

© Xephon plc 2002

November 2002

85

In this issue

AIX
u

p
d

ate

3 Conditional tests
17 AIX security review
24 Understanding the at command
34 Extended Change Directory
40 System configuration listing

program
47 sysmgt.websm.apps update issues
48 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Conditional tests

THE TEST COMMAND
The test command is invaluable for testing conditions within flow
control constructs. It can produce answers to questions such as, “does
a given file exist, and is it readable?” and “is the length of this string
non-zero?”. The general form of the test command is:
test expr

The expression expr is evaluated by test, and if it is true, test
terminates with an exit status of 0. If the expression is false, it returns
a non-zero value. Also, test does not display anything on the screen
and you must check its exit status to find out whether the expression
is true or false.
Some of the more frequently used forms of the test command are
shown below. The command is very particular about spaces, so be sure
to use them only where they are shown.

FILE AND OPTION TESTS
The syntax for file and set option tests are as follows.
• test -a file

Returns 0 if file exists.
• test -b file

Returns 0 if file is a block device file.
• test -c file

Returns 0 if file is a character device file.
• test -f file

Returns 0 if file is a regular file, not a directory.
• test -d file

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Returns 0 if file is a directory.
• test -w file

Returns 0 if file is writable by the user (use -r for readable, -x for
executable).

• test -s file
Returns 0 if file exists and is not empty.

• test -u file
Returns 0 if file has the setuid bit set (use -g for setgid bit, and -k
for sticky bit).

• test -L file
Returns 0 if file is a symbolic link.

• test file1 -nt file2
Returns 0 if file1 has a date of modification more recent than that
of file2.

• test file1 -ot file2
Returns 0 if file1 has a date of modification less recent than that of
file2.

• test -o option
Returns 0 if the specified option is on. The options available are
those used with the set -o command, for example set -o vi to set the
vi editor.

You can test only a single filename at a time so that file can be only a
relative or absolute pathname and cannot contain metacharacters.
You can also use the ! operator to test the reverse of a normal value. For
example:
test ! -d file

will return a zero value if file exists, but is not a directory. There must
be a space between the ! and the following -d.

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

STRING COMPARISONS
String comparison tests are as follows.
• test string1 = string2 (or string = pattern)

Returns 0 if the strings string1 and string2 are identical (or string
and pattern are identical).

• test string1 != string2 (or string != pattern)
Returns 0 if the strings string1 and string2 are not identical (or
string and pattern are not identical).

• test string1 < string2
Returns 0 if string1 is lexically less than string2.

• test string1 > string2
Returns 0 if string1 is lexically greater than string2.

• test -z string
Returns 0 if the length of string is zero, ie the string is set to null.

• test -n string
Returns 0 if the length of string is non-zero.

You should be aware that, when you are testing the values of variables
and strings, if any has a null value, is set to ‘ ’, or contains a
metacharacter, then you will get an error message from test if you do
not enclose the variable name in double quotes.
You can try this with the following simple example:
$ unset a
$ test -z $a
/bin/ksh: test: Ø4Ø3-ØØ4 Specify a parameter with this command.
$ print $?
1

$ test -z "$a"
$ print $?
Ø

Although we have indicated that you can use test to check whether
strings come before or after each other in the dictionary order (the >

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and < operators above), in reality you will not be able to do this using
the standard test format since the shell will interpret the ‘>’ and ‘<’ as
redirection symbols and so give you an error message. This type of
comparison can be done only by using the brackets format to perform
the test (see below).
For string comparisons, you can only use the negation operator, !, with
the =, -n, and -z operators. There should be no spaces between the ! and
=, but there must be spaces between the ! and the -z or -n.

INTEGER COMPARISONS
The test command allows for the integer comparison of expressions
using the following syntax:
• test expr1 -eq expr2

Returns 0 if expr1 is equal to expr2.
• test expr1 -ne expr2

Returns 0 if expr1 is not equal to expr2.
• test expr1 -gt expr2

Returns 0 if expr1 is greater than expr2.
• test expr1 -lt expr2

Returns 0 if expr1 is less than expr2.
• test expr1 -ge expr2

Returns 0 if expr1 is greater than or equal to expr2.
• test expr1 -le expr2

Returns 0 if expr1 is less than or equal to expr2.
Both expr1 and expr2 can be variable names, or they can be expressions
which generate integer values, such as 4*3 to give the value 12, or they
can be mixtures of variables and arithmetic operators and integers,
such as $var*3 as a simple example; the syntax of these expressions
will be discussed in detail in a future article.
In the same way that we get error messages during string comparisons

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

when a variable has a null value, integer comparisons also produce the
same error messages. If you are performing integer comparisons and
the variable contains non-numeric characters, then you will get a
different error message. For example:
$ a=aa
$ test $a -eq 1
/bin/ksh: aa: Ø4Ø3-ØØ9 The specified number is not valid for this
command.

Whether you should use integer or string comparisons in determining
whether two variables are ‘equal’ is really dependent on the type of
comparison you would like to make.
For example, consider two variables a and b, where the value of a is
0123, and the value of b is 123. If these two variables are required to
be considered as text strings, then you would want to use a comparison
which would indicate that they were different. If you used a test such
as:
test "$a" = "$b" (or test $a = $b)

then this would perform a string comparison and return an exit status
of 1, showing that they were indeed different strings.
If the two variables are required to be considered as numbers, then you
would want to perform an integer comparison since they are essentially
the same number if you strip off leading zeros. The test to be performed
in this case to provide the expected result would be:
test "$a" -eq "$b" (or test $a -eq $b)

which would now return an exit status of 0, indicating that they were
identical. An alternative would have been to initially define the
variables using typeset -LZ, which would automatically strip off
leading zeros and so it would not then matter whether you performed
an integer or string comparison.
A similar problem will occur when you want to test, for example, the
relationship between ‘2’ and ‘12’. Lexically, ‘12’ comes before ‘2’,
but numerically the opposite is true.

TESTS USING [] AND [[]]
There are two other constructions that are more commonly used than

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

test and are equally suitable for file, string, and integer comparisons.
Each uses the same syntax as test, but surrounds its comparison
arguments with either [] or [[]]; each bracket, or pair of brackets, must
be surrounded by blank spaces. For example:
test -z $1

can be replaced by:
[-z $1] or [[-z $1]]

This construction is most commonly used as a test for the if command,
and various looping constructs, which will be covered in future
articles.

Differences between [] and [[]]
Although the [] and [[]] constructions can both be used to perform
tests, they cannot be used interchangeably since there are a number of
subtle differences between the two:
• Variables containing metacharacters, null, or empty – when using

[] to compare or determine the values of variables and strings, you
should always put the variable names in quotes if there is the
remotest possibility that a variable can take a null value or an empty
value, or could contain metacharacters. A test will display an error
message if it detects a syntax error, which you would get if you
used, for example, [test -z $var] and var had a null value.

By comparison, [[]] will not complain if any variable or string
takes on a null value and the variable or string has not been quoted.
It will not complain of a syntax error and will continue with the test
as if quotes had been used.

• Comparisons using redirection symbols – as we mentioned earlier,
the standard form of test does not allow the use of > and < to
compare the values of strings since this will produce error messages.
The only way this can be achieved is by testing within [[]]. If you
try the test using single brackets you will get an error message.

• Combining test expressions – as I’ll explain in my next article, the
operators used to combine test expressions -a and -o can be used
within single brackets, but not within double brackets.

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Generally speaking, the [[]] construction is preferred since it has a
greater flexibility and ignores wildcard expansion and other
metacharacters. With certain exceptions, and you will see later when
we discuss the ways in which tests can be combined that these are
purely a matter of personal preference, you should always use [[]]
rather than [].

MODIFYING THE SEARCH SCRIPT
Now that you are familiar with the if command, let us modify search
so that the output of the find command does not scroll off the screen.
#!/bin/ksh
Script name: search
Usage: search
###
Version History
Version Date Remarks
1.Ø Original Version
1.1 Catch-all case pattern added
2.Ø Modified to prevent scrolling off the screen
###
TMPFILE=/var/tmp/search.$$
#--
Function f_dsp_tmpfile
Arguments: $1 - file or string
Displays contents of temporary search file
#--
f_dsp_tmpfile()
{
 if [[! -s $TMPFILE]]
 then
 print "$1" not found
 else
 more $TMPFILE
 fi
 rm $TMPFILE
}
determine type of search the user wants
print 'Are you searching'
print 'a: For a file/directory; or'
print 'b: For a string within a file'
print 'q: Quit'
print 'Enter your choice: \c'
read answer
case $answer in
a|A) # search for a file
 print '\nWhich file are you looking for?: \c'

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 read file
 find / -name "$file" -ls > $TMPFILE 2>/dev/null
 # test if file has been found
 f_dsp_tmpfile $file
 ;;
 b|B) # search for a string within a file
 print '\nWhich file is it in?: \c'
 read file
 print 'What is the string?: \c'
 read string
 grep "$string" "$file" > $TMPFILE

 # test if string has been found
 f_dsp_tmpfile "$string"
 ;;
 q|Q)
 exit Ø
 ;;
*)
 print "search: '$answer' is not a valid choice"
 exit 1
 ;;
esac
print Good- bye

The additions to search are the redirection commands to send the
output of the find and grep commands to a temporary file, which we
have defined by the variable TMPFILE, and the function
f_dsp_tmpfile, which checks that we have some output to display;
after the output has been viewed we then remove the temporary file.
We have also added a final stanza to the case command, which allows
us to enter q to quit from the script without making any other choices.
Previously we could not do this.

EXAMPLE TO CHECK FILESYSTEM USAGE
The following example makes use of multiple if and elif statements
and is used to check the current state of filesystem usage. It uses a text
source file that contains stanzas for each of the filesystems you wish
to check. The source file is called fs_limits, sample entries of which
are shown below.
Filename: fs_limits
#
Source file for the chkfs command

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

##
There must be only one stanza for each filesystem and
stanzas must be separated by blank lines
Each stanza must contain a chk_type attribute, and either a
max_used or min_free attribute
#
chk_type can be either:
percent - checks percentage utilised (uses max_used)
bytes - checks KB of free space (uses min_free)
#
max_used: maximum percentage usage allowed
- value between 1 and 99
min_free: minimum free space required
- value in bytes * 1ØØØ
##

/:
 chk_type = percent
 max_used = 9Ø

/tmp:
 chk_type = bytes
 min_free = 8ØØØ

The stanza for each filesystem consists of three lines; the first is the
name of the filesystem followed by a colon. The second line contains
the attribute chk_type, which can take two possible values:
• percent – checks the percentage of the filesystem that has been

used.
• bytes – checks the available free space in KB.
The third line indicates the permitted threshold of the filesystem. It can
take two possible values:
• max_used – maximum filesystem percentage usage allowed. If

current usage is greater than this value then the threshold has been
exceeded. Permissible values are from 1 to 99 inclusive. This
attribute is used only by the percent chk_type attribute.

• min_free – minimum amount of free space in KB that must be
available. If current usage shows less than this amount free then the
threshold has been exceeded. This attribute is only used by the
bytes chk_type attribute.

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Our sample file contains only two filesystems, but you can enter any
number of stanzas in the file with a limitation of one per filesystem.
Scripts which extract entries from text source files can become very
complex indeed when extensive checking is performed to ensure that
the source file is in the correct format. To reduce the checking to be
done on our own source file to an acceptable level, we require that
stanzas be separated by blank lines. If this is not the case then error
messages will be generated, and our current knowledge of shell
programming would require complex and cumbersome coding to
extract the correct attribute for each filesystem when you bear in mind
the number of possible error conditions that could exist when two or
more stanzas are joined together.
The script performing the check is called chkfs, and its usage is:
chkfs filesystem_name

The script is shown below:
#!/bin/ksh
Filename: chkfs
Usage: chkfs filesystem_name
Source file: fs_limits
###
Version History
Version Date Remarks
1.Ø Original Version
###
SOURCE=/usr/local/lib/fs_limits
#---
Function: f_chk_args
Arguments: $1 - filesystem name
Checks usage and displays error messages
#---
f_chk_args()
{
 if [[$# -ne 1]]
 then
 print "Usage: $(basename $Ø) filesystem_name"
 exit 1
 fi

 FS=$1
}
#---
Function: f_chk_valid_fs

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Checks that the filesystem name is valid and mounted
#---
f_chk_valid_fs()
{
 # Is the filesystem name valid?
 lsfs $FS >/dev/null 2>&1
 if [[$? -ne Ø]]
 then
 print $FS is not a valid filesystem name
 exit 1
 fi
 # Is the filesystem mounted?
 df | tr -s ' ' | cut -d ' ' -f 7, | grep $FS >/dev/null 2>&1
 if [[$? -ne Ø]]
 then
 print $FS is not mounted
 exit 1
 fi
}
#---
Function: f_chk_source
Checks for existence of source file and filesystem entry
#---

f_chk_source()
{
 # Does the source file exist?
 if [[! -f $SOURCE]]
 then
 print $SOURCE source file does not exist
 exit 1
 fi

 # Is there a filesystem entry in the source file?
 NUM=$(grep -c ^${FS}: $SOURCE)
 if [[$NUM -eq Ø]]
 then
 print No entry for $FS in $SOURCE
 exit 1
 elif [[$NUM -gt 1]]
 then
 print Multiple entries for $FS in $SOURCE
 exit 1
 fi
}

#---
Function: f_get_limits
Get the limits for the filesystem from the source file
#---

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

f_get_limits()
{
 CHK_TYPE=$(grep -p ^$FS: $SOURCE | grep chk_type |
 tr -d ' ' | cut -d "=" -f 2,)
 if [[-z $CHK_TYPE]]
 then
 print There is no chk_type value for $FS
 print "\tin $SOURCE"
 exit 1
 fi

 if [[$CHK_TYPE = percent]]
 then
 MAXUSED=$(grep -p ^$FS: $SOURCE | grep max_used |
 tr -d ' ' | cut -d "=" -f 2,)
 if [[-z $MAXUSED]]
 then
 print There is no max_used value for $FS
 print "\tin $SOURCE"
 exit 1
 fi

 if [[$MAXUSED -lt 1]]
 then
 print max_used for $FS in $SOURCE is $MAXUSED
 print "\tValue must be from 1 to 99"
 exit 1
 fi

 if [[$MAXUSED -gt 99]]
 then
 print max_used for $FS in $SOURCE is $MAXUSED
 print "\tValue must be from 1 to 99"
 exit 1
 fi

 elif [[$CHK_TYPE = bytes]]
 then
 MINFREE=$(grep -p ^$FS: $SOURCE | grep min_free |
 tr -d ' ' | cut -d "=" -f 2,)
 if [[-z $MINFREE]]
 then
 print There is no min_free value for $FS
 print "\tin $SOURCE"
 exit 1
 fi
 if [[$MINFREE -lt 1]]
 then
 print min_free for $FS in $SOURCE is $MINFREE KB

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 print "\tValue must be greater than or equal to 1 KB"
 exit 1
 fi
 else
 print chk_type for $FS in $SOURCE is $CHK_TYPE
 print "\tIt should be percent or bytes"
 exit 1
 fi
}
#---
Function: f_get_fs_usage
Get the current usage
#---
f_get_fs_usage()
{
 if [[$CHK_TYPE = percent]]
 then
 USED=$(df -k $FS | tail +2 | tr -s ' ' |
 cut -d ' ' -f 4, | tr -d "%")
 if [[$USED -gt $MAXUSED]]
 then
 print $FS has exceeded its threshold
 print "\t${USED}% used - threshold ${MAXUSED}%"
 fi
 else
 FREE=$(df -k $FS | tail +2 | tr -s ' ' |
 cut -d ' ' -f 3,)
 if [[$FREE -lt $MINFREE]]
 then
 print $FS has exceeded its threshold
 print "\t${FREE} KB free - threshold \
${MINFREE} KB"
 fi
 fi
}
##
Main section
##
f_chk_args $* # Check arguments
f_chk_valid_fs # Valid filesystem?
f_chk_source # Check the source file
f_get_limits # Get limits from source
f_get_fs_usage # Get current usage

As with many scripts, the majority of code tests for error conditions,
and so the first function (f_chk_args) checks that there is a single
command line argument and prints an error message if this is not the
case. If the filesystem is valid then $1 is set to the FS variable, which
is then used throughout the script.

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

We then check that the command line argument is a valid filesystem
name, and that the filesystem is mounted (f_chk_valid_fs). The cut
command uses spaces for field separators, but, since the df command
output contains multiple spaces, we have piped this output into tr -s
to squeeze out multiple occurrences of the space. Only then can we be
certain of extracting the filesystem name from field number seven.
Next we check that there is a source file and that there is just a single
entry for the filesystem. You will see that the grep command counts
(-c option) the number of times that the filesystem name occurs in the
file. We use the pattern ̂ ${FS}: to search from the start of a line up to
the first colon so that we can exclude characters matching our
filesystem name, which may also be embedded within another
filesystem. For example, ‘^/usr:’ will not match ‘^/usr/local:’,
whereas ‘^/usr’ would.
Now that we are certain the filesystem exists, and is mounted, we
extract the threshold limits from the source file (f_get_limits). The
function determines the chk_type value, the associated threshold
(free space or percent used), and the validity of the threshold. We have
used grep -p to extract the whole filesystem stanza, and so stanzas in
the source file must be separated by blank lines.
Finally, after all the error checking, we determine the current filesystem
usage (f_get_fs_usage) and compare this with the threshold to see
whether it has been exceeded.
You will note that we have used exit 1 when the script cannot complete
because of some error condition. We could have used a different exit
status for each error, but since the script produces a message each time
it exits, and the script is unlikely to be called by any other script, we
do not need to do this.
The script as it currently stands takes only a single filesystem name as
an argument. This is not particularly useful since you would normally
want to check the usage of all filesystems, but using this script you
would have to execute it multiple times, each time with a different
filesystem name. You will see in a future article how we can check
filesystem usage for all entries in our source file using a single
command.
A script like this, and we are talking about the version which would

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

check multiple filesystems, would probably be run as a cron job, say
every 15 minutes. This on its own is not a great deal of use since you
would have to check root’s mail on a regular basis since this is where
all output from the script would then go when run as a cron job; you
may as well run the script from the command line in this case. For the
script to really prove useful, you would need additional functions to,
say, send a Lotus Notes message to selected users when a threshold had
been breached.
We could, of course, just use the df command to check the usage
statistics for all our filesystems, so why would we need the script?
Filesystems can often fill up without warning, particularly when error
conditions write continuous entries to logs. Some filesystems fill up
on a gradual basis, and then either the system crashes or an application
refuses to respond before this is spotted. To ensure that your system
keeps running, you would probably have to run df very frequently,
which may not be administratively possible or desirable. By automating
the running of the script, and assuming you have some notification
method for reporting threshold breaches, then you could remove this
onerous task.
Tonto Kowalski
Guru (UAE) © Xephon 2002

AIX security review

In Issue 81 of AIX Update (July 2002) we reviewed some of the
security exposures that affected AIX between February 2001 and
March 2002 (A review of recent AIX security exposures). As a
supplement to this article, we will review some of the vulnerabilities
that have been exposed between June and July 2002.
Unlike the previous review there have been no exposures recorded that
are a direct result of bugs in the core AIX operating system code. The
vulnerabilities are general Unix security issues (such as DNS, OpenSSH,
and Linux) that can have an impact on AIX in some circumstances.
Because these are sometimes tangential to AIX, their security is often
overlooked, but they can provide a back door into a system. We

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

consistently find that this is an area of weakness that many organizations
overlook. As before, the exploits and vulnerabilities are reviewed in
chronological order of discovery, beginning with the most recent.

UNIX SECURITY EXPOSURES
The following vulnerabilities have been discovered and recorded
between June and July 2002.

Vulnerabilities in CDE ToolTalk
In early July 2002, two vulnerabilities were reported by Core Security
Technologies in systems running Common Desktop Environment
(CDE) ToolTalk RPC database server. The first vulnerability could
allow a remote attacker to delete files, cause a denial of service, or
execute arbitrary code. The second vulnerability could allow a local
attacker to overwrite files with alternative content.
The Common Desktop Environment (CDE) is an integrated GUI that
runs on Unix operating systems including AIX. It is a message
brokering system that allows applications to communicate with each
other across hosts and platforms. The ToolTalk RPC database server,
rpc.ttdbserverd, manages communication between ToolTalk
applications.
The vulnerabilities discovered are:
• The CDE ToolTalk RPC database server (rpc.ttdbserverd) does not

adequately validate file descriptor arguments to _TT_ISCLOSE().
Because of this, a remote attacker could overwrite certain locations
in memory with zeros. The attacker could then use this exposure to
delete any file that is accessible from the ToolTalk RPC database
server. Because the server typically runs with root privileges, any
file on a vulnerable system could be deleted. Overwriting memory
or deleting files could result in a denial-of-service. It may also be
possible to execute arbitrary code and commands.

• The CDE ToolTalk RPC database server (rpc.ttdbserverd) does not
validate file operations properly. Therefore, it is unable to ensure
that the target of a file write operation is a valid file and not a
symbolic link. Because of this vulnerability, it is possible for a local
attacker to overwrite any file that is accessible by the ToolTalk RPC

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

database server. Typically, the server runs with root privileges, so
any file on a vulnerable system could be overwritten. Obviously,
overwriting root-owned files could lead to privilege escalation or
a denial-of-service attack.

The CDE desktop product shipped with AIX is vulnerable to both
these issues. This affects AIX Releases 4.3.3 and 5.1. There are
APARs available for AIX 4.3.3 (IY32368) and AIX 5.1 (IY32370).
If there is a delay in deploying the APARs, it is advisable to disable the
ToolTalk RPC database service. The program number for the ToolTalk
RPC database server is 100083. Alternatively, you could use a firewall
or other packet-filtering technology to block the appropriate network
ports. Remember that blocking ports at a network perimeter does not
protect from attacks that originate from within the internal network.

OpenSSH exposures in challenge response handling
In late June 2002, it became clear that there were at least two
vulnerabilities in OpenSSH challenge response handling. The exposures
affect OpenSSH Versions 2.3.1p1 to 3.3. They may allow a remote
intruder to execute arbitrary code as the user running sshd (often root).
The first vulnerability affects OpenSSH Versions 2.9.9 through 3.3
that have the challenge response option enabled and that use SKEY or
BSD_AUTH authentication. The second vulnerability affects PAM
modules using interactive keyboard authentication. This applies to
OpenSSH Versions 2.3.1p1 to 3.3, regardless of the challenge response
option setting. Additionally, a number of other possible security
problems have been corrected in OpenSSH Version 3.4.
• The first exposure is an integer overflow in the handling of the

number of responses received during challenge response
authentication. If the challenge response configuration option is
set to yes and the system is using SKEY or BSD_AUTH
authentication, then a remote intruder may be able to exploit the
vulnerability to execute arbitrary code. This vulnerability is present
in versions of OpenSSH 2.9.9 to 3.3. A hack exploiting this
vulnerability is apparently available.

• The second vulnerability is a buffer overflow involving the number
of responses received during challenge response authentication.

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Regardless of the setting of the challenge response configuration
option, systems using PAM modules that use interactive keyboard
authentication (PAMAuthenticationViaKbdInt) may be vulnerable
to the remote execution of code. A remote attacker can execute
code with the privileges of the user running the sshd (which is often
root). These vulnerabilities may also be used to cause a denial of
service.

Both of these vulnerabilities exploit features present only in Version
2 of the SSH protocol. AIX does not ship with OpenSSH; however,
OpenSSH is available for installation on AIX using the Linux Affinity
Toolkit. The versions included on the CD and Web site containing the
Toolkit are vulnerable to the exposures. Version 3.4 can be downloaded
from http://www6.software.ibm.com/dl/aixtbx/aixtbx-p
Some alternative workarounds have been proposed:
• Disable SSH protocol Version 2. Because both exposures are

present in protocol Version 2 only, disabling Version 2 of the
protocol will prevent both vulnerabilities from being exploited.
This can be accomplished by adding the following line to /etc/ssh/
sshd_config:

 Protocol 1

Remember that disabling protocol Version 2 could prevent the sshd
daemon from accepting connections in some situations. It may be
advisable to disable the challenge response authentication and/or
use the interactive keyboard to disable PAM authentication.

• Disable challenge response authentication. With OpenSSH
Versions 2.9 and above, it is possible to disable the vulnerable
portion of the code by setting the
‘ChallengeResponseAuthentication’ configuration option to ‘no’
in their sshd configuration file. Typically, this can be done by
including the following line in /etc/ssh/sshd_config:
ChallengeResponseAuthentication no

This should prevent the first vulnerability from being exploited if
SKEY or BSD_AUTH authentication is used. However, it will not
prevent the possible exploitation of the vulnerability using the
PAM interactive keyboard authentication.

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Use the interactive keyboard to disable PAM authentication. For
OpenSSH Version 2.9 and above, it is possible to disable the
vulnerable portion of the code affecting the PAM authentication
issue by setting the ‘PAMAuthenticationViaKbdInt’ configuration
option to ‘no’ in the sshd configuration file. Adding the following
line to /etc/ssh/sshd_config should achieve this goal:
PAMAuthenticationViaKbdInt no

This workaround should prevent the second vulnerability from
being exploited if PAM interactive keyboard authentication is
used. It will not prevent the possible exploitation of the vulnerability
using SKEY or BSD_AUTH authentication.

• Disable both options in older versions of OpenSSH. In the older
versions of OpenSSH between 2.3.1p1 and 2.9, system
administrators will need to disable the following options in the ssh
configuration file:
KbdInteractiveAuthentication no
ChallengeResponseAuthentication no

Disabling both options should prevent the exploitation of the
vulnerabilities.

Apache Web Server chunk handling vulnerability
The Apache Web server includes support for chunk-encoded data
conforming to the HTTP 1.1 standard (see RFC2616). In July 2002 it
became apparent that the Apache Web server contains a vulnerability
in its handling of certain chunk-encoded HTTP requests. This could
allow remote attackers to execute arbitrary code.
This vulnerability is present by default in configurations of Apache
Web server Versions 1.2.2 and above, 1.3 to 1.3.24, and Versions 2.0
to 2.0.36. The impact of this vulnerability depends on the software
version.
For example, with Apache Versions 1.2.2 to 1.3.24 inclusive, this
vulnerability could allow a remote attacker to execute arbitrary code.
Hacks are currently available on the Web that allow the execution of
arbitrary code.
For Apache Versions 2.0 to 2.0.36 inclusive, the condition causing the

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

vulnerability is correctly detected and causes the child process to exit.
Depending on a variety of factors, including the threading model
supported by the vulnerable system, this may lead to a denial-of-
service attack against the Apache Web server.
The principal means of combating this vulnerability is to upgrade to
the latest version of Apache. The Apache Software Foundation has
released two new versions of Apache that correct this vulnerability. It
is possible to prevent the vulnerability from being exploited by
upgrading to Apache httpd Version 1.3.26 or 2.0.39. These can be
found at the Apache Web site at the following URL, http://
www.apache.org/dist/httpd/.
IBM makes the Apache Server available for AIX as a software package
in the Linux Affinity Toolkit. This package is included on the AIX
Toolbox for Linux Applications CD, and can be downloaded via the
IBM Linux Affinity Web site. The currently available version of
Apache Server is susceptible to the vulnerability described here. An
updated and patched version of Apache Server (Version 1.3.23) is
available from the following URL, http://www-1.ibm.com/servers/
aix/products/aixos/linux/download.html.
Note: remember to check whether you are using Apache in any other
locations in your shop. Linux products are becoming surprisingly
insidious in enterprises because of their inherent reliability.
Furthermore, Apache can also be found integrated with other software.
For example, IBM’s HTTP Server, which is bundled with WebSphere,
is also based on the Apache server. Therefore, it is also vulnerable to
the current chunk handling exposure. This should be patched soon.
IBM’s Lotus software division does not use Apache as a code base.

Buffer overflow in DNS resolver libraries
In June 2002, it became clear that DNS resolver libraries were
vulnerable to buffer overflow in certain circumstances. Buffer overflows
have been a favourite means of disruption for malicious hackers.
The DNS protocol provides name, address, and other information
about Internet Protocol (IP) networks and devices. In order to access
DNS information, a network application needs to use a resolver. This
performs DNS queries on its behalf. The Resolver functionality is

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

usually implemented in libraries that are included with operating
systems, such as AIX.
All applications that use the vulnerable implementations of the
Domain Name System (DNS) resolver libraries are affected. These
include, but are not limited to: the Internet Software Consortium (ISC)
Berkeley Internet Name Domain (BIND) DNS resolver library (libbind),
the Berkeley Software Distribution (BSD) DNS resolver library (libc),
and the GNU DNS resolver library (glibc).
Both BSD (libc) and ISC (libbind) resolver libraries share a common
code base and are exposed to this problem; any DNS resolver
implementation that derives code from either of these libraries could
also be vulnerable. Network applications that make use of vulnerable
resolver libraries are probably affected, therefore this problem is not
limited to DNS or BIND servers, but is quite a widespread issue. The
DNS resolver code supplied in AIX 4.3 and 5.1 is vulnerable.
Using this vulnerability, a malicious user could exploit operating
systems and applications that use vulnerable DNS resolver libraries to
execute arbitrary code or cause a denial of service. Any code executed
by the attacker would run with the privileges of the process that calls
the vulnerable resolver function.
It is possible for a malicious hacker to use the target organization’s
network services to make a DNS request to a DNS server under the
control of the attacker. This would allow the attacker to remotely
exploit this vulnerability.
One workaround that has been suggested involves the use of a local
cacheing DNS server. If you have BIND 9 it may be possible to use a
local cacheing DNS server that reconstructs DNS responses to prevent
malicious responses from reaching systems using vulnerable DNS
resolver libraries. BIND 9 reconstructs responses in this way, with the
exception of forwarded dynamic DNS update messages. However
BIND 8 does not reconstruct all responses; therefore this workaround
may not be effective when using BIND 8 as a cacheing DNS server.
IBM has provided the following APARs for AIX 4.3 (IY32719) and
AIX 5.1 (IY32746). Remember that the APARs and other fixes for the
vulnerabilities mentioned in this article can be obtained from the
following URL, http://techsupport.services.ibm.com/rs6k/fixdb.html.

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSIONS
All of the vulnerabilities recorded in this period by CERT, IBM’s ERS,
Core Security Technologies, and other security organizations originate
outside of the AIX code base. This is good news for the majority of
users. However, the exposures still mean that systems administrators
need to check whether they have the vulnerable Unix applications
running in their shops.
Many of the more recent vulnerabilities that have been shown to affect
AIX originate in the Linux Affinity Toolkit. In March 2002, we saw
the bug in the zlib Compression Library. In June, vulnerabilities were
exposed in the OpenSSH challenge response handling, and in July the
Apache Web Server chunk handling vulnerability was revealed. There
are two principal reasons why so many bugs are coming out of the
Linux Affinity Toolkit. First, there are quite a number of packages
included in the Toolkit, but, most importantly, the Linux community
is extremely efficient at locating and patching software vulnerabilities.
This is good news for end users in the long run.
However, what this means for end users is, if you have the Linux
Affinity Toolkit in your shop, make sure that it is patched to the
appropriate level – and keep the patches up to date.
Systems Programmer (UK) © Xephon 2002

Understanding the at command

AT COMMAND BASICS
Have you ever wanted to have a simple command that would remind
you of important events such as meetings, anniversaries, luncheon
dates, etc?
What about having a command that can schedule the execution of one
of your shell scripts during non-peak system usage times?
The at command can help you with these tasks. This command takes
as input one or more strings of commands, or a pointer to a script or

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

list of commands, and executes the commands at a time specified by
the user.
For example, suppose you wanted to run the calendar command at
10:00pm and mail the results to a particular user. To do that, you would
enter the following commands:
 at 22:ØØ
 calendar | mail psmith
 CNTL+D

The first line is the at command and the time parameter, followed by
the desired command string to be run, and finally CNTL+D to end
input into the at command.
Now suppose you wanted to send a reminder to yourself about an
anniversary in five weeks.
 at 3 PM next month
 echo Anniversary next week! | mail rjones
 CNTL+D

The results would be as follows. At 3:00pm on the current date (or the
date after, if issued past 3pm on the current date) of the month
following the current month, mail would be sent to user rjones with the
string “Anniversary next week!” contained within.
The basic syntax of the at command is shown below:
• Scheduling a job:

at SHELL QUEUE flags TIME

• Listing jobs:
at flags JOBS QUEUE
at flags USER

• Removing jobs:
at flags JOBS
at flags USER

where:
• SHELL – optional flag for the shell in which the command is to run,

for example the C, Korn, or Bourne shells.
• QUEUE – optional flag for the queue to which the command is to

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

belong, for example, the at, batch, KSH, or CSH queues.
• TIME – the time and/or date specification the job is to run.
• JOBS – the alphanumeric identifier for the job or jobs.
• USER – the user for which the jobs are scheduled.
• flags – other flags meaningful to the operation.

RUNNING THE AT COMMAND
There are two ways you can run the at command – the stanza method
and the command line method.

Stanza method
The stanza method allows you to give the at command a list of
commands it is to execute when the scheduled job is set to run.
To use this method, specify the time parameter after the at command
and press Enter. This will give you a blank line with your cursor. You
are now in data entry mode for the at command. Enter one or more
commands you would like the at command to schedule for this job.
After entering the last command, press CNTL+D to end data entry and
to return to the command prompt. You have now scheduled an at job.
The names of the commands you have specified must have the
executable flag set in the permissions, but need not be in the current
directory:

at TIME
command 1
command 2
command 3
CNTL+D

For example, let’s say you have a file called FormatDoc that supplies
parameters in order to perform formatting of a document. Since each
formatting process may take over an hour, you want to schedule the
activity during non-peak system usage:

at 3:ØØ AM
FormatDoc /home/psmith/docs/book1.source
FormatDoc /home/psmith/docs/book2.source
echo book1 and book2 formatted | mail psmith

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

echo book1 and book2 formatted | mail teamlead
CNTL+D

This sample would perform the formatting operation on the two book
source files, then send the string ‘book1 and book2 formatted’ via AIX
mail to the two users psmith and teamlead beginning at 3:00 the
following morning.

Command line method
The other method for scheduling at jobs is to use the command line
method. In this case, the entire job is scheduled by typing one line from
a command prompt. There is no need for the CNTL+D key sequence.
This method is useful if you do not need to execute more than one
command or if the list of commands can be executed from a single file.
Unlike the stanza method, this method does not require the name of the
file to be executable. The name would be considered a list of commands
for the at job, even if the file contains only one command. If the
command specified using the command line method is not in the
current directory, you must specify a path. Also, there can be no
arguments entered for the command using this method:

at TIME command

Each of the following three examples will run the list of commands in
the file called ‘compile’ at 1:59am:
1 Type the name of the command list after the TIME parameter:

at 1:59 am compile

2 Direct the name of the command list into the at command:
at 1:59 am <compile

3 Use the -f file parameter of the at command to specify the
command list:

at -f compile 1:59 am

FLAGS FOR THE AT COMMAND
The following flags extend the usefulness of the at command:
• -c – tells the at command that the scheduled job is to be run in the

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CSH (C shell) environment.
• -f file – file to be used as input.
• -F – does not display warning message prior to the deletion of a job

when used with the -r flag. Useful for deleting scheduled jobs in
automated script files.

• -i – displays a prompt before deleting a job when used with the
-r flag. Useful for selectively deleting jobs from a queue.

• -k – tells the at command that the scheduled job is to be run in the
KSH (Korn shell) environment.

• -l – displays a list of scheduled jobs. A root user would see all jobs.
In that case, you can pipe the output into the grep filter to display
only the jobs for a particular user.

• -m – mails successful execution message to user.
• -n user – displays the number of jobs in queue for the specified user.
• -o – displays scheduled jobs in chronological order when used with

the -l flag. The default is to display in the order in which the
schedules entered the system.

• -q a – tells the at command to schedule the job to the at queue,
which is the default queue. Displays jobs queued to the at queue
when used with the -l flag.

• -q b – tells the at command to schedule the job to the batch queue.
Displays jobs queued to the batch queue when used with the -l flag.

• -q e – tells the at command to schedule the job to the KSH queue.
Displays jobs queued to the KSH queue when used with the -l flag.

• -q f – tells the at command to schedule the job to the CSH queue.
Displays jobs queued to the CSH queue when used with the -l flag.

• -r job – removes the specified scheduled job. The job parameter is
not needed when used with the -u flag.

• -s – tells the at command that the scheduled job is to be run in the
BSH (Bourne shell) environment.

• -t DATE – schedules the job to run at a particular time/date.

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• -u USER – tells the at command the user for whom jobs are to be
deleted when used with the -r flag.

TELLING THE AT COMMAND WHEN TO SCHEDULE A JOB
The time is specified using either the -t date flag or by Time/Day/
Increment values. If you try to schedule two jobs to run at the exact
same time, the at command will increment each duplicated scheduled
time to be one second later than the previously scheduled job. In other
words, if you scheduled three jobs to begin at 3:00pm on the same date,
at would schedule them as follows:
user.1Ø2555ØØØØ.a Mon Jul 1 15:ØØ:ØØ EDT 2ØØ2
user.1Ø2555ØØØ1.a Mon Jul 1 15:ØØ:Ø1 EDT 2ØØ2
user.1Ø2555ØØØ2.a Mon Jul 1 15:ØØ:Ø2 EDT 2ØØ2

SPECIFYING THE TIME USING THE -t DATE FLAG
The format of the date parameter of the -t flag is:

YYYYMMDDHHMM.SS
where:
• YYYY – optional year, for example, 2003. You can leave off the

first two digits. In that case, 03 would be assumed to be 2003. The
default is the current year.

• MMDD – month and day. For example 0531 would be 31 May.
• HHMM.SS – hours, minutes, and, optionally, seconds. This

specification is based on a 24-hour clock. For example 1730 would
be 5:30pm. The default value for seconds is 00.
For example:

at -t 2ØØ3Ø531173Ø.59

would execute 59 seconds after 5:30pm on 31 May 2003.

SPECIFYING THE TIME USING THE TIME/DAY/INCREMENT VALUES
You can also tell the at command when to schedule a job using time,
day, and increment parameters.

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

For example:
at 5:ØØ pm May 9, 2ØØ3 +2 hours

would execute at 7:00pm on 9 May 2003. In this case, 5:00pm is the
time, 9 May 2003 is the day, and +2 hours is the increment added to
the time value. Let’s look at the individual parameters.

The time parameter
The time parameter can be specified as follows:
• H – hour. 3 would be 3:00am, 9pm would be 9:00pm.
• HH – hour. 11 would be 11:00am, 16 would be 4:00pm.
• HHMM – hour and minutes. 0945 would be 9:45am, 1015pm

would be 10:15pm.
A colon (:) can also be used between the hours and minutes as follows:
• H:MM – hour (between 0 and 9) and minutes. 1:30 would be

1:30am, 9:20pm would be 9:20pm.
• HH:MM – hour (between 00 and 12 with suffix or between 00 and

23) and minutes. 04:00 would be 4:00am; 03:10pm or 15:10 would
be 3:10pm.

• noon – 12:00pm. at noon fri (at N friday) would cause the
command to run at 12:00 noon on Friday.

• midnight – 12:00am. at midnight December 25 (at M Dec 25)
would cause the command to run at 12:00 midnight on 25
December.

• now – immediately, or at this time on another date. at now would
run the command immediately following the depression of the
Enter key. at now tomorrow would run the command in 24 hours’
time.

• A – am. 5 a or 5 A would be 5:00am.
• P – pm. 2 p or 2 P would be 2:00pm.
Note: for the hour specifications below, a 24-hour clock is assumed

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

(HH in the range of 13 - 23, unless a specific suffix is added). Suffixes
can be expressed in either upper or lower case.

The day parameter
The day parameter is optional and can be expressed (in mixed case) as
a month and day; a month, day, and year; just the day of the week; or
even the words today or tomorrow, as follows:
 June 4 June 4
 jun 4

 jun 4, 2ØØ3 June 4, 2ØØ3
 June 4, Ø3

 We Wednesday
 wed
 Wed
 Wednesday

 today Today's date

 tomorrow Tomorrow's date

The increment parameter
The increment parameter is optional and adds a value to any other
specified timing parameter. Increment can be the plus sign (+), then a
number, followed by one of the words: minutes, hours, days, weeks,
months, or years. For example:
• +3 minutes – job will begin after three minutes following any other

specified parameter. For example, at now +3 minutes will run in
three minutes following the depression of the Enter key.

• +2 hours – job will begin two hours following any other specified
parameter. For example, at now tomorrow +2 hours will run the
command in 26 hours’ time.

• +7 days – job will begin one week following any other specified
parameter. Equivalent to +1 week. For example, at 3 PM +7 days
will run the command in seven days’ time at 3:00pm.

Increment can also be the word ‘next’ followed by minute, hour, day,
week, month, or year:

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• next day – job will begin one day following any other specified
parameter. For example, at noon next day will run the command at
12:00 noon on the next calendar day.

• next week – job will begin one week following any other specified
parameter. For example, at now next week will run the command
at the current hour, seven days from the current date.

Note, be very careful with the increment value. If the time specified
has passed for the current day when you enter the timing parameters,
the command will be scheduled beginning with the following day, and
the increment will be added to that value. Therefore, be certain to look
at the resulting scheduled time carefully after entering at command
timing parameters to ensure that you will get the desired results.

DISPLAYING JOBS
There are two views of scheduled at jobs. The first is a list of the jobs
with their corresponding scheduled dates and times. The other view is
simply a numeric indication of the number of jobs scheduled for a user.
Examples:
• at -l would display all jobs for a non-root userid. A root user would

see all jobs for all users.
• at -l -o would display all jobs in chronological order.
• at -l -q f would display all jobs for the user queued to the C shell

queue.
• at -n psmith would display the quantity of scheduled jobs for user

psmith.

REMOVING JOBS
Jobs can be deleted at the individual job level or by all jobs belonging
to a user.
Examples:
• at -r psmith.1025550000.a would delete that particular job if you

are user psmith or the root user.

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• at -r -i -u psmith would allow selective removal of a job or jobs.
Each scheduled job for user psmith would display with a prompt
whether or not to delete. Once the desired job is located, enter ‘yes’
to delete. Then you can press Enter to skip through the remaining
jobs or just press CNTL+C.

MAIL
The at command uses AIX mail to the issuing user in the following
ways:
1 If there is an error when the job is run.
2 If there is output produced by the job that would normally go to the

display, unless redirected.
3 If the -m flag is specified, in which case the at command will send

mail to the user indicating the job was successfully run. This is
useful if you need to keep a log of important jobs or otherwise need
to keep track of job results other than 1 and 2 above.

Figure1: Who can use the at command?

file Who can use at command?
exists

at.allow Only users whose login name is in
only at.allow list

at.deny Any user whose login name is NOT
only in at.deny, unless list is empty,

in which case, all users allowed

both Only users whose login name is in
at.allow at.allow, and excludes those whose
& at.deny names are in at.deny

neither Root user only

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

USER ACCESS TO THE AT COMMAND
There are two administrative files the root user can use to control
which users (including the root user) can execute the at command.
These are the /var/adm/cron/at.allow and /var/adm/cron/at.deny files.
The files can contain one user login name per line. There are four
possible conditions for the two files, and user access depends on the
presence or lack thereof of the two files and whose names appear in the
files. The four conditions are: only the access list is present; only the
deny list is present; both lists are present; or neither list is present. To
learn whether a user would have access to the at command, consult
Figure 1.
David Chakmakian
Programmer (USA) © Xephon 2002

Extended Change Directory

INTRODUCTION
When working in a development environment, you may have a great
number of subdirectories under your $HOME directory, and sometimes
these subdirectories can be deeply nested. In these circumstances,
navigating from one directory to another can be quite cumbersome.
ECD (extended change directory) is a shell script that lets you switch
interactively to any subdirectory under the $HOME directory. The
shell script, once executed, presents the user with a list of all
subdirectories prefixed with a unique number and then switches to the
directory which is selected by the user using the number associated
with that subdirectory.

ECD
#! /bin/echo Usage:. ./ecd
###
Name : ecd (extended change directory)

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Overview : The script displays a list of all subdirectories under
$HOME and then switches to a specific directory,
selected from the list, by user.
Notes : 1. The script must be executed in current shell as
follows:
. cde
2. The script contains the following functions:
o main
o ProcessExit
o MoveCursor
o DisplayMessage
o HandleInterrupt
o InitialiseVariables
o PrepareDirectoryListing
o DisplayDirectoryList
o ChangeToTargetDirectory
###
Name : InitialiseVariables
Overview : The function initializes all working variables.
Notes :
###
InitialiseVariables ()
{
#
SCRIPT_NAME="ecd"
save current directory
CURDIR='pwd'
terminal capabilities
BOLDON='tput smso'
BOLDOFF='tput rmso'
#
ESC="\ØØ33["
ERROR="${SCRIPT_NAME}:ERROR:"
INFO="${SCRIPT_NAME}:INFO:"
fuction return values
TRUE=Ø
FALSE=1
exit status
SEC=Ø
FEC=1
sleep duration
SLEEP_DURATION=1
define signals
SIGINT=2 ; export SIGINT # ctrl-c command
SIGTERM=15 ; export SIGTERM # kill command
SIGTSTP=18 ; export SIGTSTP # ctrl-z command
messages
INTERRUPT="Program Interrupted\; Quitting early"
WORKING="Working"
INVALID_ENTRY="Invalid Entry"

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

OS_ERROR="\${ERR_MSG}"
DIR_NOT_CHANGED="Failed to change to \${TARGET_DIR} directory"
temporary files
export TEMP_FILE_1="/tmp/${SCRIPT_NAME}_$$_1.tmp"
export TEMP_FILE_2="/tmp/${SCRIPT_NAME}_$$_2.tmp"
export DIR_LIST="/tmp/${SCRIPT_NAME}_$$_3.dir"
}
###
Name : HandleInterrupt
Overview : The function calls ProcessExit.
Notes :
###
HandleInterrupt ()
{
DisplayMessage I "${INTERRUPT}" N
make sure to be in current directory
cd ${CURDIR}
ProcessExit $FEC
}
###
Name : MoveCursor
Input : Y and X coordinates
Returns : None
Overview : It moves the cursor to the required location (Y,X).
Notes :
###
MoveCursor ()
{
YCOR=$1
XCOR=$2
echo "${ESC}${YCOR};${XCOR}H"
}
###
Name : DisplayMessage
Overview : The function displays message
Input : 1. Message type (E = Error, I = Informative)
2. Error Code as defined in DefineMessages ().
3. Message to be acknowledged flag (Y=yes N=no)
Notes :
###
DisplayMessage ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
MESSAGE_TYPE=$1
MESSAGE_TEXT='eval echo $2'
ACKNOWLEDGE_FLAG="$3"
default the message acknowledge flag
if ["${ACKNOWLEDGE_FLAG}" = ""]
then
 ACKNOWLEDGE_FLAG="Y"

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

fi
#clear
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then
 if ["${ACKNOWLEDGE_FLAG}" = "Y"]
 then
 echo "${BOLDON}${ERROR}${MESSAGE_TEXT}${BOLDOFF}\c"
 else
 echo "${BOLDON}${ERROR}${MESSAGE_TEXT}...${BOLDOFF}\c"
 fi
else
 if ["${ACKNOWLEDGE_FLAG}" = "Y"]
 then
 echo "${BOLDON}${INFO}${MESSAGE_TEXT}${BOLDOFF}\c"
 else
 echo "${BOLDON}${INFO}${MESSAGE_TEXT}...${BOLDOFF}\c"
 fi
fi
examine message acknowledge flag
if ["${ACKNOWLEDGE_FLAG}" = "Y"]
then
 read DUMMY
else
 sleep ${SLEEP_DURATION}
fi
return ${TRUE}
}
ResetSignals ()
{
:
}
###
Name : ProcessExit
Overview : The function removes all temporary files but does not
actually issue an exit command because the script is
meant to be running in the current shell and, therefore,
exit command will exit from the current shell.
Notes :
###
ProcessExit ()
{
EXIT_CODE=$1
re-define rm comand in case an alias with definition
rm -i exists ; unalias does not seems to work
RM_COM="rm -f"
remove temporary files
${RM_COM} ${TEMP_FILE_1}
${RM_COM} ${TEMP_FILE_2}
${RM_COM} ${DIR_LIST}

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}
###
Name : PrepareDirectoryListing
Overview : The function prepares a list of all subdirectories
by purging the output from the du command.
Notes :
###
PrepareDirectoryListing ()
{
switch to home directory
cd $HOME
du | awk {'print $2'} | sed s/.// | sed s/^/\${HOME}/ > ${TEMP_FILE_1}
number each line containing directory name
cat -n ${TEMP_FILE_1} | awk {'print $1"--> "$2'} > ${DIR_LIST}
}
###
Name : DisplayDirectoryList
Overview : The function displays the directory listing and accepts
a number for the selected directory to switch to.
Notes :
###
DisplayDirectoryList ()
{
declare DIR_INT as an integer representing a subdirectory name
integer DIR_INT
while true
do
 clear
 cat ${DIR_LIST}
 echo "${BOLDON}Select directory by number ${BOLDOFF} :\c"
 read DIR
 case ${DIR} in
 "") DisplayMessage E "${INVALID_ENTRY}" E ;;
 *) (DIR_INT=${DIR}) 2> ${TEMP_FILE_1} ;
 if [$? -ne Ø]
 then
 ERR_MSG='cat ${TEMP_FILE_1}' ;
 DisplayMessage E "${OS_ERROR}" N ;
 else
 DIR_INT="${DIR}"
 if ! grep "${DIR_INT}-->" ${DIR_LIST} > /dev/null 2>&1
 then
 DisplayMessage E "${INVALID_ENTRY}" E ;
 else
 break ;
 fi ;
 fi ;;
 esac
done

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

TARGET_DIR='grep "${DIR_INT}-->" ${DIR_LIST} | awk {'print $2'}'
TARGET_DIR='eval echo "${TARGET_DIR}"'
}
##
Name : ChangeToTargetDirectory
Overview : The function switches to the selected directory.
Notes :
###
ChangeToTargetDirectory ()
{
cd ${TARGET_DIR} 2> ${TEMP_FILE_1}
if [$? -ne Ø]
then
 DisplayMessage E "${DIR_NOT_CHANGED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}" N
 cd ${CURDIR}
fi
}
###
Name : main
Overview : The function controls the process logic.
Notes :
###
main ()
{
InitialiseVariables
PrepareDirectoryListing
DisplayDirectoryList
ChangeToTargetDirectory
ProcessExit $SEC
}
set traps
trap "HandleInterrupt " 2 15 18
invoke main
main
unset traps
trap 2 15 18

SAMPLE OUTPUT
/export/home/zamana/temp>. ecd1--> ${HOME}/bin2--> ${HOME}/sh3-->
${HOME}/pc4--> ${HOME}/sql5--> ${HOME}/temp6--> ${HOME}/dpa/source/
check7--> ${HOME}/dpa/source/backup8--> ${HOME}/dpa/source9-->
${HOME}/dpa/unittest/alter_feeder_tables1Ø--> ${HOME}/dpa/unittest/
alter_integration_tables11--> ${HOME}/dpa/unittest/
cr_cleanse_dpa_preferences_sp12--> ${HOME}/dpa/unittest13--> ${HOME}/
dpa14--> ${HOME}/log15--> ${HOME}/.jetadmin16--> ${HOME}/c17-->

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

${HOME}/dba18--> ${HOME}/awk19--> ${HOME}/sed2Ø--> ${HOME}/java21-->
${HOME}/doc22--> ${HOME}/oracle/jpub/reflect23--> ${HOME}/oracle/jpub/
java24--> ${HOME}/oracle/jpub/mesg25--> ${HOME}/oracle/jpub/c26-->
${HOME}/oracle/jpub27--> ${HOME}/oracle/sqlj/runtime/util28-->
${HOME}/oracle/sqlj/runtime/error29--> ${HOME}/oracle/sqlj/runtime3Ø-->
${HOME}/oracle/sqlj/checker31--> ${HOME}/oracle/sqlj/mesg32-->
${HOME}/oracle/sqlj33--> ${HOME}/oracle/util/tcheck34--> ${HOME}/
oracle/util35--> ${HOME}/oracle/aurora/sqljdecl36--> ${HOME}/oracle/
aurora37--> ${HOME}/oracle/core/lmx38--> ${HOME}/oracle/core/lvf39-->
${HOME}/oracle/core4Ø--> ${HOME}/oracle/sql41--> ${HOME}/oracle42-->
${HOME}/sqlj/demo/server43--> ${HOME}/sqlj/demo44--> ${HOME}/sqlj45-->
${HOME}/source46--> ${HOME}/gemini47--> ${HOME}/extproc48--> ${HOME}/
sccs/SCCS/sql49--> ${HOME}/sccs/SCCS5Ø--> ${HOME}/sccs51--> ${HOME}/
abinitio/.WORK52--> ${HOME}/abinitio53--> ${HOME}/xxx54--> ${HOME}/
cpf55--> ${HOME}/make
56--> ${HOME}/dq/168
57--> ${HOME}/dq58--> ${HOME}/.WORK59--> ${HOME}Select directory by
number :55/export/home/zamana/make>

Arif Zaman
ETL Developer (UK) © Xephon 2002

System configuration listing program

The attached C program lists various CPU and kernel-related
characteristics of IBM RS/6000 and eServer pSeries computers.

PROGRAM CODE
/*--*/
/* CPU info display for IBM RS/6ØØØ and pSeries AIX servers */
/*--*/

#include <sys/types.h>
#include <fcntl.h>
#include <sys/systemcfg.h>
#include <stdio.h>
#include <nlist.h>

struct nlist info;

void
main()

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

{
 int fd;
 int imp;

 info.n_name = "_system_configuration";

 fd = open("/dev/kmem", O_RDONLY);
 knlist(&info, 1, sizeof(struct nlist));
 lseek(fd, info.n_value, Ø);
 read(fd, &_system_configuration, sizeof(_system_configuration));

 if (_system_configuration.architecture == POWER_RS)
 printf("system architecture : POWER_RS\n");
 else if (_system_configuration.architecture == POWER_PC)
 printf("system architecture : POWER_PC\n");
 else if (_system_configuration.architecture == IA64) {
 printf("system architecture : IA64\n");
 } else
 printf("system architecture : unknown\n");

 printf("processor width : %d\n",
_system_configuration.width);

 imp = _system_configuration.implementation;
 if (imp == POWER_RS1)
 printf("processor class : POWER_RS1\n");
 else if (imp == POWER_RSC)
 printf("processor class : POWER_RSC\n");
 else if (imp == POWER_RS2)
 printf("processor class : POWER_RS2\n");
 else if (imp == POWER_6Ø1)
 printf("processor class : POWER_6Ø1\n");
 else if (imp == POWER_6Ø3)
 printf("processor class : POWER_6Ø3\n");
 else if (imp == POWER_6Ø4)
 printf("processor class : POWER_6Ø4\n");
 else if (imp == POWER_62Ø)
 printf("processor class : POWER_6Ø4\n");
 else if (imp == POWER_63Ø)
 printf("processor class : POWER_63Ø\n");
 else if (imp == POWER_A35)
 printf("processor class : POWER_A35\n");
 else if (imp == POWER_RS64II)
 printf("processor class : POWER_RS64II\n");
 else if (imp == POWER_RS64III)
 printf("processor class : POWER_RS64III\n");
 else if (imp == POWER_MPC745Ø)
 printf("processor class : POWER_MPC745Ø\n");

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 else if (imp == POWER_MPC745Ø)
 printf("processor class : POWER_MPC745Ø\n");
 else
 printf("processor class : unknown\n");

 imp = _system_configuration.version;
 if (imp == PV_RS1)
 printf("processor implementation : PV_RS1\n");
 else if (imp == PV_RSC)
 printf("processor implementation : PV_RSC\n");
 else if (imp == PV_RS2)
 printf("processor implementation : PV_RS2\n");
 else if (imp == PV_6Ø1)
 printf("processor implementation : PV_6Ø1\n");
 else if (imp == PV_6Ø3)
 printf("processor implementation : PV_6Ø3\n");
 else if (imp == PV_6Ø4)
 printf("processor implementation : PV_6Ø4\n");
 else if (imp == PV_62Ø)
 printf("processor implementation : PV_62Ø\n");
 else if (imp == PV_63Ø)
 printf("processor implementation : PV_63Ø\n");
 else if (imp == PV_A35)
 printf("processor implementation : PV_A35\n");
 else if (imp == PV_RS64II)
 printf("processor implementation : PV_RS64II\n");
 else if (imp == PV_RS64III)
 printf("processor implementation : PV_RS64III\n");
 else if (imp == PV_MPC745Ø)
 printf("processor implementation : PV_MPC745Ø\n");
 else if (imp == PV_MPC745Ø)
 printf("processor implementation : PV_MPC745Ø\n");
 else if (imp == PV_M1)
 printf("processor implementation : PV_M1\n");
 else if (imp == PV_M2)
 printf("processor implementation : PV_M2\n");
 else
 printf("processor implementation : unknown\n");

 printf("number of cpus : %d\n",
_system_configuration.ncpus);
 printf("original number of cpus : %d\n",
_system_configuration.original_ncpus);

 printf("L1 Inst Cache Size (KB) : %d\n",
_system_configuration.icache_size / 1Ø24);
 printf("L1 Inst Cache Associativity : %d\n",
_system_configuration.icache_asc);
 printf("L1 Inst Cache Block Size (B) : %d\n",
_system_configuration.icache_block);

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 printf("L1 Inst Cache Line Size (B) : %d\n",
_system_configuration.icache_line);

 printf("L1 Data Cache Size (KB) : %d\n",
_system_configuration.dcache_size / 1Ø24);
 printf("L1 Data Cache Associativity : %d\n",
_system_configuration.dcache_asc);
 printf("L1 Data Cache Block Size (B) : %d\n",
_system_configuration.dcache_block);
 printf("L1 Data Cache Line Size (B) : %d\n",
_system_configuration.dcache_line);

 printf("L2 Cache Size (KB) : %d\n",
_system_configuration.L2_cache_size / 1Ø24);
 printf("L2 Cache Associativity : %d\n",
_system_configuration.L2_cache_asc);
 if ((_system_configuration.tlb_attrib & Øx1) == Ø)
 printf("TLB status : Not present\n");
 else if ((_system_configuration.tlb_attrib & Øx11) == 1) {
 printf("TLB status : Present, combined
Instruction and Data\n");
 printf("Entries in TLB : %d\n",
_system_configuration.itlb_size);
 printf("Associativity of TLB : %d\n",
_system_configuration.itlb_asc);
 } else {
 printf("TLB status : Present, separate
Instruction and Data TLB\n");
 printf("Entries in Instruction TLB : %d\n",
_system_configuration.itlb_size);
 printf("Associativity of Instruction TLB : %d\n",
_system_configuration.itlb_asc);
 printf("Entries in Data TLB : %d\n",
_system_configuration.dtlb_size);
 printf("Associativity of Data TLB : %d\n",
_system_configuration.dtlb_asc);
 }
 switch (_system_configuration.rtc_type) {
 case RTC_POWER:
 printf("Rtc type : RTC_POWER\n");
 break;
 case RTC_POWER_PC:
 printf("Rtc type : RTC_POWER_PC\n");
 break;
 case RTC_IA64:
 printf("Rtc type : RTC_IA64\n");
 break;
 default:
 printf("Rtc type : unknown\n");
 }

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if (_system_configuration.virt_alias)
 printf("Virtual aliasing : supported\n");
 else
 printf("Virtual aliasing : unsupported\n");
 if (__KERNEL_32())
 printf("Kernel width : 32bit\n");
 else
 printf("Kernel width : 64bit\n");
 if (_system_configuration.slb_attr & Øx1) {
 printf("SLB : implemented\n");
 printf("Size of SLB is : %d\n",
_system_configuration.slb_size);
 } else
 printf("SLB : unimplemented\n");
}

The following is the output for some computers that were available for
me to test my program on.
Model C20:
system architecture : POWER_PC
processor width : 32
processor class : POWER_6Ø4
processor implementation : PV_6Ø4
number of cpus : 1
original number of cpus : 1
L1 Inst Cache Size (KB) : 16
L1 Inst Cache Associativity : 4
L1 Inst Cache Block Size (B) : 32
L1 Inst Cache Line Size (B) : 64
L1 Data Cache Size (KB) : 16
L1 Data Cache Associativity : 4
L1 Data Cache Block Size (B) : 32
L1 Data Cache Line Size (B) : 64
L2 Cache Size (KB) : 1Ø24
L2 Cache Associativity : 1
TLB status : Present, combined Instruction and Data
Entries in TLB : 128
Associativity of TLB : 2
Rtc type : RTC_POWER_PC
Virtual aliasing : unsupported
Kernel width : 32bit
SLB : unimplemented

Model F50:
system architecture : POWER_PC
processor width : 32
processor class : POWER_6Ø4

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

processor implementation : PV_6Ø4
number of cpus : 4
original number of cpus : Ø
L1 Inst Cache Size (KB) : 32
L1 Inst Cache Associativity : 4
L1 Inst Cache Block Size (B) : 32
L1 Inst Cache Line Size (B) : 32
L1 Data Cache Size (KB) : 32
L1 Data Cache Associativity : 4
L1 Data Cache Block Size (B) : 32
L1 Data Cache Line Size (B) : 32
L2 Cache Size (KB) : 256
L2 Cache Associativity : 1
TLB status : Present, combined Instruction and Data
Entries in TLB : 128
Associativity of TLB : 2
Rtc type : RTC_POWER_PC
Virtual aliasing : unsupported
Kernel width : 32bit
SLB : unimplemented

Model p640:
system architecture : POWER_PC
processor width : 64
processor class : POWER_63Ø
processor implementation : PV_63Ø
number of cpus : 4
original number of cpus : 4
L1 Inst Cache Size (KB) : 32
L1 Inst Cache Associativity : 128
L1 Inst Cache Block Size (B) : 128
L1 Inst Cache Line Size (B) : 128
L1 Data Cache Size (KB) : 64
L1 Data Cache Associativity : 128
L1 Data Cache Block Size (B) : 128
L1 Data Cache Line Size (B) : 128
L2 Cache Size (KB) : 8192
L2 Cache Associativity : 1
TLB status : Present, combined Instruction and Data
Entries in TLB : 128
Associativity of TLB : 2
Rtc type : RTC_POWER_PC
Virtual aliasing : unsupported
Kernel width : 32bit
SLB : unimplemented

Model H70:
system architecture : POWER_PC
processor width : 64

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

processor class : POWER_RS64II
processor implementation : PV_RS64II
number of cpus : 4
original number of cpus : 4
L1 Inst Cache Size (KB) : 64
L1 Inst Cache Associativity : 1
L1 Inst Cache Block Size (B) : 128
L1 Inst Cache Line Size (B) : 128
L1 Data Cache Size (KB) : 64
L1 Data Cache Associativity : 2
L1 Data Cache Block Size (B) : 128
L1 Data Cache Line Size (B) : 128
L2 Cache Size (KB) : 4Ø96
L2 Cache Associativity : 1
TLB status : Present, combined Instruction and Data
Entries in TLB : 512
Associativity of TLB : 4
Rtc type : RTC_POWER_PC
Virtual aliasing : unsupported
Kernel width : 32bit
SLB : unimplemented

Model p620:
system architecture : POWER_PC
processor width : 64
processor class : POWER_RS64III
processor implementation : PV_RS64III
number of cpus : 6
original number of cpus : 6
L1 Inst Cache Size (KB) : 128
L1 Inst Cache Associativity : 2
L1 Inst Cache Block Size (B) : 128
L1 Inst Cache Line Size (B) : 128
L1 Data Cache Size (KB) : 128
L1 Data Cache Associativity : 2
L1 Data Cache Block Size (B) : 128
L1 Data Cache Line Size (B) : 128
L2 Cache Size (KB) : 8192
L2 Cache Associativity : 1
TLB status : Present, combined Instruction and Data
Entries in TLB : 512
Associativity of TLB : 4
Rtc type : RTC_POWER_PC
Virtual aliasing : unsupported
Kernel width : 32bit
SLB : unimplemented

Alex Polak
System Engineer
APS (Israel) © Xephon 2002

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

sysmgt.websm.apps update issues

We have recently come across a problem when updating an existing
AIX 4.3 system from the AIX 4.3.3.0 Maintenance Level. In our shop
the sysmgt.websm.apps 4.3.3.0 failed to install. After much analysis
it became apparent that the failure occurs only if the sysmgt.websm.apps
fileset is already installed, because of a requisite to perl.rte, which is
a new fileset in 4.3.3. To prevent this problem, it is essential that you
install the perl.rte fileset, which is included in the AIX 4.3.3.0,
Maintenance Level before updating from the AIX 4.3.3.0 Maintenance
Level. We have found this problem to be quite specific to the AIX
4.3.3.0 Maintenance Level and it does not occur when updating from
the AIX 4.3.3 Product Media.
Systems Programmer (UK) © Xephon 2002

Call for papers

Why not share your expertise and earn money at the same
time? AIX Update is looking for technical articles and hints
and tips about AIX performance, as well as example scripts
that experienced AIX users have written to make their life,
or the lives of their users, easier.
Articles can be e-mailed to Trevor Eddolls at
trevore@xephon.com or sent to any of the addresses shown
on page 2. A copy of our Notes for contributors is available
from www.xephon.com/nfc.

AIX news

IBM has announced support for AIX 5L
Version 5.1 for its TotalStorage Expert
Version 2.1.1, which gathers and presents
information that can help storage
administrators manage storage resources. It
consists of Enterprise Storage Server Expert
(ESS Expert) and Enterprise Tape Library
Expert.

This modification of TotalStorage Expert
V2.1.1 includes the base release function
announced in V2.1, some integrated APAR
fixes, and the capability to run on AIX 5L
V5.1.

It works with AIX or Windows 2000.

For further information contact your local
IBM representative.
URL: http://www.storage.ibm.com.

* * *

IBM has announced the Informix Extended
Parallel Server (XPS) 8.40 with optimized
query performance in complex ad hoc
environments, and a parallel load
functionality, better data access
performance, data skew management tools,
and a range of other management tools.

Aimed at very large data warehouse
applications, bundled products include
Informix Connect Runtime V2.8, Informix
Java Database Connectivity (JDBC) V1.5
and V2.21, Informix Server Administrator
(ISA) V1.41, and Informix I-Spy V2.0.

Connect Runtime is the runtime libraries for
the Client Software Development Kit V2.80,
a collection of APIs that help speed
development time for applications that work
with Informix Dynamic Server (IDS), and
Informix XPS.

The Informix JDBC Driver is a Java
platform-independent, industry-standard
type 4 JDBC driver, enabling multi-tier Java
application deployment against existing
Informix database servers. It also improves
performance and integration with XML and
IBM products like WebSphere.

ISA V1.41 is a browser-based cross-
platform database server administration tool,
providing an interface for the XPS command
line.

Finally, I-Spy is a data warehouse monitoring
and optimization tool for Informix databases.
XPS runs on AIX, HP-UX, Solaris, or TRU-
64 UNIX.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/softwar.

* * *

IBM has acquired TrelliSoft, which makes
storage resource management software, for
an undisclosed sum. It will be integrated into
IBM Software Group and TrelliSoft
products are now available from the Tivoli
operation.

TrelliSoft specializes in Java and Web-based
storage resource management to support
multiple platforms, including AIX, HP-UX,
Red Hat Linux, Solaris, and Windows NT/
2000.

It’s expected to complement SRM products
currently under development at IBM.

For further information contact your local
IBM representative.
URL: http://www.tivoli.com/products

x xephon

	Conditional tests
	AIX security review
	Understanding the at command
	Extended Change Directory
	System configuration listing program
	sysmgt.websm.apps update issues
	AIX news

