

© Xephon plc 2002

January 2003

87

In this issue

AIX
u

p
d

ate

3 Determining your networking
configuration

7 Performance Toolbox for AIX
17 The for loop
29 Carriage returns in DOS and Unix
30 A script to save AIX data on a DAT

tape with tar
39 Network back-up manager
50 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Determining your networking configuration

Some Unix systems manufacturers make it easier than others to
configure and maintain network configuration. For example Sun
has an ASCII file, /etc/defaultrouters, which can be edited to
specify the default network routes for the system; Digital’s Tru64
uses a file called /etc/rc.config for network interface configuration
and one called /etc/routes for network routing.
IBM has SMIT. However, the information you supply through the
networking panels is stored in the ODM and is therefore not
easily readable. Checking what interfaces are currently up and
running on a system is relatively simple, as is checking what
network routes exist. But which ones will survive a system
reboot? And how do you know whether any of them have been
changed on the fly? Unless you have made alterations through
the ifconfig command or the SMIT panels, these changes will be
lost at reboot time.
The following program is designed to help in finding out what is
stored in the ODM with regards to networking. It queries the
Customized Attributes part of the database to find out what
network interfaces are defined on the system, which are configured
and which not, and what, if any, routes are defined.
There is one anomaly, though, that I know of. The SP switch
interface (CSS) is not defined in the same way as other network
interfaces – it has a ‘parent’ of sysplanar (system board) and not
inet (network). Hence the program does not pick it up.

FIND_ROUTE.PL
#!/usr/bin/perl -w
#
Program to check interfaces & static routes in the ODM on AIX
#
use strict;
use Data::Dumper;
my %defined;
my @undefined;

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

my @undefpddv;
my $if_name;
my $attr;
my @arrayoffields;
my %routes;
my $route;
my $mesg;
my $oldhandle;
my $setno;
my $msgno;
my $catalog;
$ENV{ODMDIR}="/etc/objrepos";
Make sure we are looking at the root ODM

Get the interfaces first : both defined ones and undefined
print "\n\n ***************************\n";
print " * Interfaces *\n";
print " ***************************\n\n";
open(CM3,"odmget -q\"parent=inetØ and status=Ø\" CuDv|");
WHILE:while (<CM3>) {
 s/^\s+//;
 s/\s+$//;
 if (/^name/) { push(@undefined,(split /\"/)[1]); }
 if (/^PdDvLn/) { push(@undefpddv,(split /\"/)[1]); }
 }
close CM3;
open(CM1,"odmget -q\"parent=inetØ and status=1\" CuDv|");
WHILE:while (<CM1>) {
 s/^\s+//;
 s/\s+$//;
 CASE: {
 /^name/ and do {
 $if_name=(split /\"/)[1];
 next WHILE if ($if_name=~ /loØ/);
 open(CM2,"odmget -q\"name=$if_name\" CuAt|");
 while (<CM2>) {
 s/^\s+//;
 s/\s+$//;
 IFDET: {
 /^attribute/ and do {
 $attr=(split /\"/)[1];
 last IFDET;
 };
 /^value/ and do {
 $defined{$if_name}{$attr}=(split /\"/)[1];
 last IFDET;
 };
 }
 }
 close CM2;

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 last CASE;
 };
 }
}
close CM1;
print " I/f IP Address Netmask Status \n";
print "===== =============== =============== =========\n";
$~="INTERFACES";
foreach (keys %defined) {
 write;
}
$~="STDOUT";
print "\n";
my $temp;
foreach $if_name (@undefined) {
 $attr=shift(@undefpddv);
 open(CM4,"odmget -q\"uniquetype=$attr\" PdDv|");
 while (<CM4>) {
 s/^\s+//;
 s/\s+$//;
 if (/^setno/) { $setno=(split /=/)[1]; }
 if (/^msgno/) { $msgno=(split /=/)[1]; }
 if (/^catalog/) { $catalog=(split /\"/)[1]; }
 }
 close CM4;
 open(CM5,"dspmsg $catalog -s $setno $msgno|");
 $attr=<CM5>;
 close CM5;
 $~="UNDEFIF";
 write;
 $~="STDOUT";
}
print "\n";

Get the static routes

print " ***************************\n";
print " * Routes *\n";
print " ***************************\n";
open(CMD,"odmget -q\"attribute=route\" CuAt|");
while (<CMD>) {
 s/^\s+//;
 s/\s+$//;
 SWITCH: {
 /^value/ and do {
 push(@arrayoffields, split (/,/, (split /\"/)[1]));
 $route=$arrayoffields[scalar(@arrayoffields)-2];
 $routes{$route}{"type"}=$arrayoffields[Ø];
 $routes{$route}{"type"}.="work" if $arrayoffields[Ø]=~/^net/;
 $routes{$route}{"via"}=$arrayoffields[scalar(@arrayoffields)-1];

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if ($arrayoffields[1] =~ /-hopcount/) {
 $routes{$route}{"hopc"}=$arrayoffields[2];
 } else {
 $routes{$route}{"hopc"}="1";
 }
 $routes{$route}{"netm"}=$arrayoffields[4] if ($arrayoffields[3] =~
/-netmask/);
 if ($arrayoffields[3] =~ /-netmask/) {
 $routes{$route}{"netm"}=$arrayoffields[4]
 } else {
 if ((split(/\./, $routes{$route}{"via"}))[Ø] < 32) {
 $routes{$route}{"netm"}="255.Ø.Ø.Ø";
 } elsif ((split(/\./, $routes{$route}{"via"}))[Ø] < 128) {
 $routes{$route}{"netm"}="255.255.Ø.Ø";
 } else {
 $routes{$route}{"netm"}="255.255.255.Ø";
 }
 }
 undef @arrayoffields;
 last SWITCH;
 };
 }
}
close CMD;
if (! %routes) {
 print "*** No system default route has been defined ***\n";
} else {
 print "\n*** System default route is via gateway
".$routes{"Ø"}{"via"}." ***\n\n";
 delete($routes{"Ø"});
 print " Type Host Gateway Netmask
Hopcount\n";
 print "======= =============== =============== ===============
========\n";
 $~="ROUTES";
 foreach (keys %routes) {
 write;
 }
 $~="STDOUT";
}
print "\n";
format ROUTES =
@|||||| @|||||||||||||| @|||||||||||||| @|||||||||||||| @||||||||
$routes{$route}{"type"},$_,$routes{$route}{"via"},
 $routes{$route}{"netm"},$routes{$route}{"hopc"}
.
format INTERFACES =
@<<<< @|||||||||||||| @|||||||||||||| @||||||||
$_,$defined{$_}{"netaddr"},$defined{$_}{"netmask"},$defined{$_}{"state"}
.

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

format UNDEFIF =
Undefined interface : @>>>>
@<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$if_name,$attr
.
End of program

FIND_ROUTE.OUT

 * Interfaces *

 I/f IP Address Netmask Status
===== =============== =============== =========
trØ 166.133.6.1Ø6 255.255.255.Ø up

Undefined interface : enØ Standard Ethernet Network Interface
Undefined interface : etØ IEEE 8Ø2.3 Ethernet Network Interface

 * Routes *

*** System default route is via gateway 166.133.6.1 ***

 Type Host Gateway Netmask Hopcount
======= =============== =============== =============== ========
 host 166.133.9.64 166.133.6.1 255.255.255.Ø 1

Phil Pollard
Unix and TSM Administrator (UK) © Xephon 2003

Performance Toolbox for AIX

IBM Performance Toolbox for AIX is a licensed product providing
a set of programs that enable to you to monitor the use of
resources on IBM RISC System/6000 computer systems and
other systems that are capable of running a data supplier
daemon.
The xmservd data-supplier daemon can provide consumers of

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

performance statistics with a stream of data. Frequency and
content of each packet of performance data are determined by
the consumer program. Any consumer program can access
performance data from the local host and one or more remote
hosts. Monitoring of performance data via the network is important
and extremely useful if you know when and what to monitor.
Unfortunately, that is not always, or even normally, the case.
Quite often, performance problems arise and are experienced by
end users without the system administrator knowing about them
until it’s too late to start a monitoring session. Additionally, for us,
having so many remote servers, monitoring of performance data
via the network causes a lot of network traffic.
So I decided to record performance data on a local disk file on
remote servers, and then, with my script (ftp_perf.sh), ftp this
daily performance data file from all remote servers to the
dedicated performance server during the night. This enables us
to collect all performance data on one server and draw the
graphics every day to analyse performance problems after they
occurred. One of the things that makes this product unique is that
it is not hardcoded to monitor a fixed set of resources. It’s
dynamic in the sense that a system administrator can customize
it to focus on exactly the resources that are critical for each host
that must be monitored. Outstanding features for analysing a
recording of performance data are provided by the azizo program.
The xmservd daemon permits any system with the agent
component installed to record the activity on the system at all or
selected times and for any set of performance statistics. This
capability is called the xmservd recording facility and is controlled
through the xmservd recording configuration file.
Sample recording configuration file /etc/perf/xmservd.cf:
Configuration file by Akbas , 1Ø.Ø4.2ØØ2

Keep files at least 2 days and let each file contain
one days recordings

retain 2 1

Set default sampling interval to 1 minute

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

frequency 6ØØØØ

CPU statistics:

CPU/cpuØ/idle
CPU/cpuØ/kern
CPU/cpuØ/user
CPU/cpuØ/wait
CPU/cpu1/idle
CPU/cpu1/kern
CPU/cpu1/user
CPU/cpu1/wait

System-wide CPU statistics:

CPU/glidle
CPU/glkern
CPU/gluser
CPU/glwait

Disk statistics:

Disk/hdiskØ/busy
Disk/hdiskØ/rblk
Disk/hdiskØ/wblk
Disk/hdiskØ/xfer
Disk/hdisk1/busy
Disk/hdisk1/rblk
Disk/hdisk1/wblk
Disk/hdisk1/xfer

Internet Protocol statistics :

IP/NetIF/enØ/ioctet_kb
IP/NetIF/enØ/ipacket
IP/NetIF/enØ/ooctet_kb
IP/NetIF/enØ/opacket

LAN Interfaces:

LAN/fcsØ/kbytesin
LAN/fcsØ/kbytesout

Memory statistics:

Mem/Real/%free
Mem/Real/%pinned
Mem/Real/%comp
Mem/Real/%noncomp
Mem/Real/%local

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Mem/Real/%clnt

Paging space statistics:

PagSp/%totalfree
PagSp/%totalused

Virtual memory management statistics:

Mem/Virt/pagein
Mem/Virt/pageout
Mem/Virt/pgspgin
Mem/Virt/pgspgout
Mem/Virt/sio
Mem/Virt/steal
Mem/Virt/pagexct

System call statistics:

Syscall/total
Syscall/read
Syscall/write
Syscall/fork
Syscall/exec

Process statistics:

Proc/pswitch
Proc/runque
Proc/swpque

Record Sunday through Saturday - 24 hours per day

start Ø-6 ØØ ØØ Ø-6 ØØ ØØ

The command xmpeek –l displays all available statistics that
can be recorded.
All recording files created by xmservd are placed in the directory
/etc/perf. Recording filenames are azizo.yymmdd, where the
part after the period is built from the day the first record was
written to the file. A recording on 26 March 2002 would thus be
called /etc/perf/azizo.020326. Our conf file are configured so that
two days of files are kept and each file contains one day’s
recordings, which gives us time for our ftp script to transfer the
file to our performance server. Additionally, in the ftp script, I
convert the recordings to an ASCII file and upload it to my PC so

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

that my Visual Basic script inserts the data into an Excel sheet
and draws the graphics for each server.
Here is the script that collects azizo recordings from remote
servers:
#!/bin/ksh
#
Adnan Akbas , 15.Ø4.2ØØ2

The script gets recorded performance files (azizo) from the remote
servers and ftps to a dedicated performance server.

Function that makes ftp get for the given Perf-client to the Perf-
server

function ftp_get {

Variables

local_dir=/perf/${perf_client}

Getting the standard output and error output to logfile

logfile=${local_dir}/perf_ftpget_'date +%y%m%d'.log

Error messages due to return codes

retstrØ="INFO: FILE RECEIVED for ${perf_client} !!!"
retstr1="ERROR: Cannot change to ${local_dir} ... FILE NOT RECEIVED for
${perf_client} !!!"
retstr2="ERROR: Cannot ping ${perf_client} ... FILE NOT RECEIVED for
${perf_client} !!!"
retstr3="ERROR: Target file does not exist. ... FILE NOT RECEIVED for
${perf_client} !!!"
retstr4="ERROR: Login failed, check user and password ... FILE NOT
RECEIVED for ${perf_client} !!!"

Check if we are in the right directory in Perf-Server

cd ${local_dir} > $logfile 2>&1
if [$(pwd) != ${local_dir}]
then
 echo "$retstr1" > $logfile 2>&1
 return
fi

Check whether the Perf-client is pingable

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ping -qc3 ${perf_client} > /dev/null 2>&1
if ["$?" != "Ø"]
then
 echo "$retstr2" >> $logfile 2>&1
 return
fi

Start FTP Job

print >> $logfile 2>&1
echo "$(date)" >> $logfile 2>&1
print >> $logfile 2>&1
print >> $logfile 2>&1
echo "STARTING FTP (GET) " >> $logfile 2>&1
print >> $logfile 2>&1

ftp -v -n ${perf_client} << ! >> $logfile 2>&1
user $user $password
prompt
bin
cd ${client_dir}
ls azizo.${prev_day}
get azizo.${prev_day}
bye
!

print >> $logfile 2>&1
echo "FINISHED: $(date)" >> $logfile 2>&1
print >> $logfile 2>&1

Checking the output of ftp and
determining whether it is successful or not

Checking whether the user could log in.

cat $logfile | grep "Login failed" > /dev/null 2>&1
if [$? -eq Ø]
then
 echo "$retstr4" >> $logfile 2>&1
 return
fi

Checking whether the target directory and file exists.

cat $logfile | grep "does not exist" > /dev/null 2>&1
if [$? -eq Ø]
then
 echo "$retstr3" >> $logfile 2>&1
 return
fi

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Checking whether ftp is successful

cat $logfile | grep "bytes received in" > /dev/null 2>&1
if [$? -eq Ø]
then
 echo "$retstrØ" >> $logfile 2>&1
 return
fi

if the script did not exit till here

echo "ERROR: $(date) ... Unknown failure ... FILE NOT RECEIVED !!!" >>
$logfile 2>&1
return

}

Function that makes ftp put for the given Perf-client to PC.

function ftp_put {

Variables

local_dir=/perf/${perf_client}
target_dir=d:/perf/${perf_client}

Getting the standard output and error output to logfile

logfile=${local_dir}/perf_ftpput_'date +%y%m%d'.log

Error messages due to return codes

retstrØ="INFO: FILE SENT for ${perf_client} !!!"
retstr1="ERROR: Cannot change to ${local_dir} ... FILE NOT SENT for
${perf_client} !!!"
retstr2="ERROR: Cannot ping ${target_pc} ... FILE NOT SENT for
${perf_client} !!!"
retstr3="ERROR: Target file does not exist. ... FILE NOT SENT for
${perf_client} !!!"
retstr4="ERROR: Login failed, check user and password ... FILE NOT SENT
for ${perf_client} !!!"

Check whether we are in the right directory in Perf-Server

cd ${local_dir} > $logfile 2>&1
if [$(pwd) != ${local_dir}]
then
 echo "$retstr1" > $logfile 2>&1

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 return
fi

Check whether the target PC is pingable

ping -qc3 ${target_pc} > /dev/null 2>&1
if ["$?" != "Ø"]
then
 echo "$retstr2" >> $logfile 2>&1
 return
fi

Start FTP Job

print >> $logfile 2>&1
echo "$(date)" >> $logfile 2>&1
print >> $logfile 2>&1
print >> $logfile 2>&1
echo "STARTING FTP (PUT) " >> $logfile 2>&1
print >> $logfile 2>&1

ftp -v -n ${target_pc} << ! >> $logfile 2>&1
user $winuser $winpassword
prompt
ascii
cd ${target_dir}
put azizo.${newformat}.txt
bye
!

print >> $logfile 2>&1
echo "FINISHED: $(date)" >> $logfile 2>&1
print >> $logfile 2>&1

Checking the output of ftp and determining if it is successful or not

Checking whether the user could log in.

cat $logfile | grep "Login failed" > /dev/null 2>&1
if [$? -eq Ø]
then
 echo "$retstr4" >> $logfile 2>&1
 return
fi

Checking whether the target directory and file exists.

cat $logfile | grep "does not exist" > /dev/null 2>&1
if [$? -eq Ø]
then

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 echo "$retstr3" >> $logfile 2>&1
 return
fi

Checking whether ftp put is successful

cat $logfile | grep "bytes sent in" > /dev/null 2>&1
if [$? -eq Ø]
then
 echo "$retstrØ" >> $logfile 2>&1
 return
fi

if the script did not exit till here

echo "ERROR: $(date) ... Unknown failure ... FILE NOT SENT !!!" >>
$logfile 2>&1
return

}

Variables:
The hostnames of remote hosts

client_list="spc111e1 spc122e1 rscØ23eØ spcØØ7eØ spc888e1 spc912eØ"
client_dir=/etc/perf

the user/password info of the perf-clients.

user=perf
password=xxxxx

the user/password info to upload the file into windows environment.

winuser=ftpuser
winpassword=xxxxx
target_pc=mypc

Find yesterday's time stamp

prev_day='/usr/local/sbin/yesterday'
newformat="'/usr/local/sbin/yesterday| cut -c5-6'.'/usr/local/sbin/
yesterday| cut -c3-4'.2Ø'/usr/local/sbin/yesterday| cut -c1-2'"

MAIN

for perf_client in $client_list
do
 ftp_get

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 # converting azizo file to the ascii format.

 /usr/bin/ptxtab -s ${local_dir}/azizo.${prev_day} > /dev/null 2>&1
 if [$? -eq Ø]
 then

 # Getting the headings out for excel insertion

 /usr/bin/grep -v "#Monitor" ${local_dir}/azizo.${prev_day}_Ø1 | /
usr/bin/sed "s/Timestamp/Date Time/g" | /usr/bin/sed "s/\./,/g" >
azizo.${newformat}.txt

 ftp_put
 else
 echo "ERROR: Cannot convert the file into ascii format ..." >>
$logfile 2>&1
 fi
done

##

And here is my small Perl script to find yesterday’s date (/usr/
local/sbin/yesterday) used in the script above:
#!/usr/bin/perl -w
#
Adnan Akbas , Ø6.Ø4.2ØØ2

use POSIX qw(strftime);
$yes_string = strftime "%y%m%d", localtime(time-864ØØ);
print "$yes_string\n";

The command ptxtab -s azizo.yymmdd converts recordings to
ASCII format.
Here is an example of ptxtab spreadsheet output format (with
limited statistics):
Monitor: Nice Monitor — hostname: spc888eØ
Timestamp PagSp/%totalused PagSp/%totalfree Mem/Virt/pagein Mem/Virt/
pageout
"2ØØ2/Ø1/Ø7 15:36:Ø3" 27.8 72.2 8 2Ø
"2ØØ2/Ø1/Ø7 15:36:Ø7" 27.8 72.2 7 17
"2ØØ2/Ø1/Ø7 15:36:11" 27.8 72.2 3 283
"2ØØ2/Ø1/Ø7 15:36:15" 27.8 72.2 28 48
"2ØØ2/Ø1/Ø7 15:36:19" 28.2 71.8 56 41
"2ØØ2/Ø1/Ø7 15:36:23" 29.5 7Ø.5 29 38
"2ØØ2/Ø1/Ø7 15:36:27" 31.5 68.5 Ø 62
"2ØØ2/Ø1/Ø7 15:36:31" 32.4 67.6 7Ø 1

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

"2ØØ2/Ø1/Ø7 15:36:35" 32.6 67.4 73 32
"2ØØ2/Ø1/Ø7 15:36:39" 32.8 67.2 156 Ø
"2ØØ2/Ø1/Ø7 15:36:43" 34.5 65.5 167 4
"2ØØ2/Ø1/Ø7 15:36:47" 34.4 65.6 163 Ø
"2ØØ2/Ø1/Ø7 15:36:51" 31.1 68.9 12 57
"2ØØ2/Ø1/Ø7 15:36:55" 3Ø.2 69.8 35 34
"2ØØ2/Ø1/Ø7 15:36:59" 28.Ø 72.Ø 15 Ø
"2ØØ2/Ø1/Ø7 15:37:Ø4" 28.Ø 72.Ø 15 Ø

Adnan Akbas
System Administartor
Turkcell (Germany) © Xephon 2003

The for loop

The for loop is one of the looping constructs that cause the shell
to execute a command, or sequence of commands, repeatedly.
They alter the flow of control in a shell script, causing the shell to
loop back and repeat commands within the loop a number of
times; the for loop instructs the shell to repeat the sequence of
operations once for each item contained within a list supplied to
the loop.

THE FORMAT OF THE FOR LOOP
The format of the loop is:
for variable in word_list
do
 loop_body
done

The variable can be any name, provided that it does not conflict
with an existing variable which you may refer to elsewhere in your
script, and by convention this loop variable is often the letter i; you
can have several consecutive loops in your script all using the
same variable name, if you wish. In simple scripts of only a few
lines this naming convention is usually satisfactory, but when
loops extend over a large number of lines, or when they are

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

nested, it is less likely to confuse a casual reader of the script if
variable has been given a meaningful name to indicate the usage
to which it is being put.
The word_list may be any list of words separated by blanks, such
as for file in file1 file2 file3 for example, where the word list
consists of three filenames, or it can be a list of words that are
generated from the output of a command, such as for vg in
$(lsvg -o), where the word list generated is now a list of all
volume groups that are currently varied on.
The loop_body may be a single command, or pipeline, or a list
of commands and/or pipelines. Commands are placed either
one to a line or separated by command terminators. When
execution of the loop is complete, sequential control of flow is
resumed, and the shell executes the command that follows the
loop, or, if none exists, it terminates.
When the commands in loop_body are first executed, variable
takes on the value of the first word in word_list. Each time the
commands in loop_body are executed, variable takes on the
next value in word_list. The commands in the body of the loop are
repeated until all the words in word_list have been used.
For example, if word_list is:
file1 file2 file3

then variable will first be assigned the string file1, and the
commands in the body of the loop will be executed. Then variable
will be assigned the value file2, and the commands will again be
repeated. Finally, variable will be assigned the value file3 and the
body of the loop executed again. The value of the variable,
$variable, is usually, but not necessarily, referenced within the
body of the for loop.
The words for, in, do, and done are not commands, but are
merely keywords. The keywords for, do, and done must appear
as the first word on a new line, or as the first word following a
command terminator if they are to be recognized by the shell.
Most of the time, for loops are formatted as shown in the

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

preceding example and the key words do and done appear on
a line by themselves, although some programmers like to put the
do on the same line as the for, separated from the word list by
a semi-colon. The body of the loop is usually indented so that it
is possible to see at a glance which commands make up the body
of the loop. This is especially important when you are using
nested loops so that it is much easier to see which do is matched
with which done.

SIMPLE FOR LOOP EXAMPLE
You can create and run the shell script shown in this section, but,
to reduce the risk of unintentionally renaming and modifying
existing files, create a new directory to practise in. Make the new
directory your current directory and create three empty files with:
touch file1 file2 file3

The following script, mvold, renames the files by appending the
suffix .old to each of them:
$ vi mvold

optional cd command on this line
ls *
for i in file1 file2 file3
do
 print $i
 mv $i $i.old
done
ls *

If the files to be moved are not in the directory from which you
intend to run mvold, the first command in the script should
contain a cd command to change to the directory containing the
files. The two ls commands are there just to show you before and
after versions of the filenames in the directory.
In our example above we have specified the names of the files
that we want to rename, but if all the files in the current directory
need renaming you can replace the current word list with the
metacharacter *. This will expand the list to include all files in the
current directory (excluding dot files of course), so that the body

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

of the loop is executed once for each file.
Give the present .old files their previous names (do this manually,
or, even better, create a script to do it) and add a few more files
to the directory using touch. Then substitute the first line of
mvold with:
for i in *

and run the command again.
You could also specify on the command line the files to be
renamed, which is preferable to hardcoding the names within the
script; in this way you can be selective and leave other files
unchanged. To achieve this, the body of the loop must be
executed once for each of the command line arguments. For
example:
$ vi mvold

for i in $1 $2 $3
do
 print $i
 mv $i $i.old
done

On running the script, the shell now loops once for each of the first
three positional parameters that have been assigned a value.
However, this format will not rename more than three files at a
time. One solution is to use the shell variable $*, which expands
to the list of all the command line arguments. This will allow
mvold to operate on all our arguments in turn.
Substitute the first line in mvold with:
for i in $*

and try running the script with a list of arguments. The list of
command line arguments is used with for loops so often that a
shorthand notation is provided. If you substitute the first line with:
for i

this instructs the shell to use the value of i for each of the
arguments in the command line in turn.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

THE DIFFERENCE BETWEEN $* AND $@
Sometimes the expansion of $* is not always exactly the same
as the list of command line arguments. For example, consider
the for loop in the following script:
$ vi args

for i in $*
do
 print $i
done
print; print $1; print $2

If args is run as follows, then the output will be as expected:
$ args one two three

one
two
three

one
two

Note, though, that when args is run with the following command,
$* appears to consist of three distinct words, even though there
are really only two command line arguments:
$ args 'one two' three

one
two
three

one two
three

Because the shell treats everything enclosed in single quotes as
a single word, and hence a single argument, $1 is set to one two.
However, when $* is expanded, one two is broken into two
words. Quoting $* does not solve the problem because the shell
will expand "$*" to "one two three", which is a single word, and
the for loop will be executed only once.
Try this by substituting the first line with:
for i in "$*"

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The solution is supplied in the form of another pre-set shell
variable, $@. When this variable appears between double
quotes, the shell recognizes it as a special case. Although $* and
$@ are exactly the same, when they are quoted with double
quotes they are not the same.
"$@" is expanded to exactly the list of command line arguments,
even if the arguments contain blank spaces; "$@" is equivalent
to "$1" "$2" etc.
If you now substitute the first line of args with the following:
for i in "$@"

and then try running args with args 'one two' three, the output
will be in the required form:
one two
three

one two
three

SUMMARY OF DIFFERENCES
To summarise:
• Each of $*, $@, and "$*" is expanded to the list of command

line arguments. Arguments containing spaces or tabs will be
broken into separate words as $* and $@ are expanded.

• The expansion of "$@" is exactly the same as the list of
command line arguments, and arguments containing spaces
or tabs are not broken down.

• If in a for loop the keyword in and word_list are omitted,
"$@" is used.

USING FOR LOOPS INTERACTIVELY
It is also possible to enter a for loop when using the shell
interactively.
Let us assume that you are a system administrator who is trying

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

to remove hdisk4 to hdisk7 from your system configuration since
they are no longer accessible. You could, of course, create a
script to do this, but this would be unnecessarily time-consuming
for a relatively simple task. Instead you can do this from the
command line as follows:
for i in 4 5 6 7
> do
> rmdev -dl hdisk$i
> done

The shell knows you have not entered a complete command until
the final done keyword and so it prompts you for further
commands with > each time. Sometimes in situations like the
one above it may be quicker to run individual rmdev commands
against each disk, but when you have a large number of disks it
will undoubtedly be quicker to use an interactive for loop.

THE CONTINUE COMMAND
Suppose we wanted to use our mvold script on a number of
directories which themselves contained sub-directories that we
did not want to rename. To do this the original script must be
modified so that we do not rename directories, and this can be
achieved by the use of the continue command. For example:
$ vi mvold

for i in *
do
 if [[-d $i]]
 then
 # skip directories
 continue
 fi
 # rename the file
 mv $i $i.old
done

The continue command causes the shell to continue execution
of the loop by returning to loop initialization immediately, thereby
skipping the remaining commands in the loop between the do
and done keywords.

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In the above example, if the current value of $i is the name of a
directory, the test succeeds and continue is executed. This
causes the shell to skip the rest of the commands in the loop
body, and to continue with the next loop iteration. If the test fails,
continue is not executed and the renaming is performed.

MODIFYING THE CHKFS SCRIPT
Now that we are familiar with for loops and the continue
command, let us modify the chkfs script so that we can check
the space usage of all filesystem entries in our source file without
having to specify filesystem names on the command line.
The modified version is shown below. The changes are shown
in italics.
#!/bin/ksh
Filename: chkfs
Usage: chkfs
Source file: fs_limits
###
Version History
Version Date Remarks
1.Ø Original Version
2.Ø Modified to check all filesystems in source file
###
SOURCE=/usr/local/lib/fs_limits
#---
Function: f_get_fss
Checks that the source file exists and gets the names of all
filesystems that have entries
#---
f_get_fss()
{
 # Does the source file exist?
 if [[! -f $SOURCE]]
 then
 print $SOURCE source file does not exist
 exit 1
 fi
 # Get filesystem names from source file
 FSS=$(grep "^[^#].*:" $SOURCE | tr -d ':' | sort | uniq)
}
#---
Function: f_chk_valid_fs
Checks that the filesystem name is valid and mounted

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

#---
f_chk_valid_fs()
{
 # Is the filesystem name valid?
 lsfs $FS >/dev/null 2>&1
 if [[$? -ne Ø]]
 then
 print $FS is not a valid filesystem name
 return 1
 fi
 # Is the filesystem mounted?
 df | tr -s ' ' | cut -d ' ' -f 7, | grep $FS >/dev/null 2>&1
 if [[$? -ne Ø]]
 then
 print $FS is not mounted
 return 1
 fi
}
#---
Function: f_chk_source
Checks for multiple filesystem entries in source file
#---
f_chk_source()
{
 NUM=$(grep -c ^${FS}: $SOURCE)
 if [[$NUM -gt 1]]
 then
 print Multiple entries for $FS in $SOURCE
 return 1
 fi
}
#---
Function: f_get_limits
Gets the limits for the filesystem from the source file
#---
f_get_limits()
{
 CHK_TYPE=$(grep -p ^$FS: $SOURCE | grep chk_type |
 tr -d ' ' | cut -d "=" -f 2,)
 if [[-z $CHK_TYPE]]
 then
 print There is no chk_type value for $FS
 print "\tin $SOURCE"
 return 1
 fi
 if [[$CHK_TYPE = percent]]
 then
 MAXUSED=$(grep -p ^$FS: $SOURCE | grep max_used |
 tr -d ' ' | cut -d "=" -f 2,)
 if [[-z $MAXUSED]]

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 then
 print There is no max_used value for $FS
 print "\tin $SOURCE"
 return 1
 fi
 if [[$MAXUSED -lt 1]]
 then
 print max_used for $FS in $SOURCE is $MAXUSED
 print "\tValue must be from 1 to 99"
 return 1
 fi
 if [[$MAXUSED -gt 99]]
 then
 print max_used for $FS in $SOURCE is $MAXUSED
 print "\tValue must be from 1 to 99"
 return 1
 fi
 elif [[$CHK_TYPE = bytes]]
 then
 MINFREE=$(grep -p ^$FS: $SOURCE | grep min_free |
 tr -d ' ' | cut -d "=" -f 2,)
 if [[-z $MINFREE]]
 then
 print There is no min_free value for $FS
 print "\tin $SOURCE"
 return 1
 fi
 if [[$MINFREE -lt 1]]
 then
 print min_free for $FS in $SOURCE is $MINFREE KB
 print "\tValue must be greater than or equal to 1 KB"
 return 1
 fi
 else
 print chk_type for $FS in $SOURCE is $CHK_TYPE
 print "\tIt should be percent or bytes"
 return 1
 fi
}
#---
Function: f_get_fs_usage
Gets the current filesystem usage
#---
f_get_fs_usage()
{
 if [[$CHK_TYPE = percent]]
 then
 USED=$(df -k $FS | tail +2 | tr -s ' ' |
 cut -d ' ' -f 4, | tr -d "%")
 if [[$USED -gt $MAXUSED]]

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 then
 print $FS has exceeded its threshold
 print "\t${USED}% used - threshold ${MAXUSED}%"
 fi
 else
 FREE=$(df -k $FS | tail +2 | tr -s ' ' |
 cut -d ' ' -f 3,)
 if [[$FREE -lt $MINFREE]]
 then
 print $FS has exceeded its threshold
 print "\t${FREE} KB free - threshold ${MINFREE} KB"
 fi
 fi
}
##
Main section
##
f_get_fss # Check source file exists
 # and get filesystem names
for FS in $FSS
do
 f_chk_source # Check entry in source file
 [[$? -ne Ø]] && continue
 f_chk_valid_fs # Valid filesystem?
 [[$? -ne Ø]] && continue
 f_get_limits # Get limits from source
 [[$? -ne Ø]] && continue
 f_get_fs_usage # Get current usage
done

The f_chk_args function no longer exists since we now have no
command line arguments and so do not need to check them.
You will note that the main section now calls the new f_get_fss
function that extracts the names of all filesystems that have
entries in the source file fs_limits. To remind you, stanzas in the
source file are similar to the following:
/:
 chk_type = percent
 max_used = 9Ø

/tmp:
 chk_type = bytes
 min_free = 8ØØØ

The f_get_fss function first checks that the source file exists,
and then extracts the filesystem names to the variable FSS. The

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

grep command matches only filesystem names starting from
the beginning of a line up to the first colon, and which do not
include a # as the first character; this will allow us to comment out
filesystems names when we no longer require any usage
information. We have also sorted the list and removed multiple
entries using uniq, since the f_chk_source function, which is
called later, is used to check for multiple entries of the filesystem
name.
The coding which used to exist in f_chk_source to determine
that the source file existed has now been transferred to the
f_get_fss function, since we now only need to check this just
once. If we left it in f_chk_source, its existence would be
unnecessarily checked for in every filesystem.
The main section now contains a for loop, where each of the
functions is called for all filesystems having stanzas in our source
file. In the previous version of the script we exited when we found
an error, but in this version we are checking a number of
filesystems so that, should we find an error, we merely want to
display a message stating what the error is, and then continue
checking the remaining filesystems.
In order to do this we return the value 1 when we find an error in
a function called within the loop, and then check the exit status
of each function with the following line in the script:
[[$? -ne Ø]] && continue

If there is an error, a message will be displayed, the exit status
of the function will be non-zero, and the for loop will start again
on the next filesystem name in $FSS.
Tonto Kowalski
Guru (UAE) © Xephon 2003

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Carriage returns in DOS and Unix

INTRODUCTION
Everybody seems to want to share data between Unix and PCs.
Be it FTP, NFS, or SMB, sooner or later somebody complains
about the ̂ M at the end of every line of a PC file seen through vi,
or the fact that a Unix text file doesn’t display properly with
Notepad.
These problems are caused by the fact that PCs expect every
line to be finished with a carriage-return/linefeed while Unix just
uses a linefeed.
Remove carriage-returns by:
tr -d "\r" < in-file > out-file

Add carriage-returns by:
awk '{print $Ø"\r"}' in-file > out-file

DLC (UK) © Xephon 2003

If you have ever experienced any difficulties with AIX, or
made an interesting discovery, you could receive a cash
payment, a free subscription to any of our Updates, or a
credit against any of Xephon’s wide range of products and
services, simply by telling us all about it.
More information about contributing an article to a Xephon
Update, and an explanation of the terms and conditions
under which we publish articles, can be found at http://
www.xephon.com/index/nfc. Alternatively, please write to
the editor, Trevor Eddolls, at any of the addresses shown on
page 2, or e-mail him at trevore@xephon.com

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A script to save AIX data on a DAT tape with tar

MY PROBLEM
I have a new AIX system without ADSM or any programs like it.
I have just the standard AIX tools, and I have to save my
production files every day. I have the Sun program Forte, and
Oracle8.
On my computer I have only a DAT tape available.
Therefore I have written a script to do the following:
• Copy files in a directory /sauv.
• Compress them.
• Copy the compressed files to tape.
To ensure that I have copied all the files, I stop Oracle and Forte
before copying starts, and I restart Oracle and Forte at the end
of the back-up to disk.

THE SOLUTION
ADSM is a network-based back-up system sold by IBM and used
by many organizations. There are clients for a large variety of
systems (different Unix brands, Windows, Windows NT, Novell,
Mac). Unfortunately, at the time of writing, there is no native Unix
version.
You will have to use the SCO binary and install the iBCS2-
emulator for running ADSM. This description is for ADSM
Version 2 Release 1.
Many methods of performing back-ups with Unix exist, such as
dump, tar, cpio, as well as dd, which are available by default on
your Unix system. Also available are text-based utilities, such as
Amanda, which is designed to add a friendlier user interface to

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the back-up and restore procedures. Finally, commercial back-
up utilities are also available, such as BRU.
The procedures for performing a back-up and restore will differ
depending on your choice of a back-up solution. For this reason
we will discuss methods for performing back-ups with the
traditional Unix tools:
• tar
• dump, which is a command-line back-up tool.
The idea of making a back-up is to copy as many files as possible
on your system, but some exceptions do exist, as shown below.
It is not logical to include these in your back-up because of time
and space. The major exceptions to inclusion in your back-up
are:
• The /proc file system – it contains only data that the kernel

generates automatically, it is never a good idea to back it up.
• The /mnt file system – it is where you mount your removable

media like CD-ROM, floppy disk, etc.
• The back-up directory or media where you have placed your

back-up files, such as a tape, CD-ROM, NFS mounted file
system, remote/local directory, or other kinds of media.

• Software that can be easily reinstalled, though it may have
configuration files that it is important to back up, otherwise
you will have to do the work of configuring them all over
again. I recommend putting the configuration files for software
on a floppy disk.

THE TAR BACK-UP PROGRAM
The tar back-up program is an archiving program designed to
store and extract files from an archive file known as a tarfile. A
tarfile may be made on a tape drive; however, it is also common
to write a tarfile to a normal file.
A simple back-up is when you decide to make a back-up of files

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

on your system. You must choose a back-up scheme before
beginning your back-up procedure. A lot of strategic back-up
schemes exist, and which one you use depends on the back-up
policies you want to use. In the following, we show you one back-
up scheme that you could use, which takes advantage of the tar
program’s capabilities. This scheme is to first back up everything
once, then back up everything that has been modified since the
previous back-up.
• The first back-up is called a full back-up
• The subsequent ones are incremental back-ups.
With six tapes you can make back-ups every day. The procedure
is to use tape 1 for the first full back-up Friday 1, and tapes 2 to
5 for the incremental back-ups Monday through Thursday. Then,
you make a new full back-up on tape 6 second Friday, and start
doing incremental ones with tapes 2 to 5 again. It’s important to
keep tape 1 untouched until you’ve got a new full back-up with
tape 6.
In the following example, we assume that we write the back-up
to a SCSI tape drive named /dev/st0, and we back up the home
directory /home of our system. First of all, we must move to the
file system / partition. When creating an archive file, tar will strip
the leading / character from file path names. This means that
restored files may not end up in the same locations that they were
backed up from. Therefore, to solve the problem, change to the
/ root directory before making all back-ups and restores.
To move to the / root directory, use the command:
[root@deep]# cd /

It is important always to start with a full back-up, say on a Friday,
for example:
Friday 1 – use tape 1 for the first full back-up:
[root@deep] /# cd /
[root@deep] /# tar cpf /dev/stØ —label=" full-backup created on 'date
'+%d-%B-%Y''." \

 —directory / home

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Monday – use tape 2 for the incremental back-up:
[root@deep] /# cd /
[root@deep] /# tar cpNf /dev/stØ —label=" full-backup created on 'date
'+%d-%B-%Y''." \

 —directory / home

Tuesday – use tape 3 for the incremental back-up:
[root@deep] /# cd /
[root@deep] /# tar cpNf /dev/stØ —label=" full-backup created on 'date
'+%d-%B-%Y''." \

 —directory / home

Wednesday – use tape 4 for the incremental back-up:
[root@deep] /# cd /
[root@deep] /# tar cpNf /dev/stØ —label=" full-backup created on 'date
'+%d-%B-%Y''." \

 —directory / home

Thursday – use tape 5 for the incremental back-up:
[root@deep] /# cd /
[root@deep] /# tar cpNf /dev/stØ —label=" full-backup created on 'date
'+%d-%B-%Y''." \

 —directory / home

Friday 2 – use tape 6 for the new full back-up:
[root@deep] /# cd /
[root@deep] /# tar cpf /dev/stØ —label=" full-backup created on 'date
'+%d-%B-%Y''." \

 —directory / home

Now, start doing incremental back-ups with tapes 2 to 5 again,
and so on.
The options are:
• The c option specifies that an archive file is to be created.
• The p option preserves permissions – file protection

information will be remembered.
• The N option does an incremental back-up and stores only

files newer than DATE.
• The f option states that the very next argument will be the

name of the archive file or device being written.

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Notice how a filename that contains the current date is derived
– simply by enclosing the date command between two back-
quote characters. A common naming convention is to add a tar
suffix for non-compressed archives, and a tar.gz suffix for
compressed ones. Since we aren’t able to specify a filename for
the back-up set, the -label option can be used to write some
information about the back-up set into the archive file itself.
Finally, only the files contained in the /home are written to the
tape.
Because the tape drive is a character device, it is not possible to
specify an actual file name. Therefore, the file name used as an
argument to tar is simply the name of the device, /dev/st0, the
first tape device. The /dev/st0 device does not rewind after the
back-up set is written. Therefore it is possible to write multiple
sets on one tape. You may also refer to the device as /dev/st0,
in which case the tape is automatically rewound after the back-
up set is written. When working with tapes you can use the
following commands to rewind and eject your tape:
[root@deep] /# mt -f /dev/stØ offline

To reduce the space needed on a tar archive, the back-ups can
be compressed with the z option of the tar program. Unfortunately,
using this option to compress back-ups can cause trouble.
Because of the nature of how compression works, if a single bit
in the compressed back-up is wrong, all the rest of the compressed
data will be lost. So, using compression with the z option is not
recommended when making back-ups with the tar command.
If your back-up doesn’t fit on one tape, you’ll need to use the -
multi-volume -M option:
[root@deep] /# cd /
[root@deep] /# tar cMpf /dev/stØ /home

Prepare volume #2 for /dev/st0 and hit return.
After you have made a back-up, you should check that it is OK,
using the -compare -d option as shown below:
[root@deep] /# cd /
[root@deep] /# tar dvf /dev/stØ

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

To perform a back-up of your entire system, use the following
command:
[root@deep] /# cd /
[root@deep] /# tar cpf /archive/full-backup-'date '+%d-%B-%Y''.tar \
 —directory / —exclude=proc —exclude=mnt —exclude=archive \
 —exclude=cache —exclude=*/lost+found .

• The -directory option tells tar to first switch to the following
directory path, the / directory in this example, prior to starting
the back-up.

• The -exclude options tells tar not to bother backing up the
specified directories or files.

• The . character at the end of the command tells tar that it
should back up everything in the current directory.

When backing up your file systems, do not include the /proc
pseudo-file-system! The files in /proc are not actually files but are
simply file-like links, which describe and point to kernel data
structures. Also, do not include the /mnt, /archive, and all
lost+found directories.

AUTOMATING BACK-UPS WITH TAR
It is always interesting to automate the back-up tasks. Automation
offers enormous opportunities for using your Unix server to
achieve the goals you set. The following example below is our
back-up script, called back-up.cron. This script is designed to run
on any computer by changing only four variables:
• COMPUTER
• DIRECTORIES
• BACKUPDIR
• TIMEDIR.
We suggest that you set this script up and run it at the beginning
of the month for the first time, and then run it for a month before
making major changes. In our example below we do the back-up
to a directory on the local server BACKUPDIR, but you could

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

modify this script to do it to a tape on the local server or via an NFS
mounted file system.
Create the back-up script back-up.cron file, open /etc/cron.daily/
backup.cron and add the following lines to this back-up file:
#!/bin/sh
#Change the 5 variables below to fit your computer/back-up

COMPUTER=deep # name of this computer
DIRECTORIES="/home" # directories to back-up
BACKUPDIR=/backups # where to store the back-ups
TIMEDIR=/backups/last-full # where to store time of full back-up
TAR=/bin/tar # name and location of tar

#You should not have to change anything below here

PATH=/usr/local/bin:/usr/bin:/bin
DOW='date +%a' # Day of the week eg Mon
DOM='date +%d' # Date of the Month eg 27
DM='date +%d%b' # Date and Month eg 27Sep

On the 1st of the month a permanent full backup is made
Every Sunday a full backup is made - overwriting last Sunday's backup
The rest of the time an incremental backup is made. Each incremental
backup overwrites last weeks incremental backup of the same name.
#
if NEWER = "", then tar backs up all files in the directories
otherwise it backs up files newer than the NEWER date. NEWER
gets its date from the file written every Sunday.

Monthly full backup
if [$DOM = "Ø1"]; then
 NEWER=""
 $TAR $NEWER -cf $BACKUPDIR/$COMPUTER-$DM.tar $DIRECTORIES
fi

Weekly full backup
if [$DOW = "Sun"]; then
 NEWER=""
 NOW='date +%d-%b'

 # Update full backup date
 echo $NOW > $TIMEDIR/$COMPUTER-full-date
 $TAR $NEWER -cf $BACKUPDIR/$COMPUTER-$DOW.tar $DIRECTORIES

Make incremental backup - overwrite last week's
else

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 # Get date of last full backup
 NEWER="—newer 'cat $TIMEDIR/$COMPUTER-full-date'"
 $TAR $NEWER -cf $BACKUPDIR/$COMPUTER-$DOW.tar $DIRECTORIES
fi

BACK-UP DIRECTORY
Here is an abbreviated look at the back-up directory after one
week:
[root@deep] /# ls -l /backups/

total 22217
-rw-r—r— 1 root root 1Ø731288 Feb 7 11:24 deep-Ø1Feb.tar
-rw-r—r— 1 root root 6879 Feb 7 11:24 deep-Fri.tar
-rw-r—r— 1 root root 2831 Feb 7 11:24 deep-Mon.tar
-rw-r—r— 1 root root 7924 Feb 7 11:25 deep-Sat.tar
-rw-r—r— 1 root root 11923Ø13 Feb 7 11:24 deep-Sun.tar
-rw-r—r— 1 root root 5643 Feb 7 11:25 deep-Thu.tar
-rw-r—r— 1 root root 3152 Feb 7 11:25 deep-Tue.tar
-rw-r—r— 1 root root 4567 Feb 7 11:25 deep-Wed.tar
drwxr-xr-x 2 root root 1Ø24 Feb 7 11:2Ø last-full

The directory to store the back-ups, BACKUPDIR, and the
directory to store the time of the full back-up, TIMEDIR, must
exist or be created before the back-up script is used, or you will
receive an error message.
If you are not running this back-up script from the beginning of the
month, the incremental back-ups will need the time of the
Sunday back-up to be able to work properly. If you start in the
middle of the week, you will need to create the time file in the
TIMEDIR directory. To do this, use the following command:
[root@deep] /# date +%d%b < /backups/last-full/myserver-full-date

where /back-ups/last-full is our variable TIMEDIR, in which we
want to store the time of the full back-up, and myserver-full-date
is the name of our server, eg deep, and our time file consists of
a single line with the present date, eg 15-Feb.
Make this script executable and change its default permissions
to be writable only by the super-user root 755:

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

[root@deep] /# chmod 755 /etc/cron.daily/backup.cron

Because this script is in the /etc/cron.daily directory, it will be
automatically run as a cron job at one o’clock in the morning
every day.

RESTORE FILES WITH TAR
More important than performing regular back-ups is having them
available when we need to recover important files! In this section,
we will discuss methods for restoring files that have been backed
up with the tar command.
The following command will restore all files from the full-backup-
Day-Month-Year.tar archive, which is an example back-up of our
home directory created from the example tar commands shown
above:
[root@deep] /# cd /
[root@deep] /# tar xpf /dev/stØ/full-backup-Day-Month-Year.tar

The above command extracts all files contained in the compressed
archive, preserving original file ownership and permissions.
• The x option stands for extract.
• The p option preserve permissions – file protection information

will be remembered.
• The f option states that the very next argument will be the

name of the archive file or device.
If you do not need to restore all the files contained in the archive,
you can specify one or more files that you wish to restore. To do
this, use the following command:
[root@deep]# cd /
[root@deep]# tar xpf /dev/stØ/full-backup-Day-Month-Year.tar \
 home/wahib/Personal/Contents.doc home/quota.user

The above command restores the /home/wahib/Personal/
Contents.doc and /home/quota.user files from the archive.
If you just want to see what files are in the back-up volume, use
the -list or -t option:

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

[root@deep] /# tar tf /dev/stØ

If you have files on your system set with the immutable bit, using
the chattr command, these files will not be remembered with the
immutable bit from your restored back-up. You must reset it as
immutable with the command chattr +i after the back-up is
completed.
Don’t forget to test the ability to recover from back-ups. For many
system administrators, recovering a file from a back-up is an
uncommon activity. This step assures that if you need to recover
a file, the tools and processes will work. Performing this test
periodically will help you to discover problems with the back-up
procedures so you can correct them before losing data. Some
back-up restoration software does not accurately recover the
correct file protection and file ownership controls. Check the
attributes of restored files to ensure they are being set correctly.
Periodically test to ensure that you can perform a full system
recovery from your back-ups.
For further documentation, and more details, there is a man
page you can read.
I hope this will help people to back-up AIX files without having to
buy a special program, such as ADSM.
Claude Dunand
Systems Programmer (France) © Xephon 2003

Network back-up manager

Editor’s note: this article continues our look at backing up AIX
systems with a different approach from the previous article.
In general, tape devices are used to back up files because
storing data is cheaper on tape cartridges than on disk. However,
disk prices are getting lower and lower, so disk space can be
used to back up files that are relatively small. Most of the back-

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

up operations consist of periodical back-ups. Files or directories
are backed up at some interval and kept for some days. Besides,
a back-up is often needed when a change is made to a critical file
in case an error is encountered after the change. For example,
application programmers want to back up programs before they
make a change in their source code. Network back-up manager
programs are written to utilize disk space for back-up purposes.
The following command is used to back-up files or directories:
nbmcopy –p path_name –f file_name –r retention period –s server_name –g
server_group_number –n -c

The file or directory specified by path_name and file_name are
copied to a directory according to -s, -g, and -n parameters.
Back-up paths are defined in the network. A back-up group
number is given to each back-up path. Back-up paths can be
grouped by location or some other parameters. If the -s
server_name parameter is given, the file or directory is copied to
a back-up path on the specified server in the network. If the -g
server_group_number parameter is given, a back-up path in the
specified group is used. To back up very critical data, a group in
another location can be used for disaster recovery. If the -n
option is given, it means a back-up path is used where the file or
directory does not reside. The -r retention period parameter
specifies how long the back-up files will be kept in the back-up
paths.
If a file is given, the file is copied to the back-up path with a new
name, which has a version number at the end. If a directory is
given, the directory is archived by the tar command, compressed,
and copied to a back-up path with the new name. These steps
are run on pipes in order to use less temporary space. The
NBM_TEMPDIR environment variable keeps the directory name
that is used for the temporary operations.
The nbmclean command runs after a specified interval. It scans
all files backed up by nbmcopy and deletes the back-up files if
they have expired.
To see which files or directories are backed up by nbmcopy, the

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

following command is used:
nbmlist –p path_name –f file_name

In the path_name and file_name parameters, the characters _
and % can be used for any character and any string respectively.
Files and directories are restored using the following command:
nbmrestore –p path_name –f file_name –v version –a after_time –b
before_time

The -v option can be 0, -1, -2, and so on. If 0 is given, the last
back-up file is restored. If -1 is given, the previous back-up file is
restored. All back-up files after or before a specified time can be
displayed, and one of them can be chosen to be restored by
using the
-a and -b parameters. Back-up files are restored to the temporary
directory specified by the NBM_TEMPDIR variable.
The nbmcopy, nbmrestore, and nbmlist programs must be
copied to all servers in the network. The database containing the
network back-up manager tables must be catalogued on all
servers since the tables must be reached by all the servers. The
nbmclean program can be run on only one server. It will delete
all files on all servers.
The following tables are used:
• backup_paths:

– path_no dec(3),
– host varchar(10),
– path varchar(200),
– group_no dec(2),
– username char(20),
– server_type char(5)

• backup_versions:
– path_name varchar(200),

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– file_name varchar(100),
– version dec(5)

• backup_files:
– host varchar(10),
– path_name varchar(200),
– file_name varchar(100),
– backup_path_no dec(3),
– version dec(5),
– date_taken timestamp,
– retpd dec(5),
– file_type dec(1),
– compressed dec(1).

NBMCOPY.SQC
#include <stdio.h>
#include <sqlca.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <sys/stat.h>
#include <errno.h>
#include <stdlib.h>
#include <sqlenv.h>
#include <sys/wait.h>
char path_name_with[2ØØ],file_to_be_copied[4ØØ];
int random_number,not_on_this_host=Ø,interactive_mode=Ø;
char pipe1[2ØØ],pipe2[2ØØ];
char tempfilename[2ØØ];
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION ;
 char backup_path_name[2ØØ];
 char backup_host[1Ø];
 char username[2Ø];
 char path_name[2ØØ];
 char file_name[2ØØ];
 char preferred_host_name[1Ø];
 long path_no;

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 long file_version;
 short retpd;
 short preferred_group_num;
 char server_type[5];
 char host_name[1Ø];
 short is_dir=Ø;
 short compress=Ø;
EXEC SQL END DECLARE SECTION;
void nbm_help()
{
 printf("Usage:\n");
 printf(" nbmcopy -p path_name -f file_name -n (not_on_this_path)
\n");
 printf(" -s server_name -g server_group_num -c compress -i (
interactive mode)\n");
}
void exit_program(int exit_code)
{
 char sys_cmd[1ØØØ];
 int rc;
 sprintf(sys_cmd,"rm %s %s %s ./size_of_files.%ld ./dfout.%ld >/dev/
null 2>&1 ",tempfilename,pipe1,pipe2,random_number,random_number);
 rc=system(sys_cmd);
 if (rc != Ø && rc != 512) perror("Remove:");
 exit(exit_code);
}
void sql_error(int err_pl)
{
 printf("SQLCODE=%ld\n",sqlca.sqlcode);
 printf("Place of the error=%d\n",err_pl);
 exec sql rollback;
 exit_program(1);
}
void get_random_number()
{
 struct timeval tv;
 long msec;
 gettimeofday(&tv, NULL);
 msec=tv.tv_usec;
 srand(msec);
 random_number=rand();
}
int get_file_size()
{
 long size_of_files,tot_size=Ø;
 struct stat filestat;
 if (stat(file_to_be_copied,&filestat) != Ø) {
 printf("Problem in getting file status...\n");
 exit_program(1Ø1);
 }

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if (filestat.st_mode & S_IFDIR) {
 is_dir=1;
 return get_dir_size();
 } else {
 is_dir=Ø;
 return filestat.st_size/1Ø24;
 }
}
int get_dir_size()
{
 FILE *fp1;
 char sys_cmd[3ØØ],temp_file_name[5Ø],dummy_str[3ØØ];
 long size_of_files,tot_dir_size=Ø;
 sprintf(sys_cmd,"du -sk %s > ./
size_of_files.%ld",file_to_be_copied,random_number);
 if (system(sys_cmd) != Ø) {
 printf("Problem in du command...\n");
 exit_program(1Ø2);
 }
 sprintf(temp_file_name,"./size_of_files.%ld",random_number);
 if ((fp1=fopen(temp_file_name,"r")) == NULL) {
 printf("Problem in opening ./size_of_files...\n");
 exit_program(1Ø3);
 }
 while (fscanf(fp1,"%d%s",&size_of_files,&dummy_str)!=-1)
 tot_dir_size+=size_of_files;
 fclose(fp1);
 return tot_dir_size;
}
long get_freespace()
{
 FILE *fp1;
 char sys_cmd[1ØØØ],temp_file_name[1ØØØ];
 long freespace;
 if (strcmp(backup_host,host_name) == Ø)
 if (strcmp(server_type,"AIX ") == Ø)
 sprintf(sys_cmd,"df -k %s | grep -v 'Filesystem 1Ø24-blocks
Free'| awk '{print $3}' > ./dfout.%ld",backup_path_name,random_number);
 else
 sprintf(sys_cmd,"df -k %s | grep -v 'Filesystem 1Ø24-blocks
Free'| awk '{print $4}' > ./dfout.%ld",backup_path_name,random_number);
 else
 if (strcmp(server_type,"AIX ") == Ø)
 sprintf(sys_cmd,"rsh %s -l %s 'df -k %s | grep -v Filesystem'| awk
'{print $3}' > ./
dfout.%ld",backup_host,username,backup_path_name,random_number);
 else
 sprintf(sys_cmd,"rsh %s -l %s 'df -k %s | grep -v Filesystem'| awk
'{print $4}' > ./

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

dfout.%ld",backup_host,username,backup_path_name,random_number);
 if (system(sys_cmd) != Ø) {
 printf("Problem in df command...\n");
 exit_program(1Ø4);
 }
 sprintf(temp_file_name,"./dfout.%ld",random_number);
 if ((fp1=fopen(temp_file_name,"r")) == NULL) {
 printf("Problem in opening dfout file...\n");
 exit_program(1Ø5);
 }
 fscanf(fp1,"%d",&freespace);
 fclose(fp1);
 return(freespace);
}
void get_a_path(long file_size)
{
 if (strcmp(preferred_host_name,"") == Ø) {
 if (preferred_group_num != Ø) {
 exec sql declare path_crs1 cursor for
 select PATH_NO,PATH,HOST,rtrim(USERNAME),SERVER_TYPE from
BACKUP_PATHS
 where GROUP_NO=:preferred_group_num;
 if (sqlca.sqlcode < Ø) sql_error(1);
 exec sql open path_crs1;
 if (sqlca.sqlcode < Ø) sql_error(2);
 exec sql fetch path_crs1
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(3);
 while (sqlca.sqlcode == Ø) {

 if (file_size < get_freespace()) break;

 exec sql fetch path_crs1
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(4);
 }
 if (sqlca.sqlcode == 1ØØ) {
 exec sql close path_crs1;
 printf("No path found (Size=%ld) \n",file_size);
 exit_program(1Ø6);
 }
 exec sql close path_crs1;
 if (sqlca.sqlcode < Ø) sql_error(5);
 } else {
 if (not_on_this_host == 1) {
 exec sql declare path_crs2 cursor for
 select PATH_NO,PATH,HOST,rtrim(USERNAME),SERVER_TYPE
from BACKUP_PATHS

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 where HOST!=:host_name;
 if (sqlca.sqlcode < Ø) sql_error(6);
 exec sql open path_crs2;
 if (sqlca.sqlcode < Ø) sql_error(7);
 exec sql fetch path_crs2
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(8);

 while (sqlca.sqlcode == Ø) {

 if (file_size < get_freespace()) break;

 exec sql fetch path_crs2
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(9);
 }

 if (sqlca.sqlcode == 1ØØ) {
 exec sql close path_crs2;
 printf("No path found (Size=%ld) \n",file_size);
 exit_program(1Ø7);
 }
 exec sql close path_crs2;
 if (sqlca.sqlcode < Ø) sql_error(1Ø);
 } else {
 exec sql declare path_crs3 cursor for
 select PATH_NO,PATH,HOST,rtrim(USERNAME),SERVER_TYPE
from BACKUP_PATHS;
 if (sqlca.sqlcode < Ø) sql_error(11);
 exec sql open path_crs3;
 if (sqlca.sqlcode < Ø) sql_error(12);
 exec sql fetch path_crs3
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(13);

 while (sqlca.sqlcode == Ø) {

 if (file_size < get_freespace()) break;

 exec sql fetch path_crs3
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(14);
 }

 if (sqlca.sqlcode == 1ØØ) {
 exec sql close path_crs3;

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 printf("No path found (Size=%ld) \n",file_size);
 exit_program(1Ø8);
 }
 exec sql close path_crs3;
 if (sqlca.sqlcode < Ø) sql_error(15);
 }
 }
 } else {
 exec sql declare path_crs4 cursor for
 select PATH_NO,PATH,HOST,rtrim(USERNAME),SERVER_TYPE from
BACKUP_PATHS
 where HOST=:preferred_host_name;
 if (sqlca.sqlcode < Ø) sql_error(16);
 exec sql open path_crs4;
 if (sqlca.sqlcode < Ø) sql_error(17);
 exec sql fetch path_crs4
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(18);
 while (sqlca.sqlcode == Ø) {

 if (file_size < get_freespace()) break;
 exec sql fetch path_crs4
 into
:path_no,:backup_path_name,:backup_host,:username,:server_type;
 if (sqlca.sqlcode < Ø) sql_error(19);
 }
 if (sqlca.sqlcode == 1ØØ) {
 exec sql close path_crs4;
 printf("No path found (Size=%ld) \n",file_size);
 exit_program(1Ø9);
 }
 exec sql close path_crs4;
 if (sqlca.sqlcode < Ø) sql_error(2Ø);
 }
}
int get_version_number(char *path_name,char *file_name)
{
 exec sql select VERSION into :file_version
 from backup_versions
 where PATH_NAME=:path_name and
 FILE_NAME=:file_name;
 if (sqlca.sqlcode < Ø) sql_error(21);
 if (sqlca.sqlcode==1ØØ) {
 exec sql insert into backup_versions
values(:path_name,:file_name,1);
 if (sqlca.sqlcode < Ø) sql_error(22);
 file_version=Ø;
 } else {
 exec sql update backup_versions

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 set VERSION=VERSION+1
 where PATH_NAME=:path_name and
 FILE_NAME=:file_name;
 if (sqlca.sqlcode < Ø) sql_error(23);
 }

 return file_version;
}
void do_copy()
{
 char *getenv(),*tempdir,sys_cmd[1ØØØ];
 pid_t childpid1,childpid2;
 union wait *status;
 int ind,rc;
 tempdir=getenv("NBM_TEMPDIR");
 sprintf(pipe1,"%s/pipe1.%ld",tempdir,random_number);
 sprintf(pipe2,"%s/pipe2.%ld",tempdir,random_number);
 sprintf(tempfilename,"%s/tempfile.%ld",tempdir,random_number);
 for (ind=Ø;ind<=strlen(path_name);ind++)
 if (path_name[ind] == '/') path_name_with[ind]='!'; else
path_name_with[ind]=path_name[ind];
 umask(Ø);
 if (rc=mknod(pipe1, S_IFIFO|Ø6ØØ,Ø) != Ø) {
 printf("Problem in creating pipe1. rc=%ld\n",rc);
 exit_program(11Ø);
 }
 if (rc=mknod(pipe2, S_IFIFO|Ø6ØØ,Ø) != Ø) {
 printf("Problem in creating pipe1. rc=%ld\n",rc);
 exit_program(111);
 }
 if (is_dir == 1) {
 childpid1=fork();
 if (childpid1 == -1) {
 printf("Problem in fork process.\n");
 exit_program(112);
 }
 if (childpid1 == Ø) {
 sprintf(sys_cmd,"tar -cvf %s %s/%s >/dev/null 2>&1
",pipe1,path_name,file_name);
 system(sys_cmd);
 exit(Ø);
 } else {
 if (strcmp(backup_host,host_name) == Ø) {
 childpid2=fork();
 if (childpid2 == -1) {
 printf("Problem in fork process.\n");
 exit_program(113);
 }
 if (childpid2 == Ø) {
 sprintf(sys_cmd,"compress -c < %s > %s ",pipe1,pipe2);

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 system(sys_cmd);
 exit(Ø);
 } else {
 sprintf(sys_cmd,"cp %s %s/%s!at!%s!%s.V%ld.Z > /dev/
null",pipe2,backup_path_name,path_name_with,host_name,file_name,file_version);
 }
 } else {
 sprintf(sys_cmd,"compress -c < %s > %s ",pipe1,tempfilename);
 if (system(sys_cmd) != Ø) {
 printf("Problem in compressing file:%s ...\n",pipe1);
 exit_program(114);
 }
 wait(status);
 sprintf(sys_cmd,"rcp %s %s@%s:%s/%s!at!%s!%s.V%ld.Z > /dev/
null",tempfilename,username,backup_host,backup_path_name,path_name_with,
host_name,file_name,file_version);
 }
 }

Editor’s note: this article will be concluded next month.
Abdullah Ongul
DBA
Disbank (Turkey) © Xephon 2003

AIX news

IBM has announced an ultra-dense eServer
p655 Unix server targeted at the high
performance computing market that’s
capable of reaching half a trillion operations
per second in a single frame at peak
processing power. The new eServer packs up
to 128 POWER4 processors per frame and is
available in four or eight-CPU building
blocks. It will run AIX 5L 5.1 and Linux.

The system can be clustered using eServer
cluster 1600, combined using a high-
performance switch. Also, systems can be
defined using logical partitioning. Cluster
systems administration from a single control
workstation is provided by IBM’s cluster
management application.

Autonomic computing capabilities include
integrated service processor and Chipkill and
bit-steering memory.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/servers.

* * *

TenFold has announced a new release of its
Universal Application software, aimed at
large organizations needing to build complex
applications, promising to do so three to ten
times faster than with other available
technologies. The product runs on AIX 5.1L
in 64-bit mode.

Performance improvements include
EfficientMessageDispatch, which reduces
applications server CPU usage so that
Universal Application supports many more
end users without additional hardware
resources.

The BrowserClient AutoTest runs
automated portable regression tests.
Improved usability comes via EditableGrids,
which let BrowserClient end-users change
multiple rows of data without waiting for a
browser screen refresh. Also, users can
define custom HTML for starting UA
transactions using WelcomePage.

For further information contact:
TenFold, 698 West 10000 South, Suite 200,
South Jordan, Utah 84095, USA.
Tel: (801) 495 1010.
URL: http://www.10fold.com.

* * *

Opsware has released Version 3.5 of its
Opsware System data centre automation
software, which has better assimilation
capabilities, disaster recovery functionality,
and support for new operating systems. The
product now runs under AIX.

It automates data centre operations such as
server provisioning, application
configuration and deployment, and security
management.

The new release automates multi-data centre
management from a single location and
discovery and assimilation of servers already
running in an existing data centre
environment.

For further information contact your local
Opsware, 599 N Mathilda Ave, Sunnyvale,
CA 94085, USA.
Tel: (408) 744 7300.
URL: http://www.opswareinc.com/news/
releases/11-13-02.htm.

* * *

x xephon

	Determining your networking configuration
	Performance Toolbox for AIX
	The for loop
	Carriage returns in DOS and Unix
	A script to save AIX data on a DAT tape with tar
	Network back-up manager
	AIX news

