/3

April 2002

]
In this issue

3 Input and output redirection
15 AIX application management
25 Examples of shell scripts

35 Find the smit fast path to what you
want

40 SAN basics
43 AlIX vulnerability
44 AlX news

© Xephon plc 2002

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

AlIX Update

Published by
Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38342

From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon

PO Box 350100
Westminster, CO 80035-0100
USA

Telephone: 303 410 9344

Subscriptionsand back-issues

A year's subscription to AlX Update,
comprising twelve monthly issues, costs
£180.00in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1998 issue, are available
separately to subscribersfor £16.00 ($24.00)
each including postage.

Al X Update on-line

Codefrom Al X Update, and completeissues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; youwill needto supply awordfrom
the printed issue.

Editors
Trevor Eddolls and Richard Watson

Disclaimer

Readers are cautioned that, although the
informationinthisjournal ispresentedingood
faith, neither Xephon nor theorganizationsor
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions

When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 wordsand £100
($160) per 100 lines of code for thefirst 200
linesof original material. Theremaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

© Xephonplc2002. All rightsreserved. Noneof thetextinthispublication may bereproduced,
stored in aretrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are freeto copy any code reproduced inthis
publicationfor useintheir owninstallations, but may not sell such codeor incorporateitinany
commercial product. No part of thispublication may beusedfor any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permitsare
availablefrom Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
Printed in England.

Input and output redirection

You should be aware that in this article we discuss only how the input
and output for commands can be redirected, not the various ways in
which scripts can receive their input, which will be covered in detail
in afuture article.

REDIRECTING STANDARD OUTPUT OF A SCRIPT

As you are no doubt aware, most commands get their input from
standard input, and send their output to standard output. By defaullt,
standard input is received from your keyboard, and, if a command
requires datafrom standard input, it waitsfor you to enter information
viathe keyboard. WWhen acommand sends data to standard output, the
datais normally sent to your terminal screen.

You can redirect the standard input and output of a shell script just as
you canfor any other command. Theoutput that appearsonyour screen
will be determined by how and where you redirect the output of
commands contained within the script itself.

In order to understand how thisworks, you should create three 2 or 3-
linetext files; for the purpose of this example we will call them filel,
file2, and file3. It may be easier to see what happensin the following
examples, if onefilecontainsonly numbers, thesecond only lowercase
letters, and the third only uppercase.

Create a shell script caled mysort, and enter the following lines:

sort filel
sort file2
sort file3

Now run the shell script after making thefile executable, and you will
seeasorted version of filel, followed by asorted version of file2, then
the sorted file3. However, if you invoke mysort with the command:

mysort > all_three

the output will be sent to the file all_three, instead of to your screen.

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 3

Suppose you change the contents of mysort to:

sort filel
sort file2 > file2_sorted
sort file3

Whenyourunthisnew versionyouwill now seeonly thesorted version
of filel, followed by the sorted file3. The output of the second
command has been sent to the file file2_sorted.

If you now redirect the output of mysort with:
mysort > just_two

you will see that the outputs of the first and third commands go to
just_two, and that of the second command is sent to file2_sorted. In
other words, if you redirect the input or output of acommand within
ashell script, then regardless of how the script isinvoked, the input or
output of that command will always be redirected as specified within
the script.

REDIRECTING STANDARD ERROR

Commands normally send their error messages to athird data stream,
standard error, which is a data stream much like standard output, and
can also be directed to afile instead of the screen. Programs usually
writetheir regular output to standard output, and their error messages
to standard error.

Because standard output and standard error are entirely separate data
streams, data that a command sends to standard error appears on a
user’s screen even when standard output has been redirected.

Normally you don't redirect acommand'’s standard error because you
want to see error messages displayed on your screen as and when they
occur. Thisis particularly important if you attempt to run a program
anditisunsuccessful. If you had redirected the standard error then you
would not know that the command had not executed until you
examined the output file.

File descriptors
There are occasions, however, when it isdesirableto redirect standard

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

error. For example, the C compiler, cc, may write many lines of
warnings and error messages to standard error if the program you
attempt to compile hasmany syntax errors. Examining these messages
carefully while looking at your program can best be done if you have
saved these messages in a file rather than displaying them on the
screen.

For example, to compile a program called prog.c and send any error
messages to afile named errors, enter:

CC prog.c 2> errors

In general, the notation 2> filename is used to redirect a command's
standard error; spaces are not alowed between the 2 and the >
character, although they are alowed between the > and filename. The
2 preceding the > is afile descriptor which stands for standard error.

Thereareal so other file descriptors associated with standard input and
standard output. These are O for standard input, and 1 for standard
output.

You can redirect standard output with the notation:
1> filename

or:

> filename

If you want to redirect standard output and standard error to the same
file, thereis a specia way of doing this, which is achieved by using:

2>81

You can think of the notation 2>& 1 asmeaning, send standard error to
the same place that standard output is currently going to. Similarly,
1>& 2 redirects standard output to the same place as standard error.
Any command such as:

command > filename 2>&1

will have both its standard input and standard output sent to filename.
If in the above example you reversed the order, namely:

command 2>&1 > filename

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 5

then standard error would be directed to the same place that standard
output is currently connected, which would be the terminal screen
since the redirection of standard output to filename occurs on the
command line only after the initial redirection of standard error.

When some commands are executed, messages are sent to standard
error which are merely advisory messages rather than an indication of
a particular error condition. For example, when you run the find
command as an ordinary user, many annoying messages will be
displayed on your terminal stating that you do not have access to a
particular directory.

In such asituation it is not necessary to read the messages since they
merely prevent you from actually viewing the pathname of thefileyou
are looking for, which can become lost amongst the large number of
warning messages displayed on your screen.

M essages such as these can be discarded, and this can be achieved by
redirecting standard error to the /dev/null file, which discards al data
that is sent to it:

2> /dev/null

Turning off standard error

An aternativeto redirecting standard error to /dev/null isto turn it off
completely. To do this the command should be of the form:

command 2>&-

This particular format can be used to turn off standard output with:
command >&-

and standard input with:

command <&-

You can turn on standard input, standard output, or standard error, once
they have been turned off, by issuing the commands:

exec < /dev/tty turns on standard input
exec > /dev/tty turns on standard output
exec 2> /dev/tty turns on standard error

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The exec command is covered in greater detail later in this article,
Although the above discussions have been directed at entering
commandsfrom thecommand line, they areequally applicablefor use
in shell scripts. Turning off standard error isfrequently used to get rid
of unwanted error or warning messages, for example when you want
to set the output of a command to a variable:

FILELIST=$(find . -name *log 2>/dev/null)

Thiswill create avariable containing alist of filesendingin‘log’, but
will not contain any of the usual find warning messages which we
would also expect to seein the list if we had not redirected standard
error. The construction ¥(. . . .) isaform of command substitution and
will be covered in greater detail in afuture article.

USING PIPELINESIN SCRIPTS
When the shdll sees a command of the form:

command_1 |

it knows that the command is not complete; if you are entering
commands from the command line, the shell will respond with the
secondary prompt until you typeintherest of the pipeline. If you enter
such acommand in a script, you can continue with the pipeline on the
next line.

For example, if you enter who | on the command line, then the rest of
the command, grep userid, can be typed at the secondary prompt. In
a shell script, however, this may appear as.

who |
grep userid

In general, any pipeline consisting of any number of commands may
be split across several lines, provided each new-line character occurs
after the ‘| symbol and before the next command in the pipeline. To
break up a pipeline anywhere else, a‘\' must precede the new-line
character, since the shell normally treats the new-line character as a
command terminator. A new-linecharacter followingthe‘| isaspecial
case, because there must always be acommand following ‘| .

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 7

REDIRECTION USING EXEC

Theexeccommand canbeusedtorenameor createnew filedescriptors.
To change standard input from the keyboard to afile, you can use the
command:

exec < file

Thecommandsto beexecuted will now beread fromfile, whichshould
contain a list of commands. After exec has finished executing the
commands, it will return to the parent of the process, which may result
in logging you off. Similarly, to change output redirection from the
terminal to afile, use the command:

exec > file

Once the redirection is no longer required, reassign the input/output
back to thekeyboard/terminal using theexec commandwiththevirtua
file /dev/tty:

exec < /dev/tty
or.:
exec > /dev/tty

To see how this works, enter the commands:

exec > filed
cat filel

cat file2

1s -1

exec > /dev/tty

You will note that each time you enter a command, no output is
displayed onthe screen sinceitisall sent tofiled. View the contents of

filed and you will see that the output from each of the commands has
been appended to filed.

So when do we use exec in shell scripts? Quite often it is used within
the.profilefileof userswho arerequiredto runaparticul ar application,
but do not require a command prompt, either for security reasons or
because the user wouldn’t know what to do if confronted with the
prompt. Usually the last entry in .profile is something like;

exec application

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

so that whenthe user exitsthe application they areimmediately logged
off. Thisassumesthat thereis no possibility of the user *shelling out’
from the application, otherwise thereis not much point in placing the
line in the user’s profile.

A further use of exec in scripts is when, for example, you want to
redirect the whole of standard output or standard error for the script to
log files. You can achievethisby placing linessimilar to thefollowing
at the top of the script:

exec > log
exec 2> errlog

These commands are suitable provided that you want all script output
to besent to the specifiedfiles. If thisisnot the casethen you may have
to redirect output for specified commands to other files.

Command linecontrol using xargs

While on the topic of 1/O redirection, let us consider a very useful
command, xargs, which is used to manipulate the output from
commands and is used extensively both from the command line and
also within shell scripts.

When the system runs a command, the kernel provides a buffer to
preserve the command and all its arguments, and under certain
circumstancesitisnot difficult to exceed the buffer limit. For example,
when you are using filename generation characters to specify filesto
be run against acommand, the buffer size will be easily exceeded if a
large number of filenames is generated, each with along pathname.

The xar gs command can be used to get round this upper limit, and it
can be used to generate a series of commands from alist of filenames,
or from other information supplied to it. xargs will read successive
lines from its standard input, break the lines into words separated by
spaces, reassemble the words into commands, and then pass the
generated commands one by one to the shell for execution. It will
always discard empty lines.

The command linesgenerated by xar gsdiffer from those generated by
the shell with wildcardsin oneimportant respect: xar gswill not build

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 9

a command line longer than some reasonable upper limit. If the
command line is likely to exceed the length limitation, xargs will
distributethefilenamelist over two or more generated command lines.

As an example, xargs can be used to provide a handy check for
common filenames located in two directories. For example:

cd dirl; 1s | (cd ../dir2; xargs 1s 2>&-)

Thelist of filenamesgenerated by thefirst Iscommand isconverted by
xar gsinto aseries of explicit Iscommands, which are executed in the
other directory. Files that cannot be found result in the printing of an
error message, and turning off standard error will discard these
messages. The only output seen isthelist of files that are common to
both directories.

There are a variety of options available to xargs for controlling
command lineformatting. Supposewewantedto copy anautomatically
generated list of filesto aspecified directory. The normal command to
do thisis:

cp filel file2 file3 dirname

Unfortunately this does not match the xargs style of generating
commands. The solution, however, isto use the -i option:

1s dirl | xargs -i% cp % dirz

This causes xar gsto substitute one word from standard input for each
occurrence of the character % in the command line; no spaces are
allowed between the -i and the %. This construction results in the
execution of a series of commands.

cp filel dirname
cp fileZ dirname

You can use any string or character following the -i option. For
example, you could use:

1s dirl | xargs -iFILE cp FILE dir2

Thedefault stringisapair of braces, and thefoll owing command takes
advantage of this fact:

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1s dirl | xargs -i mv {}.log {}.old

Another useful option to xargs is the -p option, which can be
effectively used only fromthecommand|ine. Thisoption causesxar gs
to prompt for permission to execute each generated command before
passing the command to the shell. This could be used in the copying
example above, wherethelist generated may contain directory names
so that you can be given the option not to run the command against a
directory name.

The-n option aso alowsyouto limit the number of arguments placed
on the generated command line. For example:

xargs -n2 diff <<END
filel file2 file3
filed file5 file6

END

This construction (explained in the next section) runs a series of diff
commands, each containing two filenames (generated by the -n2
argument):

diff filel file2

diff file3 file4
diff fileb file6

HERE DOCUMENT

In the above example, the <<END and END words define a ‘here
document, which usesthetext entered between thetwo END keywords
as standard input for the xar gs command, or any other command for
that matter. Thekeywordsdo not haveto be END, but canbeany string
or sequenceof characters, insertedeither directly intotheheredocument,
or by using command substitution; END and EOF are commonly used
keywords.

When you run acommand such as the previous xar gs command from
the command line, you will be prompted with the secondary prompt
until such time as you enter the terminating second keyword.

If you run such acommand in ashell script, you should ensurethat the
first keyword ison the samelineasthe‘<<’. Thefiles, or other string

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 11

of characters, on which you want to run the command are then placed
on any number of following lines, and the terminating keyword is
placed on aline of its own, unless there is redirection.

If you intend to redirect the output of the command you are using with
xargs, and at the same time use the here document format, then the
redirection in a shell script can be done as follows:

xargs -n2 diff > outfile <<END
filel file2? file3 file4 file5 file6
END

or.

xargs -n2 diff <<END > outfile
filel file2 file3 file4 file5 file6
END

A common use of the here document in shell scripting isto use cat to
echo strings to the screen. For example:

cat <<%
stringl
string2

%
Itisnot necessary to enter only text stringswithin here documents; the
output of commands can aso be supplied. For example:

cat <<% >> logfile

“date’

“who’

%

Inthisexampl etheoutput generated from thedateand who commands
is supplied by the here document as input to cat. This type of here
document uses backquotes () for command substitution. This is
covered in detail in afuture article.

You may al so seestrange-looking heredocument constructionsin shell
scripts. For example:

restore -tvf /dev/rmt@ <<EOF

EOF

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You may find something like this in a script which creates a system
back-up, and then tries to verify the back-up after rewinding the tape
and skipping to the tape block containing the backed up files; if we
encounter no error conditions during the restore (in this case just a
read) then weassumetheback-up wassuccessful. Theseemingly blank
line actually contains a <CR>, which is required because the restore
command asksyou to mount volume 1 and press Enter so that the here
document supplies the carriage return to the command and it then
continues without user intervention.

Here documentsare frequently used to provideinput for commandsor
scriptsthat are run by cron. Since cron often runs commands at times
when auser would not normally be present to enter the input, the here
document allows the input to be supplied automatically.

As afurther example, suppose an application is required to be started
without user intervention, and in order to start the application alogin
IS necessary. This login may need both a userid and password to be
entered beforeit can be started. Thiscan be donewith ahere document
such as:

app_start << END
userid_string
user_password_string
END

The userid and associated password must be entered in the script as
aboveand will automatically besupplied to app_start. When app_start
first asksfor thelogin name, it will be obtained fromthefirst lineof the
here document. Similarly, the password will be obtained from the
second line. In situations like this, the permissions on the script must
be carefully controlled to prevent unauthorized access to thefile.

Thistypeof script canbeusedtoalow loginswithout user intervention.,
Some applications, however, insist they receive standard input from
the keyboard so that the userid and password cannot be supplied from
aheredocument; rloginisjust such anexample. Inmany casestheonly
way to find out whether you will be successful isto try it and seel

You should be aware that here documents take as input al the
characters contained on each line between the keywords, and thismay

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 13

give you unpredictable results. For example, suppose you had a shell
script and you wished to indent the here document to make the script
easier to read. If you had a construction such as.

if oL .
then

app_start <<END
userid_string
user_password_string
END

fi

then both the userid string and user_password_string lines would
includeintheinput to app_start the spaces or tabs from the beginning
of theline, and thiswould mean afailed login. You can overcomethis
by using the construction:

if oo .
then

app_start<<- END
userid_string
user_password_string
END

fi

The <<- (thelast character isaminus sign) tells the system to ignore
tabs at the start of the line and thus allows formatting which is more
readable.

You should be aware that if you use this construction then the line can
start with either multipletabs or asingle space. Since you cannot often
distinguish between spaces and tabsduring avi editing session (unless
youhaveused:setlist), you must exercisesomedegreeof caretoensure
that you get the correct input to your command.

Tonto Kowal ski
Guru (UAE) © Xephon 2002

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

AlX application management

FEARS AND NEEDS

Once | was asked to come and help upgrade an AIX machine. “Itisa
standard job”, | thought. But coming to the data centrethe I T manager
told meto comeback another day. The administrator who managed the
application running onthat particular machinehad had an accident. No
other person or documentation could help me stop and start it. His
back-up administrator had |eft the company some weeks before.

Imagine that for some reason the application had stopped. In that data
centrethey would have called the hotlineto the software company that
sold them the application. This means external helpisneeded. Thisis
no way to deal with a business critical application (see aso Alan
Prangley, Safetynet, How to keep disaster at bay, published in Help
Desks, Call Centres, and The Future, Xephon, July 1999).

A day lost by restarting abusiness-critical application may beanail in
thecoffinof your company. Thereforetheadministrator should provide
some documentation for managing his basic tasks. There are many
caveatsin case of error or during certain complex operations, but this
isnoreasonfor non-provisionof simplebasi cdocumentation. Consider
the aternative — to attempt arestart without knowing anything.

HACMP helps you to restart your applications on another AlIX
machineif the primary onefails. Thereforeit also solvesthe problem
of stopping and restarting theapplication. Sincenearly all softwarecan
beincorporatedintoaHACMP cluster, it provesthat using such scripts
Is not impossible (Ole Conradsen et a, HACMP/ES customization
examples, IBM Redbook 2000 cf Appendix A).

CREATING DOCUMENTATION

The main objective of adata centre isto provide continuous service,
In order to achieve this, the data centre will need to provide:

» A (searchable, electronic) diary of incidents and their solutions.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 15

* Mechanismsand precautionswithinthesystemtoavoidincidents.
* Mechanisms within the system to allow quick recovery.

* Printed documentation dealing with events outside the system
concerned.

* Organizational structures to support decisions and actions in
critical situations,

The system administrator’s job is to provide an appropriate recovery
procedure when some application or service fails. There are severd,
often quite different, steps and solutions needed to reach this single
objective. It is achallenge to structure and bundle the known actions
for keeping the application or service available. Moreover all findings
should be documented and accessible where they are needed.

Consistency problemsbetween documentationand application handling
can be avoided when both tasksare unified, iethe application handling
Is done, for example, by scripts that provide good documentation as
well. On the one hand the documentation will be complete since the
script wouldn’t run otherwise, and on the other hand the scriptsmay be
better understood since they are intended to document the system.

There are no clear conventions on where to put these documented
scripts; some prefer to put theminto /usr/local/bin, others prefer to put
themwith theapplication or themiddlewareinstallation directory /usr/
sbin/cluster/local, or elsewhere. | think thisisaquestion of philosophy
and can be solved on another level: since all AlX administrators use
SMIT it is probably a good idea to use SMIT for starting your
applications as well, independently of HACMP.

MANAGEMENT SCRIPTS

Lessonsfrom HACMP

Besides the handling of topology and resources, HACMP needs start
and stop scripts for each application (HACMP 4.4.1 Installation
Guide; Chapter 12: Configuring Cluster Services). Those scripts
(HACMP/ES Customization Examples cf Section 7.1.2) need to
support an unattended startup and shutdown of each application.

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

HACMP launches an application server as part of the HACMP startup
or shutdown sequence. The application server executes a predefined
script to start or to stop an application. At this point, the applicationis
started or stopped in the background without any intervention. The
non-interactive startup or snutdown is important to ensure that the
application is launched or stopped with the fail-over sequence to
minimize the startup or fail-over time, thus minimizing down time.

These scriptswill improvewith frequency of usage. Theaccumulation
of experience of the system administrator isbest hard-coded into these
scripts. If there is no ssimple way to work around known difficulties
automatically, it isalwaysagood ideato state them asacomment and
describe a likely way to handle them. It is always a good ideato use
these scripts during everyday work.

Using SMIT

The application registration script in this article allows you to add a
menu to your SMIT’s top level menu Applications, which isinitially
empty. Within thisarticle the application registration script will not be
discussed, but the input parameters it requests will be. They are:

 Application Name — the name of the instance that should be
stopped or started. It should, for example, not be called SAP, but
SAP instance POl. Otherwise you might have difficulties
distinguishing the instances.

 Usar Name—the name of the account that should be used to start
and stop the application. If alogin to thisaccount fails or the user
IS unknown it will be set to root.

o Start Script—ashell script that isalready discussedinthe previous
section aswell asin the next one. Only existing executabl e scripts
will be accepted.

o Stop Script—ashell script that isalready discussedinthe previous
section aswell asin the next one. Only existing executabl e scripts
will be accepted.

When adding applications to the menu, they should be placed in an
appropriate order. For aninexperienced administrator, it istheneasy to

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 17

start task by task and to stoptheminreverseorder. Sincethescript from
this article sorts the entries by the time of registration, you should
consider this when adding the applications.

During the registration, a sequence of commands is written to afile,
which can be used to remove the items from your SMIT menus. You
should not lose it, since removing the items without knowing the IDs
may result in some work in retrieving the information by executing
odmget on sm_cmd_hdr and sm_menu_opt. You may look for the
strings appearing in your menus. Be sure you make a back-up and
ensure that you know what you are doing before going ahead (see
Siegert, Andreas. The AlX SQurvival Guide, Addison-Wesley, 1996).

A shell program to enable the starting and stopping of applications
using SMIT:

#!/usr/bin/sh
R
H#t

Description:

Hi This shell script adds a submenu with start and stop option to
H# your SMIT's top level menu APPLICATIONS which is initially empty.
HHt (This script is not originated or officially supported by IBM.)
H#t

HHHHH AR

H#Ht You need to provide some parameters:

Hi APPS: the exact name of what application you want to control
Hi USER: the user to execute the start and stop scripts

Hit STOP: the script to stop the application

H#Ht START: the script to start the application

HH

HHHH AR HHHH AR

HHBHH R R R R R
#

Some example settings for those people reading this file
#

HHHHHHHH R R
USER=p@ladm

APPS="SAP instance P@1"
STOP=/home/p@ladm/stop_sap
START=/home/p@ladm/start_sap
HHHHHHH AR R
#

Getting some parameters from the administrator

(admin=the one calling this script)
#

R

HHHH AR

HHHH AR

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

HHHHHHHHH R
Cat <<k %%k

You are currently executing a script to add

a start and a stop script to your SMIT menu
called "Applications" (top level) for one of
your applications. Please enter the data now.

k

/usr/bin/echo "\tthe name of the application > \c"

read APPS

until [-x $START]

do
/usr/bin/echo "\tthe fqpn of the start script > \c"
read START

done

until [-x $STOP]

do
/usr/bin/echo "\tthe fqpn of the stop script > \c"
read STOP

done

/usr/bin/echo "\tthe user logname to execute them > \c"

read USER

#/usr/bin/echo "\tthe fastpath you want to suggest > \c"

#read NAME

#
Some strings must be prepared before writing stanza file
#

su - "$USER" -c /usr/bin/date >/dev/null 2>&1
see whether a "su" works

if [$? -ne @ -0 -z "$USER" -0 "$USER" = "root"]

then
USER wasn't named or is root anyway; just execute the script
EXEC=""
USER="root"

else
ensure the user is set correctly before start script
EXEC="/usr/bin/su - $USER -c "

fi

if [-z "$NAME"]

then

The value of NAME is your fastpath !!!

set NAME to the last token if it is most specific
#NAME=$ (echo "$APPS" | sed 's:[* J[* I* ::g9")

set NAME to the acronym, which is 1ikely to be duplicate
#NAME=$ (echo "$APPS " | sed 's:\(.\)["* I[* I* :\1l:g")

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 19

this one is more reliable, but more likely a "slowpath™”
NAME=$(echo "$APPS" | sed 's: ::g')

fi

ODMDIR=/usr/1ib/objrepos

SEQN=$(date +%Y%m%d%H%M%S)

Cat <<k %k

Your parameters are

Name of the Application: $APPS
Application start script: $START
Application stop script: $STOP
User to call both scripts: $USER

Please press ENTER to extend smitty or press CTRL-C to abort

-
read X
echo "\t\t\t... adding your menu now ... \n"

#
Writing stanza file and add it to ODM in file:/usr/1ib/objrepos/
#

cat <<*** >/tmp/smitty.add
sm_menu_opt:
id_seq_num = "$SEQN"
id = "apps”
next_id = "$NAME"
text = "Manage $APPS"
text_msg_file = ""
text_msg_set = @
text_msg_id = @
next_type = "m"
alias = ""
help_msg_id =
help_msg_loc = ""
help_msg_base = ""
help_msg_book = ""

sm_menu_opt:
id_seq_num = "$(/usr/bin/expr 1 + $SEQN)"
id = "$NAME"
next_id = "start$NAME"
text = "Start $APPS"
text_msg_file = ""
text_msg_set = 0
text_msg_id = @
next_type = "d"

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

alias = ""

help_msg_id = ""
help_msg_loc = ""
help_msg_base "
help_msg_book =

sm_cmd_hdr:
id = "start$NAME"
option_id = "Opts$NAME"
has_name_select = "n"
name = "Start $APPS"
name_msg_file = ""
name_msg_set = @
name_msg_id = @
cmd_to_exec = "/usr/bin/su - $USER -c $START "

ask = "n"
exec_mode = ""
ghost = "y"

cmd_to_discover = ""
cmd_to_discover_postfix = ""
name_size = 0@

value_size = 0

help_msg_id = "@"
help_msg_loc = ""
help_msg_base "
help_msg_book = ""

sm_menu_opt:
id_seq_num = "$(/usr/bin/expr 2 + $SEQN)"
id = "$NAME"
next_id = "stop$NAME"
text = "Stop $APPS"
text_msg_file = ""
text_msg_set = 0
text_msg_id = @
next_type = "d"
alias = ""
help_msg_id = ""
help_msg_loc = ""
help_msg_base = ""
help_msg_book = ""
sm_cmd_hdr:
id = "stop$NAME"
option_id = "Opts$NAME"
has_name_select = "n"
name = "Stop $APPS"
name_msg_file = ""
name_msg_set = @

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement.

name_msg_id = @

cmd_to_exec "$EXEC$STOP "
ask = "n"
exec_mode =
ghost = "y"
cmd_to_discover =
cmd_to_discover_postfix = ""
name_size = 0@

value_size = 0

help_msg_id = "@"
help_msg_loc = ""
help_msg_base =
help_msg_book = ""

*k*k

/usr/bin/odmadd /tmp/smitty.add
return=$?
/usr/bin/rm -f /tmp/smitty.add

#
Allow easy removal of the new menu entries
#

cat <<*** >$HOME/not$NAME

ODMDIR=/usr/1ib/objrepos

odmdelete -0 sm_menu_opt -q id_seq_num="$(/usr/bin/expr @ + $SEQN)"
odmdelete -0 sm_menu_opt -q id_seq_num="$(/usr/bin/expr 1 + $SEQN)"
odmdelete -0 sm_menu_opt -q id_seq_num="$(/usr/bin/expr 2 + $SEQN)"
odmdelete -0 sm_cmd_hdr -q id="start$NAME"

odmdelete -0 sm_cmd_hdr -q id="stop$NAME"

* %%

chmod a+x $HOME/not$NAME

echo "\n\tThe menus will be removed from your menus by \"$HOME/
not$NAMEN"."

#
Our work is done now ; terminate happily
#

echo "\tThe fastpath to the applications menu is \"apps\"."

echo "\tThe fastpath to your application is \"$NAME\"."

echo "\tThe fastpath to stop your application is \"stop$NAME\"."
echo "\tThe fastpath to start your application is \"start$NAME\"."
exit $return

Start and stop scripts

Theconstraintsfor the start and stop script aresimilar totheonesgiven
by HACMP, eg:

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

e There must be no prompting for user inpuit.
* |t should be tolerant of inappropriate execution.

» |t should handle a second attempt to start an application after
failure for some condition which was subsequently corrected.

Please notethat thereisnorestriction on displayinginformationduring
the execution of the start or stop scripts. If one fails, the analysisis
simplified by reading a rather verbose sequence of messages rather
than only a concluding note stating success or failure.

AUTOMATION

The previousdiscussion focused on two aspects of manual application
handling. These aspects may be extended to total automation:

 Automated startup
* Automated stopping.

Automated startup

For the startup process of acomputer, there are different philosophies.
If you follow the ‘Windows -philosophy, you designate a single
computer to asingle application. Therefore you expect that restarting
the server machine also means restarting the application. (Server
originally described the communication part of application software.)

The ‘multi-tasking’ philosophy detaches the layer of starting the
hardware from starting the software. Whether it is better to start
applications automatically at boot time or manually later cannot be
answered briefly and can depend on the exact situation. Nevertheless,
the manual startup should always be implemented.

If an automated startup processis selected, thereisusually oneway to
do it —adding the service to the standard startup sequence. Within the
/etc/inittab there are usually services started that are expected to be
present al the time during system uptime. These should beinsensitive
to shutdown commands and not depend on resources, like network file
systems or directories that are not on volume groups, that start later
with autovaryon.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 23

If theapplicationistobedetached soit runsinthebackgroundit should
be added to the /etc/inittab by executing:

mkitab "myapp:2:once:/my/app/startup </dev/null >/dev/console 2>&1"

where /my/app/startup should be the standard startup file for the
application tagged myapp.

If theprocessto bestartedisrobust, it may bestartedinforeground, and
iIf it needs to be present all the time it may be started as respawning:

mkitab "myapp:2:respawn:/my/app/startup </dev/null >/dev/null 2>&1"

The respawning action ensuresthat the program will be restarted each
time it leaves the process table. It respawns too rapidly if the script
terminates while the task has not yet been performed. If you are
unfortunate, themachine’ smemory runslow, the CPU getsoverl oaded,
and you haveto correct the script by booting in maintenance mode. Be
careful to avoid such unpleasant situations.

Putting the application startup into /etc/rc.tcpip, or similar, is another
way tostartit, but, inprinciple, thisisanother stepin cascading thestart
script. It increases the complexity.

Automated stopping

All applications must be stopped beforeasystem shutdown. Otherwise
information will not betreated asthe application thinksnecessary. The
standard AlX method is adding the stop script to /etc/rc.shutdown.,
Thisfile doesnot exist by default — createit and add all stop scriptsin
the correct order, which is usually the reverse of the one for startup.

In al situations where a proper shutdown is possible the script /etc/
rc.shutdown will be executed. There are Situations you may not be
awareof, for exampleif your UPSbatteriessignal that they arerunning
out of power, or the system overheats because of stopped fans. It is
rather unlikely that you will be ableto catch all those eventsmanually.
The rc.shutdown will handle that for you.

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSION

This document shows the need for a standard way to manage at least
your business-critical applications. It is intended to help you to
Increase your computer centre’ savailability, where avail ability means
the usability of applications. It also recommends a standard way of
dealing with your applications by focusing on the most important
parts. Therefore only starting and stopping is described here. Some
technical support is provided to achieve this objective.

Andreas Neuper
PROFI Engineering Systems AG (Germany) © A Neuper 2002

Examples of shell scripts

The best way to start to learn when and how to write shell scriptsisto
look at thefollowing examplesand try writing thescriptsinvolved. The
first exampleisavery trivia script and can beignored if it isbeneath
your dignity to create it!

EXAMPLE 1-SIMPLE ECHO SCRIPT

Often you can save yourself alot of typing by creating a smple shell
script. For example, for most ASCI | terminal typestheclear command
will clear dl charactersfromthescreen. Someterminal types, however,
may not support the clear command, and you can create asimple shell
script named cl that will perform the same task.

Oneway toclear thescreenisto usetheecho commandto send 24 new-
line characters to your screen. The echo command interprets the pair
of characters\n as a new-line character.

We use single quote marks around the argument to echo because the
backdlash, ‘\', has a special meaning to the shell. Since we want it to
be passed to echo without being interpreted in its normal way by the
shell, the quotes will protect everything within them from such an
interpretation.

When you edit the cl file, enter the following:

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 25

#1/bin/ksh
echo '"\n'

Use the chmod command to make it executable and place it in your
$HOME/bin directory. Thereafter, whenever you enter cl, the screen
will be cleared.

Thisis obvioudy not the ssimplest or most desirable command to use
in this particular shell script to achieve a clearing of the screen for
terminal typesthat support theclear command, but theexamplemerely
serves to show you what can be achieved with a ssmple script.

You could, for example, have entered clear inthe script (provideditis
supported by your terminal) instead of the echo command, and this
would have produced the sameresult. In any event, it would normally
not be worthwhile creating such afilein order to save typing in three
extra characters!

EXAMPLE 2-COUNTING WORDSIN FILES

By their nature, Unix and A1X contain many complex commandswith
multiple command line options, which are often difficult to interpret,
and almost impossible to remember in full.

The following script uses the tr command, which has particularly
complex constructionsfor itscommand line arguments. It may takean
age to learn these in order to run the command just once from the
command line, and of course the next time you want to use it for the
same purpose you have forgotten the construction. Scripts like the
following make life much easier, at least temporarily!

Suppose, for example, you wanted to print both alist of each of the
words containedin afile and the number of timeseach word was used.
In order to createascript to dothis, first create atext file named mytext
containing the following two sentences:

Hello, I'm a simple text file.
I don't contain much text but I do contain a little.

What you now want to do isproducealist which cal cul atesthe number
of times aword is used in the file and display the output in a format
similar to:

2 a 1 file 1 Tittle

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1 but 1 hello

Thestrategy wewill useisto break thefileinto alist of words, sort the
list so that repeated words will be on consecutive lines, count the
number of timeseach word isrepeated, and finally producealist of the
words, each preceded by a count of the number of times it appeared.

Thetr command isused to break up thefile, oneword per ling, and the
sort command is used to sort the list. The unig command removes
duplicate words and counts the number of times each word occurs.
Finally the little used pr command is used to format the list.

The sequence of commands will look something like:

tr arguments < mytext | sort | uniq | pr

The format of the tr command is:
tr [options] stringl string2

and the command replaces each of the charactersin stringl with the
correspondingcharacterinstring2. It doesnot changeawordrepresented
by stringl with aword represented by string2; the trandation is from
a single character in the first string to the corresponding single
character in the same position in the second string.

To first change al the uppercase letters in mytext to lowercase, you
would enter the command:

tr -A '[A-Z]' '[a-z]' < mytext

The A-Z and az are shorthand notations for A to Z and a to z
respectively, and must be enclosed in square brackets. When these
abbreviations are used, they must also be enclosed in quote marks to
ensurethat theshell interpretsthe square bracketsasboundariesfor the
shorthand notation, and not just as square bracket characters.

The -A option tells tr to perform al operations using the ASCII
collation order. Depending on your current version of the operating
system, if you do not use this option you may get some strange and
unpredictable results when dealing with strings and characters.

Tobreak up mytext, oneword per line, weneedtoreplaceall spacesand
punctuation marks with new-line characters. This can be achieved

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 27

with the following command:
tr -scA "[A-Z][a-z]'-" '[\@12*]' < mytext
Try this command and note the output it produces.

The-coption (for complement) instructstr toreplaceall charactersnot
found inthefirst string, which in this case means al characterswhich
are not uppercase letters, lowercase |etters, apostrophes, or hyphens.

Notethat thequotemarksaroundthefirst string aredoublequotes. This
IS because the first string itself contains an apostrophe, which is
equivalent to asingle quote, and the only way to quote a single quote
is by surrounding it with double quotes. More on quoting later.

The-soption (for squeeze) causestr to avoid generating two characters
from the second string in arow. In this case, the -s ensures that there
will not be any blank linesin the output, which would occur if two or
more new-line characters were generated.

Any character not contained in the first string, in other words any
character that isnot part of aword, will bereplaced by acharacter from
the second string. In this case we want to replace any character that is
not part of aword with anew-linecharacter, so the second string should
contain only new-line characters.

A new-line character can be specified by using its ASCII Octal code,
012, preceded by a backdash. Since the number of charactersin the
first string must equal the number of characters in the second string,
placing an asterisk after the new-line character and enclosing it in
squarebracketsindicatesto the shell that the new-line character should
be repeated as many times asis necessary to pad out the second string
to equal the length of the firgt.

Sincetheexpression\012* isan abbreviation for astring consisting of
many new-linecharacters, it must bequoted. Instead of using\012, you
can use the alternative for new-line characters, \n.

You should now be able to see how the command works. It reads its
standard input, mytext, and copies it to standard output, your screen,
replacing al characters that are not part of a word with a new-line
character.

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Consider thefollowing shell script which makesuse of thetr and other
commands;

#!/bin/ksh

tr -A '[A-7Z]" '[a-z]' < mytext |

tr -scA "[a-z]'-" '[\@1l2*]" |

sort |

uniq -c |

pr -3 -t

The first tr command gets its standard input from mytext. The
commandtrandatesall theuppercaselettersinthefiletolowercaseand
the result is piped to the second tr command. The conversion is
necessary because uniq normally considers capitalized words to be
different from uncapitalized onesand wewant wordssuchas‘ The' and
‘the’ to be considered the same.

The second tr command substitutes a new-line character for each
character that is not aletter, hyphen, or apostrophe. Thiscommand is
dightly different from the one shown earlier because the input to this
command will not contain any uppercase |etters.

The resulting list of words is passed as input to the sort command,
which processes them so that repeated words appear on consecutive
lines.

Thesorted list isprocessed by uniq -c, which outputseach uniqueline
preceded by acount of the number of timesthat theline appeared. The
list is sorted before being passed to uniq because uniq notices that a
given lineisrepeated only if the lines are adjacent.

Finally, the output from uniq is piped to the input of pr -3 -t, which
outputs a 3-column paginated version of the list without the usual
header.

To understand how this shell script works, you need to see the output
at each stage in the pipeline.

You can use an editor to produce your own copy of the script named
word_count, but you will probably find it more helpful if you redirect
the output of each command line to a series of files as shown below.

At the shell prompt, type the first command and instead of typing ‘[,
redirect the output to templ:

tr -A '[A-Z]' '[a-z]' < mytext > templ

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 29

Now look at templ and see how it differsfrom mytext. You can dothis
with the command:

pr -mt mytext templ | pg

Next, enter the second line of text at thecommand line, taking theinput
from templ, and redirect the output to afile called temp2:

tr -scA "[a-z]'-" '[\@12*]' < templ > temp?2

Now compare templ with temp?2 to see what the command did. Usea
similar command to the pr -mt command above.

Then enter the following commands, comparing the input and output
files of each command before running the next:

sort <temp2 >temp3
uniq -c <temp3 >temp4
pr -3 -t <temp4 >tempb

EXAMPLE 3-USE OF PRINT AND PRINTF

We said in an earlier article (Shell script basics, AlX Update Issue 77,
March 2002) that the intention was to use print rather than the echo
commandbecauseof theformer’smorepowerful formatting capabilities,
which is not gtrictly true; it is the similar printf command, which is
used for sophi sticated formatting. Generally speaking, thefunctionality
of echo varies from one Unix operating system to another, although
thisis not relevant here since we are only concerned with AlX. You
should, however, get into the habit of using print rather than echo.

We used echo in the first example as avery rudimentary start to shell
scripting, but the following example shows how print and printf can
be used in shell scripts, and how useful they are for formatting text
output.

Before creating the shell script in this example we first haveto create
atext file on which we are going to operate the script. To do thisrun
the command:

1svg -0 | 1svg -i > vgs

This will create the vgs source file containing information on all the
volume groups that are currently active (varied-on) on your system.
View thisfileand you will seethat it containsaseries of linesfor each

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

volumegroup, separated by blank lines. If your system hasonly rootvg
active, then you will see only the single entry.

What we want to do is create a script which extracts from the source
filethetotal size of the volume group and the amount of free space it
contains, and then format this output with a heading. Initially we will
bedoingthisonly for rootvg, but asyour skillsdevelopweshall beable
to do thisfor all volume groups that are active on your system.

Create the script called vgsizes containing the following lines:

#!/bin/ksh

VG=rootvg

SOURCE=vgs

TOTAL=$(grep -p $VG $SOURCE | grep "TOTAL PPs" |
cut -f2 -d "(" | tr " " '\t' | cut -fl)
FREE=$(grep -p $VG $SOURCE | grep "FREE PPs" |
cut -f2 -d "(" | tr " " '\t' | cut -fl)

print $VG: Total size = $TOTAL MB: Free space = $FREE MB

printf "%-20s %-15s %-15s\n" "Volume Group" "Total Size" "Free Space"
printf "%-20s %-15s %-15s\n" $VG "$TOTAL MB" "$FREE MB"

printf "%-20@0s %10d %15d\n" $VG $TOTAL $FREE

printf "%-20s %10.2f %15.2f\n" $VG $TOTAL $FREE

printf "%-2@0s %10d %15d\n" $VG "$TOTAL MB" "$FREE MB"

Thefirst two variable assignments set the names of the volume group
whose information is to be extracted from the source file, and the
pathname of the source. We have hard-coded the volume group name
whose details we want to extract in the VG=rootvg line, but you will
seelater how we can passthe name as an argument to the script and so
give us greater flexibility in running the command.

In each of thelines setting thevariablesTOTAL and FREE, aseries of
commands is contained within the construction $(. . .). This type of
construction is called command substitution and is discussed in detall
in afuture article. For the time being, all you need to know isthat the
variables are set to the fina output of each group of commands.

If welook at these constructionswe seethat thefirst gr ep statement has
the -p option. This searches in the source file for the volume group
name contained within any paragraph, which is any group of lines
from ablank line (or start of the file) to the next blank line (or end of
the file). If the characters of the volume group name are not unique,
then we may extract more than one paragraph. You will find that grep

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 31

-p isvery useful for extracting whole stanzasfrom files, such asthose
contained in many AIX system files.

The next grep searches for the line in the output piped to it which
contains the appropriate ‘ TOTAL’ or ‘FREE' characters. This should
select the line containing, for example, the characters:

. TOTAL PPS: 479 (1916 megabytes)

The first cut command now extracts field two initsinput line, where
wehavedefined thefieldsto be separated by thedelimiter ‘(. Thiswill
extract only the characters we are interested in:

1916 megabytes)

Thetr command in the pipeline converts spaces to tabs since the next
cut command into which its output is piped does not have a field
delimiter specified with a-d option, and thus defaultsto tabs. Thislast
cut command extracts the total size (or free size as the case may be),
which in this case is the characters * 1916'.

The print command just gives standard formatting and is used here
only to show you the output. The first printf command, however,
produces formatted output, and the construction of the command is
similar to that used in C programming. The formatting characters are
contained within the first set of quotes after the command, and any
subsequent character strings, which may or may not be contained
within quotes, are the characters that are printed according to the
formatting instructions.

In our example the % -20s characterstell usthat its output is going to
be acharacter string (the spart), 20 characterswide, and |eft-justified,;
you can right-justify by excluding the minus sign. If you require a
group of characters containing spaces to be output to this field, then
you must enclose these characters in quotes, as we have done with
“Volume Group'.

If in the formatting sequence you include characters that the system
does not recognize as a formatting sequence, then the characters
themselveswill be printed. In our examplewe haveincluded spacesto
make it easier to read, but you do not have to do this. For example,
printf " %-20s%-15s%-15s\n" is equally acceptable.

By default, printf doesnot print acarriagereturn at theend of eachline

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and so, if thisisrequired, youmustincludeoneor more\n combinations
intheformatting string. These may be anywhereinthelineto produce
carriage returns at selected locations, but in our example we have
included them only at the end of the formatting sequence, sincethisis
where we need the new line.

The remaining printf commands show you how the format can be
modified. % 10d expectsdigitsin thefield to be displayed and in this
casewill right-justify them. If in the string to be output you includeany
characters other than numbers, you will get error messages that are
generated by the last printf command, because the character fields
contain the unacceptable ‘MB’ characters separated by spaces from
the actual digits.

The %10.2f format produces floating point output, ten characters
wide, with two decimal places. Thereareanumber of other formatting
constructions used by printf and it isrecommended that you view the
manual pages to familiarize yourself with these.

When you have created and run this script, try experimenting with
other formatting strings. Also add a further printf command so that
underneath the’ Total Size' and‘ Free Space’ partsof the heading there
are additiona ‘in MB’ characters — perfectly lined up, of course!

One of the situations where you cannot use print iswhen you want to
use something like print -x. Thiswill most likely give you an error
sincethecommandwill try tointerpret the-x asacommandlineoption.
If you just want to print out these characters, then you must use either
echo or printf.

EXAMPLE 1-RECORDING MAIL SENT

Thefollowing example may not be particularly relevant inthisday and
age, where mail is rarely sent from one Unix user to another using
standard Unix commands. However, the script is used to show what
can be achieved, and as you acquire further shell programming
techniques we will modify this script to make use of these.

Supposeyouwant to keep acopy of all electronic mail you sendtoyour
colleague Fred. More specifically, he is an untrustworthy person and
you want to cover your own back by keeping alog file containing a
copy of each memo you send to him! Each item in thelog file should

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 33

be preceded by aline stating the date the memo was sent. If you were
doing this from the command line you would use the following
sequence of events each time you wanted to send amemo to the userid
Fred.

You createafile, tmpfred, containing thememo, and recordinyour log
file the time and date you are sending the memo by entering:

date >> fredlog

You then append a copy of the memo to the end of the log file:

cat tmpfred >> fredlog

You add ablank lineto thelog file to separate this entry from the next
one:

print '\n' >> fredlog
You then mail a copy of the memo to Fred:
mail fred < tmpfred

Now that you have a copy of the memo saved in the log file, and you
have sent a copy to Fred, you can remove tmpfred:

rm tmpfred

To make sure you understand what this procedure accomplishes, you
may want to send two or three pieces of mail to yourself. Look at your
log file periodically and make sure you use >>, not >, to redirect the
output.

To maintain a complete log of the mail you send to Fred, you would
have to repeat these six steps every time you wanted to send him a
memo. Thiswould probably become so tiresome that you would soon
give up, so instead we will create ashell script that will perform each
of these steps automatically.

Create the following script, name it fredmail, and enter the following
lines:

#1/bin/ksh
LOG=fredlog
TMPFILE=tmpfred

vi $TMPFILE

date >> $L0G

cat $TMPFILE >> $L0G

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

print '\n' >> $10G
mail fred < $TMPFILE
rm $TMPFILE

After making it executable, on entering the command fredmail you
would start avi editing session and create your memo. AsSoon asyou
exited from the editor, the shell script would continue with the next
command, append the date, send the memo to your log file, mail the
memo to Fred, and remove the temporary file.

Try creating this shell script for auser you know to be on the system,
and send him or her a number of memos to test that it is working
properly. Or, aternatively, send them to yourself.

You will noticethat we have used variablesfor the name of thelogfile
and the temporary mail file; we have used similar variables in the
previous example aso. Thisis good shell programming practice, and
ahabit you should quickly get into, since, if at somefuturedateinthis
example you want to change either the log file name or the pathname
of the temporary file then you only need to make a single change.

Tonto Kowal ski
Guru (UAE) © Xephon 2002

Find the smit fast path to what you want

Oneof thereally useful featuresof Al X issmit (the System M anagement
Interface Tool), and itstext-based version called smitty. Thisisamenu-
driven facility for performing system-related tasks, and is always a
good starting point for performingtasksfor thefirst time. [t will prompt
you for whatever values are required for a given command and then
build and run the command for you.

One of thethingsthat makes smitty really great isthat it iscompletely
transparent and allowsyou to view the command it has built. Sointhe
future you can run the command natively yourself without using
smitty.

Another useful featureisafast path optionwhichwill takeyou directly

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 35

to a specific command screen within smitty, saving you from having
to navigate through its menus.

However, sometimes you know exactly what you want to do but you
just can’t find it within smitty. The following script gets round this
problem by searching menusfor acharacter string that you provideand
returnsthe menusthat match, along with their fast paths. Additionally,
for thecharacter stringyou enter, itwill providealist of menusyouneed
to select in order to navigateto it.

#1/usr/bin/ksh

#

Script: smitFastPath

Author: Roger Wickings

Aim: find a smitty fast path
#

awk="/usr/bin/awk"
basename="/usr/bin/basename"
grep="/usr/bin/grep"
odmget="/usr/bin/odmget”
sed="/usr/bin/sed"
sort="/usr/bin/sort"
tr="/usr/bin/tr"
ODMDIR="/usr/1ib/objrepos"
ODM_CLASS="sm_menu_opt"

#

Functions

#

showFastPath()

{

export ODMDIR
check="'$odmget $0ODM_CLASS |
$sed "s,\", ,g" |

$awk '$1 == "next_id" {print $3}' |
$grep -i ""$FASTPATHS$" |
$awk 'END {print NR }' °

if test "$check" = "@"

then

showPossible

else

showTree

fi

return

}

showPossible()

{
$odmget $0ODM_CLASS |

$sed "s,\", ,g" |

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

$awk

$1 == "next_id" { nx = $3 }
$1 == "text" {

tx = $3

for (i=4 ; i<=NF ; ++i) { tx = tx " " $i
print tx, "[" nx "]"

}

"

$grep -i "$FASTPATH"

return

}

showTree()

{

$odmget $ODM_CLASS |
$sed "s,\", ,g" |

$awk

$1 == "sm_menu_opt" { id ="" ; no = "" }
$1 == "id" { id = $3 }

$1 == "next_id" { nx = $3 }

$1 == "text" {

tx = $3

for (i=4 ; i<=NF ; ++i) { tx = tx "@" $i

print id, nx, tx

}

"

$awk 'NF==3 { print }' |
$sort |

$awk -v root=$FASTPATH '
BEGIN {

msub = 0@

osub = @

}

{

tid[msub] = $1
tnext[msub] = $2
ttext[msub]l = $3

++msub

}

END {

for (wsub=@ ; wsub<msub ; ++wsub)
{

if (tnext[wsub] != root)
{

continue

}

ssub =1

stack[ssub] = wsub

start[ssub] = @
flag_up = "NO"

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement.

}

}

37

while (ssub !'= 8)

{

csub = stack[ssub]

cstar = start[ssubl

cid = tid[csub]

ctext = ttext[csubl]

found = "NO" ### Look for next Tevel ###
for (tsub=cstar ; tsub<msub ; ++tsub) ### tsub is temporary table
subscript

{

if (tnext[tsub] == cid)

{

found = "YES"

flag_up = "YES"

start[ssub] = tsub + 1

++ssub

stack[ssub] = tsub

break

}

}

if (found == "NO")

{

if (flag_up == "YES")

{

flag_up = "NO"

++osub

print osub, ssub+l, cid, ctext

for (psub=ssub ; psub>@ ; —psub)
{

pout = stack[psub]

print osub, psub, tnext[pout], ttext[pout]

}

}

—ssub

}

} ### End of while Toop ###
}

}

"

$awk '

{

if ($1 != current)
{

count = $2

print " "

}

current = $1
print substr(" ",1,3*(count-%$2)) $4, "[" $3 "]"

}
"

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

$tr "@" " "

echo

return

}

#

Start of main processing
#

SCRIPT="'$basename $0 '
FASTPATH='echo "$1" | $sed "s,\",,g" '
showFastPath

exit

So, for example, if you wanted to find how to switch on async I/0O you
could run the following:

smitFastPath async

Asynchronous I/0 [aiol

Change / Show Characteristics of Asynchronous I/0 [chgaio]
Remove Asynchronous 1/0; Keep Definition [rmvaio]
Configure Defined Asynchronous I/0 [cfgaio]

Trace Asynchronous I/0 [trace_link]

Asynchronous Adapters [ttyadapters]

#

Now you can enter smitty chgaioto go directly tothesmitty screenfor
switchingonasynci/o. Alternatively, if you wanted to navigateviathe
smitty menus, you could enter the following to find out which options
to select:

smitFastPath chgaio

__ROOT__ [__ROOT+__]

__ROOT__ [__ROOT__]

System Management [top_menu]

Devices [dev]

Asynchronous I1/0 [aio]

Change / Show Characteristics of Asynchronous I/0 [chgaio]
#

This tells you that from the first smitty screen, which is System
Management, you have to select the Devices sub-menu. Then from
there you select the Asynchronous I/0O sub menu.

Roger Wickings
Systems Programmer
FT Interactive Data (UK) © Xephon 2002

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 39

SAN basics

Likeall system administratorsfor AlX systems, | haveavarying array
of rolesto fulfil. Inlarger IT shops our roles are very specificto Al X,
while in smaller organizations we tend to be ‘Jacks of all trades'.
Storage Area Networks (SAN) are one more area with which we will
all need somelevel of familiarization. Whilethereisno featurein A1X
that addressesthisdirectly, we, assysadmins, will still beinvolvedwith
SANSs in one capacity or another.

In our environment, | recently ran out of available direct attachments
frommy (EMC) storagearray tothe Server environment. Inorder toget
around this, and continue to exploit the available resources on the
storagearray, wehadtointroduceaswitchinbetweenthearray andthe
servers. This sounded, and is, ssimple enough, but the temptation was
there to let theterm *SAN’ intimidate.

SAN IN A NUTSHELL

A SAN evolves, usualy, fromthe needto provide portions of astorage
resourceto morethanoneserver, or endpoint. Theresourcewill usually
be a storage array of the EMC Symmetrix type, IBM ESS (‘ Shark’)
type, or others. A smpleillustration would be two point-to-point fibre
connections — see Figure 1.

Disk EMC

storage| | Fibre Server A
Adapter

Disk pte (RS/6000)

storage
EMC

Disk Fibre

storage| | Adapter

Figure 1. Two point-to-point fibre connections

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

STORAGE ARRAY

For illustration/examplepurposesonly, I’ mindicating that thereisonly
one connection available from the fibre adapter to the Host Bus
Adapter (HBA) on the RS/6000 server. Thisisnot thecaseinred life.
In this example we smply have two directly-attached connections
from the server to the storage.

Now let’s say we need to give access to some of the storage to Server
A and some to Server B. Rather than install two more fibre adapters
each time we need to add a server, a switch would be introduced.
Typicaly this switch will be eight ports or more, four of which arein
use, in this basic configuration — see Figure 2.

ThisisaSAN! Albeit, avery basic one. It isssimply a closed network
or ‘fabric’ of storage resources.

Server A
(RS/6000)

Disk EMC

storage| | Fibre

_ Adapter

Disk Switch

storage =R

Disk Fibre

storage| | Adapter Server B
(RS/6000)

Figure 2. Sorage arrangement

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 41

LOGISTICS-OVERVIEW

These steps are intended to be high-level, not specific, as that would
require a much longer article.

In the first, directly-attached storage example, you would have:

» Allocated one or more storage devices to each fibre adapter.
 Runcfgmgr in AlX on the server.

And your disk(s) would be available for use.

In the second SAN example, there would be afew additiona steps:
» Allocate one or more storage devices to each fibre adapter.

» Create azone on the switch that tells it which storage device(s)
each server (HBA) is permitted) to see.

* Runcfgmgr in AlX onthe server.

There are anumber of other detailsto attend to in theinitial stages of
installingthe SAN that areoutsideof thescopeof thisSAN introduction.,
They mostly take place on the storage array and switch sideto ‘ mask’
LUNS (ie prevent them from being seen other than on the intended
server), define*World WideNames' for storageresources (kind of like
aMAC/NIC address for a disk resource), and things of that nature.

SAN TERMINOLOGY
Here are some definitions:

» Fabric —anetwork consisting of one or more devices.
 Domain— usualy refersto one switch in the network/fabric.
* Node-adeviceinthe network; server or storage.

* Initiator — a server node that initiates a request for data.

o Target — a storage device node that responds to an initiator.
* Port —aphysical connection into a domain or node.

« WWN —World Wide Name, 64-bit unique address used to grant
permissions between nodes.

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FURTHER READING

As mentioned, I’ve intended this to be a high-level introduction to
SANSs, and hopefully to clarify alittle of the mystique it hasfor some.

Thereisawedth of material available for reading on the Internet.
Some links:

» http://www.gadzoox.com/san_library/whitepapers.html

e http://www.mcdata.com/servsupt/educati on/sanbasi cs/index.htmi

« http://www.brocade.com/san/white_papers.jhtml.

David Miller
Database Architect
Baystate Health Systems (USA) © Xephon 2002

AlX vulnerability

A security hole in software from IBM and Sun Microsystems could
allow hackersto take control of serversrunning in many corporations.
Researchers have uncovered evidence in Internet chat rooms that
hackers have aready started devel oping toolsto take advantage of the
vulnerability, which affects AIX Versions 4.3 and 5.1.

Theholeislocatedinthe‘login’ program that allows peopletosignon
totheoperating system remotely by entering ausernameand password.
The vulnerability can be exploited only if certain remote command
protocols, such as Telnet, are enabled, which they usualy are by
default.

The security holeis serious because of the amount of harm someone
could dowerethey to gain compl etecontrol over avulnerablemachine.
Onceyou have super-user accessto amachineyou cando anythingyou
want — modify files, create them, sniff network traffic, etc.

A fully supported and tested fix is now available from http://
sunsolve.sun.com/securitypatch.

© Xephon 2002

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 43

AlX news

NetlQ has announced the availability of the
first waveof itsmonitoring and management
support for Unix (IBM AIX, Sun Solaris,
HP-UX), Linux (Red Hat), and Novell
NetWare.

The new cross-platform AppManager
modules bring AppManager’s Windows-
based management andreal -timediagnostics
capabilitiesto non-Windows platforms.

Inaddition, thenew cross-platform Extended
Management Pack (XMP) modules will
extend Microsoft Operations Manager 2000
(MOM) to support centralized monitoring of
critical platformsbeyond Windows2000. So
it" saseasy to manage Unix asitisto manage
Windows.

For further information contact:

NetlQ, 3553 N First St, San Jose, CA 95134,
USA.

Tel: (408) 856 3000.

URL: http://www.netiq.com/products/am/
default.asp.

* % *

I BM hasannounced multi-year contractsand
simplified ordering processesthroughitsnew
Software Maintenance acquisition model,
which includes technical support for IBM
distributed software.

Replacingtheexisting Software Subscription
for AIX and OS/400 and stand-alone
upgrades previously ordered under each
licensed program, the new scheme enablesa
single site or worldwide enterprise to
maintain software entitlement to current or
future versions or releases of the eligible
products during the Software Maintenance
contract period.

For further information contact your local
IBM representative.

URL: http://www-1.ibm.com/servers/
eserver.

* % %

CommV ault Systemshasannounced support
for AlX andleading databaseswith thelatest
release of Version 3.7.1 of CommVault
Galaxy.

The Galaxy approach offers a unified,
scalable data protection solution for
distributed, heterogeneous environments,
including AIX. With Galaxy, policy-based
data protection can be enforced across
operating environments and applications,
helping users simplify complex storage
networks.

For further information contact:.
CommVault Systems, 2 Crescent Place, PO
Box 900, Oceanport, New Jersey 07757-
0900, USA.

Tel: (732) 870 4000.

URL: http://www.commvault.com/
news_story.asp?d=120.

* % %

IBM hasintroduced entry level p610 Models
6Cland6E1, whichrunboth Al X and Linux,
and areclaimedto eat up 57% lesselectricity
and generate up to 63% less heat than a
comparable Sun box, while costing less. A
POWERS3-11 chip running at 333MHz is
available.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/servers.

xephon

	Input and output redirection
	AIX application management
	Examples of shell scripts
	Find the smit fast path to what you want
	SAN basics
	AIX vulnerability
	AIX news

