83

September 2002

3 Grepthis
15 Command return values

24 Communications Server failures
under Al X 4.3.3

25 awk

42 Understanding the cp, mv, and rm
commands

48 AlIX news

© Xephon plc 2002

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

AlIX Update

Published by
Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38342

From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon

PO Box 350100
Westminster, CO 80035-0100
USA

Telephone: 303 410 9344

Subscriptionsand back-issues

A year's subscription to AlX Update,
comprising twelve monthly issues, costs
£180.00in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribersfor £16.00 ($24.00)
each including postage.

Al X Update on-line

Codefrom Al X Update, and completeissues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; youwill needto supply awordfrom
the printed issue.

Editors
Trevor Eddolls

Disclaimer

Readers are cautioned that, although the
informationinthisjournal ispresentedingood
faith, neither Xephon nor theorganizationsor
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions

When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 wordsand £100
($160) per 100 lines of code for thefirst 200
linesof original material. Theremaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

© Xephonplc2002. All rightsreserved. Noneof thetextinthispublication may bereproduced,
stored in aretrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are freeto copy any code reproduced inthis
publicationfor useintheir owninstallations, but may not sell such codeor incorporateitinany
commercial product. No part of thispublication may beusedfor any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permitsare
availablefrom Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
Printed in England.

Grep this

The grep utility allows one or more files to be searched for strings of
words. Its syntax is somewhat similar to the regular expression syntax
of thevi, ex, ed, and sed editors. It comesinthreebasicflavours—grep,
fgrep, and egrep. Thearticle mainly discusses grep and egrep, with a
final note on fgrep at the end because it is the ssimplest of all three.

The name grep is derived from an editor command:
g/re/p

which meant “globally search for aregular expression and print what
you find”. That action is essentially what grep does, so the name
seemed appropriate. Regular expressionsareat thecoreof grep andare
covered after a brief description of some of the command options.

The ssimplest grep command is:
grep search-pattern files-list

Anexampleof thisappearsin Listing 1 to search al filesin the current
directory for the string “hello”.

Listing 1.

grep hello *

The output of this command might be something like Listing 2.
Listing 2 — output of grep:

$ grep hello *

story.txt: so I said I was thinking about saying hello when she smiled
intro.txt: the hello.c program is an example of C programming

$

The search by grep is case-sensitive. In order to change the search to
include “hello”, “Hello”, or “HELLO” usethe -y or -i option. Earlier
versions of grep used -y. Later versions use -i, and -y is considered
obsolete, although some versions of grep support both. In Listing 3,
more “hellos’ show up because the search is case-independent.

Listing 3 — output from a case-insensitive grep search:

$ grep -i hello *

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 3

story.txt: so I said I was thinking about saying hello when she smiled
story.txt: I could hear my echo, "HELLO, HELLO, HELLO."

intro.txt: the hello.c program is an example of C programming

hello.c: printf("Hello, world. \n");

$

The output from grep varies depending on whether you are searching
onefileor severd files. If only onefileis named on the command line,
the output does not include the file name asin Listing 4.

Listing 4 — output of aonefile grep:

$ grep -i hello hello.c
printf("Hello, world. \n");
$

Thisonefilerule applieswhether you useawildcard in your filelist or
not. If hello.cweretheonly fileinthecurrent directory, usingawildcard
to locate the file would still produce an unnamed file output.

As a side note, the reason for this is that the wildcard on the grep
command line is actually expanded by the shell, not by the grep
command.

Theshell pre-expandsthe* by locating all filesinthe current directory,
makingalist of thefiles, and replacingthe* withthelist of files. If there
isonly onefilein the directory, then the command is executed as.

grep hello hello.c

In Listing 5, the user is searching for any C files containing “hello”.
Wherethereisonly onefilewith a.c extension in the current directory
the output is identical to the previous example.

Listing 5:

$ grep -1 hello *.c
printf("Hello, world. \n");
$

Thereisaclever work-around for thislimitation. By alwaysadding the
/dev/null devicefiletothelist of filesto search you ensurethat multiple
filesare searched. Because grep acceptsalist of files, thecommandin
Listing 6 searchesall fileswith a.c extension, and the file named /dev/
null. Even if there is only one file with a .c extension in the current
directory, theoutput printsthefilename, becauseitisactually searching
for files.

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Listing 6 — using /dev/null as afile:

$ grep -i hello *.c /dev/null
hello.c: printf("Hello, world. \n");
$

If you are familiar with /dev/null, you are probably most familiar with
it asasort of character trash can—somewhereto send unwanted output.
In Listing 7, errors that would normally be output to standard error
(usually theterminal screen) areredirectedto/dev/null, whicheffectively
throws them away.

Listing 7 — throwing output away in the /dev/null waste basket:
find . -name *.c -print 2>/dev/null

But the /dev/null device can aso be used asan input file equivalent to
an empty file. Thisuseis seen less often, but is perfectly valid.

The -l option can be used to extract alist of files containing the string.
Only thefilenameisprinted, anditisprinted only onceeventhoughthe
string may appear in multiplelines. InListing 8, story.txt appearsonly
once even though it contains more than one occurrence of “hello”.

Listing 8 — using the -| option:

$ grep -il hello *
hello.c:
intro.txt:
story.txt:

$

The -I option suppresses most of the other output options from grep.

The -n option will print aline number aswell asthetext asin Listing
9.

Listing 9 — using -n to print line numbers:

$ grep -in hello *

hello.c:27: printf("Hello, world. \n");

intro.txt:144: the hello.c program is an example of C programming
story.txt:101: so I said I was thinking about saying hello when she
smiled

story.txt:287: I could hear my echo, "HELLO, HELLO, HELLO."

$

The -v option outputs the complement of the search — al lines not
containing the requested search pattern.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 5

Listing 10 — output of lines not containing the search text:

$ grep -iv hello intro.txt

You will be able to get more practice if you
at its simplest

$

The-c option printsonly acount of linesmatched. It hasan interesting
and useful side-effect in that it lists all of the filesthat it searches, not
just the successful hits. Listing 11 provides a sample output.

Listing 11 — using -c to print a count of hits:

$ grep -ic hello *
data.txt:0
hello.c:1:
intro.txt:1
intro2.txt:0
story.txt:2

$

Some versions of grep come with -r as an option to allow grep to
recursively search through subdirectories. The default behaviour isto
search only one directory and the -r option, as provided in GNU grep
for example, is the exception rather than the rule.

You have now seen some of the input and output options, but the real
power of grep isinthe search pattern, which usesregular expressions.

Grep can match ssmple strings such asthe “hello” example, but it can
also useavariety of wildcardsand specia symbols(metacharacters) to
create aregular expression to search for more complex strings.

Let’s start with some of the ssimpler regular expression characters. A *
(caret) character meansstart of thelineand a$ (dollar) character means
end of theline. You could use these to specify matching aword only at
the beginning or end of aline.

Thewildcardsused by grep frequently clashwiththespecial characters
that the shell uses, so the usual practice is to enclose complex search
strings in single quotes. Listings 12 and 13 would match any case
version of hello at the start of alineand at theend of alinerespectively.

Listing 12 — matching at the start of aline:
$ grep - I '"*hello' *

Listing 13 — matching at the end of aline:

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

$ grep -I 'hello$' *

The. (dot or period) character will match any single character. Listing
14 will match any character followed by ello. It would match agllo,
bello, cello, ondownto zello, aswell asodd combinationssuchas1ello,
2€llo, and ?ello. Any combination of oneinitial character followed by
elloisvalid. The dot only matches printable characters and does not
match the beginning or end of line, therefore ello at the start of aline
would not be matched.

Listing 14 — matching any character:
$ grep '.ello' *

Optional characters can be enclosed in square brackets ([]) causing
any of the enclosed characters to be matched. The grep command in
Listing 15would match hello, cello, or bello, but would not match agllo.

Listing 15 — matching optional characters:
$ grep '[hcblello’ *

Optiona characters can also be specified as a range by using two
characters separated by ahyphen. Listing 16 would match bay, cay, or
day.

Listing 16 — matching arange of optional characters:

$ grep '[b-dlay' *

A list of optional characters, or range of characters, can be preceded by
acaret (M) toinvert the sense of the match. Listing 17 would match any
character followed by ay except the combinations bay, cay, and day.

Listing 17 — inverting optional characters:
$ grep '["b-d]ay' *
Notethat anoption list or rangerepresentsamatch of asinglecharacter.

Any singlecharacter match (including asingle character matched by an
option/rangespecification) can berepeated by usingtherepeat character,
* (asterisk). Anasterisk following asinglecharacter meanszero or more
occurrencesof thepreceding singlecharacter match. Listing 18 requests
any line containing hello followed by dolly, where the words are
separated by zero or more spaces. Note that the asterisk follows the
space after hello and therefore applies to the space character.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 7

Listing 18 — matching zero or more spaces:
$ grep 'hello *dolly' *

This search would match any of the combinations shownin Listing 19
without regard to the number of spaces between the words.

Listing 19:

hellodolly
hello dolly
hello dolly

The asterisk can be applied to an option list or range of characters.
Listing 20 matches ¢ and t with any number of vowels (or no vowels)
In between.

Listing 20 — using repeat on an option list:

$ grep 'cl[aeiou]*t' somewords.txt
cat

coat

coot

cot

cout

cut

ct

$

At this point we haveto start exploring egrep because grep and egrep
depart from one another. Egrep standsfor extended grep. The POSIX
1003.2 standard defined a set of regular expression characters called
modern, extended, or full regular expressions. The earlier regular
expressions used by grep are usualy called older or basic regular
expressions. There is some overlap between the two types of regular
expressions and recent versions of grep can be made to behave like
egrep by using a-E option that forces grep to use extended regular
eXpressions.

The egrep utility uses extended regular expressions. One of the useful
extended regular expressions is the plus (+) character as a single
character repeater. This works like the asterisk (*) but means one or
morerather than zero or more. Using egrep intheexampleinlisting 20
withplus(+) instead of theasterisk, thesearchwould bechangedto skip
finding ct becauseit doesnot contain one or morevowels. Sincethisis
probably what was intended in the first place, it is more useful.

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Listing 21 — using + from the extended regular expressions:

$ egrep 'cl[aeioul+t' somewords.txt
cat

coat

coot

cot

cout

cut

$

If you use grep to achievethe sameresults, the search pattern becomes
clumsier. Listing 22 asksfor c, followed by any vowel, followed by zero
or more occurrences of any vowel, followed by t.

Listing 22 — matching one or more using grep:

$ grep 'claeiou][aeiou]*t' somewords.txt
cat

coat

coot

cot

cout

cut

$

The egrep utility also adds a question mark (?) as yet another version
of multiple occurrence matching. The ? means zero or one occurrence,

Using egrep with extended regular expressions.

e * =zero or more occurrences of the preceding character pattern.,
e +=o0neor more occurrences of the preceding character pattern.
e ?=zero or one occurrence of the preceding character pattern.

Thenext useful character in extended regular expressionsisthevertical
bar (|). This creates an ‘or’ condition between two possible search
patterns. In Listing 23, egrep searchesfor ¢, followed by one or more
vowels followed by t. It aso searches for p followed by one or more
vowels followed by | as an option. Since the search string does not
specify that the word must actually end after the closing t or I, Listing
23 has matched paula and paella as well aswords that just end in |.

Listing 23 — searching using an ‘or’:

$ egrep 'cl[aeioul+t|pl[aeiou]+]' somewords.txt
cat

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 9

coat
coot
cot
cut
cet
cit
pal
paella
paul
paula
peal
peel
pool
$

You can fudge this multiple optiona pattern with grep by using a
featurethat all three of thegrep utilitieshave. They can match multiple
search patternsthat have been entered by using newlinesin betweenthe
patterns. This feature can be used with egrep and fgrep aswell, but |

amintroducing it herejust to show you thedifficulty of imitating egrep
with grep when it would be ssimpler to use egrep.

In Listing 24 the user entersthefirst part of the command on oneline,
and then presses Enter while the single quotes are still open. The shell
prompts for additional input and continues to accept lines until the
closing quoteappears. Eachindividual linerepresentsaseparate search
string to grep. Thistrick is useful with any version of grep.

Listing 24:

$ grep 'cl[aeiou][aeioul*t
> pl[aeiou][aeiou]*T"' somewords.txt
cat

coat

coot

cot

cut

cet

cit

pal

paella

paul

paula

peal

peel

pool

$

In egrep, ssmple parentheses can be used to group sections of asearch

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

pattern together. Thisisusually used to cause branches within asearch
pattern. The example in Listing 25 illustrates this better than an
explanation. The search pattern will match any of the words shown in
the result list. The parentheses group ‘[Ssjome’ and ‘[Aalny’ as
optional strings followed by ‘one’.

Listing 25 — using parentheses in egrep:

$ egrep '([Ss]omel[Aalny)one' somewords.txt
someone

Someone

anyone

Anyone

$

A single character can be modified by a count bound. A count bound
can specify a minimum or maximum number of characters (or both).
Egrep uses curly braces ({}) to specify a bound, grep uses back-
dashed curly braces (\{\}). A bound consists of one or two comma-
separated numbers. The first number specifies the minimum number
and the second number specifies the maximum number of preceding
characters. The examplesin listing 26 will clarify the usage.

Listing 26 — some example bounds:

egrep grep Meaning
[aZ]{2,4} [aZ]\{2,4\} Two to four lower-case characters.
[aZ]{ 4} [aZ]\{4\} Exactly four lower-case characters.

[0-9]{4,} [0-9]\{4\} Four or more digits.

[A-Zaz]{ 4} [A-Zaz]\{,4\} Zero to four upper- or lower-case
characters.

Thelast useful character is the escape character or backslash (\). This
character removesthe special meaning of a character and turnsit back
into astandard character. Some simple examples are illustrated below.
Note that the backslash has a special meaning, so when you want to
searchfor abackdashitsalf, it must beescaped (\\). Listing 27 illustrates
the different behaviour of specia characters when preceded by a
backslash.

Listing 27 — using the backslash:

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 11

. — any character.

« \.—aperiod.

e $—endofline.

e \$-—dollar sign.

e * —zero or more occurrences of the preceding expression.
e * —an asterisk.

* \—nothing; it is an escape character.

 \\—abackdash.

e |—createan ‘or’ branch between two expressions.
 \|—avertica ba.

The definition of the escape character states that if you escape a
character that does not need to be escaped, then the escape isignored
and the character is treated as if you had entered the character on its
own. If you place ‘\a in asearch pattern, itisthe same as‘a because
it did not need to be escaped in the first place.

It ishard to remember al the charactersthat have aspecial meaningin
grep and egrep. It would be wonderful if you could follow a ssimple
rule-of-thumb such as: when in doubt about whether a character hasa
gpecia meaning or not, use the backdash in front of it. Unfortunately
regular expressionsarenot quitethat regular. You haveal ready seenthat
curly braceswhen escapedin grep acquireaspecial meaning. Thesame
istrue for parentheses and angle brackets. The following characters or
combinations of characters have special meanings in grep or egrep:

Inegrep,| ~ $. * + 2 () [{ } \.

Ingrep,” $. * \() [M\ \

Because regular expressions are used by vi, ex, sed, and ed, it isworth
mentioning that these editors use the following special characters or
combinationss~ $. * \() [\ \< >

Asyou can see, regular expressionsaren’t asregular asthey should be,
and you need to be aware of which version of regular expressions you
are using before you begin throwing the backslash around

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

indiscriminately.

The last collection of grep or egrep search pattern optionsisrealy a
simple shorthand for describing a class of characters.

Listing 28 — shorthand for types of character:

o [:apha] —any aphabetic character.

* [:lower:] —any lowercase character.

o [:upper:] —any uppercase character.

o [:digit:] —any digit.

o [:@num:] —any aphanumeric character (alphabetic or digit).

» [:gpace:] —any white space character (space, tab, vertical tab).
o [:graph:] — any printable character, except space.

e [:print:] —any printable character, including the space.

* [:punct:] —any punctuation, a printable character that is not white
space or aphanumeric.

« [:cntrl:] —any non-printable character.

You may use these inside a range option. Note that the class name
includes the left and right brackets, so these must be doubled inside a
range as in Listing 29, which searches for any string of 10 digits or
uppercase | etters. Note the apparently doubled brackets. Thisisin fact
an option of [:digit:][:upper:] inside the square brackets for a range.
This could also be written as[0-9A-Z].

Listing 29 — using shorthand types:

$ egrep '[[:digit:J[:upper:11{10}' somenumbers.txt
1234554321
$

Listing 30 offers some sample search patterns. Pattern 1 searches for
phone numbers by looking for an open parenthesis, followed by three
digits, followed by a closing parenthesis, followed by three digits, a
hyphen, and four digits.

Pattern 2 searches for zip codes either with or without the following
hyphen and four digit extension. It searchesfor five digitsfollowed by

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 13

zero or one hyphen followed by between zero and four digits.

Pattern 3 searchesfor lines containing PO Box number style addresses.
|t does acase-independent search for p followed by zero or one period,
followed by zero or more spaces, followed by o, zero, or one period, and
one or more spaces, and finally followed by box or drop. This should
match most of the stylesof dataentry for aPO Box including P. O. Box,
PO BOX, PO. Box, P O Box, P. O. Drop, and so on.

Pattern 4 matches just the word cat by searching for it where it is
preceded by abeginning of line or one or more spaces and followed by
one or more spaces, or an end of line. This search will not match
concatenate.

Listing 30 — some sample search patterns:

1 egrep '\([0-91{3}\)[@-91{3}\-[0-91{4}"' somenumbers.txt
2 egrep '[@-91{5}\-?[0-91{@,4}' somenumbers.txt

3 egrep -i 'p\.? *o\. +(box|drop)' someaddresses.txt

4 egrep ‘("] +)cat(+|$)’ sometext.txt

Sofar | haven’'t mentioned fgr ep and you are probably wondering how
itfitsinwith grep and egrep. Fgrep isgrep (or egrep) without specia
characters. To search for asimple string without wildcards, use fgrep.
The fgrep version of grep is optimized to search for strings as they
appear on the command line, and does not treat any characters as
special.

You could use fgrep in all of the examples that searched for the plain
string ‘hello’, and it would be more efficient. You can a'so usefgrep to
search for strings that contain special characters used in their usua
sense. For example if you wanted to search for hello at the end of a
sentence (hello followed by a period), you would want to search for
‘hello.’.

The dot or period isaspecial character in grep or egrep, and it would
besmpler to usefgrep. Fgrep will treat aperiod asaperiod and not as
a gpecia character.

Listing 31.:
$ fgrep 'hello.' *

Therearetwoimportant final notesabout searching for multiplestrings.
Multiple search patterns can be placed on a single command line by

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

using the-eoption before each search pattern. Listing 32 will searchfor
cat or dog.

Listing 32 — using the -e option:
$ fgrep -e 'cat' -e 'dog' *

Possibly one of the most powerful features of the grep family is the
ability to create afile containing alist of search patternsand then name
the file on agrep command line with the -f option. Listing 33isafile
named searchfor.txt containing alist of search patternsto search for the
singular or plural of various animals. The question mark at the end of
each animal name applies to the preceding s and means zero or one
occurrences of s.

Listing 33 — putting search patternsin afile;

dogs?
cats?
ducks?
snakes?

To use thisfile to search another list of files, nameit on the command
linewiththe-f option asshownin Listing 34 instead of asearch pattern.
The egrep utility will search for al the possible strings listed in
searchfor.txt.

Listing 34:
$ egrep -f searchfor.txt *

Mo Budliong
Middleware and Data Trandation Specialist
King Computer Services (USA) © Xephon 2002

Command return values

All commands, whether they be shell scriptsor system commands, have
anexit status, called areturnval ue, whenthey finishrunning. Thereturn
value is available as the value of the shell variable $?.

When acommand isrun from thecommand line, thereturn valueisthat
of thelast command that was executed intheforeground. If we execute

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 15

apipeline, thenthevalue of $? istheexit statusof thelast commandrun
in the pipeline.

Scripts, by their nature, containmany commands, all of whichthemselves
have areturn value and each of these can be tested within the script to
determine whether certain conditions have been met. The script itself
also has an exit status, which can be the return value of the last
command executed within the script, or, aswe shall see, avaluewhich
we can generate ourselves.

SYSTEM COMMAND RETURN VALUES

When we speak of system commands, we are referring to the group of
commands described as executable (RISC System/6000) or object
modules (determined by running the file command against them).
There are also a number of shell scripts which are part of the AIX
operating system, and these are also included in this section.

System commands almost aways return a value of 0 when they are
successfully executed. A noted exception isthefalse command, which
returns avalue 1; false and its Sister true are used amost exclusively
in shell scripts to ensure that aloop continues executing.

M ost commandsat |east returntheval ue 1 whenthey areunsuccessfully
executed, but some have multiple non-zero exit statuses, these usually
indicate error conditions over and above the mere failure to execute
properly, such as you have specified an inaccessible file or given an
invalid optiontothecommand. Therearefew rulesregarding command
returnvaluesand you shouldrefer totheon-linedocumentationfor each
command to be certain of what to expect.

You should be aware that the above convention in shell programming
isthe reverse of that used in C programming. In shell programming a
value of 0 meanstrue, or successful, and anon-zero value meansfalse,
or unsuccessful.

As a smple example, the following illustrates that the cp command
returns O when it successfully copies afile:

$ cp search search.old

$ print $?

@

If, instead, we had asked cp to copy afile that does not exist, then cp

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

would return avaue of 1:

$ cpab

cp: a: A file or directory in the path name does not exist

$ print $?

1

Thereturn valuesof cp make no distinction between asyntax error and
some other error condition, like the one above where we tried to copy
afile which did not exist. You can test this by running:

$ cpabc
Usage: cp [-fhip]l [-r|-R] [--]1 src target

$ print $?
1

Even though none of thefilesarelikely to exist, the syntax check takes
precedence and returns a value 1 because of the error condition.

As a further example, the grep command returns O if it finds any
matches, 1if it doesnot find any matches, and 2if therearesyntax errors
or inaccessiblefiles. You can verify thiswith the following examples:

$ grep answer search

will produce output similar to:

read answer
case $answer in
print "search: '$answer' is not a valid choice”

and the exit status will be:

$ print $?
@

In the next example, grep returns 1, since it does not find the string
“Johann Sebastian Bach” in the file search:

$ grep "Johann Sebastian Bach" search
$ print $?
1

Finally, since the file nofile does not exist (we hope), grep returnsthe
value 2.

$ grep no_word nofile

grep: can't open nofile

$ print $?
2

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 17

The grep command return values are by no means perfect since grep
does not make adistinction between syntax errors(2) and trying to find
amatchinanon-existent file (also 2). Ideally, commands should return
different valuesfor all possible error and operating conditions, which
would makelifeeasier for shell programmers, but thisisrarely thecase.

RETURNING VALUESIN AND FROM SHELL SCRIPTS
Within scripts, two commands are used to provide return values:

* Theexit commandisusedtodefinetheexit statusof thescriptitself
when it finishes executing, either normally or abnormally because
of some error condition.

e Thereturn commandisusedwithinfunctionsto returnaparticular
valueto themain part of ascript, which isthen tested to determine
the next piece of code to be executed.

One major difference between exit and return isthat, whenreturnis
used within afunction, it merely exits the function and returns control
tothepart of the script fromwherethefunctionwascalled, whereasexit
will terminate the script execution, no matter how deeply it is nested
within a function.,

Sincethevariable$? isalwaysreset after each command, in scriptsyou
must saveitsvalueif you want to useit later in the script. For example,
if you copy afile and want to check the exit status of the cp command
later, you must save the exit status after you run cp, and before you run
another command. You could, for example, use:

STAT=$?

THE EXIT COMMAND

There are several ways that a shell script can be terminated. A shell
script will continue running until one of the following happens:

 The end-of-file is reached. This usually occurs when the last
command in the file has been executed.

e The process is killed by a signal. This can happen when, for
example, you press Ctrl C while the script is running, although
signalscan betrapped so asto ensurethat scriptsarenot terminated

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

before they have completed a normal execution.
 Anexplicit exit command is executed.

You can use the exit command within a shell script to cause the script
toterminatebeforethelast commandisreached. You may, for example,
want the script to terminateif aparticular conditionistrueand continue
otherwise,

Type the following shell script, and then execute it, first using a
filename you know to exist, and then one which does not exist:

$ vi example

#!/bin/ksh

print "Enter filename: \c"

read file

cp $file ${file}.old 2>/dev/null
STAT=$%$?

check whether cp was successful

case $STAT in

['el

print error using cp

exit

esac

print the copy was successful

If the copy is unsuccessful, the script prints an error message and
terminates, otherwise it continues. This script serves no value other
than to show the use of exit statuses and the exit command.

RETURNING PARTICULAR VALUESWITH EXIT

You can also use the exit command to make a shell script return a
particular value. Thisis useful when anumber of different conditions
can occur and you want to test which one has before proceeding. The
general form of the command is:

exit [number]

The number is optional. When used in a script, the script terminates
with an exit statusof number. If anumber isnot specified, theexit status
which the script returnsis the exit status of the last command that was
run in the script.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 19

Theexit number canbeany valueyouwish. Thenormal rangeisO- 255,
so that exit 0 isthe same asexit 256, and if number isgreater than 256,
then thisissubtracted from number to givetheexit status. For example,
exit 456 will produce an exit status of 200 (456 - 256).

Consider the following example:
$ vi myexit

print Enter '"yes" or "no" \c'
read answer

case $answer in
yes)

exit 1 ;;
no)

exit 2 ;;
*)

exit 3 ;;
esac

This shell script will return different exit values, depending on the
response entered.

Although this particular example has no useful purpose, the principle
can be used in any script to return specific values so that when myexit,
or any script likeit, is used within another script, its exit status can be
tested and the second script can then be made to execute different sets
of commands, depending on the value returned.

You should get into the habit of using exit number type commandsin
your scripts, particularly when the script can terminate because of a
variety of different error conditions. There is not a great deal of use,
though, in having asingle exit command on the last line of your script
since, if you do not specify number, the script will exit with the exit
status of the last command run. If you are certain that the script has
successfully executed at that stageyou should alwaysuseexit Otoavoid
confusion.

FUNCTION RETURN VALUES

Function return values are an exceedingly useful way of checking out
what happens when a batch of code is executed from within a script.
Like the exit command, the syntax isreturn [number], and the same

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

rulesapply if number isgreater than 255. If you do not use the optional
number, then the return value will always be the exit status of the last
command run in the function.

L et us use an updated version of the lvman command to illustrate the
use of return and exit.

#!/bin/ksh

Script name: lvman

Usage: lvman {[-v VGname]|[-p PVnamel}

HHHHHH R R R R R R
Version History

SRR R R R R R R H R R R R R R R

Function: f_dsp_usage

Displays usage messages
e
f_dsp_usage()
{
print "Usage: $(basename $0) {[-v VGname] | [-p PVname]}"
print "Where:"
print "\t-v VGname specifies a single volume group"
print "\t-p PVname specifies a single physical volume"
print "Note: Use either the -v OR -p option”
}
=
Function: f_chk_valid
Arguments: $1 - volume group or physical volume
Checks the volume group or physical volume name is valid
e mm—e e
f _chk_valid()
{
DEV=$1
1sattr -E1 $DEV >/dev/null 2>&1
#
l1sattr returns @ for valid device,
or 255 for non valid device
#
case $? in
@)
return @ ;;
*)
return 1 ;;
esac
}
e s m o o e e e e e e e e e e e e e e e e mm e mme— e

Function: f_get_vg_space
Arguments: $1 - volume group name
Gets the total and free space of the volume group

f_get_vg_space()

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 21

VG=%1

#

Get total space and free space

#

TOTAL=$(1svg $VG | grep "TOTAL PPs" | cut -f2 -d "(" |
tr " " '\t | cut -f1)

FREE=$(1svg $VG | grep "FREE PPs" | cut -f2 -d "(" |
tr " " '\t | cut -f1)

eval ${VG}_LVNUM=$(1svg -1 $VG | tail +3 | wc -1 | tr -d " ")

#

Print output

#

printf "%-2@s %-15s %-15s\n" "Volume Group" "Total Size" \
"Free Space"
printf "%-20s %-15s %-15s \n" $VG "$TOTAL MB" \

"$FREE MB"
eval print Number of LVs in $VG = "$'${VG}_LVNUM

Function: f_get_pv_space
Arguments: $1 - physical volume name
Gets the total and free space on a physical volume

3
f_get_pv_space()
{
PV=$1
#
Get total space and free space
#
TOTAL=$(1spv $PV | grep "TOTAL PPs" | cut -f2 -d "(" |
tr " " '\t | cut -fl1)
FREE=$(1spv $PV | grep "FREE PPs" | cut -f2 -d "(" |
tr " " '\t" | cut -f1)
eval ${PV}_LVNUM=$(1spv -1 $PV | tail +3 | wc -1 | tr -d " ")
#
Print output
#

printf "%-20s %-15s %-15s\n" "Physical Volume" "Total Size" \

"Free Space"
printf "%-20s %-15s %-15s \n" $PV "$TOTAL MB" \

"$FREE MB"
eval print Number of LVs on $PV = '$'${PV}_LVNUM

}

HHHH R R R R R R

Main section
HHHHHHHH

getopts :v:p: opt
case $opt in

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

V)
VG=$0PTARG
f_chk_valid $VG
case $? in
g)
f_get_vg_space $VG

1)
print $VG is not a valid volume group
exit 1

esac

p)

PV=$0PTARG

f_chk_valid $PV

case $? in

g)
f_get_pv_space $PV

1)
print $PV is not a valid physical volume
exit 2
esac
*)
f_dsp_usage
exit 3
esac

You will note that there is a new function, called f_chk_valid, which
checksthat the volume group or physical disk isavalid device; it does
this by running the Isattr command against the device name, whichis
passedinas$ltothefunction. Isattr producesoutput, either intheform
of deviceinformation or asan error message, so we have discarded this
output sincewe are only interested in the return val ue of the command,
which is either O for avalid device or 255 for an invalid one.

This function does not perform all the checks that we would like. For
example, if we enter lvman -v hdiskO, we will get unwanted errors
since, athough hdiskO isavalid device, and Isattr will thus produce
returnvalueO, itisnot avalid volumegroup. Inafuturearticleyouwill
see how this can be overcome using the if statement.

The man section now contains nested case statements where the

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 23

f_chk_valid functionis caled to determine the validity, or otherwise,
of thevolumegroup or physical volume nameentered on thecommand
line. If thefunction returnsavalue 0, then the devicenameisvalid and
the appropriate function isthen called to display the space usage. If the
function returnsavalue 1, an error message is generated and the script
exits.

Each error condition generated, including theincorrect usage message,
has been given a different exit number, which could, if desired, be
checked by any other script which callsvman. If no error conditions
are detected, the script will execute normally with exit value 0.

Tonto Kowal ski
Guru (UAE) © Xephon 2002

Communications Server failures under AlIX 4.3.3

We have recently come across a situation where both Versions 5 and 6
of the Communications Server for Al X failed to start under A1X 4.3.3,
Thefailure occurs under very specific instances. With Version 5 of the
Communication Server it happensonly if thebos.rte.libcfilesetisat the
4.3.3.17 or later level, and the snarte fileset isbelow the 5.0.4.2 level,
or below the 6.0.0.1 level for Version 6 of the Communication Server.,
If you think you may have thisissue at your shop check the /var/sna/
sna.err file; it may contain the following errors:

* Version5: Unableto start the TN Server executable snatnsrvr_mt
* Vesion 6: eror reading configuration: define tn3270 sdl _Idap.

Sincethetimeof writing, afix for thisproblem hasbeen madeavailable
for Communications Server Verson 5 (APAR 1Y 12351) and Version 6
(APAR 1Y 12677).

Systems Programmer (UK) © Xephon 2002

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

awk

INTRODUCTION

awk isaninput-driven Unix utility that can beused mainly for reporting
purposes(eg reporting input datafilevalidationerrors). That is, nothing
happens unless there are lines of input on which awk can act.

Thisinput can comefrom afile or another command. When youinvoke
theawk program, it readsthescript that you supply, checking the syntax
of your instructions. Then awk attemptsto execute theinstructionsfor
each line of input. Thereis alater version of this utility called nawk
(new awk), which offers more flow controls, functions, and a
system () function.

PROGRAMMING WITH AWK

| nput to awk

Input to an awk script can be provided in the following ways:
e From the command line.

« Fromafile.

» From the output of another command.

Example of command lineinput
Command entered:
awk "{print $1, $2}'

awk will be expecting you to type aline on the command line. Every
time you type in a line, awk will try to print two fields which are
delimited by one or more spaces, separated by comma, from the line.
The program will terminate only if you press the appropriate key to
terminate the program.

Example of input from file:

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 25

Input file, f1
Arif Zaman

Command entered:
awk '{print $1, $2}' f1

awk will read theonly lineinthefileasinput and print out Arif Zaman
and terminate.

Example of input from output of another command:
echo "Arif Zaman" | awk '{print $1,$2}'

awk will accept the output from echo as its input and print out Arif
Zaman.

INPUT SPECIFICATION

Record

A record in awk is defined as the input line, which comprises one or
more words — known to awk as fields — each of which is delimited by
blank spaces, tabs, or any other specified field separator.

Example:

Arif Zaman

Record separator

A record separator isoneor morecharactersthat areappendedtotheend
of aninput line,

By default awk looksfor anewline character asarecord separator, but
this can be changed by redefining the system variable, RS.

Example (using default record separator):

Arif Zaman
69 The Avenue
Pinner
Middlesex

HAS5 5BW

Note: the newline character is used here as arecord separator.

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Example (using redefined record separator):
Arif Zaman|69 The Avenue|Pinner|Middlesex|HA5 5BW

Note: the pipe symbol, |, is used here as a record separator.

Referencing record
Within a script, the current record can be referenced using $0.

Field

awk interprets a record as comprising one or more fields, which are
separated by spaces, tabs, or any other field separator. Thisdefault can
be changed by redefining the system variable, FS.

Field separator

A field sgparator isone or more charactersthat are appended to theend
of afield in arecord. By default, awk looks for one or more white
spaces.

Example (using default field separator):

Arif Zaman

Note: the white space characters are used here as afield separator.
Example (using redefined field separator):

Arif|Zaman

Note: the pipe symboal, |, is used here as afield separator.

Field operator

The specific field in a record can be referenced by $<numeric no>,
where $ is known as a field operator and numeric no is the field in
guestion.

Referencing field

awk alowsyoutoreferencefieldsin actionsusing thefield operator $.
This operator isfollowed by avariable that identifies the position of a

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 27

field by number. $1 referstofirst field, $2 to the secondfield, and so on.
Example (using default field separator):

Input Line
Arif Zaman 666-555-1111

awk '{print $2, $1, $3 }' will output Zaman Arif 666-555-1111

The commas that separate each argument in the print statement cause
a blank space to be output between the values.

Example (using a specified field separator):
Input line:
Arif Zaman,69 The Avenue, Pinner, Middlesex,HA5 5BW

awk command:

awk -F"," "{print $1
print $2
print $3
print $4
print $5 }'
Output:

Arif Zaman

69 The Avenue
Pinner
Middlesex

HAS5 5BW

Formatted output

Only alimited amount of formatting can be achieved with the print
command. awk offers an alternative to the print statement, printf,
which is borrowed from the C programming language.

Example:

Printing a record, right-justified by 20 characters:
echo "Arif Zaman" | awk '{printf ("%2@s\n",$@)}'
Output:

Arif Zaman

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Printing arecord, left-justified by 20 characters:
echo "Arif Zaman" | awk ‘'{printf ("%-20s\n",$0)}'
Output:

Arif Zaman

Printing fields, left-justified by 10 characters:

echo "Arif Zaman" | awk '{printf ("%-10s %-1@0s\n",$1,%$2)}'
Output:
Arif Zaman
Printing fields, right-justified by 10 characters:
echo "Arif Zaman" | awk '{printf ("%1@0s %1@s\n",$1,$2)}'
Output:

Arif Zaman
Printingfields, |eft-justified by 10 characterswithadditional formatting:
echo "Arif Zaman 02088687985" | awk '{printf ("First Name==>%-
1@slLast Name==> %-1@0sTel No==>%-1@s\n",$1,$2,$3)}
Output:
First Name==>Arif Last Name==>Zaman Tel No==>0208687985

Printing integer fields:

echo "Arif Zaman 49" | awk "{printf ("First Name==>%-1@slast
Name==> %-1@sAge==>%d\n",$1,$2,$3)}’

Output:

First Name==>Arif Last Name==>Zaman Age==>4p

Printing number fields:

echo "2.50" | awk '{printf ("Price = £%10.2f ",$1)}'
Output:
Price = £2.50

Note: the newline character, \n, must be provided exclusively to the
printf statement.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 29

SYSTEM VARIABLES

Thereareanumber of system or built-invariablesdefined in awk. awk
has two types of system variable. The first type defines values whose
default can be changed, and the second type stores valuesthat can only
be referenced.

FS (Field Separator)

FSis more precisely an input field separator. Thisis used to scan the
input line and therefore is modifiable. By default, it isaspace or atab.

Example:

 FS=\tdefines FSto be onetab.

 FS=\t+ defines FS to be one or more tab.
 FS=["\f] defines FSto any combination of * , : or atab.

OFS (Output Field Separator)

OFSisequivaentto FS, but isused to defineafield separator for output
and is a space by defauilt.

This can be changed.

NF

awk definesNF asthenumber of fieldsfor thecurrentinput record. This
variable cannot be redefined.

NR

awk definesNR asthenumber of thecurrent input record. Thisvariable
cannot be changed.

RS

awk defines RS asthe record separator. The default valueisanewline
which can be changed.

ORS
ORSisthe equivalent to RS, but used to define arecord separator for

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

an output record. The default is also a newline.

FILENAME

The variable FILENAME contains the name of the current input file,
This variable cannot be changed.

Commentsin script
All comments must start with # (hash) as in other shell scripts.

Script fileextension

awk recognizesafilewith an.awk extension to bean awk script. If the
script file has a different file extension, it must be invoked with the -f
option (eg —f script.awksource)

Program construct
An awk script has three sections, as shown below.

The code in the initialization section will be executed only once.

The code in the main body will be executed as many timesasthere are
input records.

The code in the end section will be executed only once.

INITIALIZATION SECTION

#

The initialization section is implemented using the keyword BEGIN
Code here will be executed only once

#

FUNCTION DEFINITION

#

Define any user functions here

this is a feature of nawk

#

MAIN BODY

#

main body contains any legal commands

Code here will be executed once for each Tine of input to awk
#

END SECTION
#

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 31

The end section is implemented using the keyword END
Code here will be executed only once
#

Example recctr.awk (print out the total noof input records):

BEGIN {
TOTAL_NO_RECORDS=@ # 1initialize the counter

}
#

function report_header() {

printf("Record Details\n")
printf(" \n")

}

#

#

{

TOTAL_NO_RECORDS = TOTAL_NO_RECORDS + 1 # increment the
counter for each input record read

}
#

print report header

#

NR == 1 { report_header() }
{

print NR, $80 # print out each record with record no

END {
Print TOTAL_NO_RECORDS # print out the total
}

Notes:

1 Thekey wordsBEGIN and END and opening curly brace must be
placed on the same line and there must also be an ending curly
brace.

2 All thecommandsin the main body can be put within one or more
pairs of curly braces.

VARIABLEASSIGNMENTS
Variables are assigned without declarations.

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Example (number assignment):

X = 1

Y = 2

LooP = 1

result = X + Y
result = X * Y

Example (string assignment):
NULL = ""

Example (concatenating variables):

fname = "Arif"
Tname = "Zaman"
Name = fname " " Tname

PROGRAM FLOW CONTROL

Conditional statements
The syntax of a conditional statement is:

If (expression)

actionl
else
action?
or.:
if (expression) {
actionl
action2
}
or.:
if (expression) {
actionl
action2
}
else if (expression) {
actionl
action2
}
else
actionl

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement.

33

Notes:
1 Theelseclauseisoptional.

2 |If the expression evaluates as true (non-zero), action(s) are
performed.

3 Thevariablesarereferenced using the variable name only and not
using the field operator, $.

If the variablei has been assigned avalue of 1, awk will interpret $i as
field oneand the statement * print $i’ will try and print thevalue of field
1 within current record. In order to print the value of variablei , use
print i.

For example;

If (x)
print x

If x is zero (or undefined), the print statement will not be executed.

Example:
If (avg >= 65)
grade = "Pass"
else
grade = "Fail"
LOOPING
Whileloop
The syntax is:
while (condition)
action
Example:
i=1

while (i <= 4 1}
{

print i
i++

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}

Note: the body of the loop may or may not be executed, depending on
theinitial value of i.

Doloop
For example:

i=1
do {
print i

} owhile (i <=4)

Note: the body of the loop will be executed at |east once.

For loop

The syntax is:
for (set_counter; test_counter; increment_counter)
action

Example:

Print out all the fields in current record in reverse order:

for (i = NF ; i>=1; i-)

print $1
OTHER STATEMENTS
break

The break statement breaks out of aloop such that no more iterations
of the loop are performed.

Consider the following construct:

For (i= 13 i < NFy ++i)
if fieldl == $i)
{
print fieldl, $i
break

}

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 35

A loopisset up to examine each field of the current input record. We're
interested in printing out the first field value and therefore, as soon as
$i matches fieldl, the loop isterminated by a break statement.

continue
Consider the following construct:

For (i= 1; i< NF; ++i)
if (i = 3)
continue
print i, $i

A loop is set up to examine each field of the current input record and
print them out. However, we're not interested in printing out the third
field and therefore, as soon asi isequal to 3, the continue statement is
executed to return the control to the top of the loop.

Consider the following construct:

{
read all input records from the file and
store them into an array
#

RECORD=RECORD $@ "\n"
next # read next record

}
END {
now print all read records
print RECORD
}
exit

The exit statement exits the main input loop and passes control to the
END rule, if there is one. If the END rule is not defined, or the exit
statement is used in the END rule, then the script terminates.

Theexit statement can take an expression asan argument. Thevalue of
thisexpressionwill bereturned astheexit statusof awk. If theexit status
is not supplied the exit statusisO.

ARRAY'S
An array isavariable that can be used to store a set of values.

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Thesyntax is:

Array[subscript]=value

For example:

BEGIN {
Name [@] = "Arif Zaman"
Name[2] = "Henry Paul"
#
print Name[0]
print Name[1l]

}

Using system variable NR as a subscript

NR keeps the running total of number of input records that are being
read. Therefore, wecanusethisasasubscript to storethe corresponding
record in the array.

For example:

#

body of the program
#

{

RECORD[NR] = $0 # this will store record corresponding to NR
into this array

}

Reading elementsof an array variable
Thereisaspecial looping syntax for reading all theelementsof anarray:

For (rec 1in RECORD)
print RECORD[rec]

where rec is any variable and RECORD isthe array in question.

ARRAY SYSTEM VARIABLESIN NAWK
Nawk provides system variables that are arrays.

ARGV
ARGV isan array of command-line arguments, excluding the script

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 37

itself, and any options specified with the invocation of awk. The
number of elementsin thisarray isavailablein ARGC.

The index of the first element of the array is 0 and the last is
ARGC - 1.

ARGV contains arguments that will be passed on to the script.

For example:
BEGIN {
for (ind =@ ; ind < ARGC ; ind++)
print ARGV[ind]
}
ENVIRON

ENVIRON isan array of environment variables. Each element in the
array isthevaluein the current environment and the index isthe name
of the environment variable.

Example (reading al environment variables):

BEGIN {
for (env in ENVIRON)
print ENVIRON[env]

}
Example (reading specific environment variables):

BEGIN {
print ENVIRON["DISPLAY"]
}

Note: theindex to an array e ement isthe name of the variable. Thisis
known as an associative array, which is explained below.

Example (changing environment variable):
print ENVIRON["TERM"] ==> \Vt100

Change this to Vt200:
ENVIRON[L "TERM" 1 = "Vt2@@"

Note:thischangewon’t affect the user’sactual environment; once awk
terminates, the TERM variable will have the value Vt100.

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ASSOCIATIVEARRAYS

In awk, all arrays are associative arrays. What makes an associative
array unique is that itsindex can be a string or a number.

For example:

acro ["BA"] = "British Airways"
acro ["BB"] = "Bangladesh Biman"

Execution of statement using relational operators
The relational operators are:

< Lessthan

> Greater than

<= Lessthan or equal to
>= Greater than or equal to
== Equal to

= Not equal to

~ Matches

I~ Does not match.

The syntax is:

Comparison statement { action }
Example —if arecord has five fields, then print that record:
NF ==5 { print $0 %}

Example — if field5 matches regular expression /NA/ , then print Not
Applicable for thisfield:

$5 ~ /NA/ { printf ("Not Applicable") }

Example—if NRis1, then print thereport header by making afunction
call:

NR ==1 { report_header() }

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 39

Execution of statement using Boolean operators
The Boolean operators are:

| Logica OR

&& Logica AND

The syntax is.

Example — if NRis5 and NF is 2 then print the field:

NR== 5 && NF = 2 { print $2 }
Example — if field1l isnull or field2 is null then print error missing:

$1 = "" Il $2 =="" { printf("Mandatory Fields missing") }

AWK BUILT-IN FUNCTIONS

I nteger functions

Theint() function truncates a numeric value by removing digitsto the
right of the decimal point.

Example:
print 10@/3 == > 33.333
print int (100 / 3) ==> 33

Theint () function smply truncates; it does not round up or down.
String functions:

* Index (st)—returnsposition of substring tin string sor zeroif not
present.

* Length (s) —returns length of string s.

o Split(s, a sep) —parsesstring sinto elementsof array ausing Field
separator sep; returns number of elements. If sep is not supplied,
FSisused.

o Sprintf(“fmt”,expr) — it uses the same format specification as
printf(), but the format specification is applied on a string.

o Substr(s,p,n) — returns substring of string s at beginning position

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

p up to amaximum length of n. If nisnot supplied, the rest of the
string form p is used.

Nawk functions:

o Gsub(r,st) — globally substitute s for each match of the regular
expression r inthe string t. Returnsthe number of substitutions. If
t isnot supplied, it defaults to $0 (current record).

 Match(sr) — returns either the position in s where the regular
expression r begins, or O if no occurrences are found. It sets the
valuefor RSTART and RLENGTH.

o Sub(r,st) — substitutes s for the first match of the regular
expressioninthestringt. It returns 1 if successful, O otherwise. If
t isnot supplied it defaults to $0.

Example of index ():

pos = index ("Catwalk", "walk")

The vaue of posis4:

varl="Strongman"

pos = index (varl,"man")
Thevaue of posis?.

pos = index("Bigworld", "is")
The value of pos is 0.
Example of length():

curreclen = Tlength($0)
The value of curreclen will be set to the length of the current record.
field2len = Tlength ($2)

The value of field2len will be set to the length of field two from the
current record.

Editor’s note: this article will be concluded next month.

Arif Zaman
ETL Developer (UK) © Xephon 2002

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 41

Understanding the cp, mv, and rm commands

cp, mv, AND rm COMMAND BASICS

The cp, mv, and rm commands are some of the most basic commands
used by AIX users and administrators. You have probably used these
commands (which can copy, move, rename, and remove files) as a
regular part of your activities. Theintention of thisarticleisto describe
some of the flags used with these commands to ensure that you are
getting as much as possible from them.

The cp command can copy filesand directory structures. mv can move
files and directory structures. You can also use the mv command to
rename a file, which, in essence, is telling the command processor,
“Move this file to the same directory, only cal it this’. The rm
command can remove files and directory structures.

The basic syntax of the cp, mv, and rm commands is shown below:

cp flags sourcepath targetpath
mv flags sourcepath targetpath
rm flags path

where:
« flagsisan optional flag or flags used to enhance the operation.
e sourcepathisthe path of thefilesto be copied, moved, or renamed.

e targetpath is the destination of the files to be copied, moved, or
renamed.

e pathisthe path of the files to be removed.

FLAGS FOR THE cp, mv, AND rm COMMANDS
Now let’s look at the flags for the commands.

cp command flags:

 -f—forcesacopy despite moderestrictionsthat would prohibit the
operation. For example, if thetarget fileexistsal ready andyouhave

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

no write access to it, the default behaviour of the cp command
would be to issue an error message. However, cp will force the
overwrite of thefileif the -f flag is used.

-h — copies a symbolic link. The default behaviour of the cp
command isto copy the contents of alinked fileif asymbolic link
is encountered. Using the -h flag causes the cp command to
actually copy the LINK rather than the linked file. Thiswould be
useful if you want multiple pointers to the samefile.

-i — prompts before overwriting afile. If afileto be copied exists
already in thetarget directory, specifying the -i flag will get you a
prompt before the file is overwritten.

Thiscould be useful to detect the unexpected existence of filesfor
diagnostic purposes. For example, let’s say you had a directory
with 300 filesinit. You aso have a dozen files you want to add.
Your goal istodeterminewhether any of thetwelvefilesarea ready
in the directory. If you were to specify the -i flag on the cp
command, each of any filesexisting already inthedirectory would
be indicated by a prompt. If no prompt appears, then none of the
files pre-existed in the directory.

-R — recursive copy. The -R (uppercase R) flag allows the cp
command to copy entiredirectory structuresto thetarget location.

mv command flags:

-f —forces amove or rename despite mode restrictions that would
prohibit the operation. Similar to the cp command.

- — prompts before overwriting file. If a file to be moved or
renamed existsaready inthetarget directory, specifying the-i flag
will get you a prompt before the file is overwritten.

rm command flags:

-e—displaysamessage naming each file after it has been removed
from the directory. This could be useful if the rm command is
writing to a log so you can track successful file removal for
diagnostic purposes.

-f —forces removal despite mode restrictions that would prohibit

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 43

the operation. The -f flag suppresses the prompt asking whether
you want to remove aread-only file. Thiswould be useful if you
were issuing rm commands from automated scripts.

-I — prompts before removing each specified file. Thisis useful
when using wildcard charactersin thefile specification, specialy
when attempting to remove a specific subset of files from a
directory containing many files. For example, suppose you had
hundreds of files generally named as follows:

ABC20000.TXT
ABC20010.TXT
ABC20028.TXT
ABC20038.TXT
ABC20048.TXT
ABC20050 . TXT
ABC20060.TXT

ABC90098.TXT

If you wereto enter acommand such asrm *200*.TXT, you may
findyoursalf inadvertently removingafilesuchasABC42000. TXT
which you may have wanted to keep. However, the command rm
-1 *200*.TXT would resolve the wildcard characters and prompt
you before removing each file, thus allowing you to selectively
verify each of the subset of filesfound matching the specification.

-R—recursiveremoval. The -R (uppercase R) flag adlowsthe rm
command to remove entire directory structures and all their
contents. Be careful with this command! Unlike other operating
systemsthat requireconfirmation beforedel eting completedirectory
structures, AIX will allow you to do so and give you nothing more
than your cursor back after it has completed.

SOME EXERCISES
Here are some exercises to test your knowledge of the commands.

Exerciseset-up
1 From a directory to which you have write access, enter the

following commands:

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

mkdir cp_mv_rm (to make a new directory for these exercises)
cd cp_mv_rm (cd into the directory)
mkdir recurse (to create a directory structure for recursive steps)

Create atest file called exerl by copying an existing small file or
by entering the command Is -| > exer 1.

Popul atethe exercisedirectory structure by entering thefollowing
Cp commands.

cp exerl exer2

cp exerl recurse/exer3
cp exerl recurse/exerd
cp exerl recurse/exerb

Thiswill giveyou five copies of your test fileto start the steps of
the exercise.

Exercise
Set up back-up and recovery:

Step 1 —enter cd .. to put you in the parent directory of cp_mv_rm.

Enter cp -R cp_mv_rm exersave. This will copy the exercise
directory structureinto anew directory called exersavein caseyou
need to start over.

Step 2 — in the event you need to recover the exercise directory
structure, cd to the parent of the exercise structure and enter rm -
fRcp_mv_rmtoforcedeletion of thecontentsof thedirectory and
the directory itself. Then enter cp -R exersave cp_mv_rm to
recreatetheoriginal directory structure and start the exercise over.
(Note: the steps build upon each other so be sureto start from Step
3 or you may not have the necessary filesin place to continue.)

cp -f flag:

Step 3 — cd back into cp_mv_rm to continue the exercise. Enter
chmod 444 exer 2to setthefiletoread-only. Enter |s-I to verify the
write modeif you desire.

Step 4 —enter cp exer 1 exer 2 and note the file access permissions
error displayed.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 45

o Step5—enter cp -f exer 1 exer 2 and notethereturn of your cursor.
Is-I will verify that the file copy has been forced by the -f flag and
that exer2 now hasthe same write permissionsasexerl. You have
used the -f flag to force a copy over read-only restrictions.

cp -h flag:

o Step6—enter In -sexer 1 exer6to create asymboliclink to exerl,
Usels-I to verify that exer6 isjust a pointer to exerl.

e Step 7—enter cp exer6 exer 7 and use Is-| to see that exer7 isthe
same size as exerl. It should be, because the cp command has
copied the contents of the linked file (exerl) rather than the link.

o Step 8—enter cp -h exer 6 exer 8 and usels-| to see that now you
havetwolinkstoexerl, namely exer6 and exer8. Youhaveusedthe
-h flag to copy a symbolic link.

cp -i flag:

e Step 9 —enter cp -i exer1 recurse/exer 3 and note the overwrite
prompt displayed. Enter y at the prompt to overwrite the exercise
file.ls-I recursewill verify that it hasbeen overwritten becausethe
timestamp will be later than when you originally created thefile.
You have used the -i flag to prompt before overlaying afile being
copied.

mv -f flag:

o Step 10—enter chmod 444 exer 7 to set thefileto read only. Enter
mv exer 2 exer 7 to attempt to rename afile to anamethat already
exists. Note that the overwrite prompt appears. Enter n at the
prompt to return your cursor.

o Step 11 — enter mv -f exer2 exer7. Is -l will verify that the mv
command hasrenamed exer2 to exer7. You have used the-f flag to
force arename over read-only restrictions.

mv -i flag:
e Step 12 — enter mv exer 7 exer 3 to rename thefile.
e Step 13 — enter mv -i exer 3 recurse and note that the overwrite

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

prompt appears. Enter y at the prompt to overwrite thefile. Usels
-l toverify theoverwrite. You haveused the-i flagto prompt before
overlaying afile being moved.

rm -f flag:

Step 14 — enter chmod 444 recur se/exer 3 to set the file to read-
only.

Step 15 — enter rm recur se/exer 3 and answer n at the overwrite
prompt.

Step 16 — enter rm -f recur se/exer 3. Enter Is -I recurse and note
that you have used the -f flag to force removal of afile with read-
only access.

rm -i flag:

Step 17 —enter pwd to ensureyou areinthecp_mv_rm directory.
Enter rm -i exer* and note you get a prompt for each filein the
directory. Answer n for each file. You have used the -i flag to
prompt before the removal of files.

rm -e and -R flags:

Step 18—enter cd .. to put youintheparent directory of cp_mv_rm.
Enter pwd to verify.

Step 19—thisstep will removeall thefilesyou have created inthis
exercise! Enter rm -eR ¢p_mv_rm and note that, as each fileand
directory is removed, a message to that effect is displayed. You
haveusedthe-eflagtoindicateeach object removed andthe-Rflag
toremovean entiredirectory structure. Is-l will show that the only
data left is exersave.

Step 20— if you are certain you are satisfied with your progressin
thisexercise, you may remove the exersave directory structure by
entering the command rm -R exersave.

David Chakmakian
Software Engineer (USA) © Xephon 2002

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 47

AlX news

IBM has announced new versions of its C,
C++, and FORTRAN languagesfor AlX.
IBM Cfor AIX V6.0 supportsthe latest C99
standard, 32-bit and 64-bit application
development, partial GNU C portability
support, generation of highly optimized code
for all RS/6000 processors, and new
compiler options and pragmeas.

It also includes the IBM Distributed
Debugger, to provide visual debugging of
programs running locally, remotely, or in a
client/server environment.

Meanwhile, Visual AgeC++ Professional for
AlX V6.0 getsimproved portability through
support in C++ for the OpenMP
specification, support for 32-bit and 64-bit
application development, and enhanced
templatehandlingfor faster compilationsand
the generation of smaller objects.

There sinclusion of the C for AIX compiler
at thelatest C99 standard, supportin C++for
the latest approved clarifications of the ISO
1998 C++ Standard, partid GNU C/C++
portability support, generation of highly
optimized code for all RS/6000 processors,
new compiler options and pragmas, and the
Distributed Debugger.

Finally, XL FORTRAN (XLF)forAIX V8.1
featuresfull functionality of V7.1.1, support
for the OpenMP FORTRAN API V2.0, and
support for select features of FORTRAN
2000, including allocatable components,
|[EEE Floating Point Exception Handling,
and pointer with INTENT attribute.

There’ salso support for thefull FORTRAN
95 standard and SM P programming, support
for all RS/6000 processors, new performance

enhancements, and enhanced porting
features.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software/ad.

* % %

IBM has announced Version 4.5 of its
HACMP high-availability software with
better usability and performance, easier
configuration, and additional hardware
support for Cluster 1600, pSeries, and
RS/6000 users.

The software is designed to detect system
failures and handle failover to a recovery
node gracefully, providing continuous
applicationavailability.

New functionsincludereducedfailovertime,
streamlined configuration process,
automated configuration discovery,
improved security for cluster administration,
persistent | P address support, and enhanced
WAN and X.25 support.

Among the enhanced scalability features,
there’'s easier configuration with AlIX
Enhanced Concurrent Mode, a new
application availability analysistool, tighter
integration with GPFS V1.5 Cluster file
system, monitoring andrecovery fromlossof
volume group quorum, support for multiple
applications on each network adapter, and
64-bit-capable APIs.

For further information contact your local
IBM representative.

URL: http://www-1.ibm.com/servers/aix/
news.

xephon

	Grep this
	Command return values
	Communications Server failures under AIX 4.3.3
	awk
	Understanding the cp, mv, and rm commands
	AIX news

