

© Xephon plc 2003

May 2003

91

In this issue

AIX
u

p
d

ate

3 Keep the wraps on those TCP ports
10 AIX5L System V Release 4 print

subsystem
26 Illustrated usage of various shell

commands and shell features
39 Terminal capabilities
51 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Keep the wraps on those TCP ports

TCP Wrappers wrap themselves around all incoming TCP
connections to your system – rather than TCP daemons, which
are controlled via inetd. Notice I said TCP – this utility does not
help you if you want to protect your Web pages that run under
HTTP.
When a TCP connection is made on your system, TCP Wrappers
(TCPD) is run instead of the required daemon. For instance if a
user connects with ftp, the daemon in.ftpd is not invoked; rather,
TCPD is instead. TCPD will then look at two files – /etc/
hosts.allow and /etc/hosts.deny. These two files, as their names
suggest, either allow or deny connections based on rules or
patterns. Once TCPD has read these files and found a match, the
connection will either be granted or denied. If the connection is
allowed, TCPD writes to syslog (the system messages file), then
hands over control to the real daemon that was called – in our
example, in.ftpd. TCPD’s work is now done, and it will sleep until
the next connect is invoked through xinted. If the connection is
denied, eg it fails due to the access rules or a pattern match in

Figure 1: Overview of TCP Wrappers

Client
connects
using ftp

inetd
inted.conf

TCPD

hosts.allow hosts.deny

Accepted.
Run
requested
daemon, ie
in.ftpd.

 Log to syslog

Rejecte

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the hosts.allow or host.deny file, a message is written to syslog,
logging this failure attempt. The connection is broken and TCPD
goes back to sleep awaiting the next connection. See Figure 1
for an overview of this process. Some of the most popular TCP
daemons are telnet, ftp, shell, rdate, tftp, and talk. The rule here
is, if it is TCP and is invoked from inetd, then you can control
access to that service from outside connections.

GETTING INETD TO RECOGNIZE TCP WRAPPERS
You have got to tell the daemon inetd that TCPD is there if you
wish to use its services. Generally speaking, you need to change
every entry line that has TCP as its protocol so that tcpd is used
instead, or its own server program. For ftp, for instance, you may
have an entry like this:
ftp stream tcp6 nowait root /usr/sbin/ftpd ftpd –u Ø22

Change it to:
ftp stream tcp6 nowait root /usr/local/bin//sbin/tcpd ftpd –u Ø22

I have seen problems with some AIX set-ups when trying to do
DNS resolving. To fix this, disable the ipv6 services, and use just
plain IP, thus:
ftp stream tcp nowait root /usr/local/bin//sbin/tcpd ftpd –u Ø22

After making changes, use the service command to restart inetd:
refresh –s inetd

THOSE ACCESS FILES
When a connection is initially established TCP Wrappers will first
look in /etc/hosts.allow, then it will check /etc/hosts.deny, and if
there is a pattern match access will be denied or allowed.
Confused? Don’t be; the general rule of thumb here is to allow
access unless otherwise specified. In other words, keep it simple
– if the hosts.allow and hosts.deny file do not exist, TCP
Wrappers will deny access to everybody, except connections
from the localhost (the actual system where TCP Wrappers is

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

running). All connections are logged via syslog to /var/adm/
messages.
The general format of the rules or patterns for both files:
daemon_list : client_list : [Shell Commands][Banners]

where Shell Commands are optional, as are Banners. We shall
look at banners later in the article.
The daemon list is the names of the daemons you wish to allow
or deny. The client list is host names, IP addresses, or domain
names you wish to allow or deny. To specify multiple daemons
or clients, use a comma to separate the entries.
You can also use wildcards to specify daemons or clients. For
instance:
• ALL – will match every daemon or every client list.
• LOCAL – will match the local host only, ie any host that does

not have a ‘.’ in the name.
• . (that’s a dot) – will match anything. It’s bit like the * in the

bash shell. For example, .boo.com will match any domain
that ends in boo.com.

When making changes to the hosts.deny or hosts.allow file, the
changes are dynamic, by which I mean you do not have to restart
any daemon or process.

TYPES OF ACCESS
As usual, most things become clearer with examples, so let’s do
that now.
To allow access to all daemons that belong to the domain
mycompany.com and to deny access to everybody else:
• /etc/hosts.allow:

ALL:.mycompany.com

• /etc/hosts.deny:

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ALL:ALL

Notice in the above example, with .mycompany.com, the dot is
a wildcard and means ‘match all domains that have
mycompany.com as the end part of their domain name’. In the
hosts.deny file all (other) daemons and hosts are denied.
When initially learning the rules and patterns, it is best to keep
the hosts.deny file to ALL:ALL and allow only hosts/daemons
specified in the hosts.allow file to be allowed access. Remember:
keep it simple – it works!
To allow (only) telnet and ftp from everybody:
• /etc/hosts.allow:

in.telnetd ,in.ftpd:ALL

• /etc/hosts.deny:
ALL:ALL

Note the use of the comma to separate the two daemons in the
client list.
To allow access to telnet only from hosts that have the network
address part 192.168.1.:
• /etc/hosts.allow:

in.telentd: 192.168.1.

• /etc/hosts.deny:
ALL:ALL

Notice the use of the dot at the end of 192.168.1. This will match
all IP (network) addresses that start with that IP number
(192.168.1.).
To allow access to all hosts that belong to the domain
mycompany.com but not those that belong to the bighacker.com
domain:
• /etc/hosts.allow:

ALL: .mycompany.com EXCEPT bighacker.com

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• /etc/hosts.deny:
ALL:ALL

In the above example using the EXCEPT does what it says, it
allows the client lists on the left of the word EXCEPT, but
disallows access to the right of the word EXCEPT.
Similarly, when using TCP Wrappers internally, please do not
use EXCEPT with IP numbers on an exposed side of your
network because you are open to potential spoofing. You can use
EXCEPT to allow all of the 192.168.2 network in, but not the hosts
with, say, the following IP addresses: 192.168.2.12, 192.168.2.12,
and 192.168.2.22:
• /etc/hosts.allow:

ALL: 192.168.2. EXCEPT 192.168.2.12,192.168.2.12,192.168.2.22

• /etc/hosts.deny:
ALL:ALL

When a host tries to connect to your AIX machine through a
denied daemon, all the connecting host will get on its screen is
a, well, a blank screen. It is considered good form to display a
refusal message, that way the connecting user will immediately
know that they are not allowed to access this particular host.
These types of message are called banner messages. You have
a banner message for each daemon that you wish to protect or
guard. In most cases you will want to display the same message,
so it makes sense to copy the same message across to the
different banner daemon files that you are creating. Let’s do that
right now. We will create a denial message for telnet and ftp
connections, which are denied access. From the /etc directory
create a new directory structure to hold the banner file(s):
$ pwd
/etc
$ mkdir banners
$ cd banners
$ mkdir deny
$ cd deny

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

First, create the banner file for the telnet daemon; insert the
following text into the file called in.telnetd, in the /etc/banners/
deny directory:
You are not authorized to enter this
machine! Your attempt has been logged.
Access denied to %c

Note the %c at the end of the text. This will display the calling
host’s IP address.
Next, we handle the ftp connection; no need to re-type the text,
simply copy the file. Staying in the same directory:
$ cp in.telnetd in.ftpd

The next task is to tell TCP Wrappers about the banners. Edit the
/etc/hosts.deny and add the following to the end of the line entry:
:banners /etc/banners/deny/

So the hosts.deny file should look like this:
ALL:ALL :banners /etc/banners/deny/

Now when a host tries to connect via telnet or ftp and is not
allowed access based on your rules in hosts.deny or hosts.allow,

Figure 2: Host refusing an access attempt from an ftp client

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

it will get a denial message before the connection is closed.
Figure 2 shows a Windows 98 client trying to ftp to a host with
TCP Wrappers active, and being denied access. The connecting
host has an IP address of 192.168.12. My hosts.allow file
contains the following:
ALL:192.168.1. EXCEPT 192.168.1.12

Note that the above example accepts all IP addresses that start
with 192.168.1, except a host that has an IP address of
192.168.1.12.
Using the rules in the last example the following message is
printed to the /var/log/messages file courtesy of syslog. You
know the IP address of the host trying to connect; though this will
probably be the NAT address or the gateway address the user
connected to via the Web. If you’re running TCP Wrappers on an
internal network, then you’ve got your culprit.
Jan Ø3 2Ø:43:54 bumper inetd[1Ø57]: refused connect from 192.168.1.12

Similarly, the following messages are printed to the /var/log/
secure file from the previous example, informing you that access
was denied and what service the calling host tried to connect
with:
Jan Ø3 2Ø:43:53 bumper inetd[658]: START: ftp pid=1Ø57 from=192.168.1.12
Jan Ø3 2Ø:43:54 bumper inetd[1Ø57]: FAIL: ftp libwrap from=192.168.1.12
Jan Ø3 2Ø:43:54 bumper inetd[658]: EXIT: ftp pid=1Ø57 duration=1(sec)

LISTEN IN PLEASE
After putting your rules together, and when you are ready for
testing, it is always a good idea to start off allowing everyone
access, including all daemons. Then gradually start cutting down
on the hosts you want in. Once that is accomplished, start on the
daemons. Believe me, you will save yourself a steep learning
curve. Hopefully, the basic examples I have demonstrated in this
article are enough to get you going, and some will probably do the
job for you.

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSION
The TCP Wrappers utility is written and maintained by W
Venema. This utility has made a huge impact in the general
Linux/Unix community on the internal network security front. It
allows you quickly and easily to close the doors of your computer
to potential trouble. Be sure to check out the man pages of TCPD
and hosts_options for a full description of this utility. As I
mentioned at the beginning of the article, Mr TCPD is your
doorman, standing guard over your TCP ports.
David Tansley
Global Production Support (IBM-p series) (UK) © Xephon 2003

AIX5L System V Release 4 print subsystem

Among many areas affected by the introduction of AIX5L is the
introduction of System V print tools. Packaged as a part of
System V affinity environment, these tools are destined to
become a default print solution for AIX. Currently both AIX and
System V Release 4 print subsystems are available, with AIX
subsystem being a default.

SYSTEM V PRINT SERVICE OVERVIEW
The System V print subsystem was ported from SCO’s UnixWare
7 to AIX 5L.
The print subsystem, as such, supports local printing (parallel
and serial), remote printing using BSD’s lpd protocol (RFC1179),
and network printing using Hewlett-Packard’s (HP) JetDirect.
The code was internationalized to conform to and comply with
AIX international standards and requirements.
The System V print service is a collection of utilities that assists
you, as system administrator (or printer administrator), to

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

configure, monitor, and control the printers on your system.
The print service:
• Receives files that users want to print.
• Filters the files (if needed), so they can print correctly.
• Schedules the work of one or more printers.
• Starts programs that interface with the printers.
• Keeps track of the status of jobs.
• Alerts you to printer problems.
• Keeps track of mounting forms and filters.
• Issues error messages when problems arise.
When a user sends a file to a printer, the print service assigns a
unique name, the request ID, to the request (print job).The
request ID consists of the name of the printer on which the file is
to be printed and a unique number identifying the file. Use this
request ID to find out the status of the print job or to cancel the
print job. The print service keeps track of all the print requests in
an associated request log. The print job is spooled, or queued up,
with other print jobs to be sent to a printer. Each print job is
processed and waits its turn in the queue to be printed. This
queue of pending print jobs is called a print queue.
Each printer has its own queue; you can hold jobs in the queue,
move jobs up in a queue, or transfer jobs to another queue. Each
print request is sent to a spooling daemon, lpsched, which keeps
track of all the jobs. The daemon is created when you start the
print service. The spooling daemon is also responsible for
keeping track of the status of the printers and slow filters. When
a printer finishes printing a job, the daemon starts printing
another job if one is queued.
You can customize the print service by adjusting or replacing
some of the items, including:
• Printer configuration definitions stored on disk.

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Interface scripts and terminfo database descriptions
containing capabilities of printer devices.

• Slow and fast filter definitions enable conversion of data
spooled for printing between different print formats.

PACKAGING AND INSTALLATION
When the tools were first introduced in AIX Version 5.1, they were
packaged as members of following filesets:
• bos.msg.en_US.svprint – System V Print Subsystem
• bos.svprint.fonts – System V Print Fonts
• bos.svprint.hpnp – System V Hewlett-Packard
• bos.svprint.ps – System V Print Postscript
• bos.svprint.rte – System V Print Subsystem
• bos.terminfo.svprint.data – System V Printer Terminal.
In AIX Version 5.2L SMIT, integration of System V print services
into SMIT has been introduced and the list of filesets has
become:
• bos.msg.en_US.svprint – System V Print Subsystem
• bos.svprint.dir_enabled – System V Directory-enabled
• bos.svprint.fonts – System V Print Fonts
• bos.svprint.hpnp – System V Hewlett-Packard
• bos.svprint.ps – System V Print Postscript
• bos.svprint.rte – System V Print Subsystem
• bos.svprint.trans – System V Print Translation
• bos.terminfo.svprint.data – System V Printer Terminal.
The AIX and System V print subsystems are both packaged with
the base operating system, but which filesets are installed during

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the initial base installation depends on the hardware configuration
of your system. The option chosen for the Installation Configuration
(default/minimal) under the Advanced Options menu during the
base system installation process does not have any impact on
the selection and installation of the print subsystem filesets.
The filesets given below provide the core function of the AIX print
subsystem:
• bos.rte.printers – front-end printer support
• printers.rte – printer back-end
• printers.msg. xx_XX.rte – printer back-end messages for the

system-specific locale indicated by xx_XX in the fileset
name.

The front-end printer support, bos.rte.printers, is part of the
bos.rte file package, and therefore is always installed on the
system. This fileset provides front-end print commands, such as
qprt, lpr, enq, mkque, and rmque, which allow a user or the
system administrator to interact with the qdaemon’s spooler
queues. For compatibility and usability reasons, the traditional
AIX print subsystem maps several System V and BSD print
commands to the AIX-specific print commands.
For example, the lp command used to be nothing more than a
program that translated the System V lp flags to their counterparts
of the enq AIX command, and after all the command line
arguments were processed, the translated list, offlags, was
finally used to call the enq command. As far as the front-end is
concerned, the System V commands affected are cancel, lp,
and lpstat. For BSD, the relevant front-end commands are lpq,
lpr, and lprm.
In AIX 5L, the System V and BSD front-end print commands are
still in the /usr/bin directory, but, by default, they are now linked
to the traditional AIX print command wrappers in the /usr/aix/bin
directory:
ls -l /usr/bin | grep '/usr/aix'

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

lrwxrwxrwx 1 root system 19 Feb 15 13:22 cancel->/usr/aix/bin/cancel
lrwxrwxrwx 1 root system 2Ø Feb 15 13:22 disable->/usr/aix/bin/disable
lrwxrwxrwx 1 root system 19 Feb 15 13:22 enable->/usr/aix/bin/enable
lrwxrwxrwx 1 root system 15 Feb 15 13:22 lp->/usr/aix/bin/lp
lrwxrwxrwx 1 root system 16 Feb 15 13:22 lpq->/usr/aix/bin/lpq
lrwxrwxrwx 1 root system 16 Feb 15 13:22 lpr->/usr/aix/bin/lpr
lrwxrwxrwx 1 root system 17 Feb 15 13:22 lprm->/usr/aix/bin/lprm
lrwxrwxrwx 1 root system 19 Feb 15 13:22 lpstat->/usr/aix/bin/lpstat

The AIX printer back-end is a collection of programs called by the
spooler’s qdaemon command to manage a print job that is
queued for printing. The printer back-end performs the following
functions:
• Receives a list of one or more files to be printed from the

qdaemon command.
• Uses printer and formatting attribute values from the

database; overridden by flags entered on the command line.
• Initializes the printer before printing a file.
• Runs filters as necessary to convert the print data stream to

a format supported by the printer.
• Provides filters for simple formatting of ASCII documents.
• Provides support for printing national language characters.
• Passes the filtered print data stream to the printer device

driver.
• Generates header and trailer pages.
• Generates multiple copies.
• Reports paper out, intervention required, and printer error

conditions.
• Reports problems detected by the filters.
• Cleans up after a print job is cancelled.
• Provides a print environment that a system administrator

can customize to address specific printing needs.

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

As mentioned before, the traditional AIX print subsystem maps
several System V and BSD print commands to the AIX-specific
print commands. As far as the back-end print support is concerned,
the only two System V commands affected are disable and
enable. In AIX 5L, these specific System V back-end print
commands are still in the /usr/bin directory, but by default they
are now linked to the traditional AIX print command wrappers in
the /usr/aix/bin directory:
ls -l /usr/bin/enable
lrwxrwxrwx 1 root system 19 Feb 15 13:22 /usr/bin/enable ->/usr/aix/
bin/enable
ls -l /usr/bin/disable
lrwxrwxrwx 1 root system 2Ø Feb 15 13:22 /usr/bin/disable ->/usr/aix/
bin/disable

In addition to the AIX print command wrappers for System V and
BSD print commands in the /usr/aix/bin directory, a new lock file,
_AIX_print_subsystem, is installed under the /usr/aix directory.
The existence of the lock file indicates that the AIX print subsystem
is active. For reference, a full listing of the /usr/aix directory is
provided in the following:
#: ls -lR /usr/aix
total 8

-r—r—r— 1 root system Ø Feb 15 13:22
_AIX_print_subsystem
drwxr-xr-x 2 bin bin 512 Oct 21 11:34 bin
/usr/aix/bin:
total 576
-r-xr-xr-x 1 bin bin 33648 Apr Ø8 2ØØ1 cancel
-r-xr-x— 1 root printq 33488 Apr Ø8 2ØØ1 disable
-r-xr-x— 1 root printq 33376 Apr Ø8 2ØØ1 enable
-r-xr-xr-x 1 bin bin 34228 Apr Ø8 2ØØ1 lp
-r-xr-xr-x 1 bin bin 33916 Apr Ø8 2ØØ1 lpq
-r-xr-xr-x 1 bin bin 35236 Apr Ø8 2ØØ1 lpr
-r-xr-xr-x 1 bin bin 34312 Apr Ø8 2ØØ1 lprm
-r-xr-xr-x 1 bin bin 35424 Feb 1Ø 2ØØ2 lpstat

All System V and BSD commands that are mapped by the
executables in the /usr/aix/bin directory to the AIX print subsystem-
specific commands have their native System V or BSD counterpart
in the /usr/sysv/bin directory. During a switch from the AIX to the
System V print subsystem, the respective duplicate commands

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

will be handled by removing the inactive print subsystem’s
command symbolic links and adding new symbolic links for the
active commands. The following directory listing reflects this
configuration on a system where the initially active AIX print
subsystem was deactivated and switched to the System V print
subsystem by the use of the newly-introduced switch.prt
command:
ls -Rl /usr/sysv
total 8
drwxr-xr-x 2 bin bin 512 Dec Ø2 15:Ø8 bin
/usr/sysv/bin:
total 25Ø4
—x—x—x 1 lp lp 115186 Jul 28 2ØØ2 cancel
—s—x— 1 root lp 115338 Jul 28 2ØØ2 disable
—s—x— 1 root lp 115338 Jul 28 2ØØ2 enable
—x—x—x 1 lp lp 14165Ø Jul 28 2ØØ2 lp
-r-sr-xr-x 1 lp lp 172714 Jul 28 2ØØ2 lpq
-r-xr-xr-x 1 bin bin 13Ø374 Jul 28 2ØØ2 lpr
-r-xr-xr-x 1 bin bin 124538 Jul 28 2ØØ2 lprm
—x—x—x 1 lp lp 197898 Jul 28 2ØØ2 lpstat

Once the System V print subsystem is active, the new lock file,
_SYS5_print_subsystem, will be present in the /usr/sysv directory
and the AIX print subsystem lock file /usr/aix/
_AIX_print_subsystem will no longer exist. You will find the
recursive listing for the /usr/sysv directory in the following
example (note the differences in user and group ownership in
comparison with the executables in the /usr/aix/bin directory):
root@rsc2Ø4:/home/root: ls -Rl /usr/sysv
total 8
-r—r—r— 1 root system Ø Feb 15 13:56
_SYS5_print_subsystem
drwxr-xr-x 2 bin bin 512 Dec Ø2 15:Ø8 bin
/usr/sysv/bin:
total 25Ø4
—x—x—x 1 lp lp 115186 Jul 28 2ØØ2 cancel
-r-xr-xr-x 1 bin bin 144ØØ Feb Ø4 2ØØ2 df
—s—x— 1 root lp 115338 Jul 28 2ØØ2 disable
—s—x— 1 root lp 115338 Jul 28 2ØØ2 enable
—x—x—x 1 lp lp 14165Ø Jul 28 2ØØ2 lp
-r-sr-xr-x 1 lp lp 172714 Jul 28 2ØØ2 lpq
-r-xr-xr-x 1 bin bin 13Ø374 Jul 28 2ØØ2 lpr
-r-xr-xr-x 1 bin bin 124538 Jul 28 2ØØ2 lprm
—x—x—x 1 lp lp 197898 Jul 28 2ØØ2 lpstat

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

AIX 5L introduces a new user named lp and a related group
named the same.
The user lp is added to the /etc/passwd file for ownership of a
majority of the files, which belong to the bos.svprint package.
The entry in the /etc/passwd file is similar to the following
example:
lp:*:11:11::/var/spool/lp:/bin/false

The group lp is added to the /etc/group file for group ownership
of a majority of the files, which belong to the bos.svprint package.
The entry in the /etc/group file is similar to the following example:
lp:!:11:root,lp,printq

Furthermore, the lp user is added to the formerly existing printq
group. The entry in the /etc/group file is similar to the following
example:
printq:!:9:lp

The lp user and a user who belongs to the lp group can administer
the System V print subsystem, while root user and a user who
belongs to the printq group (the newly added lp user is also a
member of the printq group) can administer the AIX print
subsystem. The root user can administer both print subsystems,
since the root user belongs to both printq and lp groups.

SYSTEM V PRINT SUBSYSTEM MANAGEMENT
In general, the recommended way to manage the System V
subsystem is by using the WSM (Web-based System Manager).
This section will describe the available command line utilities,
which can be divided into two groups:
• The print service commands available to all users.
• The print service commands available only to the system or

print administrator.
The following summarizes the print management commands
available to all users:

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• cancel – allows users to cancel print requests previously
sent with the lp command. This command permits
cancellation of requests based on their request-ID or based
on the loginID of their owner.

• lp – arranges for the named files and associated information
(collectively called a request) to be printed. If file names are
not specified on the command line, the standard input is
assumed. Alternatively, the lp command is used to change
the options for a request submitted previously. The print
request identified by the request ID is changed according to
the print options specified with this command.

• lpstat – displays information about the current status of the
print service. If no options are given, lpstat displays the
status of all print requests made by the user.

The administrator can give users the ability to disable and enable
a printer so that, when a printer is malfunctioning, the user can
turn off the printer without having to call the administrator.
(However, in your printing environment, it might not be reasonable
to allow regular users to disable a printer.)
To use the administrative commands, you must have root user
authority or be a member of either the printq or the lp group. All
of the administrative print service commands Table are located
in the /usr/sbin directory with two exceptions – the lpsched
program resides in the /usr/lib/lp directory, and the enable and
disable commands are found in the/usr/bin directory.
The following summarizes the administrative print service
commands:
• accept, reject – accept allows the queueing of print requests

for the named destinations. A destination can be either a
printer or a class of printers. Reject prevents queueing of
print requests for the named destinations.

• enable, disable – the enable command activates the
named printers, enabling them to print requests submitted
by the lp command. If the printer is remote, the command will

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

only enable the transfer of requests to the remote system.
The disable command deactivates the named printers,
disabling them from printing requests submitted by lp.

• lpadmin – configures the lp print service by defining
printers and devices. It is used to add and change printers,
to remove printers from service, to set or change the system
default destination, to define alerts for printer faults, to mount
print wheels, and to define printers for remote printing
services.

• lpfilter – used to add, change, delete, and list a filterused
with the lp print service. These filters are used to convert the
content type of a file to a content type acceptable to a printer.

• lpforms – used to administer the use of preprinted forms,
such as company letterhead paper, with the System V print
service.

• lpmove – moves requests that were queued by lp between
destinations (printers or classes of printers).

• lpsched – allows you to start the System V print service.

• lpshut – shuts down the print service. All printers that are
printing at the time lpshut is invoked will stop printing.

• lpsystem – used to define parameters for the LP print
service, with respect to communication (using a high-speed
network like TCP/IP) with remote systems.

• lpusers – used to set limits to the queue priority level that can
be assigned to jobs submitted by users of the System V print
service.

The administrative print service commands listed above are
supplemented by three default printer filters used by interface
programs, lp.cat, lp.set, and lp.tell, which are located in the /
usr/lib/lp/bin directory. The lp.cat program reads the file to be
printed on its standard input and writes it to the device to be

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

printed on. Interface programs may call lp.set to set the character
pitch, line pitch, page width, page length, and character set on
the printer. Also, interface programs can use lp.tell to forward
descriptions of printer faults to the print service. lp.tell sends
everything that it reads on its standard input to the print service.
The print service forwards the message as an alert to the print
administrator
Finally, the four BSD compatibility commands (lpc, lpr, lpq, and
lprm) are available in the /usr/bin directory for users and
administrators.

USER INTERFACE FOR SYSTEM V PRINT SERVICES
In the current releases of AIX 5L, the Web-based System
Manager (WSM) provides the graphical user interface that will be
used for the most common functions of the System V print
subsystem. For more advanced functions, or to use less common
features, users and administrators have to rely on the command
line interfaces.
The System V print subsystem management tasks to be
performed by the Web-based System Manager application
include:
• Adding new printers or classes (parallel, serial, remote, and

network).
• Setting the default printer.
• Removing printers or classes of printers.
• Switching to AIX print subsystem.
The status information to be displayed by the Web-based
System Manager application includes:
• Showing the default printer.
• Displaying the requests on the default printer.
• Displaying the printers defined on the system.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Displaying the stopped printers on the system.
• Showing the printers that currently have problems.
Before you can use the Web-based System Manager environment
that supports System V printing, you have to switch from the AIX
to the System V print subsystem. You can either utilize the
switch.prt -s SystemV command or use the following sequence
of menu selections and operations with the Web-based System
Manager tool:
• Select Printers/Overview and Tasks.
• Select the Switch to System V print subsystem task.
After the task has been completed, the Printer container icon is
replaced by the Printers (System V) container icon. The Web-
based System Manager environment for System V printing is
now accessible through the following sequence of menu selections
on the Web-based System Manager console:
• Select Printers (System V)/Directory Disabled Overview and

Tasks.
If, for example, you would like to define a local print queue named
prop24p for your predefined IBM Proprinter 24 P print device /
dev/lp0, select the new printer task, follow the instructions of the
Add New Printer wizard, and complete the task by clicking Finish.
Note that the device support for the printer must be installed on
the system and that the configuration for lp0 must be completed
before you engage in the System V print queue configuration.
The printer type can be selected from the pull-down menu next
to the field What is the printer type? in the Step 3 of 4: Specify
Printer Options wizard menu.
If the user-defined printer class ASCII does not already exist, it
will be created during the final command execution of the Web-
based System Manager wizard.
Also, the final commands executed by the Web-based System
Manager Add New Printer wizard allow the newly configured
prop24p printer to accept (accept command) queueing requests

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and enable (enable command) the printer to print requests
submitted by the lp command. The printer will not be defined as
the system default print destination. If the user-defined class did
not exist before, the wizard creates the class, but will not allow
queueing of requests to the class as the print destination.
System administrators who prefer the command line interface to
the System V print subsystem can configure the same print
queue using the following command sequence.
First define the printer device:
mkdev -c printer -t ibm4212 -s parallel -p ppaØ -w p
lpØ Available

Then define the printer queue:
lpadmin -p prop24p -v /dev/lpØ -D "IBM Proprinter 24P" -c ASCII -I
simple –m standard -T proprinter
UX:lpadmin: WARNING: "/dev/lpØ" is accessible by others.
 TO FIX: If other users can access it you may get
 unwanted output. If this is not what you
 want change the owner to "lp" and change the mode to Ø6ØØ.
 Processing continues.
accept prop24p
UX:accept: INFO: destination "prop24p" now accepting requests
enable prop24p

The new printer can optionally be defined as the system default
print destination and the /etc/hosts file may be submitted as the
first test for the System V local print queue:
lpadmin -d prop24p

The lpstat -t command, entered immediately after the submission
of the print request, gives comprehensive status information
about the System V print subsystem:
lp /etc/hosts;lpstat -t
request id is prop24p-1 (1 file)
scheduler is running
system default destination: prop24p
members of class ASCII:
 prop24p
device for prop24p: /dev/lpØ
ASCII not accepting requests since Sat Feb 15 16:37:18 2ØØ3 -
 new destination

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

prop24p accepting requests since Sat Feb 15 16:37:38 2ØØ3
printer prop24p disabled since Sat Feb 15 16:37:17 2ØØ3. available.
 new printer
prop24p-1 root 1421 Sat Feb 15 16:38:31 2ØØ3

It was previously mentioned that under AIX 5.1 the System V
print subsystem management tasks are currently not supported
through the SMIT tool. However, some changes and additions
have been made to account for the introduction of the System V
print subsystem feature. The Print Spooling menu of the SMIT
tool was changed to show that most of the menu choices that
now exist are valid only for the AIX print subsystem. The AIX print
subsystem menu items will still be displayed if the System V print
subsystem is active, but they will not work properly, because
most of the underlying AIX print subsystem commands and
daemons are turned off or disabled in some manner by the
switch.prt.subsytem script during the switch from the AIX to the
System V print subsystem. In addition, one new menu item has
been added at the bottom of the Print Spooling menu; it is valid
for AIX and System V printing. The name of this item is Change/
Show Current Print Subsystem and can be used for either
displaying the current running print subsystem or for changing
from one to the other.
Under AIX 5.2 System V print Spooling subsystem is fully
supported under SMIT.
The Print Spooling menu of SMIT consists of two entries:
• AIX print spooling
• System V print spooling.
Under System V print spooling, the following options are available
for selection:
• Manage Print Requests
• List Print Destinations
• Remove Destinations
• Manage Destinations

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Add Local Printer Configuration
• Add Remote Printer Configuration
• Add JetDirect Printer Configuration
• Manage Print Services
• Manage remote systems
• Change/Show Current print Subsystem.
Under the Manage Print requests menu the following options are
available for selection:
• List Print Request
• List All Print Requests
• Move Print Request
• Move All Print Requests on Destination
• Cancel Print Request
• Cancel All Print Requests for User on Destination
• Cancel All Print Requests for User on All Destinations
• Cancel All Print Requests on Destination
• Cancel All Print Requests on All Destinations.
Under the Manage Destinations requests menu the following
options are available for selection:
• List Print Destinations
• Change/Show Default Destination
• Accept Requests for Destination
• Reject Requests for Destination
• Enable Printer
• Disable Printer
• Change/Show Default Print Priority for All Destinations

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Remove Destination.

TERMINFO AND SUPPORTED PRINTER TYPES
Since System V printing depends heavily on extracting information
from the terminfo database to configure and initialize printers,
one file has been added that contains the terminfo definitions for
all the printers supported by this subsystem. The name of the file
is svprint.ti, and it is located in the /usr/lib/terminfo directory. The
file is compiled and stored in the respective terminfo directories
at install time. Currently, on my system about 80 printer types are
defined in this file.
Since many printers can be supported by the same terminfo file,
the list of printers that are officially supported by System V
printing is much larger. In addition, many printer manufacturers
support their own printers for System V and send the support out
with the printers. This greatly increases the total number.
The list of manufacturers includes, but is not limited to, HP,
Canon, Epson, Oki, Panasonic, Unisys, IBM Printer Division,
and Lexmark International. In later releases, more printers will be
supported and shipped with AIX.

SWITCHING BETWEEN AIX AND SYSTEM V PRINT SERVICE
AIX provides a command, accessible through SMIT and the
Web-based System Manager, that will allow a system
administrator to display the current active print subsystem and to
switch between the active and inactive one. The command is
intended to be executed only by the Web-based System Manager
or SMIT, but will work from the command line with the proper
permissions. That command, located in /usr/sbin, is switch.prt
[-s print_subsystem] [-d].
The valid values for the print_subsystem keyword are AIX and
SystemV.
Running the command with the -d flag will display the current
print subsystem; if you do not specify any flags, a brief help

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Illustrated usage of various shell commands and
shell features

This article contains a number of examples of shell commands
and features, which I hope others will find useful.

AWK
awk can be used to print specific fields, separated by white
space(s), from a record:
RECORD="Arif Zaman"

message is displayed on the screen:
switch.prt
Usage: [-s AIX | SystemV] [-d]
-s switches to AIX print system or SystemV print system.
-d displays current subsystem.

For security reasons, the switch.prt command serves as a front-
end to the script /usr/sbin/switch.prt.subsystem, which actually
does the real work.

REFERENCES
1 Printing for Fun and Profit under AIX 5L, SG24-6018, IBM

Corporation.
2 AIX 5L Differences Guide Version 5.2 Edition, SG24-5765-

02, IBM Corporation.
3 AIX 5L Version 5.1Guide to Printers and Printing, IBM

Corporation.
Alex Polak
System Engineer
APS (Israel) © Xephon 2003

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

echo "${RECORD}" | awk {'print $1'}
echo "${RECORD}" | awk {'print $2'}
echo "${RECORD}" | awk {'print $1'}
echo "${RECORD}" | awk {'print "fname =$1" lname="$2'}

awk can be used to print specific fields, separated by a field
separator, from a record:
RECORD="Arif | Zaman"
echo "${RECORD}" | awk -F"|" {'print $1'}

awk can be used to print and format specific fields, separated by
a field separator, from a record:
RECORD="Arif | Zaman"
echo "${RECORD}" | awk –F"|" {'print("%-15s %-3Øs\n", $1,$2)'}
Arif Zaman

SED
sed can be used to extract a file extension from a file name:
ALLOWWD_FILE_EXT=" c pc sql sh"
FILE_NAME="daily_acct_update.pc"
FILE_EXT='echo "${FILE_NAME}" | sed s/.*\\.//'

sed can be used to extract a file name without the file extension:
FILE_NAME_WITHOUT_EXT='echo "${FILE_NAME}" | sed s/[^a-z].*//'

sed can be used to get rid of all trailing spaces from a file:
FILE_BEFORE=/u1/zamana/trailing_spaces.dat
FILE_AFTER=/u1/zamana/no_trailing_spaces.dat

sed s/' '*.$// ${FILE_BEFORE} > ${FILE_AFTER}

sed can be used to delete all empty lines in a file:
FILE_BEFORE=/u1/zamana/trailing_spaces.dat
FILE_AFTER=/u1/zamana/no_trailing_spaces.dat

sed s/' '*.$// ${FILE_BEFORE} > ${FILE_AFTER}

SORT AND AWK
sort can be used with awk:

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FILE=/u1/zamana/a.dat

Zamana A |12Ø61957|
Tamou A |11Ø21954|
Brown J |21Ø61957|
Bond J |14Ø61959|
Khan A |1ØØ6196Ø|

To generate a list of names ordered by surname in ascending
order:
cat ${FILE} | awk -F'|' {'print $1'} | sort

To generate a list of names ordered by surname in descending
order:
cat ${FILE} | awk -F'|' {'print $1'} | sort -r

CSPLIT
csplit can be used to split a text file from Mark1(BEGIN) and
Mark2 (END). For example:
FILE_NAME=/u1/zamana/a.dat
Xxxxxxxxxx
Yyyyyyyyyyy
BEGIN
Rrrrrrrrrr
Ddddddddddd
Ttttttttttttttttttttt
END
Ggggggggggggg
Tttttttttttt
Rrrrrrrrrrrr

csplit ${FILE_NAME} /BEGIN/ /END/+1

or:
MARK1="BEGIN"
MARK2="END"

csplit ${FILE_NAME} /${MARK1}/ /${MARK2}/+1

This will produce the following three files.
xx00:
Xxxxxxxxxx

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Yyyyyyyyyyy

xx01:
BEGIN
Rrrrrrrrrr
Ddddddddddd
Ttttttttttttttttttttt
END

xx02:
Ggggggggggggg
Tttttttttttt
Rrrrrrrrrrrr

Example 2:
FILE_NAME=/u1/zamana/a.dat

BEGIN
Rrrrrrrrrr
Ddddddddddd
Ttttttttttttttttttttt
END
Ggggggggggggg
Tttttttttttt
Rrrrrrrrrrrr

csplit -f file ${FILE_NAME} /${MARK1}/ /${MARK2}/+1

This will produce the following three files.
file00:
empty

file01:
BEGIN
Rrrrrrrrrr
Ddddddddddd
Ttttttttttttttttttttt
END

File03:
Ggggggggggggg
Tttttttttttt
Rrrrrrrrrrrr

Notes:

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1 -f option can be used to specify the name that will be
appended to construct full file names (eg file01, file02,
file03).

2 csplit always produces three files as follows:
– from the beginning of the file to the first marker.
– from the first marker to the second marker.
– from the second marker to the end of file.

3 Depending on the location of markers, the first and the third
files can be empty.

SPLIT
split can be used to split a text file into a number of pieces, each
containing 1000 lines:
FILE_NAME="/u1/zamana/name.dat"
FILE_PREFIX="name"
split -l 1ØØØ ${FILE_NAME} ${FILE_PREFIX}

Notes:
1 If the file contains less than 1000 lines, only one file called

nameaa will be created.
2 If the file contains more than 1000 lines, each file containing

1000 lines will be created with names like nameaa, nameab,
nameac, etc.

split can be used to split a text file into a number of pieces, each
containing 1024 bytes of data:
split -b 1Ø24 ${FILE_NAME} ${FILE_PREFIX}

CKSUM
cksum can be used to detect any changes in a text file:
FILE_NAME=/u1/zamana/a.dat
CHECKSUM_BEFORE='cksum ${FILE_NAME} | awk {'print $1'}'
CHECKSUM_AFTER='cksum ${FILE_NAME} | awk {'print $1'}
if [$CHECKSUM_BEFORE -eq $CHECKSUM_AFTER]

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

then
 echo "File not changed"
else
 echo "file has changed "
fi

BASENAME
basename can be used to extract a file name from a full file
name:
FULL_FILE_NAME="/u1/user/zamana/temp/update.txt"
FILE_NAME='basename ${FULL_FILE_NAME}'

DIRNAME
dirname can be used to extract a directory name from a full file
name:
FULL_FILE_NAME="/u1/user/zamana/temp/update.txt"
CUR_DIR_NAME='dirname ${FULL_FILE_NAME}'
PARENT_DIR_NAME='dirname ${CURDIR_NAME}

EXPR
expr can be used to find the length of a string:
KEY="ABCØØ1"
KEY_LEN='expr "${KEY}" : '.*''

expr can be used to validate a numeric field:
KEY=1234A
if expr "${KEY}" : '.*[a-zA-Z]' > /dev/null
then
 echo "Key Must be numeric"
else
 echo "Key is ok"
fi

expr can be used to validate an alpha field:
KEY=ABC1

if expr "${KEY}" : '.*[Ø-9]' > /dev/null
then
 echo "Key Must be character based"
else
 echo "Key is ok"

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi

RM
rm can be used to remove files with names that begin with –
(dash):
FILE=/u1/zamana/a.log

rm ./${FILE}

KILL
kill can be used to kill a background job:
kill -<signal_no> %<job_no>

kill -9 %1

EXEC
exec can be used to accept input from a terminal while reading
from a file:
FILE=/u1/zamana/a.dat

For example:
exec 3<&Ø
cat $FILE | while read LINE
do
 exec 4<&Ø
 exec Ø<&3
 echo "Enter the key:\c"
 read KEY
 Ø<&4
done

Notes:
1 At the beginning of the script we save the input file descriptor

(0) to 3 (exec 3<&0).
2 Start to read from the file. At this stage the input file

descriptor (0) is mapped on to the file being read from.

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

3 Save this mapped input file descriptor to 4 (4<&0).
4 Restore the original input file descriptor (eg terminal) (0<&3).
5 Read from terminal.
6 Restore reading from the file (0<&4).
exec can be used to find files with .log extension and remove
them:
find *.log -exec rm –f {} \;

BC
bc can be used to add two real numbers with two decimal place
precision within a shell script:
NUM1=1.234
NUM2=2.345

RESULT='bc <<!
scale=2
$NUM1 + $NUM2
quit
!
'

STRINGS
strings can be used to extract text from an executable file:
FILE=/u1/zamana/a.exe
strings ${FILE}

NOHUP
nohup can be used to start a job in the background as a terminal
detached process:
$nohup a.exe &

Note: if the terminal is switched off, the job will still be running.

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

NICE
nice can be used to start a job with a higher priority (increased
by 4):
nice -4 my_job.exe

nice can be used to start a job with a lower priority (decreased
by 4):
nice +4 my_job.exe

Note: the higher the nice value the lower the priority, and hence
+4 will decrease the priority by 4.

EVAL
eval can be used to define a variable that will reference another
variable:
DefineVariables ()
{
ORA_ERROR="\${ERR_MSG}"
SYS_ERROR="\${ERR_MSG}"
}
DisplayMessage ()
{
IN_MSG='eval echo $1'
echo "${IN_MSG}"
}
ERR_MSG="Table does not exist "
DisplayMessage " ${ORA_ERROR}"
ERR_MSG="Can not execute"
DisplayMessage "${SYS_ERROR}"

Notes:
1 After the initial assignment, variable ORA_ERROR and

SYS_ERROR contains the string ${ERR_MSG}.
2 When the variable ERR_MSG is assigned a value, you must

use the eval command to reference the value contained in
a variable that has been assigned to another variable, as
shown in DisplayMessage ().

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

STTY
stty can be used to accept a password from a terminal without
echoing:
stty -echo

echo "Enter Password:\c"
read PWD
stty echo

KSH
ksh can be used to find the length of a variable:
VAR="My String"
VAR_LEN=${#VAR}
echo "Variable length is ${VAR_LEN}

SUBSTRING PROCESSING
To change a file extension:
PROG_NAME=my_prog.sh
NEW_PROG_NAME="${PROG_NAME%.sh}.sql"

CUR_FILE_EXT=".sh"
TRANSPOSED_FILE_EXT=".sql"
NEW_PROG_NAME="${PROG_NAME%${CUR_FILE_EXT}}${TRANSPOSED_FILE_EXT}"

To extract a file name (ie leaving out the file extension):
PROG_NAME=my_prog.sh
PROG_NAME_WITHOUT_EXT="${PROG_NAME%$.sh}"

To define a variable to have a lower case value:
typeset -l LNAME
echo "Enter last name"
read LNAME
echo "${LNAME}

To convert the contents of a variable from upper/mixed to lower
case:
LNAME=""
echo "Enter last name"
read LNAME
typeset -l LNAME

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

echo "${LNAME}

To define a variable to have an upper case value:
typeset -u LNAME
echo "Enter last name"
read LNAME
echo "${LNAME}

To convert the contents of a variable from lower/mixed to upper
case:
LNAME=""
echo "Enter last name"
read LNAME
typeset -u LNAME
echo "${LNAME}

To define a variable as an integer:
typeset -i DOB
echo "Enter data of birth (ddmmyyyy)"
read DOB
echo "${DOB}

Note: if the user tries to input a non-numeric character, ksh will
display an error and exit.
To define a variable as read-only:
typeset -r PROG_NAME='basename $Ø'
echo "${PROG_NAME}

Note: the read-only variable must be assigned in the declaration
line. Any attempt subsequently to re-assign a value to this
variable will result in an error.
To define a variable to hold a left-justified string:
typeset -L LNAME
echo "Enter last name"
read LNAME
echo "${LNAME}"
LNAME=" zaman"
typeset -L LNAME
echo "${LNAME}"

To set a default value for a variable:
VAR1=""

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

VAR2="X"
VAR3=${VAR1:-X}
echo ${VAR3}
VAR3=${VAR1:-${VAR2}}
echo ${VAR3}
VAR3=${VAR1:=${VAR2}}
echo ${VAR3}

Note: in all cases, if $VAR1 is null then X will be assigned to
$VAR3

BUILT-IN SHELL VARIABLE $LINENO
The variable $LINENO is set by the shell to an integer number
representing the current sequential line number (numbered
starting with 1) within a script or function before it executes each
command. If the user unsets or resets LINENO, the variable may
lose its special meaning for the life of the shell. If the shell is not
currently executing a script or function, the value of LINENO is
unspecified.
For example:
#
This is an example
#
echo $LINENO # lineno = 4
#
#
#
func1 ()
{
#
This is a function
#
sleep 3
echo $LINENO # lineno = 6

}
#
#
func1
echo "Success"
echo $LINENO # lineno = 21

Note: in order to make this idea useful, we need to modify the

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

script as follows:
#
This is an example
#
SCRIPT=example.ksh
FUNC_NAME=""
#
echo "${SCRIPT}:${LINENO}"
#
#
#
func1 ()
{
FUNC_NAME="func1"
#
#
This is a function
#
sleep 3
echo "${FUNC_NAME}:${LINENO}"

}
#
#
func1
echo "Success"
echo "${SCRIPT}:${LINENO}"

at
at can be used to execute or run 100 jobs, submitting 10 jobs at
a time:
AT_QUEUE_DEF="/usr/lib/cron/queuedefs"
QUEUE_NAME="a"
SCRIPT_DIR="/u1/script"
cd $SCRIPT_DIR
for SCRIPT in 'ls -1'
do
 at -f ${SCRIPT} -q ${QUEUE_NAME} now
done

Note: there is an entry in ${AT_QUEUE_DEF} file for queue
${QUEUE_NAME} as follows:

a.1Øj16Ø

This entry in the file specifies that the queue, a, for at jobs, can

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Terminal capabilities

TERMINFO FILES
Each and every terminal type intended to be attached to the
system must be defined within a file contained in the /usr/share/
lib/terminfo directory. This directory is a database that describes
terminals and defines their capabilities and methods of operation.
These definitions are used by various programs, such as the vi
editor.
The information defined in terminfo includes initialization
sequences, padding requirements, cursor positioning parameters,
and other command sequences that control various terminal
attributes such as function key definitions.
The terminfo database consists of a series of ASCII files
containing the various capabilities for all terminal types from a
particular manufacturer. For example, the ibm.ti file contains
information on all IBM terminals. Similarly, the wyse.ti file
contains information on all Wyse terminals.
It is possible to edit and modify these source files, but, before a

have up to 10 jobs running simultaneously; those jobs will be run
with a nice value of 1. If a job cannot be run, wait for 60 seconds
before trying to reschedule it
In the script we submit all the jobs to at but at controls the queue
according to the queue definition found for ${QUEUE_NAME} in
${AT_QUEUE_DEF} file.
To vary the number of simultaneous jobs to be run, edit the queue
definition in the file to change the number before the letter j.
Arif Zaman
ETL Developer (UK) © Xephon 2003

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

terminfo source file can be used, it must be compiled using the
tic command. For example:
tic wyse.ti

will search for the wyse.ti file in the current directory and produce
compiled files for each terminal defined in wyse.ti. These will be
stored in the directory /usr/share/lib/terminfo/w with a separate
file for each terminal type, such as wyse60, wyse120 etc.
A program that wants to make use of the terminal capability
database selects an entry according to the value of the TERM
environment variable. It is also possible to set the TERMINFO
variable with an absolute pathname to point to a terminal
description that is not in the standard terminfo directory.
Terminal capabilities are of three types:
• Boolean – indicate that the terminal has a particular feature.

Boolean capabilities are true if the corresponding name is
included in the terminal description.
Examples of this type are am for automatic margins, and ul
for overstrike with underline character. If any Boolean
capability is not specified, programs will assume that the
terminal does not have that feature.

• Numeric – indicate the size or value of a particular terminal
characteristic.
Numeric capabilities are followed by the # character and
then the value. Thus cols#80 indicates that the terminal has
80 columns, and lines#24 that it has 24 lines.

• String – indicate an escape sequence that can be used to
perform particular terminal operations. They define how a
command is issued to the terminal.
The format of a string capability is the name followed by an
equals sign, followed by a command sequence. For example,
cuu1=^K specifies that the Ctrl K sequence will move the
cursor up one line.

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

These terminal-dependent capabilities in terminfo are made
available for use by the shell with the tput command. The output
of tput is a string if the attribute is of type string, or an integer if
the attribute is of type integer. If the attribute is of type Boolean,
the command simply sets the exit value to 0 for true, or 1 for false,
and produces no other output.
As an example, for most terminal types you can echo the clear
screen sequence for the current workstation or window with:
tput clear

The same result can actually be achieved with the clear command
on its own, although this is not supported for vt100 emulation.
Similarly, to display the number of columns, enter:
tput cols

You can also display your current terminal type using:
tput longname

EXAMPLE OF TEXT DISPLAYING CAPABILITIES
Consider the following example, which serves to show how text
displayed on the screen can be highlighted, underlined etc:
$ vi texttest

bold=$(tput smso) # start stand out mode
endbold=$(tput rmso) # end stand out mode
under=$(tput smul) # start underline mode
endunder=$(tput rmul) # end underline mode
blnk=$(tput blink) # start blink mode
endall=$(tput sgrØ) # disable all attributes

print "${bold}Standout mode$endbold"
print "${under}Underline mode$endunder"
print "${blnk}Blink mode"
print "${under}Blink and underline mode$endall"

The first group of commands defines a number of variables that
are used to set and unset terminal attributes. The second group
uses these variables, along with the print command, to display
text in various modes. You should be aware that the tput
command may produce unexpected results on some terminals,

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

or no changes at all. For example, tput blink may just produce
a brighter version of stand out mode rather than blink the text.
Once an attribute has been enabled it remains in effect until
specifically disabled, either with the corresponding command to
disable it, or by using the disable all command:
tput sgrØ

When you log out of your current shell, all attributes will be
automatically reset to their default values.
If you intend to use these capabilities on a regular basis, it is
probably best to define bold, endbold, etc in your .profile file,
and then export them so that they are available in your
environment; alternatively you can use your .kshrc file.

MENU EXAMPLE
Consider the following simple program, which uses a menu:
$ vi menutest
#!/bin/ksh
this function displays the menu
f_dispmenu()
{
 clear
 print "\n\n\n\t\t\tSample Text Attributes"
 print "\n\t\t\t1. Display bold text"
 print "\n\t\t\t2. Display underlined text"
 print "\n\t\t\tØ. Exit from program"
 print "\n\t\t\tEnter choice: \c"
}
this function displays bold text
f_dispbold()
{
 clear
 print "\n\n\n\n\t\t\t$(tput smso)This is an example \
 of bold text$(tput rmso)"
 print "\n\t\t\tPress ENTER to return to menu"
}
this function displays underlined text
f_dispunder()
{
 clear
 print "\n\n\n\n\t\t\t$(tput smul)This is an example \
 of underlined text$(tput rmul)"

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 print "\n\t\t\tPress ENTER to return to menu"
}
this function displays an invalid choice message
f_invalid()
{
 print "\n\n\t\t\t$(tput smso)Invalid Choice$(tput sgrØ)\c"
 sleep 2
}

this is the main program loop
while true
do
 f_dispmenu
 read answer
 case $answer in
 1)
 f_dispbold
 read answer ;;
 2)
 f_dispunder
 read answer ;;
 Ø)
 clear
 exit ;;
 *)
 f_invalid ;;
 esac
done

This menu program uses functions to display the menu sections.
When the menu is displayed, the system waits for the user to
make a selection and then runs the appropriate function.
The script requires a sleep statement in the f_invalid function
to allow the user time to read the error message before the script
automatically re-displays the menu.
The script in itself is not particularly useful but merely serves to
show how a simple menu script can be constructed.

USING TERMINAL RAW MODE
Normally when you enter characters at a command prompt, the
operating system buffers them into lines, performs editing in the
buffer to erase characters that have been backspaced over,
deletes lines that have been killed, processes end-of-file

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

characters, and only executes the line when it receives an end-
of-line or carriage return (ie line termination character).
Under most operating conditions, your terminal will be set up so
that it processes only a line of input characters when it receives
a carriage return. A terminal can be set to raw mode, however,
so that it reads only one character at a time. In this mode, when
a single character is typed, it is returned immediately, and the
read is terminated by the input of the single character instead of
a line followed by a carriage return.
When in raw mode, no checking is made for the special characters
that handle erase, kill, and end-of-file, and thus all characters are
valid for input. It is not therefore possible to trap signals such as
Ctrl D and Ctrl C in a program using raw mode.
A terminal can be set to the raw mode with the command:
stty raw -echo

where the -echo option prevents the character you enter from
being echoed back to the screen.
We can make use of this capability in the menutest example by
using the above command in conjunction with the dd command,
so that the program needs to accept only a single character for
input.
The menutest program can now be amended, with amendments
and additions shown in italics. Remember that the new version
expects a single character, so should you make an error in the
script you may not be able to cancel the program with Ctrl C, nor
suspend it with Ctrl Z. Ideally you should be working in a
Windows environment so that you can start a second session in
order to kill the script in the event of an error.
#!/bin/ksh
this function gets a single keystroke
f_get_key()
{
 stty raw -echo
 KEY=$(dd count=1 2>&-)
 stty -raw echo
}

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

this function displays the menu
f_dispmenu()
{
 clear
 tput cnorm
 print "\n\n\n\t\t\tSample Text Attributes"
 print "\n\t\t\t1. Display bold text"
 print "\n\t\t\t2. Display underlined text"
 print "\n\t\t\tØ. Exit from program"
 print "\n\t\t\tEnter choice: \c"
}
this function displays bold text
f_dispbold()
{
 clear
 tput civis
 print "\n\n\n\n\t\t\t$(tput smso)This is an example \
 of bold text$(tput rmso)"
 print "\n\t\t\tPress ENTER to return to menu"
}
this function displays underlined text
f_dispunder()
{
 clear
 tput civis
 print "\n\n\n\n\t\t\t$(tput smul)This is an example \
 of underlined text$(tput rmul)"
 print "\n\t\t\tPress ENTER to return to menu"
}
this function displays an invalid choice message
f_invalid()
{
 tput civis
 print "\n\n\t\t\t$(tput smso)Invalid Choice$(tput sgrØ)\c"
 sleep 2
}
this is the main program loop
while true
do
 dispmenu
 f_get_key
 case $KEY in
 1)
 f_dispbold
 f_get_key;;
 2)
 f_dispunder
 f_get_key;;
 Ø)
 clear

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 tput cnorm
 exit ;;
 *)
 f_invalid;
 esac
done

In the f_get_key function, the second stty command resets the
terminal for normal operation so that the program will continue to
execute and display menus and messages in the correct way.
The strange looking line:
KEY=$(dd count=1 2>&-)

waits for a single keystroke, specified by the count=1 option to
dd. It tells dd to receive just a single character at a time and
allocate it to the variable KEY. The value of count can be
changed so that count=3, for example, will accept three
characters, possibly generated by a function key.
If you do not turn off standard error with 2>&-, then every time you
execute the dd command you will receive the messages:
Ø+1 records in
Ø+1 records out

The main program loop has been changed so that each read
answer has been replaced with f_get_key, and the case $answer
in with case $KEY in.
Another enhancement has been made to the program to give it
a slightly more professional, or cosmetic, look and feel. Previously,
when a menu selection was made, the text would be displayed
and the cursor would appear at the start of the line after the last
line of text, waiting for the next key entry. Because we have
designed the program to accept single key strokes without
waiting for a carriage return we do not need to have the cursor
displayed on the screen after the bold or underlined text has been
displayed.
A cursor can be made invisible by using the tput civis command,
and this has been used in the f_dispbold and f_dispunder
functions and when displaying the Invalid Choice message.

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The cursor needs to be visible, ie back to normal, when the main
menu is displayed and when the program exits. This is made
possible by using the tput cnorm commands at the start of the
f_dispmenu function, and when the exit choice has been
selected from the main menu.

THE SELECT COMMAND
While on the subject of menus, let us consider another built-in
shell construct, select, which can be used to generate simple
menus. You should be aware that this command is available only
in the Korn shell. The syntax of the command is similar to that of
the for loop:
select variable in word_list
do
 loop_body
done

Like for, if you omit the in word_list, the command will default
to $@. Unlike for, however, the commands in loop_body are not
executed the number of times that variable occurs in word_list.
What select does instead is to generate a simply formatted
menu containing each of the words in word_list preceded by a
number.
select will then prompt you for a number, using the $PS3 prompt,
which by default is set to #?. Since this is not a particularly
meaningful prompt, most scripts using select change this to
something the user can understand.
When you enter your menu choice, the item on the menu is
available in variable and the selected number is stored in the
built-in variable REPLY; both variables are normally referenced
inside the body of the loop. select does not check that you
entered a valid number, and so you must have appropriate
checks within the body of the construct. You must also have
some means of breaking out of the loop since this feature is not
part of the select statement.
So that you can understand this construct, let us consider the

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

following example. Suppose that you have a system containing
a number of applications, and that your users need differing
terminal types to run their applications. Or perhaps they log in
using some Windows/X Windows terminal emulation, or from
ASCII terminals. Each terminal type that can be used potentially
creates a number of problems for you as a system administrator,
and to make life easier for yourself you create the following script,
which we have named setterm.
$ vi setterm
#!/bin/ksh
trap '' INT TSTP
PS3="Select terminal type: "
TERMS="vt1ØØ \
vt22Ø \
ibm3151 \
aixterm \
dtterm \
xterm"
set -- $TERMS
select term in $TERMS
do
 if [[$REPLY > $#]] || [[$REPLY < 1]] || [[-z $term]]
 then
 print Invalid choice
 continue
 fi
 TERM=$term
 print TERM has been set to $TERM
 break
done

When the script is executed, a user can select the correct
terminal type from the menu, which will look like the following:
1) vt1ØØ
2) vt22Ø
3) ibm3151
4) aixterm
5) dtterm
6) xterm
Select terminal type:

For users with little Unix knowledge, the code in this script should
be included in their .profile files so that the terminal type can be
automatically selected when the user logs in. We have included

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

a trap statement to ensure that the script cannot be interrupted
with Ctrl C, or suspended with Ctrl Z (the TSTP signal), so that
users are forced to select a terminal type. Other users may be
required to run setterm themselves after logging in so that the
trap statement may not be necessary since we expect their Unix
knowledge to be sufficient to know what they are doing.
We have modified the PS3 prompt to something a little more
meaningful, and we have placed the terminal types on separate
lines for readability. You must ensure that there are spaces
before each backslash.
In any script such as this, we would normally expect to find a case
statement to check that whatever we type in is a valid choice.
This would be reasonable if there were a small number of
choices, but should the list of menu items grow very large, then
we would want to avoid as much typing as possible. If we also
wanted to add items to the menu list at a later date, we would
have to add stanzas to our case statement. Being inherently lazy,
we want to avoid all this typing, and to overcome this we have
used the construction as shown, which we will now explain.
We want to be able to check that the choice of menu item we
enter is non-null, numeric, and within the range of menu items
displayed. We know that the first item on our menu list will always
start at 1, but we can never be sure what number the last item is
going to be. As you will know, the set -- command can be used
to split the contents of a variable to $1, $2, etc, and by using this
command with $TERMS, not only will it do this, but it will also
reset the $# variable, ie the number of arguments, to show us
how many items TERMS contains.
Now that we know our range is from 1 to $#, we check the validity
of our selection using the test:
[[$REPLY > $#]] || [[$REPLY < 1]]

As you can see, this is not a normal construction to check
numeric choices, where we would use -gt and -lt. Instead we are
using string comparisons. The reason for this is that should a
non-numeric character be entered, then, from a string point of

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

view, it could not possibly fall within our numeric range, would fail
the test, and the script would print the error message. If we had
only the standard numeric tests then we would require further
checks to see if our answer was non-numeric.
The remaining part of our test, || [[-z $term]], is not there to
check, as you might expect, when someone just hits the Enter
key, since this particular check is actually made by select itself.
If the menu items range from 1 to 6, say, and someone enters 10,
then in a string comparison 10 is less than 6 and greater than 1
and so an error message would not be produced from this
comparison alone. However, there is no menu item corresponding
to the value 10 and so term would be set to null, which means
that it would fail the final test and the error message would be
produced.
When a user enters a number within the range, the script exits
with the break statement.
Tonto Kowalski
Guru (UAE) © Xephon 2003

AIX news

ORSYP has announced availability of Dollar
Universe Publisher and Dollar Universe
Reporter, new associated modules for its job
scheduling software suite, Dollar Universe.
The new modules enable enterprises to
handle IT operations more efficiently,
through complete knowledge management
of operations and accurate reporting.

ORSYP’s Dollar Universe product suite
offers a cross-platform solution for
automating IT functions across
heterogeneous IT environments, in particular
those relying on being able to batch process
large amounts of data within an allotted
timeframe. The addition of the new modules
to the product suite simplifies change
management and gives them tighter control
over mission-critical operations.

Dollar Universe runs on AIX, Linux, MVS,
and a host of other platforms.

For further information contact:
ORSYP, Castle Court, 41 London Road,
Reigate, Surrey RH2 9RJ, UK.
Tel: (0173) 7735 021.
URL: www.orsyp.co.uk.

* * *

Veritas has announced a new version of its
Global Data Manager, which now manages
and monitors back-up and recovery
processes for both Veritas NetBackup and
Backup Exec software in distributed
environments.

It now provides a single point of management
for all back-up and recovery processes

running on different operating systems and
hardware platforms. For NetBackup and
Backup Exec, it makes possible centralized
management of both data centre and remote
back-up and recovery from a common
dashboard and provides consolidated real-
time visibility of all back-up operations.

Administrators are given a dashboard view of
multiple data protection processes spread
across a global enterprise and are given the
means to control back-up processes and
policies from a single point.

For further information contact:
VERITAS, 251 New Karner Road, Suite
401, Albany, NY 12205, USA.
Tel: (518) 690 0019.
URL: http://www.veritas.com.

* * *

Mainsoft is to broaden the availability of its
Visual MainWin 5 product by adding seven
new Unix operating systems to its list of
supported platforms.

Specifically, it will add support for Solaris 9,
2.6, and 2.7, HP-UX 11.22, AIX 5.2 and
4.3.3, and Linux 8.0 to existing support for
Solaris 8, HP-UX 11.00 and 11.11, AIX 5.1,
and Linux 7.3.

For further information contact:
Mainsoft, 3850 North First Street, San Jose,
CA 95134, USA.
Tel: (408) 544 1400.
URL: http://www.mainsoft.com/products/
mainwin.html.

* * *

x xephon

	Keep the wraps on those TCP ports
	AIX5L System V Release 4 print subsystem
	Illustrated usage of various shell commands and shell features
	Terminal capabilities
	AIX news

