow logins without user intervention.
Some applications, however, insist they receive standard input from
the keyboard so that the userid and password cannot be supplied from
a here document; rlogin is just such an example. In many cases the only
way to find out whether you will be successful is to try it and see!

You should be aware that here documents take as input all the
characters contained on each line between the keywords, and this may

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

give you unpredictable results. For example, suppose you had a shell
script and you wished to indent the here document to make the script
easier to read. If you had a construction such as:

��������

��	�

���������� %45

����
�������

���������	�
�������

%45

��

then both the userid_string and user_password_string lines would
include in the input to app_start the spaces or tabs from the beginning
of the line, and this would mean a failed login. You can overcome this
by using the construction:

��������

��	�

��������� ��%45

����
�������

���������	�
�������

%45

��

The <<- (the last character is a minus sign) tells the system to ignore
tabs at the start of the line and thus allows formatting which is more
readable.

You should be aware that if you use this construction then the line can
start with either multiple tabs or a single space. Since you cannot often
distinguish between spaces and tabs during a vi editing session (unless
you have used :set list), you must exercise some degree of care to ensure
that you get the correct input to your command.

Tonto Kowalski
Guru (UAE) © Xephon 2002

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

AIX application management

FEARS AND NEEDS

Once I was asked to come and help upgrade an AIX machine. “It is a
standard job”, I thought. But coming to the data centre the IT manager
told me to come back another day. The administrator who managed the
application running on that particular machine had had an accident. No
other person or documentation could help me stop and start it. His
back-up administrator had left the company some weeks before.

Imagine that for some reason the application had stopped. In that data
centre they would have called the hotline to the software company that
sold them the application. This means external help is needed. This is
no way to deal with a business critical application (see also Alan
Prangley, Safetynet, How to keep disaster at bay, published in Help
Desks, Call Centres, and The Future, Xephon, July 1999).

A day lost by restarting a business-critical application may be a nail in
the coffin of your company. Therefore the administrator should provide
some documentation for managing his basic tasks. There are many
caveats in case of error or during certain complex operations, but this
is no reason for non-provision of simple basic documentation. Consider
the alternative – to attempt a restart without knowing anything.

HACMP helps you to restart your applications on another AIX
machine if the primary one fails. Therefore it also solves the problem
of stopping and restarting the application. Since nearly all software can
be incorporated into a HACMP cluster, it proves that using such scripts
is not impossible (Ole Conradsen et al, HACMP/ES customization
examples, IBM Redbook 2000 cf Appendix A).

CREATING DOCUMENTATION

The main objective of a data centre is to provide continuous service.
In order to achieve this, the data centre will need to provide:

• A (searchable, electronic) diary of incidents and their solutions.

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Mechanisms and precautions within the system to avoid incidents.

• Mechanisms within the system to allow quick recovery.

• Printed documentation dealing with events outside the system
concerned.

• Organizational structures to support decisions and actions in
critical situations.

The system administrator’s job is to provide an appropriate recovery
procedure when some application or service fails. There are several,
often quite different, steps and solutions needed to reach this single
objective. It is a challenge to structure and bundle the known actions
for keeping the application or service available. Moreover all findings
should be documented and accessible where they are needed.

Consistency problems between documentation and application handling
can be avoided when both tasks are unified, ie the application handling
is done, for example, by scripts that provide good documentation as
well. On the one hand the documentation will be complete since the
script wouldn’t run otherwise, and on the other hand the scripts may be
better understood since they are intended to document the system.

There are no clear conventions on where to put these documented
scripts; some prefer to put them into /usr/local/bin, others prefer to put
them with the application or the middleware installation directory /usr/
sbin/cluster/local, or elsewhere. I think this is a question of philosophy
and can be solved on another level: since all AIX administrators use
SMIT it is probably a good idea to use SMIT for starting your
applications as well, independently of HACMP.

MANAGEMENT SCRIPTS

Lessons from HACMP

Besides the handling of topology and resources, HACMP needs start
and stop scripts for each application (HACMP 4.4.1 Installation
Guide; Chapter 12: Configuring Cluster Services). Those scripts
(HACMP/ES Customization Examples cf Section 7.1.2) need to
support an unattended startup and shutdown of each application.

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

HACMP launches an application server as part of the HACMP startup
or shutdown sequence. The application server executes a predefined
script to start or to stop an application. At this point, the application is
started or stopped in the background without any intervention. The
non-interactive startup or shutdown is important to ensure that the
application is launched or stopped with the fail-over sequence to
minimize the startup or fail-over time, thus minimizing down time.

These scripts will improve with frequency of usage. The accumulation
of experience of the system administrator is best hard-coded into these
scripts. If there is no simple way to work around known difficulties
automatically, it is always a good idea to state them as a comment and
describe a likely way to handle them. It is always a good idea to use
these scripts during everyday work.

Using SMIT

The application registration script in this article allows you to add a
menu to your SMIT’s top level menu Applications, which is initially
empty. Within this article the application registration script will not be
discussed, but the input parameters it requests will be. They are:

• Application Name – the name of the instance that should be
stopped or started. It should, for example, not be called SAP, but
SAP instance P01. Otherwise you might have difficulties
distinguishing the instances.

• User Name – the name of the account that should be used to start
and stop the application. If a login to this account fails or the user
is unknown it will be set to root.

• Start Script – a shell script that is already discussed in the previous
section as well as in the next one. Only existing executable scripts
will be accepted.

• Stop Script – a shell script that is already discussed in the previous
section as well as in the next one. Only existing executable scripts
will be accepted.

When adding applications to the menu, they should be placed in an
appropriate order. For an inexperienced administrator, it is then easy to

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

start task by task and to stop them in reverse order. Since the script from
this article sorts the entries by the time of registration, you should
consider this when adding the applications.

During the registration, a sequence of commands is written to a file,
which can be used to remove the items from your SMIT menus. You
should not lose it, since removing the items without knowing the IDs
may result in some work in retrieving the information by executing
odmget on sm_cmd_hdr and sm_menu_opt. You may look for the
strings appearing in your menus. Be sure you make a back-up and
ensure that you know what you are doing before going ahead (see
Siegert, Andreas: The AIX Survival Guide, Addison-Wesley, 1996).

A shell program to enable the starting and stopping of applications
using SMIT:

9:�����;�����

99

99

99�5	���������<

99����'������	�������������������;	��������������������������������

99���������&=#'>�������	�	��	���?@@$#A?'#84&��������������������	����

99����*'��������������������������	�����������������������	��;��#B=�-

99

99������C����		�����������	���	�����	�	��<

99������?@@&<�����	�	!������	��

99������D&%E<�����	���	�����	!	���	���	�����������������������

99������&'8@<�����	������������������	������������

99������&'?E'<����	�������������������	������������

99

99

99

9

9�&�	�	!���	��	���������������	��	���	��	��������������	

9

99

D&%E(�7
��

?@@&(F&?@��������	�@7
F

&'8@(���	��7
�����������

&'?E'(���	��7
������������

99

9

9�G	��������	�����	�	���������	�������������

9���������������*����(��	���	��������������������-

9

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

99

���� ,,,

��������C�����	�����	�����	!	����������������������

��&=#'�	��

������������	��F?�����������F�*�����	�	�-�������	���

����������������������������@�	��	�	��	����	����������

,,,

�����;���	����F+���	���	������	���������������+�F

�	���?@@&

������H��!�)&'?E'�I

��

���������;���	����F+���	��J��������	����������������+�F

�����	���&'?E'

���	

������H��!�)&'8@�I

��

���������;���	����F+���	��J��������	����������������+�F

�����	���&'8@

���	

�����;���	����F+���	���	�������	����	!	���	���	���+�F

�	���D&%E

9�����;���	����F+���	��������������������������	�����+�F

9�	���4?=%

99

9

9�&�	�������������;	���	���	��;	���	�������������K�����	

9

99

�����F)D&%EF���������;������	����	����������

���9��		���	��	����F��F����L�

���H�)M���	�7�����K�F)D&%EF����F)D&%EF�(�F����F�I

��	�

��������9�D&%E�����>����	�������������������0������	!	���	���	�������

��������%N%A(FF

��������D&%E(F����F

	��	

��������9�	����	���	���	������	������	�����;	���	�������������

��������%N%A(F�����;��������)D&%E����F

��

���H��K�F)4?=%F�I

��	�

��������9�'�	�����	����4?=%������������������:::

��������9��	��4?=%������	��������L	�����������������	�����

��������94?=%()*	����F)?@@&F�.��	��>�<HO�IHO�I,�<<�>-

��������9��	��4?=%������	�������P������������L	������;	���������	

��������94?=%()*	����F)?@@&�F�.��	��>�<+*�+-HO�IHO�I,�<+
<�>-

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

��������9��������	������	��	���;�	P�;�����	���L	�����F��������F

��������4?=%()*	����F)?@@&F�.��	��>�<�<<�>-

��

85=5#E(�������;��;��	���

&%Q4()*���	�R1C11�1S1=1&-

���� ,,,

��������C��������	�	�����	

��������4�	������	�?����������<��������)?@@&

��������?�����������������������<�������)&'?E'

��������?�����������������������<�������)&'8@

��������D�	����������;�����������<������)D&%E

��������@�	��	���	���%4'%E����	!�	��������������	���A'E$�A�����;���

���

,,,

�	���N

	����F+�+�+�����������������	�����������+�F

99

9

9�T�����������K�����	���������������85=�������	<�������;��;��	����

9

99

���� ,,,���������������

��	������<

������������	J����(�F)&%Q4F

�����������(�F����F

���������	!�����(�F)4?=%F

���������	!��(�F=����	�)?@@&F

���������	!��������	�(�FF

���������	!������	��(�7

���������	!��������(�7

���������	!�����	�(�FF

��������������(�FF

���������	���������(�FF

���������	����������(�FF

���������	������;��	�(�FF

���������	������;��L�(�FF

��	������<

������������	J����(�F)*�����;���	!���
�R�)&%Q4-F

�����������(�F)4?=%F

���������	!�����(�F�����)4?=%F

���������	!��(�F&�����)?@@&F

���������	!��������	�(�FF

���������	!������	��(�7

���������	!��������(�7

���������	!�����	�(�F�F

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

��������������(�FF

���������	���������(�FF

���������	����������(�FF

���������	������;��	�(�FF

���������	������;��L�(�FF

��������<

�����������(�F�����)4?=%F

������������������(�F8���)4?=%F

��������������	��	�	���(�F�F

����������	�(�F&�����)?@@&F

����������	�������	�(�FF

����������	�����	��(�7

����������	�������(�7

��������������	!	��(�F�����;��������)D&%E����)&'?E'�F

����������L�(�F�F

��������	!	����	�(�FF

��������������(�F�F

��������������������	��(�FF

��������������������	��������!�(�FF

����������	���K	�(�7

������������	���K	�(�7

���������	���������(�F7F

���������	����������(�FF

���������	������;��	�(�FF

���������	������;��L�(�FF

��	������<

������������	J����(�F)*�����;���	!�����R�)&%Q4-F

�����������(�F)4?=%F

���������	!�����(�F����)4?=%F

���������	!��(�F&����)?@@&F

���������	!��������	�(�FF

���������	!������	��(�7

���������	!��������(�7

���������	!�����	�(�F�F

��������������(�FF

���������	���������(�FF

���������	����������(�FF

���������	������;��	�(�FF

���������	������;��L�(�FF

��������<

�����������(�F����)4?=%F

������������������(�F8���)4?=%F

��������������	��	�	���(�F�F

����������	�(�F&����)?@@&F

����������	�������	�(�FF

����������	�����	��(�7

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

����������	�������(�7

��������������	!	��(�F)%N%A)&'8@�F

����������L�(�F�F

��������	!	����	�(�FF

��������������(�F�F

��������������������	��(�FF

��������������������	��������!�(�FF

����������	���K	�(�7

������������	���K	�(�7

���������	���������(�F7F

���������	����������(�FF

���������	������;��	�(�FF

���������	������;��L�(�FF

,,,

�����;����������������������

�	����()M

�����;���������������������

99

9

9�?�����	�����	����������	��	��	���	����	�

9

99

���� ,,,��)S8=%����)4?=%

85=5#E(�������;��;��	���

���	�	�	������	��������J�����	J���(F)*�����;���	!���7�R�)&%Q4-F

���	�	�	������	��������J�����	J���(F)*�����;���	!���
�R�)&%Q4-F

���	�	�	������	��������J�����	J���(F)*�����;���	!�����R�)&%Q4-F

���	�	�	��������������J���(F�����)4?=%F

���	�	�	��������������J���(F����)4?=%F

,,,

������R!�)S8=%����)4?=%

	����F+�+�'�	�	���������;	��	��	�����������	����;��+F)S8=%�

���)4?=%+F�F

99

9

9�8������L�������	�����0��	�����	��������

9

99

	����F+�'�	���������������	��������������	������+F����+F�F

	����F+�'�	���������������������������������+F)4?=%+F�F

	����F+�'�	��������������������������������������+F����)4?=%+F�F

	����F+�'�	���������������������������������������+F�����)4?=%+F�F

	!���)�	����

Start and stop scripts

The constraints for the start and stop script are similar to the ones given
by HACMP, eg:

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• There must be no prompting for user input.

• It should be tolerant of inappropriate execution.

• It should handle a second attempt to start an application after
failure for some condition which was subsequently corrected.

Please note that there is no restriction on displaying information during
the execution of the start or stop scripts. If one fails, the analysis is
simplified by reading a rather verbose sequence of messages rather
than only a concluding note stating success or failure.

AUTOMATION

The previous discussion focused on two aspects of manual application
handling. These aspects may be extended to total automation:

• Automated startup

• Automated stopping.

Automated startup

For the startup process of a computer, there are different philosophies.
If you follow the ‘Windows’-philosophy, you designate a single
computer to a single application. Therefore you expect that restarting
the server machine also means restarting the application. (Server
originally described the communication part of application software.)

The ‘multi-tasking’ philosophy detaches the layer of starting the
hardware from starting the software. Whether it is better to start
applications automatically at boot time or manually later cannot be
answered briefly and can depend on the exact situation. Nevertheless,
the manual startup should always be implemented.

If an automated startup process is selected, there is usually one way to
do it – adding the service to the standard startup sequence. Within the
/etc/inittab there are usually services started that are expected to be
present all the time during system uptime. These should be insensitive
to shutdown commands and not depend on resources, like network file
systems or directories that are not on volume groups, that start later
with autovaryon.

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If the application is to be detached so it runs in the background it should
be added to the /etc/inittab by executing:

L���;�F����<�<���	<��������������� ��	����������	��������	����
F

where /my/app/startup should be the standard startup file for the
application tagged myapp.

If the process to be started is robust, it may be started in foreground, and
if it needs to be present all the time it may be started as respawning:

L���;�F����<�<�	�����<��������������� ��	����������	����������
F

The respawning action ensures that the program will be restarted each
time it leaves the process table. It respawns too rapidly if the script
terminates while the task has not yet been performed. If you are
unfortunate, the machine’s memory runs low, the CPU gets overloaded,
and you have to correct the script by booting in maintenance mode. Be
careful to avoid such unpleasant situations.

Putting the application startup into /etc/rc.tcpip, or similar, is another
way to start it, but, in principle, this is another step in cascading the start
script. It increases the complexity.

Automated stopping

All applications must be stopped before a system shutdown. Otherwise
information will not be treated as the application thinks necessary. The
standard AIX method is adding the stop script to /etc/rc.shutdown.
This file does not exist by default – create it and add all stop scripts in
the correct order, which is usually the reverse of the one for startup.

In all situations where a proper shutdown is possible the script /etc/
rc.shutdown will be executed. There are situations you may not be
aware of, for example if your UPS batteries signal that they are running
out of power, or the system overheats because of stopped fans. It is
rather unlikely that you will be able to catch all those events manually.
The rc.shutdown will handle that for you.

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

CONCLUSION

This document shows the need for a standard way to manage at least
your business-critical applications. It is intended to help you to
increase your computer centre’s availability, where availability means
the usability of applications. It also recommends a standard way of
dealing with your applications by focusing on the most important
parts. Therefore only starting and stopping is described here. Some
technical support is provided to achieve this objective.

Andreas Neuper
PROFI Engineering Systems AG (Germany) © A Neuper 2002

Examples of shell scripts

The best way to start to learn when and how to write shell scripts is to
look at the following examples and try writing the scripts involved. The
first example is a very trivial script and can be ignored if it is beneath
your dignity to create it!

EXAMPLE 1 – SIMPLE ECHO SCRIPT

Often you can save yourself a lot of typing by creating a simple shell
script. For example, for most ASCII terminal types the clear command
will clear all characters from the screen. Some terminal types, however,
may not support the clear command, and you can create a simple shell
script named cl that will perform the same task.

One way to clear the screen is to use the echo command to send 24 new-
line characters to your screen. The echo command interprets the pair
of characters \n as a new-line character.

We use single quote marks around the argument to echo because the
backslash, ‘\’, has a special meaning to the shell. Since we want it to
be passed to echo without being interpreted in its normal way by the
shell, the quotes will protect everything within them from such an
interpretation.

When you edit the cl file, enter the following:

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

9:�;���L��

	����>+�>

Use the chmod command to make it executable and place it in your
$HOME/bin directory. Thereafter, whenever you enter cl, the screen
will be cleared.

This is obviously not the simplest or most desirable command to use
in this particular shell script to achieve a clearing of the screen for
terminal types that support the clear command, but the example merely
serves to show you what can be achieved with a simple script.

You could, for example, have entered clear in the script (provided it is
supported by your terminal) instead of the echo command, and this
would have produced the same result. In any event, it would normally
not be worthwhile creating such a file in order to save typing in three
extra characters!

EXAMPLE 2 – COUNTING WORDS IN FILES

By their nature, Unix and AIX contain many complex commands with
multiple command line options, which are often difficult to interpret,
and almost impossible to remember in full.

The following script uses the tr command, which has particularly
complex constructions for its command line arguments. It may take an
age to learn these in order to run the command just once from the
command line, and of course the next time you want to use it for the
same purpose you have forgotten the construction. Scripts like the
following make life much easier, at least temporarily!

Suppose, for example, you wanted to print both a list of each of the
words contained in a file and the number of times each word was used.
In order to create a script to do this, first create a text file named mytext
containing the following two sentences:

S	���P�#>�������	��	!�����	�

#����>���������������	!��;���#�������������������	�

What you now want to do is produce a list which calculates the number
of times a word is used in the file and display the output in a format
similar to:

���������
����	����
������	

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�;����
��	������

�

�

The strategy we will use is to break the file into a list of words, sort the
list so that repeated words will be on consecutive lines, count the
number of times each word is repeated, and finally produce a list of the
words, each preceded by a count of the number of times it appeared.

The tr command is used to break up the file, one word per line, and the
sort command is used to sort the list. The uniq command removes
duplicate words and counts the number of times each word occurs.
Finally the little used pr command is used to format the list.

The sequence of commands will look something like:

������������ ���	!��.������.����J�.���

The format of the tr command is:

���H�������I����������������

and the command replaces each of the characters in string1 with the
corresponding character in string2. It does not change a word represented
by string1 with a word represented by string2; the translation is from
a single character in the first string to the corresponding single
character in the same position in the second string.

To first change all the uppercase letters in mytext to lowercase, you
would enter the command:

�����?��>H?�UI>��>H��KI>�� ���	!�

The A-Z and a-z are shorthand notations for A to Z and a to z
respectively, and must be enclosed in square brackets. When these
abbreviations are used, they must also be enclosed in quote marks to
ensure that the shell interprets the square brackets as boundaries for the
shorthand notation, and not just as square bracket characters.

The -A option tells tr to perform all operations using the ASCII
collation order. Depending on your current version of the operating
system, if you do not use this option you may get some strange and
unpredictable results when dealing with strings and characters.

To break up mytext, one word per line, we need to replace all spaces and
punctuation marks with new-line characters. This can be achieved

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

with the following command:

������?�FH?�UIH��KI>�F�>H+7
�,I>� ���	!�

Try this command and note the output it produces.

The -c option (for complement) instructs tr to replace all characters not
found in the first string, which in this case means all characters which
are not uppercase letters, lowercase letters, apostrophes, or hyphens.

Note that the quote marks around the first string are double quotes. This
is because the first string itself contains an apostrophe, which is
equivalent to a single quote, and the only way to quote a single quote
is by surrounding it with double quotes. More on quoting later.

The -s option (for squeeze) causes tr to avoid generating two characters
from the second string in a row. In this case, the -s ensures that there
will not be any blank lines in the output, which would occur if two or
more new-line characters were generated.

Any character not contained in the first string, in other words any
character that is not part of a word, will be replaced by a character from
the second string. In this case we want to replace any character that is
not part of a word with a new-line character, so the second string should
contain only new-line characters.

A new-line character can be specified by using its ASCII Octal code,
012, preceded by a backslash. Since the number of characters in the
first string must equal the number of characters in the second string,
placing an asterisk after the new-line character and enclosing it in
square brackets indicates to the shell that the new-line character should
be repeated as many times as is necessary to pad out the second string
to equal the length of the first.

Since the expression \012* is an abbreviation for a string consisting of
many new-line characters, it must be quoted. Instead of using \012, you
can use the alternative for new-line characters, \n.

You should now be able to see how the command works. It reads its
standard input, mytext, and copies it to standard output, your screen,
replacing all characters that are not part of a word with a new-line
character.

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Consider the following shell script which makes use of the tr and other
commands:

9:�;���L��

����?�>H?�UI>�>H��KI>� ���	!��.

������?�FH��KI>�F�>H+7
�,I>�.

�����.

���J����.

��������

The first tr command gets its standard input from mytext. The
command translates all the uppercase letters in the file to lowercase and
the result is piped to the second tr command. The conversion is
necessary because uniq normally considers capitalized words to be
different from uncapitalized ones and we want words such as ‘The’ and
‘the’ to be considered the same.

The second tr command substitutes a new-line character for each
character that is not a letter, hyphen, or apostrophe. This command is
slightly different from the one shown earlier because the input to this
command will not contain any uppercase letters.

The resulting list of words is passed as input to the sort command,
which processes them so that repeated words appear on consecutive
lines.

The sorted list is processed by uniq -c, which outputs each unique line
preceded by a count of the number of times that the line appeared. The
list is sorted before being passed to uniq because uniq notices that a
given line is repeated only if the lines are adjacent.

Finally, the output from uniq is piped to the input of pr -3 -t, which
outputs a 3-column paginated version of the list without the usual
header.

To understand how this shell script works, you need to see the output
at each stage in the pipeline.

You can use an editor to produce your own copy of the script named
word_count, but you will probably find it more helpful if you redirect
the output of each command line to a series of files as shown below.

At the shell prompt, type the first command and instead of typing ‘|’,
redirect the output to temp1:

����?�>H?�UI>�>H��KI>� ���	!�����	�

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Now look at temp1 and see how it differs from mytext. You can do this
with the command:

��������	!���	�
�.���

Next, enter the second line of text at the command line, taking the input
from temp1, and redirect the output to a file called temp2:

������?�FH��KI>�F�>H+7
�,I>� ��	�
����	��

Now compare temp1 with temp2 to see what the command did. Use a
similar command to the pr -mt command above.

Then enter the following commands, comparing the input and output
files of each command before running the next:

����� �	�����	��

���J���� �	�����	�/

��������� �	�/���	�V

EXAMPLE 3 – USE OF PRINT AND PRINTF

We said in an earlier article (Shell script basics, AIX Update Issue 77,
March 2002) that the intention was to use print rather than the echo
command because of the former’s more powerful formatting capabilities,
which is not strictly true; it is the similar printf command, which is
used for sophisticated formatting. Generally speaking, the functionality
of echo varies from one Unix operating system to another, although
this is not relevant here since we are only concerned with AIX. You
should, however, get into the habit of using print rather than echo.

We used echo in the first example as a very rudimentary start to shell
scripting, but the following example shows how print and printf can
be used in shell scripts, and how useful they are for formatting text
output.

Before creating the shell script in this example we first have to create
a text file on which we are going to operate the script. To do this run
the command:

��������.��������������

This will create the vgs source file containing information on all the
volume groups that are currently active (varied-on) on your system.
View this file and you will see that it contains a series of lines for each

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

volume group, separated by blank lines. If your system has only rootvg
active, then you will see only the single entry.

What we want to do is create a script which extracts from the source
file the total size of the volume group and the amount of free space it
contains, and then format this output with a heading. Initially we will
be doing this only for rootvg, but as your skills develop we shall be able
to do this for all volume groups that are active on your system.

Create the script called vgsizes containing the following lines:

9:�;���L��

WG(������

&8DEA%(���

'8'?$()*��	�����)WG�)&8DEA%�.���	��F'8'?$�@@�F�.

�����������F*F�.����>�>�>+�>�.�������
-

"E%%()*��	�����)WG�)&8DEA%�.���	��F"E%%�@@�F�.

�����������F*F�.����>�>�>+�>�.�������
-

������)WG<�'�������K	�(�)'8'?$�=B<�"�		�����	�(�)"E%%�=B

�������F1��7��1�
V��1�
V�+�F�FW���	�G����F�F'�����&�K	F�F"�		�&���	F

�������F1��7��1�
V��1�
V�+�F�)WG�F)'8'?$�=BF�F)"E%%�=BF

�������F1��7��1
7��1
V�+�F�)WG�)'8'?$�)"E%%

�������F1��7��1
7����1
V���+�F�)WG�)'8'?$�)"E%%

�������F1��7��1
7��1
V�+�F�)WG�F)'8'?$�=BF�F)"E%%�=BF

The first two variable assignments set the names of the volume group
whose information is to be extracted from the source file, and the
pathname of the source. We have hard-coded the volume group name
whose details we want to extract in the VG=rootvg line, but you will
see later how we can pass the name as an argument to the script and so
give us greater flexibility in running the command.

In each of the lines setting the variables TOTAL and FREE, a series of
commands is contained within the construction $(. . .). This type of
construction is called command substitution and is discussed in detail
in a future article. For the time being, all you need to know is that the
variables are set to the final output of each group of commands.

If we look at these constructions we see that the first grep statement has
the -p option. This searches in the source file for the volume group
name contained within any paragraph, which is any group of lines
from a blank line (or start of the file) to the next blank line (or end of
the file). If the characters of the volume group name are not unique,
then we may extract more than one paragraph. You will find that grep

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

-p is very useful for extracting whole stanzas from files, such as those
contained in many AIX system files.

The next grep searches for the line in the output piped to it which
contains the appropriate ‘TOTAL’ or ‘FREE’ characters. This should
select the line containing, for example, the characters:

������'8'?$�@@&<�����/XY�*
Y
Z�	��;��	�-

The first cut command now extracts field two in its input line, where
we have defined the fields to be separated by the delimiter ‘(’. This will
extract only the characters we are interested in:

Y
Z�	��;��	�-

The tr command in the pipeline converts spaces to tabs since the next
cut command into which its output is piped does not have a field
delimiter specified with a -d option, and thus defaults to tabs. This last
cut command extracts the total size (or free size as the case may be),
which in this case is the characters ‘1916’.

The print command just gives standard formatting and is used here
only to show you the output. The first printf command, however,
produces formatted output, and the construction of the command is
similar to that used in C programming. The formatting characters are
contained within the first set of quotes after the command, and any
subsequent character strings, which may or may not be contained
within quotes, are the characters that are printed according to the
formatting instructions.

In our example the %-20s characters tell us that its output is going to
be a character string (the s part), 20 characters wide, and left-justified;
you can right-justify by excluding the minus sign. If you require a
group of characters containing spaces to be output to this field, then
you must enclose these characters in quotes, as we have done with
‘Volume Group’.

If in the formatting sequence you include characters that the system
does not recognize as a formatting sequence, then the characters
themselves will be printed. In our example we have included spaces to
make it easier to read, but you do not have to do this. For example,
printf "%-20s%-15s%-15s\n" is equally acceptable.

By default, printf does not print a carriage return at the end of each line

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

and so, if this is required, you must include one or more \n combinations
in the formatting string. These may be anywhere in the line to produce
carriage returns at selected locations, but in our example we have
included them only at the end of the formatting sequence, since this is
where we need the new line.

The remaining printf commands show you how the format can be
modified. %10d expects digits in the field to be displayed and in this
case will right-justify them. If in the string to be output you include any
characters other than numbers, you will get error messages that are
generated by the last printf command, because the character fields
contain the unacceptable ‘MB’ characters separated by spaces from
the actual digits.

The %10.2f format produces floating point output, ten characters
wide, with two decimal places. There are a number of other formatting
constructions used by printf and it is recommended that you view the
manual pages to familiarize yourself with these.

When you have created and run this script, try experimenting with
other formatting strings. Also add a further printf command so that
underneath the ‘Total Size’ and ‘Free Space’ parts of the heading there
are additional ‘in MB’ characters – perfectly lined up, of course!

One of the situations where you cannot use print is when you want to
use something like print -x. This will most likely give you an error
since the command will try to interpret the -x as a command line option.
If you just want to print out these characters, then you must use either
echo or printf.

EXAMPLE 1 – RECORDING MAIL SENT

The following example may not be particularly relevant in this day and
age, where mail is rarely sent from one Unix user to another using
standard Unix commands. However, the script is used to show what
can be achieved, and as you acquire further shell programming
techniques we will modify this script to make use of these.

Suppose you want to keep a copy of all electronic mail you send to your
colleague Fred. More specifically, he is an untrustworthy person and
you want to cover your own back by keeping a log file containing a
copy of each memo you send to him! Each item in the log file should

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

be preceded by a line stating the date the memo was sent. If you were
doing this from the command line you would use the following
sequence of events each time you wanted to send a memo to the userid
Fred.

You create a file, tmpfred, containing the memo, and record in your log
file the time and date you are sending the memo by entering:

���	������	����

You then append a copy of the memo to the end of the log file:

��������	�������	����

You add a blank line to the log file to separate this entry from the next
one:

������>+�>������	����

You then mail a copy of the memo to Fred:

������	�� �����	�

Now that you have a copy of the memo saved in the log file, and you
have sent a copy to Fred, you can remove tmpfred:

������	�

To make sure you understand what this procedure accomplishes, you
may want to send two or three pieces of mail to yourself. Look at your
log file periodically and make sure you use >>, not >, to redirect the
output.

To maintain a complete log of the mail you send to Fred, you would
have to repeat these six steps every time you wanted to send him a
memo. This would probably become so tiresome that you would soon
give up, so instead we will create a shell script that will perform each
of these steps automatically.

Create the following script, name it fredmail, and enter the following
lines:

9:�;���L��

$8G(��	����

'=@"#$%(����	�

���)'=@"#$%

���	����)$8G

����)'=@"#$%����)$8G

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

������>+�>����)$8G

������	�� �)'=@"#$%

��)'=@"#$%

After making it executable, on entering the command fredmail you
would start a vi editing session and create your memo. As soon as you
exited from the editor, the shell script would continue with the next
command, append the date, send the memo to your log file, mail the
memo to Fred, and remove the temporary file.

Try creating this shell script for a user you know to be on the system,
and send him or her a number of memos to test that it is working
properly. Or, alternatively, send them to yourself.

You will notice that we have used variables for the name of the log file
and the temporary mail file; we have used similar variables in the
previous example also. This is good shell programming practice, and
a habit you should quickly get into, since, if at some future date in this
example you want to change either the log file name or the pathname
of the temporary file then you only need to make a single change.

Tonto Kowalski
Guru (UAE) © Xephon 2002

Find the smit fast path to what you want

One of the really useful features of AIX is smit (the System Management
Interface Tool), and its text-based version called smitty. This is a menu-
driven facility for performing system-related tasks, and is always a
good starting point for performing tasks for the first time. It will prompt
you for whatever values are required for a given command and then
build and run the command for you.

One of the things that makes smitty really great is that it is completely
transparent and allows you to view the command it has built. So in the
future you can run the command natively yourself without using
smitty.

Another useful feature is a fast path option which will take you directly

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

to a specific command screen within smitty, saving you from having
to navigate through its menus.

However, sometimes you know exactly what you want to do but you
just can’t find it within smitty. The following script gets round this
problem by searching menus for a character string that you provide and
returns the menus that match, along with their fast paths. Additionally,
for the character string you enter, it will provide a list of menus you need
to select in order to navigate to it.

9:�����;���L��

9

9�&�����<����"���@���

9�?�����<�E��	��T��L����

9�?�<�����������������������

9[

��L(F�����;�����LF

;��	��	(F�����;���;��	��	F

��	�(F�����;�����	�F

���	�(F�����;������	�F

�	�(F�����;����	�F

����(F�����;�������F

��(F�����;�����F[

85=5#E(F�������;��;��	���F[

85=�A$?&&(F��	������F[

9

9�"��������

9[

����"���@���*-

2

	!�����85=5#E[

��	�L(>)���	��)85=�A$?&&�.

)�	��F�P+FP�P�F�.

)��L�>)
�((�F�	!����F�2������)�3>�.

)��	�����FO)"?&'@?'S)F�.

)��L�>%45�2������4E�3>�6[

����	���F)��	�LF�(�F7F

��	�

����@����;�	

	��	

����'�		

��

�	����

3[

����@����;�	*-

2

)���	��)85=�A$?&&�.

)�	��F�P+FP�P�F�.

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

)��L�>

)
�((�F�	!����F�2��!�(�)��3

)
�((�F�	!�F�2

�!�(�)�

����*��(/�0�� (4"�0�RR��-�2��!�(��!�F�F�)��3

�������!P�FHF��!�FIF

3

>�.

)��	�����F)"?&'@?'SF

�	����

3[

����'�		*-

2

)���	��)85=�A$?&&�.

)�	��F�P+FP�P�F�.

)��L�>

)
�((�F��	������F�2����(�FF�0����(�FF�3

)
�((�F��F�2����(�)��3

)
�((�F�	!����F�2��!�(�)��3

)
�((�F�	!�F�2

�!�(�)�

����*��(/�0�� (4"�0�RR��-�2��!�(��!�F\F�)��3

��������P��!P��!

3

>�.

)��L�>4"((��2�������3>�.

)�����.

)��L��������()"?&'@?'S�>

B%G#4�2

��;�(�7

���;�(�7

3

2

���H��;I�(�)

��	!�H��;I�(�)�

��	!�H��;I�(�)�[

RR��;

3

%45�2

����*����;(7�0����; ��;�0�RR���;�-

2

���*���	!�H���;I�:(������-

2

�������	

3[

���;�(�

����LH���;I�(����;

�����H���;I�(�7

��������(�F48F

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

����	�*����;�:(�7�-

2

���;�(�����LH���;I

������(������H���;I

����(����H���;I

��	!��(���	!�H���;I[

������(�F48F�999�$��L������	!���	�	��999

����*����;(������0����; ��;�0�RR���;�-�999����;�����	���������;�	

��;������

2

���*���	!�H���;I�((�����-

2

������(�FC%&F

��������(�FC%&F

�����H���;I�(����;�R�

RR���;

����LH���;I�(����;

;�	�L

3

3

���*�������((�F48F�-

2

���*���������((�FC%&F�-

2

��������(�F48F

RR���;

���������;P����;R
P����P���	!�

����*����;(���;�0����;�7�0�]���;�-

2

�����(�����LH���;I

���������;P����;P���	!�H����IP���	!�H����I

3

3

]���;

3[

3�999�%����������	������999

3

3

>�.

)��L�>

2

���*�)
�:(�����	���-

2

������(�)�

������F�F

3

����	���(�)

��������;���*F�FP
P�,*������)�--�)/P�FHF�)��FIF

3

>�.

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

)���F\F�F�F[

	���[

�	����

3[

9

9�&����������������	�����

9[

&AE#@'(>);��	��	�)7�>

"?&'@?'S(>	����F)
F�.�)�	��F�P+FPP�F�>[

����"���@���[

	!��

So, for example, if you wanted to find how to switch on async I/O you
could run the following:

9����"���@���������

?������������#�8�H���I

A����	���&����A������	�����������?������������#�8�H������I

E	��	�?������������#�80�^		��5	���������H�����I

A�������	�5	���	��?������������#�8�H������I

'���	�?������������#�8�H����	����LI

?������������?����	���H��������	��I

9[

Now you can enter smitty chgaio to go directly to the smitty screen for
switching on async i/o. Alternatively, if you wanted to navigate via the
smitty menus, you could enter the following to find out which options
to select:

9����"���@����������[

��E88'���H��E88'R��I

��E88'���H��E88'��I

&���	�=����		���H����	��I

5	���	��H�	�I

?������������#�8�H���I

A����	���&����A������	�����������?������������#�8�H������I[

9[

This tells you that from the first smitty screen, which is System
Management, you have to select the Devices sub-menu. Then from
there you select the Asynchronous I/O sub menu.

Roger Wickings
Systems Programmer
FT Interactive Data (UK) © Xephon 2002

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SAN basics

Like all system administrators for AIX systems, I have a varying array
of roles to fulfil. In larger IT shops our roles are very specific to AIX,
while in smaller organizations we tend to be ‘Jacks of all trades’.
Storage Area Networks (SAN) are one more area with which we will
all need some level of familiarization. While there is no feature in AIX
that addresses this directly, we, as sysadmins, will still be involved with
SANs in one capacity or another.

In our environment, I recently ran out of available direct attachments
from my (EMC) storage array to the Server environment. In order to get
around this, and continue to exploit the available resources on the
storage array, we had to introduce a switch in between the array and the
servers. This sounded, and is, simple enough, but the temptation was
there to let the term ‘SAN’ intimidate.

SAN IN A NUTSHELL

A SAN evolves, usually, from the need to provide portions of a storage
resource to more than one server, or endpoint. The resource will usually
be a storage array of the EMC Symmetrix type, IBM ESS (‘Shark’)
type, or others. A simple illustration would be two point-to-point fibre
connections – see Figure 1.

Figure 1: Two point-to-point fibre connections

Disk
storage

Disk
storage

Disk
storage

EMC
Fibre
Adapter

EMC
Fibre
Adapter

Server A
(RS/6000)

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

STORAGE ARRAY

For illustration/example purposes only, I’m indicating that there is only
one connection available from the fibre adapter to the Host Bus
Adapter (HBA) on the RS/6000 server. This is not the case in real life.
In this example we simply have two directly-attached connections
from the server to the storage.

Now let’s say we need to give access to some of the storage to Server
A and some to Server B. Rather than install two more fibre adapters
each time we need to add a server, a switch would be introduced.
Typically this switch will be eight ports or more, four of which are in
use, in this basic configuration – see Figure 2.

This is a SAN! Albeit, a very basic one. It is simply a closed network
or ‘fabric’ of storage resources.

Figure 2: Storage arrangement

Switch

Disk
storage

Disk
storage

Disk
storage

EMC
Fibre
Adapter

EMC
Fibre
Adapter

Server A
(RS/6000)

Server B
(RS/6000)

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

LOGISTICS – OVERVIEW

These steps are intended to be high-level, not specific, as that would
require a much longer article.

In the first, directly-attached storage example, you would have:

• Allocated one or more storage devices to each fibre adapter.

• Run cfgmgr in AIX on the server.

And your disk(s) would be available for use.

In the second SAN example, there would be a few additional steps:

• Allocate one or more storage devices to each fibre adapter.

• Create a zone on the switch that tells it which storage device(s)
each server (HBA) is permitted) to see.

• Run cfgmgr in AIX on the server.

There are a number of other details to attend to in the initial stages of
installing the SAN that are outside of the scope of this SAN introduction.
They mostly take place on the storage array and switch side to ‘mask’
LUNs (ie prevent them from being seen other than on the intended
server), define ‘World Wide Names’ for storage resources (kind of like
a MAC/NIC address for a disk resource), and things of that nature.

SAN TERMINOLOGY

Here are some definitions:

• Fabric – a network consisting of one or more devices.

• Domain – usually refers to one switch in the network/fabric.

• Node – a device in the network; server or storage.

• Initiator – a server node that initiates a request for data.

• Target – a storage device node that responds to an initiator.

• Port – a physical connection into a domain or node.

• WWN – World Wide Name, 64-bit unique address used to grant
permissions between nodes.

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

FURTHER READING

As mentioned, I’ve intended this to be a high-level introduction to
SANs, and hopefully to clarify a little of the mystique it has for some.

There is a wealth of material available for reading on the Internet.

Some links:

• http://www.gadzoox.com/san_library/whitepapers.html

• http://www.mcdata.com/servsupt/education/sanbasics/index.html

• http://www.brocade.com/san/white_papers.jhtml.

David Miller
Database Architect
Baystate Health Systems (USA) © Xephon 2002

AIX vulnerability

A security hole in software from IBM and Sun Microsystems could
allow hackers to take control of servers running in many corporations.
Researchers have uncovered evidence in Internet chat rooms that
hackers have already started developing tools to take advantage of the
vulnerability, which affects AIX Versions 4.3 and 5.1.

The hole is located in the ‘login’ program that allows people to sign on
to the operating system remotely by entering a username and password.
The vulnerability can be exploited only if certain remote command
protocols, such as Telnet, are enabled, which they usually are by
default.

The security hole is serious because of the amount of harm someone
could do were they to gain complete control over a vulnerable machine.
Once you have super-user access to a machine you can do anything you
want – modify files, create them, sniff network traffic, etc.

A fully supported and tested fix is now available from http://
sunsolve.sun.com/securitypatch.

© Xephon 2002

AIX news

NetIQ has announced the availability of the
first wave of its monitoring and management
support for Unix (IBM AIX, Sun Solaris,
HP-UX), Linux (Red Hat), and Novell
NetWare.

The new cross-platform AppManager
modules bring AppManager’s Windows-
based management and real-time diagnostics
capabilities to non-Windows platforms.

In addition, the new cross-platform Extended
Management Pack (XMP) modules will
extend Microsoft Operations Manager 2000
(MOM) to support centralized monitoring of
critical platforms beyond Windows 2000. So
it’s as easy to manage Unix as it is to manage
Windows.

For further information contact:
NetIQ, 3553 N First St, San Jose, CA 95134,
USA.
Tel: (408) 856 3000.
URL: http://www.netiq.com/products/am/
default.asp.

* * *

IBM has announced multi-year contracts and
simplified ordering processes through its new
Software Maintenance acquisition model,
which includes technical support for IBM
distributed software.

Replacing the existing Software Subscription
for AIX and OS/400 and stand-alone
upgrades previously ordered under each
licensed program, the new scheme enables a
single site or worldwide enterprise to
maintain software entitlement to current or
future versions or releases of the eligible
products during the Software Maintenance
contract period.

For further information contact your local
IBM representative.
URL: http://www-1.ibm.com/servers/
eserver.

* * *

CommVault Systems has announced support
for AIX and leading databases with the latest
release of Version 3.7.1 of CommVault
Galaxy.

The Galaxy approach offers a unified,
scalable data protection solution for
distributed, heterogeneous environments,
including AIX. With Galaxy, policy-based
data protection can be enforced across
operating environments and applications,
helping users simplify complex storage
networks.

For further information contact:.
CommVault Systems, 2 Crescent Place, PO
Box 900, Oceanport, New Jersey 07757-
0900, USA.
Tel: (732) 870 4000.
URL: http://www.commvault.com/
news_story.asp?id=120.

* * *

IBM has introduced entry level p610 Models
6C1 and 6E1, which run both AIX and Linux,
and are claimed to eat up 57% less electricity
and generate up to 63% less heat than a
comparable Sun box, while costing less. A
POWER3-II chip running at 333MHz is
available.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/servers.

� xephon

	Input and output redirection
	AIX application management
	Examples of shell scripts
	Find the smit fast path to what you want
	SAN basics
	AIX vulnerability
	AIX news

