

© Xephon plc 2003

April 2003

90

In this issue

AIX
u

p
d

ate

3 Monitoring filesystems
9 Sending e-mail attachments from

AIX
12 Subsystems – not just for IBM
16 Good practice in shell

programming
31 It’s magic
33 Arithmetic evaluation
50 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Monitoring filesystems

One of the main problems a system administrator faces is the
filesystem on servers becoming full – particularly where a large-
scale Internet portal is running on the servers (as in my company).
The log files or core files can make your filesystems full very
quickly, which then causes a lot of problems. In this article, I want
to share my filesystem monitoring script (fs.sh) for servers, and
two other scripts (logger.sh and rotate_alog.sh) showing how to
deal with important log files generated by WebSphere and HTTP
servers.

FS.SH
The fs.sh script runs on one machine and issues rsh commands
(for execution on remote servers) to the machines to be monitored.
When the script detects a filesystem usage that is greater than
the given threshold value on any server, it warns the
administrator(s) with an Outlook e-mail, which lists the server
name, filesystem name, per cent usage, and how much space
is left. This is written in the subject field of the Outlook e-mail. This
entry is then written in the ‘sent’ file to make sure that this e-mail
is sent only once to the administrator(s). As soon as the script
realises that the problematic filesystem has a value less than the
threshold value, it sends another mail that shows the situation
(server name, filesystem name, percent usage, and how much
space is left) and the entry is deleted from the ‘sent’ file.
We use a user called ‘perf’ on our servers for these situations. A
common user is needed for clients to trust the server where the
script runs.

HOME SERVER
The following files are needed on the server (let’s say rsc100e0)
where the script runs.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/home/perf/servers contains the hostname list of the servers to
be monitored (hostnames must be in the /etc/hosts file):
$ cat servers
rsc148eØ
rsc149eØ
spc329e1
spc361e1
spc497e1
spc745e1
spc581es
spc913es
..............
.............. (new servers can be added easily)

/home/perf/emails contains the e-mail address list for Admin(s):
$ cat emails
xxxx.yyyyy@turkcell.com
aaa.www@turkcell.com
..............
.............. (new e-mail addresses can be added)

The /home/perf/historylog is created by the script, which adds all
warnings that are sent, with the date, for later usage. When there
is a problem with a server, it’s always possible to check this
history file to see whether there was a problem with the filesystem
usage at a specific date.
$ cat historylog:
..............
..............
Wed Jul 24 Ø8:5Ø:34 CEST 2ØØ2 - rsc148eØ - /usr/HTTPServer - file
system is %98 full. Free space 1Ø7 MB
Wed Jul 24 Ø9:ØØ:37 CEST 2ØØ2 - rsc148eØ - /usr/HTTPServer - file
system has dropped to %6Ø. Free space 25 MB
Wed Jul 24 Ø9:4Ø:26 CEST 2ØØ2 - rsc149eØ - /Weblogs - file system has
dropped to %94. Free space 65 MB
Wed Jul 24 11:2Ø:23 CEST 2ØØ2 - rsc149eØ - /Weblogs - file system is
%96 full. Free space 49 MB
Wed Jul 24 11:5Ø:27 CEST 2ØØ2 - rsc142eØ - /Weblogs - file system has
dropped to %48. Free space 54Ø MB
Wed Jul 24 15:4Ø:Ø4 CEST 2ØØ2 - spc329eØ - /usr/HTTPServer - file
system is %97 full. Free space 184 MB
Wed Jul 24 19:3Ø:12 CEST 2ØØ2 - spc745e1 - /usr - file system is %97
full. Free space 26 MB
Wed Jul 24 19:35:15 CEST 2ØØ2 - spc745e1 - /usr - file system has
dropped to %93. Free space 54 MB

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

..............

..............

The script is triggered from crontab every 10 minutes:
ØØ,1Ø,2Ø,3Ø,4Ø,5Ø * * * * /home/perf/fs.sh > /dev/null 2>&1

REMOTE CLIENTS
The server where the monitoring script runs, rsc100e0, must be
in /etc/hosts of the clients. The following file must be in the home
directory of ‘perf’, the in .rhosts file:
$ cat /home/perf/.rhosts
rsc1ØØeØ perf

Otherwise, rsh won’t work!

FS.SH
#!/bin/ksh
Adnan Akbas, Ø5.Ø2.2ØØ2
This script monitors file system usage for given remote servers
and warns the administrator(s) by sending mail when the filesystem
usage of a server gets more than the given threshold value.
Getting the list of remote servers in a array
set -A server 'cat ~perf/servers'
Threshold value for the filesystems
threshold=95
emails=~perf/emails
i=Ø
Filesystem Alert in Servers
while (($i < ${#server[*]})) ; do
 # Executes "df -k" command in each remote server and writes
 # the output in a file.
 rsh ${server[i]} "df -k" |grep -v AFS | grep -v Filesystem | grep -v /
proc | awk '{print $3, $4, $7}' | awk -F% '{print $1, $2}' >> ~perf/
fs.out
 # Reads every line in fs.out
 while read line
 do
 # Getting the needed data. per: percentage, fs: filesystem name,
 # avail: available space left.
 per='echo $line | awk '{print $2}''
 fs='echo $line | awk '{print $3}''
 avail='echo $line | awk '{print $1}''
 # Checks if %used of the filesystem. If it is greater
 # than Threshold checks the sent file.

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if [$per -gt $threshold] ; then
 grep "${server[i]} $fs " ~perf/sent > /dev/null 2>&1
 # If it is in the sent file already, then it doesn't
 # send an email again.
 # If not sends the email warning to the Admin(s) with
 # the % of fullness and space left.
 # And the entry is added to the sent file.
 if [[$? != Ø]] ; then
 echo "${server[i]} $fs " >> ~perf/sent
 mesaj='echo "${server[i]} - $fs - file system is %$per full.
Free space $(($avail / 1Ø24)) MB"'
 # Sends the message to every email address in emails file.
 cat $emails |
 while read no
 do
 # The info is in the subject of the outlook mail. (for easy seeing)
 echo "Automatic mail by Akbas" | /usr/bin/mailx -s "$mesaj" -r
FS@info $no > /dev/null 2>&1
 done
 # Logging every sent message to historylog file.
 echo " `date` - $mesaj " >> ~perf/historylog
 fi
 else
 # Here the %used of the filesystem is below Threshold.
 grep "${server[i]} $fs " ~perf/sent > /dev/null 2>&1
 # Checks if the entry is in sent file already.
 # If yes sends an email with the news that the
 # Filesystem has dropped to %value
 if [[$? = Ø]] ; then
 fmesaj='echo "${server[i]} - $fs - file system has dropped to
%$per. Free space $(($avail / 1Ø24)) MB"'
 # Sends the message to every email address in emails file.
 cat $emails |
 while read fno ; do
 # The info is in the subject of the outlook mail. (for easy seeing)
 echo "Automatic mail by Akbas" | /usr/bin/mailx -s "$fmesaj" -
r FS@info $fno > /dev/null 2>&1
 done
 # The entry is deleted from the sent file.
 grep -v "${server[i]} $fs " ~perf/sent > ~perf/senttemp
 mv ~perf/senttemp ~perf/sent
 # Logging every sent message to historylog file for later use.
 echo " `date` - $fmesaj " >> ~perf/historylog
 fi
 fi
done < ~perf/fs.out
rm ~perf/fs.out
i=$i+1
done

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

LOGGER.SH
When you start the WebSphere application on a server, it creates
different kinds of log file and performs excessive writes to them.
The problem we have faced at our site is that these files (with a
time stamp) are still used by WebSphere, sometimes until the
next start-up.
It is very important to know whether this file is used by a process
before you move/compress the file. If the file is in use and the
remove/move command is executed, the file descriptor will be
lost and the application (Websphere, HTTP server, etc) will be
running without logging. So, this script senses the log files that
are not used by processes any more and moves and compresses
them automatically, which saves a lot of space for us.
The script is triggered from crontab every hour:
ØØ * * * * /usr/local/sbin/logger.sh > /dev/null 2>&1

Example log names:
servlet.<time stamp>
ecmsg_<hostname>_<time stamp>
…………………..

Here is the code:
#!/bin/ksh
Adnan Akbas , 25.Ø2.2ØØ2
The script checks whether given log files is in access or not.
if there is no access, compresses the files and moves to the save
directory.
info: all servlet_* and ecmsg_* logs are with time stamp.
logdir=/Weblogs/wcs
servlet_dir=/Weblogs/wcs/save/servlet
ecmsg_dir=/Weblogs/wcs/save/ecmsg
cd $logdir
ls servlet.* |
while read fname ; do
 # Checks if any Process (PID) accesses the log file.
 xxx='fuser ${logdir}/${fname} | awk '{print $1}''
 # If you don't get a PID, then logfile is free for packing.
 if [[$xxx != +([Ø-9])]] ; then
 mv ${logdir}/${fname} ${servlet_dir}/${fname}
 compress ${servlet_dir}/${fname} > /dev/null 2>&1
 fi

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

done
ls ecmsg_spcØ49e1_* |
while read fname ; do
 # Checks if any Proccess (PID) accesses the log file.
 xxx='fuser ${logdir}/${fname} | awk '{print $1}''
 # If you don't get a PID, then logfile is free for packing.
 if [[$xxx != +([Ø-9])]] ; then
 mv ${logdir}/${fname} ${ecmsg_dir}/${fname}
 compress ${ecmsg_dir}/${fname} > /dev/null 2>&1
 fi
done
Remove logs older then 15 days.
find ${ecmsg_dir}/ -name "ecmsg_*.Z" -mtime +15 -exec rm {} \; > /dev/
null 2>&1
find ${servlet_dir}/ -name "servlet.*.Z" -mtime +15 -exec rm {} \; > /
dev/null 2>&1

ROTATE_ALOG.SH
There are also logs, like access_log, that are always in use by
HTTP server and must be handled with special care. Moving/
renaming and then erasing doesn’t work because of the file
descriptor problem that I mentioned above. The best way to do
this is to copy the file with a time stamp and then:
cat /dev/null > access_log

This makes access_log size 0 without losing the file descriptor.
So, HTTP server keeps on writing logs to this file.
The script is triggered from crontab once everyday:
59 23 * * * /usr/local/sbin/rotate_alog.sh > /dev/null 2>&1

log name:
access_log

Here is the code:
#!/bin/ksh
Adnan Akbas , Ø7.Ø3.2ØØ2
The script rotates access_log file which is in access.
tstamp='date +%d%m%y'
logdir=/usr/HTTPServer/logs
Copies the file with a time stamp
cp ${logdir}/access_log ${logdir}/access_log_${tstamp}
if successful remove access_log and create an empty access_log file
if [$? -eq Ø]

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Sending e-mail attachments from AIX

INTRODUCTION
A regular question posed in the newsgroups and forums is, how
can I attach a file to an e-mail within AIX? This has become a
popular past-time for many sysadmins who are trying to produce
automated monitoring/alerting systems.
Where most people go wrong is in trying to use the Mail User
Agent (MUA) software – mail, elm, pine, mh. It’s easier just to
place a constructed piece of mail directly into the SMTP stream
using the Mail Transfer Agent (MTA) software sendmail.

ENTERING E-MAIL INTO THE SMTP STREAM
The ordinary sendmail command will read a text file using
standard redirection and the -t flag will direct it to use the e-mail
headers in that text file:
sendmail -t < email-file

then
 cat /dev/null > ${logdir}/access_log
fi
Compress the file
compress ${logdir}/access_log_${tstamp} > /dev/null 2>&1
Files older than a month will be deleted
find ${logdir}/ -name "access_log_*.Z" -mtime +3Ø -exec rm {} \; > /dev/
null 2>&1

Adnan Akbas
System Administrator
Turkcell (Germany) © Xephon 2003

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONSTRUCTING AN E-MAIL FILE
At its most simple, an e-mail is nothing more that a plain text file
consisting of:
• Routing headers (sender, recipient, CCs, and BCCs)
• Subject field
• MIME boundary information
• Embedded text
• Attachments (as text)
• MIME boundaries.

TRADITIONAL HEADERS
From: Sender's Name <senders email address>
To: Recipient1 <recipients email address>
cc: cc-person <carbon-copy email address>
bcc: bcc-person <blind-carbon-copy email address>
Subject: Email Title

Note: the From: header will not override the actual userid used
to execute the sendmail command, and any routing decisions
made by the MTA will be based on that execution userid.

MIME HEADERS
Every set of MIME headers must be followed by a blank line.
Top level:
MIME-Version: 1.Ø
Content-Type: multipart/mixed;
 boundary="Unique-Character-String"

The Unique-Character-String must be unique throughout the e-
mail (and not replicated in any of the attachments). When
creating this string in a script it’s a good idea to incorporate the
current pid ($$) to make it unique between mailings as well.
For embedded text:
--Unique-Character-String

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Content-Type: text/plain; charset=us-ascii

For attachments:
--Unique-Character-String
Content-Type: text/plain
Content-Disposition: attachment; filename="filename.txt"

Different Content-Type: headers can be specified for different
attachment types. For example:
• Application/MSEXCEL for a file destined to be a spreadsheet.
• Application/X-PGP for an attachment that has been
encrypted.
Final boundary:
--Unique-Character-String--

Be careful to include the final two dashes or this boundary will be
misinterpreted.

EXAMPLE FILE
The following file is a constructed e-mail composed of some
inline text, a text attachment, and a small spreadsheet:
From: Automated DLCMailer <sender@company1.com>
To: A. N. Other <another@company2.com>
MIME-Version: 1.Ø
Subject: Multipart MIME File
Content-Type: multipart/mixed;
 boundary="__=--DLC-BOUNDARY-15Ø4Ø2"

--__=--DLC-BOUNDARY-15Ø4Ø2
Content-Type: text/plain; charset=us-ascii

This is the plain text embedded message
It is to show how easy it is to construct MIME based emails

--__=--DLC-BOUNDARY-15Ø4Ø2
Content-Type: text/plain
Content-Disposition: attachment; filename="Chapter1.txt"

1. The Earthquake

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The train from 'Frisco was very late. It should have arrived at
Hugson's Siding at midnight, but it was already five o'clock and the
gray dawn was breaking in the east when the little train slowly rumbled
up to the open shed that served for the station-house. As it came to a
stop the conductor called out in a loud voice:

"Hugson's Siding!"

--__=--DLC-BOUNDARY-15Ø4Ø2
Content-Type: application/MS-EXCEL
Content-Disposition: attachment; filename="pies.csv"

Person,Pies Eaten, Pies Left
John,4,5
David,1Ø,3
George,1,1

--__=--DLC-BOUNDARY-15Ø4Ø2--

DLC (UK) © Xephon 2003

Subsystems – not just for IBM

You have just put the finishing touches to that all-important
program. It will run as a daemon and monitor your crucial
application. You have put an entry into /etc/inittab and you start
it using nohup. This may seem like a good idea, but why not use
the built-in functions and routines IBM gives you to stop/start/
refresh your program?

CONCEPTS
AIX provides a series of commands, C routines, and control
structures to manage programs that are designed to run
continually (daemons). There is a hierarchical structure, starting
with the System Resource Controller (/usr/sbin/srcmstr). Using
commands such as startsrc and stopsrc, this daemon controls

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the subsystems that are defined to the system. These subsystems
can be grouped together as part of a suite of related programs
to form subsystem groups and hence can be controlled as one.
To complete the hierarchy, a subsystem may have several
subservers.
For example, the inetd daemon, part of the tcpip subsystem
group, has subservers such as ftpd and telnetd.

COMMANDS
I will not attempt to describe the use of the C routines in this
article.
There is a collection of commands that are used to control and
manipulate subsystems. Below is a very quick guide to them:
• startsrc – start a subsystem or group of subsystems.
• stopsrc – stop a subsystem or group of subsystems.
• lssrc – list the status of a subsystem or group of subsystems.
• refresh – stop and restart a subsystem or group of

subsystems.
• traceson – enable tracing (debug information) for a subsystem

or group of subsystems.
• tracesoff – disable tracing (debug information) for a subsystem

or group of subsystems.
• mkssys – define a subsystem to the operating system.
• rmssys – delete a subsystem from the operating system.
• chssys – alter the definition of a defined subsystem.
• mkserver – define a subserver to the operating system.
• rmserver – delete a subserver from the operating system.
• chserver – alter the definition of a defined subserver.
• odmget – retrieve data stored in the Object Data Manager

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

database (ODM).
And, of course, there are the usual SMIT panels (from the initial
menu choose Processes & Subsystems and then
Subsystems).
I will not go into detail on each of the commands. The manuals
cover the options for each command better than I can.

ALTERING AN ENTRY
The lssrc command produces output in colon-separated format,
which is not the most user friendly. A quick script to format the
output is shown below (it takes one argument, which is the
subservice you are interested in):
#!/usr/bin/ksh
subsrv=$1
j=Ø;
lssrc -S | head -1 | awk -F":" '{ for (i=1; i <= NF; i++) print $i }'
| while read cols[$j]
do
 let j=$j+1
done
j=Ø;
lssrc -S -s $subsrv | tail -1 | awk -F":" '{ for (i=1; i <= NF; i++)
print $i }' | while read entry[$j]
do
 echo ${cols[$j]} " : " ${entry[$j]}
 let j=$j+1
done

Alternatively, you can simply use the odmget command to get
a formatted version for a subserver, eg:
odmget –q"subsysname=qdaemon" SRCsubsys

WORKING EXAMPLE
I have had the experience of the TSM client agent dying on some
older systems because of ‘Program Memory Exhausted’ errors.
This causes the dsmc schedule process to die off. Unless all the
systems which run TSM schedules are monitored for the presence
of the process, it will be the next morning before the problem is

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

picked up, when the output from the overnight schedules is
checked.
There are several ways to sort this out; I will mention two here.
First, you can alter the TSM entry in /etc/inittab to respawn rather
than once and have the init process pick up the problem.
However, I favour having more control over the process, and,
accordingly, I use an altered inittab entry and a subserver
definition. This allows an administrator to stop and start the
process as required and also has the system pick up a failed
process.
The entry in /etc/inittab looks like:
rctsm:2:wait:/usr/bin/startsrc –sdsmc

This can be inserted manually and have init pick it up via the
telinit q command, or you could use the following command:
mkitab –i srcmstr "rctsm:2:wait:/usr/bin/startsrc –sdsmc"

The subsystem definition I have used is:
mkssys –s dsmc –G tsm –u Ø –p /usr/tivoli/tsm/client/ba/bin/dsmc –a
schedule –o /dev/console \ -e /var/adm/ras/dsmerror.log –R –Q –S n1 –f
9 –E 38 –w 1Ø

Note: the dsmc command accepts communication via signals.
Hence the options -S -n 1 -f 9, mean: for normal termination use
kill -1; to force termination use kill -9. I use a priority of 38 (in a
range of 0 (highest priority) to 39 (lowest)). The -R option tells the
srcmstr process to respawn the dsmc process should it fail.
Finally, on most machines, only one dsmc task will run, hence
the -Q option. However, there are times when you might want to
run two dsmc processes; for these machines the -q should be
used.

CONCLUSION
There are several in-built ‘utilities’ within AIX, which can be used
by system administrators to their own advantage. I have attempted
here to highlight the possible advantages of using the in-built
‘subsystem/subserver’ model. I cannot foresee why an

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

administrator would want to alter any values for IBM supplied
services; however, there is no reason why new ones cannot be
added and the supplied mechanisms used to make life easier for
administrators.

REFERENCES
AIX Commands Reference Manual.
AIX System Management Concepts: Operating Systems and
Devices.
AIX General Programming Concepts: Writing and Debugging
Programs.
Phil Pollard
Unix and TSM Administrator (UK) © Xephon 2003

Good practice in shell programming

This month we conclude the article on good practice in shell
programming.
 fi
 #
 TOTAL_NO_ARGENTRY='expr ${TOTAL_NO_ARGENTRY} + 1'
done
#
if [$ARGC -ge ${MAN_NO_ARGENTRY}] &&
 [$ARGC -le ${TOTAL_NO_ARGENTRY}]
then
 :
else
 echo "Invalid argument count"
 return $FALSE
fi
#
INDEX=1
echo "Command Line=${ARGL}"
OPTION="" # each option and value pair

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

#
while [$INDEX -le $ARGC]
do
 OPTION='echo "${ARGL}" | cut -d' ' -f${INDEX}'
 # extract argument
 ARG='echo "${OPTION}" | cut -d= -f1'
 # extract value
 VAL='echo "${OPTION}" | cut -d= -f2'
 #
 # check the argument against being null
 #
 if ["${ARG}" = ""]
 then
 echo "Must provide an argument using argument=value syntax "
 return $FALSE
 fi
 #
 # check the argument against the list
 #
 VALID_ARG=N
 for ARGENTRY in ${ARGLIST}
 do
 if ["${ARG}" = "`echo "${ARGENTRY}" | cut -d':' -f1`"]
 then
 VALID_ARG=Y
 break
 fi
 done
 #
 if ["${VALID_ARG}" != Y]
 then
 echo "Invalid argument ${ARG}"
 return $FALSE
 fi
 #
 # check argument specifier syntax
 #
 if ["${OPTION}" != "${ARG}=${VAL}"]
 then
 echo "Invalid argument specifier ${OPTION}"
 break
 fi
 #
 # validate argument against expected list
 #
 for ARGENTRY in ${ARG_PROCESSED}
 do
 if ["${ARG}" = "${ARGENTRY}"]
 then

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 echo "Duplicate argument ${ARG}"
 return $FALSE
 fi
 done
 #
 # store this argument
 #
 ARG_PROCESSED="${ARG_PROCESSED} ${ARG}"
 #
 # validate argument against valid values
 #
 if ["${ARG}" = "RERUN_FLAG"] &&
 ["${VAL}" != "Y" -a "${VAL}" != "N"]
 then
 echo "Invalid value for argument ${ARG}"
 return $FALSE
 fi
 #
 if ["${ARG}" = "PROCESSING_MONTH"] &&
 ["${VAL}" != "1" -a "${VAL}" != "2" -a "${VAL}" != "3" -a \
 "${VAL}" != "4" -a "${VAL}" != "5" -a "${VAL}" != "6" -a \
 "${VAL}" != "7" -a "${VAL}" != "8" -a "${VAL}" != "9" -a \
 "${VAL}" != "1Ø" -a "${VAL}" != "11" -a "${VAL}" != "12"]
 then
 echo "Invalid value for argument ${ARG}"
 return $FALSE
 fi
 #
 INDEX='expr $INDEX + 1'

done
}
##
Name : main
Overview : Implements processing structure by invoking appropriate
functions in a defined manner.
#
Notes :
###
main ()
{
ParseCommandLine
#
other functions
#
}
#
#
FALSE=1

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

TRUE=Ø
ARGL="$@"
ARGC=$#
#
invoke main
#
main

MAKING THE SCRIPT STRUCTURED
Making a script structured is all about writing one or more
functions to implement the overall functionality of the script,
which has one exit and one entry point.

Example 1: unstructured script
#
assign parameters
#
Var1=$1
Var2=$2
Var3=$3
#
process option
#
if ["${Var1}" != "A" -a "${Var1}" != "B" -a "${Var1}" !=
"C"]
then
 echo "Var1 must be A, B or C"
 exit 1 # exit point
fi
#
#
if ["${Var2} = "A"]
then
 #
 # process this logic
 #
 # check batch size
 #
 if [$Var2 -gt 1ØØØ]
 then
 echo "Batch size must be less than 1ØØØ
 exit 1 # exit point
 fi
 #
 # successful completion

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 #
 exit Ø # exit point
 #
elsif [$Var2 = "B"]
then
 #
 # process this logic
 #
 # check batch size
 #
 if [$Var2 -gt 1ØØØØ]
 then
 echo "Batch size must be less than 1ØØØØ
 exit 1 # exit point
 fi
 #
 # successful completion
 #
 exit Ø # exit point
 #
elsif ["${Var2}" = "C"]
then
 #
 # process this logic
 #
 # check batch size
 #
 if [$Var2 -gt 2ØØØØ]
 then
 echo "Batch size must be less than 2ØØØØ
 exit 1 # exit point
 fi
 #
 # successful completion
 #
 exit Ø # exit point
 #
fi
#
#
successful completion
#
exit Ø # exit point

Notes:
1 The script has multiple exit points.
2 The variable names are not self-explanatory.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

3 The script is difficult to read.

Example 2: structured script
###
Name : InitialiseVariables
Overview : The function initializes all variables
Notes :
###
InitialiseVariables
{
#
exit codes
#
SEC=Ø
FEC=1
#
return codes
#
TRUE=Ø
FALSE=1
#
expected arguments
#
RUN_OPTION=""
BATCH_SIZE=""
}
###
Name : ParseCommandLine
Overview : The function parses the command line
Notes : 1. The function parses the string held in variable $ARGV
#
2. The function also validates individual arguments
###
ParsesCommandLine ()
{
see example above for how to implement this function
}
###
Name : ProcessA
Overview : The function processes option A .
Notes : 1. The function parses the string held in variable $ARGV
###
ProcessA ()
{
return $TRUE
}
###

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Name : ProcessB
Overview : The function processes option B.
Notes : 1. The function parses the string held in variable $ARGV
#
###
ProcessB ()
{
return $TRUE
}
###
Name : ProcessC
Overview : The function processes option C .
Notes : 1. The function parses the string held in variable $ARGV
###
ProcessC ()
{
return $TRUE
}
###
Name : ProcessExit
Overview : The function removes any temporary files and
makes a graceful exit.
Input : Exit Code
Notes :
###
ProcessExit ()
{
EXIT_CODE=$1
exit ${EXIT_CODE}
}
###
Name : main
Overview : The function implements processing control.
Notes :
###
main ()
{
InitialiseVariables
#
parse command line
#
if ! ParseCommandLine
then
 ProcessExit $FEC
fi
#
#
if ["${RUN_OPTION}" = "A"]
then

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 if ! ProcessA
 then
 ProcessExit $FEC
 fi
#
elsif ["${RUN_OPTION}" = "B"]
then
 if ! ProcessB
 then
 ProcessExit $FEC
 fi
#
elsif ["${RUN_OPTION}" = "C"]
then
 if ! ProcessC
 then
 ProcessExit $FEC
 fi
fi
#
#
ProcessExit $SEC
}
#
package the command line
#
ARGV="$@"
ARGC="$#"
#
invoke main
#
main

Notes:
1 The script has a single exit point via ProcessExit ().
2 The variable names are clear and meaningful.
3 The script is easy to read although it is longer.
4 Disabling or enabling a function (equivalent to commenting

in and out in unstructured form) is easy. Just place a return
statement at the top of the function definition (see below):
ProcessA ()
{
#
return $TRUE
}

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

or:
ProcessA ()
{
#
return $FALSE
}

5 Validation for command line parameters is done in
ParseCommandLine ().

6 There are no exit points from any of the functions.
7 The function main () implements the processing control

structure.
8 The function main () must be invoked in order to do anything

useful with the script.
9 The $ARGV and $ARGC are assigned before the invocation

of main ().

Adding debug or tracing features
You can easily add debug or tracing features to your shell script.
The idea is that when a script is running with debug or tracing
feature on, it will out put a lot of information, either on the screen
or into a document, providing a picture of the inner working of the
script. This sort of output is not desirable when running a script
under normal circumstances because it will add to the execution
time. A complex script should have this feature added, which can
be turned on in order to understand the inner workings of it,
perhaps to address a particular problem with the running of the
script.
Now the question is, what information should be traced or
debugged? This is entirely dependent on the script and its
complexity, but nonetheless a general guideline would be as
follows:
• Values of variables before and after assignment.
• Values of iteration.

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Indication of path taken in if or case statement.

Implementation
To implement the feature, add a command line specification as
follows:

myscript.sh DEBUG=Y

Use ParseCommandLine () function mentioned above to process
the argument DEBUG.

FUNCTIONS
Functions are a powerful feature that aren’t used often enough.
The syntax is:
Function-name ()
{
 command s
 return $TRUE
}

Notes:
1 Functions can accept arguments like a script.

2 Functions can return a value:
add ()
{
NUM1=$1
NUM2=$2
RESULT=""
RESULT='expr $NUM1 + $NUM2'
return $RESULT
}
#
main body of script
#
PARAM1=$1
PARAM1=$2
#
invoke add ()
#
TOTAL='add $PARAM1 PARAM2'

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3 Functions can return a true or false status:
file_exists ()
{
FILE_TO_CHECK=$1
if [-f "${FILE-TO_CHECK}"]
then
 # file exists
 return $TRUE
else
 return $FALSE
fi
}
#
main body of script
#
TRUE=Ø
FALSE=1
#
#
FILE=$1
#
invoke file_exists ()
#
if file_exists "${FILE}2
then
 # function has returned a TRUE status
 echo "INFO: File, ${FILE} exists " >&1
else
 echo "ERROR: File, ${FILE} does not exist " > &2
fi

Auto-loading customized functions
Functions can be written and executed within a script, but what
if you want to write functions and execute them as commands;
how would you do it?

Function written and executed within a script
Script hello.sh:
hello () # function being defined
{
 echo "Hello there "
}
#

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

#
hello # function being invoked within the script

Running the script in a sub-shell:
Hello.sh

Running the script in the current shell:
. hello.sh

The function hello () has been auto-loaded into the memory by
the current shell and therefore it can be invoked as a command
as follows:
hello

Loading functions from a script
Write all the required functions in a script but do not invoke these
within the script.
Modify .profile as follows:
#
auto load functions
#
. function_library.sh

Note: you can write as many library scripts as you like, but in that
case all these library scripts must be executed within the current
shell as shown above.

Loading functions by placing these in pre-defined locations
Define the shell variable $FPATH to point to a location where
scripts with function(s) definition will reside.
Define each function in a single script with the same location as
the function and place it in the directory pointed to by $FPATH.
Add the following line to the scripts that need to invoke these
functions:

typeset –fu function1_name

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

typeset -fu function2_name
#
invoke these functions
#
function1_name
#
function2_name

Usage message
When a script terminates because of improper usage, a proper
usage message must be displayed using standard syntax.

Example:
USAGE=Usage:myscript.sh <run_option> <batch_size>
The script takes mandatory parameter

USAGE=Usage:myscript.sh <I> |
The script takes one of the two mandatory parameters

USAGE=Usage:myscript.sh <run_option> < batch_size> <I> |

Stdin, Stdout, Stderr
Standard input, output, and error are file descriptors 0, 1, and 2.
Each has a particular role and should be used accordingly.

Stdin
By default place stdin in the terminal that the script is running on.
For example:
echo "Enter password:\c"
read PASSWORD

The stdin has been set to point to the terminal and the user is
expected to enter the password.

Stdout
All non-error messages should be sent to stdout as follows:
echo "myscript.sh:INFO:Processing first batch" >&1

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Stderr
All error messages should be sent to stderr as follows:
echo "myscript.sh:ERROR:Wrong argument count" >&2

Notes:
1 When a particular script is being executed, we can log

different messages in different files as follows:
ERROR_MSG_FILE=/tmp/f1.err
INFO_MSG_FILE=/tmp/f1.info

myscript.sh 1> ${INFO_MSG_FILE} 2> ${ERROR_MSG_FILE}

2 We can ignore non-error messages and log just error
messages, as follows:
myscript.sh 1> /dev/null 2 >${ERROR_MSG_FILE}

3 We can swap standard input as follows:
 PASSWD_FILE=/etc/passwd
 #
 # at this point stdin is set to point to file descriptor Ø
 #
 exec 3<&Ø # this saves the original stdin as FD 3
 #
 cat ${PASSWD_FILE} | while read LINE
 do
 # at this point stdin is set to point to ${PASSWD_FILE}
 # but we wish to accept a reply from the user from the
 # terminal, how do we do it?
 # ask the question
 echo " do you wish to delete this user ?\c"
 #
 exec 4<&Ø # this saves the current stdin as FD 4
 exec Ø<&3 # this restores original stdin to read REPLY
 read REPLY
 #
 Ø<&4 # this re-connects stdin to file ${PASSWORD_FILE}
 done

Trapping interrupts
When running a shell script, if you press your interrupt key (like
CTRL-c), the shell quits right away. This can be a problem if you

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

use temporary file(s) in the script because the sudden exit might
leave the temporary files there. The trap command lets you tell
the shell what to do before it exits.
Example myscript.sh:
InitialiseVariable ()
{
SEC=Ø
FEC=1
TRUE=Ø
FALSE=1
}
ProcessExit ()
{
EXIT_CODE=$1
 rm –f ${TEMP_FILE}
exit ${EXIT_CODE}
}
HandleInterrupt ()
{
 echo "Program interrupted; quitting early "
 ProcessExit $FEC
}
main ()
{
 InitialiseVariable
#
do other processing
#
}
#
#invoke main
but before invoking main, set the trap
#
trap "HandleInterrupt" 1 2 15
#
main

Notes:
1 The first statement to be interpreted and executed is the trap

command, which states that, if signal 1, 2, or 15 is detected,
invoke function HandleInterrupt.

2 The function HandleInterrupt echoes a message and then
invokes the function ProcessExit, which in turn removes all
the temporary files.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

3 The meanings of signals are as follows:
1 = SIGHUP – received when session is disconnected
2 = SIGINT – received when a session is interrupted (ctrl-
c)
15 = SIGTERM – received when a kill -15 is received
18 = SIGSTP – received when interactive stop (ctrl-z) is used
9 = KILL – received when kill -9 is received.

4 The signal 9 cannot be caught. The signal kill -9 2345 cannot
be caught by the process whose id is 1345 and this is why,
when a process needs to be killed off, you should issue kill
-15 <pid> first and then, if the process still persists, issue kill
-9 <pid>. A good script will detect the signal 15 and take any
necessary action before exiting.

Arif Zaman
ETL Developer (UK) © Xephon 2003

It’s magic

A strangely named file exists in the /etc directory. The file is called
‘magic’, a name that does not give you any indicationof its
purpose. Is it really magic or just an imaginitive name for an
ordinary file?
Unfortunately, it is just a strange name for a data file that enables
the file command to do its work. The file command attempts to
give a user some indication of the contents of a named file, thus
avoiding the embarrassing situation of catting a binary file and
having the whole office enjoy the spectacle of someone attempting
to stop the cat command whilst sweating profusely. For example,
the command:
/usr/bin/file /usr/bin/file

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

gives the result:
/usr/bin/file: executable (RISC System/6ØØØ) or object module

However, the file command can get it wrong. Try running the
following command on one of your systems:
/usr/bin/file /.sh_history

and see what is returned. A usual reply I have noticed is
something along the lines of:
/.sh_history: Ultrix-11 Stand-Alone or boot executable.

But what if you want to help the file command along a little? For
example, by adding in an entry for Perl rather than having the
answer ‘shell script’ returned?
The /etc/magic file is an ASCII file that can be edited using your
favourite editor. There are instructions in the header as to the
layout of the file, which I will not repeat here. As an example, I
have added the following line to my system in the ‘#!’ section,
which describes shell scripts:
>2 string /usr/bin/perl - Perl

However, the file command does not pick up any changes
immediately. So, until you can issue a bosboot command and
a reboot, the only way to get your changes included is to use the
-m option with the name of the file you have altered. For example:
/usr/bin/file -m /etc/magic /usr/local/bin/perlfile.pl

Depending on what you entered into the /etc/magic file for Perl,
the answer will look something like:
/usr/local/bin/perlfile.pl: shell script - Perl

where the Perl is taken from the entry made in /etc/magic.
Take a look through the /etc/magic file and discover how the file
command works. The AIX Version 5 magic file does contain
more than the one in Version 4. My additions to it work on both
versions.
Phil Pollard
Unix and TSM Administrator (UK) © Xephon 2003

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Arithmetic evaluation

Arithmetic evaluation in the Korn shell is a lot more sophisticated
than in the Bourne shell, which relied exclusively on the expr
command with its more complex syntax. let and ((...)) are now the
preferred commands to use, but arithmetic manipulation in shell
scripts would not be complete without a section on expr, since
you may come across scripts written for the Bourne shell, or by
people who know no other way.

ARITHMETIC AND RELATIONAL OPERATORS
The following arithmetic operators are permissible for integer
arithmetic evaluation in the Korn shell:
• + for addition.

The assignment operator, +=, is permitted with let.
• - for subtraction.

The assignment operator, -=, is permitted with let.
• * for multiplication.

Has to be escaped for expr
• / for integer division.
• % for integer remainder (modulus).
The C language rules on precedence are applicable, but should
you have any doubts then expressions can be enclosed in
parentheses to ensure that evaluation is performed in the correct
order. As you will shortly see, depending on the command used,
some operators may have to be escaped to avoid misinterpretation
by the shell.
In addition to the arithmetic operators, there are the following
relational operators:

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• = or == for equality.
• != for inequality.
• > for greater than.
• < for less than.
• >= for greater than or equal to. Not available with expr>.
• <= for less than or equal to. Not available with expr>.
When these operators are used for comparing integers, they
produce the value 1 for true and 0 for false, which may be
displayed, depending on the command used. Do not confuse
these with command return values which relate to the successful
execution (or otherwise) of the command, not the result of the
comparison.

THE EXPR COMMAND
For completeness, we include string manipulation by expr in this
article, which, despite its complex syntax, on occasion has no
equal!

ARITHMETIC EVALUATION USING EXPR
The format for arithmetic evaluation is:
expr expression1 operator expression2

Parameter terms must be separated by blanks, and characters
special to the shell must be preceded by a backslash. Examples
are:
expr $x + $y
expr $x * $y
expr $x - $y % 3
expr \($x * 7 \) / \($y - 3 \)

The expr command returns the following exit values for arithmetic
operators:
• If the expression is neither null nor 0, expr 3 / 2 will display

the value 1, and return an exit value 0.

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• If the expression is null or 0, expr 2 - 2 will display the value
0, and return an exit value 1.

• If the expression is invalid, expr 2 * 2 will display a syntax
error, and return an exit value 2.

The most common usage of expr is to modify a shell variable. For
example:
count=$(expr $count + 1)

This adds 1 to the variable count. This type of statement is
commonly used within the for, while, and until loops, where a
variable is incremented and then tested to see if it meets a certain
condition, whereupon the loop terminates.
The expr command returns the following exit values for relational
operators:
• If the expression is true, expr 3 != 2 will display the value 1,

meaning true, and return an exit value 0.
• If the expression is false, expr 4 = 5 will display the value 0,

meaning false, and return an exit value 1.

COMPARING AND RETURNING STRINGS
In addition to being used for arithmetic evaluation, the expr
command can also be used to return different string expressions.
For example:
expr expression1 \| expression2

will return the string expression1 if it is neither null nor 0;
otherwise it returns expression2. Similarly:
expr expression1 \& expression2

will return the string expression1 if neither expression1 nor
expression2 is null or 0; otherwise it returns 0.
Examples are:
• expr 2 + 3 \| 4 / 5 returns the value 5.
• expr 2 / 3 \| 4 + 5 returns the value 9.

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• expr 2 / 3 \& 4 + 5 returns the value 0.
• expr 2 + 3 \& 4 / 5 returns the value 0.
• expr 2 + 3 \& 4 + 5 returns the value 5.
Very few shell scripts contain expressions such as those shown
above since most programmers use them so infrequently that
they either forget the syntax or cannot remember the values
returned.
The most frequently used string operation is the : operator, which
is used to compare two arguments. The first must be a string, and
the second a regular expression. For example:
expr string1 : "expression2"

will normally return the number of characters matched, providing
expression2 is a pattern. The regular expressions or patterns
can look very strange and can often be quite difficult to read, and
for this reason alone they are rarely used in scripts, usually as a
last resort when another command is not available or cannot be
remembered.
Let us consider an example whereby we want to extract four-digit
sequence numbers contained within filenames which have a
format filename.nnnn.ext, where nnnn is the sequence number,
but we want to exclude any files that start with a dot. If the file
name is contained within the variable $file, then the syntax would
look something like the following:
expr $file : "[^.].*\.\([Ø-9]*\)\..*"

The [^.] pattern means ‘do not match the character contained
within the square brackets’, which in this case is the dot, and
since this is the very first part of our pattern then it will exclude
files which start with a dot. In the pattern .*, the dot is not
contained in brackets and so becomes a wildcard, which will
match any character; .* will thus match zero or more occurrences
of any character. The pattern \. is an escaped dot because we
want expr to recognize the character . itself, rather than just any
character.

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

So far, [^.].*\. matches every character up to and including the
first dot before the extension containing the sequence number,
ie filename.. To extract the filename’s sequence number we use
the expression
\([0-9]*\), which matches zero or more occurrences of a digit; this
tells expr to remember all the characters ([0-9]*) it finds in the
escaped parentheses \(....\). Still with it?
Finally, we must exclude all characters after the digits, which we
do with the pattern \..* following the escaped parentheses; this
expressly matches a dot followed by any number of characters.
We need the \. to identify the exact point that expr should stop
remembering the characters to be extracted. If you had used just
.*, then the sequence number would not be extracted.
The goal in writing the regular expression is to identify all the
characters in the string and to surround the part of the regular
expression that recognizes the characters in which we are
interested with the symbols
\(\). You will often find that much experimentation is required to
extract the characters you want since expr often appears to use
its own obscure rules!
The above form of expr is rarely used in shell scripts because of
its complexity, and you can often (but not always) achieve the
same result by using commands such as awk, which will be
covered in a future article.
Another use of expr is to find the length of a shell variable:
length=$(expr $STR : ".*")

This sets the length to the value given by the : (colon) operator.
Since the second string does not contain the \(\) characters, the
pattern ".*" matches any string from beginning to end and
returns the length of $STR as the number of characters matched.
Note that ".*" must be in quotes to prevent the shell from treating
the * as a pattern-matching character. The quotes themselves do
not form part of the pattern.
If $STR is a null string, an error message is displayed since the

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

shell does not normally pass null strings to commands. This
problem can be fixed by enclosing $STR in double quotes:
length=$(expr "$STR" : ".*")

Now, if $STR is null, length is set to zero.
You must also be careful with expr when you want to test, for
example, whether a string has the value =. If you used the
following expression:
expr "$STR" = "="

then after the shell processes the command, expr sees the
expression:
= = =

and interprets this as three = operators in a row and displays a
syntax error message. This happens whenever the value of a
shell variable is the same as one of the expression operators, or
the string ($STR) has a null value and you want to test that it is
null.
When the shell variable has the same value as an operator, or
if you are ever in doubt as to the way in which the shell may
interpret the comparison, the problem can be avoided by using:
expr "x$STR" = "x="

Should the variable have a null value, for example,
expr "x$STR" = "x"

will allow the test for a null value to be performed. The above
comments do not apply to comparisons using the test command
and, because of this, and the more complicated syntax, expr is
rarely used for string comparisons of this nature.

USING TYPESET
The typeset command provides the fastest method for arithmetic
evaluation, although this will not usually be noticed unless your
script is doing lots of calculations. Once a variable has been

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

defined as an integer, standard arithmetic expressions can be
used. Floating point and decimal operations are not available
using typeset, and variables are defined as integers by using the
-i option, which by default uses base 10.
To set a variable as an integer, you use commands such as:
typeset -i intvar

or:
typeset -i intvar=2Ø

which both set intvar as an integer, and the second form of the
command initializes it to 20. Once a variable has been defined
as an integer you can use standard arithmetic operations:
intvar=intvar+5
intvar=intvar/1Ø
intvar=\(8Ø-intvar\)/2

You must be careful not to leave any spaces in these expressions
since the shell will then look for other commands, rather than
perform variable arithmetic. A single typeset command can also
be used to set and initialize any number of variables:
typeset -i int1=5 int2=23 int3 int4=Ø

The optional n can be specified with -i to indicate the base of an
integer. For example:
typeset -i2 bin=59
print $bin
2#111Ø11

or for an octal number:
typeset -i8 oct=928
print $oct
8#164Ø

You should be aware that if you have defined a variable to be an
integer, you cannot at some later stage give the variable a non-
integer value. For example:
typeset -i int
int=aaa

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

will give an error message similar to:
aaa: The specified number is not valid for this command

Similarly, you cannot set the integer equal to a variable that is not
itself an integer.
If a variable has been set to a base other than 10, and you want
to reset it to base 10, enter:
typeset -i1Ø var

not:
typeset -i var

USING LET AND ((...))
The built-in shell command let can also be used to perform
integer arithmetic. All calculations are performed as long integers,
and, because let evaluates each argument separately, any
expressions that contain spaces, tabs, or brackets to ensure that
the operations are performed in the correct order must be
quoted. Using let you do not have to predefine integers to be
used in the expression and you can have a mixture of predefined
integers and other variables. Also, you do not need to precede
variable names with a $. For example:
$ x=3
$ typeset -i y=5
$ let z=x*y+2 or let "z = x * y + 2" or let "z=(x*y)+2"
$ print $z
17

There is an alternative to let that is used to define integer
variables and assign values to them. The construction uses the
((...)) format and you can use spaces inside in much the same
way as you can for quoted let expressions. The above commands
could have been written:
$ x=3
$ typeset -i y=5
$ ((z = x * y + 2))
$ print $z
17

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

You can also combine expressions within the double parentheses:
$ ((z = y / x + x * y))
$ print $z
16

Note that let and ((...)) themselves do not display any output
since they contain assignment operators. If you want to use
arithmetic evaluation in a conditional statement within a script,
you must use a construction without an assignment operator:
if [[$((a / 3)) -eq 4]]
then . .

In much the same way that [[..]] evaluates string comparisons,
etc, ((..)) can be used to evaluate arithmetic relational operators.
Note that the following example is a slightly different version from
the one above, which does not use the $ in front of the
parentheses:
if (((a / 3) >= 4))
then . .

The usual rules of precedence between operators are applicable;
multiplication, division, and remainder operators have equal
precedence over addition and subtraction. If you are unsure of
the order in which the shell will interpret the operators, it is best
to enclose them in brackets since the commands in brackets are
executed first; brackets also make complex expressions easier
to read, even though they may not be essential to ensuring the
correct order of precedence.
You should also be aware that when multiplying and dividing by
numbers you must be particularly careful where you actually do
the dividing since divisions always exclude the remainder to
produce an integer value. For example, consider the difference
in the output between the following two commands:
$ print $((1Ø*3/4))
7

$ print $((1Ø/4*3))
6

The first command multiplies 10 by 3 first to produce 30, and then

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

divides by 4, to give 7 (excluding the remainder 2). The second
command divides 10 by 4 first to produce 2 (again excluding the
remainder 2) and then multiplies by 3 to give 6. In general, you
should multiply before dividing to give the more accurate results;
the same comments apply when using the modulus (%) operator
to produce remainders.

EXAMPLE OF THE USE OF LET
Consider the following simple example, which is used to calculate
(to three decimal places) the result of the division of two integers;
the script ignores rounding up of the third decimal place. Arithmetic
evaluation by the shell is in integer format and the only way you
can get output in floating point format is by using awk, which will
be discussed in a future article. In the meantime, let us soldier on.
To test this example, create a shell script, div2:
$ vi div2

#!/bin/ksh
test whether second number has been
entered and is non-zero

if [[-z $2]] || [[$2 -eq Ø]]
then
print "Second number cannot be zero"
exit 1
fi

d=Ø
let a=$1/$2
let b=$1%$2 # remainder
for i in 1 2 3
do
[[$b -eq Ø]] && break # remainder equals zero?
let "c=(b*1Ø) / $2)"
let "b=(b*1Ø) % $2)"
let "d=(d*1Ø) + c)"
done
print "Answer equals ${a}.$d"

The above script is not complete, since it does not allow for
negative numbers; I’m sure you can see other flaws also! Before

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

reading the next example, try to amend the script to allow for the
possibility of negative numbers so that the answer also contains
the correct sign.
To remove the flaw, you can amend div2 as follows:
#!/bin/ksh
first two commands remove leading - signs
x=$(expr "$1" : "-*\(.*\)")
y=$(expr "$2" : "-*\(.*\)")

test whether second number has been
entered and is non-zero
if [[-z $y]] || [[$y -eq Ø]]
then
print "Second number cannot be zero"
exit 1
fi

extract the negative signs, if any
sign1=$(expr "$1" : "\(-*\).*"| tr -s '-')
sign2=$(expr "$2" : "\(-*\).*"| tr -s '-')

[[$sign1 != $sign2]] && sign=-

d=Ø
let a=$x/$y
let b=$x%$y # remainder
for i in 1 2 3
do
[[$b -eq Ø]] && break # remainder equals zero?
let "c=(b*1Ø) / $y)"
let "b=(b*1Ø) % $y)"
let "d=(d*1Ø) + c)"
done
print "Answer equals ${sign}${a}.$d"

You will note that in the two statements extracting the negative
signs, the output from the expr commands has been piped into
tr -s '-'. This is done to allow for the possibility that multiple
negative signs have been entered (we are talking about seriously
sad people out there!), since the -s option to tr squeezes out
multiple occurrences of the specified character.

MODIFYING THE LVMAN SCRIPT
You will recall that our lvman script uses getopts, which had

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

certain limitations when it came to recognizing command line
arguments when we entered by mistake, for example, lvman
rootvg, or lvman -v rootvg myvg. To overcome these problems
we have modified the script to perform further checks on the
arguments before attempting processing.
#!/bin/ksh
Script name: lvman
Usage: lvman {[-v VG1name -v VG2name..| -v all]|
[-p PV1name -p PV2name..| -p all]}
###
Version History
Version Date Remarks
1.Ø Original Version
1.1 Function to check VG and PV names
2.Ø Modified case statements in Main to use if command
3.Ø Added while statement to loop through args
Modified to allow multiple VGs and PVs
3.1 Added f_chk_args function to further check
arguments
###
#---
Function: f_chk_args
Checks number of command line args and options
#---
f_chk_args()
{
 if [[$(($#%2)) -eq 1]]
 then
 f_dsp_usage # odd number of args
 exit 3
 fi
 ((numpairs=$#/2))
 count=Ø
 for i in $@
 do
 if [[$(echo "$i" | grep -c "-") -eq 1]]
 then
 let count=count+1
 fi
 done
 if [[$numpairs -ne $count]]
 then
 f_dsp_usage # not enough - args
 exit 3
 fi
}
#---

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Function: f_dsp_usage
Displays usage messages
#---
f_dsp_usage()
{
 print "Usage: $(basename $Ø) {[-v VG1name -v VG2name..| -v all] |"
 print " [-p PV1name -p PV2name..| -p all]}"
 print "Where:"
 print "\t-v VG1name -v VG2name.. specifies volume group list"
 print "\t-v all specifies all volume groups"
 print "\t-p PV1name -p PV2name.. specifies physical volume list"
 print "\t-p all specifies all physical volumes"
}
#---
Function: f_chk_valid
Arguments: $1 - volume group or physical volume
Checks the volume group or physical volume name is valid
#---
f_chk_valid()
{
 DEV=$1
 [[$(echo "$DEV" | grep -c "-") -ne Ø]] && return 2
 lsattr -El $DEV >/dev/null 2>&1
 #
 # lsattr returns Ø for valid device,
 # or 255 for non valid device
 #
 case $? in
 Ø)
 return Ø ;;
 *)
 return 1 ;;
 esac
}
#---
Function: f_get_vg_space
Arguments: $1 - volume group name
Gets the total and free space of the volume group
#---
f_get_vg_space()
{
 VG=$1
 #
 # Get total space and free space
 #
 TOTAL=$(lsvg $VG | grep "TOTAL PPs" | cut -f2 -d "(" |
 tr ' ' '\t' | cut -f1)
 FREE=$(lsvg $VG | grep "FREE PPs" | cut -f2 -d "(" |
 tr ' ' '\t' | cut -f1)

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 eval ${VG}_LVNUM=$(lsvg -l $VG | tail +3 | wc -l | tr -d " ")
 eval NUMLVS='$'${VG}_LVNUM
 #
 # Print output
 #
 if [[$FIRST -ne 1]]
 then
 printf "\n%-2Øs %-15s %-15s %-15s\n" \
 "Volume Group" "Total Size" "Free Space" "Number LVs"
 fi
 printf "%-2Øs %-15s %-15s %-15s\n" \
 $VG "$TOTAL MB" "$FREE MB" $NUMLVS
}
#---
Function: f_get_pv_space
Arguments: $1 - physical volume name
Gets the total and free space on a physical volume
#---
f_get_pv_space()
{
 PV=$1
 #
 # Get total space and free space
 #
 TOTAL=$(lspv $PV | grep "TOTAL PPs" | cut -f2 -d "(" |
 tr ' ' '\t' | cut -f1)
 FREE=$(lspv $PV | grep "FREE PPs" | cut -f2 -d "(" |
 tr ' ' '\t' | cut -f1)
 eval ${PV}_LVNUM=$(lspv -l $PV | tail +3 | wc -l | tr -d " ")
 eval NUMLVS='$'${PV}_LVNUM
 #
 # Print output
 #
 if [[$FIRST -ne 1]]
 then
 printf "\n%-2Øs %-15s %-15s %-15s\n" \
 "Physical Volume" "Total Size" "Free Space" "Number LVs"
 fi
 printf "%-2Øs %-15s %-15s %-15s\n" \
 $PV "$TOTAL MB" "$FREE MB" $NUMLVS
}
##
Main section
##
f_chk_args $@ # check numbers of args
while getopts :v:p: opt
do
 case $opt in
 v)

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 if [[$OPTARG = all]]
 then
 VGS=$(lsvg -o | sort) # all volume groups
 else
 VGS=$OPTARG
 fi
 FIRST=Ø
 for VG in $VGS
 do
 f_chk_valid $VG
 case $? in
 Ø)
 f_get_vg_space $VG
 FIRST=1 ;;
 1)
 print $VG is not a valid volume group
 exit 1 ;;
 2)
 f_dsp_usage ;;
 esac
 done ;;
 p)
 if [[$OPTARG = all]]
 then
 pvs=$(lsdev -Cc disk -r name) # all physical volumes
 for pv in $pvs
 do
 if [[$(lsdev -Cl $pv | grep -c Available) -eq 1]]
 then
 PVS=$PVS" $pv" # only want Available disks
 fi
 done
 else
 PVS=$OPTARG
 fi

 FIRST=Ø
 for PV in $PVS
 do
 f_chk_valid $PV
 case $? in
 Ø)
 f_get_pv_space $PV
 FIRST=1 ;;
 1)
 print $PV is not a valid physical volume
 exit 2
 ;;
 2)

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 f_dsp_usage ;;
 esac
 done ;;
 *)
 f_dsp_usage
 exit 3 ;;
 esac
done

You will note that we have added a further function, f_chk_args,
to take advantage of our new-found skills in manipulating
arithmetic variables, and which we call at the start of the main
section.
We know that we should have an equal number of command line
arguments and so the function first checks whether we have an
odd number, using the test [[$(($#%2)) -eq 1]]. This divides the
number of arguments by 2, extracts the remainder, and compares
it with 1; if they are equal then there is an odd number of
arguments and the usage message is displayed.
If we have an equal number of arguments, the next part of the
function checks how many pair combinations we have, using
((numpairs=$#/2)), and then runs the for loop with a count
variable to determine the number of minus signs we have in our
argument list.
The remainder of the function compares the number of minus
signs with the number of pair combinations since we assume that
there should be one -v or -p option for each argument pair.
This function will allow error-checking for perhaps most of the
possible argument combinations that may be entered in error,
but it is still by no means perfect. In fact this has now become the
classic example of how not to develop a script. We started by
using getopts, a command whose limitations did not become
obvious until after extensive use and testing. We continued to
add error checking bits to the script until we have now got to the
stage where we have a rather clumsy script which still does not
do all the checks we would like.
A more ideal solution would be to scrap getopts all together and
instead use a case statement, combined with a number of shift

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

If you have ever experienced any difficulties with AIX, or
made an interesting discovery, you could receive a cash
payment, a free subscription to any of our Updates, or a
credit against any of Xephon’s wide range of products and
services, simply by telling us all about it.
More information about contributing an article to a Xephon
Update, and an explanation of the terms and conditions
under which we publish articles, can be found at http://
www.xephon.com/nfc. Alternatively, please write to the
editor, Trevor Eddolls, at any of the addresses shown on
page 2, or e-mail him at trevore@xephon.com

commands, to perform more comprehensive checks on each
and every argument instead of using the kludge we currently
have. Perhaps you would care to rewrite the main section to
perform its error-checking in this way.
Tonto Kowalski
Guru (UAE) © Xephon 2003

AIX news

Veritas has announced availability of Veritas
Database Edition for DB2 for the first time on
AIX, integrating core volume management
and file system tools specifically optimized,
says the vendor, to make DB2 databases
perform up to two times faster, more highly
available, and easier to manage.

The software provides raw partition
performance and data integrity for databases
stored in file systems, which means
administrators don’t have to manage raw
partition databases.

Using the product’s cached Quick I/O
feature, DB2 performance is said to be up to
two times faster than the same database
stored on a standard Unix file system, and is
comparable to or faster than raw partition
database performance.

Downtime is reduced by enabling
administrators to reconfigure storage and
data while the database is online, without
disrupting user access. Using the FlashSnap
Option, administrators can create point-in-
time copies of the data. The HA version
integrates Cluster Server to help further
reduce downtime and increase database
availability.

For further information contact:
Veritas, 350 Ellis Street, Mountain View, CA
94043, USA.
Tel: (650) 527 8000.
URL: http://www.veritas.com/db2guided/
db2_2.html.

* * *

Reconda International has launched its QN-
StatWatch, designed to collect statistics at
the channel, queue, and message level. The
browser-based WebSphere MQ and WMQI

support application provides MQ
administrators, system architects, and
managers with the data needed to facilitate
accurate charge-back, SLA compliance, and
resource capacity planning.

It supports every platform on which
WebSphere MQ Server or Client runs, and
runs on AIX, Solaris, and Windows NT/
2000.

For further information contact:
Reconda, 15 East Putnam Avenue, Suite
306, Greenwich, CT 06830, USA.
Tel: (203) 299 4000.
URL: http://www.reconda.com/
productsFrame_QN-StatWatch.html.

* * *

IBM has announced its 7205 Model 550
160GB external digital linear tape drive, a
stand-alone, SCSI streaming device that
attaches externally to pSeries and RS/6000
servers.

The drive writes data to tape using a laser-
guided recording technique, providing a
media capacity of up to 160GB (320GB with
2:1 compression) data storage per cartridge.
It has a sustained data transfer rate of up to
32MB per second with compression, which
provides for tape storage back-up at the rate
of 115GB per hour.

It’s positioned to provide a migration path
from the 7205 Model 440 DLT8000 tape
drives, and the increased storage capacity, up
to 160GB (320GB with compression), is four
times the capacity of the 7205 Model 440.

For further information contact your local
IBM representative.
URL: http://www.storage.ibm.com/media.

x xephon

	Monitoring filesystems
	Sending e-mail attachments from AIX
	Subsystems - not just for IBM
	Good practice in shell programming
	It's magic
	Arithmetic evaluation
	AIX news

