

© Xephon plc 2002

July 2002

81

In this issue

AIX
�
�
�
�
��

3 A review of recent AIX security
exposures

16 User-defined backend programs for
spooling

21 Shell functions
33 Should I use ‘large file enabled’ file

systems?
35 Input for shell scripts
48 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

A review of recent AIX security exposures

INTRODUCTION

This article provides a review of the principal security vulnerabilities that
have been shown to affect AIX between January 2001 and March 2002.

The review considers two components of AIX security. First to be
considered are the vulnerabilities which directly affect the AIX operating
system itself, and are therefore relevant to all readers of this journal.
Second, we assess the vulnerabilities that have been shown to affect
general Unix security (such as BIND and SSH) that can have an impact on
AIX in some circumstances. Because these are sometimes tangential to
AIX, their security is often overlooked, but they can provide a backdoor
into a system. The exploits and vulnerabilities are reviewed in chronological
order of discovery, beginning with the most recent.

The review concludes with an analysis of the types of exposure discovered,
the lessons we have learned, and suggestions for the future.

In this article the terms hacker, cracker, and malicious user are used
interchangeably to indicate an intruder with malicious intent, rather than
using the purist definition of ‘hacker’ as a coder.

AIX VULNERABILITIES

The following exposures directly affect the AIX operating system and its
immediate applications.

Double free bug in zlib compression library

In March 2002 it became clear that there was a bug in the zlib compression
library. AIX 5.1 ships with open source-originated zlib that is used with
the Redhat Package Manager (rpm) to install applications that are included
in the AIX-Linux Affinity Toolkit. zlib (libz.a) is a shared library in AIX.
AIX 5.1 is vulnerable to this exposure, but AIX 4.3.x does not ship with
zlib. An updated rpm.rte install image for AIX 5.1 should be installed. This
can be obtained from ftp://ftp.software.ibm.com/aix/freeSoftware/
aixtoolbox/INSTALLP/ppc/.

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Users who obtained zlib from the AIX-Linux Affinity Toolkit CD can
obtain an updated zlib RPM from ftp://ftp.software.ibm.com/aix/
freeSoftware/aixtoolbox/RPMS/ppc/zlib/

AIX loadable authentication modules

In December 2001 it became clear that there was an authentication
vulnerability in AIX 5L loadable authentication modules. This revolved
around a password checking flaw under integrated login in AIX. A remote
user could log into a system with an invalid password if the system were
configured to use loadable authentication modules, as used in integrated
login methods. Using this exposure, a remote user could log into the
system with root-level privileges. This vulnerability does not occur when
using NIS or local password files (the default authentication mechanism).

IBM has provided a patch for AIX 5.1L (APAR IY26302).

Buffer overflow in System V-derived login

December 2001 saw another weakness begin circulating on the Internet,
which exposed a vulnerability in applications using a System V-derived
login for authentication to a system. Malicious hackers could exploit a
flaw in the remotely exploitable buffer overflow in login derived from
System V to gain root access to the server. This exposure affects AIX
Versions 4.3 and 5.1.

Several implementations of login that are derived from System V allow
a user to specify arguments such as environment variables to the process.
A number of buffers are used to store these arguments. A flaw exists in
the code used to check the number of arguments accepted. This allows the
buffers to be overflowed.

On most systems, login is not suid (set user ID), so it runs as the user who
called it. However, if login is called by an application that runs with greater
privileges than those of the user (ie telnetd or rlogind), then the hacker can
exploit this vulnerability to acquire these enhanced privileges. Furthermore,
in the case of telnetd or rlogind, root access can be achieved remotely.

It is possible to limit your exposure to these vulnerabilities by using a
router or firewall to restrict access to port 23/TCP (telnet) and port 513/
TCP (rlogin). However, remember that this will not protect you against
attackers within your network.

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

You could also consider restricting access to login. Do not use any
programs that use a vulnerable login for authentication. Remember that
some SSH applications can be configured to use login for authentication.
If this configuration is selected, you will still be vulnerable.

Both AIX 4.3 and 5.1 are susceptible to this exposure. An emergency fix
(efix), called ‘tsmlogin_efix.tar.Z’, is available for download from ftp:/
/aix.software.ibm.com/aix/efixes/security

IBM has provided patches for AIX 5.1 (APAR IY26221), while the APAR
for AIX 4.3 is pending.

Format string exposure in CDE ToolTalk

In September 2001 a format string vulnerability was found in the CDE
ToolTalk database server (rpc.ttdbserver). This vulnerability affects AIX
4.3 and 5.1 and is revealed when a user makes an RPC open request to
ttdbserverd that specifies a directory where the .ind or .var file are non-
existent.

An intrusion can be performed remotely by a malicious hacker through the
creation of relevant files by invoking a create RPC call. The user then
deletes the .ind or .var file and makes an RPC open call to ttdbserver for
these recently deleted files. If the pathname provided contains format
characters, syslog() will interpret these, and allow the attacker to write an
arbitrary memory address. With the relevant code, a malicious remote user
can gain root privileges on the system, thereby compromising the integrity
of the system and the attached network.

IBM has provided patches for AIX 4.3 and AIX 5.1 (APAR IY23846).
Aside from the patches, there is no workaround that can minimize the
vulnerability, other than disabling the CDE ToolTalk RPC database server.

Buffer overflow in lpd

In September 2001 it became clear that the AIX Line Printer daemon (lpd)
contained several buffer overflow vulnerabilities that have the potential
to allow a malicious remote user to gain root access. Furthermore, even
if the hacker were unable to gain root access, they could still cause a system
crash through denial of service (DoS). This exposure applies to AIX 4.3
and 5.1.

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

It should be noted that two of the three vulnerabilities found require the
attacker’s system to be listed in /etc/hosts.lpd, or /etc/hosts.equiv. The
third requires that the malicious user has control over the Domain Name
Server (DNS).

IBM provided fixes for AIX 4.3 (APAR IY23037) and AIX 5.1 (APAR
IY23041). No workarounds are recommended other than disabling the
line printer daemon until the APAR is installed.

Note: this exposure highlights the need to disable all unused daemon
services. I would strongly recommend that you do this as a standard part
of good security practice.

Buffer overflow in the libi18n library

During June 2001, it became clear that the libi18n library in AIX contains
a function that is vulnerable to a buffer overflow through the LANG
environment variable. This exposure affects AIX 4.3.x and 5.1.

The libi18n library located in the /usr/ccs/lib directory ships as standard
with AIX. An ordinary user has the ability to set the LANG environment
variable to any value they choose. When this variable is set to a suitably
formatted string and a program is run which uses the vulnerable library,
the program will terminate abnormally. If this program is also setuid root
(ie aixterm), a malicious local user could spawn a root shell and gain root
privileges on the attacked system, compromising the system and its local
network.

IBM provided the following fixes for AIX 4.3.x (APAR IY20867) and AIX
5.1.0 (APAR IY21309).

One work-around for this exposure is simply to make ‘aixterm’ non-suid.
You need to be root to do this. Although ordinary users can still use the
program, there may be some side-effects.

Root shell spawning through diagrpt

In addition, in June 2001 it was revealed that a malicious user could obtain
AIX root privileges by exploiting a vulnerability in diagrpt. diagrpt is a
diagnostic reporting command that ships with AIX. However, this command
is shipped as suid, and is therefore executable by an ordinary user.

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

In this way an ordinary user is able to set the DIAGDATADIR environment
variable to a directory of their choice. The user can place a shell program
in this directory – this can be executed when the user runs the diagrpt
command. The suid bit for diagrpt will run the shell program as root, and
this program will force the spawning of a new shell with root privileges.

In this way, a malicious local user can use an exploit code to gain root
privileges on the system. This exploit affects AIX 4.3.x and 5.1.

Of course, you can also negate this vulnerability by making the diagrpt
command non-suid. You must be root to do this. However, ordinary users
will not be able to use the command if it is non-suid.

Buffer overflow in (x)ntp

In April 2001 a buffer overflow vulnerability was recorded in (x)ntp,
which affects AIX 4.3.x and 5.1. The Network Time Protocol daemon,
(x)ntp, is shipped as standard with AIX. The buffer overflow vulnerability
in (x)ntp allows a local or remote user to obtain root access or cause a
denial of service (DoS). However, it should be noted that obtaining root
access through the exploitation of this vulnerability is difficult, because
it requires knowledge of the hardware-dependent stack registers and
addresses required for different architectures.

A hack intended for use on Intel (not SP) architectures to gain root access
was released on the Internet in April. However, it has been shown to cause
ntp daemon problems when run. One result is likely to be a denial of
service. Therefore, if the malicious user is unable to gain root access, they
could still cause a system crash through denial of service using this
vulnerability.

Format string in the AIX(r) locale subsystem

The catopen() call functionality in AIX allows a user-specified locale file
to be used for displaying messages.

This call uses the NLSPATH environment variable to specify an alternative
locale file instead of one of the system locale files. By constructing a valid
locale file that contains special format characters and setting the NLSPATH
environment variable to point to its path, a malicious local user can use

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

his locale file to obtain root privileges. Consequently, any executable with
the setuid or setgid bit set is potentially vulnerable to root access.

This vulnerability affects IBM AIX 3.2.x, 4.1.x, 4.2.x, and 4.3.x. A patch
has been provided for AIX 4.3.x (APAR IY13753).

EXTERNAL VULNERABILITIES

The following exposures have been shown to impact on AIX in some
instances. Because these exposures are not directly related to AIX they are
often overlooked. We have certainly seen these vulnerabilities used by
crackers to provide a backdoor into AIX systems.

Secure Shell daemon vulnerability

In December 2001 a series of exposures were revealed in systems running
implementations of the Secure Shell (SSH) protocol. Some of these had
been previously noted by CERT, etc, but inadequate protective measures
had been taken.

AIX does not ship with OpenSSH; however, it should be noted that
OpenSSH is available for installation on AIX through the Linux Affinity
Toolkit so there have been some exposures in AIX shops.

Openssh is a package that provides a secure (encrypted, authenticated)
replacement to the R-commands (rlogin, rcp, and rsh). The SSH protocol
enables a secure communications channel from a client to a server. CERT
has recorded an increase in scanning and exploitation of vulnerabilities
related to SSH.

As mentioned earlier, the vulnerabilities are specific to sites that have
downloaded OpenSSH from the Linux Affinity Web site prior to December
2001 or the Linux Affinity Toolkit available on CD number VU157447.
This represents a very small number of sites, but if you have deployed or
explored Linux at your shop, it is worth checking your level of exposure.

The Web site has been updated and the updated software can be obtained
from http://www6.software.ibm.com/dl/aixtbx/aixtbx-p.

This site contains Linux Affinity applications containing cryptographic
algorithms, and new users of this site will be required to register.

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

If you cannot disable the service, you can limit your exposure to these
vulnerabilities by using a router or firewall to restrict access to port 22/
TCP (SSH). Use TCP wrappers or a program that provides similar
functionality, or use the key-based IP restriction offered by your
implementation. Nevertheless, remember that this does not protect you
against attackers from within your network.

Telnetd derived from BSD source

In July 2001 a security exposure was discovered in systems running
versions of telnetd derived from a BSD source.

The telnetd program is a server for the Telnet remote virtual terminal
protocol. There is a remotely exploitable buffer overflow in Telnet
daemons derived from BSD source code. During the processing of the
Telnet protocol options, the results of the telrcv function are stored in a
fixed-size buffer. It is assumed that the results are smaller than the buffer
and no bounds checking is performed. This vulnerability can crash the
server, or be used to gain root access.

For protection you should restrict access to the Telnet service (typically
port 23/tcp) using a firewall or packet-filtering technology. Until a patch
can be applied, you may wish to block access to the Telnet service from
outside your network perimeter. This will limit your exposure to attacks.
However, blocking port 23/tcp at a network perimeter would still allow
attackers within the perimeter of your network to exploit the vulnerability.
It is important to understand your network’s configuration and service
requirements before deciding what changes are appropriate.

IBM has provided fixes for AIX 4.3.3 (APAR IY22029) and AIX 5.1
(APAR IY22021).

Vulnerabilities in BIND

Since 1997 CERT has published twelve documents describing
vulnerabilities in BIND with information and advice on upgrading and
preventing compromises. Unfortunately, many system and network
administrators still have not upgraded their versions of BIND, making
them susceptible to a number of vulnerabilities. Prior vulnerabilities in
BIND have been widely exploited by intruders.

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The vulnerabilities in the various versions of BIND have been a consistent
theme in security alerts. 2001 saw four BIND-related security alerts.

Domain Name System (DNS) Servers running various versions of ISC
BIND (including both 4.9.x prior to 4.9.8 and 8.2.x prior to 8.2.3; 9.x is
not affected) and derivatives. Because the normal operation of most
services on the Internet depends on the proper operation of DNS servers,
other services could be impacted if these vulnerabilities are exploited. AIX
4.3.x is affected by these vulnerabilities. DNS can be completely disrupted
on affected servers.

The CERT/CC has recently learned of four vulnerabilities spanning
multiple versions of the Internet Software Consortium’s (ISC) Berkeley
Internet Name Domain (BIND) server. BIND is an implementation of the
Domain Name System (DNS) that is maintained by the ISC. Because the
majority of name servers in operation today run BIND, these vulnerabilities
present a serious threat to the Internet infrastructure.

ISC BIND 8 contains buffer overflow in transaction signature (TSIG)
handling code

During the processing of a transaction signature (TSIG), BIND 8 checks
for the presence of TSIGs that fail to include a valid key. If such a TSIG
is found, BIND skips normal processing of the request and jumps directly
to code designed to send an error response. Because the error-handling
code initializes variables differently than in normal processing, it invalidates
the assumptions that later function calls make about the size of the request
buffer.

Once these assumptions are invalidated, the code that adds a new (valid)
signature to the responses may overflow the request buffer and overwrite
adjacent memory on the stack or the heap. When combined with other
buffer overflow exploitation techniques, an attacker can gain unauthorized
privileged access to the system, allowing the execution of arbitrary code.

This vulnerability may allow an attacker to execute code with the same
privileges as the BIND server. Because BIND is typically run by a
superuser account, the execution would occur with superuser privileges.

ISC BIND 4 contains buffer overflow in nslookupComplain()

The vulnerable buffer is a locally-defined character array used to build an

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

error message intended for syslog. Attackers attempting to exploit this
vulnerability could do so by sending a specially formatted DNS query to
affected BIND 4 servers. If properly constructed, this query could be used
to disrupt the normal operation of the DNS server process, resulting in
either denial of service or the execution of arbitrary code.

ISC BIND 4 contains input validation error in nslookupComplain()

The vulnerable buffer is a locally-defined character array used to build an
error message intended for syslog. Attackers attempting to exploit this
vulnerability could do so by sending a specially formatted DNS query to
affected BIND 4 servers. If properly constructed, this query could be used
to disrupt the normal operation of the DNS server process, resulting in the
execution of arbitrary code.

This vulnerability was patched by the ISC in an earlier version of BIND
4, most likely BIND 4.9.5-P1. However, there is strong evidence to
suggest that some third-party vendors who redistribute BIND 4 have not
included these changes in their BIND packages. Therefore, the CERT/CC
recommends that all users of BIND 4 or its derivatives base their
distributions on BIND 4.9.8.

This vulnerability may allow an attacker to execute code with the
privileges of the BIND server. Because BIND is typically run by a
superuser account, the execution would occur with superuser privileges.

Queries to ISC BIND servers may disclose environment variables

This vulnerability is an information leak in the query processing code of
both BIND 4 and BIND 8 that allows a remote attacker to access the
program stack, possibly exposing program and/or environment variables.
Sending a specially formatted query to vulnerable BIND servers triggers
this vulnerability.

This vulnerability may allow attackers to read information from the
program stack, possibly exposing environment variables.

This vulnerability can disrupt the proper operation of the BIND server and
may allow an attacker to execute code with the privileges of the BIND
server. Because BIND is typically run by a superuser account, the
execution would occur with superuser privileges.

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Apply a patch

The ISC has released BIND Versions 4.9.8 and 8.2.3 to address these
security issues. CERT recommends that users of BIND 4.9.x or 8.2.x
upgrade to BIND 4.9.8, BIND 8.2.3, or BIND 9.1.

Because BIND 4 is no longer actively maintained, the ISC recommends
that users affected by this vulnerability upgrade to either BIND 8.2.3 or
BIND 9.1. Upgrading to one of these versions will also provide functionality
enhancements that are not related to security.

The BIND 4.9.8 and 8.2.3 distributions can be downloaded from: ftp://
ftp.isc.org/isc/bind/src/

The BIND 9.1 distribution can be downloaded from ftp://ftp.isc.org/isc/
bind9/

The IBM fix for AIX 4.3.3 is APAR IY16182.

Use strong cryptography to authenticate services

Services and transactions that rely exclusively on the DNS system for
authentication are inherently weak. We encourage organizations to use
strong cryptography to authenticate services and transactions where
possible. One common use of strong cryptography is the use of SSL in
authenticating and encrypting electronic commerce transactions over the
Web. In addition to this use, we encourage organizations to use SSL, PGP,
S/MIME, SSH, and other forms of strong cryptography to distribute
executable content, secure electronic mail, distribute important
information, and protect the confidentiality of all kinds of data traversing
the Internet.

Use split horizon DNS to minimize impact

It may also be possible to minimize the impact of the exploitation of these
vulnerabilities by configuring your DNS environment to separate DNS
servers used for the public dissemination of information about your hosts
from the DNS servers used by your internal hosts to connect to other hosts
on the Internet. Frequently, different security policies can be applied to
these servers such that even if one server is compromised the other server
will continue to function normally. Split horizon DNS configuration may
also have other security benefits.

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Vulnerabilities in the Simple Network Management Protocol (SNMP)

The AIX operating system is susceptible to the vulnerabilities tested for
by the PROTOS test suite for all levels of AIX 4.3.x prior to level 4.3.3.51,
and AIX 5.1 before level 5.1.0.10. APARs were developed and made
available last year. For 4.3.x, the relevant APAR is IY17630; for 5.1, the
APAR is IY20943.

AUGUST 2001 HACKER ATTACKS

During August 2001, it became clear that a hacker group was targeting
AIX systems. The group was cracking AIX systems and then defacing the
Web sites associated with those systems. The code being used to crack the
systems was primarily written by a Polish hacker group called the ‘Last
Stages of Delirium’. The Web defacements caused considerable
embarrassment, but the important issue was that all the vulnerabilities in
AIX that had been exploited had been fixed by IBM, some as far back as
1996. The APARs for all of the vulnerabilities were available and in some
cases had been available for half a decade!

The vulnerabilities exploited include those associated with chatmpvc,
mkatmpvc, rmatmpvc, digest, dtaction, dtprintinfo, ftpd, nslookup, pdnsd,
rpc.ttdbserverd, piobe, piomkapqd, portmir, sdrd, setsenv, and telnetd. The
following IBM patches have been available:

• AIX 4.1 (APAR IX74457)

• AIX 4.2 (APAR IY08288, IX85555, IX81441, IY06547, and
IX76272)

• AIX 4.3 (APAR IY02944, IY08128, IX74599, IY06367, IX79909,
IX81442, IY12638, IY07832, IX80724, IY08812, IY02120, and
IY22029)

• AIX 4.3.2 (APAR IX85556)

• AIX 4.3.3 (APAR IY04477)

• AIX 5.1 (APAR IY22021).

Affected users need to upgrade the level of their AIX operating systems
and/or apply the APARs listed above to protect their systems.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

OBTAINING AIX PATCHES

Prior to 2002 users were able to obtain AIX APARs using IBM’s
Electronic Fix Distribution (using the FixDist program). However,
FixDist was withdrawn on 31 December 2001 and replaced with Web-
based fix distribution support available from http://
techsupport.services.ibm.com/rs6k/fixdb.html.

These new Web-based services allow users to:

• Download recommended maintenance levels – currently AIX 5100-
01 Recommended Maintenance Package is available. This package
provides a collection of updates containing fixes for problems
reported after AIX 5.1.0 was made available. Download and
installation tips are included with this service.

• Download selective fixes – the latest operating system fixes can be
downloaded by individual fileset or by groups of filesets. A new
interface allows users to select all filesets within categories such as
monitoring tools or performance tools, or alternatively it is possible
to select each individual fileset you wish to download.

• Download selective fixes – users are able to download fixes by APAR
or PTF number. There are also troubleshooting databases that can be
useful for debugging problems.

More information can be obtained about accessing fixes using the Internet
from http://techsupport.services.ibm.com/rs6k/fixes.html.

Users can also visit IBM Server Support to obtain fixes electronically or
on physical media from http://www.ibm.com/server/support.

Security fixes are periodically bundled into a cumulative APAR. For more
information on these cumulative APARs, including last update and a list
of individual fixes, send an e-mail to aixserv@austin.ibm.com with the
words ‘subscribe Security_APARs’ in the subject line.

Remember that fixes are no longer provided for AIX versions prior to 4.3
because IBM no longer supports these. IBM recommends that users
running pre-4.3 releases upgrade to 4.3.3 at the latest maintenance level,
or to 5.1.

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

ISSUES RAISED

The most worrying issue that has surfaced as a result of the security
vulnerabilities seen in the last year is the number of AIX sites that have not
kept up to date with security patches. This was made obvious by the Web
defacements in August that exploited vulnerabilities dating back to AIX
4.1 in 1996. It was also seen in the exploitation of the Secure Shell daemon
vulnerability in December 2001 which already had patches provided. If
you are using older versions of AIX (especially pre-4.3) you should ensure
they are patched to the relevant level or move to a higher AIX level.

As a general practice, we recommend disabling all services that are not
explicitly required. You may wish to disable the SSH access if there is not
a patch available from your vendor.

Our research indicates that an above-average number of the enterprises in
the SME (Small-Medium Enterprise) sector have been affected by these
exposures in the last year. This is unsurprising, because of the increased
likelihood that there will be no or few security staff in smaller and/or mid-
size enterprises. Keeping up-to-date with the IBM, CERT, and Bugtraq
warnings is less likely to be undertaken in these situations. However, even
large AIX shops cannot let their guard down. The volume of hacker activity
is increasing.

The prestige associated with cracking large corporations is still a factor
with malicious hackers, but with the increase in the number of ‘scriptkiddies’
this may be less of an issue. They seem less concerned with who they hack,
which helps explain the increase in hacker attacks against SMEs and even
home users.

A common entry point for attackers is through vulnerabilities in network
services. It only takes a brief scan of the vulnerabilities discussed above
to see that new exposures are discovered almost weekly; so, what is secure
today may not be secure tomorrow.

As mentioned earlier, it is best to turn off all services that are not needed.
The best time to do this is before the server is introduced, although few
of us have that luxury, but, if you do, you should turn off as much as
possible. Then, you should be able to turn back on services when there is
proof that they are required. It is much easier to turn on what is needed
before going live than it is to try to ascertain what needs to be turned off
when the server is in production.

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You can then focus your security efforts on making configuration changes
and applying the latest security patches on the remaining services. Take,
for example, a Web server. Among other things, this server consists of the
network, the operating system, and the Web server software (application).
If you focus only on securing the Web server software piece, you leave the
operating system and the network doors vulnerable. An entry gained
through any door is an entry gained.

Securing AIX is not a one-time process. Even though you have taken steps
to turn off unnecessary services and protect the remaining ones, you still
need to maintain constant vigilance. New hacking techniques are being
deployed almost daily, and changes to the system, such as software
upgrades, potentially open new holes. Apply security fixes to your system
as soon as possible. It is also good practice to get a ‘feel’ for the normal
behaviour of your system so that it will be easier to spot any anomalies if
they occur.

In response to the issues of vulnerability raised by this review, future
editions of AIX Update will provide a regular assessment of current AIX
security vulnerabilities. This will provide an additional reminder to
enterprises about the nature of security threats and the response required.

AKNOWLEDGEMENTS

This work has brought together the research of AIX Security in Austin,
Texas, Bugtraq, CERT, CIAC, The SANS Institute, TESO, and many
others. Security is a community effort that relies on the work of individuals
and organizations to bring information to the attention of all users.

AIX Security Analyst (UK) © Xephon 2002

User-defined backend programs for spooling

Problem: your application generates reports and dumps them to a print
queue without allowing you to customize or modify them. Solution:
create a user-defined backend program that allows you to capture the print
stream and modify and redirect it as needed while utilizing the existing
spool daemon. This article should give you a good start on developing a
user-defined backend program of your own written in Korn shell (you

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

might be able to call other interpreted language scripts in Bourne Shell,
C Shell, or a C program, but I have not tried it).

SUMMARY OF HOW NORMAL PRINTING WORKS

An lp, qprt, enq, lpr, or similar command creates a print request to the print
spooling subsystem by invoking the enq command. The enq command
checks the /etc/qconfig file for information about the queue and puts a
request in the proper queue. When the qdaemon sees the request, it hands
the print off to the appropriate backend program, which is usually piobe,
rembak, or a user-defined backend. Think of piobe as being the local
printer backend, rembak as the remote printer backend, and a user-defined
backend as calling a custom script.

An example of an /etc/qconfig entry defining an external print server with
a laser printer is:

����

�����������	
������
����

�����������������

����������
�����
����

��������
�
����	���������
���	�������	�
����

����������
����	���������
���	�������	�����

��������������

��
�����

����������
���������
���	�������� ���

SUMMARY OF A USER-DEFINED BACKEND PROGRAM

As with a standard queue, the print queue is generated with one of the print
commands listed above, processed by enq, and then by the qdaemon,
except the qdaemon executes the user-defined backend program by
redirecting the print stream as standard input to the shell script.

SET UP A SMALL USER-DEFINED BACKEND PROGRAM

This user-defined backend program takes in one print file and sends it to
two printers.

You can add a print queue.

Create file /tmp/laser.sh with the following two lines, where queue1 and
queue2 are two existing working queues that print to real printers:

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�����!
���"#!$���%
�&�������

�����!
���"#!$���%
�&�������

Standard input contains parameters about the print queue and queue entry
and also the print stream. The $* variable lists the values of all parameters
passed to the shell as standard input and sends them to the lp print
command. In my case, my postscript report was actually multiple parameters
in the standard input so all parameters had to be passed. The -c flag makes
a copy of the print file so that it does not disappear before it actually prints.

Via smit:

 	��'�
������

(���
��!)�����*�	���+����!

(���
��!����������������������
���,��	����-�
����!

.���
������/�����	�����	���
0

#�1� �����+���������������������������������2�3������4

#�1� �����+�����,�567�����������������������2�3�������4

#�-)78�1,�*�9:�);������� �������������������2�� ���3������<
�4

Enter the above to create the queue and now browse the /etc/qconfig file
to see the new entries created for the new queue:

�3�������

�����������	
�����3�������

�����������������

�3��������

����������
���������
���

�	��
��3������<
�

MORE THINGS YOU CAN DO WITH A USER-DEFINED BACKEND
PROGRAM

Other things you can do with a user-defined backend program include:

• This script is coded to run multiple instances simultaneously so make
sure that temporary files etc are named differently even though a print
queue would process only one at a time. The script is stored on an NFS
shared directory and can be run from multiple systems at the same
time, which requires uniquely named temp files.

• Write the standard input print stream to a temporary file to make it
easier to work with. Rename the print file after the data it contains.

• Take data in the report and assign it to variables so you can build
conditional statements based on the data in the report.

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Write the variables out to a log so you can see what your queue has
processed.

• Change or add data on the report.

• Kick off other scripts from within the backend script.

• Perform audits of which reports have or have not been printed.

• A million and one other uses.

This particular script prepares a postscript file to be passed to the
AS/400 system via an NFS file share. The print stream is redirected to a
file and the file name is renamed after data in the report – based upon some
conditional logic. The big picture is that, once on the AS/400, an Adobe
Distiller program converts the postscript to Adobe Acrobat PDF format
and the AS/400 files it in a COLD storage system, which is not covered
in this article. Rather than print the complete lengthy script, I’m including
lines which are of more general interest. The big question is, what do you
want to do with your report?

=>��
���	���
�

=��
������	�����
����������� ����������
�	������
�

�	���������<

=�-� ������
������	����� �������������������	�����3�'�
��	��
���������

=� ���	������	��
�����	

�����������
� ���	 �<

�����	�?���
���

�	��
�����<
��

����	�	@A

�
���"	�B���
���

�	��
�����<
��

=��
��������� ����������� ����
�����������	��

�
���"=�BB��� ������
<���

=��
��������
���� ��3���
�� 	���������C��

�
���"�(���BB��� ������
<���

=��
����
��
�*�D*�����	��� �������	����<

�
���"*�D*��BB��� ������
<���

=��
����	���� ���

�
���""�BB��� ������
<���

=��
�����
������	����� ��������
�	��<

=��
���"�(��<"*�D*��BB��� ������
<���

=��
����	����� ������	�����	�����	����<

=��6��	
���3�'
�������
������ ���<

=������!�
���E""=�BB��� ������
<���!

=�F	�
��
��������	������ ����������
��	�
���
�<

=�)�3�'
�
��������	���3�	
��	
�������
������ �����	�����

=�
��������	����!

=�7������������ ���	��

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�����!
���"#�B��� ������<"	!

�����A

=�����������

������� ���������������������<

=��(��������	�������������������

���� ��������������	���

)77��G�����GHIJ�%AKLG��� ������<"	$�����%A$
���%
/%AHG

=��

	�������������	 �������������3�
������
���

*�61�,��G�����GIIM�%AHMG��� ������<"	$�����%A$
���%��A�%��!0!$
���%��K

%��!.!G

�61�,��"N�61�,�O

�
���"*�61�,�

 �����G�
���"*�61�,�$
���%
�L%PG

=�
������� ������� ����� ������� ���<

�
��"N ����O�	��Q��0����� �����MARR

F��0 �����MKRR

;��0 �����M/RR

)��0 �����MLRR

;�'0 �����MHRR

Q��0 �����MPRR

Q��0 �����MJRR

)��0 �����MSRR

(��0 �����MIRR

9
�0 �����AMRR

1��0 �����AARR

,�
0 �����AKRR

�
�

=�8	
��������������

�	���������	���������������
<

��
���

�	��
�T9(�
� ����<
�

=�###

=����������3	����	���
� ������������� �����'�3����	��3�
������������

=��	���
� 	�������
����	����	�������	���� �<��-'����� 	��������	��

=���������������	����
U��������	����
�
��������

������������
'
��

=������� 	������
�	���������	����	��<

=��������	���� ����������	 	�������HM�
���<�	�
���	����	��
���'�����

=���������<

=�###

=��������������������	����
�����
� �	������ �	��������������	����� �

=�����
�����	���� �����	�'�	�����	��<

=�
���"),;6�,�"*�61�,�"F�9;�)1:�"�9�)1:�")77�";�,��7"��*9��$
���%��G
�

����G$
���%��G
�E����GB�� ������<"	<��3�	���� �

=�
�����A

�
���"	BB�� ������
<���

�
���"��*9���BB�� ������
<���

����� ������<"	<��3�	���� �BB�� ������
<���

=�
��
�������������� ������<"	<��3�	���� ����� ����
����	��	
�K/�
���

=������

=�6������K/��������������
������ ���������������������()���������
���

=����'<

	��2�G
����� ������<"	<��3�	���� �$3
�%
G�%���KL�4

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����

����� ������<"	<��3�	���� �BB��
���

�	��
�3�����

�������	
�

��
��� �BB��
���

�	��
�3�����

�������	
�

��	��M

�	

=

=�D���
��������'������	����	�������
����	�����������
'
��
��	�������

=� ����<�7��
�����
���	��������
� ������������)(�LMM�	
���<�6�����
�

=��	��������
��	��
���'���
��
�����������3�	��� �����������'�	�����	�<

=�3	�����

���U�	��3�	���	 �
�������
�
���
�������������	 �������
����

=���
��
��
�
����
���	���	��
���'�MMA))����	
�
����
���	����
 �����	

=����
���<�,��G���
���������
� �������
���	������
� �����	
����	������

=���
�
� ���<������
� ����3����������3�	�������
'
�� ���	�
���

=���
����	
������ ���������'��� 	��������������
������
���
<�6�
�������

=������
��������

����
� ������
��
��	��
� �
���
���	�����3�'

=����������

�������� �����
����
<

���	��2�G��

����% ��� ��������$�����)��$��	��%A$
���%��!U!�%�/$
���%�

!.!�%�K$
���%��G
�
0���GG�%���AMMM��%��%���� ���������MMA))��4

��

�
���!��
�	
���3�!BB�� ������
<���

�����PM

����

�
���!��
�	
���!BB�� ������
<���

���� ������<"	��� ���������MMA"��*9���	��G
����� ��

����<"	<��3�	���� �G<��

� ���JJJ��� ���������MMA"��*9���	��G
����� ������<"	<��3�	���� �G<��

=�
���� ������<"	��� ���������MMA"��*9���	��G
����� ��

����<"	<��3�	���� �G<��

=���%�
�
	���� ���������MMA"��*9���	��G
����� ��

����<"	<��3�	���� �G<��

� ��� ������<"	<��3�	���� �

� ��� ������<"	

I have found no good reference to user-defined backend programs
although the IBM Red Book Printing for Fun and Profit Under AIX V4,
Document Number GG24-3570-01, is a good general printing reference.

Joe Grathoff
Senior Systems Analyst (USA) © Joseph Grathoff 2002

Shell functions

USE AND SYNTAX OF FUNCTIONS

A function is similar to a shell script in that you designate a set of AIX
commands to be executed when called up by a single name. They can be

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

used on the command line, which is not really suitable for long lists of
commands, but the most common usage is in shell scripts.

There are several advantages to using shell functions.

• Functions can be designed to contain logical groupings of commands
which can then be used to achieve a specific purpose within a script
– almost like a series of easily understood mini-scripts, and less
complex than the whole .

• When a function has been defined, it is loaded into memory, so that
when it is called it runs faster than had you used the same commands
in series – functions do not run as separate processes when called and
exist in the current shell.

• Functions are ideal for organizing long scripts into modular sections,
which is a significant advantage when it comes to debugging and
testing.

• Groups of commands that are to be executed several times in the script
can be called by a single function command. Once the function has
been defined, it can be called from any location in the script, thus
reducing the amount of coding required.

Functions defined on the command line last only for your login session,
and disappear when you log out. Similarly, functions defined in shell
scripts are only accessible when the shell script is being executed. If you
want to use functions on a permanent basis they can either be placed in your
.profile file, or in a .kshrc file defined by the ENV variable. Be aware that
if you define large numbers of functions in these files this may result in
slowing down your logging in, or running shell scripts, since your
environment file is read each time.

You can define a function using one of two methods:

���
�	�������	
����
��

N

����
����

����
����

<�<�<

O

or:

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����	
����
��.0

N

����
����

����
����

<�<�<

O

There is no difference between the two and both formats are equally
acceptable. The two curly braces define the body of the function and it is
possible to put the first { on the same line as the function name, but it is
sometimes easier to determine where a function starts if the curly brace
is on a different line from the function name; the closing curly brace must
be the first character on the line. Indentation of commands within the
function is also recommended for readability.

Whichever format you use, you should be consistent throughout your
scripts. We will use the second format.

COMMAND LINE FUNCTIONS

You will find that there is almost no necessity to define functions on the
command line; you may have defined them in your profile file, or
elsewhere, and thus call them from the command line, but there is rarely
a need to actually define a function in such circumstances. In this section
we use command line functions only to illustrate simple examples.

Suppose, for example, you wished to define your own special version of
ls, which uses the -x and -F options to give a multi-column listing with
directories and executable files appropriately marked. This can be achieved
with:

�
.�0

N

��	���
�%��%F

O

As you type this function definition at your terminal you will be prompted
with the secondary prompt, usually >. The conversation will look like:

"��
.�0

B�N

B���	���
�%��%F

B�O

"

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You will automatically revert to the usual primary prompt, $, after you
have typed the closing } to terminate the definition of your function. When
you enter the ls command without arguments (we shall later deal with
arguments to functions), the new version will be executed, giving listings
as required.

You must be very careful when naming your functions, especially when
you are creating one to produce a modified version of an existing
command. To illustrate this, redefine the ls() function, and instead of using
the full pathname, /bin/ls, replace it with ls. When you now try to run this
function, the system will eventually display a message stating that there
cannot be more than nine levels of recursion, or some such similar
message, depending on the current operating system release.

This is because this new version of ls is trying to call ls (that is, trying to
call itself), which is trying to call itself, and so on. This can be avoided by
using the full pathname of the command within the body of the function,
or by using a totally different name for the function.

You should also be aware that you cannot create functions having the same
name as built-in shell commands. You will get an error message telling you
that the operation is not allowed since your function name is a shell built-
in.

If you wish to change a function, or remove it completely, you should use
the command:

��
���%������	
����
��

You can also see what functions have been defined in your current shell
by running the functions command, which is an alias for typeset -f (see
below). This will display all the functions that have been set and the
commands that are to be run within the body of each function, which may
give you a large amount of output.

FUNCTIONS IN SHELL SCRIPTS

Care must be taken when functions are placed in shell scripts. Suppose,
for example, we had placed the ls() function in a simple shell script:

"��	���
��

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

��	�������
��������	��
���'��	
�	���	
�

�

�
.0

N

�<�<�<

O

When you execute this shell script you will notice that the normal ls
command is executed, and not your modified version. This is because the
shell acts as an interpreter, and not a compiler. It interprets one line at a time,
and when it reaches the ls command, it has not yet seen the function
modifying it and so it executes a normal ls command. To overcome this,
functions must be defined within shell scripts before they are intended to
be used; most programmers create a section near the start of their scripts
to contain all function definitions and thus ensure that they are defined
before use.

It is also good programming practice to name your functions in such a way
that when you call them there is absolutely no confusion to a casual reader
that you are calling a function and not some obscure system command with
which the reader may be unfamiliar. One method you can use is to ensure
that all your function names start with f_ since there is little likelihood of
encountering an AIX command starting with these characters. We will use
this convention.

As mentioned earlier, using functions within your scripts greatly improves
your ability to debug them. For example, suppose you had a script that was
loosely structured with the following functions (ignore the syntax):

=�F��
�	��
�
�
�	��

�����
�	���A.0

�����
�	���K.0

�����
�	���/.0

=�;�	��
�
�	��

�����
�	���A

�����
�	���K

�����
�	���/

If you have designed your script so that each function is a separate entity
independent of other functions, you can comment out selected functions
from the main section so that your script runs only those that you suspect
have bugs. You could comment out f_function_1 and f_function_3 if

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

you suspected that the bug lay in f_function_2, for example. Or, if you are
not sure where the bug is, you could run them in sequence, each time
commenting out all the functions you didn’t want to run. This greatly
speeds up the debugging process, particularly if it is a very large script.

The use of functions to cut down on the amount of code used is nowhere
near as important as the ability to speed up debugging. As you will
discover, most scripts are developed in a fairly ad hoc manner with little
foresight and planning, and usually it is only when you are more than half
way through the script that you wish you had designed some of your
functions so that you could reuse the code!

There is a syntactical use of the function within shell scripts, which is to
be avoided. Suppose, for example, that you have a loop within your script
which calls a predefined function. Suppose also that your intention within
this called function is to perform a test which, if true, should cause the
program to break out of the enclosing loop. In other words, the break
command is contained within the body of the function.

When the shell script is executed and the function is called, even if the test
is found to be true, you will not be able to break out of the enclosing loop.
As you will see later, you can only break out of an enclosing loop if the
break command is actually contained within the loop itself.

ARGUMENTS TO FUNCTIONS

A useful feature available with functions is that it is possible to pass
arguments to them. For example, suppose you have a script which
occasionally displays different messages on the screen when certain
conditions are met. The function may look something like:

 �

���
.�0

N

<

��	���"A

��	���"K�BB�����	��

<

O

In the above example do not confuse the $1 and $2 in the function with
the command line arguments $1 and $2 which are passed to scripts. The
function arguments are local copies for the function, so that, if you want

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

to pass a script’s command line arguments to a function, you can either set
them to variable names first, and then pass in the variables as arguments
to the function, or you can use them as arguments when you call the
function. For example:

 �

���
�"A�"K

or:

 �

���
�"#

In our example above, whenever the script requires a message to be
displayed, the function is called by a command embedded somewhere in
the body of the script. For example:

 �

���
�!�� ����
���
������	�
��	��
'
�� �����
�����!

When the function executes, the string "/tmp has exceeded its filesystem
threshhold" becomes $1, so that the command print $1 will display the
message on the screen. Even though the function expects two command
line arguments, and you are only passing one to it, it will set $2 to null,
so that in this particular case it just adds a blank line to the log file.

You can call the function with multiple arguments:

 �

���
�!�� ����
���
������	�
��	��
'
�� �����
�����!�"���

In this case the contents of the variable var are passed to the function and
become $2. In the above example we have enclosed the first argument in
double quotes to ensure that the message itself is passed as a single
argument to the function. We could also have enclosed $var in quotes but
we know that we are only passing a file pathname to the function so it is
not necessary. In general though, as you would for script arguments,
always enclose your function arguments in quotes if you want to pass
spaces as part of the argument.

In our earlier example of the ls() function we had no arguments within the
function itself so that the function would only display entries in our current
directory. If we wanted to pass it one or more arguments, such as a number
of directories and/or files, then we would modify the function to:

"��
.�0

B�N

B���	���
�%��%F�"#

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

B�O

"

and call it with, for example:

�
��� ������

FUNCTIONS AND THE TYPESET COMMAND

We mentioned earlier that the functions command, which is an alias of
typeset -f, can be used to display all function names within the current
shell, along with their inclusive text. Since function names are stored in
the history file, typeset does not display them if the history file does not
exist. You can also display a single function by using:

�'��
���%������	
����
��

or:

���
�	��
�����	
����
��

You can use an alternative form of typeset to display just the function
names only:

�'��
���@�

Ordinarily, functions are unset when the shell executes a shell script. For
example, if from the command line you define the function ls() and then
create a simple script which just runs ls and nothing more, when you
execute this new script it will not run the function ls() but will instead run
the standard ls.

It is possible, however, to export function definitions so that they remain
in effect across shell programs that are not separate invocations of ksh.
This can be done using the -x option:

�'��
���%�������	
����
��

If you now run the command typeset -fx ls and again run the simple script,
you will see that it now runs your function ls() and not the standard ls
command. If you enter ksh to create a sub-shell and then try to run your
function ls(), or the simple script that runs the function, you will see that
the function definitions have not been exported to this separate invocation
of the shell and the standard ls command will be run instead.

Functions that must be defined across separate invocations of the shell,

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

for example when you are in a windows environment, or when you simply
execute the ksh command as above, should be defined in the ENV variable
file, which is usually .kshrc. There is no need to export the function since
.kshrc is executed every time a sub-shell is created, and the function will
always be available in the new sub-shell.

And just to confuse you completely, the function will still not be accessible
in any shell script which is executed in this sub-shell! To ensure that the
function is always available, both in sub-shells and in scripts, it should be
exported within the .kshrc file by using the typeset -fx command.

Options to typeset

In addition to using typeset for functions, there are a number of other
useful options to the command that allow you to set, unset, and display
the values of variables, parameters, and their attributes. With no command
line arguments, typeset displays the names of all variables and parameters
in effect, as well as their types (export, function, integer, read-only, etc).

The various options for typeset are:

• -u – converts all alphabetic characters assigned to the variable to
upper case. Numbers and other characters remain the same.

• -l – converts all alphabetic characters assigned to the variable to lower
case. Numbers and other characters remain the same.

• -i[n] – declares the variable to be an integer with the base of n; if n is
not specified the default is base 10. Declaring a variable as an integer
makes arithmetic faster. Use 2 for binary, 8 for octal, and 16 for hex.

• -L[n] – left justifies the variable. The optional n specifies the field
width, otherwise it is determined by the width of the value on its first
assignment. When the parameter is assigned, it is filled on the right
with blanks, or it is truncated. The L and R options are mutually
exclusive. For example:

"��'��
���%TS�����MMAK/LHPJSI

"���	���"���

MMAK/LHP

• -LZ[n] – strips off leading 0s or leading blanks, counts the number

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

of characters from the left up to n, and then left-justifies. For example:

"��'��
���%TVS�����MMAK/LHPJSI

"���	���"���

AK/LHPJS

• -R[n] – right-justifies. If n is specified, it truncates after counting n
characters from the right. For example:

"��'��
���%�S�����MMAK/LHPJSI

"���	���"���

K/LHPJSI

• -RZ[n] – right-justifies and fills with leading zeros if the length is less
than n. For example:

"��'��
���%�VS�����AK/L

"���	���"���

MMMMAK/L

• -r – marks the variable as read-only.

• -x – marks the variable as exported.

The - in front of an option sets the attribute. You can unset the attribute
by using a + before the option. If typeset is used within a function, a local
variable is created. When the function exits, the variable’s original value
and attributes are restored if it previously existed.

Although in the above examples we have used the format typeset options
variable=xxxx, you do not have to set the variable’s value at the same time
as you declare it. You can define more than one variable at a time using,
for example:

�'��
���%	���'A���'K

which will declare both of these variables to be type integer, but will not
give them a value.

BLOCKS OF CODE

When you look at the syntax of a function definition, you will note that
we are merely surrounding a sequence of commands with the curly braces.
If we were to remove the function name and parentheses, and just use the

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

braces to surround the commands, we would be left with a block of code
that would behave just like a function without a name. The commands
would be executed as they would in a function, but we would not be able
to call this block from elsewhere in a script.

This block of code does not appear to have a great deal of use as it currently
stands, but there may be occasions when you want to redirect the output
from a number of commands to the same location, or alternatively you may
wish to receive the input from a file. You could of course redirect input/
output individually for each command, or you could use a construction
requiring less code.

As a simple example let’s assume that we are performing a system back-
up and we want to redirect the output from all our commands to a log file,
and any error messages to a separate error log. We can do this with the
construction:

N

����

��	���!(����	�����
���!

 �
'
��<�<�<

����

��	���!-�
����
� ������!

O�B�����	���KB���������

In simple scripts you might use coding such as that shown above, but if
this back-up example were to be part of a much larger script, where we
performed a series of tests first, and then perhaps a validation at the end
of the back-up, then the block of code would probably be called as a
function, say f_start_backup, and we would redirect the output of the
function with:

��
�������
����B�����	��

You should, of course, indent the commands within a code block to make
it easier to read and determine the start and end of the code block, but be
aware that you cannot use constructions like:

N������R���	���!(����	�����
���!�R�<�<�O�B�����	��

This is because the last brace of the code block must be the first character
on a line. Instead, the secondary prompt will be displayed if you run such
a construction from the command line, effectively asking you to terminate

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the command with the closing curly brace. If you run it in a script it will
give you a syntax error.

You should be aware that you cannot use code blocks surrounded by braces
within a function itself since this will generate a syntax error. This is
because the shell expects a closing curly brace to define the function
boundary after it has encountered the initial opening brace, and not another
opening brace starting a code block.

Code blocks in sub-shells

There is another construction which groups commands into blocks of
code, but operates in a slightly different way from blocks contained within
curly braces. You may remember the $(. . .) construction that is used in
command substitution, where the commands within the brackets are
executed as a block with the resulting output usually allocated to a
variable. The brackets in this construction serve as delimiters to a code
block in much the same way as braces, and where you use the braces
construction in a script you can, in most cases, use brackets instead. There
are, however, three main differences between the two constructions.

The first is a relatively trivial syntactical difference. If you use brackets you
can use a construction (not permissible with braces) such as:

.������R���	���!(����	�����
���!�R�<�<�0�B�����	��

The second involves a much more significant difference. When you use
brackets around the group of code, the commands are executed in a sub-
shell, unlike using braces where the commands are executed in the current
shell. Under most circumstances this will not be a problem, but if you
modify a variable in the block of code which runs in the sub-shell, its new
value will not be available elsewhere in the script, and under these
circumstances you must use the braces construction. Also, when you use
sub-shells you can run into problems when trapping signals.

The last difference relates to the fact that when you surround your code
with brackets, then the commands are run in a separate process, which is
usually less efficient than using code blocks surrounded by braces.

Tonto Kowalski
Guru (UAE) © Xephon 2002

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Should I use ‘large file enabled’ file systems?

Do you run a database on your AIX system? If you do and you haven’t
checked whether your file systems supporting the database are ‘large file
enabled’, then read on (otherwise it could be a very long night for you some
time in the not too distant future!).

Let me start by saying what ‘large file enabled’ means, then I will talk about
why you would use it, how to check whether you are actually using it, and
what could happen if you don’t use it.

WHAT DOES ‘LARGE FILE ENABLED’ MEAN?

‘Large file enabled’ basically means that files within a file system can be
larger than 2GB. The default is that files cannot be larger than 2GB.

WHY WOULD YOU WANT YOUR FILE SYSTEM TO BE LARGE FILE
ENABLED?

If you are running any application (and I count databases here as applications)
that has files which will grow to be more than 2GB in size, then you need
to large file enable the file system containing these files. Once a file hits
the 2GB limit you will get an error message back, even if you still have
plenty of space in your file system.

TO CHECK WHETHER YOUR FILE SYSTEM IS LARGE FILE
ENABLED

You can check whether a file system (<fs-name>) is large file enabled by
issuing the following command:

=�
�
�&���?����
��B

Your output will look something like this:

1� �������������1����� ����;�����*������������5F(���(W�����9��	��

)����)

����	��

�������L��������X����������������������������C�
���LMIPM���X

'�
����

.���
	W���LMIPMU��
�
	W���LMIPMU������
	W���LMIPU����	��KMLSU�
� ���

�

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

��U���������
�U�����L0

In this particular case, the file system is not large file enabled (bf: false);
if it were, you would see bf: true.

TO CREATE A FILE SYSTEM THAT IS LARGE FILE ENABLED

You can specify large file enabled when you create a file system as follows:

=
��
�&��C�
�&��?������������B

%��
	W��?�
�������
�����	���
������������B

% �?����	���
�	B

%���������

%�������HAK

the ‘-a bf=true’ bit is the large file enable bit.

WHAT CAN I DO IF I HIT THIS PROBLEM?

If you don’t have large file enabled file systems and a file within the file
system hits the 2GB limit, at that point you have only one option – create
a new, temporary, file system and copy the data to it; delete the old file
system; create another new file system, this one being large file enabled;
and copy the data back to that. This supposes that you have enough space
to create the temporary file system. There is no way to alter a file system
to make it large file enabled; you must create it!

CONCLUSION

If you are running a database on AIX, you should give serious consideration
to changing all the file systems that support the database to be large file
enabled (or make sure that no individual file within the file systems will
ever be larger than 2GB!).

C Leonard
Freelance Consultant (UK) © Xephon 2002

Have you come across any undocumented features in AIX 5L?
Why not share your discovery with others? Send your findings
to us at any of the addresses shown on page 2.

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Input for shell scripts

The three most common ways that shell scripts can obtain input are:

• Command substitution

• Interactive input using the read command

• Command line arguments.

COMMAND SUBSTITUTION

Although we have included command substitution in this article, which
is intended to introduce you to the ways in which shell scripts get their
input, in reality, command substitution is most frequently used to assign
the output of a command, or series of commands, to a shell variable.
Indeed, all the examples we have used in scripts so far have been of this
type. Because it can also be used for the input for shell scripts, it seemed
like a good opportunity to introduce this topic.

There are two different types of syntax used in command substitution, and
the one you adopt is purely a matter of personal preference, but, as we shall
see, one particular type of construction leaves you with limited options.

Using backquotes

Backquotes (also called grave accent marks) are metacharacters that
indicate to the shell that it is to perform command substitution. Any
command enclosed in backquotes will be executed, and the place it
occupies on the command line, including the backquotes, will be replaced
with the output generated by the command.

If, for example, you entered the command:

��	���'�������
�������'�	������Y�3�Y��	��
���'

then before running print, the shell executes pwd and replaces the
sequence of characters ̀ pwd` with the output generated by pwd. Then
print is run with the resultant list of arguments.

You must exercise some care when the output from any command
substitution (whether using backquotes or otherwise) is used as the input

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

to another command, particular when the output generated contains
spaces and the command accepting the input expects a single argument.
This is much the same as using variable values as input for commands, and
you must present this input as a single argument by enclosing all the spaces
inside double quote marks since they do not quote a backquote.

For example, suppose that you wanted to look for the current date in a
number of files. If you mistakenly entered the following command:

�����Y����Y��	��A��	��K��	��/

the shell would perform the substitution, and grep would be run with
arguments such as the following:

;��U�;�'U�/U�MS�HH�MIU�KMMK

This would produce a series of messages saying, for example, can’t open
Mon, etc. The command you need to enter is:

�����!Y����Y!��	��A��	��K��	��/

so that the total output of the date command would be passed as a single
argument to grep.

Using the $(. . .) construction

There are two major disadvantages to using backquotes for command
substitution:

1 When reading scripts, and depending on the type of font being used,
it is sometimes difficult to distinguish a backquote from a standard
single quote, often leading to confusion when trying to interpret or
debug a script.

2 Backquotes cannot be nested since the shell interprets everything
between the first and second backquotes it encounters on the command
line as one command (or pipeline), everything between the third and
fourth backquotes as another command, and so on. It is exceedingly
unlikely that nested backquotes will produce the result you intended,
and is more likely to generate many error messages.

There is another form of command substitution that we have already
briefly encountered in Examples of shell scripts, AIX Update, Issue 78,
April 2002, and which is more versatile and less confusing to the reader;
this uses the construction $(. . . .). Between the brackets you can include

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

a single command, with or without arguments, or a pipeline, and all
commands are executed as part of the substitution. Because of the above
disadvantages, we will use this type of construction instead of backquotes.

You have already seen examples in one of the sample scripts in the earlier
article, but the following is an example that includes nesting. Forget the
syntax of the probably unrecognizable test command for the time being
since it will be explained in a future article.

,6��".�22�".�3�0���!�!�44�ZZ���	�������0

The innermost substitution is executed first, and the shell gradually works
its way out until all substitutions have been completed.

The above example is a fairly complex command substitution used to
assign a value to a variable and in your shell programming career you will
probably start off with far simpler examples, getting progressively more
complicated as you gain experience with the Korn shell.

Generating argument lists

Command substitution can be used to generate a list of arguments for a
program. For example, suppose that you wanted to count the number of
lines in a lot of files and you also wanted to perform other operations on
this group of files as well. To make dealing with the group easier, you could
create a file containing the names of each of the files.

To make the example simple, we will only use three files:

"��	��	����	
�

���
�
��� �	�<
�

���
���

3�

���
�	�	����

Create this text file and then run the following command:

�	 ��3
�%��".?��	����	
�0

We have introduced the time command to give you some idea how long
this command takes to run. The reason for this is that we could have used
cat file_list instead of <filelist, but the latter construction is run by the shell
in a more efficient manner than cat.

Now try running the following command and note the difference in times;
ideally you should run both commands several times so as to give an

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

average, since there may be additional system activity when you run one
command but not when you run the other. This gap would be even greater
with large numbers of files, or with larger files.

�	 ��3
�%��".
����	����	
�0

In this particular example you could have used filename generation
characters to specify the files. However, if the files that you want a
command to operate on are not named in a consistent way, or are spread
across a number of directories, it may not be possible to specify them with
patterns.

INTERACTIVE INPUT USING READ

The read command is used for interactive input for shell scripts and waits
until you enter a line of text. It then reads the line and sets a shell variable
to the text that you entered. The syntax for the command is:

������
�

���

When you enter a command such as this, nothing will happen until you type
some text and press <CR>. Then, whatever you type will be assigned to
variable. The read command actually separates its input line into words
delimited by the Internal Field Separator (IFS) variable, which by default
can be either spaces or tabs. In the above example, variable will be set to
the characters of the first word.

When a read command is executed in a shell script, execution of the script
halts until the user types something and presses the Enter key. In shell
scripts, the read command will usually be preceded by a print statement,
which displays a message to let the user know that he will be expected to
enter some text. For any script containing a read statement, speed of
execution is obviously not an important factor since at some stage you will
be waiting for a user to enter data.

Try the following example:

"��	�	����

��	���*���
����������3���

�����3���

��	���"3���

Execute the shell script and, after displaying the first message, the program

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

will wait until you enter text. Once you have done so, the next command
is then executed and the word you entered will be displayed. If instead of
typing text you had pressed <CR>, then the variable word would have been
assigned a null string.

You can read several words of input into several variables at the same time
with a single read statement. Here is an example:

"��	�	����K

��	���*���
���������3���	���� �
�

������	��A��	��K

��	���F	��A��"�	��A

��	���F	��K��"�	��K

When you execute this shell script, you must enter the two filenames on
the same line separated by spaces or tabs. The read command takes
whatever you have entered and assigns it to the two variables. If there are
two variables and you have entered only one word, the second variable will
be assigned a null string. If you were to enter more words than there are
variables, then the first word would be assigned to the first variable, and
all the remaining words would be assigned to the second variable.

Accepting read input from a file

The following simple example shows how read can accept input from a
file. First create a file containing a single line using

��	���!����������
!�B��� ��	��

Then enter:

������� ��?��� ��	��

and test that this has worked by entering print $name. If there is more than
one line in the file then name will be assigned all the characters on the line
up to the carriage return at the end of the line. As we shall see later, we can
use while loops to read all the lines in the file and perform operations
against each line.

Using read with fredmail

Let us now rename the fredmail file we previously created in the earlier
article, and modify it so that it asks the user to enter the name of the
recipient, and sends the mail to that user:

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

"��	� �	���

=>��	���
�

=�:����� �������
	�	��������
��C�
����� �

���

��	���G;�

��������E
G

�����3��

��	���G(��C�
���E
G

�����
��C�
�

=�)�������
��C�
��������� � �<

��	���!(��C�
���"
��C�
�!�B� � ��� �

=�����
���
� ��������
�3�������������
����'��
����

=�������
�	����� � ��� �<��������������3	���7��T�,<

��	���G������ �

���������	�	
��3	���[,�������������	��G

���BB� � ��� �

=�)��������������U����� �

���U��������������	���������������	��

�����BB�����	���"3��

��� � ��� ��BB�����	���"3��

��	���GE�G�BB�����	���"3��

=� �	������ �

���

 �	��"3�� �?� � ��� �

=��� �������� �

������3��������
��'���
������
����

� � � ��� �

This version of mailto will prompt you to enter the user name of the person
you want the mail sent to, and stores it in the variable whom. It next reads
the subject, and then prompts you to enter the text. A copy is stored in a
log file, and a separate log will be created for each user. The name of the
file created is logfile_$whom. Finally, the mail is sent to the user.

You will notice that the argument to the first two print commands is the
escape sequence \c. This will leave the cursor on the same line as the
message, and you can enter your response there; some programmers prefer
this neat and tidy approach. Note that the whole argument to print has been
enclosed in quotes because the \ must be quoted to remove its normal
metacharacter meaning and we want to pass this pair of characters to print
so that they can be interpreted as an escape sequence. Otherwise the shell
will replace the pair of characters \c with the single character c. You could
achieve the same result by using print -n, which omits the final newline.

If you look at the line that prints the subject to the temporary file, you will
see that Subject: $subject is enclosed in double quotes. This particular
print command would also work without the double quotes, until such
time as a subject containing a metacharacter was entered, for example, a

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

*. Without double quotes, print would then first display the word
Subject:, followed by the list of all the files in the current directory
because of the filename expansion character, *. The double quotes result
in the execution of the command print "Subject: *", and the * loses its
meaning as a metacharacter and merely becomes an ordinary character.

If you had instead used single quotes, then the print command would have
appended the characters Subject: $subject to the memo, which is not what
you intended.

You can practise using the mailto command to send messages to yourself.
View them with the mail command. Remember to remove the log file
when you have finished.

COMMAND LINE ARGUMENTS

Another way that you can give information to a shell script is through
command line arguments. Although the read command can always be
used to obtain input interactively, it is not always the most convenient
method. Often it is easier for the user to enter whatever data the command
needs on the same line as the command itself.

Consider the command line:

���	��A��	��K

There are two arguments on this command line, which are file1 and file2.
Similarly:

�
�%����
���	�

also has two arguments, namely -l and /usr/bin.

The command line:

�
�%���$����������

contains two commands, ps -ef and grep root, each of which has one
argument. The | is not an argument and will not be passed to either
command.

Within a shell script you can have access to the arguments that appear on
the command line used to invoke the script. The command line arguments
are a set of variables called positional parameters, their notations being $1,

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

$2, $3, etc. The value of $1 is the first command line argument, $2 is the
second, and so on.

If you consider the example:

�	��������3�

then any occurrences of $1 in the script will be replaced with the string one,
and $2 will be replaced with two. If you are going to access these variables
in multiple places in your script, then it is good practice to set them to
variable names at the start of the script. This maintains consistency and
helps to avoid confusion since, as you will see later, $1 in the main body
of a script is not the same as $1 when used in a function.

Here is a shell script that displays the first three arguments with which it
was called. Before printing the arguments, the script displays its own
name; $0 is always equal to the name of the shell script.

"��	�����

��	���E"M�	
��"M

��	���E"A�	
��"A

��	���E"K�	
��"K

��	���E"/�	
��"/

When you enter the command with three command line arguments, you
will see them displayed as, for example:

"����� ��	�����������

"M�	
������

"A�	
���	

"K�	
�������

"/�	
������

If you run param with two command line arguments instead of three, $1
and $2 will be assigned the first two arguments, and $3 (as well as all
subsequent positional parameters) will be assigned the null string. Similarly,
if you run param without any arguments, then all the positional parameters
will be assigned the empty string. On the other hand, if you invoke param
with five arguments, $1 to $5 will be set to the five arguments entered, and
$6 onwards will be assigned the null string; param does not reference $4
and $5, but that does not stop values from being assigned to them.

In the Korn shell, if you use the expression $10 to try to get a tenth
command line argument, the shell will interpret the $10 as ${1}0; in other

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

words, the first command line argument followed by zero. Instead you can
access such parameters by using ${10}, ${11}, etc.

You also need to be aware that you cannot assign new values to the
positional parameters in the way you assign new values to ordinary
variables. For example, the following command will not assign a new
value to $1:

"�A���3�����

��	���
���A���3����������������

As you are aware, if you want a string that contains spaces to be treated as
a single argument, you must precede the space with a \, or enclose the string
in single or double quote marks. In the following example, note that the
entire quoted string is assigned to $1:

"����� �!�	������!�����

"M�	
������

"A�	
���	������

"K�	
������

"/�	
�

Here is another example that illustrates the use of variable substitution,
but from a different perspective:

"������	��������

"����� �"�����	��

"M�	
������

"A�	
�������

"K�	
�

"/�	
�

If you set greeting to hello there, and you want this to be treated as a single
argument to param, then you must surround $greeting with double
quotes when you use it as an argument to param.

Making mailto accept an argument

Let us now modify the mailto script from the renamed fredmail, so that
it accepts a command line argument containing the recipient’s name. This
modification will make it behave more like the mail command.

The new mailto file should be modified to the following:

"��	� �	���

44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

=>��	���
�

��76*6�1��"A

T9:�����	���"��76*6�1�

T9:,6����
����
������

�;*,6�������� �

;�;9F6T�� � ��""

=�:���
��C�
����� �

���

��	���G(��C�
���E
G

�����
��C�
�

=�)�������
��C�
��������� � �<

��	���!(��C�
���"
��C�
�!�B�"�;*,6��";�;9F6T�

=�����
���
� ��������
�3�������������
����'��
����

=�������
�	�����;�;9F6T�<��������������3	���7��T�,<

��	���G������ �

������������3	���[,�������������	��G

���BB�"�;*,6��";�;9F6T�

=�)��������������U����� �

���U��������������	���������������	��

�����BB�"T9:,6��"T9:

���"�;*,6��";�;9F6T��BB�"T9:,6��"T9:

��	���GE�G�BB�"T9:,6��"T9:

=� �	������ �

���

 �	��"��76*6�1��?�"�;*,6��";�;9F6T�

=��� �������� �

������3��������
��'���
������
����

=�����	����
������ �	���

� �"�;*,6��";�;9F6T�

You will see that we have introduced a number of variables at the beginning
of the script. RECIPIENT defines the name of the user who will receive
the memo (see method of execution below), LOG defines the name of our
log file (which becomes a unique name because we are appending the
recipient’s name to it), LOGDIR defines the location of our log file,
TMPDIR is set to a temporary directory name (more on that later), and
MEMOFILE is the name of the file containing our temporary memo
(remember that the copy of the memo we send is located in the log file).

In general, any string of characters which are to be used multiple times
within a script, whether they be a directory pathname, filename, or
otherwise, should always be defined as early as possible in the script.
Should the value have to be changed at a later date then all you need to do
is make a single change.

One major flaw with the script is that we do not test that there is a single
command line argument, and that it is a valid username, before setting the
RECIPIENT variable. The reason for this is that you have not yet learned
the appropriate commands to do so; all will be revealed in a future article!

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

You will also discover that a significant task in creating any well-written
script will involve code which does extensive error testing to ensure that
your script is as resilient as possible. Quite often this can be greater than
the other code you need to achieve your ends.

If two people ran the old version of mailto at the same time, they did not
interfere with each other, because each time the script was run, the
temporary file was most likely created in their home directories. However,
if two people were to run the new version with the temporary file still being
named memo_tmp, and located in the directory set by the TMPDIR
variable, then both processes would try to create the same file in the same
directory, at the same time.

To avoid this problem, we make sure that, each time mailto is run, a
different filename is used. As you will recall, $$ is the variable that is equal
to the process ID of the current shell process. If the temporary file name
is of the form memo_$$, then each time mailto is invoked it will be run
by a separate shell process with a unique process ID, and a different
temporary file will be created for each user. If two users run the script at
the same time, the two processes will have different IDs, and two different
temporary files will be created.

You might argue that there is very little chance of two users running the
script at the same time, and on a system with a small user base this might
be so. But many scripts which start off with a single user, or just a small
number of users, have a habit of increasing in popularity, particularly if
they perform a function not previously available, and so are introduced to
a much larger user base. When this happens all sorts of things start to go
wrong when the script is simultaneously executed by multiple users, and
as a general principle all your scripts should be written with this in mind;
it is far easier to accommodate multiple users in the design stage than to
make changes at a later date.

If the old version of mailto were terminated abnormally, the temporary
file, which the code tries to remove at the end of mailto, would not be
removed. Programs that create temporary files should usually create them
in a directory that is periodically cleaned up by system administrators, and
/var/tmp should be one such directory. Another alternative is to create the
temporary file in any suitable directory and then introduce code to remove
it when the command is terminated abnormally.

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

To run this new version of mailto, you must specify the recipient’s name
on the command line:

 �	��������

What happens if more than one argument is specified on the command
line? The mail command in the script only sends the memo to $1, so that
only the first person listed on the command line will receive the message.
You will later learn how to make a shell script loop over the list of
command line arguments, and perform a sequence of operations, such as
mailing a file, once for each argument.

All the command line arguments – $*

The variable $* is equal to the list of all the positional parameters. The
following shell script illustrates this:

"��	����

��	����������� ����
�

��	���"A�"K�"/�"L�"H�"P�"J�"S�"I

��	���G"#G�

��	���"#

When you run this command you will see that $* does not include $0, the
name of the script.

Although there are only nine positional parameters in this script, if you
enter more than nine arguments on the command line, $* will include them
all. You can try this by running all with more than nine arguments. You can
also modify this or any script to process more than 9 command line
arguments using the ${10} type notation.

As you may recall, we created a shell script named word_count, which
counts the number of occurrences of each word in a file. We can modify
this script so that it can operate on any file, not just the one named in the
original script. This can be done by changing the first line to:

���%)�!2)%V4!�!2�%W4!�?�"A�$

This now allows input from the file specified by $1, rather than by
redirecting the input from mytext.

We can further improve on word_count by making it operate on more than
one file. You may be tempted to change the first tr command to read:

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

���%)�!2)%V4!�!2�%W4!�?�"A�"K�"/�"L�"H�"P�"J�"S�"I�$

or:

���%)�!2)%V4!�!2�%W4!�?�"#�$

Neither of these commands will work because the standard input can be
redirected from one file only. This can be overcome by using the cat
command to join all the files together. For example:

���"A�"K�"/�"L�"H�"P�"J�"S�"I�$

���%)�!2)%V4!�!2�%W4!�$

or:

���"#�$

���%)�!2)%V4!�!2�%W4!�$

You should use $*, rather than listing the positional parameters, if you
want this script to be able to deal with more than nine filenames. You
should also note that this version of word_count will produce combined
totals of the occurrences of words in all files, and not in individual files
listed one after the other.

The number of command line arguments – $#

$# is another automatically maintained variable, and is equal to the
number of command line arguments. It does not include the name of the
script. The following shell script simply prints the number of arguments
with which it was invoked:

"��	�
����

��	���"=

Try this script by entering:

"�
����

M

"�
������	������

K

"�
�����G�	������G

A

Tonto Kowalski
Guru (UAE) © Xephon 2002

AIX news

Micro Focus has announced the general
availability of the only 64-bit COBOL
development environment for AIX 5. Micro
Focus Server Express is now capable of
providing businesses maximum performance
from both the processor and updated
operating system architecture.

For further information contact:
Micro Focus, Old Bath Road, Newbury,
Berk, RG14 1QN, UK.
Tel: (01635) 32646.
URL: http://www.microfocus.com/press/
releases/20020514.asp.

* * *

IBM has announced Version 2 of its
Workstation APL2 V2 application
development and data exploration tools for
use on AIX, Linux, Solaris, and Windows.
New features include support for Linux on
PC-compatible systems, namespaces for
application encapsulation and reuse,
interface to Tcl/Tk command language for
platform-independent GUI development,
and APL2 Runtime Library for distribution of
APL2 applications.

The programming language is used by both
developers and interactive end users for
application development and problem
solving, targeting both commercial and
scientific applications in areas such as
commercial data processing, system design
and prototyping, engineering and scientific
computation, artificial intelligence, and the
teaching of mathematics and other subjects.
It supports what-if modelling, exploratory
programming, interactive computing,
decision support, and data analysis. It

manages large quantities of data and enables
development of applications that can be
deployed on both host and workstation
systems.

The latest version combines the features of
previous workstation APL2 products for
AIX, Solaris, and Windows with support for
Linux on PC-compatible systems.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software.

* * *

ValiCert has released Version 3.5 of
SecureTransport for AIX 5.1. The product is
a secure document and data delivery system.

The new release provides a new browser-
based ActiveX client for Internet Explorer
users, increasing the efficiency and reliability
of their file transfer while lowering customer
support and software distribution costs.
There are new, customizable end-user
interfaces, and an improved authentication
framework.

The product now offers customizable HTML
templates, which maintain visual continuity
for existing Web portals, preserve corporate
branding, and can be customized to include
application-specific user interfaces.

For further information contact:
Valicert, 1215 Terra Bella Avenue,
Mountain View, CA 94043, USA.
Tel: (650) 567 5400.
URL: http://www.valicert.com/products/
secure_transport.html.

	A review of recent AIX security exposures
	User-defined backend programs for spooling
	Shell functions
	Should I use 'large file enabled' file systems?
	Input for shell scripts
	AIX news

