

© Xephon plc 2002

December 2002

86

In this issue

AIX
u

p
d

ate

3 Where’s that filesystem gone?
8 Syslog – the AIX system logger

21 Conditional operators
30 Make
50 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Where’s that filesystem gone?

Following on from the article I wrote that appeared in Issue 69
(July 2001) of AIX Update entitled Tidy up before you go!, there
is another (potential) pitfall in AIX whereby a newly-defined
filesystem can overlay a previously defined filesystem, making
the earlier filesystem ‘disappear’. For example, if you have the
following filesystems on a machine:
/
/usr
/var
/tmp
/home
/apps/data/a/b/c

and you define a new filesystem:
/apps/data/a/b

and mount that, then the data in /apps/data/a/b/c will ‘disappear’.
There is nothing that will warn you about it either. I have seen this
a few times, sometimes by mistake (doh!), and sometimes when
doing an importvg. The importvg function can put filesystem
entries into
/etc/filesystems in a different order from the one in which they
were exported.
The following program was written to help catch these situations.
Run as part of the ‘tidy up’ suite once a day, it will notify you of
problems with filesystem overlays. The following example shows
a sample
/etc/filesystems file (which is processed top to bottom), having
four potential errors, which are shown in the output, also below:
/:

dev = /dev/hd4
vfs = jfs
log = /dev/hd8
mount = automatic
check = false
type = bootfs
vol = root
free = true

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/home:
dev = /dev/hd1
vfs = jfs
log = /dev/hd8
mount = true
check = true
vol = /home
free = false

/usr:
dev = /dev/hd2
vfs = jfs
log = /dev/hd8
mount = automatic
check = false
type = bootfs
vol = /usr
free = false

/var:
dev = /dev/hd9var
vfs = jfs
log = /dev/hd8
mount = automatic
check = false
type = bootfs
vol = /var
free = false

/tmp:
dev = /dev/hd3
vfs = jfs
log = /dev/hd8
mount = automatic
check = false
vol = /tmp
free = false

/usr/local/apps/data/a/b/c/d:
dev = "/dev/abcd"
vfs = jfs
mount = false
log = /dev/loglvØØ

/usr/local/apps/data/a:
dev = "/apps/data/a"
vfs = nfs
nodename = othermc
mount = false

/usr/local/apps/data/a/b/c:
dev = "/apps/data/a/b/c"

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

vfs = nfs
nodename = othermc
mount = true

/usr/local/apps/data/a/b:
dev = "/dev/ab"
vfs = jfs
mount = true
log = /dev/loglvØØ

This will produce the following output:
Checking machine TESTMACH for filesystems errors :
===
ERROR - jfs filesystem '/usr/local/apps/data/a/b' has a subfilesystem
entry already (/usr/local/apps/data/a/b/c/d)

ERROR - jfs filesystem '/usr/local/apps/data/a/b' has a subfilesystem
entry already (/usr/local/apps/data/a/b/c)

ERROR - nfs filesystem '/usr/local/apps/data/a/b/c' has a subfilesystem
entry already (/usr/local/apps/data/a/b/c/d)

WARNING - nfs filesystem '/usr/local/apps/data/a' has a subfilesystem
entry already but is mount=false (/usr/local/apps/data/a/b/c/d)

FILESYS_CHECK.PL
#!/usr/bin/perl -w
$|=1;
#
Program to trap potential filesystem problems regarding overlays
#
use strict;
#use Data::Dumper;
use Sys::Hostname;
my $hostname=hostname();
my %fshash; # Hash to hold filesystem_name/vfs/mount
options
my @fserrors; # Array of filesystems with (potential)
errors
my $fsname;
my $fs;
print "\nChecking machine $hostname for filesystems errors :\n";
print "===\n";
open(FS,"/etc/filesystems") or die "Cannot open /etc/filesystems!\n";
while(<FS>) {
 next if /^*/;
 s/^\s+//;
 s/\s+$//;
 SWITCH: {

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /^\/.*:$/ and do {
 $fsname=(split (/:/, $_))[Ø];
 foreach $fs (keys %fshash) {
 if (grep /$fsname/, $fs) {
 push(@fserrors,$fsname);
 push(@fserrors,$fs);
 }
 }
 last SWITCH;
 };
 /^mount/ and do {
 $fshash{$fsname}{"mount"}=(split(/=/, $_))[1];
 $fshash{$fsname}{"mount"}=~s/^\s+//;
 last SWITCH;
 };
 /^vfs/ and do {
 $fshash{$fsname}{"vfs"}=(split(/=/, $_))[1];
 $fshash{$fsname}{"vfs"}=~s/^\s+//;
 last SWITCH;
 };
 }
}
close FS;
if (scalar(@fserrors) eq Ø) {
 print "None\n\n";
} else {
 while (scalar(@fserrors) gt Ø) {
 $fsname=pop(@fserrors);
 $fs=pop(@fserrors);
 if ($fshash{$fs}{'mount'} =~ "true") {
 print "ERROR - ".$fshash{$fs}{'vfs'}." filesystem '$fs' has a
subfilesystem entry already ($fsname)\n\n";
 } else {
 print "WARNING - ".$fshash{$fs}{'vfs'}." filesystem '$fs' has a
subfilesystem entry already but is mount=false ($fsname)\n\n";
 }
 }
}
#!/usr/bin/perl -w
$|=1;
#
Program to trap potential filesystem problems regarding overlays
#
use strict;
#use Data::Dumper;
use Sys::Hostname;
my $hostname=hostname();
my %fshash; # Hash to hold filesystem_name/vfs/mount
options
my @fserrors; # Array of filesystems with (potential)
errors
my $fsname;

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

my $fs;
print "\nChecking machine $hostname for filesystems errors :\n";
print "===\n";
open(FS,"/etc/filesystems") or die "Cannot open /etc/filesystems!\n";
while(<FS>) {
 next if /^*/;
 s/^\s+//;
 s/\s+$//;
 SWITCH: {
 /^\/.*:$/ and do {
 $fsname=(split (/:/, $_))[Ø];
 foreach $fs (keys %fshash) {
 if (grep /$fsname/, $fs) {
 push(@fserrors,$fsname);
 push(@fserrors,$fs);
 }
 }
 last SWITCH;
 };
 /^mount/ and do {
 $fshash{$fsname}{"mount"}=(split(/=/, $_))[1];
 $fshash{$fsname}{"mount"}=~s/^\s+//;
 last SWITCH;
 };
 /^vfs/ and do {
 $fshash{$fsname}{"vfs"}=(split(/=/, $_))[1];
 $fshash{$fsname}{"vfs"}=~s/^\s+//;
 last SWITCH;
 };
 }
}
close FS;
if (scalar(@fserrors) eq Ø) {
 print "None\n\n";
} else {
 while (scalar(@fserrors) gt Ø) {
 $fsname=pop(@fserrors);
 $fs=pop(@fserrors);
 if ($fshash{$fs}{'mount'} =~ "true") {
 print "ERROR - ".$fshash{$fs}{'vfs'}." filesystem '$fs' has a
subfilesystem entry already ($fsname)\n\n";
 } else {
 print "WARNING - ".$fshash{$fs}{'vfs'}." filesystem '$fs' has a
subfilesystem entry already but is mount=false ($fsname)\n\n";
 }
 }
}

Phil Pollard
Unix and TSM Administrator (UK) © Xephon 2002

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Syslog – the AIX system logger

A critical part of the system manager’s job is that of monitoring
the system. The most portable facility that supports this is the
syslog system. Available since the earliest releases of BSD Unix,
it is now supported on most versions of Unix including AIX.
Syslog enables you to sort messages by level and facility. Levels
indicate various degrees of severance of logged event (eg
warning, error, emergency) whereas facilities are considered
service areas (eg printing, e-mail, network). Syslog has always
offered not just local logging to files but also remote logging over
the network via standard protocols to heterogeneous systems.

SYSLOG ARCHITECTURE
The syslog system consists of the following components:
• Message format specification:

/usr/include/sys/syslog.h

Syslog messages are encoded as ASCII strings. Message
strings are created throughout the AIX system. Messages
are created at one of a set of possible levels; by setting a
threshold, one can direct all messages at or above a certain
level to a given destination.

• A set of system utilities for creating messages using C API:
syslog(3),syslog_r(3), logger(1)

Most users create syslog messages using one of the standard
interfaces to syslog. The C-code interface contained in the
/usr/ccs/lib/libc.a and the thread-safe interface contained in
the /usr/ccs/lib/libc_r.a are similar in functionality to the
standard printf interface. The command line utility logger
can be used from the command line or a shell script.

• A set of locations from which messages can be read:
/dev/log, UDP port 514.

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Each syslog message must be directed to one of a number
of communication paths that are read by syslod daemon.
These communication channels include the socket file /dev/
log, which is used to route locally-produced messages, and
UDP port 514, used to deliver messages from remote hosts.

• A set of locations to which messages are directed: files,
users, etc.
This set of locations may include sockets, files, consoles,
and logged-on users. Messages can be directed to one or
more of these destinations.

• Rules that govern the distribution of the messages to various
destinations: /etc/syslog.conf.
This set of configuration rules determines how messages
are logged and the locations to which they are logged. The
rules are set by the system administrator in the file /etc/
syslog.conf.

SYSLOG MESSAGE FORMAT
One of the unique characteristics of syslog is that every message
is created and logged in the form of a plain text ASCII string. This
string consists of the following fields:
• A message priority.

Priority is an ASCII integer encoding of an 8-bit quantity. This
quantity is a combination of a 3-bit field (bits 0 to 2) used to
designate message priority and a 5-bit field (bits 3 to 7) used
for message facility. Thus, message priority level can have
eight possible values, and message facility up to 32 possible
values.
Message priorities are defined as an ordered list. If one has
set a threshold at a given priority, one will receive all
messages at this or any higher priority. Thus, if the syslog
has been configured to log all messages tagged
LOG_WARNING, you will also log all messages of higher
priorities, such as LOG_ERR, LOG_CRIT. The defined

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

message priorities, from highest to lowest, are as follows:
– LOG_EMERG – 0 – system is unusable
– LOG_ALERT – 1 – action must be taken immediately
– LOG_CRIT – 2 – critical conditions
– LOG_ERR – 3 – error conditions
– LOG_WARNING – 4 – warning conditions
– LOG_WARNING – 5 – normal but significant condition
– LOG_INFO – 6 – informational
– LOG_DEBUG – 7 – debug-level messages.
The message facility identifies the originating subsystem of
the message. Facility indications are defined in /usr/include/
sys/syslog.h; some are reserved for the OS and others are
available for users and application developers. The following
message facility tags are defined:
– LOG_KERN – (0<<3) – kernel messages
– LOG_USER – (1<<3) – random user-level messages
– LOG_MAI – (2<<3) – mail system
– LOG_DAEMON – (3<<3) – system daemons
– LOG_AUTH – (4<<3) – security/authorization messages
– LOG_SYSLOG – (5<<3) – messages generated by

syslogd
– LOG_LPR – (6<<3) – line printer subsystem
– LOG_NEWS – (7<<3) – news subsystem
– LOG_UUCP – (8<<3) – uucp subsystem
– LOG_CRON – (9<<3) – clock daemon
– LOG_AUTHPRIV – (10<<3) – security/authorization

messages

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

– LOG_LOCAL0 – (16<<3) – reserved for local use
– LOG_LOCAL1 – (17<<3) – reserved for local use
– LOG_LOCAL2 – (18<<3) – reserved for local use
– LOG_LOCAL3 – (19<<3) – reserved for local use
– LOG_LOCAL4 – (20<<3) – reserved for local use
– LOG_LOCAL5 – (21<<3) – reserved for local use
– LOG_LOCAL6 – (22<<3) – reserved for local use
– LOG_LOCAL7 – (23<<3) – reserved for local use.

• A timestamp
This is an ASCII-encoded date/time string.

• The message string
This is the user-supplied message to be logged.
The logged message is the ASCII string that is written by the
syslogd daemon to the user’s terminal, to the console, or to
a log file. When the message is displayed the message
priority is omitted; this information is used by syslogd to
direct the syslog message according to the configuration
rules defined in the file /etc/syslog.conf. The first field to be
displayed is therefore the timestamp, followed by the name
of the originating system. This is the local system hostname
if the message was generated on a local system or a remote
system hostname communicating over the UDP socket. The
message string is the actual string of the message; useful
data such as process ID and a message prefix may be
inserted in this message using the openlog() function.

GENERATION OF SYSLOG MESSAGES USING SYSLOG(3) AND
LOGGER(1)
The facilities offered by AIX for the purpose of creating syslog
messages are a set of C APIs containing the functions openlog(),
syslog(), closelog(), and setlogmask(). The logger command

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/usr/bin/logger provides similar functionality from a command
line or shell script.
The syslog subroutine writes messages onto the system log
maintained by the syslogd daemon. A typical usage example is:
syslog(LOG_CRIT, "filesystem is full");

The message is similar to the printf fmt string; the difference is
that %m is replaced by the current error message obtained from
the errno global variable. A trailing new-line can be added to the
message if needed.
Messages are read by the syslogd daemon and written to the
system console or log file, or forwarded to the syslogd daemon
on the appropriate host.
If special processing is required, the openlog subroutine can be
used to initialize the log file. The following is a typical example:
openlog("Disk space monitoring facility", LOG_PID|LOG_CONS, LOG_LOCAL0);

Messages are tagged with codes indicating the type of priority for
each. A priority is encoded as a facility, which describes the part
of the system generating the message, and as a level, which
indicates the severity of the message.
If the syslog subroutine cannot pass the message to the syslogd
command, it writes the message on the /dev/console file,
provided the LOG_CONS option is set.
The closelog() subroutine closes the log file.
The setlogmask(MaskPriority) subroutine uses the bit mask in
the MaskPriority parameter to set the new log priority mask and
returns the previous mask.
The LOG_MASK and LOG_UPTO macros in the /usr/include/
sys/syslog.h file are used to create the priority mask. Calls to the
syslog subroutine with a priority mask that does not allow logging
of that particular level of message causes the subroutine to
return without logging the message.
The logger command provides an interface to the syslog

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

subroutine, which writes entries to the system log. A message
variable can be specified on the command line, which is logged
immediately, or a file variable is read and each line of the file
variable is logged. If you specify no flags or variables, the logger
command will wait for you to enter a message from standard
input. The logger command has the following command line
arguments:
• -f File – logs the specified file variable. If the message

variable is specified, this flag is ignored.
• -i – logs the process ID of the logger process with each line.

• -p Priority – enters the message with the specified priority.
The priority parameter may be a number or a facility level
priority specifier.

• -t Tag – marks every line in the log with the specified tag
parameter.

• Message – indicates the message to log. If this variable
is not specified, the logger command logs either standard
input or the file specified with the -f File flag.

To log a message indicating a system reboot, enter:
logger System rebooted

To log a message contained in the /tmp/msg1 file, enter:
logger -f /tmp/msg1

To log the daemon facility critical level messages, enter:
logger -pdaemon.crit

SYSLOGD DAEMON
When the AIX is booted the syslogd daemon is started by the
script /etc/rc.tcpip, which is executed by init process. The
syslogd daemon reads a datagram socket and sends each
message line to a destination described by the /etc/syslog.conf
configuration file. The syslogd daemon reads the configuration

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

file when it is activated and when it receives a hang-up signal.
The syslogd daemon creates the /etc/syslog.pid file, which
contains a single line with the command process ID used to end
or reconfigure the syslogd daemon.
A terminate signal sent to the syslogd daemon ends the daemon.
The syslogd daemon logs the end-signal information and
terminates immediately.
The syslogd daemon has the following command line arguments:
• -d – turns on debugging.
• -f ConfFile – specifies an alternative configuration file.
• -m MarkInterval – specifies the number of minutes between

the mark command messages. If you do not use this flag,
the mark command sends a message with LOG_INFO
priority sent every 20 minutes. This facility is not enabled by
a selector field containing an * (asterisk), which selects all
other facilities.

• -s – specifies that a ‘shortened’ message should be forwarded
to another system (if it is configured to do so) for all the
forwarding syslog messages generated on the local system.

• -r – suppresses logging of messages received from remote
hosts.

FORMAT OF SYSLOGD CONFIGURATION FILE
The configuration file informs the syslogd daemon where to send
a system message, depending on the message’s priority level
and the facility that generated it.
If you do not use the -f flag, the syslogd daemon reads the default
configuration file, the /etc/syslog.conf file.
The syslogd daemon ignores blank lines and lines beginning with
a #.
Lines in the configuration file for the syslogd daemon contain a

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

selector field and an action field, separated by one or more tabs.
The selector field names a facility and a priority level. Separate
facility names with a , (comma). Separate the facility and priority-
level portions of the selector field with a . (period or full stop).
Separate multiple entries in the same selector field with a ;
(semicolon). To select all facilities, use an * (asterisk).
The action field identifies a destination (file, host, or user) to
receive the messages. If routed to a remote host, the remote
system will handle the message as indicated in its own
configuration file. To display messages on a user’s terminal, the
destination field must contain the name of a valid, logged-in,
system user.
An optional rotation field, separated by one or more tabs, has
been introduced in AIX 5.1. The rotation field identifies how
rotation is used. If the action field is a file, then rotation can be
based on size or time, or both. One can also compress and/or
archive the rotated files.

Facilities
Use the following system facility names in the selector field:
• kern – kernel
• user – user level
• mail – mail subsystem
• daemon – system daemons
• auth – security or authorization
• syslog – syslogd daemon
• lpr – line-printer subsystem
• news – news subsystem
• uucp – uucp subsystem
• * – all facilities.

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Priority levels
Use the following message priority levels in the selector field.
Messages of the specified priority level and all levels above it are
sent as directed.
• emerg – specifies emergency messages (LOG_EMERG).

These messages are not distributed to all users.
LOG_EMERG priority messages can be logged into a
separate file for reviewing.

• alert – specifies important messages (LOG_ALERT), such
as a serious hardware error. These messages are distributed
to all users.

• crit – specifies critical messages not classified as errors
(LOG_CRIT), such as improper login attempts. LOG_CRIT
and higher-priority messages are sent to the system console.

• err – specifies messages that represent error conditions
(LOG_ERR), such as an unsuccessful disk write.

• warning – specifies messages for abnormal, but recoverable,
conditions (LOG_WARNING).

• notice – specifies important informational messages
(LOG_NOTICE). Messages without a priority designation
are mapped into this priority message.

• info – specifies informational messages (LOG_INFO). These
messages can be discarded, but are useful in analysing the
system.

• debug – specifies debugging messages (LOG_DEBUG).
These messages may be discarded.

• none – excludes the selected facility. This priority level is
useful only if preceded by an entry with an * (asterisk) in the
same selector field.

Destinations
Use the following message destinations in the action field:

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• File name – full path name of a file opened in append mode

• @Host – host name, preceded by @ (at sign)
• User[, User][...] – user names
• * – all users.

Rotation
Use the following rotation keywords in the rotation field.
• rotate – this keyword must be specified after the action field.

• size – this keyword specifies that rotation is based on size.
It is followed by a number and either a k (kilobytes) or m
(megabytes).

• time – this keyword specifies that rotation is based on time.
It is followed by a number and an h (hour), d (day), w (week),
m (month), or y (year).

• files – this keyword specifies the total number of rotated
files. It is followed by a number. If not specified, then there is
an unlimited number of rotated files.

• compress – this keyword specifies that the saved rotated
files will be compressed.

• archive – this keyword specifies that the saved rotated files
will be copied to a directory. It is followed by the directory
name.

The following are some examples of possible configuration rules
for typical /etc/syslog.conf file:
mail messages, at debug or higher, go to Log file.
File must exist; it will be rotated when it gets larger
then 500 kilobytes or if a week passes,
#number of rotated files is limited to 10, use compression
and store the archived files in /syslogfiles directory
mail.debug /usr/spool/mqueue/syslog rotate size 500k time 1w files 10
compress archive /syslogfiles
all facilities, at debug and higher, go to console

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

*.debug /dev/console
all facilities, at crit or higher, go to all users
and sent to central logging host
*.crit *,@loghost

SYSLOG TIPS AND TRICKS
The following table details some of the programs that use syslog,
including the facilities and levels they log to and a brief description
of each program:
• amd – daemon – err-info – PD NFS automounter.
• date – auth – notice – sets time and date.
• ftpd – daemon – err-debug – FTP daemon.
• halt/reboot – auth – crit – shutdown programs.
• inetd – daemon – err, warning – Internet super-daemon.
• login/rlogin – auth – crit/info – login programs.
• named – daemon – err-info – name server daemon.
• nnrpd – news – crit-notice – PD newsreader.
• ntpd – daemon, user – crit-info – network time daemon.
• passwd – auth – err – password setting program.
• popper – local0 – notice, debug – PD Mac/PC mail system.
sendmail – mail – alert-debug – mail transport system.
su – auth – crite, notice – switch UID.
sudo – local2 – alert, notice – PD limited su program.
syslogd – syslog, mark – err-info – internal errors, timestamps.
tcpd – local7 – err-debug – PD TCP wrapper for inetd.
cron – cron,daemon – info – system task-scheduling daemon.
/unix – kern – varies – the kernel.
The following handy script can be used to debug your /etc/

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

syslog.conf file. Please note that cron and mark facilities cannot
be tested using logger.
#!/bin/csh
#
Script to generate one log message per
priority level per facility
#
foreach i (auth authpriv daemon kern lpr mail news syslog user uucp
localØ local1 local2 local3 local4 local5 local6 local7)
 foreach k (debug info notice warning err crit alert emerg)
 logger -t TAG -i -p $i.$k "Test message facility $i priority $k"
 end
end

On AIX, syslogd is configured as a subsystem process, which
belongs to a subsystem group called ras. It is configured to be
executed from the /etc/rc.tcpip script started by init from /etc/
inittab. The AIX version of syslogd has a fixed constant, NLOGS,
which determines the total number of actions that can be
specified in the configuration file. According to my checks, this
number is set to 20. If you exceed this number, syslogd ignores
the extra actions and quietly throws away log messages that
would have been sent to them. When invoked with –d (debug)
flag, syslogd displays a table of the facilities, levels, and actions
specified in the /etc/syslogd.conf file. Each incoming message
is also echoed to the screen along with the information about how
it is being processed. Here are a few rows from the output
produced by
syslogd –d:
X X 7 X UNUSED:
7 X CONSOLE: /dev/console
2 X WALL:
X X X 5 X CONSOLE: /dev/console
X X X 5 X FILE: /nsr/logs/messages
X X X 5 X USERS: operator,
X X X X X X X X X X X X X X X X 5 X X X X X X X X FILE: /nsr/logs/summary
X X X X X X X X X X X X X X X X 1 X X X X X X X X USERS: root, operator,
7 X FILE: /var/adm/ras/syslog
Ø UNUSED:

In this table, columns correspond to facilities, and rows to
actions. The values displayed are priority levels as represented
internally; an X means none.

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The lines listed with the tag UNUSED in this table have no actions
associated with them – you still have fewer than NLOGS
destinations. If you don’t see any such lines, make sure that you
have not exceeded the limit; check your configuration file by
probing the last entry with a logger command. If you have
forgotten to create the log file you should expect messages
similar to the following:
cfline(mail.debug /usr/spool/mqueue/syslog)
syslogd: /usr/spool/mqueue/syslog: errno = 2
logmsg: pri 53, flags 8, from hostname, msg syslogd: /usr/spool/mqueue/
syslog: errno = 2

syslog-ng is a syslogd replacement that adds new functionality,
such as:
• Ability to filter messages based on message contents using

regular expressions.
• More powerful and intuitive configuration scheme.
• More reliable log forwarding using TCP.
• Ability to remember all forwarding hops, which makes it ideal

for firewalled environments.
In order to examine your logs effectively you can utilize swatch
(the Simple WATCHer). Written 100% in Perl, swatch monitors
logs as they’re being written to and takes action when it finds
something you’ve told it to look for. This simple, flexible, and
useful tool is a must-have for any healthily fearful system
administrator.
LogSentry (formerly Logcheck) automatically monitors your
system logs and mails security violations to you on a periodic
basis. It is based on a program that ships with the TIS Gauntlet
firewall, but has been improved in many ways to make it work
nicely for normal system auditing. The program is available
under GNU licence.
If you plan to use the network redirection feature of syslogd, it is
very important to hide the whole network behind the firewall with
disabled access to syslogd port UDP 514 in order to prevent
remote denial-of-service attacks.

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Conditional operators

The shell provides two special command terminators, && and ||,
which are used to separate commands and control the way in
which they are executed. The && operator has nothing to do with
the & command terminator, and the || operator has nothing to do
with the pipe
character |.
Most things that you can accomplish with these operators can
also be done using the if command. They provide concise
alternatives to if, but for complex constructions inexperienced
shell programmers often find them difficult to use and interpret;
the logic is often easier to follow using multiple if statements.

THE && OPERATOR
You can use the && operator to separate two commands when
you want the second command to be executed only if the first

REFERENCES
1 Aeleen Frisch. Essential System Administration, Third Edition,

O’Reilly & Associates, Inc.
2 Evi Nemeth, Garth Snyder, Scott Seebass, Trent R. Hein.

Unix System Administration Handbook, Third Edition,
Prentice Hall PTR

3 http://www.balabit.hu/en/downloads/syslog-ng/ syslog-ng
home page

4 http://www.stanford.edu/~atkins/swatch, swatch home page
5 http://www.psionic.com/products/logsentry.html, LogSentry

home page.
Alex Polyak
System Engineer
APS (Israel) © Xephon 2002

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

command is successful. For example:
test $# -eq 1 && find / -name $1 -print

or:
[$# -eq 1] && find / -name $1 -print

or:
[[$# -eq 1]] && find / -name $1 -print

The last construction is more commonly used and the line has
the same effect as the following if command:
if [[$# -eq 1]]
then
find / -name $1 -print
fi

You can construct longer lists of commands separated with &&
operators. Consider the following example of a command list:
command1 && command2 && . . . commandn

The commands are executed in a sequence from left to right, so
long as the preceding command has an exit status of 0. If one of
the commands returns a non-zero value, the remaining
commands will not be executed and the return value of the entire
list will be non-zero. If all the commands are executed, the return
value will be that of the last command.
Here is an example of a list that contains three commands:
[[$# -eq 2]] && [[-f "$2"]] && grep "$1" $2

In this example, the second command will be run only if there are
two arguments, and the third command will be run only if the
second argument is a valid filename.
Create a shell script that contains just the line shown above. Test
what happens in the following cases, and each time view the exit
status from your script:
1 Run the script without any arguments, and then with one

argument, and note what happens.
2 Invoke the script again with the second argument being the

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

name of a file in your current directory. The first argument
should be a string that is contained within the file.

3 Try it again, with a second argument that is not the name of
a file and note what happens.

You can make the execution of a sequence of commands
depend upon the exit status of a preceding command by
enclosing the sequence of commands in curly braces to create
blocks of code. For example:
command1 && { command2; command3; ... commandn; }

In a command list of this form, the commands that are enclosed
in curly braces will be run if, and only if, the first command is
successful.
If the curly braces were not used, the execution of the second
command would depend on the return value of the first, but the
remaining commands, command3 to commandn, would be run
regardless of what the first returned.
You should remember the following points about the use of curly
braces:
• The braces must be separated by spaces from adjacent

characters.
• Each command inside the braces, including the last

command, must be followed by a command separator,
which, in the above example, is the semi-colon. You could,
of course, put the commands on separate lines so that the
command separators then become carriage returns.

You can try the following command by creating a simple shell
script that contains:
[[! -f $1]] && { print $1 does not exist ; exit 1; }
print $1 exists

Observe the difference in the messages when you run the script
with a command line argument which is a filename that does not
exist in your current directory, and with one which does exist.

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The first command checks whether the specified file does not
exist. If this is the case the test returns a zero exit status, and the
command list enclosed within the curly braces is then run; after
printing the message the script exits with a non-zero exit status.
If the file does exist, the script continues on the next line, prints
a different message, and exits normally.
This method of grouping commands is very common in script
writing, where it is frequently used to test a condition, and then
print an error message and exit if the condition is not true.
Also, consider what would happen if a command similar to the
following were used instead:
[[! -f $1]] && print $1 does not exist && exit 1

In this example you will achieve the same result when the file
does not exist. However, exit 1 will be executed only if the
preceding commands are successful, and while it is unlikely that
print will return anything other than 0, in other situations you may
not be using a command quite so simple, so that your script may
not exit when you want it to.

THE || OPERATOR
You can think of the && operator as performing a logical and
operation, since the return value of the command list will be true,
if, and only if, all of the commands in the list are true. As soon as
one of the commands fails, the shell knows that the list is false
and it does not run the remaining commands.
In a similar way, you can think of the || operator as performing a
logical or operation. A sequence of commands separated by ||
operators is executed sequentially from left to right until one of
the commands is successful (true).
As soon as one command is successful, the shell decides that
the entire list is successful and does not run the remaining
commands. If none of the commands are successful, the return
value of the list will be non-zero.

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Consider the following command:
[[-f $1]] || print $1 does not exist

If the $1 file exists, the test will be true, and print will not be
executed. If $1 does not exist, the test will return a non-zero exit
status, and print will display its message.
Curly braces are also useful for grouping commands with this
operator, so that our simple script testing for the existence of a
file can be written as follows:
{ [-f $1]] || { print $1 does not exist; exit 1; }
print $1 exists

You can see that to achieve the same result we now test whether
the file does exist, whereas with && we used reverse logic and
tested for its non-existence.

COMBINING TEST EXPRESSIONS
In the previous examples using conditional operators we have
usually performed a single test, and then, depending on its
results, executed one or more commands. Let us now consider
how we can combine multiple tests, so that if one condition is true
and/or a second (or more) condition is true, we continue with the
logic to execute further commands.
There are two ways in which you can combine test expressions.
The first uses the binary and (-a) and the binary or (-o) operators,
and the syntax can only be used within the single square
brackets test. For example:
["$i" -ge 4 -a "$i" -lt 1Ø]
["$i" -lt 4 -o "$i" -ge 1Ø]

The first statement tests that the variable i is greater than or equal
to 4, and less than 10, so that i can take a value from 4 to 9
inclusive for the test to be true. The second statement tests
whether i is less than 4, or greater than or equal to 10, so that in
this case i cannot have a value from 4 to 9 inclusive for the test
to be true.

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The second method uses the conditional operators, && and ||, so
that the above tests can also be written:
test "$i" -ge 4 && test "$i" -lt 1Ø
test "$i" -lt 4 || test "$i" -ge 1Ø

or:
["$i" -ge 4] && ["$i" -lt 1Ø]
["$i" -lt 4] || ["$i" -ge 1Ø]

or:
[[$i -ge 4]] && [[$i -lt 1Ø]]
[[$i -lt 4]] || [[$i -ge 1Ø]]

It is also possible to group expressions by using parentheses.
For example:
[\("$1" -lt 3 -o "$1" -gt 7 \) -a "$2" -eq 2]

In the above example, the system first tests that $1 is less than
3 or greater than 7, and then that $2 equals 2. If these conditions
are all satisfied, it returns the value 0. Since parentheses are
meaningful to the shell, they must be escaped for this particular
usage.
To achieve the same result using conditional operators the
syntax would look like the following:
{ [[$1 -lt 3]] || [[$1 -gt 7]] } && [[$2 -eq 2]]

or:
([[$1 -lt 3]] || [[$1 -gt 7]]) && [[$2 -eq 2]]

or:
[[$1 -lt 3]] || [[$1 -gt 7]] && [[$2 -eq 2]]

For this particular command we can enclose the first two tests
inside braces, or parentheses, or we can do without either, but
this may not be the case for every test using combined operators
since it will be dependent upon what you are trying to achieve.
You will note that for constructions like this we do not need an
additional command terminator, such as a colon, after the last
test and before the closing brace.

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

You can get quite complex constructions when you combine
tests, and also when you try to execute commands which are
dependent on the results of individual tests. You can try this by
creating a script containing the following lines:
{ [[$1 -lt 3]] && print first arg less than 3; } ||
{ [[$1 -gt 7]] && print first arg greater than 7; } &&
{ [[$2 -eq 2]] && print second arg equals 2; }

We have split what could be a single line of code into three
separate lines for readability. Each time the shell sees || or &&,
it knows that the command line is not yet complete and will look
on the following line for continuation of the syntax. You will also
note that we now need a command terminator at the end of each
of the print statements before the closing brace.
Try executing this script with various values for $1 and $2 and
note the output. You can also try removing some of the brace
pairs to see what difference this makes to the output.

THE SHIFT COMMAND
The shift command is a built-in shell command that moves the
entire command line arguments one position to the left. After a
shift command has been executed, the new value of $1 is
whatever $2 used to be, the new value of $2 is whatever $3 used
to be, and so on. The shift command also updates the value of
$*.
Try the following example, which shows what the shift command
does:
$ vi arg
print The first three args:
print $1; print $2; print $3
print '$*: \c'
print $*

shift 2
print The new first three args:
print $1; print $2; print $3;
print 'The new $*: \c'
print $*

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When you execute the command as follows, you will see the
following output:
$ arg one two three four five
The first three args
one
two
three
$*: one two three four five

The new first three args
three
four
five
The new $*: three four five

If you provide a numeric argument to shift, as we have done in
our example, it will shift that many times; without an argument it
shifts just the once. Note that there is no reverse shift, however.
Once an argument has been shifted out of $1, it is gone forever,
never to be recovered.
The shift command is usually used only with relatively simple
command line options, and when complicated constructions are
required we would normally use getopts. You might, for instance,
use shift in a situation where you have an unknown number of
command line arguments, which can be in any order and any
quantity.
As an example, let’s assume that you have problems remembering
the command line options for the chfs command and so you
create your own script, called modfs, which uses arguments you
can easily remember and which are then converted to chfs
options within the script. To make the logic relatively simple, let’s
assume that our script is called with the following syntax:
modfs number_of_blocks -l log_name filesystem_name

We have decided that it does not matter which order our options
are in, provided that we have at least one in addition to the
filesystem name; but if an option starts with a ‘-’, then it will also
take an argument. Here we have just the -l option, but we could
also add the -t for type, -c for check, and so on, and these
additional options would require shift to be used within a loop

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

until we had exhausted all the arguments.
Our script may contain something similar to the following lines
(we have excluded code that builds up the command line to be
executed and any other checks that may have to be made):
if [[$# -lt 2]] || [[$# -gt 4]]; then
 f_usage
 exit 1;;
fi

case $1 in
-l)
 OPT1=$1
 ARG1=$2
 shift 2;;
[1-9]*)
 SIZE=$1
 shift;;
*)
 f_usage
 exit 1;;
esac

if [[$# -eq 1]]; then
 FILESYSTEM=$1
 f_chk_valid_filesystem
elif [[$# -eq 2]]; then
 if [[$1 != [1-9]*]]; then
 f_usage
 exit 1
 fi
 SIZE=$1
 FILESYSTEM=$2
 f_chk_valid_filesystem
elif [[$# -eq 3]]; then
 if [[$1 != "-l"]]; then
 f_usage
 exit 1
 fi
 OPT1=$1
 ARG1=$2
 FILESYSTEM=$3
 f_chk_valid_filesystem
else
 f_usage
 exit 1
fi

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

As you can see, the logic to check all the possible combinations
for just a few command line arguments can become quite
complex and using shift in this way will probably not be as
efficient as using getopts, although for getopts to work we
would have to introduce another option, -s say, to which our
number_of_blocks value would have to be an argument.
Tonto Kowalski
Guru (UAE) © Xephon 2002

Make

INTRODUCTION
Make is a Unix utility that executes a list of shell commands
associated with each target (could be an executable, an ASCII
file, an object file, etc) typically to create or update a file of the
same name. Makefile contains entries that describe how to bring
a target up-to-date with respect to those on which it depends,
which are called dependencies. Since each dependency is a
target, it may have dependencies of its own. Targets,
dependencies, and sub-dependencies comprise a tree structure
that make traces when deciding whether or not to rebuild a target.
For example, let’s say that currently we use the following list of
commands in a file called make_program.sh. To make an
executable called program:
$ cc -c main.c
$ cc -c iodat.c
$ cc -c dorun.c
$ as -o lo.o lo.s
$ cc -o program main.o iodat.o dorun.o lo.o /usr/fred/lib/crtn.a

Notes:
1 When we change main.c, we run make_program.sh again to

make a program. Now make_program.sh does not have any

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

intelligence to figure out that the only program needing re-
compiling is main.c and not the others. Therefore, it will
recompile all the source files. In many cases, this unnecessary
re-compilation may take some of the valuable time allocated
for the build phase of the project.

2 The make utility provides this missing intelligence and a lot
more to make this build process very efficient.

MAKEFILE
Makefile is the description file containing the rules and commands
that make executes.
The name makefile is the default and can be replaced by any
other, in which case make must be run with -f option for the
alternative file name to be specified.
For example:
1 program : main.o iodat.o dorun.o lo.o /usr/fred/lib/crtn.a
2 cc -o program main.o iodat.o dorun.o lo.o /usr/fred/lib/crtn.a
3 main.o : main.c
4 cc -c main.c
5 iodat..o : iodat.c
6 cc -c iodat.c
7 dorun.o : dorun.c
8 cc -c dorun.c
9 lo.o : lo.s
1Ø as –o lo.o lo.s

Notes:
1 The numbers in the left margin are not part of the actual

description file.
2 This description file contains file entries. Each entry consists

of a line containing a colon (the dependency line or rules
line), and one or more command lines which begin with a tab.

3 On each dependency line, to the left of the colon is a target
and to the right of the colon are the target’s prerequisites.
The tab-indented command lines, therefore, show how to
build the targets out of their prerequisites.

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TARGET AND PROGRAM DEPENDENCY
Program A is said to depend on program B if program B needs
to be integrated into program A before program A can function
properly. In this case, program A can be classified as a target and
program B as its dependency.

FILE EXTENSION
File extensions are one-, two-, or three-letter suffixes that are
added to file names with a period or full stop (.).
Examples of file extension are:
• c
• pc
• as
• dat
• sql
• obj.

SUFFIX RULES
Suffix rules are the pre-defined rules that govern the dependency
processing for a target based exclusively on file extensions.

WRITING SUFFIX RULES
Standard make allows processing rules to be built based around
suffixes, not other parts of the filename. A necessary step in
generalizing your commands is to choose a suffix that you use
consistently on all files of a given type:
.SUFFIXES : .o .c .s
c.o :
 ${CC} ${CFLAGS} -c $<
.s.o :
 ${AS} ${ASFLAGS} -o $@ $<

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Notes:
1 Line 1 must contain the keyword .SUFFIXES and all the file

extensions that you would like make to examine while
processing dependencies.

2 The second and third lines contain dependency processing
rules for files with extensions .c and .o. The second line
contains the statement in the form < make .o files from .c files
>; and the third line contains the command to do it, which
must start with a tab.

3 The fourth and the fifth lines contain dependency processing
rules for files with extensions .s and .o. The fourth line
contains the statement in the form < make .o files from .s files
>; and the fifth line contains the command to do it, which
must start with a tab.

4 Because line 1 states only file extensions .o, .c, and .s, make
will not consider files with any other extension while making
a particular target.

5 ${CC}, ${CFLAGS}, ${AS}, and ${ASFLAGS} are called
macros. Macros will be defined in the makefile before they
are used anywhere in the file.

MACROS AND DEFINING MACROS IN MAKEFILE
The makefile or the description file entries with the form:
CC = cc

are macro definitions. Subsequent reference to ${CC} or $(CC)
is interpreted as cc.
The macros are defined as:
 <Macro Name> = <Macro Definition>

Notes:
1 White spaces before and after the equals sign are stripped
off.

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

2 Macros could be written as ${MACRO} or $(MACRO).

COMMENTS IN MAKEFILE
The # sign can be used to comment a line or lines.

PREDEFINED OR INTERNAL MACROS

$?
$? gives the list of prerequisites that have been changed more
recently than the current target. It can be used only in normal
description file entries, not suffix rules.
For example:
libsql : a.o b.o c.o
 ar r $@ $?
.SUFFIXES: .c .o
.c.o:
 cc -c $<

Note: libsql is built using three object files – a.o, b.o, and c.o –
which in turn are built from a.c, b.c, and c.c. The target build
command states that when executing ar command, include only
those object files that have changed. First time around, all the
object files will be included in the building of library, libsql.
Subsequently, if the source file b.c has changed, make will re-
build b.o and issue the following command:

ar r libsql b.o

$@
$@ gives the name of the current target, except in description file
entries for making libraries, where it becomes the library name.
It can be used in both normal description file entries and suffix
rules.
For example:
program: a.o b.o
 cc -o $@ a.o b.o

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Note: the target program depends on a.o and b.o. When making
the target, $@ takes the value of the name of the target, which
is a program.

$$@
$$@ gives the name of the current target. It can be used only to
the right of the colon in dependency lines.

$<
$< gives the name of the current prerequisite that has been
modified more recently than the current target. It can be used
only in suffix rules and .DEFAULT entries.
For example:
Suffix rules
.SUFFIXES .c .o .pc
.c.o:
 cc -c $<

Notes: the rules state how to make an .o file from a .c file. The
cc command must have a source file name and $< evaluates to
that file name that qualifies to be compiled. If we replace $< with
a specific source file name, the cc command will only compile
that source file even though there could be more than one source
file that qualifies for re-compilation.

$*
$* gives the name without the suffix of the current prerequisite
that has been modified more recently than the current target. It
can be used only in suffix rules.
For example:
SUFFIXES : .o .c .pc
#==
How to make .c from .pc
#==
pc.c :
 $(PROC) $(PROFLAGS) iname=$*.pc
 rm $*.lis 2>/dev/null

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Notes:
1 When making .c from .pc, the iname parameter takes the

source file name that has a file extension of .pc, and,
therefore, $*.pc can provide that.

2 The process of making .c from .pc generates a .lis file with
the same name and, therefore, $*.lis can be used to remove
that file if required.

$%
$% gives the name of the corresponding .o file when the current
target is a library module. It can be used in both normal
description file entries and suffix rules.

ERROR AND EXIT STATUS
When a command produces an error (ie a non-zero exit status)
the whole make is aborted.
But if you put a hyphen before any command, make will continue
even when that command produces an error.
Note: you can force make to keep going regardless of command
errors by putting the special .IGNORE target in the makefile (or
description file). Alternatively, you can invoke make with the -i
option in order to ignore errors.

PROCESSING RULES FOR MAKE
Standard make allows processing rules to be built only based
around suffixes, not to other parts of the filename. A necessary
step in generalizing your commands is to choose a suffix that you
use consistently on all files of a given type.

EXAMPLE 1 MAKEFILE
CC=cc
#==
-c = compile only -I = starting location for search
#==

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

INC_DIR=.
CFLAGS=-c -I $(INC_DIR)
#==
+z = permit the use of null pointer
#==
LDFLAGS=+z
PROC=$(ORACLE_HOME)/bin/proc
#==
lines=yes will preserve the original line number in .pc file.
#==
PCCFLAGS=ireclen=132 oreclen=132 select_error=no mode=ORACLE lines=yes \
 sqlcheck=full userid=afz/afz
#==
Minimum Number of Libraries must be linked for embedded SQL program
#==
LIBORA=$(ORACLE_HOME)/rdbms/lib/libora.a
OSNTAB=$(ORACLE_HOME)/rdbms/lib/osntab.o
NETLIBS=$(OSNTAB) $(ORACLE_HOME)/rdbms/lib/libsqlnet.a
LIBSQL14=$(ORACLE_HOME)/rdbms/lib/libsql14.a
PROLDLIBS=$(LIBSQL14) $(NETLIBS) $(LIBORA)
#==
Additional Libraries for User exits (make sure no space after \)
#==
FORMSLIB=$(ORACLE_HOME)/forms3Ø/lib/iaddrvc.o \
 $(ORACLE_HOME)/forms3Ø/lib/ifmdmf.o \
 $(ORACLE_HOME)/forms3Ø/lib/ifplut.o \
 $(ORACLE_HOME)/forms3Ø/lib/libforms3Øc.a \
 $(ORACLE_HOME)/forms3Ø/lib/libforms3Ø.a \
 $(ORACLE_HOME)/forms3Ø/lib/libforms3Øp.a \
 $(ORACLE_HOME)/orakit/lib/liboktc.a \
 $(ORACLE_HOME)/orakit/lib/libokt.a \
 $(ORACLE_HOME)/rdbms/lib/libpls.a \
 $(ORACLE_HOME)/forms3Ø/lib/libforms3Øc.a \
 $(ORACLE_HOME)/forms3Ø/lib/libforms3Ø.a \
 $(ORACLE_HOME)/rdbms/lib/liboci14c.a
#==
Utility objects
#==
UOBJS=uti_common.o \
 uti_genmsg.o \
 uti_dsp_bat.o
#==
Batch objects
#==
BOBJS=bch_db_access.o
#==
DEPENDENCIES
Dependencies list (object list) for Targets
#==
ACC_SUM_TRA=acc_sum_tra.o \

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 acc_app_aer.o \
 $(UOBJS)
ACC_END_DAY=acc_end_day.o \
 $(UOBJS)
ACC_CLS_YR=acc_cls_yr.o \
 $(UOBJS)
IAD3ØX=ue_acc_app_aer.o \
 acc_app_aer.o \
 iapxtb.o \
 $(UOBJS)
#===
#TARGET BUILD
Build Targets
$@ evaluates to current target
#==
acc_sum_tra: $(ACC_SUM_TRA)
 $(CC) -o $@ $(ACC_SUM_TRA) $(PROLDLIBS)
acc_end_day: $(ACC_END_DAY)
 $(CC) -o $@ $(ACC_END_DAY) $(PROLDLIBS)
acc_cls_yr: $(ACC_CLS_YR)
 $(CC) -o $@ $(ACC_CLS_YR) $(PROLDLIBS)
iad3Øx: $(IAD3ØX)
 $(CC) -o $@ $(IAD3ØX) $(FORMSLIB) $(PROLDLIBS)
#==
Description of suffix rules
Order of any of these rules is not important
$* macro evaluates to the current file name without the extension
which make is dealing with
#==
.SUFFIXES : .o .c .pc
#==
How to make .c from .pc
#==
pc.c :
 $(PROC) $(PROFLAGS) iname=$*.pc
 rm $*.lis 2>/dev/null
#==
How to make .o from .c
#==
.c.o :
 $(CC) $(CFLAGS) $*.c
#==
How to make .o from .pc
remove .lis and .c files
#==
.pc.o :
 $(PROC) $(PCCFLAGS) iname=$*.pc
 rm $*.lis 2>/dev/null
 $(CC) $(CFLAGS) $*.c
 rm $*.c 2>/dev/null

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Notes:
1 Suffix rules show that files with extension .c, .o, and .pc are

to be considered.
2 While defining macros, \ (backslash) can be used to continue

the definition on the next line.
3 For each suffix rule, any valid command can be included.
4 Macros can be defined to include dependency lists.
5 The makefile has the following four targets:

o acc_sum_tra
o acc_end_day
o acc_cls_yr
o iad3Øx

6 To make all the afore-mentioned targets we need the following
commands:
make –f makefile acc_sum_tra
make –f makefile acc_end_day
make –f makefile acc_cls_yr
make –f makefile iad3Øx

7 There is nothing in this makefile that will enable us to make
all the targets with one call to make.

DUMMY TARGET ALL
In the example above we have defined four targets and, therefore,
in order to make all these targets we had to call make four times
with different target names. In order to avoid calling make four
times, each calling for an individual target, we can define a
dummy target called ALL, with all four targets as its dependants,
as follows:
ALL : acc_sum_tra acc_end_day acc_cls_yr iad3Øx

Then issue the following command:
make -f makefile ALL

This will make all four targets.

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

EXAMPLE 2 MAKEFILE
#===
File : make32.mk
Description : Make file to build loadavg.so and plibmas.so
Usage : make -f make32.mk all
will make loadavg.so and plibmas.so
make -f make32.mk loadavg
will make loadavg.so
make -f make32.mk plibmas
will make plibmas.so
#==
include $(ORACLE_HOME)/rdbms/lib/env_rdbms.mk
directory that contain oratypes.h and other oci demo program header
files
INCLUDE= -I$(ORACLE_HOME)/rdbms/public -I$(ORACLE_HOME)/plsql/public -
I$(ORACLE_HOME)/network/public
#
CONFIG = $(ORACLE_HOME)/rdbms/lib/config.o
CC=cc -I. -g -v -Xc -D__EXTENSIONS__
PROC=$(ORACLE_HOME)/bin/proc
PROCFLAGS=ireclen=132 oreclen=132 select_error=no \
 sqlcheck=$(SQLCHECK) userid='$(DBNAME)' \
 ltype=none xref=no mode=ansi lines=yes \
 define=__STDC__ \
 define=__EXTENSIONS__
PCCINCLUDE= include=$(ORACLE_HOME)/precomp/public
PCCI=-I$(ORACLE_HOME)/precomp/public
PROLDLIBS= $(LLIBSQL) $(TTLIBS)
.SUFFIXES:
.SUFFIXES: .o .c .pc
.pc.o:
 -@echo "*** Rule to make $@ from $<"
 $(PROC) iname=$*.pc $(PROCFLAGS) > $*.ERRS 2>&1
 $(CC) -c $(STD_INCLUDE) $*.c $(MASLIBS) $(PROLDLIBS) >> $*.ERRS 2>&1
 -rm -f $*.c
 -mv $*.o $*32.o
.c.o:
 $(ECHODO) $(CC) -c $(KPIC_OPTION) $(INCLUDE) >> $*.ERRS 2>&1 $<
 -mv $*.o $*32.o
dependency line for dummy target ALL
ALL: loadavg plibmas
dependency line for target loadave
loadavg: loadavg.o
 $(LD) $(SHARED_LDFLAG) loadavg.so loadavg32.o
dependency line for target plibmas
plibmas: lib_lock_file.o lib_unlock_file.o qsort_string.o \
 write_from_plsql_to_logfile.o
 $(LD) $(SHARED_LDFLAG) plibmas.so lib_lock_file32.o \
 lib_unlock_file32.o qsort_string32.o \
 write_from_plsql_to_logfile32.o

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Notes:
1 Suffix rules do not have to be the last things defined in the

makefile.
2 Notice the usage of dummy target, ALL.
3 Makefile can contain the include command to include

definitions from other makefiles.
The syntax is:
include file

The word include must begin the line and must be followed
by a space or tab

4 Makefile can contain any operating system commands with
‘-’.

5 The processing that the command make -f makefile loadavg
will perform is as follows:
ESTABLISH the prerequisites for target loadavg
RECORD loadavg.o as prerequisite
IF target exists in current directory
THEN
 IF target modification date > prerequisite modification date

 THEN
 DISPLAY "Target is up to date "
 EXIT
 END IF
 END IF
 RECORD no dependency line exists for prerequisite loadavg.o
 CONSIDER suffix rule .pc.o
 IF loadavg.pc does not exist
 THEN
 DISPLAY "Don't know how to make target loadavg.o "
 EXIT
 END IF
 IF modification date of loadavg.pc > loadavg.o
 THEN
 BUILD loadavg.o from loadavg.pc
 END IF
 ISSUE the command to make the target, loadavg

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

EXAMPLE 3

Requirement
We want to write a makefile that will build an executable called
main that depends on four source files:
• main.pc
• a.pc
• b.pc
• c.pc.
Any time any of the source files is changed, make should reflect
that change in the executable.
Makefile looks like:
main : main.o a.o b.o c.o
 cc -o $@ main.o a.o b.o c.o

.SUFFIXES:

.SUFFIXES: .o .pc

.pc.o:
 proc iname=$<
 cc -c $*.c

Notes:
1 Notice how the statement ‘target main depends on four

source file main.pc, a.pc, b.pc, and c.pc’ has been turned
into a dependency statement. Consider the following
dependency line:
main : main.pc a.pc b.pc a.pc
 cc -o $@ main.o a.o b.o c.o

In this case, make won’t recognize a change in any of the
source files because for this to happen there has to be a
suffix rule such as .<something>.pc. Therefore, the
prerequisites in the dependency lines must be the files that
make can make in order to enforce the changes in the
source files.

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

2 If you make a change in one of the source files, let’s say a.pc,
make will re-make a.o from a.pc and rebuild the target main.

3 The line .SUFFIXES: deletes all currently recognized suffixes.
Therefore, the two lines:

 .SUFFIXES:
 .SUFFIXES: .o .pc

replace the current suffixes with .o and .pc. It will not nullify
the current set of suffixes by adding the extra line; make will
not recognize any changes in any of the .pc files. You can try
this by commenting out the top line and then changing one
of the source files and running make to build main. It will
simply issue the command cc -o $@ main.o a.o b.o c.o
without making .o from the changed source file.

TARGET WITHOUT ANY PREREQUISITES
clean:
 /bin/rm -f *.lis

Notes:
1 Make does allow targets to be defined without any pre-

requisites. However, the colon must be present.
2 The command, $make clean, will execute the command /

bin/rm –f *.lis as long as there is not an actual file called
‘clean’ in the current directory. Make will execute the command
because make treats every non-existent target as an out-of-
date target.

RUNNING MAKE WITHOUT A SPECIFIC TARGET
In this case make will build the first target contained in the
makefile.
Note: it is possible to provide several target names in a single
invocation of make as follows:

make a.o b.o c.o

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

RECURSIVE INVOCATION OF MAKE
In general, recursive make solves problems when you want to
determine information dynamically during your build and pass
that information on to other parts of the build.
For example:
Example for building demo OCI programs:
1. All OCI demos (including extdemo2):
make -f demo_rdbms.mk demos
2. A single OCI demo:
make -f demo_rdbms.mk build EXE=demo OBJS="demo.o ..."
eg make -f demo_rdbms.mk build EXE=ociØ2 OBJS=ociØ2.o
3. A single OCI demo with static libraries:
make -f demo_rdbms.mk build_static EXE=demo OBJS="demo.o ..."
eg make -f demo_rdbms.mk build_static EXE=ociØ2 OBJS=ociØ2.o
4. To re-generate shared library:
make -f demo_rdbms.mk generate_sharedlib
Example for building demo DIRECT PATH API programs:
1. All DIRECT PATH API demos:
make -f demo_rdbms.mk demos_dp
2. A single DIRECT PATH API demo:
make -f demo_rdbms.mk build_dp EXE=demo OBJS="demo.o ..."
eg make -f demo_rdbms.mk build_dp EXE=cdemodp_lip
OBJS=cdemodp_lip.o
Example for building external procedures demo programs:
1. All external procedure demos:
2. A single external procedure demo whose 3GL routines do not use
the "with context" argument:
make -f demo_rdbms.mk extproc_no_context SHARED_LIBNAME=libname
OBJS="demo.o ..."
eg make -f demo_rdbms.mk extproc_no_context
SHARED_LIBNAME=epdemo.so OBJS="epdemo1.o epdemo2.o"
3. A single external procedure demo where one or more 3GL routines
use the "with context" argument:
make -f demo_rdbms.mk extproc_with_context
SHARED_LIBNAME=libname OBJS="demo.o ..."
eg make -f demo_rdbms.mk extproc_with_context
SHARED_LIBNAME=epdemo.so OBJS="epdemo1.o epdemo2.o"
eg make -f demo_rdbms.mk extproc_with_context
SHARED_LIBNAME=extdemo2.so OBJS="extdemo2.o"
eg or For EXTDEMO2 DEMO ONLY: make -f demo_rdbms.mk demos
4. To link C++ demos:
make -f demo_rdbms.mk c++demos
NOTE: 1. ORACLE_HOME must be either:
. set in the user's environment
. passed in on the command line
. defined in a modified version of this makefile
2. If the target platform support shared libraries (eg

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Solaris look in the platform specific documentation for
Information about environment variables that need to be
Properly defined (eg LD_LIBRARY_PATH in Solaris).
include $(ORACLE_HOME)/rdbms/lib/env_rdbms.mk
RDBMSLIB=$(ORACLE_HOME)/rdbms/lib/
LDFLAGS=-L$(LIBHOME) -L$(ORACLE_HOME)/rdbms/lib
LLIBPSO='cat $(ORACLE_HOME)/rdbms/lib/psoliblist'
FC=f77
COB=cob
COBFLAGS=-C IBMCOMP -x
COBGNTFLAGS=-C IBMCOMP -u
CPLPL=CC
directory that contain oratypes.h and other oci demo program header
files
INCLUDE= -I$(ORACLE_HOME)/rdbms/demo -I$(ORACLE_HOME)/rdbms/public -
I$(ORACLE_HOME)/plsql/public -I$(ORACLE_HOME)/network/public
CONFIG = $(ORACLE_HOME)/rdbms/lib/config.o
module to be used for linking with non-deferred option
flag for linking with non-deferred option (default is deferred
mode)
NONDEFER=false
libraries for linking oci programs
OCISHAREDLIBS=$(TTLIBS) $(LLIBTHREAD)
OCISTATICLIBS=$(STATICTTLIBS) $(LLIBTHREAD)
PSOLIBLIST=$(ORACLE_HOME)/rdbms/lib/psoliblist
CLEANPSO=rm -f $(PSOLIBLIST); $(GENPSOLIB)
DOLIB=$(ORACLE_HOME)/lib/liborcaccel.a
DUMSDOLIB=$(ORACLE_HOME)/lib/liborcaccel_stub.a
REALSDOLIB=/usr/lpp/orcaccel/liborcaccel.a
PROC=$(ORACLE_HOME)/bin/proc
PCCINCLUDE= include=$(ORACLE_HOME)/precomp/public
PCCI=-I$(ORACLE_HOME)/precomp/public
USERID=scott/tiger
PCCPLSFLAGS= $(PCCINCLUDE) ireclen=132 oreclen=132 sqlcheck=full \
ltype=none user=$(USERID)
LLIBSQL= -lsql
PROLDLIBS= $(LLIBSQL) $(TTLIBS)
DEMO_MAKEFILE = demo_rdbms.mk
DEMOS = cdemo1 cdemo2 cdemo3 cdemo4 cdemo5 cdemo81 cdemo82 \
 cdemobj cdemolb cdemodsc cdemocor cdemolb2 cdemolbs \
 cdemodr1 cdemodr2 cdemodr3 cdemodsa obndra \
 cdemoext cdemothr cdemofil cdemofor \
 ociØ2 ociØ3 ociØ4 ociØ5 ociØ6 ociØ7 ociØ8 ociØ9 oci1Ø \
 oci11 oci12 oci13 oci14 oci15 oci16 oci17 oci18 oci19 oci2Ø \
 oci21 oci22 oci23 oci24 oci25 readpipe cdemosyev \
 ociaqdemoØØ ociaqdemoØ1 ociaqdemoØ2 cdemoucb
DEMOS_DP = cdemodp_lip
C++DEMOS = cdemo6
.SUFFIXES: .o .cob .for .c
demos: $(DEMOS) extdemo2

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

demos_dp: $(DEMOS_DP)
generate_sharedlib:
 $(SILENT)$(ECHO) "Building client shared library ..."
 $(SILENT)$(ECHO) "Calling script $$ORACLE_HOME/bin/genclntsh ..."
 $(GENCLNTSH)
$(SILENT)$(ECHO) "The library is $$ORACLE_HOME/lib/libclntsh.so... DONE"
MAKECPLPLDEMO= \
 @if ["$(NONDEFER)" = "true" -o "$(NONDEFER)" = "TRUE"] ; then \
 $(ECHODO) $(CPLPL) $(LDFLAGS) -o $(EXE) $? $(NDFOPT)
$(OCISHAREDLIBS); \
 else \
 $(ECHODO) $(CPLPL) $(LDFLAGS) -o $(EXE) $? $(OCISHAREDLIBS); \
 fi
$(DEMOS):
 $(MAKE) -f $(DEMO_MAKEFILE) build EXE=$@ OBJS=$@.o
$(DEMOS_DP): cdemodp.c cdemodpØ.h cdemodp.h
 $(MAKE) -f $(DEMO_MAKEFILE) build_dp EXE=$@ OBJS=$@.o
c++demos: $(C++DEMOS)
$(C++DEMOS):
 $(MAKE) -f $(DEMO_MAKEFILE) buildc++ EXE=$@ OBJS=$@.o
buildc++: $(OBJS)
 $(MAKECPLPLDEMO)
.cc.o:
 $(CPLPL) -c $(KPIC_OPTION) $(INCLUDE) $<
build: $(LIBCLNTSH) $(OBJS)
 $(ECHODO) $(CC) $(LDFLAGS) -o $(EXE) $(OBJS) $(OCISHAREDLIBS)
extdemo2:
 $(MAKE) -f $(DEMO_MAKEFILE) extproc_with_context
SHARED_LIBNAME=extdemo2.so OBJS="extdemo2.o"
.c.o:
 $(ECHODO) $(CC) -c $(KPIC_OPTION) $(INCLUDE) $<
build_dp: $(LIBCLNTSH) $(OBJS) cdemodp.o
 $(ECHODO) $(CC) $(LDFLAGS) -o $(EXE) cdemodp.o $(OBJS)
$(OCISHAREDLIBS)
build_static: $(OBJS)
 $(ECHODO) $(CC) $(LDFLAGS) -o $(EXE) $(OBJS) $(SSDBED) $(DEF_ON) \
 $(OCISTATICLIBS)
extproc_no_context: $(OBJS)
 $(LD) $(SHARED_LDFLAG) $(SHARED_LIBNAME) $(OBJS)
extproc_with_context: $(OBJS) $(LIBCLNTSH)
 $(LD) $(SHARED_LDFLAG) $(SHARED_LIBNAME) $(OBJS) $(OCISHAREDLIBS) \
 $(LIBEXTP)
these two targets are the same as the ones above extproc_no_context
and extproc_with_context. They are preserved for backward
compatibility.
extproc_nocallback: $(OBJS)
 $(LD) $(SHARED_LDFLAG) $(SHARED_LIBNAME) $(OBJS)
extproc_callback: $(OBJS) $(LIBCLNTSH)
 $(LD) $(SHARED_LDFLAG) $(SHARED_LIBNAME) $(OBJS) $(OCISHAREDLIBS) \
 $(LIBEXTP)

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

clean:
 $(RM) -f $(DEMOS) extdemo2 *.o *.so

Notes:
1 Consider the command make -f demo_rdbms.mk demos.

This is supposed to make all the following targets, which are
its pre-requisites (expansion of macro ${DEMOS):

 cdemo1 cdemo2 cdemo3 cdemo4 cdemo5 cdemo81 cdemo82
 cdemobj cdemolb cdemodsc cdemocor cdemolb2 cdemolbs
 cdemodr1 cdemodr2 cdemodr3 cdemodsa obndra
 cdemoext cdemothr cdemofil cdemofor
 ociØ2 ociØ3 ociØ4 ociØ5 ociØ6 ociØ7 ociØ8 ociØ9 oci1Ø
 oci11 oci12 oci13 oci14 oci15 oci16 oci17 oci18 oci19 oci2Ø
 oci21 oci22 oci23 oci24 oci25 readpipe cdemosyev
 ociaqdemoØØ ociaqdemoØ1 ociaqdemoØ2 cdemoucb
 extdemo2

Once all the pre-requisites have been defined, we need to
build a rule for each of them. This rule is defined using a
recursive call to make as follows:
$(DEMOS):
$(MAKE) -f $(DEMO_MAKEFILE) build EXE=$@ OBJS=$@.o

The call to make would now look like the following:
/bin/make -f demo_rdbms.mk build EXE=cdemo1 OBJS=cdemo1.o
/bin/make -f demo_rdbms.mk build EXE=cdemo2 OBJS=cdemo2.o

and so on, where /bin/make and demo_rdbms.mk are
expanded from macros $(MAKE) and $(DEMO_MAKEFILE).
Without the design of recursive calls we would have had to
hardcode all the build rules for each of the targets.

2 Target clean is defined to clear all unwanted files

RUN OPTIONS FOR MAKE
Make [-f makefile_name] [options] [targets] [macro definitions]

Notes:
1 Options, targets, and macro definitions can be in any order.
2 Several options can be combined after a single hyphen.

 48 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3 The format of a macro definition is as:
Name=string

4 The most common options are:
– -e – let environment variables override macro definitions

inside the makefile.
– - n – echo command lines, but do not execute them.
– - s – do not echo command lines.
– -t – touch target files (making them appear up to date)

without executing any other commands.

A COMMON MISTAKE WHEN PREPARING A MAKEFILE
Missing out the tab before the command in a dependency line
and in suffix rules is the most common mistake:
a : b.o
 cc -o $@ b.o

.SUFFIXES: .c .o

.c.o:
 cc -c $<

Note: both cc commands must start after a tab.

DEBUGGING MAKEFILE
If a makefile is not being run to completion, try running make with
the -d option. As make goes through each dependency check
and build targets, it displays descriptive messages.
For example:
$ make -d -f makefile mas_extract
MAKEFLAGS value:
 Building mas_extract.o using suffix rule for .pc.o because it is out
of date relative to mas_extract.pc
proc iname=mas_extract
Pro*C/C++: Release 8.1.6.Ø.Ø - Production on Sat Jun 22 15:12:Ø1 2ØØ2
(c) Copyright 1999 Oracle Corporation. All rights reserved.
System default option values taken from: /uØ1/app/oracle/product/8.1.6/
precomp/a

 49© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

dmin/pcscfg.cfg
cc -xO2 -Xa -xstrconst -xF -mr -xarch=v8 -xcache=16/32/1:1Ø24/64/1
-xchip=u
ltra -D_REENTRANT -K PIC -DPRECOMP -I. -I/uØ1/app/oracle/product/8.1.6/
precomp/
public -I/uØ1/app/oracle/product/8.1.6/rdbms/public -I/uØ1/app/oracle/
product/8.
1.6/rdbms/demo -I/uØ1/app/oracle/product/8.1.6/plsql/public -I/uØ1/app/
oracle/product/8.1.6/network/public -DSLMXMX_ENABLE -DSLTS_ENABLE -
D_SVID_GETTOD -c mas_extract.c
 Building mas_extract because it is out of date relative to
mas_extract.o
cc -o mas_extract mas_extract.o \
 -L/uØ1/app/oracle/product/8.1.6/lib/ -lclntsh
 'cat /uØ1/app/oracle/product/8.1.6/lib/sysliblist' \
 -R/uØ1/app/oracle/product/8.1.6/lib -laio -lm -lthread
rm mas_extract.o mas_extract.c

Notes:
1 Consider the first message:

Building mas_extract.o using suffix rule for .pc.o because it is
out of date relative to mas_extract.pc

If the mas_extract.o file does not exist, make will always
consider this as out -of-date relative to mas_extract.pc,
otherwise make will check for the latest modification date on
the mas_extract.o file. If the date is later than that of
mas_extract.pc, it will not make that file.

2 Consider the second message:
Building mas_extract because it is out of date relative to
mas_extract.o

if mas_extract file does not exist, make will always consider
this as out-of-date relative to mas_extract.o, otherwise
make will check for the latest modification date on mas_extract
file. If the date is later than that of mas_extract.o, it will not
make that file. In this case, because mas_extract.o was
made, make will certainly re-build the target mas_extract.

Arif Zaman
ETL Developer (UK) © Xephon 2002

AIX news

IBM has announced Tivoli Identity Manager
V2.1, which runs on AIX or Solaris, and
centralizes the definition of users and
provisioning of user services, provides role-
based delegation of administrative privileges
across organizational and geographical
boundaries, provides users with self-care
interfaces, automates the submission and
approval of user administration requests and
the implementation of administrative
requests on the environment, and provides an
application management toolkit.

IBM Tivoli Identity Manager V2.1 provides
identity management by means of improved
provisioning of identity data to more
endpoints, cross-directory integration, and
improved Web-based presentation and
administration.

For further information contact your local
IBM representative.
URL: http://www.tivoli.com/support/
public/Prodman/public_manuals/td/ITIM/
S C 3 2 - 0 8 2 7 - 0 0 / e n _ U S / H T M L /
id21prog.htm.

* * *

IBM has unveiled AIX 5L Version 5.2, which
allows users to divide their server into smaller
‘virtual’ servers running either Unix or Linux.
Like in the mainframe world, users can
exploit the full power of their system by
shifting workloads and changing resources
transparently. If one partition experiences a
problem and needs to be restarted it does not
affect any of the other virtual servers on the
system.

New to Version 5.2, IBM’s implementation
of dynamic Logical Partitioning (LPAR)
allows system resources including

processors, memory and, other components
to be assigned to independent partitions,
without rebooting the system. The ability to
allocate resources without interruption eases
system management and contributes to lower
Total Cost of Ownership because the
resources are better utilized.

Another feature of AIX 5L Version 5.2 is
Capacity Upgrade on Demand (CUoD).
Working synergistically, CUoD and dynamic
LPAR help system administrators adapt to
changing workloads and rapid growth
without an interruption in service. Using
CUoD and dynamic LPAR together, if an
IBM eServer pSeries system has a failing
processor, a new processor can be
automatically brought online at no additional
charge to the customer and with no
interruption in service or performance
degradation.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/servers/aix/os/
52features.html.

* * *

IBM has announced WebSphere Voice
Server Version 3.1 for Windows 2000 and
AIX, which includes all the capability of
WebSphere Voice Server V2.0, and provides
the following new features: more natural
sounding synthesized speech with a new
Concatenative Text-To-Speech (TTS)
engine, support for WebSphere Voice
Response for AIX 3.1, and support for Web
Sphere Voice Response for Windows 3.1.

For further information contact your local
IBM representative.
URL: http://www.ibm.com.

x xephon

	Where's that filesystem gone?
	Syslog - the AIX system logger
	Conditional operators
	Make
	AIX news

