

© Xephon plc 2002

February 2003

88

In this issue

AIX
u

p
d

ate

3 Go to the end of the line
10 Network back-up manager – part 2
24 Source code control system
41 The until and while loops
54 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Go to the end of the line

Given that documents and text files can move so easily from one
system to another, you would think that some common format
could be devised for text data. Unfortunately, moving a Word
document or a spreadsheet from a Windows environment to a
Unix environment leaves you with a document or spreadsheet
that is very hard to read in the Unix world.
How about the humble text file? Surely a file containing nothing
but ASCII characters must be portable across multiple systems?
At least, you would think so!
The ‘gotcha’ in moving text files between systems is most
apparent in moving text from an MS-DOS or Windows environment
to a Unix environment. This problem comes up most often in
these systems because these operating systems are so common.
Of course, DOS is dead. Just don’t tell the people running
thousands of vertical market MS-DOS applications that were
never ported to Windows because the software vendor went out
of business trying to port to Windows.
There are text files to move between these systems, but you also
have code for many programs (especially those written in C and
C++) that are frequently portable across these systems.
“Hey, Bloggs, didn’t you write a utility to unscramble the gormly-
googles? I bet you could move that code to Unix and it would
compile and run there.”
Yes, it probably will run, but the text files that contain the source
code for the ‘gormly-google’ unscrambler will use a different end-
of-line marker in an MS-DOS or Windows world from what it will
need in a Unix world.
And the code might not compile on Unix because it can’t handle
the end-of-line markers that came over from the Windows
version. Nothing to do with the code itself, just the text format that
the code is in.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Differences in text formats between Unix and the Windows world
become very apparent when you are moving large quantities of
source code around.
Terms like carriage return, line feed, and new line are frequently
bandied about in relationship to text files and printing formats, but
you might not know exactly what they are, and how they relate
to text files.
Back when dinosaurs ruled the earth, the primary method to
output information from a computer was a printer or teletypewriter.
(As an aside here, the Unix tty designation for a terminal device
is an abbreviation for teletypewriter.)
One of the important factors in controlling output to the printer or
teletype was the subject of carriage control. Printers and teletypes
had a platen or cylinder, which you can still see today on dot
matrix and other impact printers (or on typewriters in museums).
Paper was fed through the printer by rolling it around the platen
or, in the case of pin-feed paper, by feeding it through a tractor
feeder. The tractor feeder and the platen were both carriage
devices and their primary function was to carry (carriage/carry –
get it?) the paper in a precision manner and position it in front of
the print head.
The mechanism that moved the print head back and forth was
also part of the ‘carriage’ and the carriage was responsible for the
amount of space between each printed line and where the print
head was positioned before each line was printed.
Early printers attached to IBM’s big iron expected to receive two
(sometimes three) bytes of information at the start of each line
that contained information on where to print the following line of
characters. These were called carriage control commands.
Carriage control commands went from the very simple }‘PRINT
AFTER ADVANCING 1 LINE’ to the slightly more complex
‘PRINT BEFORE ADVANCING 3 VERTICAL TABS’.
Because carriage control allowed control over both vertical and
horizontal movement on the printed page, two, now well known,
font decorations could be created. By printing a line and then

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

printing it again ‘AFTER ADVANCING 0 LINES’ you could print
the same line twice creating bold type. By printing a line and then
printing a line of underscores and spaces ‘AFTER ADVANCING
0 LINES’ you could print a line containing underlining.
You could also print a line or a character, followed by backspace,
and then print a hyphen or a slash for a strike-through, although
it was used much less often.
IBM printers were frequently fed by large bundles of wires that
carried both carriage control and printing signals. Then along
came smaller printers that were connected by parallel printer or
serial port connections. There were no separate wires to handle
carriage control information, and it became necessary to send
bytes of ‘printer control’ information as part of the data stream.
Character sets that were designed for this type of device, such
as IBM’s EBCDIC and the ASCII set, included additional
characters that could instruct the printer on how to behave – in
other words, control characters. The ASCII character set includes
‘control’ characters that can be used to control the behaviour of
peripheral devices.
ASCII (American Standard Code for Information Interchange)
uses 128 numbers to represent the characters of the alphabet,
the digits, punctuation characters, and some special characters
that are used to control printers, terminals, and other computer
devices. The 128 values are numbered beginning with zero, so
the numbers used range from 0 to 127.
The ASCII character set includes all the digits, the upper and
lower case letters of the alphabet, and punctuation characters.
All the printable characters (letters, digits, and punctuation) have
values between 32 and 126. The values 0 to 31 and 127 are used
for control characters.
Figure 1 is a brief ASCII chart with the decimal value of each
entry, and its ASCII name or character. The non-printing characters
are given with their names. You might be familiar with some of
these.

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Many of the non-printable characters are used for communications
protocols.
A control character is a single character that can be sent to a
computer device, such as a printer or monitor, that controls the
behaviour of the device (rather than printing an actual character).
For example, the value 84 is an upper case ‘T’ and if sent to a

0 NUL 32 SP 64 @ 96 '
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ‘ 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 [af] 126 ~
31 US 63 ? 95 _ 127 DEL

Figure 1: ASCII chart with decimal values

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

printer or terminal would cause the device to print or display a ‘T’.
But a 13 (CR) is a carriage return. This value sent to a printer
causes the print head to return to column 1. A carriage return
(CR) also is sometimes sent by the Return or Enter key on the
keyboard. Internally Unix usually translates this to a 10, a line
feed (LF). The line feed value (LF) is used to move a printer or
terminal up one line. Value 7 (BEL), when sent by the computer
to the terminal, usually causes a beep or rings an alarm.
Some of the other interesting control characters are:
• HT (Horizontal Tab, or just plain tab in every day parlance),

value 9. This character, sent to a printer or a screen, causes
the cursor or print head to advance to the next defined print
column.

• SO (Shift Out) and SI (Shift In), values 14 and 15, were
frequently used in printer control. Many printers are set up
with two built-in fonts. Sending an SI causes the printer to
shift to the second font. Sending an SO causes the printer to
shift back to the first font.

The values from 32 through 126 are printable characters. Value
32 (SP) is a space. Whether a space is actually a ‘printable’
character is a debatable issue. A space does not usually put ink
on the paper. Instead it places a character containing no image.
Most printers create this by simply advancing the print head one
position.
Several of the other characters in the range below 32 are used
extensively in telecommunications. For example 02 and 03, STX
(start of transmission) and ETX (end of transmission), are often
used at the start and end of a block of transmitted information.
06 and 21, ACK and NAK, are often used by a receiving computer
to signal acknowledgement (ACK for well received) or a negative
acknowledgement (NAK for not well received, please re-transmit).
Finally, we come to the use of control characters in text files.
Control characters are used inside text files to indicate the end
of a line. Unix uses a single LF, line feed, (10) character. MS-DOS

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and Windows use a combination of CR, carriage return, (13), and
LF (10). Moving a text file back and forth between these two
systems without translating the end of line marker causes some
unusual results. For example, the MS-DOS Edit utility is smart
enough to recognize a file that has only a line feed for an end-of-
line marker and displays it correctly, but the Windows Notepad
utility is not. Notepad displays an ‘untranslatable’ control character
as a thick black vertical bar. In Notepad this looks like a black box.
In the following listings the black box is show as a left and right
square bracket, [].
Start with a simple text file in Unix:
These are the times
that try men’s souls.
The Metropolitan Transit Authority,
better known as the MTA
etc.

The same file in Notepad cannot figure out where the lines end:
These are the times[]that try men’s souls.[]The Metropolitan Transit
Authority,[]better known as the MTA[]etc.

In the reverse case, a Windows text file has too many control
characters for vi. The extra carriage return shows up as a control-
M (^M) in the vi display.
If the following had been created in Notepad and transferred to
AIX, it might look like this in vi:
These are the times^M
that try men's souls.^M
The Metropolitan Transit Authority,^M
better known as the MTA^M
etc.^M

Many Unix/Windows transfer utilities include a switch that can be
set to indicate that a text file is being transferred, and the resulting
file has its end of line character(s) translated. Some utilities have
text translation as the default, and you must set a switch to
suppress the translation when you are transferring binary files.
Movement of files in volume is done by combining and compacting
the files using one of the versions of zip, gzip, tar, or what have

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

you, and the resulting file must be transferred as a binary file. The
individual members of an archive lose any indication of whether
they are text or binary files, and the entire archived and/or
compressed file must be transferred as if it were a binary file.
At the other end, the unpacked files now suffer from the end-of-
line marker ambiguity.
The extra carriage return can be removed or inserted with two
simple scripts. I use scripts here so that you can save and reuse
them. The first one takes two command arguments, the Unix file
name and the MS-DOS/Windows file name. It adds a carriage
return to a Unix text file and outputs it under the DOS text file
name so that it can be transferred to DOS. To type this in using
vi, you must be able to type an actual Control-M. When you have
to type the ^M, type control-V then control-M. The control-V
causes the next character to be inserted as a literal control
character. After you have saved it as lf2crlf, change its mode to
allow execution (chmod a+x lf2crlf).
lf2crlf
adds an extra carriage return to a Unix
text file so that the end of line matches
the Windows/DOS convention

usage()
{
 echo "usage: lf2crlf unix.txt dos.txt
 exit
}

if [$# != 2]
then
 usage
fi

sed 's/$/^M/g' <$1 >$2

The second script reverses the process and strips an extra CR
out for text files coming from Windows to Unix. There is an
additional ‘gotcha’ in MS-DOS files. Some DOS editors and
utilities append a Control-Z (26 or ASCII SUB) to the end of a text
file. This will display in vi as ̂ Z at the end of a file. This script also
removes that character. Note that the single quoted set of

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

commands start on one line and end on the next. Use control-V,
control-M to create the ^M and control-V, control-Z to create the
^Z.
crlf2lf
removes an extra carriage return in a DOS/Windows
text file so that the end of line matches
the Unix convention.
Also removes a control-Z at end of file
usage()
{
 echo "usage: crlf2lf dos.txt unix.txt
 exit
}
if [$# != 2]
then
 usage
fi
sed 's/^M//g
s/^Z//g' <$1 >$2

Just as a final note, DEC systems used a carriage return only as
an end-of-record marker. Porting source code between Windows,
Unix and VAX produced an intimate knowledge of record and file
terminator characters.
Mo Budlong
Middleware and Data Translation Specialist
King Computer Services (USA) © Xephon 2003

Network back-up manager – part 2

This month we publish the rest of the code for a network back-
up manager.

 } else {
 if (compress == 1) {
 if (strcmp(backup_host,host_name) == Ø) {
 childpid1=fork();
 if (childpid1 == -1) {
 printf("Problem in fork process.\n");
 exit_program(115);
 }

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 if (childpid1 == Ø) {
 sprintf(sys_cmd,"compress -c %s/%s > %s
",path_name,file_name,pipe1);
 if (system(sys_cmd) != Ø) {
 printf("Problem in compress...\n");
 exit_program(116);
 }
 exit(Ø);
 } else
 sprintf(sys_cmd,"cp %s %s/%s!at!%s!%s.V%ld.Z > /dev/
null",pipe1,backup_path_name,path_name_with,host_name,file_name,file_version);
 } else {
 sprintf(sys_cmd,"compress -c %s/%s > %s
",path_name,file_name,tempfilename);
 if (system(sys_cmd) != Ø) {
 printf("Problem in compressing file:%s/%s
...\n",path_name,file_name);
 exit_program(117);
 }
 sprintf(sys_cmd,"rcp %s %s@%s:%s/%s!at!%s!%s.V%ld.Z > /dev/
null",tempfilename,username,backup_host,backup_path_name,
path_name_with,host_name,file_name,file_version);
 }
 } else {
 if (strcmp(backup_host,host_name) == Ø)
 sprintf(sys_cmd,"cp %s/%s %s/%s!at!%s!%s.V%ld > /dev/
null",path_name,file_name,backup_path_name,path_name_with,
host_name,file_name,file_version);
 else
 sprintf(sys_cmd,"rcp %s/%s %s@%s:%s/%s!at!%s!%s.V%ld > /dev/
null",path_name,file_name,username,backup_host,backup_path_name,path_name_with,
host_name,file_name,file_version);
 }
 }
 if (system(sys_cmd) != Ø) {
 printf("Problem in copying file:%s ...\n",file_name);
 exit_program(118);
 }
}
void nbm_copy()
{
 long file_size;
 get_random_number();
 if (gethostname(host_name,1Ø)!=Ø) {
 printf("Problem in getting host name...\n");
 exit_program(119);
 }
 exec sql connect to nbmdb;
 if (sqlca.sqlcode < Ø) sql_error(24);
 if (strcmp(path_name,"")==Ø)

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 {
 if (getwd(path_name)==NULL){
 printf("Problem getting current directory...\n");
 exit_program(12Ø);
 }
 }
 sprintf(file_to_be_copied,"%s/%s",path_name,file_name);
 file_size=get_file_size();
 get_a_path(file_size);
 file_version=get_version_number(path_name,file_name);

 exec sql insert into BACKUP_FILES
 values(:host_name,:path_name,:file_name,:path_no,:file_version,current
timestamp,:retpd,:is_dir,:compress);
 do_copy();
 printf("%s/%s version:%ld is successfully backed up to %s/
%s!at!%s!%s.V%ld on host
%s.\n",path_name,file_name,file_version,backup_path_name,path_name_with,
backup_host,file_name,file_version,backup_host);
}
int main(int argc,char **argv)
{
 int copt=Ø;
 strcpy(preferred_host_name,"");
 while(1) {
 copt=getopt(argc,argv,"p:f:r:s:g:ncih?");
 if (copt==-1) break;
 switch(copt) {
 case 'p' :
 strcpy(path_name,optarg);
 break;
 case 'f' :
 strcpy(file_name,optarg);
 break;
 case 'r' :
 retpd=atoi(optarg);
 break;
 case 's' :
 strcpy(preferred_host_name,optarg);
 break;
 case 'g' :
 preferred_group_num=atoi(optarg);
 break;
 case 'n' :
 not_on_this_host=1;
 break;
 case 'i' :
 interactive_mode=1;
 break;
 case 'c' :

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 compress=1;
 break;
 case 'h' :
 case '?' :
 nbm_help();
 exit(2);
 break;
 otherwise :
 nbm_help();
 exit(3);
 break;
 }
 }
 if (interactive_mode==1) {
 printf("Path Name (-p) - Enter Ø for current directory - :");
 scanf("%s",path_name);
 printf("\nFile Name (-f) :");
 scanf("%s",file_name);
 printf("\nRetention Period (-r) :");
 scanf("%ld",&retpd);
 printf("\nPreferred Host Name (-s) - Enter Ø for not preferring -
:");
 scanf("%s",preferred_host_name);
 printf("\npreferred_group_num (-g) - Enter Ø for not preferring -
:");
 scanf("%ld",&preferred_group_num);
 printf("\nØ:On the same host, 1:on another host (-n) =");
 scanf("%ld",¬_on_this_host);
 printf("\nØ:NOT compressed, 1:compressed (-c) =");
 scanf("%ld",&compress);
 }
 if (strcmp(path_name,"Ø")==Ø) strcpy(path_name,"");
 if (strcmp(preferred_host_name,"Ø")==Ø)
strcpy(preferred_host_name,"");
 if (strcmp(file_name,"")== Ø) {
 printf("File name must be entered...\n");
 exit(2ØØ);
 }
 if (retpd == Ø) {
 printf("Retention Period must be other than Ø...\n");
 exit(2Ø1);
 }
 nbm_copy();
 exec sql commit;
 exit_program(Ø);
}

NBMRESTORE.SQC
#include <stdio.h>

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

#include <sqlca.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <sys/stat.h>
#include <errno.h>
int interactive_mode=Ø;
char backup_file_name[4ØØ],host_name[1Ø];
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION ;
 char file_name[2ØØ];
 char path_name[2ØØ];
 char backup_path_name[2ØØ];
 char backup_host[1Ø];
 char file_host_name[1Ø];
 char username[2Ø];
 char after_time[26];
 char before_time[26];
 long version;
 long compressed;
 long restore_version=999;
 long ret_pd;
 char cre_date[26];
 long file_dir;
EXEC SQL END DECLARE SECTION;
void nbm_help()
{
 printf("Usage:\n");
 printf(" nbmrestore -p path_name -f file_name -v version -a YYYY-MM-
DD-HH.MI.SS.SSSSSS \n");
 printf(" -b YYYY-MM-DD-HH.MI.SS.SSSSSS -i (interactive mode)
\n");
}
void sql_error(int err_pl)
{
 printf("SQLCODE=%ld\n",sqlca.sqlcode);
 printf("Place of the error=%d\n",err_pl);
 exec sql rollback;
 exit(1);
}
void do_restore()
{
 char sys_cmd[1ØØØ],path_name_with[1ØØØ],*getenv(),*tempdir;
 int ind;
 for (ind=Ø;ind<=strlen(path_name);ind++)
 if (path_name[ind] == '/') path_name_with[ind]='!'; else
path_name_with[ind]=path_name[ind];
 if (gethostname(host_name,1Ø)!=Ø) {
 printf("Problem in getting host name...\n");
 exit(2);

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 }
 tempdir=getenv("NBM_TEMPDIR");
 if (strcmp(backup_host,host_name) == Ø)
 sprintf(sys_cmd,"cp %s/%s!at!%s!%s %s/%s > /dev/
null",backup_path_name,path_name_with,file_host_name,backup_file_name,
tempdir,backup_file_name);
 else
 sprintf(sys_cmd,"rcp %s@%s:%s/%s!at!%s!%s %s/%s > /dev/
null",username,backup_host,backup_path_name,path_name_with,file_host_name,
backup_file_name,tempdir,backup_file_name);
 if (system(sys_cmd) != Ø) {
 printf("Problem in copying file:%s ...\n",backup_file_name);
 exit(3);
 }
 printf("\n%s is successfully restored to
%s.\n",backup_file_name,tempdir);
}
int confirm_restore()
{
 char is_this;
 if (file_dir == 1 || compressed == 1)
 sprintf(backup_file_name,"%s.V%ld.Z",file_name,restore_version);
 else
 sprintf(backup_file_name,"%s.V%ld",file_name,restore_version);
 printf("Backup file %s stored on %s:%s taken at %s (RETPD=%ld,
CURRENT VERSION=%ld, FILE TYPE=%s
)\n",backup_file_name,backup_host,backup_path_name,cre_date,ret_pd,version,(
file_dir == Ø) ? "FILE":"DIR");
 printf("Is this the one you want to restore (y/n) ?");
 scanf("%2c",&is_this);
 if (is_this == 'y' || is_this == 'Y') {
 do_restore();
 return 1;
 }
 printf("\n\n");
 return Ø;
}
void nbm_restore()
{
 exec sql connect to nbmdb;
 if (sqlca.sqlcode < Ø) sql_error(1);
 if (restore_version != 999) {
 exec sql select a.HOST,a.PATH_NAME, a.FILE_NAME, b.HOST, b.PATH,
a.VERSION,
 c.VERSION-1, DATE_TAKEN, RETPD,
 FILE_TYPE, COMPRESSED, rtrým(USERNAME)
 into :file_host_name,:path_name, :file_name, :backup_host,
 :backup_path_name,:restore_version, :version,
:cre_date, :ret_pd,
 :file_dir, :compressed, :username

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 from BACKUP_FILES a,BACKUP_PATHS b,BACKUP_VERSIONS c
 where a.PATH_NAME = :path_name and
 a.FILE_NAME = :file_name and
 a.PATH_NAME = c.PATH_NAME and
 a.FILE_NAME = c.FILE_NAME and
 PATH_NO = BACKUP_PATH_NO and
 a.VERSION = c.VERSION-1+:restore_version;
 if (sqlca.sqlcode < Ø) sql_error(2);
 if (sqlca.sqlcode==1ØØ) {
 printf("No backup found for file %s/%s...\n",path_name,file_name);
 exit(4);
 }
 confirm_restore();
 }
 if (strcmp(after_time,"") != Ø) {

 exec sql declare crs1 cursor for
 select a.HOST,a.PATH_NAME, a.FILE_NAME, b.HOST, b.PATH,
a.VERSION,
 c.VERSION-1, DATE_TAKEN, RETPD,
 FILE_TYPE, COMPRESSED, rtrým(USERNAME)
 from BACKUP_FILES a,BACKUP_PATHS b,BACKUP_VERSIONS c
 where a.PATH_NAME = :path_name and
 a.FILE_NAME = :file_name and
 a.PATH_NAME = c.PATH_NAME and
 a.FILE_NAME = c.FILE_NAME and
 PATH_NO = BACKUP_PATH_NO and
 DATE_TAKEN > :after_time
 order by a.DATE_TAKEN ;
 if (sqlca.sqlcode < Ø) sql_error(3);
 exec sql open crs1;
 if (sqlca.sqlcode < Ø) sql_error(4);
 exec sql fetch crs1 into :file_host_name,:path_name, :file_name,
:backup_host,
 :backup_path_name,:restore_version,
:version, :cre_date,
 :ret_pd,:file_dir, :compressed, :username;
 if (sqlca.sqlcode < Ø) sql_error(5);
 if (sqlca.sqlcode==1ØØ) {
 printf("No backup found for file %s/%s...\n",path_name,file_name);
 exit(5);
 }
 while (sqlca.sqlcode!=1ØØ) {
 if (confirm_restore() == 1) break;
 exec sql fetch crs1 into :file_host_name,:path_name, :file_name,
:backup_host,
 :backup_path_name,:restore_version,
:version,
 :cre_date,:ret_pd,:file_dir, :compressed,
:username;

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 if (sqlca.sqlcode < Ø) sql_error(6);
 }
 exec sql close crs1;
 if (sqlca.sqlcode < Ø) sql_error(7);
 }
 if (strcmp(before_time,"") != Ø) {
 exec sql declare crs2 cursor for
 select a.HOST,a.PATH_NAME, a.FILE_NAME, b.HOST, b.PATH,
a.VERSION,
 c.VERSION-1, DATE_TAKEN, RETPD,
 FILE_TYPE, COMPRESSED, rtrým(USERNAME)
 from BACKUP_FILES a,BACKUP_PATHS b,BACKUP_VERSIONS c
 where a.PATH_NAME = :path_name and
 a.FILE_NAME = :file_name and
 a.PATH_NAME = c.PATH_NAME and
 a.FILE_NAME = c.FILE_NAME and
 PATH_NO = BACKUP_PATH_NO and
 DATE_TAKEN < :before_time
 order by a.DATE_TAKEN DESC ;
 if (sqlca.sqlcode < Ø) sql_error(8);
 exec sql open crs2;
 if (sqlca.sqlcode < Ø) sql_error(9);
 exec sql fetch crs2 into :file_host_name,:path_name, :file_name,
:backup_host,
 :backup_path_name,:restore_version,
:version, :cre_date,
 :ret_pd,:file_dir, :compressed, :username;
 if (sqlca.sqlcode < Ø) sql_error(1Ø);
 if (sqlca.sqlcode==1ØØ) {
 printf("No backup found for file %s/%s...\n",path_name,file_name);
 exit(6);
 }
 while (sqlca.sqlcode!=1ØØ) {
 if (confirm_restore() == 1) break;
 exec sql fetch crs2 into :file_host_name,:path_name, :file_name,
:backup_host,
 :backup_path_name,:restore_version,
:version,
 :cre_date,:ret_pd,:file_dir, :compressed,
:username;
 if (sqlca.sqlcode < Ø) sql_error(11);
 }
 exec sql close crs2;
 if (sqlca.sqlcode < Ø) sql_error(12);
 }
}
int main(int argc,char **argv)
{
 int copt=Ø;
 strcpy(after_time,"");

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 strcpy(before_time,"");
 while(1) {
 copt=getopt(argc,argv,"p:f:v:a:b:ih?");
 if (copt==-1) break;
 switch(copt) {
 case 'p' :
 strcpy(path_name,optarg);
 break;
 case 'f' :
 strcpy(file_name,optarg);
 break;
 case 'v' :
 restore_version=atoi(optarg);
 break;
 case 'a' :
 strcpy(after_time,optarg);
 break;
 case 'b' :
 strcpy(before_time,optarg);
 break;
 case 'i' :
 interactive_mode=1;
 break;
 case 'h' :
 case '?' :
 nbm_help();
 exit(7);
 break;
 otherwise :
 nbm_help();
 exit(8);
 break;
 }
 }
 if (interactive_mode==1) {
 printf("Path Name (-p) :");
 scanf("%s",path_name);
 printf("\nFile Name (-f) :");
 scanf("%s",file_name);
 printf("\nVersion (-v) - 999 for none, For the last version Ø, for
the previous version -1 and so on :");
 scanf("%ld",&restore_version);
 printf("\nAfter Time (-a) - Time Format is YYYY-MM-DD-
HH.MI.SS.SSSSSS - Enter Ø for none :");
 scanf("%s",after_time);
 printf("\nBefore Time (-b) - Time Format is YYYY-MM-DD-
HH.MI.SS.SSSSSS - Enter Ø for none :");
 scanf("%s",before_time);
 if (strcmp(after_time,"Ø")==Ø) strcpy(after_time,"");
 if (strcmp(before_time,"Ø")==Ø) strcpy(before_time,"");

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 }
 nbm_restore();
 exec sql commit;
 exit(Ø);
}

NBMCLEAN.SQC
#include <stdio.h>
#include <sqlca.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION ;
 char file_name[2ØØ];
 char path_name[2ØØ];
 char backup_path_name[2ØØ];
 char backup_host[1Ø];
 char file_host_name[1Ø];
 char username[1Ø];
 long version=Ø;
 long ret_pd;
 char cre_date[26];
 long file_dir;
 long compressed;
EXEC SQL END DECLARE SECTION;
void sql_error(int err_pl)
{
 printf("SQLCODE=%ld\n",sqlca.sqlcode);
 printf("Place of the error=%d\n",err_pl);
 exec sql rollback;
 exit(1);
}
void nbm_clean()
{
 char
backup_file_name[2ØØ],path_name_with[1ØØØ],sys_cmd[1ØØØ],host_name[1Ø];
 int ind,rc;
 if (gethostname(host_name,1Ø)!=Ø) {
 printf("Problem in getting host name...\n");
 exit(2);
 }
 exec sql declare crs1 cursor for
 select a.HOST,
 PATH_NAME,
 FILE_NAME,
 b.HOST,
 USERNAME,

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 PATH,
 VERSION,
 DATE_TAKEN,
 RETPD,
 FILE_TYPE,
 COMPRESSED
 from BACKUP_FILES a,BACKUP_PATHS b
 where DATE_TAKEN < CURRENT TIMESTAMP - RETPD days and
 PATH_NO = BACKUP_PATH_NO;
 if (sqlca.sqlcode < Ø) sql_error(1);
 exec sql open crs1;
 if (sqlca.sqlcode < Ø) sql_error(2);
 exec sql fetch crs1 into :file_host_name,
 :path_name,
 :file_name,
 :backup_host,
 :username,
 :backup_path_name,
 :version,
 :cre_date,
 :ret_pd,
 :file_dir,
 :compressed;
 if (sqlca.sqlcode < Ø) sql_error(3);
 if (sqlca.sqlcode==1ØØ) exit(3);
 while (sqlca.sqlcode!=1ØØ) {
 for (ind=Ø;ind<=strlen(path_name);ind++)
 if (path_name[ind] == '/') path_name_with[ind]='!'; else
path_name_with[ind]=path_name[ind];
 if (file_dir == 1 || compressed == 1)
 sprintf(backup_file_name,"%s.V%ld%s",file_name,version,".Z");
 else
 sprintf(backup_file_name,"%s.V%ld",file_name,version);
 if (strcmp(backup_host,host_name) == Ø) {
 sprintf(sys_cmd,"rm -f %s/
%s!at!%s!%s",backup_path_name,path_name_with,file_host_name,backup_file_name);
 } else {
 sprintf(sys_cmd,"rsh %s -l %s 'rm -f %s/
%s!at!%s!%s'",backup_host,username,backup_path_name,path_name_with,
file_host_name,backup_file_name);
 }
 rc=system(sys_cmd);
 if (rc == Ø || rc == 512) {
 exec sql delete from BACKUP_FILES
 where HOST=:file_host_name and
 PATH_NAME=:path_name and
 FILE_NAME=:file_name;;
 if (sqlca.sqlcode < Ø) sql_error(4);
 printf("Backup file:%s/%s!at!%s!%s on host %s is removed (Backup
Date:%s, Retention Period:%ld

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

)\n",backup_path_name,path_name_with,backup_host,backup_file_name,backup_host,
cre_date,ret_pd);
 } else {
 printf("Problem in removing...Rc=%ld\n",rc);
 perror("Remove:");
 }
 exec sql fetch crs1 into :file_host_name,
 :path_name,
 :file_name,
 :backup_host,
 :username,
 :backup_path_name,
 :version,
 :cre_date,
 :ret_pd,
 :file_dir,
 :compressed;
 if (sqlca.sqlcode < Ø) sql_error(5);
 }
 exec sql close crs1;
 if (sqlca.sqlcode < Ø) sql_error(6);
}

int main(int argc,char **argv)
{
 exec sql connect to nbmdb;
 if (sqlca.sqlcode < Ø) sql_error(7);
 nbm_clean();
 exec sql commit;
 if (sqlca.sqlcode < Ø) sql_error(8);
 exit(Ø);
}

NBMLIST.SQC
#include <stdio.h>
#include <sqlca.h>
#include <unistd.h>
#include <string.h>
char old_path_name[2ØØ],old_file_name[2ØØ],old_host_name[1Ø];
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION ;
 char file_name[2ØØ];
 char path_name[2ØØ];
 char backup_path_name[2ØØ];
 char backup_host[1Ø];
 char host_name[1Ø];
 long version=Ø;
 long ret_pd;

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 char cre_date[26];
 long file_dir;
EXEC SQL END DECLARE SECTION;
void nbm_help()
{
 printf("Usage :\n");
 printf(" nbmlist -p path_name -f file_name \n");
}
void sql_error(int err_pl)
{
 printf("SQLCODE=%ld\n",sqlca.sqlcode);
 printf("Place of the error=%d\n",err_pl);
 exec sql rollback;
 exit(1);
}
void header()
{
 printf("\nFILE=%s/%s HOST=%s FILE_TYPE=%s
\n",path_name,file_name,host_name,(file_dir==Ø)?"FILE":"DIR");
 printf("--
------------------------\n");
 printf("version\tbackup_host\t\tbackup_path\t\t
cre_date\t\tret_pd\n\n");
 strcpy(old_path_name,path_name);
 strcpy(old_file_name,file_name);
 strcpy(old_host_name,host_name);
}
void list_by_file_name()
{
 exec sql declare crs1 cursor for
 select PATH_NAME,
 FILE_NAME,
 a.HOST,
 b.HOST,
 PATH,
 VERSION,
 DATE_TAKEN,
 RETPD,
 FILE_TYPE
 from BACKUP_FILES a,BACKUP_PATHS b
 where PATH_NAME like :path_name and
 FILE_NAME like :file_name and
 PATH_NO = BACKUP_PATH_NO
 order by PATH_NAME,FILE_NAME,VERSION;
 if (sqlca.sqlcode < Ø) sql_error(1);
 exec sql open crs1;
 if (sqlca.sqlcode < Ø) sql_error(2);
 exec sql fetch crs1 into :path_name,
 :file_name,
 :host_name,

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 :backup_host,
 :backup_path_name,
 :version,
 :cre_date,
 :ret_pd,
 :file_dir;
 if (sqlca.sqlcode < Ø) sql_error(3);
 if (sqlca.sqlcode==1ØØ) exit(2);
 header();
 while (sqlca.sqlcode!=1ØØ) {
 printf("%d\t%8s\t%3Øs\t%17s\t%d\n",version,backup_host,backup_path_name,
cre_date,ret_pd);

 exec sql fetch crs1 into :path_name,
 :file_name,
 :host_name,
 :backup_host,
 :backup_path_name,
 :version,
 :cre_date,
 :ret_pd,
 :file_dir;
 if (sqlca.sqlcode < Ø) sql_error(4);

 if (strcmp(path_name,old_path_name)!=Ø ||
strcmp(file_name,old_file_name)!=Ø) header();
 }
 exec sql close crs1;
 if (sqlca.sqlcode < Ø) sql_error(5);
}
void nbm_list()
{
 exec sql connect to nbmdb;
 if (sqlca.sqlcode < Ø) sql_error(6);
 list_by_file_name();
}
int main(int argc,char **argv)
{
 int copt,i=Ø;
 while(1) {
 copt=getopt(argc,argv,"p:f:h?");
 if (copt==-1) break;
 switch(copt) {
 case 'p' :
 strcpy(path_name,optarg);
 break;
 case 'f' :
 strcpy(file_name,optarg);
 break;
 case 'h' :

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 case '?' :
 nbm_help();
 exit(Ø);
 break;
 otherwise :
 nbm_help();
 exit(Ø);
 break;
 }
 }
 nbm_list();
 exit(Ø);
}

Abdullah Ongul
DBA
Disbank (Turkey) © Xephon 2003

Source code control system

INTRODUCTION
The Source Code Control System (SCCS) is a set of utilities to
manage any kind of source. SCCS does not provide a menu-
based application for management – instead it offers a number
of commands with various options. As a result of this, a shell
script is almost always required to automate this command line
interface and hence make life easier for developers. The article
discusses various aspects of SCCS and provides the listing of a
shell script, sccs.sh, which interfaces to various SCCS commands.

SCCS TERMINOLOGY

Archive file
The archive file is the file that SCCS creates to manage a specific
source and its deltas.

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The file is named as s.<source file name>, where s refers to
SCCS.
This file contains the original content of the source file as well as
all the changes that have been made to it.

SCCS file
The SCCS file is the file that SCCS maintains to manage a
specific source and its deltas.
This is also known as an archive file.

Working file
A working file is a copy of a specific source file with a particular
revision number, which has been archived by SCCS.

Delta
Each revision of a source file recorded in an SCCS file is called
a delta.

SID
The revision number of each revision for a specific source file is
referred to as a SID (for SCCS ID) (eg 1.2, where 1 = release id
or branch id, 2 = sequence no).

SCCS COMMANDS
The command syntaxes are as follows:
sccs < options for sccs > sub-command < options for subcommands >

Example 1:
sccs -d ${SCCS_ROOT_DIR} get -r1.2 ${SOURCE_FILE_NAME}

Example 2:
get -r1.2 ${SCCS_ROOT_DIR}/SCCS/s. ${SOURCE_FILE_NAME}

Note: subcommands themselves are capable of carrying on all

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SCCS activities but one needs to provide more information. In
the example above, the subcommand, get, will not know where
the archive file lives, and, therefore, one needs to specify its full
path, as well as the prefix s., which stands for archive file.

SETTING UP SCCS

Single directory set-up
1 Create a Unix account (eg sccsadm), which will own all

SCCS files and serve as the SCCS administrator.
2 Decide on an SCCS root directory name (eg /u1/sources/)

and create this directory, making SCCS administrator the
owner of that directory.

3 Make a subdirectory called SCCS under this SCCS root
directory.

4 Make all SCCS commands owned by the SCCS administrator.
5 Set the user bit on for all checkin- and checkout-related

commands.
Note: all the archive files will reside under the SCCS root
directory/SCCS directory.

Multiple directory set-up
1 Create a Unix account (eg sccsadm) that will own all SCCS

files and serve as the SCCS administrator.
2 Decide on a SCCS root directory name (eg /u1/sources/)

and create this directory, making SCCS administrator the
owner of that directory.

3 Establish all the different file extension types for source files.
4 Make as many subdirectories, called SCCS/<file extension

type>, as there are file extension types under this SCCS root
directory.

5 Make all SCCS commands owned by the SCCS administrator.

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

6 Set the user bit on for all checkin- and checkout-related
commands.

Note: archive files with same file extension type will reside under
the same directory

REVISION TREE

How branches are created
By default, SCCS checks out the latest source from branch 1 (eg
1.5). But if SCCS is asked to check out an earlier version of a
source for editing, SCCS will create a second branch for the
source at check in. Now, if the same source is checked out again
for editing, because a second branch already exists, SCCS will
create a third branch.

Cheking out source files for update from a multiple branch revision tree
If all the branches reside in the same SCCS directory, one needs
to know precisely which version they want to modify. There is no
easy way to do this, but document the purpose of multiple
branches for source file. Alternatively, you can look at the history
of changes, which includes comments for deltas from all the
branches, and decide which version to modify.

REMOVING CHANGES FROM SCCS
SCCS allows only the latest change from the revision tree.

PROGRAM LISTING
###
Name : source code control system (sccs)
Overview : The shell script provides an interfaces to Unix's SCCS
utility
Notes : 1. The usage of the script is as follows:
sccs.sh -D where -D is optional debug
parameter which displays full
error message in vi editor
2. All the underlying utilities of SCCS must be owned
by the SCCS administrator (eg sccsadm) and have

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

their user-id bits set.
This administrator cannot be root.
3. The script contains the following functions:
o InitialiseVariables
o ParseCommandLine
o DisplayMessage
o HandleInterrupt
o MoveCursor
o ProcessExit
o FormatUnderscores
o DisplayMenu
o ProcessOption
o DisplayListOfValues
o GetSourceFileName
o GetDirectoryName
o GetReleaseId
o CheckInNewSourceFile
o CheckOutLatestSourceFileForUpdate
o CheckInUpdatedSourceFile
o GetReadOnlyLatestSourceFile
o GetReadOnlySpecificVersionOfSourceFile
o ShowListOfCheckedOutFiles
o ReleaseCheckedOutSourceFile
o ShowSourceReleaseHistory
o ShowVersionDifference
o ShowChangesMade
o UpdateDeltaComment
o InsertSCCSKeyWordsIntoFile
o RemoveLatestDelta
o main
4. You can modify InsertSCCSKeyWordsIntoFile () to
allow for more file extension types
5. You can alter the default sub-directory SCCS
under the sccs root directory by creating these
alternative sub-directories under sccs root
directory and running sccs command as follows:
sccs –d${SCCS_ROOT_DIRECTORY}
–p<required sub-directory name> < subcommands >
History :
###
###
Name : InitialiseVariable
Overview : The function initializes all module constants and
working variables.
Notes :
###
InitialiseVariable ()
{
sccs directory struture
define SCCS root directory
SCCS_ROOT_DIR="/export/home/release/mas_dir" ; export SCCS_ROOT_DIR

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

define SCCS sub-directories
SCCS_SQL_DIR="SCCS" ; export SCCS_SQL_DIR
SCCS_PC_DIR="SCCS" ; export SCCS_PC_DIR
SCCS_C_DIR="SCCS" ; export SCCS_C_DIR
SCCS_SH_DIR="SCCS" ; export SCCS_SH_DIR
sccs command directory
SCCS_BIN_DIR="/usr/ccs/bin"
USER='id | cut -d'(' -f2 | cut -d')' -f1'
terminal capabilities
BOLDON=`tput smso`
BOLDOFF=`tput rmso`
#
ESC="\ØØ33["
menu title
MENU_TITLE="${BOLDON}Source Code Control System (SCCS) Menu${BOLDOFF}"
#
ERROR="sccs.sh:ERROR:"
INFO="sccs.sh:INFO:"
fuction return values
TRUE=Ø
FALSE=1
#
DEBUG="${FALSE}"
exit status
SEC=Ø
FEC=1
sleep duration
SLEEP_DURATION=3
define signals
SIGINT=2 ; export SIGINT # ctrl-c command
SIGTERM=15 ; export SIGTERM # kill command
SIGTSTP=18 ; export SIGTSTP # ctrl-z command
temporary file
TEMP_FILE_1=/tmp/sccs_1_$$.tmp
TEMP_FILE_2=/tmp/sccs_2_$$.tmp
LOV_FILE_1=/tmp/sccs_lov1_$$.tmp
LOV_FILE_2=/tmp/sccs_lov2_$$.tmp
messages
INTERRUPT="Program Interrupted\; Quitting early"
WORKING="Working"
INVALID_ENTRY="Invalid Entry"
OS_ERROR="\${ERR_MSG}"
NEW_CHKIN_FAILED="Failed to check in new source \${SOURCE_FILE_NAME}"
EDITED_CHKIN_FAILED="Failed to check in modified source
\${SOURCE_FILE_NAME}"
EDIT_CHKOUT_FAILED="Failed to reserve the source \${SOURCE_FILE_NAME}
for editing"
READ_CHKOUT_FAILED="Failed to check out the source \${SOURCE_FILE_NAME}
for read"
DIR_NOT_WRITABLE="Directory, \${DIR_NAME} is not writable by user,
${USER}"

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

RELEASE_LOCK_FAILED="Failed to cancel reservation for source
\${SOURCE_FILE_NAME}"
CHKOUT_LIST_FAILED="Filed to list checked out sources"
HIST_LIST_FAILED="Failed to list Source Release History"
DEBUG_SET="Debug set"
LOV_FOR_VERSION_FAILED="Failed to generate list of values for source
release"
INVALID_FILE_EXTENSION="Invalid file extension"
DELTA_NOT_REMOVED="Failed to remove delta \${RELEASE_ID} for source
\${SOURCE_FILE_NAME}"
SID_NOT_RETRIEVED="Failed to retrieve latest SID for source
\${SOURCE_FILE_NAME}"
COMMENT_UPDATE_FAILED="Failed to update comment for delta \${RELEASE_ID}
for \${SOURCE_FILE_NAME}"
SOURCE_FILE_NOT_EXISTS="Source file \${SOURCE_FILE_NAME} does not exist
in current directory"
VERSION_DIFF_FAILED="Failed to compare two releases for
\${SOURCE_FILE_NAME}"
CHANGE_DIFF_FAILED="Failed to compare checked out version with latest
delta for \${SOURCE_FILE_NAME}"
}
###
Name : HandleInterrupt
Overview : The function calls ProcessExit.
Notes :
##
HandleInterrupt ()
{
DisplayMessage I "${INTERRUPT}" N
ProcessExit $FEC
}
###
Name : MoveCursor
Input : Y and X coordinates
Returns : None
Overview : It moves the cursor to the required location (Y,X).
Notes :
###
MoveCursor ()
{
YCOR=$1
XCOR=$2
echo "${ESC}${YCOR};${XCOR}H"
}
###
Name : ProcessExit
Overview : The function calls ProcessExit.
Input : Exit Code
Notes :
###
ProcessExit ()

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

{
assign parameter
EXIT_CODE="$1"
rm -f ${TEMP_FILE_1}
rm -f ${TEMP_FILE_2}
rm -f ${LOV_FILE_1}
rm -f ${LOV_FILE_2}

exit ${EXIT_CODE}
}
###
Name : DisplayMessage
Overview : The function displays message
Input : 1. Message type (E = Error, I = Informative)
2. Error Code as defined in DefineMessages ().
3. Message to be acknowledged flag (Y=yes N=no)
Notes :
###
DisplayMessage ()
{
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGHUP $SIGTSTP
MESSAGE_TYPE=$1
MESSAGE_TEXT=`eval echo $2`
ACKNOWLEDGE_FLAG="$3"
default the message acknowledge flag
if ["${ACKNOWLEDGE_FLAG}" = ""]
then
 ACKNOWLEDGE_FLAG="Y"
fi
#clear
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then
 if ["${ACKNOWLEDGE_FLAG}" = "Y"]
 then
 echo "${BOLDON}${ERROR}${MESSAGE_TEXT}${BOLDOFF}\c"
 else
 echo "${BOLDON}${ERROR}${MESSAGE_TEXT}...${BOLDOFF}\c"
 fi
else
 if ["${ACKNOWLEDGE_FLAG}" = "Y"]
 then
 echo "${BOLDON}${INFO}${MESSAGE_TEXT}${BOLDOFF}\c"
 else
 echo "${BOLDON}${INFO}${MESSAGE_TEXT}...${BOLDOFF}\c"
 fi
fi
examine message acknowledge flag
if ["${ACKNOWLEDGE_FLAG}" = "Y"]
then
 read DUMMY

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

else
 sleep ${SLEEP_DURATION}
fi
return ${TRUE}
}
###
Name : FormatUnderscores
Overview : The function assigns appropriate number of
underscores(=) to the variable UNDERSCORE to be used
in conjunction with a header.
Input : Line containing the header
Notes :
###
FormatUnderscores ()
{
assign parameter
LINE="$1"
initialize UNDERSCORE
UNDERSCORE=
initialize index
IND=1
get no of characters in $LINE
NO_CHARS=`echo "$LINE" | wc -c`
subtract the carriage return
NO_CHARS=`expr $NO_CHARS - 1`
while ["$IND" -le "$NO_CHARS"]
do
 UNDERSCORE="${UNDERSCORE}="
 IND=`expr $IND + 1`
done
}
###
Name : DisplayListOfValues
Overview : The function displays a list of values for source file
names.
Inputs : List of Value type (S (source) or V (version no))
Returns : $TRUE or $FALSE
Notes :
###
DisplayListOfValues ()
{
assign parameter
LOV_TYPE="$1"
DATETIME=`date "+%d/%m/%Y at %H:%M:%S"`
initialize selected value variable
SELECTED_VALUE=""
#
if ["${LOV_TYPE}" = "S"]
then
 SCCS_DIR="${SCCS_ROOT_DIR}/SCCS"

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 ls -1 ${SCCS_DIR} > ${TEMP_FILE_1}
 # prepare LOV files
 #
 HEADER="List of values for Source Files on ${DATETIME}"
 FormatUnderscores "${HEADER}"
 echo " ${HEADER}" > ${LOV_FILE_1}
 echo " ${UNDERSCORE}" >> ${LOV_FILE_1}
 echo " To Select Delete Corresponding Line and Save
File\n">>${LOV_FILE_1}
 cat ${TEMP_FILE_1} >> ${LOV_FILE_1}
 cp ${LOV_FILE_1} ${LOV_FILE_2}
 #
 vi ${LOV_FILE_1}
 SELECTED_VALUE=`diff ${LOV_FILE_1} ${LOV_FILE_2} | tail -1 | \
 awk {'print $2'}`
 # strip off file types
 SELECTED_VALUE=`echo ${SELECTED_VALUE} |sed s/^..//`
#
elif ["${LOV_TYPE}" = "V"]
then
 # get source history
 ${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} prs -l -r1.1
${SOURCE_FILE_NAME} >\
 ${TEMP_FILE_1} 2>&1
 if [$? -ne Ø]
 then
 DisplayMessage E "${LOV_FOR_VERSION_FAILED}" N ;
 ERR_MSG=`cat ${TEMP_FILE_1}` ;
 DisplayMessage E "${OS_ERROR}" ;
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
 fi
 # prepare list of values file
 HEADER="List of values for Release Ids for source ${SOURCE_FILE_NAME}
on ${DATETIME}"
 FormatUnderscores "${HEADER}"
 echo " ${HEADER}" > ${LOV_FILE_1}
 echo " ${UNDERSCORE}" >> ${LOV_FILE_1}
 echo " To Select Delete Corresponding Line and Save
File\n">>${LOV_FILE_1}
 cat ${TEMP_FILE_1} >> ${LOV_FILE_1}
 cp ${LOV_FILE_1} ${LOV_FILE_2}
 #
 vi ${LOV_FILE_1}
 SELECTED_VALUE=`diff ${LOV_FILE_1} ${LOV_FILE_2} | tail -1 | \
 awk {'print $3'}`

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi
return $TRUE
}
###
Name : InsertSCCSKeyWordsIntoFile
Overview : The function inserts SCCS keywords into a new source
file.
Returns : $TRUE or $FALSE
Notes :
###
InsertSCCSKeyWordsIntoFile ()
{
__
Keyword Value
__
%A% Shorthand notation for an ID line with data for
what(1): %Z%%Y% %M% %I%%Z%
__
%B% SID branch component
__
%C% Current line number. Intended for identifying
messages output by the program such as ``this
shouldn't have happened`` type errors. It is
not intended to be used on every line to pro-
vide sequence numbers.
__
%D% Current date: yy/mm/dd
__
%E% Date newest applied delta was created: yy/mm/dd
__
%F% SCCS s.file name
__
%G% Date newest applied delta was created: mm/dd/yy
__
%H% Current date: mm/dd/yy
__
%I% SID of the retrieved version: %R%.%L%.%B%.%S%
__
%L% SID level component
__
%M% Module name: either the value of the m flag in
the s.file (see sccs-admin(1)), or the name of
the s.file less the prefix
__
%P% Fully qualified s.file name
__
%Q% Value of the q flag in the s.file
__
%R% SID Release component
__
%S% SID Sequence component

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

__
%T% Current time: hh:mm:ss
__
%U% Time the newest applied delta was created:
hh:mm:ss
__
%W% Shorthand notation for an ID line with data for
what : %Z%%M% %I%
__
%Y% Module type: value of the t flag in the s.file
__
%Z% 4-character string: `@(#)', recognized by what
__
#
extract file extension
FILE_EXT=`echo "${SOURCE_FILE_NAME}" | sed s/.*\\\.//g`
prepare comment symbol according to file extension
case ${FILE_EXT} in
 pc) START_COMMENT="/*" ;
 END_COMMENT="*/" ;;
 sql) START_COMMENT="/*" ;
 END_COMMENT="*/" ;;
 c) START_COMMENT="/*" ;
 END_COMMENT="*/" ;;
 sh) START_COMMENT="#" ;;
 "") DisplayMessage E "${INVALID_FILE_EXTENSION}" N ;
 return $FALSE ;;
 *) DisplayMessage E "${INVALID_FILE_EXTENSION}" N ;
 return $FALSE ;;
esac
prepare keyword strings
if ["${FILE_EXT}" = "sql" -o "${FILE_EXT}" = "c" -o "${FILE_EXT}" =
"pc"]
then
 KEYWORDS_STRINGS="${START_COMMENT}\nSCCS Control Information\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS}========================\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS}\nModule Name: %M%\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS} Version: %I%\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS} Created: %H%\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS} Filename: %P%\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS}Last Edited: %E%\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS} What ID: %W%\n"
 KEYWORDS_STRINGS="${KEYWORDS_STRINGS}${END_COMMENT}"
#
elif ["${FILE_EXT}" = "sh"]
then
 KEYWORDS_STRINGS="${START_COMMENT} SCCS Control Information\n"
 KEYWORDS_STRINGS=
 "${KEYWORDS_STRINGS}${START_COMMENT} ========================\n"
 KEYWORDS_STRINGS=
 "${KEYWORDS_STRINGS}${START_COMMENT} Module Name: %M%\n"

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 KEYWORDS_STRINGS=
 "${KEYWORDS_STRINGS}${START_COMMENT} Version: %I%\n"
 KEYWORDS_STRINGS=
 "${KEYWORDS_STRINGS}${START_COMMENT} Created: %H%\n"
 KEYWORDS_STRINGS=
 "${KEYWORDS_STRINGS}${START_COMMENT} Filename: %P%\n"
 KEYWORDS_STRINGS=
 "${KEYWORDS_STRINGS}${START_COMMENT} Last Edited: %E%\n"
 KEYWORDS_STRINGS=
 "${KEYWORDS_STRINGS}${START_COMMENT} What ID: %W%\n"
fi
#
echo "${KEYWORDS_STRINGS}" > ${TEMP_FILE_1}
cat ${SOURCE_FILE_NAME} >> ${TEMP_FILE_1}
cat ${TEMP_FILE_1} > ${SOURCE_FILE_NAME}
#
if ["${DEBUG}" = "${TRUE}"]
then
 view ${SOURCE_FILE_NAME}
fi
return $TRUE
#
}
###
Name : GetSourceFileName
Overview : The function accepts a source file name.
Inputs : Mode (CI (checkin) or CO (checkout))
Returns : $TRUE or $FALSE
Notes :
###
GetSourceFileName ()
{
assign parameter
MODE="$1"
#
while true
do
 clear
 if ["${MODE}" = "CI"]
 then
 # get checkin file name
 echo "Enter File name in current directory(a to abandon):\c"
 else
 # get checkout file name
 # display list of values
 SELECTED_VALUE=""
 echo "Enter File name (l for list of values or a to abandon):\c"
 fi
 read SOURCE_FILE_NAME
 #
 case ${SOURCE_FILE_NAME} in

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 a) return $FALSE ;;
 l) DisplayListOfValues "S" ;
 if ["${SELECTED_VALUE}" = ""]
 then
 : ;
 else
 SOURCE_FILE_NAME="${SELECTED_VALUE}" ;
 break ;
 fi ;;
 *) if ["${MODE}" = "CI"]
 then
 # validate this file name
 if [! -f ./${SOURCE_FILE_NAME}]
 then
 DisplayMessage E "${SOURCE_FILE_NOT_EXISTS}" N ;
 return $FALSE ;
 else
 return $TRUE ;
 fi ;
 else
 # checkout file name
 return $TRUE ;
 fi ;;
 esac
done
}
###
Name : GetDirectoryName
Overview : The function accepts a directory name.
Returns : $TRUE or $FALSE
Notes :
###
GetDirectoryName ()
{
#
while true
do
 clear
 echo "Enter directory name for output file"
 echo "Press Retrun for current directory (a to abandon):\c"
 read DIR_NAME
 case ${DIR_NAME} in
 a) return $FALSE ;;
 "") DIR_NAME=`pwd` ;
 return $TRUE ;;
 *) # validate directory
 if [! -w ${DIR_NAME}]
 then
 DisplayMessage E "${DIR_NOT_WRITABLE}" ;
 else

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 return $TRUE ;
 fi ;;
 esac
done
}
###
Name : GetReleaseId
Overview : The function accepts a release id for a specific source
file.
Returns : $TRUE or $FALSE
Notes :
###
GetReleaseId ()
{
get release id
while true
do
 clear
 echo "Enter the release id(l for list of values)"
 echo "(a to abandon):\c"
 read RELEASE_ID
 case ${RELEASE_ID} in
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 a) return $FALSE ;;
 l) DisplayListOfValues "V" ;
 if ["${SELECTED_VALUE}" = ""]
 then
 : ;
 else
 RELEASE_ID="${SELECTED_VALUE}" ;
 break ;
 fi ;;
 *) break ;;
 esac
done
#
}
###
Name : DisplayMenu
Overview : The function displays menu.
Notes :
###
DisplayMenu ()
{
 clear
 echo "
 ###
 # #
 # ${MENU_TITLE} #
 # #

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 # 5. Check In New Source #
 # 1Ø. Check Out Latest Version for Update #
 # 15. Check Out Specific Version for Update #
 # 2Ø. Check In Updated Source #
 # 25. Check Out Read Only Latest Source #
 # 3Ø. Check Out Read Only Specific Version of Source #
 # 35. Display List of Checked Out Source Files #
 # 4Ø. Release Checked Out Source File #
 # 45. Show Source Release History #
 # 5Ø. Update Comment for Specific Change (Delta) #
 # 55. Remove Latest Delta (change) #
 # 6Ø. Show Difference Between Two Versions #
 # 65. Show Difference Between Checked Out and Archive #
 # #
 # 99. Exit #
 # #
 ###
 Enter Option ----> \c

 "
 read OPTION
}
###
Name : CheckInUpdatedSourceFile
Overview : The function checks in updated source file.
Notes :
##
CheckInUpdatedSourceFile ()
{
if ! GetSourceFileName "CI"
then
 return $FALSE
fi
#
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} delget ${SOURCE_FILE_NAME} \
 2> ${TEMP_FILE_1}
if [$? -ne Ø]
then
 DisplayMessage E "${EDITED_CHKIN_FAILED}" N ;
 ERR_MSG=`cat ${TEMP_FILE_1}` ;
 DisplayMessage E "${OS_ERROR}" ;
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
fi

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

#
return $TRUE
}
###
Name : CheckOutLatestSourceFileForUpdate ()
Overview : The function checks out the lastest source file for
update.
Notes :
###
CheckOutLatestSourceFileForUpdate ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
#
if ! GetDirectoryName
then
 return $FALSE
fi
remove the file to be checked out from target directory
rm -f ${DIR_NAME}/${SOURCE_FILE_NAME}
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} edit -p ${SOURCE_FILE_NAME} \
 1> ${DIR_NAME}/${SOURCE_FILE_NAME} 2>
${TEMP_FILE_1}
if [$? -ne Ø]
then
 DisplayMessage E "${EDIT_CHKOUT_FAILED}" N
 ERR_MSG=`cat ${TEMP_FILE_1}`
 DisplayMessage E "${OS_ERROR}"
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 return $TRUE
fi
#
}

Editor’s note: this article will be concluded next month.
Arif Zaman
ETL Developer (UK) © Xephon 2003

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The until and while loops

The following two looping constructs, until and while, are very
similar in that they both allow a series of commands to be run
repetitively while (or until) a condition is true. As you will discover,
until is much less useful than while and most of your scripts will
contain the latter construction.
Both while and until are frequently used with integer arithmetic
tests, such as ‘while we have not performed the loop 10 times’,
or ‘until we have performed the loop 10 times’ and we will see in
a future article how this can be achieved.
Generally speaking, you can convert any while to an until by
simply negating the condition, or using the opposite of a particular
test.

THE UNTIL LOOP
The until loop has the following format:
until condition_command
do
 loop_body
done

The condition_command may be any command or pipeline, and
its exit status will determine whether the commands in loop_body
are to be executed. The looping continues until
condition_command is successful/true; that is, it returns an exit
status of 0. Remember that in a pipeline it will be the exit status
of the last command that is important.
You should be aware that the commands in the body of the loop
might never be executed. If condition_command is successful
the first time it is run, the loop terminates and the body of the loop
is not executed.
The conventions for the format, and rules regarding the positioning
of keywords, are the same as those for the for command.

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You should consider using an until loop any time a task involves
waiting for something to happen. As an example, consider the
following simple script that checks periodically to see whether a
particular user has logged in; the script will make your terminal
beep and display a message on your screen when the specified
user logs in:
$ vi waitfor

until who | grep $1 >/dev/null
do
 sleep 1ØØ
done

print '$1 logged in'
escape code to make the terminal beep
print '\Ø7 \Ø7'

The condition_command is the pipeline:
who | grep $1 >/dev/null

The exit status of the grep command is used to determine
whether or not the looping is to continue. grep has a zero exit
status only when it finds the string you are searching for,
otherwise it returns a non-zero value. We have redirected the
output of grep to /dev/null since we are not interested in
displaying the matching lines of output from the who command.
The sleep command is used to delay execution of the condition
command for the specified number of seconds, 100 in this case.
Every 100 seconds, who | grep $1 >/dev/null is run to check for
the user. When the user specified by $1 logs in, grep prints the
line from the who output that contains the specified username,
and returns an exit status of 0. This causes the looping to stop,
and the two print commands are executed.
The print command interprets the quoted sequence of characters
\0nnn, where nnn is an octal number, as the character whose
ASCII code is nnn. For instance, if print is passed the characters
\0141, it will print the letter a since 141 is the octal code for a. This
format is normally used to print escape sequences and control
characters, such as the one with ASCII code 7 that we have used

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

in our example. Printing this control character causes the
terminal to beep. The backslash must be quoted or the shell will
remove it before running print.
It is advisable to run waitfor in the background; for example,
waitfor fred &. Two beeps will alert you when fred has logged
in.

THE WHILE LOOP
The while loop is very similar to the until loop, except that the
body of a while loop is repeated as long as the
condition_command is successful. The looping will stop when
the condition command returns a non-zero exit status. It is also
possible to create a while loop in which the body of the loop is
never executed – many shell programmers do this without even
trying!
The syntax of the while loop is:
while condition_command
do
 loop_body
done

If condition_command returns a 0 exit status, the shell then
executes the commands in the body of the loop, and repeats the
loop initialization step. As soon as condition_command returns
a non-zero exit status, execution of the loop is completed, and
the loop is exited.
A while loop can be used to create an interactive program that
will accept the user’s requests until the user gives a termination
request.

MODIFYING LVMAN TO USE WHILE LOOPS
Let us now see how we can modify our lvman script so that it can
be used to check the free space status of all our disks and volume
groups by using a while loop.
The modified script is as follows, and changes are shown in
italics:

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

#!/bin/ksh
Script name: lvman
Usage: lvman {[-v VG1name -v VG2name..| -v all]|
[-p PV1name -p PV2name..| -p all]}
###
Version History
###
#---
Function: f_dsp_usage
Displays usage messages
#---
f_dsp_usage()
{
 print "Usage: $(basename $Ø) {[-v VG1name -v VG2name..| -v all] |"
 print " [-p PV1name -p PV2name..| -p all]}"
 print "Where:"
 print "\t-v VG1name -v VG2name.. specifies volume group list"
 print "\t-v all specifies all volume groups"
 print "\t-p PV1name -p PV2name.. specifies physical volume list"
 print "\t-p all specifies all physical volumes"
}
#---
Function: f_chk_valid
Arguments: $1 - volume group or physical volume
Checks the volume group or physical volume name is valid
#---
f_chk_valid()
{
 DEV=$1
 [[$(echo "$DEV" | grep -c "-") -ne Ø]] && return 2
 lsattr -El $DEV >/dev/null 2>&1
 # lsattr returns Ø for valid device,
 # or 255 for non valid device
 case $? in
 Ø)
 return Ø ;;
 *)
 return 1 ;;
 esac
}
#---
Function: f_get_vg_space
Arguments: $1 - volume group name
Gets the total and free space of the volume group
#---
f_get_vg_space()
{
 VG=$1
 # Get total space and free space
 TOTAL=$(lsvg $VG | grep "TOTAL PPs" | cut -f2 -d "(" |

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 tr ' ' '\t' | cut -f1)
 FREE=$(lsvg $VG | grep "FREE PPs" | cut -f2 -d "(" |
 tr ' ' '\t' | cut -f1)
 eval ${VG}_LVNUM=$(lsvg -l $VG | tail +3 | wc -l | tr -d " ")
 eval NUMLVS='$'${VG}_LVNUM
 # Print output
 if [[$FIRST -ne 1]]
 then
 printf "\n%-2Øs %-15s %-15s %-15s\n" \
 "Volume Group" "Total Size" "Free Space" "Number LVs"
 fi
 printf "%-2Øs %-15s %-15s %-15s\n" \
 $VG "$TOTAL MB" "$FREE MB" $NUMLVS
}
#---
Function: f_get_pv_space
Arguments: $1 - physical volume name
Gets the total and free space on a physical volume
#---
f_get_pv_space()
{
 PV=$1
 # Get total space and free space
 TOTAL=$(lspv $PV | grep "TOTAL PPs" | cut -f2 -d "(" |
 tr ' ' '\t' | cut -f1)
 FREE=$(lspv $PV | grep "FREE PPs" | cut -f2 -d "(" |
 tr ' ' '\t' | cut -f1)
 eval ${PV}_LVNUM=$(lspv -l $PV | tail +3 | wc -l | tr -d " ")
 eval NUMLVS='$'${PV}_LVNUM
 # Print output
 if [[$FIRST -ne 1]]
 then
 printf "\n%-2Øs %-15s %-15s %-15s\n" \
 "Physical Volume" "Total Size" "Free Space" "Number LVs"
 fi
 printf "%-2Øs %-15s %-15s %-15s\n" \
 $PV "$TOTAL MB" "$FREE MB" $NUMLVS
}
##
Main section
##
while getopts :v:p: opt
do
 case $opt in
 v)
 if [[$OPTARG = all]]
 then
 VGS=$(lsvg -o | sort) # all volume groups
 else
 VGS=$OPTARG

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 fi
 FIRST=Ø
 for VG in $VGS
 do
 f_chk_valid $VG
 case $? in
 Ø)
 f_get_vg_space $VG
 FIRST=1
 ;;
 1)
 print $VG is not a valid volume group
 exit 1
 ;;
 2)
 f_dsp_usage
 ;;
 esac
 done
 ;;
 p)
 if [[$OPTARG = all]]
 then
 pvs=$(lsdev -Cc disk -r name) # all physical volumes
 for pv in $pvs
 do
 if [[$(lsdev -Cl $pv | grep -c Available) -eq 1]]
 then
 PVS=$PVS" $pv" # only want Available disks
 fi
 done
 else
 PVS=$OPTARG
 fi
 FIRST=Ø
 for PV in $PVS
 do
 f_chk_valid $PV
 case $? in
 Ø)
 f_get_pv_space $PV
 FIRST=1
 ;;
 1)
 print $PV is not a valid physical volume
 exit 2
 ;;
 2)
 f_dsp_usage
 ;;

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 esac
 done
 ;;
 *)
 f_dsp_usage
 exit 3
 ;;
 esac
done

Our previous version of lvman allowed us to check only one
volume group or one physical volume at a time. As you will see,
we have made a number of changes to the script to allow all
volume groups and all the physical volumes, or a specified
number of volumes, groups, and physical volumes, to be checked
at the same time using modified command line arguments.
When we previously used getopts we ran it just once so that our
script checked only the first option it encountered. By putting
getopts in a while loop using while getopts :v:p opt, we run
getopts as many times as there are command line options. This
allows us to specify multiple -v and -p options, and we have
additionally introduced the all argument to both of these options
to make it easier to check all of our volume groups or physical
volumes without having to specify the full list.
Our f_dsp_usage function has been modified to show the new
argument combinations.
Within our main section the case statement stanzas relating to
the -v and -p options first check whether there is an all argument.
If so, then the list of all varied-on volume groups, or all available
physical volumes, is generated, and for loops are used to run the
validity checks and get the free space.
If the all argument is not used, then there will be only one value
for the variable VGS (or PVS) and this portion of code will be
repeated for however many -v (or -p) options are used.
We now check that each of the volume groups or physical
volume names in our list is a valid device name. This is
necessary because we may have entered an invalid name as an
argument to a -v or -p option, rather than using the all argument,

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and since the same variable name is used in our coding to
contain the list of volume groups (or physical volumes) to be
checked, no matter which options and arguments were used with
lvman, then we need to include this additional error checking in
our script.
One of the problems with using getopts is that it does not scan
the whole of the command line before deciding whether there are
errors in the usage; every time getopts is executed it checks the
option and argument combination it encounters, rather than all
of them. This can cause problems when in error you run the script
using, for example:
lvman -v -v rootvg

and forget to give an argument to the first -v. In this situation
getopts sets the OPTARG variable to the second -v. To overcome
this possible error condition we have introduced a further check
in the f_chk_valid function to test whether there is a ‘minus’ sign
in the argument:
[[$(echo "$DEV" | grep -c "-") -ne Ø]] && return 2

You will note that we have used the echo command in this test,
rather than print. The reason for this is that if $DEV contains a
minus sign, which would occur in the example above, then print
"$DEV" will produce an error condition since it will interpret the
minus, and, whatever follows it, as an argument to print, and will
probably tell you that “A specified flag is not valid for this
command”; echo, on the other hand, will take the characters as
is.
A further failing of getopts (perhaps it’s not quite the panacea
you first thought!) is that it will not produce an error condition if
it encounters an unexpected argument which is not preceded by
an option starting with a minus or a plus. For example, getopts
will not complain if you run your script with lvman rootvg, or
lvman -v rootvg myvg. You will see when we come to arithmetic
evaluation how we can introduce further tests to overcome these
failures.

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The remaining changes to the script are purely cosmetic in that
the f_get_vg_space and f_get_pv_space functions have been
modified so that only single header lines are printed at the top of
each volume group or physical volume section; to do this we
check the value of the FIRST variable. We have also added an
extra column to display the number of logical volumes in the
volume group, or on the disk, rather than having these printed on
a separate line.

MORE ABOUT BREAK AND CONTINUE
Like the continue command, break is only meaningful inside a
loop. Both break and continue are used inside for, while, and
until loops. The break command always causes immediate
termination of the surrounding loop; the remainder of the body of
the loop is skipped, and the shell proceeds to execute the
commands that follow the loop, if any such commands exist.
Regardless of the type of loop in which it is used, continue
always causes the next iteration of the loop to begin immediately.
The remainder of the loop body is skipped and loop initialization
is performed again, as if the last command of the loop had just
terminated.
You can think of continue as instructing the shell to go to the
bottom of the loop (the position right after the last command in
the body of the loop). Once the shell arrives at this point, it
automatically returns to the loop initialization step, and proceeds
with the next iteration of the loop.
The break command, however, tells the shell to go to the
command that immediately follows the done keyword. Note that
a break command in a case construct will terminate the loop that
surrounds the whole case statement, if there is one; this behaves
differently from break used in C. The double semi-colon at the
end of each pattern-matching stanza in a case statement
performs the same function as a break command.
Many traditionalist programmers consider the use of break
commands to exit loops as bad coding style, since it can often

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

lead to confusion when using multiple nested loops, but if it helps
you to produce simple coding which you can easily understand,
then feel free to use it.

REDIRECTING A LOOP’S INPUT AND OUTPUT
As mentioned before, the shell treats an entire loop as if it were
a single command. As a result, the standard input of a loop can
be redirected, causing each of the commands executed in the
loop initialization, and in the body of the loop, to read from a
specified file. Redirection is either done on the last line of the
loop, following the keyword done, or by piping the output of
another command into the loop itself.
The output of a loop is redirected from the done keyword in
exactly the same way that you would redirect the standard
output, or standard error, of any command. Redirecting the
output at the end of a loop once, rather than from individual
commands within the loop, will make a shell script run faster.
The following example shows how we can redirect the standard
input and output of a loop. Let us assume that we have run the
iostat command over a number of time intervals and redirected
the output to a text file, called diskout. From this file we want to
extract only the number of KB read and written during each time
interval. The source file will contain lines similar to the following:
tty: tin tout avg-cpu: %user %sys %idle %iowait
 Ø.Ø Ø.4 12.9 7.1 21.8 58.2

Disks %tmact Kbps tps Kb_read KB_wrtn
hdiskØ Ø.3 1.4 Ø.3 347857 2614583
hdisk1 Ø.Ø Ø.1 Ø.Ø 3Ø3372 124
cdØ Ø.Ø Ø.Ø Ø.Ø Ø Ø

The first group of seven lines will contain cumulative information
since the system was booted. Any subsequent groups of seven
lines contain statistics for each time interval specified when we
run the iostat command.
The script is called diskio, and introduces a new form of the set
command. As you are probably aware, set on its own will display

 51© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

all shell variables, and you may also have used commands such
as set -x, set +x, etc, to turn various options on and off. When
set is invoked with the -- argument, however, it does something
entirely different. It assigns an argument to the first positional
parameter, $1, and if there are several such arguments, they are
assigned to the subsequent positional parameters, $2, $3 etc. It
also updates $#, $*, and $@ accordingly.
You will probably need to read the explanation that follows before
you can understand how the script works.
$ vi diskio

SOURCE=diskout
DISK=$1
printf "%1Øs %15s %15s\n" Disk "KB Read" "KB Written"

while read line
do
 [[-z $line]] && continue

 set -- $line
 [[$1 != $DISK]] && continue
 printf "%1Øs %15s %15s\n" $1 $5 $6
done < $SOURCE | tail +2

The script can be executed by entering, for example:
diskio hdiskØ

After setting the SOURCE and DISK variables and printing out
the headings, our while loop gets its standard input from
$SOURCE via the input redirection symbol after the done
keyword, and every time it encounters a carriage return it reads
the whole of the line into the line variable.
If a blank line is read, $line will be set to the null string, and [[-
z $line]] will return a successful exit status. When this happens,
the continue command is executed, and the loop initialization
will begin again. Thus, when a blank line is read, the script
immediately reads the next line without printing anything.
If we did not check whether $line was null, set would be run
without arguments whenever a blank line is read, and this would
display the name and value of each shell variable, which is not

 52 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

what we want to do. For this reason, you must always ensure that
set is passed a non-null argument when you are using it to set
positional parameters.
The set -- command then assigns the contents of line to the
various positional parameters, and if $1 does not equal the disk
name we passed in from the command line, then we jump to the
start of the loop using the continue command and read in the
next line. When there is a match, $1 (the disk name), $5 (KB
read), and $6 (KB written) are printed out.
Finally we pipe the output from the loop to the tail +2 command
to remove the first line of the output, as this line contains the total
values since the system was booted and we are not interested
in these. We could also send this output to a new file using:
done < $SOURCE | tail +2 > newfile

In the same way that the redirection of the output of individual
commands within a script overrides any redirection from the
command line, then the redirection of the output of commands
within the loop itself will also override the redirection for the whole
loop.
Of course, in the preceding example, you could get the same
result by redirecting the input and output on the command line
instead of within the script. There are situations, however, where
the redirection cannot be handled on the command line. For
example, you may want the commands in a loop to write to one
destination, while other commands in the script write to a
different file or device.

TRUE AND FALSE
There are two commands that are not built into the shell, but
which are very useful when you write shell programs containing
looping constructs.
The first of these is false, which always returns a non-zero (255)
exit status. It is used to control an until loop as follows:

 53© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Articles for inclusion in AIX Update can be sent to the
editor, Trevor Eddolls, at trevore@xephon.com. A copy of
our Notes for Contributors can be downloaded from
www.xephon.com/nfc.

until false
do
 .
 .
done

Since false cannot return a zero exit status, this loop will continue
to run until such time as some condition is satisfied within the
loop which allows you to break out of it.
The true command always returns a 0 exit status, and is used to
create an endless while loop. The following example is a
variation on the waitfor script above:
while true
do
 if [[$(who | grep -c fred) -eq Ø]]
 then
 sleep 6Ø
 else
 print fred logged in
 break
 fi
done

Tonto Kowalski
Guru (UAE) © Xephon 2003

AIX news

IBM has announced upgraded WebSphere
Business Integration Adapters for pulling
information from systems including a range
of application types, technology protocols,
databases, and trading partner systems.

The new release includes the iSoft Peer-to-
Peer Agent and the WebSphere Business
Integration Trading Partner Interchange On-
Ramp, as well as WebSphere Business
Integration Adapters for Retek, i2, Spirent
applications, Telcordia applications,
eMatrix, enhanced components, and
e-business.

It runs on AIX, Solaris 7 or 8, and Windows
2000 or Windows NT 4.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/websphere/
integration.

* * *

Candle has introduced its PathWAI modular
suite of applications, which helps sites
design, develop, deploy, and manage
WebSphere infrastructures, accelerate return
on investment, and enable consistent
performance, according to the vendor.

The first PathWAI application is
Architecture for WebSphere, which helps
give sites the knowledge required to avoid
architecture errors that drive delays and cost
overruns. It also helps minimize new
application development cycles and
downtime risk and ensures that the final
applications meet required business
customer service levels.

It includes application performance testing
and tuning tools for WebSphere Application
Server or MQ Integrator, plus services and
training to meet required business

performance metrics. The management
applications for testing and monitoring MQ
Integrator and WebSphere Application
Server are available on AIX and OS/390,
Solaris, and Windows NT platforms.

The Monitor for WebSphere Application
Server allows users to test, tune, and monitor
the performance and availability for the
WebSphere AS and its Java-based tools. It
monitors the performance characteristics of
specific servlets, Java Server Pages, and
EJBs, speeding resolution times and
providing a central point of control for
management. It supports WebSphere AS on
AIX, OS/390, Solaris, Windows NT and
2000, and z/OS.

For further information contact:
candle, 201 N Douglas St, El Segundo, CA
90245, USA.
URL: http://www.candle.com/www1/cnd/
portal /CNDportal_Channel_Master/
0,2938,1904094_2889,00.html.

* * *

SAS company DataFlux has announced the
availability of Version 5.0 of its dfPower
Studio, Blue Fusion SDK, and
dfIntelliServer (formerly called Blue Fusion
CS). The company has re-engineered the
products to enable users to use an integrated
set of products that allows either virtual or
physical integration of any type of data.

Supported platforms include AIX, HP-UX,
Linux, Solaris, Tru64, Windows NT, 2000,
and XP, and OS/390 on BlueFusion SDK.

For further information contact:
DataFlux Corporation, 4001 Weston
Parkway, Suite 300, Cary, North Carolina
27513, USA
URL: http://www.dataflux.com/products/
database.asp.

x xephon

	Go to the end of the line
	Network back-up manager - part 2
	Source code control system
	The until and while loops
	AIX news

