80

June 2002

Using and referencing variables

Core dumpsin AIX 5L

Understanding the head and tail

25

commands
Removing users from a system

29

Variables and the environment

38

Advanced features of EMC

43

PowerPath software
AlX news

© Xephon plc 2002

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

AlIX Update

Published by
Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38342

From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon

PO Box 350100
Westminster, CO 80035-0100
USA

Telephone: 303 410 9344

Subscriptionsand back-issues

A year's subscription to AlX Update,
comprising twelve monthly issues, costs
£180.00in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribersfor £16.00 ($24.00)
each including postage.

Al X Update on-line

Codefrom Al X Update, and completeissues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; youwill needto supply awordfrom
the printed issue.

Editors
Trevor Eddolls

Disclaimer

Readers are cautioned that, although the
informationinthisjournal ispresentedingood
faith, neither Xephon nor theorganizationsor
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions

When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 wordsand £100
($160) per 100 lines of code for thefirst 200
linesof original material. Theremaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

© Xephonplc2002. All rightsreserved. Noneof thetextinthispublication may bereproduced,
stored in aretrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are freeto copy any code reproduced inthis
publicationfor useintheir owninstallations, but may not sell such codeor incorporateitinany
commercial product. No part of thispublication may beusedfor any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permitsare
availablefrom Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
Printed in England.

Using and referencing variables

REFERENCINGVARIABLES

If youtry toreferenceavariablein ascript (or fromthe command line)
that has not been assigned avalue, the shell will effectively ignorethe
variable and run the resultant command, which may produce errors
depending on the syntax required for the command. If you wish, you
can deliberately assign the null string to a variable. For example:

obscure=

Referencing thevalueof ashell variablethat hasbeen assigned thenull
string hasthe same effect asreferencing a variable that does not exist,

There are anumber of string operators, using a curly-bracket syntax,
which allow you to manipulate the values of variables. Some of these
operators, for example, allow you to specify adefault or back-up value
to be used in case a variable does not exist, or hasanull value, while
others are used to extract characters from variables containing strings
that match prescribed patterns.

They arevery useful constructionsto know, sincethey allow userswho
may not yet be experienced shell programmersto manipul atevariables
without having to write complex programs, athough they can be
difficult to remember in detail. These string operatorsare discussed in
the following sections,

Hvariable-string}
If an expression such as:
${variable:-string}

appears on a command line, the expression will be replaced with the
current value of variable, if it exists. If it does not exist, or has been
assigned a null value, the reference will be replaced with the string
instead.

An example of the use of thistype of parameter substitution is:

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 3

TERM=${TERM: -vt100}

You cantry the abovetype of parameter substitution by first assigning
avalue to the variable greeting, as follows:

greeting=hello
Now enter:
print ${greeting:-bye}

and notice that hello isdisplayed. If you display the value of greeting
with the set command, you will see that it is still hello. If you now
assign the null string to greeting, and enter the same command, this
timebyeisdisplayed, but onentering set youwill seethat greeting still
has the null value.

If you now unset greeting, so that it no longer exists, and enter:
print ${greeting:-bye}

then bye will again be displayed, and set will show that greeting still
does not exist.

${variable:=string}

Now try amodification of the command, but first unset greeting and
then enter:

print ${greeting:=bye}

This will again display bye, but on using set you will see that the
variable has now been created and set to the value bye.

If you now set greetingtonull and enter theabovecommandagain, bye
will again be displayed, and set will also reveal that greeting has now
been given the value bye.

If greeting is set to hello, then on entering:
print ${greeting:=bye}

the value hello will be displayed and greeting will be unchanged.

${variable +string}
If greeting doesnot exist, or isequal to the null string, then the further

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

variation of the command:
print ${greeting:+hi}

will display thenull string. If greetingisequal to null, or isnot set, then
set will revedl that its valueis still null.

If greeting already equals hello, then the above command will display
the string hi, but set will reveal that greeting still retainsits original
value.

Hvariable: ?string}

Thistype of string operator allowsyou to print amessage, defined by
the string, if the variable does not exist or hasanull vaue. It will aso
cause any script in which it is contained to abort. If the variable does
have a value, then this value will be printed.

We can now create a ssmple script that can make use of this string
operator. Let us assume that we want our script to accept acommand
lineargument, whichtheshell refersto as$1 (thistypeof input for shell
scripts will be discussed in greater detail in afuture article).

Create the script called args:

#!1/bin/ksh
print ${1:?No argument} >/dev/null
print Have an argument

If we make the script executable and then run it without an argument,
it will send the following output to standard error, and then exit:

args: 1: No argument

If we run the script with an argument, then only the message, “Have
an argument”, will be displayed. Thisis because we have redirected
standard output for the first print statement to /dev/null. If this
redirection was not in place then we would aso have the value of the
argument printed first, and we have decided (in this particular case)
that thisis not desirable.

Hvariabletstring}

Itisalso possibleto delete parts of variableswhen they arereferenced.
If you set greeting to hello, and then enter the command:

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 5

print ${greeting#hel}
the output from this substitution will be lo.

Thistypeof substitution triesto match the pattern following the# with
the beginning of the variable, and if it is a perfect match then the
matching portion is deleted from the output; the value in memory is
unaffected. If thereisno match, thevalue of thevariableis substituted.

The characters that follow the # can be assimple string, or they can be
any complex pattern matching construction. For example:

print ${greeting#[a-z]77}

will aso print out the characters|o.

${variabledo string}
A smilar form of the above command is:
print ${greeting%lo}

which will produce the output hel. This string operator performs its
matching with the end of the variable.

${variable:-$(command)}

Another type of substitution uses parentheses. Whenever you have a
command of the type:

(cd;1s)

thelist of commands contained within the parentheses are executed in
a sub-shell.

If you use acommand of the type:
print ${dir:-$(pwd)}

pwd will be executed only if dir is not set or is null. This type of
substitution can al so be used whenthevariablereferencesusethe=and
+ constructions.

${#variable}
It is also possible to display the length of avariable by using:

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

print ${#variable}

andif instead of variableyou use* or @, thenthe number of positional
parameters is substituted.

SUMMARY

The differences between the output from some of the above string
operators is not easy to remember, and it is easy to forget these
differences when you use the construction infrequently, particularly
when avariablehasnot been set, or hasanull value. Toassistyoul have
created a table which summarizes the differences.

If the command entered is of the form:

print ${variable:= or - or + newstring}

thentheactual valuesof variablestoredinmemory (displayed by using
the set command), and the output displayed by print, are shown in
Figure 1.

Current value Value shown by set (stored in memory)
= - +
oldstring oldstring oldstring oldstring
not set newstring not set not set
null newstring null null
Current value Output from print
= - +
oldstring oldstring oldstring newstring
not set newstring newstring null
null newstring newstring null
Figure 1. Differences table

VARIABLEARRAY S

The Korn shell supports one-dimensional arrays with subscripts (or
indices) in the range from O to 511. You can subscript a variable by
using []. For example:

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 7

var[@1=000
var[1]=111
varl[71=777

Arraysdo not need to be declared before using them. Any referenceto
a parameter array with a valid subscript is acceptable, and the array
element is created when it isfirst assigned.

You do not need to assign values to variables in a specific order, or
indeed at all. For example, you could create avariable:

planet[5]=jupiter

without first having to declare or define planet[0], planet[1], and so
on. In fact you need never create them.

Thereisafurther way in which you can assign an initial set of values
to the elements of an array by using the set command:

set -A planet mercury venus earth mars . . .

which will set planet[0] to mercury, planet[1] to venus, and so on. If
for some reason you did not want thefirst real element of your array to
start at index O, but 1 instead, then you could assign the Oth element a
null string, “”, so that the elements of your array would now bein an
order you wanted.

You can reference an individua variable in an array by using:
print ${planet[1]}

and if you do not use a subscript, this is the same as referencing the
variable planet[(].

If you use acommand such as:
print ${planet[*]}

this will display all the elements of the array, separated by spaces,
Similarly you can determine how many elements in an array have
currently been set with:

print ${#planet[*]}
To unset all variablesin an array you can use the command:

unset planet

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

VARIABLESUBSTITUTION

There may be occasionswhen you want to assign avalueto avariable,
and then assign this variable to a second variable. On using the print
command to display the contents of the second variable, the expected
substitution for the first variable might not necessarily be made.

For example, if you make the following assignment:

DIR="$PWD"

and then enter:

print $DIR

the output of thiscommand will bethe characters$PW D, which might
not be what you intended.

To overcomethisyou can usethebuilt-in shell command, eval, so that
if you enter:

eval print $DIR

thiswill produce output of the type:

/home/fred

Theeval command shouldbeusedwhen* hidden’ variablesubstitutions
may cause conflicts. It has the same effect asforcing the shell to scan
the command line twice before executing the specified command.

In the above example, $PW D was enclosed in single quotation marks,
which prevented the usual interpretation of the $ metacharacter when
theprint command wasused onitsown. Witheval, however, theprint
command isexecuted after al itsargumentshave been expanded by the
shell.

eval is aso useful for interpreting variable names consisting of two
parts (or more), each of which may themselves have different values,
and when joined together they produce athird variable whose value
you may want to extract.

For example, we may have anumber of volume groupsand wewant to
display variousattributesfor each volumegroup, such asthetotal size,
number of PPs, auto-varyon value, and so on. The first part of the
variable name would contain the volume group name, $VG, and the

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 9

second part would be an attribute, $AT TR. We would then use nested
|oopscontaining eval statements(with carefully constructed syntax) to
display the values of our third variables, which may be in the format
HVG}_SATTR.

Sinceyou havenot yet been introduced to nested loops, let us consider
amuch simpler example where only one part of the variable nameis
required to be changed.

You will remember that in Examples of shell scripts, AIX Update,
Issue 78, April 2002, we created ascript called vgsizes. L et us suppose
that weal so want to print thenumber of logical volumesineachvolume
group. At present we have hard-coded r ootvg into the script, but later
we hope to modify the script to be ableto generate alist of all volume
groups varied on, and then use loops to display the number of logical
volumes for each.

Modify the script so that it now looks like the following:

#!/bin/ksh

VG=rootvg

SOURCE=vgs

TOTAL=$(grep -p $VG $SOURCE | grep "TOTAL PPs" | cut -f2 -d "(" | tr '
" \t' | cut -fl)

FREE=$(grep -p $VG $SOURCE | grep "FREE PPs" | cut -f2 -d "(" | tr " '
"\t | cut -f1)

eval ${VG}_LVNUM=$(1svg -1 $VG | tail +3 | wc -1 | tr -d " ")

printf "%-20s %-15s %-15s\n" "Volume Group" "Total Size" "Free Space"
printf "%-2@s %-15s %-15s\n" $VG "$TOTAL MB" "$FREE MB"

print ${VG}_LVNUM

eval print Number of LVs in $VG = "$'${VG}_LVNUM

Thefirst eval command again uses command substitution and merely
counts the number of logical volumes in the volume group. The tail
command extracts only the output lines from line 3 onwards, and the
tr command removes all spaces in the output from wc.

Note that we have enclosed VG in braces to ensure that its value is
extracted before appending the remaining charactersto create the new
variable name. If we had not used braces, the shell would have looked
foravariablecalledVG_LVNUM, which of coursedoesnot exist, and
we would produce an error message since we no longer have avalid
variable assignment statement.

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

By using eval the first scan evaluates ${VVG} to produce the string
rootvg LVNUM and at the same time produces the output from the
command substitution; the second scan performs the variable
assignment. If we had not used eval, the shell would makethevariable
and command substitution, then try to interpret the whole line as a
seriesof charactersand so produce an error message sinceit no longer
recognizes the equals sign as an assignment operator.

The print command is inserted just to show that the string
rootvg_LVNUM isprinted without extracting thevalueassigned toit.

The final eval command creates an entry in memory containing the
charactersl $rootvg LVNUM on the first scan, and on the second
scan the value of rootvg_LVNUM is extracted.

SHELL VARIABLE $$

In the following example, we make use of a special type of variable
maintained by the shell. You cannot assign valuesin the usual way to
automatically maintained variables, but you can reference them.

Onesuchvariableis $$, which isawaysequal to the process|D of the
current shell process. If you enter ps, and then print 3, you will see
that theprocess|D of theloginshell, -ksh (or it may bethe PID of /bin/
ksh if you are using multiple windows), is confirmed by print $3.
Similarly, you can determine the process ID of a process which is
running ashell script by including acommand such asprint $$inthe
script.

For example:

$ vi showpid
print The PID of the process running me is: $$%

and on running the command ksh showpid the above message will be
displayed with the PID inserted.

Consider thefollowing example, whichillustratesthat each shell script
isindeed run by a separate process. Create the following shell scripts:

$ vi one
print In one: $$
date

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 11

ksh two

$ vi two
print In two: $$

Now display the process ID of the current login shell, and run one;

print $$
ksh one

and note the different PID numbers.

Here is what happens. When you enter the command ksh one, anew
shell processis started. This processreadsthefirst print command in
the shell script, and since print isabuilt-in command, anew process
isnot started. It then replaces $$ with itsown process I D, which isthat
of the process running the script, and executes the resultant command.

Next, the shell reads the date command, and since it is not a built-in
command, forksanew process. The new process then execsthe date
program. When the date process terminates, the shell reads the next
command, ksh two. The shell again forksanew process, and the new
process execs two.

Theoperating system recognizesthat twoisashell script, and overlays
the new process with the ksh program, and arranges for this ksh
processtogetitsinput fromthescript two. Thisshell processthenreads
the print command in two, replaces $$ with its own process ID, and
runs the resultant print command.

Sincethisisthelast commandintwo, theshell processterminates, and,
when it does, the parent shell process running the commandsin oneis
re-activated. The parent now findsthat it is at the end of file one, and
terminates. When it does, its parent, the login shell, is re-activated.

You can also try running the script with:

. one

which will run one in the current shell. Thiswill then display the In
one: PID asthe same as that of -ksh.

As afurther example, suppose that you change one to the following:

$ vi one
print In one: $$%

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

date

ksh two

print In one again: $$%
print goodbye

When one is executed, the shell process running one executes print,
then waitsidly whilethe date processruns. When date completes, the
shell process handles the next command, two. Again the shell waits
idly for the shell processthat isrunning two to complete. Whenit does,
the shell process running the commandsin one handlesthe remaining
commands in the script.

Tonto Kowal ski
Guru (UAE) © Xephon 2002

Core dumps in AIX 5L

INTRODUCTION

Those of you who have the task of dealing with core dumps may be
interested to learn about new functionality in AIX 5L which makes
administration of coredumpsand problem determination through core
dump analysis considerably easier.

CORE DUMP NAMING

The first thing you will notice when dealing with core dumpsin AlX
5L is that the naming designation for dumps has changed. Prior to
Version 5L, AlIX used to name all core files as core. Obvioudly, if an
application dumped more than once, the earlier core dump would be
overwritten. This could cause interesting problems with tracing and
debugging.

With AIX 5L Version 5.1 anew naming structuregiveseach coredump
a unigue name (such as core.17831.18150903). The designation has
the following components. core.[process |D].[Day][hour][minute]
[seconds]. In our example designation shown above, the Process ID
was 17831, and the dump was taken on the 18th day of the month, at
15.09 and 3 seconds.

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 13

Asaresult of thissimplechange, coredumpsarenolonger overwritten,
which is a rea bonus for tracing application failures and for debug
operations. However, this new ‘unique’ naming scheme is not the
default settingin AIX 5L. Thedefault isstill to namethe core dump as
core. To enable the new naming standard you will need to set the
CORE_NAMING variabletoyes. Infact, any valueexcept null will be
accepted as ayes vaue.

SNAPCORE

There is another feature found in AIX 5L which helps in problem
determination. AlX 5L now usesthe snapcor e command to automate
the collection of coredumpsand deposit theminasinglearchive. This
IS important because all the relevant information relating to a core
dump (such as the core file itself, the program, and the libraries) can
now befound in asingle compressed pax archivein aspecified default
directory.

Thefact that the compressed coredumpsare deposited by default inthe
tmp/snapcore directory, unless specified, is a very useful feature
indeed. Thesnapcorecommandwill gather all theinformationrelating
to adump and create anew compressed pax archivein the default/tmp/
snapcore directory. You can of course, use the -d flag to change the
directory where you want the archive stored. This can be anywhere
from disk to tape, or at aremote location.

EXAMPLE

In the examples below, we will run the snapcor e command to collect
al relevant files for our core dump (core.17831.18150903). We will
savethedumpinadirectory that we have created (/tmp/cdumpdir). We
will then view the contents of the core and run the check core utility
againgt the core dump file so that we can obtain alist containing the
program that caused the core dump and the libraries used by it.

First, we change to the directory where the core dump file is Situated:

#1s -1

total 43

-rw-r—r—1 root staff 86 Feb 16 13:11 .profile
-rw——1 root staff 432 Feb 16 19:12 .sh_history
-rw-r—r—1 root system 20761 Feb 18 13:09

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

core.17831.18150903

We can then use the -d flag to save the dump to /tmp/cdumpdir rather
than the default /tmp/snapcore directory:

#snapcore -d /tmp/cdumpdir core.17831.181509083
Core file "core.17831.18150903" created by "telnet"
passl()in progress

Calculating space required ..

Total space required is 7985 kbytes ..
Checking for available space ...

Available space is 11361 kbytes

passl complete.

pass2()in progress

Collecting fileset information ..

Collecting error report of CORE_DUMP errors ..
Creating readme file ..

Creating archive file ...

Compressing archive file

pass2 completed.

Snapcore completed successfully.

Archive created in /tmp/cdumpdir.

Each execution of the snapcore command creates anew archivefile.
Thecompressed pax archivefilethat iscreatedisgiventhedesignation
snapcore <$pid>.pax.Z. Thiscommanduses$pid (pidof thesnapcore
command) to create a unique name file and preserve any previously
created archives. You can use the -r flag to remove the previously
created archivefile:

#1s -1 /tmp/cdumpdir

total 4620

-rw-r—r—1 root system 2845109 Feb 18 13:11
snapcore_4680.pax.Z

When you need to view the pax archive contents you can use the
following command:

#uncompress -c snapcore_468@.pax.Z |pax
core.17831.18150903

README

1slpp.out

At some point you will probably want to examine the dump, at which
point you will need to use the following commandsto extract thefiles
from the archive:

#uncompress -c snapcore_468@.pax.Z |pax -r
#1s -1

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 15

total 4772

-rw-r—r—1 root system 415 Feb 18 13:21 README
-rw-r—r—1 root system 20761 Feb 18 13:21

core. 17831.1815@903

-rw-r—r—1 root system 43682 Feb 18 13:21 Tslpp.out
-rw-r—r—1 root system 2845109 Feb 18 13:11
snapcore_4680.pax.Z

Theutility used by thesnapcor ecommandtogather relevantinformation
about the core dump is called check core. The check core utility isa
C program located in the /usr/lib/ras directory. However, to use
check coreyou needto makesureyou havethebos.rte.serv_aidfileset
installed. When you run the check core utility against the core dump
fileyou will receive alist containing the program that caused the core
dump and the libraries used by it:

#/usr/1ib/ras/check_core core.17831.1815@903
/usr/1ib/1ibc.a
/usr/1ib/libcrypt.a./usr/1ib/1ibbsd.a
/usr/1ib/1ibbind.a

/usr/1ib/1ibil8n.a
/usr/1ib/1ibiconv.a

/usr/1ib/1ibcur.a

/usr/1ib/Tibauthm.a

/usr/1ib/1ibodm.a

/usr/1ib/1ibcfg.a
/usr/1ib/nls/loc/en_US

telnet

As you can see, check_core provides the name of the program that
caused the dump. Also you will know it from the core dump error log.

Removing corearchives

At some point you may wish to remove old core archives. To remove
the previoudly created core archivein the /tmp/snapcore directory and
create anew one, enter the following:

snapcore -r<core file name> <program name>

To create the core file archive in an aternate directory, enter the
following:

snapcore -d<dir name> <core file name> <program name>

The pax fileis created in <dirname> /tmp/snapcore directory.
To clean the /tmp/snapcore directory, enter the following:

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

snapcore -r

CONCLUSIONS

In our shop we have found the new core dump naming convention and
the snapcore command to be a significant bonus in debugging and
tracing application failures. The pax archive contains all the relevant
information that isrequired to analyse acore dump and it isplaced in
a standard directory. It is one of the many new and useful features of
AlX 5L.

Systems Programmer (UK) © Xephon 2002

Understanding the head and tail commands

HEAD COMMAND BASICS

Suppose you had several filesin adirectory and you wanted to know
their purposes. If you could display just thefirst few lines of each file,
perhaps it would give you enough data to determine the files' intent.
With the head command you can do this.

Or let’s say you have 30 files whose contents you know, but you need
to scan through them and see acertain field 255 bytesinto thefile. The
head command can help you.

Asafurther example, suppose you had 180 source program files, each
of which containsal2-lineprologue. Let’ssay you needto concatenate
theprologuesof the 180filesintoasinglefilefor thepurposeof running
further filters against it. Using the head command will make this
ease.

Thehead command displaysthefirst few linesof atext filedepending
on aline count you specify. You can specify abyte count instead, and
the head command will display that number of bytes beginning with
the first byte of thefile.

If you don’t include an input count on the command line, the head

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 17

command will display the first ten lines of the file you specify on the
command line.

TAIL COMMAND BASICS

Now let’slook at thetail command. Thiscommand displaysthe LAST
group of lines or bytes of the specified file or files.

Using the head command examples as models, let’s address some
similar uses for the tail command.

Let's say you have severa log files whose data consists of entries
written chronologically —thelatest itemsat the bottom of thefile. If you
wanted to display thelast few lines of each log, the tail command will
do this.

Or maybe you have a group of fileswith key datawithin the last 100
bytesin each file. Thetail command will show thisto you.

Another example would be if you wanted to concatenate the coded
portions of your 180 source files from the head command example
aboveinto asinglefileor filter command. Thetail command displays
thelast few lines or bytes of atext file, based on the count you specify
on the command line,

As the head command displays the first ten lines as a default, the tail
command will display thelast ten linesof afileif no count isspecified.

The tail command offers two further benefits. It can continuoudly
display the last entries of a log file that is being updated by an
independent process. It can aso display the datain afile in reverse
order, such asif you wanted to display a chronological event log with
the most recent entry first.

Thebasic syntax of thehead and of thetail commandsisshown below:

head flags filespec
tail flags filespec

where:

« flagsisan optiona flag or flags used to enhance the head or talil
operation.

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

» filespecisthefileor filesonwhich thehead or tail operationisto
perform.

FLAGS FOR THE HEAD COMMAND
Thefollowingflagshel p to enrichtheuseful nessof the head command.

e -c number — specifies the number of bytesto display.

Usethecflagtotell the head command how many bytesfromthe
beginning of thefileyouwould liketo display. For example, head
-c 100 headsmpl.fil would display the first 100 bytes of the
samplefile, whatever thosebytesmight be, aslong asheadsmpl.fil
iIsatext file.

e -nnumber—specifiesthenumber of linesfromthefile’ sbeginning
to display.
Usethen flag totell the head command how many linesfrom the
beginning of thefileyouwould liketo display. For example, head

-n 20 headsmp2.fil would display thefirst 20 lines of the sample
file.

You can specify ether the c flag or the n flag on the head command.
The number parameter in the flags of the head command must be a
positive integer.

FLAGSFOR THE TAIL COMMAND
Thefollowing flags help to enrich the usefulness of thetail command.

e -cnumber—specifiesbyte count fromtheend of thefileto display.

Thecflagtellsthetail command, Start at thisbyte count from the
end of the file. For example, if you were to enter tail -c 24
tailsmpl.fil and if the samplefilewere 1024 bytesin size, thetail
command would display the last 24 bytes of thefile,

o -f —gpecifies that the tail command is not to terminate after the
display.

Thef flag tellsthe tail command to continueto display data until
stopped. Suppose you had a program continuously writing to a

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 19

log. If you entered tail <process>.log, where <process> is the
program writing to the log file, tail would at first display the last
ten lines of the log file. Asthe program continues to write to the
log, the tail command would continue to append the new linesto
the end of its current display either until stopped with the Ctri+C
command (or otherwise stopped,) or until the program stopped
writing to the log. This would enable you to monitor alog file
without editing the file.

* -n number — gpecifies a line count from the end of the file to
display.

The n flag tellsthe tail command, Start this many lines from the
end of the file and display from that point. For example, if
tailsmp2.fil had 500 lines, tail -n 100 tailsmp2.fil would start at
line 401 and display the last 100 lines of the file. This could be
useful if you wanted to scan only the datain the last few lines of
your files.

o -r—gspecifiesthat thetail commandistodisplay fromthefile’send
In reverse order.

Ther flag tells the tail command to display the data beginning
withthelast linefirst, followed by the second to thelast, etc, until
the line number specified using the n flag. This could be used to
display alogfileinsuchamanner, if it wereto be more meaningful
toreadthelastlinefirst. If non flagisspecified, thetail command
will display the entire filein reverse order.

The number parameter in the flags of the tail command can be a
positive or negative integer. If no sign, or the minus (-) sign, is
gpecified, the number of linesisdisplayed from the bottom of thefile.
If the plussign (+) isused, thetail command will display linesor bytes
from the beginning of thefile.

For the examples above, entering tail -c +1000 tailsmp1l.fil would
bypassthefirst 1000 bytes of the 1024 bytefile and display thelast 24
bytes. Entering tail -n +400 tailsmp2.fil would bypass the first 400
lines and display the last 100 lines of the 500 line file.

Itisnot at all uncommon to pipethe output of either the head or thetail
command into thepg or other filtersto enableyou to seetheresultsone
page at atime.

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SOME EXERCISES

Here are some exercises to test your knowledge of the head and tall
commands.

Exercise 1 —head command exercises
To set up the exercise:

1 Create three sample files using the code at the end of this article
asamode.

Name the files samplel.src, sample2.src, and sample3.src.
Edit sample2.src and sample3.src and change the following:
— Increment the Module ID in line 1 to HT002 and HTOO3.

— Increment the Module Name in line 4 and the Source file
number in line 6.

— Change the Date, Programmer initials, and Reason for Flag
$A2 inline 21 to be different from samplel.src.

— Place thethree samplefilesin atest directory.
Step 1 — enter head samplel.src.
Observe the following results:

// START OF SPECIFICATIONS - Module ID: HT@@1

// hhkkkkkhkhkhkhkkkhhhhkhkkdhhhkkkhdhhkhkhkkhkhhhhkkhdhhhhkdhhhhdkdhhhdkdhkdhrhkkdkhhhhkkktkihxx*x

//

// Module Name: samplel.src

//

// Description: Source file number 1 for head tail exercise.
//

You have just used the head command to display thefirst ten lines of
thefirst samplefile. Thiscan help you determine the intent of afileif
you or another developer were unfamiliar with it.

Step 2 — enter head -c 45 *.src.
Observe the following results:

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 21

==> samplel.src <==
// START OF SPECIFICATIONS - Module ID: HT@@1
==> sample2.src <==
// START OF SPECIFICATIONS - Module ID: HT@@2
==> sample3.src <==
// START OF SPECIFICATIONS - Module ID: HT@@3

You have just used the head command with the ¢ flag to display only
thefirst 45 bytes of each of the three samplefiles. Thiscould help you
iIf you knew in advance that the data that you were seeking waswithin
the first 45 bytes of each file; in this case, the Module ID.

Step 3 —enter head -n 25 *.src | grep A2.

Observe results similar to the following, depending on how you
changed the samples:

// $A2 #5/03/2001 MKS Changed data_x variable
// $A2 #5/05/2001 RTH Changed data_j array
// $A2 @5/07/2001 KLR Changed data_f constant

You havejust used the head command with the flag to isolate only the
25 line prologue of all your .src files as input to the grep command.
Thiswould display the change flags only in the prolog, and not in the
body of thecode. Thiscan helpyouif you wanted to ignorethe change
flags in the actual code, and see only the change flag in the prolog.

Exercise 2 —tail command exercises

Therearetwo log filesthat will be utilized during thisexercise. Sulog
is a file that records whenever a user uses the su (switch user)
command. In atypical system, /var/adnvsulog contains many entries.
If your copy issparse, you may wish to issue severa instancesof suin
order to log enough entriesto perform the exercise. Alternatively, you
may use another system log for the exercise. You must have system
authority to access sulog.

Smit.log keepstrack of activity during use of the System Management
Interface Tool (smit). This file may typically be found in the root
directory for root usersor inthehomedirectory of regular users. If there
IS no smit.log in your directory, you will need to run smit (smitty for
command line use) and run afew operationsto develop alog.

Onceyou have sulog and smit log available, you areready to beginthe
EXErcises.

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Step 1 — as an administrative user, enter tail -n 8 /var/adm/sul og.
Observe results similar to the following:

SU 10/13 ©09:53 - 1ft@ wjsmith-root
SU 18/13 10:05 - pts/@ wjsmith-root
SU 10/13 10:06 - pts/@ wjsmith-root
SU 10/13 10:06 - pts/@ wjsmith-root
SU 10/13 10:07 + pts/@ wjsmith-root
SU 18/13 10:07 - pts/@ wjsmith-root
SU 18/18 15:44 + pts/@ baines-root
SU 1@8/23 15:22 + pts/@ baines-root

You havejust used thetail command with the n flag to display thelast
eight entries of thelog file that tracksthe use of the su command. This
can be useful if you want to view only the most recent activity inalog
file.

Step 2 — as an administrative user, enter tail -r -n 5 /var/adm/sul og.
Observe results similar to the following:

SU 18/23 15:22 + pts/@ baines-root
SU 10/18 15:44 + pts/@ baines-root
SU 10/13 10:07 - pts/@ wjsmith-root
SU 10/13 10:07 + pts/@ wjsmith-root
SU 18/13 10:06 - pts/@ wjsmith-root

You havejust usedthetail command withther flagtoview thelast five
linesof thesu logfiledisplayedinreversechronol ogicorder. Sometimes
viewing alist beginning with the last item first is more useful.

Step 3—cdtoyour root or homedirectory and enter tail -¢ 255 smit.log.
Observe that the command displays the last 255 bytes of the smit.log.

You havejust used thetail command with the c flag to view aspecific
byte count from the end of afile.

Exerxise 3—using thetail command to monitor a process.

Part two requires two command windows to be used — one to run
commands that will write data to a log file, and one to run the tail
command to view the log files.

Step 1 — from command window 1, enter tail -f /var/adm/sulog.
Thetail commandwill display thelast ten lines of thelog, and trap the

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 23

cursor. From command window 2, enter afew su commands. Observe
that for each su command you completeinwindow 2, anew entry will
be appended to the resultsin window 1. Press Ctrl+C inwindow 1 to
halt the tail command and to return the cursor.

You have just used the tail command with the f flag to dynamically
monitor theupdate of alog by another process. Thiscanbeuseful if you
need to keep track of an independent, remote process.

Step 2—cdto your root or homedirectory and from command window
1, enter tail -f -n 20 smit.log.

Thetail command will display thelast twenty lines of thelog and trap
the cursor. From command window 2, enter smit (smitty for command
line). For each smit command that completes, you should see new
entries added to the end of the log displayed by the tail command in
window 1. Press Ctrl+C to halt the tail command.

You have used thetail command to monitor another external process.

Exer cise sour ce code
// START OF SPECIFICATIONS - Module ID: HT@@1

// khkkhkkhkhkhkkhkkhhkhkkhkkhhkhkkhkkhhkhkhkkhkkhhkhkkhkhhhkhkhhkhkhkhkhhhkhkhhhkhkhhhkhkhhkhkhkhhhhkhkhhkhkhkhhkhkhkhhkhkhkxk
//

// Module Name: samplel.src

//

// Description: Source file number 1 for head tail exercise.

//

R R R T T T T T

// ABC Company

J e e L

//

// Author: William J. Baines

//

// Function: Helps you to learn the AIX head and tail commands.

//

// Change Activity:

//

// FLAG DATE PROG REASON

/] — - -
// $Al 04/02/2001 WJB Updated matrix table

// $A2 05/03/2001 MKS Changed data_x variable

// $A3 02/01/2002 WJB Deleted duplicate Y string
//

// khkkkkkhhkhkhkkkhkkhhkhkhkkhkkhkhhhkkkhkkhkhhhkkkhkhhhhkkkhkhhhkhkkkhkhhkhkhkkhkhkhhhkhkkhkkhhhhkkkhkhhhhkkkhkhhhixk

// END OF SPECIFICATIONS

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//
// — Start of Code —-

// — End of Code —-
//

David Chakmakian
Programmer (USA) © Xephon 2002

Removing users from a system

INTRODUCTION

Inthecurrent economicclimate, theneedtoremoveusersfrom systems
Isunfortunately becoming acommon task. Thisis something that has
to be given top priority in a system administrator’s daily workload
because the penalty for slow action can be considerable.

The computer press would have us believe that the mgor risk to
systems comes from external attack by malicious hackers. In redlity,
however, most attacks on systems originate from within the network.
It is currently thought that between 65% and 90% of network attacks
comefrom withinan organization rather than originating from outside.
These numbers are difficult to quantify because there is still a strong
reluctance for companies to admit that their networks have been
compromised, and partly because skilled network breaches may be
difficult toidentify and may even not be properly recognized until long
after the event. It is, therefore, very difficult to deduce the origins of
different attacks.

Theprincipal worry for network security staff and systemsadministrators
Isthat disaffected staff, or former workers, may have deliberately left
security breaches or even time-bombed aninstallation before quitting.
Another important area of exposure is disgruntled users who retain
their user | D after they haveleft. Thisiswhy theremoval of user access

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 25

privileges and associated data must be undertaken as soon as possible
after the personnel have |eft.

USER REMOVAL TASKS

When auser isto beremoved fromasystem permanently, thefollowing
tasks need to be performed.

Removeuser information

All user information must be removed. To remove a user you can use
the smit rmuser command. For example:

User NAME [Jack]
Remove AUTHENTICATION information? yes

However, beforethisisattempteditisessential to check theuser’sfiles.
This can be achieved with the find command (before the user is
removed).

find

The find command recursively searches the directory tree for each
specified Path parameter. It uses a Boolean search to find files,
However, remember that when the find command is recursively

descending directory structures, it will not search directories that are
symbolically linked to the current hierarchy.

find -user jack

It isimportant to note that if the user’sfiles and the user’s account are
deleted beforereassigning the user’sfilesthen thefileswill essentialy
become ‘unowned’, and can become a security risk.

All theuser’sfileson the system need to beremoved or reassigned. So
it isasimple matter of using thefind command to generatealist of all
files owned by the user. If the files are useful, they can be reassigned
to other users using the chown command or else deleted.

However, itisessentia that youremoveinformationinother subsystems
before removing a user, because the cron and at utilities both allow
users to request programsto be run at a future date. Use the crontab
command to remove auser’s cron jobs. You can examine auser’s at

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

jobs with the atg command, and then remove the jobs with the atrm
command.

If you need to remove an entire group the smit rmgroup Isgroup -a
Attributes Group procedure removes a group and all of its attributes
fromyour network. However, thisprocedure doesnot removeall of the
users in the group from the system. Furthermore, if the group to be
removed isthe primary group for any user, you must reassign that user
to another primary group before removing the user’s original primary

group.

at jobs

It is absolutely crucial that you remove any at jobs that the user has
scheduled. Thisisbecause auser can usethe at command to schedule
potentially damaging programsto runlong after they areremovedfrom
the system. This can be achieved by using the cronadm or the atq
command.

cronadm

The cronadm command (found in/usr/bin/cronadm) isused by aroot
user tolist or remove al users' crontab or at jobs. Thejobsarelisted
and removed by the UserName parameter. One or more UserNames
can be specified. The at jobs are listed by UserName and can be
removed either by the UserName parameter or by the JobName
parameter.

When using the cronadm at command, certain flags will be useful.
-l liststheat jobsfor the user specified by the User Name parameter. For
example, if youwanttolistal at jobscurrently queuedfor theuser jack,
smply enter:

cronadm at -1 jack

The -r flag removes the at job specified by either the UserName or
JobName parameter.

cronadm at -r jack

atq
The atqg command (found in /usr/bin/atq) displays the queue of jobs

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 27

waiting to berun at alater date, sorted in the order thejobswill berun,
These jobs were created with the at command. If the user is root and
User nameisspecified, theatq command displaysonly jobsbelonging
tothat user. The-cflag sortsthe queueby thetimethat theat command
wasissued, whilethe-n flag displaysonly thenumber of jobscurrently
in the queue.

Example
In order to look at the queue created by the at command, enter:

atq

If there are jobs in the queue, a message similar to the following
appears.

root.635623200.a Wed Feb 20 13:00:00 2002
root.635670000.a Fri Feb 22 15:00:00 2002
atrm

An aternative command for root users is atrm (found in /usr/bin/
atrm). Thisremoves jobs that were created with the at command, but
have not executed. If one or more job numbersis specified, theatrm
command attempts to remove only those jobs. If one or more user
namesarespecified, all jobsbel ongingtothoseusersareremoved. This
formof invokingtheatr m commandisuseful only if you haveroot user
authority.

Example
To removejob number root.62169200.a from the at command queue,
simply enter:

atrm root.621619200.a

Temporary removal

If the user is being removed only temporarily, consider just removing
the ability of the user ID to log in to the system. You can also use the
/var/adm/cron/at.allowand/var/adnvcron/at.denyfiles, which control
which users can use the at command. A root user can cregte, edit, or
delete these files. Entriesin these files are user login names with one
nameto aline.

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If theat.allowfileexists, only userswhoselogin namesappear init can
usetheat command. A system administrator can explicitly stop auser
from using the at command by listing the user’s login name in the
at.deny file.

CONCLUSIONS

It is absolutely crucial that security staff or systems administrators
remove the access privileges and data from employees who have left
as soon as possible. The techniques shown above are the principal
methods you should consider.

Systems Programmer (UK) © Xephon 2002

Variables and the environment

THE ENVIRONMENT OF A PROCESS

Like any other programming language, the shell provides capabilities
for creating variables, assigning them values, and accessing those
values. Shell variables may be assigned a string or any sequence of
characters.

Every process has an environment, which you can think of asalist of
thevariablesthat can be passed to achild process. When ashell process
starts running, it makes a copy of al the variablesin its environment,
and you can reference and modify the local copy of these variablesin
the same way that you use other shell variables. Note that when you
change the value of one of these variables, you affect the local copy
only.

Theenvironment with which anew processisstarted isthesameasthe
parent process's environment. When the new shell processis started,
it inherits its parent’s environment and makes alocal copy of al the
variables in the environment, and we shall later create scripts to
observe this.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 29

When a child process reads a command and itself starts another
process, thenew processwill alsoinherittheparent shell’ senvironment.
If thelocal valueof oneof thevariablesintheparent shell’ senvironment
has been altered, the environment that the new process inherits will
contain this new value, not the original value.

You can display your login shell’s environment by using the env
command. Do this, and note that the output looks similar to that of set,
except that the difference between set and env isthat set displays all
thevariablesthat exist inthe current process (including those assigned
anull string and thosedefined during your login session and whichwill
be lost when you log off), while env displays only those that are
included in the process's environment, and so are available in sub-
shells.

How isthe environment created?

Although wetend to think of environmentsin the context of users, the
environment of every processis created by:

e Inheriting variables from /etc/environment.

» Inheriting variables created by other processes, or by modifying
existing inherited variables; for usersin particular this manifests
itself inthe execution of the/etc/profile, .profile, and other similar
files.

e Inheriting other system variables.

THE/ETC/ENVIRONMENT FILE

The/etc/environment fileis used to specify the basic environment for
each and every process, not just those executed by users. When anew
process begins, thisfileisread, and any variables declared are placed
In an array, which becomes the process's initial environment — this
array isalocal copy of the set of variables. Unlikethe profilefiles, the
environment file is not a shell script and does not accept data in any
format other than name=string. Thefilecontainsvariable ass gnments
such asthose for TZ, LANG, default PATH, NL SPATH, etc.

A running process's environment is not changed by altering the

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

contents of the/etc/environment file and any processes started prior to
any changesyou makewill still accessthelocal copiesthey made. Only
whentheprocessisrestarted do thechangestakeeffect, whichfor some
processeswill beanecessity. For example, if you changethe TZ (time
zone) variable, you will have to restart cron. The contents of /etc/
environment can only be changed by root, or members of the system

group.

USER LOGINS

User logins are perhaps the best example of how environments are
modified by inheriting variables created by other processes.

When auser logsin, thelogin processfirst reads the /etc/environment
file, then /etc/profile is executed, followed by .profile. If theuser isin
an Xwindows environment then anumber of other similar scriptswill
be executed. If you have created a .kshrc file, then this also may
contribute to your environment after the .profile is executed. Each
stageaddsnew variables, or modifiesexisting ones, until theuser’sfull
working environment is established.

The/etc/profilefileisasystem-widefile, whichisexecuted by all users
at login. Thefile, amongst other things, setsthevaluesof variablesthat
are used by every user, suchas TMOUT, MAIL, andMAILM SG. It
Ispossible, provided you areroot, to modify thisfile to define values
for other variables, or to changeexistingones. If youwishany variables
to be availablein sub-shells, then they must be exported. Entriesinthe
file should be restricted to those that relate to all users.

/etc/profile is normally executed only as part of the login shell, and,
should the file be modified later, then, to access any changes without
logging off and logging back in again, you must execute thefile using
thedot command. You can runany shell script thisway, evenif itisnot
currently in execution mode (it must not be an ordinary text file, but
must be capable of being executed, however). When you use the dot
command to run asnell script, the commandsin the shell script arerun
by the current shell process, not by a sub-shell.

You canoverridethevauessetin/etc/profileby changing theminyour
user .profile, which is executed after /etc/profile. If you make

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 31

modificationsto any variableswhich may be contained in thefile, for
example your PSL1 variable, then smilarly you must use the dot
command to make the changes available in your current shell.

SYSTEM VARIABLES

When the operating system boots up, it creates a number of system
variables, nearly always notated in capital |etters, and assigns default
valuestothem. Thesevariableswill alwaysbeavailable, and, no matter
what process or sub-shell you are in, you can always access their
values. The results of any modifications you make to these values
depend entirely on whether or not the variable has been exported.

Non-exported system variables

The best way to illustrate what happens when you modify non-
exported system variables is to use an example. On entering the set
command to list the variables available for the login shell, you will
notice a system variable named MAILCHECK, which has a default
value of 600. If you enter env you will noticethat MAILCHECK is
not present in the list and so is not part of your environment.

If you create asub-shell by entering thek sh command, and again enter
set, youwill sse MAILCHECK isstill inthelist, thussignifying that
itisavailableto beaccessed by thecurrent shell/process. Similarly, env
will show that it is still not present.

Next, change the value of MAILCHECK with the command
MAILCHECK=100. On using the set command again, you will note
that itsvaluehasbeen changed. Now createafurther sub-shell withksh
again, and then enter set. You will now seethat MAILCHECK till
has its original value of 600.

Thisindicatesthat non-exported system variabl es passed to the second
sub-snell will retain the values of the original login shell and not the
modified values of the first sub-shell. The reason for this is that
aterationstothefirst sub-shell aremadeonly oncopiesof theoriginals,
which, because they are not exported, will not be passed on to
dependent processes.

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Exported system variables

Once asystem variable has been exported, any modificationsthat you
makewill be passed on to dependent processes. Thiscan beillustrated
by continuing with the above example. You should at this stage bein
the second sub-shell. Press Ctrl+D to cancel this sub-shell and return
to thefirst sub-shell, and enter the command export MAILCHECK ,

When you now enter the env command, you will note that
MAILCHECK appears on the list with its new value of 100. Now
createasecond sub-shell again withtheksh command, and on entering
set, youwill seethat MAIL CHECK iscurrently availablefor thissub-
shell, and hasthe new value of 100. Any further sub-shellsyou create
will now havethis new value passed on to them. On entering env each
time, you will seethat it is now part of the environment.

If younow exitfromall thesesub-shells, andreturntotheoriginal login
shell, on entering the set command you will notethat MAILCHECK
has retained its original value of 600. The env command will also not
display MAIL CHECK . Thisillustratesthat modifying theenvironment
of a process does affect the descendent processes, but does not affect
the parent process.

USING SYSTEM VARIABLESIN SCRIPTS
We will now run sample shell scriptsto demonstrate that:

o Systemvariablesthat arepart of your loginshell’senvironmentare
also part of any shell script’s environment.

e If you modify system variables that are part of the shell script’s
environment, you will affect the local copy only. The modified
variable will affect descendent processes, but when you exit the
shell script the login shell’s origina environment will not be
altered.

Create the following shell script, showenv:

print "The login shell's value of TERM is:" $TERM
print

modify a variable from the environment

TERM=hi

print In showenv TERM is now: $TERM

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 33

print
Show that the script's environment is changed
env | grep TERM

If you now execute the script with ksn showenv, note the values of
TERM. If you then display the value of TERM in the login shell’s
environment again with the print $TERM command, you will note
that TERM retainsits origina value.

If we modify showenv so that it invokes another shell script, we can
show what happens when we again change the value of TERM.
Modify showenv and replacethelast linewithksh myenv. Now create
anew shell script, called myenv, containing the following lines:

print In myenv TERM is: $TERM

set TERM to new value

print TERM=hello

print Again in myenv, TERM is now: $TERM

When you execute showenv, note that TERM changes as each shell
script modifies its value. If you finally enter the command print
$TERM, you will note that the original value is unchanged.

Running showenv thus demonstrates that the shell process started by
this script receives an environment containing the original value of
TERM. When thisvalueis modified, the modified value is passed to
the new environment started by myenv. When myenv and showenv
finish executing, the original value of TERM is unchanged.

USING OTHER VARIABLESIN SCRIPTS

Unlike system variables, any variables that you create will not be
accessibleto descendent processesunlessthey areexplicitly exported.
As soon as you create a variable, it is added to the list of variables
availablefor that process/sub-shell; the set command will show that it
has been added to the list.

What happens with this type of variable is best shown with an
exciting(!) example. Notethat with all thescriptsinthisarticlewehave
not included the standard first line, #!/bin/ksh, since we are only
creating very smple scripts. Inyour login shell createavariablevar 1,
and assign it the value xxx. Use set to show that it isavailable. Create
asub-shell withksh, and, if you again useset, youwill seethat itsname

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

does not appear on the list.

Now createthesamevariablevar 1, but assignitthevaueyyy. set will
show that it exists. Now exit from the sub-shell, and on entering set

again you will seethat var 1 retainsits original value. Thisis because
the variable created in the sub-shell isonly alocal copy, even though

it has the same name as the variable in the login shell.

Now export varl, and, if you are still awake, you will see that, on

executing env, the variable var 1 is now included in the environment.
Create a new sub-shell, enter both the set and env commands, and if

the excitement has not got the better of you, you will again seethat in
this mind-bogglingly boring example the variable isincluded in both

lists!

You can also create thefollowing shell scriptstoillustrate thisfurther:

$ vi one

varl=xxx

print In one, varl is: $varl
print

ksh two

print

print Back in one, varl is: $varl

$ vi two

print In two, we inherited varl: $varl
print

ksh three

print

export varl=yyy

print Back in two, varl is now: $varl
print

ksh three

vi three
print In three, we inherited varl: $varl

When you execute ksh one, you will see the following output:

In one, varl is: Xxxx

In two, we inherited varl:

In three, we inherited varl:
Back in two, varl is now: yyy

In three, we inherited varl: yyy
Back in one, varl is: xxx

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement.

35

The second and third lines of the output show var 1 to be null sincewe
areusing only local copiesat this stage and these have not yet been set.

In two you will see that we have exported var 1. Note that it does not
matter when you export avariableaslong asyou do so before starting
any processesthat referenceit. You canexport thevariablebeforeyou
assignit avalue, after you assignit avalue, or inthe Korn shell, at the
same time you assign it avalue, as we have done above. Once it has
been exported, itscurrent value will alwaysbe availableto descendent
[PrOCesses.

The variable var 1 can be made availablein your current shell, in this
case your login shell, by running the script with:

. ./one

By running scriptsinthisway itispossibleto modify any variablesthat
currently exist in your login shell. You can similarly access the
variables from any script by including the line;

. other_script_pathname

in the script you are running. Many shell programmers often create a
filejust containing commands which assign valuesto variables since
thisthen allowsthefileto beexecuted by different, and usually related,
scripts. In this way you need only to maintain a single copy of the
variable assignment, thus making it easier to alter without having to
edit a number of scripts.

SUMMARY
All the above examples show that:
o Eachtimeashdl scriptisrun, itisrun by aseparate shell process.

e Every sndl script inherits an environment from its parent, and
makes local copies of each of the variables in the environment.
M odificationsto the copiesare passed onto descendent processes.

 Whenavariableisexported within aprocess, the environment is
updated with the current value of the latest local copy, and the
value will be available for descendent processes.

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

» A processcannot addvariablestotheparent process senvironment,
and cannot modify the values of any variables in the parent
process. Processes can only affect their descendents.

DEBUGGING USING THE -X OPTION TO KSH

The-v optionto ksh causesksh to print the commandsin ashell script
before they are executed. This particular option merely prints the
command, and then its output on the next line, but it can be difficult to
distinguish the command itself from its output. In ssimple shell scripts
this is not usually a problem, but in complex scripts with lots of
functions, or wherethereare nested scripts, such astheexampleabove,
it can be a problem.

Whenyou are debugging complex scripts, it isoften more useful to use
the -x option to ksh. For example, if you entered the command:

ksh -x one

to executethefileyou previoudly created, youwill noticethat al of the
command linesin one are printed and preceded by a+ beforethey are
executed and it is now much easier to distinguish the command itself
from its outpui.

Sincethe commandsin two and three are executed in sub-shells, their
commandsarenot displayed sincek sh -x only operatesonthesub-shell
inwhich oneisrunning. You could, if you wished, call either of these
scripts from one with the -x option, for example ksh -x two, and this
would allow you to concentrate on debugging the scriptsone at atime
(not that this would be a particularly onerous task for these scripts!).

If you are using the shell interactively, you can set this option by
entering the command:

set -x

After entering this, all succeeding commands you enter in the current
processwill bedisplayed and preceded by a+ beforeexecuting. Toturn
the option off, enter:

set +x

You can a so add the set -x command at the beginning of ashell script,

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 37

and set +x at the end, although the latter is not necessary at the end of
afile, or you can enter thesecommandsat any point during ashell script
to debug only alimited number of linesof code. Try thisonthetwofile,

You should be awarethat if you have command line argumentsfor the
script you intend to run with ksh -x, then, unless you specify the full
pathname of the script, youwill get an error messagethat the command
cannot be found. Rather annoying, but what else do you expect from
the Unix world!

You should be further awarethat if you use set -x to debug scriptsthat
contain functions, then theindividual commands contained within the
functionswill not be displayed unlessyou use the same set commands
within the function itself.

Tonto Kowal ski
Guru (UAE) © Xephon 2002

Advanced features of EMC PowerPath software

EM C PowerPath isasoftwarelayer that enabl es efficient management
of I/Ofor AlX-based server connected to Symmetrix storage systems,
This article provides a description of more advanced usage of the
product.

USAGE OF A POWERPATH VOLUME AS AN AIX BOOT DEVICE

The PowerPath hdiskpower devices that contain the Al1X boot image
must provide I/O load balancing and failover protection for the host’s
boot device. The Symmetrix volume used for this purpose must fulfil
the following conditions:

» Theboot device has to be connected using a SCSI adapter
e Theboot device should be visible only to a single host

 Thehost’s boot list must contain all the hdisks that comprise the
boot device.

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Thefollowing procedure should be used to set up the PowerPath boot
device for a new PowerPath installation:

1 Reducethe number of physical pathsto the intended boot device
to 1.

2 Install AIX on a Symmetrix volume connected using a SCS|
adapter.

3 Ingtall thelatest EMC Symmetrix drivers.
Reboot the host.

5 Ingtall PowerPath software. Do not run the powermt config
command!

6 Create aboot image using the bosboot command:

bosboot -a
Reconnect all physical paths to the Symmetrix.

Make surethat an hdisk hasbeen configured for each path that was
reconnected.

9 Execute the command:
powermt config

10 Use the pprootdev command to set up multipathing on the root
device:

pprootdev on

11 Use the bootlist command to add all the aternate path hdisk
devices to the boot list.

12 Reboot the host.

The following procedure snould be used to set up a PowerPath boot
device on a Symmetrix for an existing PowerPath installation. This
procedure describes the process involved in the migration of the
contents of the physical volumes that are contained in the volume
group rootvg from internal disks to the Symmetrix volumes:

1 Makesurethat thefollowing patches have beeninstalled on your
host:

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 39

40

— 1X62417, 1X68140, | X74905, 1X74041, 1X66626 for hosts
running AlX 4.2

— IX73591 for hosts running Al X 4.3.

Execute the command powermt display dev=all in order to
determine the hdisk that corresponds to the hdiskpower device
that is intended to be used as the boot disk.

Add the corresponding physical disk to the root volume group. If
your disk is hdiskl execute the command:

extendvg -f rootvg hdiskl

Removethe PowerPath softwarefrom the system by executingthe
command:

installp -u EMCpower

Check the number of physical partitions (PPs) available on the
EMC Symmetrix volume to be used. The boot disk must have
sufficient room to contain the number of PPs used by the volume
group rootvg.

Execute the following command:
1svg -p rootvg
You should see output similar to the following:

rootvg:

PV_name PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk@ active 348 48 48..00..00..00..00
hdiskl active 495 495 99..99..99..99..99

You can seethat the current boot disk hdiskO isusing 348-48=300
PPs on hdisk0 and that the target hdiskl contains 495 free PPs.

Execute the following command to identify the logical volume
that contains the boot image (hd5 is the default):

1svg -1 rootvglgrep boot
You should see output similar to the following:

rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd5 boot 1 1 1 colsed/syncd N/A

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

10

11

12

13

14
15
16

17

Verify that thelogical volume containing the bootimageislocated
on adisk that you are going to migrate:

1svg -1 hd5
You should see output similar to the following:

hd5: N/A
PV COPIES IN BAND DISTRIBUTION
hdisk@ 001:000:000 100% 901 :000:000:000:000

Migrate the logical volume containing the boot image:
migratepv -1 hd5 hdisk@ hdiskl

Clear the boot record on the original disk:

mkboot -c -d /dev/hdisk@

Update the boot image on the new destination disk:
bosboot -a -d /dev/hdiskl

Migratethecontent of thesourcephysical volumetothedestination
disk:

migratepv hdisk@ hdiskl

Remove the original disk drive from the rootvg:

reducevg rootvg hdisk@d

Update the bootlist to use the new boot device. Include al hdisk
devices that are contained in the hdiskpower device that will be
used as a boot device:

bootTist -m normal hdiskl hdisk9
Install the PowerPath software.

Reboot the host.
Set up multipathing for the root device:

pprootdev on

Reboot the host.

DISABLING THE USAGE OF A POWERPATH VOLUME ASAN AlX
BOOT DEVICE

The following procedure should be followed to disable a PowerPath

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 41

volume from being used as an Al X boot device:
1 Disable multipathing for the root device:

pprootdev off

2 Reduce the number of physical Symmetrix pathsto the boot disk
to 1.

3 Reboot the host.
Create an updated boot image:

bosboot -a

5 Reboot the host.

INTEGRATION OF POWERPATH WITH HACMP CLUSTER SOFTWARE

Thefollowing proceduresdescribeonly the basic stepsneededinorder
to install and configure PowerPath and HACMP. Review Chapter 9,
IBM CLUSTER in Symmetrix High Availability Environment Product
Guidefor adetail ed description of usageof HACM Pwiththe Symmetrix.

We will consider three different scenarios. installing PowerPath and
HACMP on a new host; integrating HACMP in an environment in
which PowerPath devices are already present; integrating PowerPath
into an existing HACMP cluster.

INSTALLING POWERPATH AND HACMP ON NEW HOSTS
To install PowerPath and HACMP on new hosts do the following:

1 Prepare cluster hardware; verify the functionality of all network
and disk connections among the hosts and the Symmetrix.

2 Select ahost to perform the initial definition of volume groups
controlled by HACMP. Performthefoll owing stepsonthesel ected
host:

a Instal PowerPath software.

b Executethe command powermt display dev=all. Identify a
PVID for each PowerPath controlled device,

c Executethecommandlspvtoidentify volumegroups, followed

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

by Isvg 0 <volume group> to identify volume groups
containing the PowerPath controlled devices.

Install HACMP software. Configure HACMP to use volume
groupsidentifiedinstepc. If PowerPathisusedinaconcurrent
resource group environment the command /usr/lpp/
symmetrix/bin/symcurrent hastobeexecutedinorder tofix
the file /usr/sbin/cluster/diag/clconraid.dat to use
PowerPath devices.

Stop all applicationsthat use the volume groupsidentifiedin
step ¢. Unmount all file systemsthat reside on these volume
groups. Execute the command var yoffvg <volume_group>
for each volume group to deactivate it.

3 Foreachof therest of thehostsparticipatinginthecluster, perform
the following steps:

a
b

Install PowerPath software.

Execute the command power mt display dev=all. Identify
PVIDs for each PowerPath controlled device. Any disk that
showsnoPVID ordisplaysaPVID differentfromtheoneseen
on a different host has to be removed using the rmdev
command.

Executethescript emc_cfgmgr.sh followed by thecommand
power mt config to configure the PowerPath devices.

Execute the importvg command using PowerPath devices
and volume groups defined on the first configured host.

Executethe chvg command for each volumegroup, changing
the auto activation status of the group from the default yesto
no.

Install HACM Psoftware. ConfigureHACM Ptouseimported
volume groups.

4 Start cluster services by executing the clstart command on all
hosts. The volume groups and the underlying PowerPath devices
will start to operate under the control of the HACMP software.

© 2002. Reproduction prohibited. Pleaseinform Xephon of any infringement. 43

INTEGRATING HACMPINTO THE EXISTING POWERPATH
ENVIRONMENT

To integrate HACM P into the existing PowerPath environment do the
following:

1

Prepare cluster hardware; verify the functionality of all network
and disk connections among the hosts and the Symmetrix.

For each of the hosts participating in the cluster perform the
following steps.

a

Execute the command power mt display dev=all. Identify a
PVID for each PowerPath controlled device. Any disk that
shows no PVIDs or displays a PVID different from the one
seen on adifferent host has to be removed using the rmdev
command.

Install HACM P software. Configure HACM P to use volume
groupsidentified inthe previous step. If PowerPathisusedin
aconcurrent resource group environment, thecommand/usr/
Ipp/symmetrix/bin/symcurrent hasto be executed in order
to fix the file /usr/sbin/cluster/diag/clconraid.dat to use
PowerPath devices.

Stop all applications using the identified volume groups.
Unmount al file systems that are residing on these volume
groups. Execute the command var yoffvg <volume _group>
for each volume group to deactivate it.

Start cluster services by executing the clstart command on all
hosts. The volume groups and the underlying PowerPeth devices
will start to operate under the control of the HACMP software.

INTEGRATING POWERPATH INTO THE EXISTING HACMP
ENVIRONMENT

Integrating PowerPath into the existing HACMP environment is the
most complex procedure, and is supported only for standby clusters
with cascading resource groups. HACMP defines astandby cluster as
one with asingle host (called the active host) which owns al cluster
resources. This procedure cannot be used in clusters utilizing rotating
or concurrent resource group clusters.

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1 Repeat the following steps for all hosts participating in acluster:
a Verify that cluster services are operating on all hosts.

b Downloadandexecutethefollowingscript: ftp://ftp.emc.com/
pub/symm3000/aix/HACM P/had.3/convert.

Execute the script to perform emc_cfgmgr.sh followed by
power mt config.

c Configurethe cluster to execute the convert script asapre-
event to the node_down_remote event.

d Useappropriate cluster commandsto synchronizethe cluster
topology across al hosts in the cluster.

2 Repesat the following steps for all passive (not owning cluster
resources) hosts participating in a cluster:

a Install PowerPath software. Do not execute the power mt
config command.

b Connect the new paths between the Symmetrix and the host.

c Configurethe cluster to execute the convert script asapre-
event to the node_down_remote event.

d Stop al applications from using all volume groups except
rootvg. Unmount all file systems that are residing on these
volume groups. Execute the command varyoffvg
<volume_group> for each volume group to deactivate it.

3 Perform the following actions on the active host of the HACMP
cluster. Stop cluster services in takeover mode, causing the
transfer of cluster resourcesto apassive host. During the failover
process the convert script will be executed, causing the
configuration of paths and hdiskpower devices. Thisaction hasto
be performed for all hosts participating in the cluster.

4 Thefollowing actions haveto be completed onthe origina active
host:

a Ingtal PowerPath software. Do not execute the powermt
config command.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 45

b Connect the new paths between the Symmetrix and the host.

c Configurethe cluster to execute the convert script asapre-
event to the node_down_remote event.

d Stop al applications from using al volume groups except
rootvg. Unmount all file systems that are residing on these
volume groups. Execute the command varyoffvg
<volume_group> for each volume group to deactivate it.

e Fail-over cluster resources to this host.
Verify that cluster services are operating on all hosts.

Thefollowing actionshaveto be completed on the original active
host:

a Configure the cluster to remove the convert script asapre-
event to the node_down_remote event.

b Useappropriate cluster commandsto synchronizethe cluster
topology across al hosts in the cluster.

CONCLUSION

EM C PowerPath softwareisanimportant component intotal enterprise
storage solutions. It hasmany similaritiesto AutoPath software, which
supportsHP X Paswell asHitachi storagedevices. Both packageshave
similar features, which are compared in Figure 1. Aswe can see, the
advantage of PowerPatch is its ability to provide more precise fine-
tuning of load balancing to the user of the storage device. On the other
hand, AutoPath hasbetter integrationwithHACM Pand better statistics-
reporting abilities.

REFERENCES

1 PowerPath for UNIX Concepts and Facilities Guide, P/N 300-
999-265, EMC Corporation

2 PowerPath for UNIX Installation Guide, P/IN 300-999-266,
EMC Corporation

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Auto Path PowerPath

Non-disruptive Latest versions only | Latest versions only
installation

Automatic failover Yes Yes

Automatic on-line Yes Yes

recovery

SMIT integration Yes Yes

Support for round- Yes Yes

robin balancing policy

Support for number of | Yes Yes

I/O request-based load
balancing policy
Support for size of 1/0 No Yes
request-based load
balancing policy
Support for path No Yes
priority-based load
balancing policy

Failover only support | Yes Yes
Ability to disable both No Yes
balancing and failover

Support for concurrent | Yes Yes
HACMP

Support for non- Yes Yes
concurrent HACMP

Support for non- Yes Yes

disruptive installation
under non-concurrent
HACMP

Support for report of Extensive Limited
adapter/device 1/0
statistics

Figure 1. Comparing features of AutoPath and PowerPath

3 PowerPath for UNIX Administration Guide, PN 300-999-267,
EMC Corporation

Alex Polyak
System Engineer
APS(lIsrael) © Xephon 2002

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 47

AlX news

IBM has added updated softwareto its AIX
V5.1 Expansion Pack, including Network
Authentication Service V1.2.0.1, Netscape
Communicator 4.79, and Encryption for
SecuréWay Directory V3.2.2.

The company also announced new software
foritsBonusPack, including Al X Devel oper
Kit, Java 2 Technology Edition, V1.3.1, 32-
bit version for POWER. This includes the
tools to build secure Java applications for
encryption. Also included is Open Secure
Shell 2.9.9, Open Secure Sockets Layer
(OpenSSL) V0.9.6b, which can beinstalled
fromtheAlX Toolbox for Linux applications
CD.

Updated software includes AIX Developer
Kit and J2TE 1.3.1 64-bit version for
POWER.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/servers/aix.

* % *

IBM has announced Version 2.1 of its
WebSphere Business|ntegrator for Al X, for
creating, executing, and managing business
processes.

The software speedsimplementation of new
business processes, which, once
implemented, help reduce the time,
complexity, and cost of change. Theresultant
framework includes a model for EAlI B2B
integration, processesthat span applications
and enterprises and are managed asasingle
element, life-cycle management across an
entire process, IBM’s adapter framework,
definition of process and data-level
interactions between trading partners, and
theability touseWebSphere Studio Business

Integrator Extensions to build reusable
process templ ates.

For further information contact your local
IBM representative.

URL: http://www.ibm.com/software/
websphere.

* % %

4Front Technologies has announced OSS/
AlX Version 3.9.6¢c, which now supports
AIX 5.1.

There is also support for Sound Blaster
PC1128, CMediaCM18738, and ForteMedia
FM801, plus support for all ISA PnP
soundcards. The new version also provides
improved installation for the drivers and
automatic soundcard detection.

For further information contact:

4Front Technologie, 4035 Lafayette Place,
Unit F, Culver City, CA 90232, USA.

Tel: (310) 202 8530.

URL: www.opensound.com.

* % %

IBM hasannounced itsMigration Utility for
Z/OS and OS/390, alowing sites to create
standard COBOL reports using Computer
Associates’ Easytrieve Plus language
without Easytrieve Plusinstalled, and which
run in place of the Easytrieve run-time
interpreter. Easytrieve applications can be
ported to any platform with a supported
COBOL compiler, including Al X.

For further information contact your local
IBM representative.

URL: http://www.ibm.com/software/ad/
migration.

	Using and referencing variables
	Core dumps in AIX 5L
	Understanding the head and tail commands
	Removing users from a system
	Variables and the environment
	Advanced features of EMC PowerPath software
	AIX news

