

© Xephon plc 2003

March 2003

89

In this issue

AIX
u

p
d

ate

3 AIX 5L performance analysis tools
enhancements

12 Good practice in shell
programming

23 Controlling signals and processes
37 Source code control system – part 2
50 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

AIX 5L performance analysis tools enhancements

Among many areas affected by the introduction of AIX 5L are
performance analysis tools. The tools are members of the
following filesets:
• bos.sysmgt.trace
• bos.perf.perfstat
• perfagent.tools.
The perfagent.tools filseset is a pre-requisite for the installation
of the Performance Tool Box (PTX) product and is dependent on
the installation of the two former filesets.
The following tools have been withdrawn from AIX 5L: bf, bfprt,
lockstat, stem, and syscalls. Some of the functionality of these
tools is supported by svmon, locktrace, and truss.
The truss command provides the ability to trace the execution
of system calls performed by application programs.
The alstat command reports computer instruction alignment
statistics.
The following commands have been carried on from earlier
versions of AIX: genname, iostat, vmstat, sar, prof, tprof,
gprof, emstat, filemon, fileplace, netpmon, pprof, rmss,
svmon, and topas.

PERFORMANCE ANALYSIS LIBRARIES
AIX 5L introduces APIs that enable convenient access to system
performance data.
The performance Monitor API provides access to Performance
Monitor counters for the following processor types: Power PC
604, Power PC 604e, POWER3, POWER3-II, RS64-II, RS64-III,
and RS64-IV. This API can serve as a foundation for applications
looking to optimize computationally-intensive programs.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The APIs included in the Perfstat library have a different purpose
– their goal is to facilitate the writing of system performance and
monitoring programs in a portable way, without the need to
analyse the /dev/kmem and avoiding dependencies on kernel
data structures, which can change between the releases of the
operating system. The following summarizes the available APIs:
• perfstat_cpu() – retrieves individual CPU usage statistics.

• perfstat_cpu_total() – retrieves global CPU usage statistics.

• perfstat_disk() – retrieves individual disk usage statistics.

• perfstat_disk_total() – retrieves global disk usage statistics.

• perfstat_memory_total() – retrieves global memory usage
statistics.

• perfstat_netinterface() – retrieves individual network interface
usage statistics.

• perfstat_netinterface_total() – retrieves global network
interface usage statistics.

The perfstat library is included in the bos.perf.libperfstat fileset.
The directory /usr/samples/libperfstat contains a single example
file – perfstat.c.
The following is the output produced on my server:
>-- Statistics regarding the network interface : en1
> Description of the network interface : Standard Ethernet
Network Interface
> Type the interface : 6
> Network frame size : 15ØØ
> Packets received on interface : 18Ø82325
> Input bytes on interface : Ø
> Input errors on interface : 15Ø53ØØ16Ø
> Packets sent on interface : 177271
> Output bytes on interface : 82947182
> Output errors on interface : Ø

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

> Collisions on csma interface : Ø
 Press return key to proceed...
>-- Statistics regarding the network interface : loØ
> Description of the network interface : Loopback Network
Interface
> Type the interface : 24
> Network frame size : 16896
> Packets received on interface : 2586Ø6
> Input bytes on interface : Ø
> Input errors on interface : 31273899
> Packets sent on interface : 259111
> Output bytes on interface : 31288Ø39
> Output errors on interface : Ø
> Collisions on csma interface : Ø
 Press return key to proceed...
> Number of disks : 4
> Sum of the size of the disks : 6444 MB
> Sum of the free space of the disks : 436 MB
> Average xfer rate capability : Ø kbytes/sec
> Total transfers to/from disks : 37635Ø
> Blocks written to all disks : 323Ø851
> Blocks read from all disks : 6974128
> Amount of time disks are active : 345483
 Press return key to proceed...
>-- Statistics regarding the CPU : cpuØ
> User time used : 839833 ticks
> System time used : 184168Ø ticks
> Idle time used : 411ØØ161 ticks
> Wait time used : 2Ø3477 ticks
> Number of process switch : 394349Ø1
> Number of syscalls : 3Ø2145814
> Number of system read : 1568769
> Number of system write : 4Ø8Ø97
> Number of forks : 1Ø373
> Number of execs : 1Ø992
> Number of read characters : 1332736383
> Number of written characters : 353397285
 Press return key to proceed...

TRUSS – PROCESS SYSTEM CALLS TRACING UTILITY
The ability to trace execution of system calls invoked by a
specific process is a very handy performance and debugging
tool. In previous versions of AIX it was supported by trace and
trcrpt commands. AIX 5L introduces a truss command that
works similarly to the identically-named command in Solaris or
the tusc command of HP-UX. Truss can attach to a process

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

specified by a pid or it can invoke a process specified as one of
its command line parameters.
One of the important flags of this command is -c, which generates
a profile summary of the command being trussed:
truss -c grep lp /etc/passwd
lpd:!:9:4294967294::/:
lp:*:11:11::/var/spool/lp:/bin/false
syscall seconds calls errors
execve .ØØ 1
__loadx .Ø2 12
_exit .ØØ 1
close .ØØ 2
kwrite .ØØ 2
kread .ØØ 2
_getpid .ØØ 1
getuidx .ØØ 3
kioctl .ØØ 2 1
open .ØØ 1
getgidx .ØØ 3
sbrk .ØØ 3
access .ØØ 1
kfcntl .ØØ 2
 ---- -- ---
sys totals: .Ø4 36 1
usr time: .ØØ
elapsed: .Ø4

The -e flag directs truss to display the environment variables
present in the environment of the trussed program. The -a flag
displays the parameter strings that are passed in each executed
system call.

EMSTAT AND ALSTAT – PROCESSOR INSTRUCTIONS EMULATION
AND ALIGNMENT DETECTION UTILITIES
In addition to the existing emstat tool, which reports the amount
of processor instructions that have to be emulated by the
available computer hardware, the new alstat command displays
the number of alignment interrupts that occur during the execution
of applications.
Both commands feature the -v flag, which reports the statistics
per CPU in SMP systems.

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

TPROF – CPU USAGE BREAKDOWN AT THE SYSTEM AND
INDIVIDUAL PROGRAM LEVELS
The tprof command produces reports that detail the CPU usage
caused by individual components (function, class, method) of
individual programs. This utility has been enhanced to include
the profiling of Java applications.

LOCKTRACE – SYSTEM KERNEL LOCKS TRACING UTILITY
The locktrace command is a replacement for the lockstat
command. It produces reports detailing the statistics that describe
the locking activity that occurs in the system.
This command is affected by another system utility, bosboot. If
the system has been rebooted after the command bosboot –L
was executed, the locktrace command will be able to report
locking for individual lock classes (as well as for specific lock
classes). If the bosboot –L command has not been executed,
the locktrace will be able to trace all classes of lock but will
display only partial information.

VMSTAT – SYSTEM THREADS STATISTICS REPORTING UTILITY
The vmstat command is used to report statistics about kernel
threads in the run and wait queues, memory, paging, disks,
interrupts, system calls, context switches, and CPU activity.
The vmstat command has two new flags introduced in AIX 5L;
these flags extend the available reports.
The -I flag adds two new columns for number of file pages paged
in (fi) and out (fo). When this flag is specified the columns re and
cy are not displayed. A new p column displays the number of
threads waiting for physical I/O operations:
vmstat -I 1 3
 kthr memory page faults cpu
-------- ---------- ------------------------ ------------ ------------
 r b p avm fre fi fo pi po fr sr in sy cs us sy id wa
 1 1 Ø 62391 125 Ø Ø Ø Ø Ø 1 19Ø 78465 89 2 4 93 Ø
 Ø Ø Ø 62395 123 Ø Ø Ø 2 Ø Ø 183 2398 83 2 7 91 Ø
 Ø Ø Ø 62395 123 Ø Ø Ø Ø Ø Ø 175 2367 87 2 7 91 Ø

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The -t flag shows a time stamp at the end of each line reported
by vmstat:
vmstat -t 1 3
kthr memory page faults cpu time
---- ---------- ------------------------ ------------ ---------- -------
r b avm fre re pi po fr sr cy in sy cs us sy id wa hr mi se
1 1 62391 469 Ø Ø Ø Ø 1 Ø 19Ø 78452 89 2 4 93 Ø 22:1Ø:48
Ø Ø 62397 463 Ø Ø Ø Ø Ø Ø 18Ø 24Ø7 83 2 5 93 Ø 22:1Ø:49
1 Ø 62397 463 Ø Ø Ø Ø Ø Ø 197 246Ø 87 1 6 93 Ø 22:1Ø:5Ø

IOSTAT – DISK I/O STATISTICS REPORTING UTILITY
The iostat command is used to report statistics about CPU and
I/O activity for TTY devices, disks, and CD-ROMs. The reports
produced by iostat can be used in order to perform fine-tuning
of storage allocation to improve the input/output load distribution
between physical disks.
The iostat command has two new flags introduced in AIX 5L;
these flags extend the available reports.
The -s flag adds a new line to the header line of each set of
statistics that reports the sum of all activity on the system:
iostat -s 1 1

tty: tin tout avg-cpu: % user % sys % idle % iowait
 Ø.Ø 2.4 1.9 4.2 93.4 Ø.5

System: rsc2Ø4
 Kbps tps Kb_read Kb_wrtn
 11.8 Ø.9 3575365 1653453

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2 Ø.Ø Ø.5 Ø.Ø 563Ø6 179674
hdisk1 Ø.2 1.Ø Ø.2 75327 379795
hdiskØ Ø.6 1Ø.3 Ø.7 3443732 1Ø93984
cdØ Ø.Ø Ø.Ø Ø.Ø Ø Ø
#

The -a flag specifies the generation of a report that details
adapter-based statistics of I/O activities. After the display of
adapter statistics, the statistics for disks connected to a specific
adapter are displayed:

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

iostat -a 1 1

tty: tin tout avg-cpu: % user % sys % idle % iowait
 Ø.Ø 2.4 1.9 4.2 93.4 Ø.5

Adapter: Kbps tps Kb_read Kb_wrtn
ascsiØ 11.8 Ø.9 3575541 1653558

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2 Ø.Ø Ø.5 Ø.Ø 563Ø6 179674
hdisk1 Ø.2 1.Ø Ø.2 75451 379823
hdiskØ Ø.6 1Ø.3 Ø.7 3443784 1Ø94Ø61

Adapter: Kbps tps Kb_read Kb_wrtn
scsiØ Ø.Ø Ø.Ø Ø Ø

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
cdØ Ø.Ø Ø.Ø Ø.Ø Ø Ø

GENNAMES – COLLECT INFORMATION NEEDED FOR OFF-LINE
SYSTEM TRACING
The gennames command is used to collect information needed
for off-line execution of the tprof, filemon, netpmon, or pprof
commands.

NETPMON – PROCESS DATA OFF-LINE
The netpmon command, which monitors network I/O and
network-related CPU activity and reports usage statistics, has
been enhanced to enable off-line batch processing of normal
trace report files.
Below is a typical sequence that demonstrates usage of this
feature:
• Step 1: generate unformatted system trace file:
 # trace
-> trcon
-> trcstop
-> trcoff
-> q
ls -l /var/adm/ras/trcfile
-rw-rw-rw- 1 root system 1344488 Dec 2Ø 22:38 /var/adm/ras/trcfile

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Step 2 – immediately following the collection of trace
information, execute gennames command and save its
output:
gennames > /tmp/gennames.out

• Step 3 – format the collected trace file using the trcrpt
command:

trcrpt –r /var/adm/ras/trcfile > /tmp/trcrpt.out

• Step 4 – generate the netpmon report at your convenience
using the -i and -n flags:
netpmon –i /tmp/trcrpt.out –n /tmp/gennames.out

FILEMON – PROCESS DATA OFF-LINE
The filemon command, which monitors the performance of the
file system and reports the I/O activity on behalf of logical files,
virtual memory segments, logical volumes, and physical volumes,
has been extended in a fashion similar to netpmon. Step 4 in the
above sequence should be changed to:
• Step 4 – generate the netpmon report at your convenience

using the -i and -n flags:
filemon –i /tmp/trcrpt.out –n /tmp/gennames.out –O all

SVMON – CAPTURE AND ANALYSIS OF VIRTUAL MEMORY
STATISTICS
The svmon command, which monitors the performance of the
virtual memory, has been enhanced to provide reports on various
elements of Workload manager system such as superclasses,
subclasses, and tiers.
The -W flag directs the command to collect statistics for a
specific superclass.
The -e flag directs the command to collect statistics for a specific
subclass of a superclass.

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The -T flag directs the command to collect statistics for classes
of a specific WLM tier.

TOPAS – REPEATEDLY DISPLAY SYSTEM STATISTICS IN TERMINAL
EMULATOR WINDOW
The topas command, which was introduced in AIX 4.3, has been
enhanced with new capabilities. It is now possible to display the
individual CPU usage statistics by typing the c (lower case)
command into the tool’s screen.
The default screen will include information about the two busiest
WLM classes. The display of this information can be toggled by
typing the w (lower case) command into the tool’s screen. The
W (upper case) command will select the display of the workload
manager classes monitoring screen.

PMAPI – HARDWARE PERFORMANCE MONITOR API
A new set of APIs is provided to allow access to hardware
performance counters available on PowerPC 604, PowerPC
604e, POWER3, POWER3-II, RS644-II, RS64-II, and RS64-IV
processors.
The directory /usr/samples/pmapi contains sample programs
demonstrating the potential of this library. One nice utility using
it is the pmcycles command, which reports the processor clock
speed of your computer.

SUMMARY
In this article I have described only a portion of performance tools
enhancements introduced in AIX 5L. I will provide additional
information in future articles.

REFERENCES
1 AIX 5L Version 5.2 Commands Reference Volume 1 to 6,

SG24-2014-01, IBM Corporation.

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

2 AIX 5L Version 5.2 Performance Management Guide, SG24-
2014-01, IBM Corporation.

3 AIX 5L Version 5.2 Performance Tools Guide and Reference,
SG24-2014-01, IBM Corporation.

4 AIX 5L Performance Tools Handbook, SG24-6039, IBM
Corporation.

5 AIX 5L Differences Guide Version 5.2 Edition, SG24-5765-
02, IBM Corporation.

Alex Polak
System Engineer
APS (Israel) © Xephon 2003

Good practice in shell programming

INTRODUCTION
The importance of using programming standards cannot be
over-emphasized. The proper use of good programming standard
ensures that:
• Proven programming practices are used
• Programs are easier to read and have a more professional

look
• Programs are easier to maintain
• Each unit of program has a similar look and feel

• Better quality programs are produced.

PORTABILITY
Portability is crucial if we are to move shell scripts off AIX to other
flavours of Unix.

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

This can be implemented by:
OS='uname'
If ["${OS}" = "AIX"]
then
 COMMAND=<command specification>
elsif ["${OS}" = "SunOs"]
Then
 COMMAND=<command specification>
fi
#
#issue command
#
$COMMAND

ROBUST SHELL PROGRAMMING
Remember with error checking:
• Check every function call for error return, unless you know

that you wish to ignore errors.
• To give debugger and support staff a chance, wherever

possible error messages should at least be in the form:
Source-file-name:lineno;message

• You may also want to write your error message with the
following format, with non-interactive programs:

Program;source-file-name:line:message

• If you have no relevant source file, use the following format:
program: message

• You may also want to output the column number. Do this with
the following

Format:
Program:source-file-nanme:lineno:column: message

Line numbers start at 1 and column numbers start at 1
• Start error messages with a capital, but, to avoid any

possible confusion with meaningful shell programming usage,
do not use full stops.

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

INTERFACE STANDARDS
Don’t make your script reliant on its own filename, or the name
of any scripts that have either called it or it calls. The names of
the scripts should not make any difference to the way they run
because this gives us greatly enhanced portability.
Don’t let your script rely on the input and output characteristics
of the operating system you happen to be on at the moment. For
instance, NT may add a special ̂ M character to the end of some
input file lines. Don’t rely on this. Always make sure your program
will behave in the same way, on another operating system, which
doesn’t have this special behaviour.

OTHER ROBUSTNESS TIPS
Try and avoid low-level interfaces to obscure programs (which
may or may not exist on other systems). For instance, if you are
making special use of awk, make sure this exists on all the
systems that the shell script may be ported to. Even better, try
and avoid using this in the first place.
When writing temporary files, check the TMPDIR environmental
variable and use this. It should be defined.
Similarly, always use generic environmental variables, whenever
given the opportunity (HOME, PWD, etc).
Be aware of memory usage. If using cat or tail operations, these
can sometimes use up large swathes of memory. Be prepared
for this.

FORMATTING SHELL SCRIPTS

Indentation
Use three spaces indenting to give clear indentation which does
not rely on what the tabspace key is currently set to, and which
does not cramp the right-hand side of the file too quickly.

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

For instance:
If condition
Then
 Do_something
Else
 If another_condition
 Then
 Do_something
 fi
fi

Alternatively:
case $COPY_FLAG in

 a) action add_script
 ;;

 b) action blank_script
 ;;

 c) action cut_script
 ;;

 *) action default_script
 ;;
esac

VARIABLE NAMING
To reiterate, make the names meaningful, to get self-
documentation commentary going.
As is traditional, all environment variables are in uppercase and
all shell variables are in lower case.
When naming local variables, to avoid over-writing global ones,
make the local name as locally specific as possible. For instance,
don’t use $HOME for a local variable (which may be perfectly
rational within the context of the program, but use something like:
$HOME_FOR_RATED_CUSTOMERS

Declare each new variable on a separate line, to aid readability
and clarity. Don’t declare a list of variables separated by semi-
colons, on a single long line.

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Separate elements of a variable name with an underscore in the
traditional C programming style, and don’t use the Java
programming style, which avoids underscores. For instance,
use:
$HOME_ON_THE_RANGE

rather than:
$homeOnTheRange

Be careful with abbreviations. For instance, does $HOME_STAT
mean ‘Home Static’ or ‘Home Status’? You may know right now,
but six months down the line it may not be so clear. Where any
ambiguities arise, clarify them there and then, for example, use
$HOME_STATUS.
When naming soft-coded constants, try to make this clear in the
name. For example:
$CLOSED_STATUS_CONSTANT

COMMENTS

General notes on comments
We are trying to do as much self-documentation as possible
within these coding guidelines. To explicitly supplement this
approach, the following guidelines may be useful:
• Write straightforward code and avoid clever tricks.
• Wherever there’s any doubt, comment.
• Use filename, function, and variable names which make

sense in the real world (for instance close_input_file as a
function name, rather than c1).

• Always employ a clean consistent layout with as much self-
commenting as possible, because of its obvious indentation,
use of white space, and clearly sign-posted variable names.

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The use of literals and constants
Use named constants rather than literal lines
($AGREED_CUTOFF_FIGURE rather than 72).
Remove all hard-coded literals, within reason, from your code
and replace with soft-coded environmental variables to aid future
portability and ease of maintenance. Should ‘72’ become set to
‘102’ in the future, with soft coding, the value will have to be
updated in only a single location.
To follow this up, allow the value of that literal to be set in only one
place within your code (where it can be most easily maintained),
preferably within a sourced file, including all of the exported soft-
coded environmental variables your program will require.
If you are using these environmental variables only locally, put
them all at the top of script where possible, so that they can all
be referenced in one place.
It will be easier to maintain these scripts in the future, the less
hard-coding there is within them.

Comment as you code
When you’re writing code, you know what you’re trying to do, and
it hardly takes any time to make a conmment as you’re thinking
through the coding problem.
However, when you finish a large project, you’ve often forgotten
what you’ve done in the 300 files you’ve updated and created.
You would have to go back and comment them all. Plus you’ve
probably got no time available anyway.
Therefore, comment as you code.

How to comment
What do you think of the following commented code?
Setting flag to 'C'
FLAG1="C"

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

How about this alternative (where $COMPLETED has been set
to ‘C’ beforehand):
#Make sure the monthly sales flag is set to 'C' to indicate
completed status, at the end of each month
MONTHLY_SALES_FLAG=$COMPLETED

Hopefully you’ll agree the new comment makes it clearer what
the code is attempting to do.
This is because it explains why you’re doing rather than how,
which the code is telling you anyway. Always think why with a
comment, rather than how.

Easy maintenance

What do you think of the following comment ?
#======================================
I'm a lovely comment
far lovelier than,
a cloud or daffodil
#=======================================

This may look like a neatly formatted comment, but it’s a real pain
to change, especially if the indentation changes, or more testing
is required, for whatever reason – especially if you’ve got
hundreds of lines to do. Therefore, avoid too much beautification
of comments. We recommend the following for longer comments,
as to lengthen or differently indent the comment is no real
problem at all:
I'm a lovely comment
far lovelier than,
a cloud or a daffodil
#

Comment indentation
To avoid confusion, always indent your comment directly with the
code you’re commenting on, eg:
I'm commenting on the "if" statement
 if some_condition
then

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 # now I'm commenting on the action
 some_action
fi

Commenting declarations
Once again, to make sure we always consider the poor chap six
months down the line from us, who has to maintain our carefully
crafted code, provide a comment for each and every variable
declaration
No matter how well we name our variables, there’s always room
for a more in-depth description, which the latter will remind us of,
rather than provide the entire explanation for. Use the following
style to comment on declarations:
The following variable is used to indicate the sales ratings
for each customer.
CUST_SALES_RATING=Ø

File and functional headers and comments
This section attempts to define a standard header that will be
included for all script files. The method encouraged in this
document is to use the source control system to automatically
generate this header. This will ensure that the header will include
owner information, history of script, modifications, etc. There will
also be minimal effort on the part of the programmer to keep the
header up to date.
To achieve this, add the following to the top of your program:
#$Author$
#$Date$
#$Header$
#Id
#$Locker$
#Log
#$Name$
#$Rcsfilele$
#$Revision$
#$Source$
#$State$

The script header at the top of the file should also contain at least

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the following comment template:
Author ; A Body
#
Overview: This script demonstrates the use of script commenting.
#

Each function should also contain a description comment. If the
function returns a value, it should describe what it returns (it may
also be useful to say it returns void, if it doesn’t return anything):
#
Function purpose: This function demonstrates comment
#
Arguments:
$1 The number of comments in a file
$2 The number of variables in the file
#
#
Returns;
$? The number of letters in all the comments in the file
#

Within the main body of your shell program, whenever in doubt,
make a comment. There should be at least one comment for
every single logical operation. Use white space effectively to
separate these logical operations, so as to tie up the relevant
comment to the relevant piece of code. The meaning of your
code should be completely clear to someone in a year’s time,
who has to open it up to maintain it. If you suspect it won’t be,
improve it with comments, variable naming, and white space
until it will.

 #! /bin/ksh shell directive
On the first line of a script, following the ‘#!’, is the name of the
program that should be used to interpret the contents of the file.
For instance, if the first line contains ‘#! /bin/ksh’, the contents of
the file will be executed using ksh.
You can get away without this, but you shouldn’t. All good scripts
state the interpreter explicitly. Long ago there was just one (the
Bourne shell) but these days there are many interpreters – csh,

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ksh, bash, and others.

Search path
A PATH specification is recommended – often a script will fail for
some people because it has a different or incomplete search
path.
Usually, all the standard locations will be included in the PATH
specification that should exist in /etc/environment and/or /etc/
profile. In this case, you can customize PATH specifications as
follows:
PATH=${PATH}:/u1/users/azaman/bin ; export PATH

where $PATH is the standard path specification.
But if in doubt about the standard PATH specification, specify it
fully as follows:
PATH=/etc:/etc/bin:/etc/sbin:${ORACLE_HOME}/bin:/u1/users/azaman/bin:.
; export PATH

EXIT STATUS
All scripts should return a meaningful exit status. Usually, a script
would return 0 for successful completion or 1 for abnormal
termination. On many occasions, an abnormal termination may
be caused by a variety of reasons and, in those cases, a pre-
defined exit status for each abnormal termination of the script
would give support personnel a head start in trying to establish
the reason for the script failure. Therefore, it pays to define exit
statuses to cater for different scenarios under which the script will
fail and document these in the header of the script.

COMMAND LINE PARAMETER SPECIFICATION
The command line parameters for a shell script can be specified
in one of two ways:
• By value specification

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• By option and value pair specification
Value specification looks like:
my_script.sh Y 1 2ØØ

Notes:
1 The shell script takes three parameters and the specified

values are Y, 1, and 200.
It is not clear from the command line what these parameters
mean and it is therefore necessary to examine variables that
are assigned these values to understand the meaning of the
parameters.

2 Segments of code assigning parameters will look like this:
 PARAM1=$1
 PARAM2=$2
 PARAM3=$3

These variable names are not very helpful and therefore
should be renamed – for example as:

 RERUN_FLAG=$1
 PROCESSING_MOTH=$2
 BATCH_SIZE=$3

Argument and value pair specification looks like:
my_script.sh RERUN_FLAG=Y PROCESSING_MONTH=1 BATCH_SIZE=2ØØ

Notes:
1 The shell script takes three parameters and these are clearly

understood from the command line.
2 A function such as ParseCommandLine should be included

to process the command line:
##
Name : ParseCommandLine
Overview : The function parses command line options which are
specified using argument=value syntax.
Notes : 1. In order to use this function, change the following:

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

- define $ARGLIST
- plug in appropriate validation for expected
arguments
###
ParseCommandLine ()
{
#
make a list of expected arguments along with its optionality flag
#
ARGLIST="RERUN_FLAG:Y \
 PROCESSING_MONTH:Y \
 BATCH_SIZE:Y \
 DEBUG:N "
#
make an empty list for holding arguments to be provided
#
ARG_PROCESSED=""
#
count argument entries
#
MAN_NO_ARGENTRY=Ø
TOTAL_NO_ARGENTRY=Ø
for ARGENTRY in ${ARGLIST}
do
 if ["`echo "${ARGENTRY}" | cut -d':' -f2`" = "Y"]
 then
 MAN_NO_ARGENTRY='expr ${MAN_NO_ARGENTRY} + 1'

Editor’s note: this article will be concluded next month.
Arif Zaman
ETL Developer (UK) © Xephon 2003

Controlling signals and processes

In this article we will discuss some of the Korn shell features used
for handling processes, such as trapping and ignoring signals,
interprocess communication and coroutines, and how these
features can be used in shell programming.
It will be assumed that you are familiar with standard Unix
features such as process IDs, job control, and running commands
in the foreground and background.

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CATCHING AND IGNORING SIGNALS
A process can be interrupted many times throughout its life.
Sometimes the interruptions are caused by the process itself,
such as when initiating an I/O operation, or they can be caused
by external events entirely unrelated to the process’s execution.
For example, if you are running the mailto script we created in
Input for shell scripts, AIX Update, Issue 81, July 2002, and you
press Ctrl C, an interrupt signal will be sent to mailto. Normally
such signals kill the process to which they are sent and in this
case we may be left with temporary files which we no longer
need. We shall see later how we can remove these files when the
script is interrupted.
Generally speaking, a signal is simply a message that one
process sends to communicate with another; the message may
tell the receiving process of the occurrence of an unusual event,
in which case the receiving process may choose to ignore it or
do something else.
Programs can be written so that they catch signals, or ignore
them:
• To catch a signal means to execute one or more commands

when the signal is received.
• To ignore one means proceed as if nothing happened.
There are several different types of signal used to notify processes
of possible error conditions, or unusual occurrences. Sometimes
a programmer will decide that a certain signal does not really
indicate an error, and that the signal should be ignored. At other
times, he may decide that although the program should die when
it receives a particular signal, it should perform some special
action, such as removing temporary files, as we discussed
above, before it finishes.

SIGNALS AVAILABLE
Signals have numbers and names, and you can get a list of all

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the signals generated by the operating system by running kill -
l. Signal names tend to be standard across different Unix
operating systems and it is advisable to use names if you are
considering the portability of your scripts; signal names can be
either lower or upper case, and some signals have alternative
names, such as SIGHUP for HUP.
The following is a list of some of the operating system signals
(and their names) commonly used in shell programming. The
signal number is followed by its name in brackets.
• 1 (SIGHUP or HUP) hangup

This signal is generated when you log out, shut off your
terminal, or hang up when using a dialled remote connection.
The signal is also sent to all background processes associated
with your terminal (or window) when Ctrl D is pressed, or you
enter the exit command.
If you have a job running in the background and you try to log
off before it completes by entering Ctrl D, a hangup signal
will be sent and you will be reminded that there are background
jobs. On entering Ctrl D the second time, the process will be
killed and you will be logged off.

• 2 (INT) interrupt
This signal is sent to processes associated with a terminal,
or window, which are currently running in the foreground, and
the user presses Ctrl C. Processes that run in the background
automatically ignore the interrupt signal.

• 3 (QUIT) qui
This signal is generated by the terminal device driver for the
quit key combination and will normally cause a core dump
and create a core file in your current directory. On many
terminals the quit signal is Ctrl \; you can confirm the
combination by running stty -a.
If Ctrl C fails to kill a process, then the quit key combination
will most likely do so.

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• 9 (KILL) kill
This is a special signal not associated with a Ctrl+key
combination that cannot be caught or ignored, and will kill the
process to which it was sent; it cannot be sent to your current
process in the same way that the interrupt and quit signals
can.

• 15 (TERM) terminate
This is the signal that the kill command sends by default and
it usually allows a graceful shutdown of the process, giving
it time to clean up.

The integers and names associated with each type of signal can
be used as arguments to both the kill and trap commands.
When you send any of these signals to a particular process by
using the kill command, the process will be killed unless the
process catches or ignores the signal.
The syntax for the kill command is:
kill -signal_number PID

or:
kill -signal_name PID

where signal_number and signal_name are the number and
name associated with the type of signal that is to be sent, and PID
is the process ID of the process the signal is to be sent to.
In addition to the signals generated by the operating system, a
further three signals are generated by the shell itself that can be
used in trap statements – you can use their names only. They are
used extensively for debugging and will be discussed in detail
later. They are:
• exit (EXIT)

This signal is sent to the system when the function or script
within which it was set exits.

• error (ERR)

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

This signal is generated whenever a command in the
surrounding script or function exits with a non-zero exit
status.

• debug (DEBUG)
This signal causes the trap command (see below) to be run
after every statement in the surrounding script, or function,
has finished executing.

RULES FOR CATCHING AND IGNORING SIGNALS
A child process that is started by a parent which ignores a
particular signal will also ignore the same signal. This is fairly
logical since if we run a script containing code to ignore a
particular signal, we would expect that all subsequent commands
in the script would also ignore the same signal, otherwise there
wouldn’t be much point in trapping it in the first place!
The same does not apply to processes that catch signals. If a
child process is started by a parent that catches a given signal,
the child process will not automatically catch the same signal.
For example, suppose you have a script that catches the
interrupt signal, and the script also starts a sort process. If you
run the script in the foreground and press Ctrl C, the sort process
will be killed, even though the signal has been caught by the
parent process. On the other hand, if the script starts a chdev
command, it also will catch the signal since it is considered
important that chdev is not interrupted during its execution.
It is not always obvious what the results will be within scripts when
you are catching and ignoring signals and it is often necessary
to experiment before achieving the desired result.

THE TRAP COMMAND
You can use the built-in trap command to specify what a shell
script should do when it receives a particular signal. It is
frequently used for clean-up situations when large scripts are
subjected to abnormal events.

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Whether you actually need to use traps in a script is really
determined by what might happen should an unusual event
occur. If you are running a script that needs to continue should
you log out, then most likely a trap to ignore HUP is justified. If
it means that your script terminates without removing a temporary
file should it receive the interrupt signal, this is less likely to be
quite as earth-shatteringly important; nice to clean up, yes, but
probably not essential.
The trap command with no arguments prints a list of commands
associated with each signal number. In a script, it will only print
out the traps that have been interpreted prior to the command
itself; any subsequent traps will not be listed.

CATCHING SIGNALS
The syntax of the command to catch signals is:
trap 'command' signal1 signal2 . . .

where signal1, signal2 etc, are the signal numbers or names of
the signals that are to be caught, and command is the command
to be executed when one of the specified signals is caught – this
may be a single command with or without arguments, a series of
commands separated by semi-colons, another shell script (use
the full path name for safety), or a function.
The command to be executed is normally enclosed in single
quotes. If the command contains no arguments, the quotes are
not necessary; if it contains arguments separated by spaces, or
multiple commands separated by semi-colons, then the quotes
are essential. Double quotes are also permissible, but, as you
will see later in this article, you have to be particularly careful with
the syntax otherwise you might not execute the command you
would like.
After the command has finished, the script will normally resume
execution at the point at which it received the signal, although
what it actually does is dependent both on the command itself,
which may cause the script to exit, and on any commands

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

running at the time the signal was received, which may or may
not themselves abort.
You can have any number of trap commands in a script, but you
should be aware that, if you have two or more traps for the same
signal in the body of the script, then only the last one will be
executed. For example, if you have the following two traps in your
script:
trap 'rm tmpfile; exit' 2
.
.
trap 'print tmpfile removed' INT

then only the second of these commands will be executed and
tmpfile itself will not be removed.
You should also be aware that, if you have traps in your script for
both the INT and ERR signals, and the script receives an
interrupt signal, then the commands associated with both of the
traps will be executed.

IGNORING SIGNALS
There will be times when your scripts receive particular signals
and you want to ignore them.
For example, you may have written a script to gather performance
statistics over a 24-hour period, but you want to be able to log off
after starting the script in the background. Under normal
circumstances logging off will send the HUP signal to your script
and kill it. You could run the script either using the nohup
command, which would continue running when you logged off
and place all output in the nohup.out file, unless otherwise
redirected from within the script, or you could use a trap
statement to get your script to ignore the HUP signal.
To get your script to ignore a signal, you use a null string, ' ' or "
", with the trap command. In the example above you would use:
trap ' ' HUP

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Ignoring the interrupt signal may cause you problems should
your script contain errors and never finish. If this happens you
can suspend the script with Ctrl Z and then kill off the suspended
job.

TRAPPING SIGNALS IN FUNCTIONS
In much the same way that functions have arguments, which
may be unknown to the surrounding code ($1 for the script may
be different to $1 for a function), trap statements can be local to
a function and unknown outside of it. This can allow you to control
a function’s behaviour separately from the main body of your
code.
If you have a script which contains improbable code such as:
f_trap()
{
 trap 'print Ctrl C caught; return' INT
 sleep 1Ø
}

trap 'Now exiting' INT
f_trap
print Continuing ...
sleep 1Ø

then on first entering Ctrl C your script will print the function trap
message, abort the first sleep command, return to the main body
of the program, and print Continuing The next time you enter
Ctrl C it will print the Now exiting message, abort the last sleep
command, and then exit from the script.
Within our f_trap function we have added a return statement to
the trap to ensure that we return to the body of the script
immediately. In this particular case the command was not
absolutely essential since we would have exited the function
after the sleep 10 had completed, but if you have some endless
looping construct in a function you must have a way of returning
to the body of the script (or exiting completely) when Ctrl C is
pressed.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

RESETTING TRAPS
Many scripts have insufficient complexity to justify catching and
ignoring signals, let alone resetting them. Small scripts rarely
have a requirement for traps, which are most often reserved for
large scripts, often run by many users, and which need to be
made as resilient as possible.
When traps are used in scripts, they are quite often used to
ensure that a particular piece of code runs without being
interrupted. Once this usually small section of the script has
completed, the traps can be reset so that the signal action reverts
to its default.
To reset a signal to its default action we use a dash (-) as the
command argument. You can try the following to see how it
works:
$ vi traptest

trap '' 1 2
print 1st sleep
sleep 1Ø

trap '-' 1 2
print 2nd sleep
sleep 1Ø

If you press Ctrl C after the first message it will be ignored. When
you press it after the second message, the trap has already been
reset and the interrupt signal is now sent to the shell process that
is running the script, and to the sleep process; the sleep process
is killed by the signal and the script immediately exits.

MODIFYING THE MAILTO SCRIPT
When you use trap to catch a signal, you will usually want your
script to perform some kind of clean-up activity and then die.
People expect programs to die when they press Ctrl C, and the
usual reason for catching a signal is to allow the program to do
something before it completely finishes; the mailto program is
no exception since we would like to remove the temporary file
that we created to contain our message before exiting.

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You could add a trap statement to mailto with the following line:
trap 'rm -f $TMPDIR/$MEMOFILE; exit' 1 2 15

We can now see the significance of using single quotes to
surround the commands to be executed. If a trap statement
contains variable names, like those shown above, we want to be
sure that the string isn’t evaluated until it needs to be run. The
single quotes ensure that any variable will be expanded only at
the time of execution so that we can be certain it contains the
correct value.
For example, if the command to be executed contained the
$PWD string and we had used double quotes, then the variable
would have been expanded immediately and the current directory
would have been inserted into our command string. If during our
script we changed to another directory, then the trap command,
when finally executed, would contain the wrong PWD value.
Many scripts call a function to perform their clean-up activities,
and this is preferable if there are many commands to run before
exiting. A function has the advantage that you can add further
commands to it easily, it looks neater, and you don’t have to quote
it, whereas placing multiple commands within the quotes can be
cumbersome and less easy to follow.
The preferred method of modifying mailto is to use the function
approach so that the script now looks like the following (comment
lines have been removed and changes are shown in italics):
$ vi mailto

#!/bin/ksh
RECIPIENT=$1
LOG=logfile_$RECIPIENT
LOGDIR=/usr/local/log
TMPDIR=/var/tmp
MEMOFILE=memo_$$

f_cleanup()
{
rm -f $TMPDIR/$MEMOFILE
exit 1
}

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

trap f_cleanup 1 2 15
print 'Subject: \c'
read subject

print "Subject: $subject" > $TMPDIR/$MEMOFILE
print 'Enter message and end with ^D on a blank line'
cat >> $TMPDIR/$MEMOFILE

date >> $LOGDIR/$LOG
cat $TMPDIR/$MEMOFILE >> $LOGDIR/$LOG
print '\n' >> $LOGDIR/$LOG

mail $RECIPIENT < $TMPDIR/$MEMOFILE
rm $TMPDIR/$MEMOFILE

Instead of being immediately killed by the hangup, interrupt, or
terminate signal, mailto will now execute the f_cleanup function
and remove the temporary file it has created. The -f option keeps
rm from printing an error message if the temporary file has not
yet been created.

COPROCESSES AND COROUTINES
When two or more processes are programmed to be executed
simultaneously they are called coprocesses or coroutines – they
may communicate with each other, or they may run independently.
A pipeline is one example of a coprocess, but let us now consider
coprocesses started from within shell scripts.
Within a script you can start one or more commands in the
background, which under most circumstances would run
completely independently of each other, and also of the script
itself. There may be performance advantages in running multiple
background commands, particularly when they use different
resources. For example, one may be I/O intensive, and a second
CPU intensive, or you may have two I/O intensive programs
which access different disks. Normally your script would continue
with its own processing, irrespective of what the background
commands were doing.
However, each time you start a background process, you can
never be certain when it is going to finish, and if the successful
completion of the calling script is dependent upon the processing

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

that this other command is doing, you should not run the
background command in this manner; you will later see how we
can partially get round this using the wait command.
There may be occasions when you want a background command
to communicate with its calling script after it has completed
whatever it is doing. To do so we must define it as a coprocess
by placing the |& operator after the command in the calling script.
This ensures that standard input of the coprocess is received
from the calling script and its standard output is piped to it.
Coprocesses can be other scripts, or they can be functions
called from within the script.
A coprocess must satisfy the following criteria:
• There must be a newline character at the end of each output

message.
• Each output message must be sent to standard output;

commands within the coprocess can send their output to
files if required. The standard output must be cleared after
each message.

The following simple example shows how input can be passed
to, and returned from, a coprocess called from within a script:
$ vi callcoproc

print "The calling script"
coproc |&
read -p a1 b1 c1 d1
print "Reading from the coprocess: $a1 $b1 $c1 $d1"

print -p "Passed to the coprocess"
read -p a2 b2 c2 d2
print "Passed back from the coprocess: $a2 $b2 $c2 $d2"

$ vi coproc

print "The coprocess is running"
read a b c d
print $a $b $c $d

When you run the callcoproc script the following output will be
displayed:

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The calling script
Reading from the coprocess: The coprocess is running
Passed back from the coprocess: Passed to the coprocess

The print -p command lets you send output to a coprocess and
the corresponding read -p gets input from one. In the above
example, this is what happens when you execute callcoproc:
1 The message, ‘The calling script’, is sent to the standard

output of callcoproc and is printed on the screen.
2 It then runs coproc |& to start the coprocess script, executes

the command read -p a1 b1 c1 d1, and awaits input from
coproc.

3 On starting, coproc immediately sends the ‘The coprocess
is running’ message to its standard output, and callcoproc
assigns the words from the message to the variables a1, b1,
c1 and d1.
You should be aware that if a coprocess sends its output to
standard output and there is no corresponding read -p in the
calling script, then this output is effectively lost.

4 callcoproc then prints the ‘Reading from the coprocess:
The coprocess is running’ message on the screen.

5 In the meantime coproc has executed the read a b c d
command and is waiting for standard input.

6 callcoproc now sends the message, ‘Passed to the
coprocess’, to coproc via the print -p command, then
executes the read -p a2 b2 c2 d2 command and waits for
standard input to be sent back to it from coproc.

7 coproc reads the message sent by callcoproc and assigns
the words of ‘Passed to the coprocess’ to the variables a, b,
c and d.

8 coproc then prints the variables using print $a $b $c $d and
callcoproc reads the words from this message into the
variables a2, b2, c2 and d2.

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

9 Finally, callcoproc prints the message ‘Passed back from
the coprocess: Passed to the coprocess’.

The above script is not particularly useful, but merely shows how
you can get scripts to interact with each other. A more realistic
situation would be to pass some parameters to a coprocess to
enable it to perform a number of tasks and then pass back a
message to the calling process when these had been completed.

THE WAIT COMMAND
As we mentioned earlier, there may be occasions when running
multiple commands in the background from within a script can
result in significant performance improvements. Consider a
script which starts off multiple applications which are independent
of each other, which often happens in an HACMP environment.
The code within our script may look something like:
start_app1 &
start_app2 &
start_app3 &

If any further processing within our script is independent of the
starting of the applications, then the above approach is OK, but
you must be aware that if your script finishes before all the
applications have started you will get zombie processes. But
what if further script processing requires all applications to be
started before it can continue? We could try to get round this by
using:
start_app1 &
start_app2 &
start_app3

which would be perfectly satisfactory provided that we knew that
start_app3 finished after the other applications had started. But
what if the start times for the three applications were all similar
and we could never be sure which would finish first, which could
easily happen where databases are involved and a database
clean-up was required?

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The solution is to use the wait command, which waits until all
background jobs have been completed before continuing with
the remaining commands in the script. The code would look like:
start_app1 &
start_app2 &
start_app3 &
wait

The wait command can take one or more PIDs as arguments so
that you can wait for the completion of specific processes; but
without arguments it waits until all processes known to the
invoking shell have completed. If one of the processes currently
invoked does not complete because of some error, then no
further processing within your script will continue until you kill off
the rogue process.
Tonto Kowalski
Guru (UAE) © Xephon 2003

Source code control system – part 2

This month we conclude the code for a Source Code Control
System (SCCS).
###
Name : CheckOutSpecificSourceFileForUpdate ()
Overview : The function checks out a specific version of a source
file for update.
Notes :
###
CheckOutSpecificSourceFileForUpdate ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
#
if ! GetDirectoryName
then
 return $FALSE

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi
get version number
while true
do
 clear
 echo "Enter the version number(l for list of values)"
 echo "(a to abandon):\c"
 read RELEASE_ID
 case $RELEASE_ID in
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 a) return $FALSE ;;
 l) DisplayListOfValues "V" ;
 if ["${SELECTED_VALUE}" = ""]
 then
 : ;
 else
 RELEASE_ID="${SELECTED_VALUE}" ;
 break ;
 fi ;;
 *) break ;;
 esac
done
remove the file to be checked out from target directory
rm -f ${DIR_NAME}/${SOURCE_FILE_NAME}
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} edit -r${RELEASE_ID} \
 -p ${SOURCE_FILE_NAME} 1> ${DIR_NAME}/${SOURCE_FILE_NAME} 2>
${TEMP_FILE_1}
#
if [$? -ne Ø]
then
 DisplayMessage E "${EDIT_CHKOUT_FAILED}" N
 ERR_MSG=`cat ${TEMP_FILE_1}`
 DisplayMessage E "${OS_ERROR}"
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 return $TRUE
fi
}
###
Name : RemoveLatestDelta
Overview : The function removes the latest delta for a specific
source.
Notes :

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

###
RemoveLatestDelta ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
get the latest release id
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} prt -y ${SOURCE_FILE_NAME} \
 > ${TEMP_FILE_1} 2>&1
if [$? -ne Ø]
then
 DisplayMessage E "${SID_NOT_RETRIEVED}" N
 ERR_MSG=`cat ${TEMP_FILE_1}`
 DisplayMessage E "${OS_ERROR}"
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
fi
#
RELEASE_ID='cat ${TEMP_FILE_1} | awk {'print $3'}'
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} rmdel -r${RELEASE_ID} \
 ${SOURCE_FILE_NAME} > ${TEMP_FILE_1}
2>&1
#
if [$? -ne Ø]
then
 DisplayMessage E "${DELTA_NOT_REMOVED}" N
 ERR_MSG=`cat ${TEMP_FILE_1}`
 DisplayMessage E "${OS_ERROR}"
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 return $TRUE
fi
}
###
Name : GetReadOnlyLatestSourceFile
Overview : The function checks out a read-only copy of the latest

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

source file.
Notes :
###
GetReadOnlyLatestSourceFile ()
{
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
#
if ! GetDirectoryName
then
 return $FALSE
fi
checkout the source
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} get -p ${SOURCE_FILE_NAME} \
 1> ${DIR_NAME}/${SOURCE_FILE_NAME} 2>
${TEMP_FILE_1}
if [$? -ne Ø]
then
 DisplayMessage E "${READ_CHKOUT_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}"
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 return $TRUE
fi
#
}
###
Name : GetReadOnlySpecificVersionOfSourceFile
Overview : The function checks out a read-only copy of a specific
version of the source file.
Notes :
###
GetReadOnlySpecificVersionOfSourceFile ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
#
if ! GetDirectoryName

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

then
 return $FALSE
fi
get version number
while true
do
 clear
 echo "Enter the version number(l for list of values)"
 echo "(a to abandon):\c"
 read RELEASE_ID
 case $RELEASE_ID in
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 a) return $FALSE ;;
 l) DisplayListOfValues "V" ;
 if ["${SELECTED_VALUE}" = ""]
 then
 : ;
 else
 RELEASE_ID="${SELECTED_VALUE}" ;
 break ;
 fi ;;
 *) break ;;
 esac
done
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} get -r ${RELEASE_ID} -p \
 ${SOURCE_FILE_NAME} 1> ${DIR_NAME}/${SOURCE_FILE_NAME} 2>
${TEMP_FILE_1}
if [$? -ne Ø]
then
 DisplayMessage E "${READ_CHKOUT_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}"
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 return $TRUE
fi
}
###
Name : CheckInNewSourceFile
Overview : The function checks in a new source file.
Notes :
###
CheckInNewSourceFile ()
{

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

#
if ! GetSourceFileName "CI"
then
 return $FALSE
fi
#
CHKEDIN_FILE_COPY=",${SOURCE_FILE_NAME}"
insert SCCS control keywords into source file
if ! InsertSCCSKeyWordsIntoFile
then
 return $FALSE
fi
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} create ${SOURCE_FILE_NAME} \
 > ${TEMP_FILE_1} 2>&1
if [$? -ne Ø]
then
 DisplayMessage E "${NEW_CHKIN_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}"
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 # remove copy of checked in file
 rm -f ${CHKEDIN_FILE_COPY}
 return $TRUE
fi
}
###
Name : ShowListOfCheckedOutFiles
Overview : The function displays a list of all checked out source
files.
Notes :
###
ShowListOfCheckedOutFiles ()
{
DATETIME='date "+%d/%m/%Y at %H:%M:%S"'
#
HEADER="List of Checked Out Source Files on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo " ${HEADER}" > ${TEMP_FILE_1}
echo " ${UNDERSCORE}" >> ${TEMP_FILE_1}
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} info > ${TEMP_FILE_2} 2>&1
if [$? -ne Ø]
then

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 DisplayMessage E "${CHKOUT_LIST_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_2}'
 DisplayMessage E "${OS_ERROR}"
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
elif [! -s ${TEMP_FILE_2}]
then
 DisplayMessage E "${NO_CHKOUT_LIST}"
 return $TRUE
else
 cat ${TEMP_FILE_2} >> ${TEMP_FILE_1}
 view ${TEMP_FILE_1}
 return $TRUE
fi
}
###
Name : ReleaseCheckedOutSourceFile
Overview : The function releases the checked out source file.
Notes :
###
ReleaseCheckedOutSourceFile ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} unedit ${SOURCE_FILE_NAME} > \
 ${TEMP_FILE_1}
2>&1
if [$? -ne Ø]
then
 DisplayMessage E "${RELEASE_LOCK_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}"
 #
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 return $TRUE

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi
#
}
###
Name : ShowSourceReleaseHistoryIncludingBrances
Overview : The function shows the release history for a specific
source.
Notes :
###
ShowSourceReleaseHistory ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
#
DATETIME='date "+%d/%m/%Y at %H:%M:%S"'
#
HEADER="Release History for ${SOURCE_FILE_NAME} on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo " ${HEADER}" > ${TEMP_FILE_1}
echo " ${UNDERSCORE}" >> ${TEMP_FILE_1}
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} prs -l -r1.1 ${SOURCE_FILE_NAME}
> \
 ${TEMP_FILE_2} 2>&1
if [$? -ne Ø]
then
 DisplayMessage E "${HIST_LIST_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_2}'
 DisplayMessage E "${OS_ERROR}"
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_2}
 fi
 #
 return $FALSE
else
 cat ${TEMP_FILE_2} >> ${TEMP_FILE_1}
 view ${TEMP_FILE_1}
 return $TRUE
fi
#
}
###
Name : UpdateDeltaComment
Overview : The function updates comments associated with a
specific delta.
Notes :

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

###
UpdateDeltaComment ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
get version number to update comment for
if ! GetReleaseId
then
 return $FALSE
fi
get new comment
while true
do
 clear
 echo "Enter the new comment(a to abandon):\c"
 read COMMENT
 case ${COMMENT} in
 "") DisplayMessage E "${INVALID_ENTRY}" ;;
 a) return $FALSE ;;
 *) break ;;
 esac
done
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} cdc -r${RELEASE_ID} -
y"${COMMENT}" \
 ${SOURCE_FILE_NAME} > ${TEMP_FILE_1} 2>&1
if [$? -ne Ø]
then
 DisplayMessage E "${COMMENT_UPDATE_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}"
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
else
 return $TRUE
fi
}
###
Name : ShowVersionDifference
Overview : The function compares two deltas and reports the
difference.
Notes :
###

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ShowVersionDifference ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
get first version number
if ! GetReleaseId
then
 return $FALSE
fi
#
RELEASE_ID_1="${RELEASE_ID}"
get second version number
if ! GetReleaseId
then
 return $FALSE
fi
#
RELEASE_ID_2="${RELEASE_ID}"
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} sccsdiff \
 -r${RELEASE_ID_1} -r${RELEASE_ID_2} -p ${SOURCE_FILE_NAME} \
 > ${TEMP_FILE_1} 2>&1
#
if [$? -ne Ø]
then
 DisplayMessage E "${VERSION_DIFF_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}"
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
fi
#
DATETIME='date "+%d/%m/%Y at %H:%M:%S"'
HEADER="Difference Between Release ${RELEASE_ID_1} and ${RELEASE_ID_2}
for ${SOURCE_FILE_NAME} on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo " ${HEADER}" > ${TEMP_FILE_2}
echo " ${UNDERSCORE}" >> ${TEMP_FILE_2}
cat ${TEMP_FILE_1} >> ${TEMP_FILE_2}
view ${TEMP_FILE_2}
#
return $TRUE
}

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

###
Name : ShowChangesMade
Overview : The function compares the checked out source file with
the latest delta and reports the difference.
Notes :
###
ShowChangesMade ()
{
#
if ! GetSourceFileName "CO"
then
 return $FALSE
fi
#
${SCCS_BIN_DIR}/sccs -d${SCCS_ROOT_DIR} diffs \
 -p ${SOURCE_FILE_NAME} > ${TEMP_FILE_1} 2>&1
#
if [$? -ne Ø]
then
 DisplayMessage E "${CHANGE_DIFF_FAILED}" N
 ERR_MSG='cat ${TEMP_FILE_1}'
 DisplayMessage E "${OS_ERROR}"
 if ["${DEBUG}" = "${TRUE}"]
 then
 view ${TEMP_FILE_1}
 fi
 #
 return $FALSE
fi
#
DATETIME='date "+%d/%m/%Y at %H:%M:%S"'
HEADER="Difference Between Checked Out Version and Latest Delta"
FormatUnderscores "${HEADER}"
echo " ${HEADER}" > ${TEMP_FILE_2}
echo " ${UNDERSCORE}" >> ${TEMP_FILE_2}
HEADER="for ${SOURCE_FILE_NAME} on ${DATETIME}"
FormatUnderscores "${HEADER}"
echo " ${HEADER}" >> ${TEMP_FILE_2}
echo " ${UNDERSCORE}" >> ${TEMP_FILE_2}
cat ${TEMP_FILE_1} >> ${TEMP_FILE_2}
view ${TEMP_FILE_2}
#
return $TRUE
}
###
Name : ProcessOption
Overview : The function processes the selected option.
Notes :
###
ProcessOption ()

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

{
case $OPTION in
 5) CheckInNewSourceFile ;;
 1Ø) CheckOutLatestSourceFileForUpdate ;;
 15) CheckOutSpecificSourceFileForUpdate ;;
 2Ø) CheckInUpdatedSourceFile ;;
 25) GetReadOnlyLatestSourceFile ;;
 3Ø) GetReadOnlySpecificVersionOfSourceFile ;;
 35) ShowListOfCheckedOutFiles ;;
 4Ø) ReleaseCheckedOutSourceFile ;;
 45) ShowSourceReleaseHistory ;;
 5Ø) UpdateDeltaComment ;;
 55) RemoveLatestDelta ;;
 6Ø) ShowVersionDifference ;;
 65) ShowChangesMade ;;
 99) ProcessExit $SEC ;;
 *) DisplayMessage E "${INVALID_ENTRY}" ;;
esac
}
###
Name : ParseCommandLine
Overview : The function parses the command line which is assigned
to a variable ${ARGV}.
Notes : 1. Only one argument (-D) is expected. If the option
is provided, $DEBUG is set to $TRUE.
###
ParseCommandLine ()
{
if ["${ARGV}" = "-D"]
then
 DEBUG="${TRUE}"
 DisplayMessage I "${DEBUG_SET}" N
fi
}
###
Name : main
Overview : The function implements processing structure.
Notes :
###
main ()
{
InitialiseVariable
#
ParseCommandLine
#
while true
do
 DisplayMenu
 ProcessOption
done

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

}
invoke main ()
define traps
trap "HandleInterrupt " $SIGINT $SIGTERM $SIGTSTP
trap "HandleInterrupt " 2 15 18
package command line
ARGC="$#"
ARGV="$@"
main

Arif Zaman
ETL Developer (UK) © Xephon 2003

Articles for inclusion in AIX Update can be sent to the
editor, Trevor Eddolls, at trevore@xephon.com. A copy of
our Notes for Contributors can be downloaded from
www.xephon.com/nfc.

AIX news

MySQL has announced that its open source
MySQL database has enhanced support for
AIX.

The MySQL database server architecture
promotes extensive re-use of pieces of code
within the software.

This version adds to support for all major
Linux distributions as well as Unix, Mac OS
X, and Windows operating systems.

For further information contact:
MySQL AB, Bangårdsgatan 8, S-753 20
Uppsala, Sweden.
Tel: +46 18 10 18 90.
URL: http://www.mysql.com/products/
index.html.

* * *

CONNX Solutions has announced Version
8.8 of its CONNX data access middleware,
now with a range of performance and feature
enhancements. Support for VSAM VSE data
sources, which provides real-time high-
performance access to VSAM files under
CICS partitions on the VSE operating
system, has also been included in the release.
Also, direct support for Microsoft .NET
technology has been added with the
introduction of a pure CONNX OLE DB
Provider. Users, says the vendor, will be able
to achieve the performance of a native
provider while writing their own applications
in managed C# or VB .NET code.

Support for C-ISAM databases, which was
included in the CONNX 8.7 release, has also
been expanded to include Solaris 5.6 and
above as well as AIX 4.1 and above.
Microfocus COBOL C-ISAM support has
also been enhanced.

The software provides read/write real-time
access to all enterprise data from any

platform as if all the data existed in one
relational database. All data is then accessible
using standard SQL and any standards-based
application.

It acts as a reusable data access framework,
supporting C-ISAM, VSAM, DB2, Oracle,
RMS, RDB, PostGreSQL, DBMS, Dataflex,
POWERflex, SQL Server, Sybase, and
Informix and any OLE DB, ODBC, or JDBC
data source.

For further information contact:
CONNX Solutions, 1800 112th Avenue NE,
Suite #150, Bellevue, WA 98004, USA.
Tel: (425) 519 6600.
URL: http://www.connx.com/products/
products.html.

* * *

Serena Software has integrated its
ChangeMan DS software change manager
for distributed systems with the TeamTrack
defect and issue management system from
TeamShare.

The combination, we’re told, provides
TeamTrack users with an automated change
management system that helps streamlines
software development and improves
communication across the enterprise. In
addition, the integration also allows joint
customers to integrate with other vendors’
tools.

ChangeMan DS provides native support
across AIX, HP-UX, Solaris, OS/390 USS,
and SCO, HP NonStop servers, Linux, MPE/
ix, OS/400, and Windows.

For further information contact:
Serena Software, 2755 Campus Drive, 3rd
Floor. San Mateo, CA 94403, USA.
Tel: (650) 522 6600
URL: http://www.serena.com.

x xephon

	AIX 5L performance analysis tools enhancements
	Good practice in shell programming
	Controlling signals and processes
	Source code control system - part 2
	AIX news

