

© Xephon plc 2002

June 2002

80

In this issue

AIX
�
�
�
�
��

3 Using and referencing variables
13 Core dumps in AIX 5L
17 Understanding the head and tail

commands
25 Removing users from a system
29 Variables and the environment
38 Advanced features of EMC

PowerPath software
48 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Using and referencing variables

REFERENCING VARIABLES

If you try to reference a variable in a script (or from the command line)
that has not been assigned a value, the shell will effectively ignore the
variable and run the resultant command, which may produce errors
depending on the syntax required for the command. If you wish, you
can deliberately assign the null string to a variable. For example:

��������

Referencing the value of a shell variable that has been assigned the null
string has the same effect as referencing a variable that does not exist.

There are a number of string operators, using a curly-bracket syntax,
which allow you to manipulate the values of variables. Some of these
operators, for example, allow you to specify a default or back-up value
to be used in case a variable does not exist, or has a null value, while
others are used to extract characters from variables containing strings
that match prescribed patterns.

They are very useful constructions to know, since they allow users who
may not yet be experienced shell programmers to manipulate variables
without having to write complex programs, although they can be
difficult to remember in detail. These string operators are discussed in
the following sections.

${variable:-string}

If an expression such as:

	
���������������

appears on a command line, the expression will be replaced with the
current value of variable, if it exists. If it does not exist, or has been
assigned a null value, the reference will be replaced with the string
instead.

An example of the use of this type of parameter substitution is:

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�����	
������������

You can try the above type of parameter substitution by first assigning
a value to the variable greeting, as follows:

�������������

Now enter:

�����	
�������������

and notice that hello is displayed. If you display the value of greeting
with the set command, you will see that it is still hello. If you now
assign the null string to greeting, and enter the same command, this
time bye is displayed, but on entering set you will see that greeting still
has the null value.

If you now unset greeting, so that it no longer exists, and enter:

�����	
�������������

then bye will again be displayed, and set will show that greeting still
does not exist.

${variable:=string}

Now try a modification of the command, but first unset greeting and
then enter:

�����	
�������������

This will again display bye, but on using set you will see that the
variable has now been created and set to the value bye.

If you now set greeting to null and enter the above command again, bye
will again be displayed, and set will also reveal that greeting has now
been given the value bye.

If greeting is set to hello, then on entering:

�����	
�������������

the value hello will be displayed and greeting will be unchanged.

${variable:+string}

If greeting does not exist, or is equal to the null string, then the further

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

variation of the command:

�����	
�����������

will display the null string. If greeting is equal to null, or is not set, then
set will reveal that its value is still null.

If greeting already equals hello, then the above command will display
the string hi, but set will reveal that greeting still retains its original
value.

${variable:?string}

This type of string operator allows you to print a message, defined by
the string, if the variable does not exist or has a null value. It will also
cause any script in which it is contained to abort. If the variable does
have a value, then this value will be printed.

We can now create a simple script that can make use of this string
operator. Let us assume that we want our script to accept a command
line argument, which the shell refers to as $1 (this type of input for shell
scripts will be discussed in greater detail in a future article).

Create the script called args:

 !"��"#��

�����	
��$%������&�����'"(��"����

�����)�����������&���

If we make the script executable and then run it without an argument,
it will send the following output to standard error, and then exit:

���������%������&���

If we run the script with an argument, then only the message, “Have
an argument”, will be displayed. This is because we have redirected
standard output for the first print statement to /dev/null. If this
redirection was not in place then we would also have the value of the
argument printed first, and we have decided (in this particular case)
that this is not desirable.

${variable#string}

It is also possible to delete parts of variables when they are referenced.
If you set greeting to hello, and then enter the command:

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�����	
������� ����

the output from this substitution will be lo.

This type of substitution tries to match the pattern following the # with
the beginning of the variable, and if it is a perfect match then the
matching portion is deleted from the output; the value in memory is
unaffected. If there is no match, the value of the variable is substituted.

The characters that follow the # can be a simple string, or they can be
any complex pattern matching construction. For example:

�����	
������� *��+,$$�

will also print out the characters lo.

${variable%string}

A similar form of the above command is:

�����	
�������-���

which will produce the output hel. This string operator performs its
matching with the end of the variable.

${variable:-$(command)}

Another type of substitution uses parentheses. Whenever you have a
command of the type:

.�(/��0

the list of commands contained within the parentheses are executed in
a sub-shell.

If you use a command of the type:

�����	
(���	.�1(0�

pwd will be executed only if dir is not set or is null. This type of
substitution can also be used when the variable references use the = and
+ constructions.

${#variable}

It is also possible to display the length of a variable by using:

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�����	
 ���������

and if instead of variable you use * or @, then the number of positional
parameters is substituted.

SUMMARY

The differences between the output from some of the above string
operators is not easy to remember, and it is easy to forget these
differences when you use the construction infrequently, particularly
when a variable has not been set, or has a null value. To assist you I have
created a table which summarizes the differences.

If the command entered is of the form:

�����	
�����������������������	
������

then the actual values of variable stored in memory (displayed by using
the set command), and the output displayed by print, are shown in
Figure 1.

Current value Value shown by set (stored in memory)

 = - +
oldstring oldstring oldstring oldstring
not set newstring not set not set

null newstring null null

Current value Output from print

 = - +
oldstring oldstring oldstring newstring
not set newstring newstring null

null newstring newstring null

Figure 1: Differences table

VARIABLE ARRAYS

The Korn shell supports one-dimensional arrays with subscripts (or
indices) in the range from 0 to 511. You can subscript a variable by
using []. For example:

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

���*�,����

���*�,����

���*2,�222

Arrays do not need to be declared before using them. Any reference to
a parameter array with a valid subscript is acceptable, and the array
element is created when it is first assigned.

You do not need to assign values to variables in a specific order, or
indeed at all. For example, you could create a variable:

��������	
������

without first having to declare or define planet[0], planet[1], and so
on. In fact you need never create them.

There is a further way in which you can assign an initial set of values
to the elements of an array by using the set command:

�����3��������&�������������������&����4�4�4

which will set planet[0] to mercury, planet[1] to venus, and so on. If
for some reason you did not want the first real element of your array to
start at index 0, but 1 instead, then you could assign the 0th element a
null string, “”, so that the elements of your array would now be in an
order you wanted.

You can reference an individual variable in an array by using:

�����	
������*�,�

and if you do not use a subscript, this is the same as referencing the
variable planet[0].

If you use a command such as:

�����	
������*5,�

this will display all the elements of the array, separated by spaces.
Similarly you can determine how many elements in an array have
currently been set with:

�����	
 ������*5,�

To unset all variables in an array you can use the command:

������������

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

VARIABLE SUBSTITUTION

There may be occasions when you want to assign a value to a variable,
and then assign this variable to a second variable. On using the print
command to display the contents of the second variable, the expected
substitution for the first variable might not necessarily be made.

For example, if you make the following assignment:

67��8	9:68

and then enter:

�����	67�

the output of this command will be the characters $PWD, which might
not be what you intended.

To overcome this you can use the built-in shell command, eval, so that
if you enter:

����������	67�

this will produce output of the type:

"��&�";��(

The eval command should be used when ‘hidden’ variable substitutions
may cause conflicts. It has the same effect as forcing the shell to scan
the command line twice before executing the specified command.

In the above example, $PWD was enclosed in single quotation marks,
which prevented the usual interpretation of the $ metacharacter when
the print command was used on its own. With eval, however, the print
command is executed after all its arguments have been expanded by the
shell.

eval is also useful for interpreting variable names consisting of two
parts (or more), each of which may themselves have different values,
and when joined together they produce a third variable whose value
you may want to extract.

For example, we may have a number of volume groups and we want to
display various attributes for each volume group, such as the total size,
number of PPs, auto-varyon value, and so on. The first part of the
variable name would contain the volume group name, $VG, and the

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

second part would be an attribute, $ATTR. We would then use nested
loops containing eval statements (with carefully constructed syntax) to
display the values of our third variables, which may be in the format
${VG}_$ATTR.

Since you have not yet been introduced to nested loops, let us consider
a much simpler example where only one part of the variable name is
required to be changed.

You will remember that in Examples of shell scripts, AIX Update,
Issue 78, April 2002, we created a script called vgsizes. Let us suppose
that we also want to print the number of logical volumes in each volume
group. At present we have hard-coded rootvg into the script, but later
we hope to modify the script to be able to generate a list of all volume
groups varied on, and then use loops to display the number of logical
volumes for each.

Modify the script so that it now looks like the following:

 !"��"#��

<=�������

>?@�A�����

�?�3B�	.��������	<=�	>?@�A��C������D�?�3B�99�D�C������;E��(�D.D�C����8

8�8F�8�C������;�0

G����	.��������	<=�	>?@�A��C������DG����99�D�C������;E��(�D.D�C����8�8

8F�8�C������;�0

�����	
<=�HB<%@��	.��������	<=�C������I�C�1�����C�����(�D�D0

����;�D-�E���-��J��-��J�F�D�D<���&��=����D�D������>+�D�DG����>����D

����;�D-�E���-��J��-��J�F�D�	<=�D	�?�3B��KD�D	G�����KD

�����	
<=�HB<%@�

����������%�&�����;�B<����	<=���8	8	
<=�HB<%@�

The first eval command again uses command substitution and merely
counts the number of logical volumes in the volume group. The tail
command extracts only the output lines from line 3 onwards, and the
tr command removes all spaces in the output from wc.

Note that we have enclosed VG in braces to ensure that its value is
extracted before appending the remaining characters to create the new
variable name. If we had not used braces, the shell would have looked
for a variable called VG_LVNUM, which of course does not exist, and
we would produce an error message since we no longer have a valid
variable assignment statement.

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

By using eval the first scan evaluates ${VG} to produce the string
rootvg_LVNUM and at the same time produces the output from the
command substitution; the second scan performs the variable
assignment. If we had not used eval, the shell would make the variable
and command substitution, then try to interpret the whole line as a
series of characters and so produce an error message since it no longer
recognizes the equals sign as an assignment operator.

The print command is inserted just to show that the string
rootvg_LVNUM is printed without extracting the value assigned to it.

The final eval command creates an entry in memory containing the
characters1 $rootvg_LVNUM on the first scan, and on the second
scan the value of rootvg_LVNUM is extracted.

SHELL VARIABLE $$

In the following example, we make use of a special type of variable
maintained by the shell. You cannot assign values in the usual way to
automatically maintained variables, but you can reference them.

One such variable is $$, which is always equal to the process ID of the
current shell process. If you enter ps, and then print $$, you will see
that the process ID of the login shell, -ksh (or it may be the PID of /bin/
ksh if you are using multiple windows), is confirmed by print $$.
Similarly, you can determine the process ID of a process which is
running a shell script by including a command such as print $$ in the
script.

For example:

	������1�(

���������976��;��������������������&�����		

and on running the command ksh showpid the above message will be
displayed with the PID inserted.

Consider the following example, which illustrates that each shell script
is indeed run by a separate process. Create the following shell scripts:

	������

�����7�������		

(���

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

#����1�

	����1�

�����7���1���		

Now display the process ID of the current login shell, and run one:

�����		

#������

and note the different PID numbers.

Here is what happens. When you enter the command ksh one, a new
shell process is started. This process reads the first print command in
the shell script, and since print is a built-in command, a new process
is not started. It then replaces $$ with its own process ID, which is that
of the process running the script, and executes the resultant command.

Next, the shell reads the date command, and since it is not a built-in
command, forks a new process. The new process then execs the date
program. When the date process terminates, the shell reads the next
command, ksh two. The shell again forks a new process, and the new
process execs two.

The operating system recognizes that two is a shell script, and overlays
the new process with the ksh program, and arranges for this ksh
process to get its input from the script two. This shell process then reads
the print command in two, replaces $$ with its own process ID, and
runs the resultant print command.

Since this is the last command in two, the shell process terminates, and,
when it does, the parent shell process running the commands in one is
re-activated. The parent now finds that it is at the end of file one, and
terminates. When it does, its parent, the login shell, is re-activated.

You can also try running the script with:

4����

which will run one in the current shell. This will then display the In
one: PID as the same as that of -ksh.

As a further example, suppose that you change one to the following:

	������

�����7�������		

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

(���

#����1�

�����7������������		

��������(���

When one is executed, the shell process running one executes print,
then waits idly while the date process runs. When date completes, the
shell process handles the next command, two. Again the shell waits
idly for the shell process that is running two to complete. When it does,
the shell process running the commands in one handles the remaining
commands in the script.

Tonto Kowalski
Guru (UAE) © Xephon 2002

Core dumps in AIX 5L

INTRODUCTION

Those of you who have the task of dealing with core dumps may be
interested to learn about new functionality in AIX 5L which makes
administration of core dumps and problem determination through core
dump analysis considerably easier.

CORE DUMP NAMING

The first thing you will notice when dealing with core dumps in AIX
5L is that the naming designation for dumps has changed. Prior to
Version 5L, AIX used to name all core files as core. Obviously, if an
application dumped more than once, the earlier core dump would be
overwritten. This could cause interesting problems with tracing and
debugging.

With AIX 5L Version 5.1 a new naming structure gives each core dump
a unique name (such as core.17831.18150903). The designation has
the following components: core.[process ID].[Day][hour][minute]
[seconds]. In our example designation shown above, the Process ID
was 17831, and the dump was taken on the 18th day of the month, at
15.09 and 3 seconds.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

As a result of this simple change, core dumps are no longer overwritten,
which is a real bonus for tracing application failures and for debug
operations. However, this new ‘unique’ naming scheme is not the
default setting in AIX 5L. The default is still to name the core dump as
core. To enable the new naming standard you will need to set the
CORE_NAMING variable to yes. In fact, any value except null will be
accepted as a yes value.

SNAPCORE

There is another feature found in AIX 5L which helps in problem
determination. AIX 5L now uses the snapcore command to automate
the collection of core dumps and deposit them in a single archive. This
is important because all the relevant information relating to a core
dump (such as the core file itself, the program, and the libraries) can
now be found in a single compressed pax archive in a specified default
directory.

The fact that the compressed core dumps are deposited by default in the
tmp/snapcore directory, unless specified, is a very useful feature
indeed. The snapcore command will gather all the information relating
to a dump and create a new compressed pax archive in the default/tmp/
snapcore directory. You can of course, use the -d flag to change the
directory where you want the archive stored. This can be anywhere
from disk to tape, or at a remote location.

EXAMPLE

In the examples below, we will run the snapcore command to collect
all relevant files for our core dump (core.17831.18150903). We will
save the dump in a directory that we have created (/tmp/cdumpdir). We
will then view the contents of the core and run the check_core utility
against the core dump file so that we can obtain a list containing the
program that caused the core dump and the libraries used by it.

First, we change to the directory where the core dump file is situated:

 �����

������LI

��1��M�M����������;;�NO�G����O��I����4���;��

��1MMM����������;;�LIE�G����O��P��E�4��H������

��1��M�M������������&�E�2O��G����N��I��P

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����4�2NI�4�N�J�P�I

We can then use the -d flag to save the dump to /tmp/cdumpdir rather
than the default /tmp/snapcore directory:

 ����������(�"�&�"�(�&�(������4�2NI�4�N�J�P�I

A����;���D����4�2NI�4�N�J�P�ID�������(����D������D

�����.0�����������4444

A������������������Q���(�44

��������������Q���(���2PNJ�#������44

A���#���;������������������444

3������������������IO��#�����

��������&�����4

����E.0�����������4444

A���������;�������;��&�����44

A�����������������������;�A?��H6@�9��������44

A����������(&��;���44

A��������������;���444

A�&���������������;���4444

����E���&�����(4

>����������&�����(��������;����4

3������������(���"�&�"�(�&�(�4

Each execution of the snapcore command creates a new archive file.
The compressed pax archive file that is created is given the designation
snapcore_<$pid>.pax.Z. This command uses $pid (pid of the snapcore
command) to create a unique name file and preserve any previously
created archives. You can use the -r flag to remove the previously
created archive file:

 ������"�&�"�(�&�(�

������LOE�

��1��M�M������������&�ENLJ��P�G����N��I���

��������HLON�4��R4S

When you need to view the pax archive contents you can use the
following command:

 ����&�����������������HLON�4��R4S�C��R

����4�2NI�4�N�J�P�I

��36��

�����4���

At some point you will probably want to examine the dump, at which
point you will need to use the following commands to extract the files
from the archive:

 ����&�����������������HLON�4��R4S�C��R���

 �����

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

������L22E

��1��M�M������������&�L�J�G����N��I�E����36��

��1��M�M������������&�E�2O��G����N��I�E�

����4��2NI�4�N�J�P�I

��1��M�M������������&�LIONE�G����N��I�E�������4���

��1��M�M������������&�ENLJ��P�G����N��I���

��������HLON�4��R4S

The utility used by the snapcore command to gather relevant information
about the core dump is called check_core. The check_core utility is a
C program located in the /usr/lib/ras directory. However, to use
check_core you need to make sure you have the bos.rte.serv_aid fileset
installed. When you run the check_core utility against the core dump
file you will receive a list containing the program that caused the core
dump and the libraries used by it:

 "���"��"���"����#H���������4�2NI�4�N�J�P�I

"���"��"���4�

"���"��"�������4�4"���"��"����(4�

"���"��"����(4�

"���"��"���N�4�

"���"��"������4�

"���"��"�����4�

"���"��"������&4�

"���"��"���(&4�

"���"��"���;�4�

"���"��"���"���"��H@>

������

As you can see, check_core provides the name of the program that
caused the dump. Also you will know it from the core dump error log.

Removing core archives

At some point you may wish to remove old core archives. To remove
the previously created core archive in the /tmp/snapcore directory and
create a new one, enter the following:

�����������T�����;�����&�'�T������&���&�'

To create the core file archive in an alternate directory, enter the
following:

����������(T(����&�'�T�����;�����&�'�T������&���&�'

The pax file is created in <dirname>/tmp/snapcore directory.

To clean the /tmp/snapcore directory, enter the following:

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�����������

CONCLUSIONS

In our shop we have found the new core dump naming convention and
the snapcore command to be a significant bonus in debugging and
tracing application failures. The pax archive contains all the relevant
information that is required to analyse a core dump and it is placed in
a standard directory. It is one of the many new and useful features of
AIX 5L.

Systems Programmer (UK) © Xephon 2002

Understanding the head and tail commands

HEAD COMMAND BASICS

Suppose you had several files in a directory and you wanted to know
their purposes. If you could display just the first few lines of each file,
perhaps it would give you enough data to determine the files’ intent.
With the head command you can do this.

Or let’s say you have 30 files whose contents you know, but you need
to scan through them and see a certain field 255 bytes into the file. The
head command can help you.

As a further example, suppose you had 180 source program files, each
of which contains a 12-line prologue. Let’s say you need to concatenate
the prologues of the 180 files into a single file for the purpose of running
further filters against it. Using the head command will make this
easier.

The head command displays the first few lines of a text file depending
on a line count you specify. You can specify a byte count instead, and
the head command will display that number of bytes beginning with
the first byte of the file.

If you don’t include an input count on the command line, the head

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

command will display the first ten lines of the file you specify on the
command line.

TAIL COMMAND BASICS

Now let’s look at the tail command. This command displays the LAST
group of lines or bytes of the specified file or files.

Using the head command examples as models, let’s address some
similar uses for the tail command.

Let’s say you have several log files whose data consists of entries
written chronologically – the latest items at the bottom of the file. If you
wanted to display the last few lines of each log, the tail command will
do this.

Or maybe you have a group of files with key data within the last 100
bytes in each file. The tail command will show this to you.

Another example would be if you wanted to concatenate the coded
portions of your 180 source files from the head command example
above into a single file or filter command. The tail command displays
the last few lines or bytes of a text file, based on the count you specify
on the command line.

As the head command displays the first ten lines as a default, the tail
command will display the last ten lines of a file if no count is specified.

The tail command offers two further benefits. It can continuously
display the last entries of a log file that is being updated by an
independent process. It can also display the data in a file in reverse
order, such as if you wanted to display a chronological event log with
the most recent entry first.

The basic syntax of the head and of the tail commands is shown below:

�����������(�;�����;������

������������;�����;������

where:

• flags is an optional flag or flags used to enhance the head or tail
operation.

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• filespec is the file or files on which the head or tail operation is to
perform.

FLAGS FOR THE HEAD COMMAND

The following flags help to enrich the usefulness of the head command.

• -c number – specifies the number of bytes to display.

Use the c flag to tell the head command how many bytes from the
beginning of the file you would like to display. For example, head
-c 100 headsmp1.fil would display the first 100 bytes of the
sample file, whatever those bytes might be, as long as headsmp1.fil
is a text file.

• -n number – specifies the number of lines from the file’s beginning
to display.

Use the n flag to tell the head command how many lines from the
beginning of the file you would like to display. For example, head
-n 20 headsmp2.fil would display the first 20 lines of the sample
file.

You can specify either the c flag or the n flag on the head command.
The number parameter in the flags of the head command must be a
positive integer.

FLAGS FOR THE TAIL COMMAND

The following flags help to enrich the usefulness of the tail command.

• -c number – specifies byte count from the end of the file to display.

The c flag tells the tail command, Start at this byte count from the
end of the file. For example, if you were to enter tail -c 24
tailsmp1.fil and if the sample file were 1024 bytes in size, the tail
command would display the last 24 bytes of the file.

• -f – specifies that the tail command is not to terminate after the
display.

The f flag tells the tail command to continue to display data until
stopped. Suppose you had a program continuously writing to a

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

log. If you entered tail <process>.log, where <process> is the
program writing to the log file, tail would at first display the last
ten lines of the log file. As the program continues to write to the
log, the tail command would continue to append the new lines to
the end of its current display either until stopped with the Ctrl+C
command (or otherwise stopped,) or until the program stopped
writing to the log. This would enable you to monitor a log file
without editing the file.

• -n number – specifies a line count from the end of the file to
display.

The n flag tells the tail command, Start this many lines from the
end of the file and display from that point. For example, if
tailsmp2.fil had 500 lines, tail -n 100 tailsmp2.fil would start at
line 401 and display the last 100 lines of the file. This could be
useful if you wanted to scan only the data in the last few lines of
your files.

• -r – specifies that the tail command is to display from the file’s end
in reverse order.

The r flag tells the tail command to display the data beginning
with the last line first, followed by the second to the last, etc, until
the line number specified using the n flag. This could be used to
display a log file in such a manner, if it were to be more meaningful
to read the last line first. If no n flag is specified, the tail command
will display the entire file in reverse order.

The number parameter in the flags of the tail command can be a
positive or negative integer. If no sign, or the minus (-) sign, is
specified, the number of lines is displayed from the bottom of the file.
If the plus sign (+) is used, the tail command will display lines or bytes
from the beginning of the file.

For the examples above, entering tail -c +1000 tailsmp1.fil would
bypass the first 1000 bytes of the 1024 byte file and display the last 24
bytes. Entering tail -n +400 tailsmp2.fil would bypass the first 400
lines and display the last 100 lines of the 500 line file.

It is not at all uncommon to pipe the output of either the head or the tail
command into the pg or other filters to enable you to see the results one
page at a time.

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

SOME EXERCISES

Here are some exercises to test your knowledge of the head and tail
commands.

Exercise 1 – head command exercises

To set up the exercise:

1 Create three sample files using the code at the end of this article
as a model.

2 Name the files sample1.src, sample2.src, and sample3.src.

3 Edit sample2.src and sample3.src and change the following:

– Increment the Module ID in line 1 to HT002 and HT003.

– Increment the Module Name in line 4 and the Source file
number in line 6.

– Change the Date, Programmer initials, and Reason for Flag
$A2 in line 21 to be different from sample1.src.

– Place the three sample files in a test directory.

Step 1 – enter head sample1.src.

Observe the following results:

""�>�3���?G�>9�A7G7A3�7?%>�����(����76��)����

""�55

""

""���(����%�&�������&����4���

""

""�6������������>������;�����&������;������(������R�����4

""

""��

""������3KA�A�&����

""��

You have just used the head command to display the first ten lines of
the first sample file. This can help you determine the intent of a file if
you or another developer were unfamiliar with it.

Step 2 – enter head -c 45 *.src.

Observe the following results:

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

��'���&����4����T��

""�>�3���?G�>9�A7G7A3�7?%>�����(����76��)����

��'���&���E4����T��

""�>�3���?G�>9�A7G7A3�7?%>�����(����76��)���E

��'���&���I4����T��

""�>�3���?G�>9�A7G7A3�7?%>�����(����76��)���I

You have just used the head command with the c flag to display only
the first 45 bytes of each of the three sample files. This could help you
if you knew in advance that the data that you were seeking was within
the first 45 bytes of each file; in this case, the Module ID.

Step 3 – enter head -n 25 *.src | grep A2.

Observe results similar to the following, depending on how you
changed the samples:

""�	3E����J"�I"E�������U>���A�����(�(���HR��������

""�	3E����J"�J"E��������)���A�����(�(���HV������

""�	3E����J"�2"E������UB����A�����(�(���H;���������

You have just used the head command with the flag to isolate only the
25 line prologue of all your .src files as input to the grep command.
This would display the change flags only in the prolog, and not in the
body of the code. This can help you if you wanted to ignore the change
flags in the actual code, and see only the change flag in the prolog.

Exercise 2 – tail command exercises

There are two log files that will be utilized during this exercise. Sulog
is a file that records whenever a user uses the su (switch user)
command. In a typical system, /var/adm/sulog contains many entries.
If your copy is sparse, you may wish to issue several instances of su in
order to log enough entries to perform the exercise. Alternatively, you
may use another system log for the exercise. You must have system
authority to access sulog.

Smit.log keeps track of activity during use of the System Management
Interface Tool (smit). This file may typically be found in the root
directory for root users or in the home directory of regular users. If there
is no smit.log in your directory, you will need to run smit (smitty for
command line use) and run a few operations to develop a log.

Once you have sulog and smit log available, you are ready to begin the
exercises.

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Step 1 – as an administrative user, enter tail -n 8 /var/adm/sulog.

Observe results similar to the following:

>@���"�I��P�JI����;���1V�&�������

>@���"�I�����J������"��1V�&�������

>@���"�I�����O������"��1V�&�������

>@���"�I�����O������"��1V�&�������

>@���"�I�����2������"��1V�&�������

>@���"�I�����2������"��1V�&�������

>@���"�N��J�LL������"������������

>@���"EI��J�EE������"������������

You have just used the tail command with the n flag to display the last
eight entries of the log file that tracks the use of the su command. This
can be useful if you want to view only the most recent activity in a log
file.

Step 2 – as an administrative user, enter tail -r -n 5 /var/adm/sulog.

Observe results similar to the following:

>@���"EI��J�EE������"������������

>@���"�N��J�LL������"������������

>@���"�I�����2������"��1V�&�������

>@���"�I�����2������"��1V�&�������

>@���"�I�����O������"��1V�&�������

You have just used the tail command with the r flag to view the last five
lines of the su log file displayed in reverse chronologic order. Sometimes
viewing a list beginning with the last item first is more useful.

Step 3 – cd to your root or home directory and enter tail -c 255 smit.log.

Observe that the command displays the last 255 bytes of the smit.log.

You have just used the tail command with the c flag to view a specific
byte count from the end of a file.

Exerxise 3 – using the tail command to monitor a process.

Part two requires two command windows to be used – one to run
commands that will write data to a log file, and one to run the tail
command to view the log files.

Step 1 – from command window 1, enter tail -f /var/adm/sulog.

The tail command will display the last ten lines of the log, and trap the

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

cursor. From command window 2, enter a few su commands. Observe
that for each su command you complete in window 2, a new entry will
be appended to the results in window 1. Press Ctrl+C in window 1 to
halt the tail command and to return the cursor.

You have just used the tail command with the f flag to dynamically
monitor the update of a log by another process. This can be useful if you
need to keep track of an independent, remote process.

Step 2 – cd to your root or home directory and from command window
1, enter tail -f -n 20 smit.log.

The tail command will display the last twenty lines of the log and trap
the cursor. From command window 2, enter smit (smitty for command
line). For each smit command that completes, you should see new
entries added to the end of the log displayed by the tail command in
window 1. Press Ctrl+C to halt the tail command.

You have used the tail command to monitor another external process.

Exercise source code

""�>�3���?G�>9�A7G7A3�7?%>�����(����76��)����

""�55

""

""���(����%�&�������&����4���

""

""�6������������>������;�����&������;������(������R�����4

""

""��

""������3KA�A�&����

""��

""

""�3��������:���&�W4�K����

""

""�G����������)����������������������37X����(���(�������&&��(�4

""

""�A������3������

""

""�GB3=��63�����������9�?=����3>?%

""�MM��MMMMM���MM��MMMMM�MMMMMMMMMM�

""�	3�����L"�E"E������:WK���@�(���(�&���R������

""�	3E����J"�I"E�������U>���A�����(�(���HR��������

""�	3I����E"��"E��E���:WK���6�����(�(��������Y������

""

""�55

""��%6�?G�>9�A7G7A3�7?%>

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

""

""����M�>������;�A�(��M�

����������������4

����������������4

����������������4

""����M���(��;�A�(��M�

""

David Chakmakian
Programmer (USA) © Xephon 2002

Removing users from a system

INTRODUCTION

In the current economic climate, the need to remove users from systems
is unfortunately becoming a common task. This is something that has
to be given top priority in a system administrator’s daily workload
because the penalty for slow action can be considerable.

The computer press would have us believe that the major risk to
systems comes from external attack by malicious hackers. In reality,
however, most attacks on systems originate from within the network.
It is currently thought that between 65% and 90% of network attacks
come from within an organization rather than originating from outside.
These numbers are difficult to quantify because there is still a strong
reluctance for companies to admit that their networks have been
compromised, and partly because skilled network breaches may be
difficult to identify and may even not be properly recognized until long
after the event. It is, therefore, very difficult to deduce the origins of
different attacks.

The principal worry for network security staff and systems administrators
is that disaffected staff, or former workers, may have deliberately left
security breaches or even time-bombed an installation before quitting.
Another important area of exposure is disgruntled users who retain
their user ID after they have left. This is why the removal of user access

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

privileges and associated data must be undertaken as soon as possible
after the personnel have left.

USER REMOVAL TASKS

When a user is to be removed from a system permanently, the following
tasks need to be performed.

Remove user information

All user information must be removed. To remove a user you can use
the smit rmuser command. For example:

@����%3������������������������������������*W��#,

��&����3@�)�%�7A3�7?%��;��&����$��������������

However, before this is attempted it is essential to check the user’s files.
This can be achieved with the find command (before the user is
removed).

find

The find command recursively searches the directory tree for each
specified Path parameter. It uses a Boolean search to find files.
However, remember that when the find command is recursively
descending directory structures, it will not search directories that are
symbolically linked to the current hierarchy.

;�(�������V��#

It is important to note that if the user’s files and the user’s account are
deleted before reassigning the user’s files then the files will essentially
become ‘unowned’, and can become a security risk.

All the user’s files on the system need to be removed or reassigned. So
it is a simple matter of using the find command to generate a list of all
files owned by the user. If the files are useful, they can be reassigned
to other users using the chown command or else deleted.

However, it is essential that you remove information in other subsystems
before removing a user, because the cron and at utilities both allow
users to request programs to be run at a future date. Use the crontab
command to remove a user’s cron jobs. You can examine a user’s at

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

jobs with the atq command, and then remove the jobs with the atrm
command.

If you need to remove an entire group the smit rmgroup lsgroup -a
Attributes Group procedure removes a group and all of its attributes
from your network. However, this procedure does not remove all of the
users in the group from the system. Furthermore, if the group to be
removed is the primary group for any user, you must reassign that user
to another primary group before removing the user’s original primary
group.

at jobs

It is absolutely crucial that you remove any at jobs that the user has
scheduled. This is because a user can use the at command to schedule
potentially damaging programs to run long after they are removed from
the system. This can be achieved by using the cronadm or the atq
command.

cronadm

The cronadm command (found in /usr/bin/cronadm) is used by a root
user to list or remove all users’ crontab or at jobs. The jobs are listed
and removed by the UserName parameter. One or more UserNames
can be specified. The at jobs are listed by UserName and can be
removed either by the UserName parameter or by the JobName
parameter.

When using the cronadm at command, certain flags will be useful.
-l lists the at jobs for the user specified by the UserName parameter. For
example, if you want to list all at jobs currently queued for the user jack,
simply enter:

�����(&�������V��#

The -r flag removes the at job specified by either the UserName or
JobName parameter.

�����(&�������V��#

atq

The atq command (found in /usr/bin/atq) displays the queue of jobs

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

waiting to be run at a later date, sorted in the order the jobs will be run.
These jobs were created with the at command. If the user is root and
User name is specified, the atq command displays only jobs belonging
to that user. The -c flag sorts the queue by the time that the at command
was issued, while the -n flag displays only the number of jobs currently
in the queue.

Example

In order to look at the queue created by the at command, enter:

��Q

If there are jobs in the queue, a message similar to the following
appears:

����4OIJOEIE��4����������:�(�����G���E����I�������E��E

����4OIJO2����4����������G������G���EE���J�������E��E

atrm

An alternative command for root users is atrm (found in /usr/bin/
atrm). This removes jobs that were created with the at command, but
have not executed. If one or more job numbers is specified, the atrm
command attempts to remove only those jobs. If one or more user
names are specified, all jobs belonging to those users are removed. This
form of invoking the atrm command is useful only if you have root user
authority.

Example

To remove job number root.62169200.a from the at command queue,
simply enter:

���&�����4OE�O�PE��4�

Temporary removal

If the user is being removed only temporarily, consider just removing
the ability of the user ID to log in to the system. You can also use the
/var/adm/cron/at.allow and /var/adm/cron/at.deny files, which control
which users can use the at command. A root user can create, edit, or
delete these files. Entries in these files are user login names with one
name to a line.

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

If the at.allow file exists, only users whose login names appear in it can
use the at command. A system administrator can explicitly stop a user
from using the at command by listing the user’s login name in the
at.deny file.

CONCLUSIONS

It is absolutely crucial that security staff or systems administrators
remove the access privileges and data from employees who have left
as soon as possible. The techniques shown above are the principal
methods you should consider.

Systems Programmer (UK) © Xephon 2002

Variables and the environment

THE ENVIRONMENT OF A PROCESS

Like any other programming language, the shell provides capabilities
for creating variables, assigning them values, and accessing those
values. Shell variables may be assigned a string or any sequence of
characters.

Every process has an environment, which you can think of as a list of
the variables that can be passed to a child process. When a shell process
starts running, it makes a copy of all the variables in its environment,
and you can reference and modify the local copy of these variables in
the same way that you use other shell variables. Note that when you
change the value of one of these variables, you affect the local copy
only.

The environment with which a new process is started is the same as the
parent process’s environment. When the new shell process is started,
it inherits its parent’s environment and makes a local copy of all the
variables in the environment, and we shall later create scripts to
observe this.

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When a child process reads a command and itself starts another
process, the new process will also inherit the parent shell’s environment.
If the local value of one of the variables in the parent shell’s environment
has been altered, the environment that the new process inherits will
contain this new value, not the original value.

You can display your login shell’s environment by using the env
command. Do this, and note that the output looks similar to that of set,
except that the difference between set and env is that set displays all
the variables that exist in the current process (including those assigned
a null string and those defined during your login session and which will
be lost when you log off), while env displays only those that are
included in the process’s environment, and so are available in sub-
shells.

How is the environment created?

Although we tend to think of environments in the context of users, the
environment of every process is created by:

• Inheriting variables from /etc/environment.

• Inheriting variables created by other processes, or by modifying
existing inherited variables; for users in particular this manifests
itself in the execution of the /etc/profile, .profile, and other similar
files.

• Inheriting other system variables.

THE /ETC/ENVIRONMENT FILE

The /etc/environment file is used to specify the basic environment for
each and every process, not just those executed by users. When a new
process begins, this file is read, and any variables declared are placed
in an array, which becomes the process’s initial environment – this
array is a local copy of the set of variables. Unlike the profile files, the
environment file is not a shell script and does not accept data in any
format other than name=string. The file contains variable assignments
such as those for TZ, LANG, default PATH, NLSPATH, etc.

A running process’s environment is not changed by altering the

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

contents of the /etc/environment file and any processes started prior to
any changes you make will still access the local copies they made. Only
when the process is restarted do the changes take effect, which for some
processes will be a necessity. For example, if you change the TZ (time
zone) variable, you will have to restart cron. The contents of /etc/
environment can only be changed by root, or members of the system
group.

USER LOGINS

User logins are perhaps the best example of how environments are
modified by inheriting variables created by other processes.

When a user logs in, the login process first reads the /etc/environment
file, then /etc/profile is executed, followed by .profile. If the user is in
an Xwindows environment then a number of other similar scripts will
be executed. If you have created a .kshrc file, then this also may
contribute to your environment after the .profile is executed. Each
stage adds new variables, or modifies existing ones, until the user’s full
working environment is established.

The /etc/profile file is a system-wide file, which is executed by all users
at login. The file, amongst other things, sets the values of variables that
are used by every user, such as TMOUT, MAIL, and MAILMSG. It
is possible, provided you are root, to modify this file to define values
for other variables, or to change existing ones. If you wish any variables
to be available in sub-shells, then they must be exported. Entries in the
file should be restricted to those that relate to all users.

/etc/profile is normally executed only as part of the login shell, and,
should the file be modified later, then, to access any changes without
logging off and logging back in again, you must execute the file using
the dot command. You can run any shell script this way, even if it is not
currently in execution mode (it must not be an ordinary text file, but
must be capable of being executed, however). When you use the dot
command to run a shell script, the commands in the shell script are run
by the current shell process, not by a sub-shell.

You can override the values set in /etc/profile by changing them in your
user .profile, which is executed after /etc/profile. If you make

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

modifications to any variables which may be contained in the file, for
example your PS1 variable, then similarly you must use the dot
command to make the changes available in your current shell.

SYSTEM VARIABLES

When the operating system boots up, it creates a number of system
variables, nearly always notated in capital letters, and assigns default
values to them. These variables will always be available, and, no matter
what process or sub-shell you are in, you can always access their
values. The results of any modifications you make to these values
depend entirely on whether or not the variable has been exported.

Non-exported system variables

The best way to illustrate what happens when you modify non-
exported system variables is to use an example. On entering the set
command to list the variables available for the login shell, you will
notice a system variable named MAILCHECK, which has a default
value of 600. If you enter env you will notice that MAILCHECK is
not present in the list and so is not part of your environment.

If you create a sub-shell by entering the ksh command, and again enter
set, you will see MAILCHECK is still in the list, thus signifying that
it is available to be accessed by the current shell/process. Similarly, env
will show that it is still not present.

Next, change the value of MAILCHECK with the command
MAILCHECK=100. On using the set command again, you will note
that its value has been changed. Now create a further sub-shell with ksh
again, and then enter set. You will now see that MAILCHECK still
has its original value of 600.

This indicates that non-exported system variables passed to the second
sub-shell will retain the values of the original login shell and not the
modified values of the first sub-shell. The reason for this is that
alterations to the first sub-shell are made only on copies of the originals,
which, because they are not exported, will not be passed on to
dependent processes.

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Exported system variables

Once a system variable has been exported, any modifications that you
make will be passed on to dependent processes. This can be illustrated
by continuing with the above example. You should at this stage be in
the second sub-shell. Press Ctrl+D to cancel this sub-shell and return
to the first sub-shell, and enter the command export MAILCHECK.

When you now enter the env command, you will note that
MAILCHECK appears on the list with its new value of 100. Now
create a second sub-shell again with the ksh command, and on entering
set, you will see that MAILCHECK is currently available for this sub-
shell, and has the new value of 100. Any further sub-shells you create
will now have this new value passed on to them. On entering env each
time, you will see that it is now part of the environment.

If you now exit from all these sub-shells, and return to the original login
shell, on entering the set command you will note that MAILCHECK
has retained its original value of 600. The env command will also not
display MAILCHECK. This illustrates that modifying the environment
of a process does affect the descendent processes, but does not affect
the parent process.

USING SYSTEM VARIABLES IN SCRIPTS

We will now run sample shell scripts to demonstrate that:

• System variables that are part of your login shell’s environment are
also part of any shell script’s environment.

• If you modify system variables that are part of the shell script’s
environment, you will affect the local copy only. The modified
variable will affect descendent processes, but when you exit the
shell script the login shell’s original environment will not be
altered.

Create the following shell script, showenv:

�����D��������������8���������;��������D�	����

����

 �&�(;������������;��&�����������&���

������

�����7�����1�������������1��	����

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

����

 �>��1���������������8��������&������������(

����C����������

If you now execute the script with ksh showenv, note the values of
TERM. If you then display the value of TERM in the login shell’s
environment again with the print $TERM command, you will note
that TERM retains its original value.

If we modify showenv so that it invokes another shell script, we can
show what happens when we again change the value of TERM.
Modify showenv and replace the last line with ksh myenv. Now create
a new shell script, called myenv, containing the following lines:

�����7��&�������������	����

 ���������������1������

���������������

�����3������&����Z����������1��	����

When you execute showenv, note that TERM changes as each shell
script modifies its value. If you finally enter the command print
$TERM, you will note that the original value is unchanged.

Running showenv thus demonstrates that the shell process started by
this script receives an environment containing the original value of
TERM. When this value is modified, the modified value is passed to
the new environment started by myenv. When myenv and showenv
finish executing, the original value of TERM is unchanged.

USING OTHER VARIABLES IN SCRIPTS

Unlike system variables, any variables that you create will not be
accessible to descendent processes unless they are explicitly exported.
As soon as you create a variable, it is added to the list of variables
available for that process/sub-shell; the set command will show that it
has been added to the list.

What happens with this type of variable is best shown with an
exciting(!) example. Note that with all the scripts in this article we have
not included the standard first line, #!/bin/ksh, since we are only
creating very simple scripts. In your login shell create a variable var1,
and assign it the value xxx. Use set to show that it is available. Create
a sub-shell with ksh, and, if you again use set, you will see that its name

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

does not appear on the list.

Now create the same variable var1, but assign it the value yyy. set will
show that it exists. Now exit from the sub-shell, and on entering set
again you will see that var1 retains its original value. This is because
the variable created in the sub-shell is only a local copy, even though
it has the same name as the variable in the login shell.

Now export var1, and, if you are still awake, you will see that, on
executing env, the variable var1 is now included in the environment.
Create a new sub-shell, enter both the set and env commands, and if
the excitement has not got the better of you, you will again see that in
this mind-bogglingly boring example the variable is included in both
lists!

You can also create the following shell scripts to illustrate this further:

	������

�����RRR

�����7�����Z���������	����

����

#����1�

����

�����K��#������Z���������	����

	����1�

�����7���1�Z�1��������(�������	����

����

#��������

����

�R�������������

�����K��#����1�Z����������1��	����

����

#��������

�������

�����7�������Z�1��������(�������	����

When you execute ksh one, you will see the following output:

7�����Z���������RRR

7���1�Z�1��������(������

7�������Z�1��������(������

K��#����1�Z����������1�����

7�������Z�1��������(����������

K��#������Z���������RRR

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The second and third lines of the output show var1 to be null since we
are using only local copies at this stage and these have not yet been set.

In two you will see that we have exported var1. Note that it does not
matter when you export a variable as long as you do so before starting
any processes that reference it. You can export the variable before you
assign it a value, after you assign it a value, or in the Korn shell, at the
same time you assign it a value, as we have done above. Once it has
been exported, its current value will always be available to descendent
processes.

The variable var1 can be made available in your current shell, in this
case your login shell, by running the script with:

4�4"���

By running scripts in this way it is possible to modify any variables that
currently exist in your login shell. You can similarly access the
variables from any script by including the line:

4������H�����H������&�

in the script you are running. Many shell programmers often create a
file just containing commands which assign values to variables since
this then allows the file to be executed by different, and usually related,
scripts. In this way you need only to maintain a single copy of the
variable assignment, thus making it easier to alter without having to
edit a number of scripts.

SUMMARY

All the above examples show that:

• Each time a shell script is run, it is run by a separate shell process.

• Every shell script inherits an environment from its parent, and
makes local copies of each of the variables in the environment.
Modifications to the copies are passed on to descendent processes.

• When a variable is exported within a process, the environment is
updated with the current value of the latest local copy, and the
value will be available for descendent processes.

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• A process cannot add variables to the parent process’s environment,
and cannot modify the values of any variables in the parent
process. Processes can only affect their descendents.

DEBUGGING USING THE -X OPTION TO KSH

The -v option to ksh causes ksh to print the commands in a shell script
before they are executed. This particular option merely prints the
command, and then its output on the next line, but it can be difficult to
distinguish the command itself from its output. In simple shell scripts
this is not usually a problem, but in complex scripts with lots of
functions, or where there are nested scripts, such as the example above,
it can be a problem.

When you are debugging complex scripts, it is often more useful to use
the -x option to ksh. For example, if you entered the command:

#����R����

to execute the file you previously created, you will notice that all of the
command lines in one are printed and preceded by a + before they are
executed and it is now much easier to distinguish the command itself
from its output.

Since the commands in two and three are executed in sub-shells, their
commands are not displayed since ksh -x only operates on the sub-shell
in which one is running. You could, if you wished, call either of these
scripts from one with the -x option, for example ksh -x two, and this
would allow you to concentrate on debugging the scripts one at a time
(not that this would be a particularly onerous task for these scripts!).

If you are using the shell interactively, you can set this option by
entering the command:

�����R

After entering this, all succeeding commands you enter in the current
process will be displayed and preceded by a + before executing. To turn
the option off, enter:

�����R

You can also add the set -x command at the beginning of a shell script,

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and set +x at the end, although the latter is not necessary at the end of
a file, or you can enter these commands at any point during a shell script
to debug only a limited number of lines of code. Try this on the two file.

You should be aware that if you have command line arguments for the
script you intend to run with ksh -x, then, unless you specify the full
pathname of the script, you will get an error message that the command
cannot be found. Rather annoying, but what else do you expect from
the Unix world!

You should be further aware that if you use set -x to debug scripts that
contain functions, then the individual commands contained within the
functions will not be displayed unless you use the same set commands
within the function itself.

Tonto Kowalski
Guru (UAE) © Xephon 2002

Advanced features of EMC PowerPath software

EMC PowerPath is a software layer that enables efficient management
of I/O for AIX-based server connected to Symmetrix storage systems.
This article provides a description of more advanced usage of the
product.

USAGE OF A POWERPATH VOLUME AS AN AIX BOOT DEVICE

The PowerPath hdiskpower devices that contain the AIX boot image
must provide I/O load balancing and failover protection for the host’s
boot device. The Symmetrix volume used for this purpose must fulfil
the following conditions:

• The boot device has to be connected using a SCSI adapter

• The boot device should be visible only to a single host

• The host’s boot list must contain all the hdisks that comprise the
boot device.

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The following procedure should be used to set up the PowerPath boot
device for a new PowerPath installation:

1 Reduce the number of physical paths to the intended boot device
to 1.

2 Install AIX on a Symmetrix volume connected using a SCSI
adapter.

3 Install the latest EMC Symmetrix drivers.

4 Reboot the host.

5 Install PowerPath software. Do not run the powermt config
command!

6 Create a boot image using the bosboot command:

��������[�

7 Reconnect all physical paths to the Symmetrix.

8 Make sure that an hdisk has been configured for each path that was
reconnected.

9 Execute the command:

��1��&�����;�

10 Use the pprootdev command to set up multipathing on the root
device:

������(�����

11 Use the bootlist command to add all the alternate path hdisk
devices to the boot list.

12 Reboot the host.

The following procedure should be used to set up a PowerPath boot
device on a Symmetrix for an existing PowerPath installation. This
procedure describes the process involved in the migration of the
contents of the physical volumes that are contained in the volume
group rootvg from internal disks to the Symmetrix volumes:

1 Make sure that the following patches have been installed on your
host:

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– IX62417, IX68140, IX74905, IX74041, IX66626 for hosts
running AIX 4.2

– IX73591 for hosts running AIX 4.3.

2 Execute the command powermt display dev=all in order to
determine the hdisk that corresponds to the hdiskpower device
that is intended to be used as the boot disk.

3 Add the corresponding physical disk to the root volume group. If
your disk is hdisk1 execute the command:

�R���(���[;���������(�#�

4 Remove the PowerPath software from the system by executing the
command:

��������[����A��1��

5 Check the number of physical partitions (PPs) available on the
EMC Symmetrix volume to be used. The boot disk must have
sufficient room to contain the number of PPs used by the volume
group rootvg.

Execute the following command:

�����[��������

You should see output similar to the following:

�������

9<H��&� 9<�>�3�� �?�3B�99� G����99� G����67>��7K@�7?%

�(�#� ����� ILN LN LN44��44��44��44��

�(�#� ����� LPJ LPJ PP44PP44PP44PP44PP

You can see that the current boot disk hdisk0 is using 348-48=300
PPs on hdisk0 and that the target hdisk1 contains 495 free PPs.

6 Execute the following command to identify the logical volume
that contains the boot image (hd5 is the default):

�����[��������C���������

You should see output similar to the following:

�������

B<�%3�� �Y9� B9� 99� 9<� B<�>�3�� �?@%��9?7%�

�(J ���� � � � �����("����(%"3

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

7 Verify that the logical volume containing the boot image is located
on a disk that you are going to migrate:

�����[���(J

You should see output similar to the following:

�(J��%"3

9< A?97�> 7%�K3%6 67>��7K@�7?%

�(�#� ����������� ���- �������������������

8 Migrate the logical volume containing the boot image:

&������������(J��(�#���(�#�

9 Clear the boot record on the original disk:

&#�����[��[(�"(��"�(�#�

10 Update the boot image on the new destination disk:

��������[��[(��"(��"�(�#�

11 Migrate the content of the source physical volume to the destination
disk:

&���������(�#���(�#�

12 Remove the original disk drive from the rootvg:

��(���������������(�#�

13 Update the bootlist to use the new boot device. Include all hdisk
devices that are contained in the hdiskpower device that will be
used as a boot device:

��������[&����&����(�#���(�#P

14 Install the PowerPath software.

15 Reboot the host.

16 Set up multipathing for the root device:

������(�����

17 Reboot the host.

DISABLING THE USAGE OF A POWERPATH VOLUME AS AN AIX
BOOT DEVICE

The following procedure should be followed to disable a PowerPath

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

volume from being used as an AIX boot device:

1 Disable multipathing for the root device:

������(����;;

2 Reduce the number of physical Symmetrix paths to the boot disk
to 1.

3 Reboot the host.

4 Create an updated boot image:

��������[�

5 Reboot the host.

INTEGRATION OF POWERPATH WITH HACMP CLUSTER SOFTWARE

The following procedures describe only the basic steps needed in order
to install and configure PowerPath and HACMP. Review Chapter 9,
IBM CLUSTER in Symmetrix High Availability Environment Product
Guide for a detailed description of usage of HACMP with the Symmetrix.

We will consider three different scenarios: installing PowerPath and
HACMP on a new host; integrating HACMP in an environment in
which PowerPath devices are already present; integrating PowerPath
into an existing HACMP cluster.

INSTALLING POWERPATH AND HACMP ON NEW HOSTS

To install PowerPath and HACMP on new hosts do the following:

1 Prepare cluster hardware; verify the functionality of all network
and disk connections among the hosts and the Symmetrix.

2 Select a host to perform the initial definition of volume groups
controlled by HACMP. Perform the following steps on the selected
host:

a Install PowerPath software.

b Execute the command powermt display dev=all. Identify a
PVID for each PowerPath controlled device.

c Execute the command lspv to identify volume groups, followed

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

by lsvg –p <volume_group> to identify volume groups
containing the PowerPath controlled devices.

d Install HACMP software. Configure HACMP to use volume
groups identified in step c. If PowerPath is used in a concurrent
resource group environment the command /usr/lpp/
symmetrix/bin/symcurrent has to be executed in order to fix
the file /usr/sbin/cluster/diag/clconraid.dat to use
PowerPath devices.

e Stop all applications that use the volume groups identified in
step c. Unmount all file systems that reside on these volume
groups. Execute the command varyoffvg <volume_group>
for each volume group to deactivate it.

3 For each of the rest of the hosts participating in the cluster, perform
the following steps:

a Install PowerPath software.

b Execute the command powermt display dev=all. Identify
PVIDs for each PowerPath controlled device. Any disk that
shows no PVID or displays a PVID different from the one seen
on a different host has to be removed using the rmdev
command.

c Execute the script emc_cfgmgr.sh followed by the command
powermt config to configure the PowerPath devices.

d Execute the importvg command using PowerPath devices
and volume groups defined on the first configured host.

e Execute the chvg command for each volume group, changing
the auto activation status of the group from the default yes to
no.

f Install HACMP software. Configure HACMP to use imported
volume groups.

4 Start cluster services by executing the clstart command on all
hosts. The volume groups and the underlying PowerPath devices
will start to operate under the control of the HACMP software.

44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

INTEGRATING HACMP INTO THE EXISTING POWERPATH
ENVIRONMENT

To integrate HACMP into the existing PowerPath environment do the
following:

1 Prepare cluster hardware; verify the functionality of all network
and disk connections among the hosts and the Symmetrix.

2 For each of the hosts participating in the cluster perform the
following steps:

a Execute the command powermt display dev=all. Identify a
PVID for each PowerPath controlled device. Any disk that
shows no PVIDs or displays a PVID different from the one
seen on a different host has to be removed using the rmdev
command.

b Install HACMP software. Configure HACMP to use volume
groups identified in the previous step. If PowerPath is used in
a concurrent resource group environment, the command /usr/
lpp/symmetrix/bin/symcurrent has to be executed in order
to fix the file /usr/sbin/cluster/diag/clconraid.dat to use
PowerPath devices.

c Stop all applications using the identified volume groups.
Unmount all file systems that are residing on these volume
groups. Execute the command varyoffvg <volume_group>
for each volume group to deactivate it.

3 Start cluster services by executing the clstart command on all
hosts. The volume groups and the underlying PowerPath devices
will start to operate under the control of the HACMP software.

INTEGRATING POWERPATH INTO THE EXISTING HACMP
ENVIRONMENT

Integrating PowerPath into the existing HACMP environment is the
most complex procedure, and is supported only for standby clusters
with cascading resource groups. HACMP defines a standby cluster as
one with a single host (called the active host) which owns all cluster
resources. This procedure cannot be used in clusters utilizing rotating
or concurrent resource group clusters.

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

1 Repeat the following steps for all hosts participating in a cluster:

a Verify that cluster services are operating on all hosts.

b Download and execute the following script: ftp://ftp.emc.com/
pub/symm3000/aix/HACMP/ha4.3/convert.

Execute the script to perform emc_cfgmgr.sh followed by
powermt config.

c Configure the cluster to execute the convert script as a pre-
event to the node_down_remote event.

d Use appropriate cluster commands to synchronize the cluster
topology across all hosts in the cluster.

2 Repeat the following steps for all passive (not owning cluster
resources) hosts participating in a cluster:

a Install PowerPath software. Do not execute the powermt
config command.

b Connect the new paths between the Symmetrix and the host.

c Configure the cluster to execute the convert script as a pre-
event to the node_down_remote event.

d Stop all applications from using all volume groups except
rootvg. Unmount all file systems that are residing on these
volume groups. Execute the command varyoffvg
<volume_group> for each volume group to deactivate it.

3 Perform the following actions on the active host of the HACMP
cluster. Stop cluster services in takeover mode, causing the
transfer of cluster resources to a passive host. During the failover
process the convert script will be executed, causing the
configuration of paths and hdiskpower devices. This action has to
be performed for all hosts participating in the cluster.

4 The following actions have to be completed on the original active
host:

a Install PowerPath software. Do not execute the powermt
config command.

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

b Connect the new paths between the Symmetrix and the host.

c Configure the cluster to execute the convert script as a pre-
event to the node_down_remote event.

d Stop all applications from using all volume groups except
rootvg. Unmount all file systems that are residing on these
volume groups. Execute the command varyoffvg
<volume_group> for each volume group to deactivate it.

e Fail-over cluster resources to this host.

5 Verify that cluster services are operating on all hosts.

6 The following actions have to be completed on the original active
host:

a Configure the cluster to remove the convert script as a pre-
event to the node_down_remote event.

b Use appropriate cluster commands to synchronize the cluster
topology across all hosts in the cluster.

CONCLUSION

EMC PowerPath software is an important component in total enterprise
storage solutions. It has many similarities to AutoPath software, which
supports HP XP as well as Hitachi storage devices. Both packages have
similar features, which are compared in Figure 1. As we can see, the
advantage of PowerPatch is its ability to provide more precise fine-
tuning of load balancing to the user of the storage device. On the other
hand, AutoPath has better integration with HACMP and better statistics-
reporting abilities.

REFERENCES

1 PowerPath for UNIX Concepts and Facilities Guide, P/N 300-
999-265, EMC Corporation

2 PowerPath for UNIX Installation Guide, P/N 300-999-266,
EMC Corporation

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

3 PowerPath for UNIX Administration Guide, P/N 300-999-267,
EMC Corporation

Alex Polyak
System Engineer
APS (Israel) © Xephon 2002

Figure 1: Comparing features of AutoPath and PowerPath

 Auto Path PowerPath
Non-disruptive
installation

Latest versions only Latest versions only

Automatic failover Yes Yes
Automatic on-line
recovery

Yes Yes

SMIT integration Yes Yes
Support for round-
robin balancing policy

Yes Yes

Support for number of
I/O request-based load
balancing policy

Yes Yes

Support for size of I/O
request-based load
balancing policy

No Yes

Support for path
priority-based load
balancing policy

No Yes

Failover only support Yes Yes
Ability to disable both
balancing and failover

No Yes

Support for concurrent
HACMP

Yes Yes

Support for non-
concurrent HACMP

Yes Yes

Support for non-
disruptive installation
under non-concurrent
HACMP

Yes Yes

Support for report of
adapter/device I/O
statistics

Extensive Limited

AIX news

IBM has added updated software to its AIX
V5.1 Expansion Pack, including Network
Authentication Service V1.2.0.1, Netscape
Communicator 4.79, and Encryption for
SecureWay Directory V3.2.2.

The company also announced new software
for its Bonus Pack, including AIX Developer
Kit, Java 2 Technology Edition, V1.3.1, 32-
bit version for POWER. This includes the
tools to build secure Java applications for
encryption. Also included is Open Secure
Shell 2.9.9, Open Secure Sockets Layer
(OpenSSL) V0.9.6b, which can be installed
from the AIX Toolbox for Linux applications
CD.

Updated software includes AIX Developer
Kit and J2TE 1.3.1 64-bit version for
POWER.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/servers/aix.

* * *

IBM has announced Version 2.1 of its
WebSphere Business Integrator for AIX, for
creating, executing, and managing business
processes.

The software speeds implementation of new
business processes, which, once
implemented, help reduce the time,
complexity, and cost of change. The resultant
framework includes a model for EAI B2B
integration, processes that span applications
and enterprises and are managed as a single
element, life-cycle management across an
entire process, IBM’s adapter framework,
definition of process and data-level
interactions between trading partners, and
the ability to use WebSphere Studio Business

Integrator Extensions to build reusable
process templates.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software/
websphere.

* * *

4Front Technologies has announced OSS/
AIX Version 3.9.6c, which now supports
AIX 5.1.

There is also support for Sound Blaster
PCI128, CMedia CMI8738, and ForteMedia
FM801, plus support for all ISA PnP
soundcards. The new version also provides
improved installation for the drivers and
automatic soundcard detection.

For further information contact:
4Front Technologie, 4035 Lafayette Place,
Unit F, Culver City, CA 90232, USA.
Tel: (310) 202 8530.
URL: www.opensound.com.

* * *

IBM has announced its Migration Utility for
z/OS and OS/390, allowing sites to create
standard COBOL reports using Computer
Associates’ Easytrieve Plus language
without Easytrieve Plus installed, and which
run in place of the Easytrieve run-time
interpreter. Easytrieve applications can be
ported to any platform with a supported
COBOL compiler, including AIX.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software/ad/
migration.

	Using and referencing variables
	Core dumps in AIX 5L
	Understanding the head and tail commands
	Removing users from a system
	Variables and the environment
	Advanced features of EMC PowerPath software
	AIX news

