

© Xephon plc 2003

July 2003

93

In this issue

AIX

3 Controlling shark mirror locations
9 More illustrated usage of various

shell commands and shell features
19 Regular expressions and pattern

matching
32 Using tape libraries with AIX
55 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Controlling shark mirror locations

In case of a disaster, most companies want to keep their data in
different locations and cities. One of the best ways is to mirror
logical volumes on shark storage to those in different locations.
For example, our company, which has shark storage in both
Cologne and Düsseldorf, prefers to mirror their central logical
volumes in Cologne to shark storage in Düsseldorf. The problem
is, because many system administrators have access to the
servers, sometimes when they create new logical volumes, they
do not create the mirrors on the shark storage at the other
location. That’s why I have written a script that checks whether
all logical volumes on shark systems are correctly mirrored and
lists the ones which are not. Additionally, it checks the state of the
logical volumes and warns if the mirrors are not synchronized.
This script can be executed on all servers without having to be
changed.
To make life easier (easy to update), I keep only one list on a
particular server, which shows the locations of the shark storage,
and, when I execute the script on a server, first of all it makes an
ftp connection as an anonymous user to the particular server to
get the list.
List: shark_location.txt:
SHARK 1 13173 CGN
SHARK 2 13755 CGN
SHARK 3 14826 DUS
SHARK 4 12324 CGN
SHARK 5 12096 CGN
SHARK 6 18482 DUS
SHARK 7 16352 CGN

Looking at the first line we have the following information:
• SHARK 1 – the label number of the shark storage.
• 13173 – the shark_id.
• CGN – location Cologne.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The most important command used here is lsvpcfg, which
shows the assignment of the hdisk to the vpath (vpath is a logical
grouping of hdisks).
An example of lsvpcfg output is:
vpathØ (Avail pv TØ4vg) 5ØØ12324 = hdisk6 (Avail) hdisk19 …
vpath1 (Avail pv TØ4vg) 5Ø112324 = hdisk7 (Avail) hdisk2Ø …
vpath2 (Avail pv TØ4vg) 4ØØ12324 = hdisk8 (Avail) hdisk21 …
vpath3 (Avail pv TØ4vg) 4Ø112324 = hdisk9 (Avail) hdisk22 …
vpath4 (Avail pv TØ4vg) 7ØØ12324 = hdisk1Ø (Avail) hdisk23 …
vpath5 (Avail pv TØ4vg) 7Ø112324 = hdisk11 (Avail) hdisk24 …
vpath6 (Avail pv TØ4vg) 6ØØ12324 = hdisk12 (Avail) hdisk25 …
vpath7 (Avail pv TØ4vg) 6Ø112324 = hdisk13 (Avail) hdisk29 …
vpath11 (Avail pv TØ4vg) 1ØE18482 = hdisk17 (Avail) hdisk3Ø …
vpath12 (Avail pv TØ4vg) 2Ø418482 = hdisk18 (Avail) hdisk31 …
vpath8 (Avail pv TØ4vg) 11312324 = hdisk14 (Avail) hdisk16 …
vpath9 (Avail pv TØ4vg) 11412324 = hdisk15 (Avail) hdisk26 …

Considering the first line we see:
• vpath0 – showing which vpath number the shark storage
uses.
• 5001234 – the last five digits forming the shark_id.
With this information, first of all I know which shark storage
(shark_ids) is connected to the server, and, with the list I
transferred, I can identify where they are located. After knowing
which shark storage uses which vpaths I can check my mirrored
logical volumes one by one and their vpaths to see whether they
are located in different shark systems in different locations.
Vpath0...9 are for SHARK1 and vpath11,12 are for SHARK6 in
this case. After checking the vpaths of logical volumes, we
expect the logical volumes on SHARK1 to have mirrors on
SHARK6. This is checked by writing the vpaths of shark storage
in CGN to a file and vpaths of shark storage in DUS to another
file. Then after getting vpaths of the mirrored logical volume, we
must see that one of the original vpaths must be in a CGN file
while the other mirror vpath should be in the DUS file.
A CGN file might be (orig_file in script):
vpathØ
vpath1

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

vpath2
vpath3
vpath4
vpath5
vpath6
vpath7
vpath8
vpath9

And a DUS file (mirr_file in script) might be:
vpath11
vpath12

Then checking the vpaths of the logical volume:
lslv -m o_saplo1_lv | grep vpath | awk '{print $3, $5}' | sort | uniq

vpathØ vpath11
vpath1 vpath11
vpath2 vpath12
vpath3 vpath12
vpath4 vpath12
vpath5 vpath12
vpath6 vpath11
vpath7 vpath11
vpath8 vpath12
vpath9 vpath11

(The first column shows the original, the second column the
mirror.)
As shown above, the mirrors are correctly created. The originals
are between vpath0 and vpath9 on SHARK1 Cologne, and the
mirror copies are vpath11 and vpath12 on SHARK6 Düsseldorf.
Another useful feature of the script is the logical volume state
check.
For example:
lsvg –l DERvg
DERvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
logDERvg jfslog 4 8 4 open/syncd N/A
oraclelv jfs 1 2 2 open/syncd /oracle
o_817_64_lv jfs 44 88 8 open/syncd /DER/817_64
o_saparc_lv jfs 128 256 2Ø open/syncd /DER/saparch
o_pØ4_lv jfs 41Ú× 88 2Ø open/syncd /DER

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

o_sdtØ2_lv jfs 1968 3936 26 open/syncd /DER/sapdata2
o_sdtØ3_lv jfs 1948 3896 26 open/syncd /DER/sapdata3
o_sdtØ4_lv jfs 2148 4296 26 open/syncd /DER/sapdata4
o_sdtØ5_lv jfs 1979 3958 26 open/syncd /DER/sapdata5
o_sdtØ6_lv jfs 1811 3622 26 open/syncd /DER/sapdata6
o_saplo1_lv jfs 2Ø 4Ø 26 open/syncd /DER/saplog1
o_sappag_lv jfs 16 32 26 open/syncd /DER/sappage
o_sapreo_lv jfs 32 64 26 open/syncd /DER/sapreorg
sarchlv jfs 68 136 26 open/syncd /SER/archiv
o_sdtØ1_lv jfs 2Ø66 4132 26 open/syncd /DER/sapdata1

Opened/stale indicates that the logical volume is open but
contains partitions that are not current.
Opened/syncd indicates that the logical volume is open and
synchronized.
Closed indicates that the logical volume has not been opened.
The script warns also when the logical volumes are not
synchronized.

SHARK_CHK_MIRROR.SH
#!/bin/ksh
Adnan Akbas , Turkcell , Ø9.Ø9.2ØØ2
#
This script checks whether the logical volumes on the shark storage
are mirrored on the shark storage at a different location and
lists the ones that are not correctly mirrored.
######################################
This function receives the shark list from a server in order to
get updated list containing the shark storages and their locations
function get_shark_list {
change directory to determine where to ftp
cd $local_dir > $logfile 2>&1
if [[$(pwd) != $local_dir]]
then
 echo $retstr1
 exit 1
fi
Check if service is pingable
ping -c 2 $target 1 > /dev/null 2>&1
if [[$? != Ø]]
then
 echo $retstr2
 exit 2
fi
Start FTP

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ftp -v -n $target << ! >> $logfile
user $user $passwd
prompt
bin
pwd
cd $target_dir
pwd
ls
hash
get $shark_file
bye
!
Check if the file exists and not empty
if [-s ${local_dir}/${shark_file}]
then
 print
 echo $outstr1 >> $logfile
 print
else
 echo $retstr3
 exit 3
fi
echo "----------------------------------" >> $logfile
print >> $logfile
}
######################################
This function writes mirror & original vpaths in separate files.
function get_vpaths {
Removing files created by the previous execution
rm $orig_file > /dev/null 2>&1
rm $mirr_file > /dev/null 2>&1
determine which sharks ids are connected to the server
and identify their locations. Then writing mirror and
original vpaths to two different files.
lsvpcfg | awk -F= '{print $1}' | awk '{print $5}' | cut -c4-8 | sort |
uniq | grep . |
while read shark_id
do
 loc='grep $shark_id ${local_dir}/${shark_file} | awk '{print $4}''
 if [[$loc = "CGN"]]
 then
 lsvpcfg | grep $shark_id | awk '{print $1}' >> $orig_file
 elif [[$loc = "DUS"]]
 then
 lsvpcfg | grep $shark_id | awk '{print $1}' >> $mirr_file
 else
 echo $retstr4
 exit 4
 fi
done

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}
######################################
This function checks whether lv mirrors are at a different location
function lv_check {
finding which volume groups are on shark storage
lspv | grep vpath | awk '{print $3}' | sort | uniq |
while read vg
do
finding all logical volumes having mirrors
 lsvg -l $vg | grep jfs | awk '{print $1, $6}' |
 while read lv syn junk
 do
 numcp='lslv $lv | grep COPIES: | awk '{print $2}''
 if [[$numcp = 2]] then
finding which vpaths the lvs and their mirrors have
and comparing their locations.
 lslv -m $lv | grep vpath | awk '{print $3, $5}' | sort | uniq |
 while read vp1 vp2 junk ; do
 hit_orig=$(('grep -xc $vp1 $orig_file'+'grep -xc $vp2 $orig_file'))
 hit_mirr=$(('grep -xc $vp1 $mirr_file'+'grep -xc $vp2 $mirr_file'))
 if [[$hit_orig != 1 || $hit_mirr != 1]]
 then
 echo "$vg - $lv - LOGICAL VOLUME MIRROR IN THE SAME
LOCATION!" | tee -a $logfile
 flag=false
 break
 fi
 done
 fi
 lv_state='echo $syn | awk -F/ '{print $2}''
Checks the lv state and warns if the mirror is not synchronized
 if [[$lv_state != "syncd"]]
 then
 echo "$vg - $lv - LOGICAL VOLUME STATE: $syn" | tee -a $logfile
 flag=false
 fi
 done
done
}
######################################
This function checks the flag and gives out an exit code
function chk {
if $flag
then
 print | tee -a $logfile
 echo $outstr2 | tee -a $logfile
 exit Ø
else
 print | tee -a $logfile
 echo $retstr5 | tee -a $logfile

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 exit 5
fi
}
variables
local_dir=/tmp
target=1Ø.63.11.12
logfile=${local_dir}/shark.log
orig_file=${local_dir}/orig.file
mirr_file=${local_dir}/mirr.file
target_dir=pub
shark_file=shark_location.txt
user=anonymous
passwd=${HOSTNAME}@turkcell.com.tr
flag=true
error/info codes
retstr1="ERROR: Cannot change to $local_dir! FILE NOT RCEIVED !!!"
retstr2="ERROR: Cannot ping $target! FILE NOT RECEIVED !!!"
retstr3="ERROR: $shark_file NOT SUCCESSFULLY RECEIVED !!!"
retstr4="ERROR: $shark_file NOT CORRECT !!!"
retstr5="ERROR: The logical volumes above must be corrected !!!"
outstr1="INFO: $shark_file SUCCESSFULLY RECEIVED ..."
outstr2="INFO: Logical volumes are correctly mirrored on this machine
..."
main
get_shark_list
get_vpaths
lv_check
chk
######################################

Adnan Akbas
System Administrator
Turkcell (Germany) © Xephon 2003

More illustrated usage of various shell commands
and shell features

This article provides more examples of shell commands and
features, which I hope others will find useful.

FTP
Perform an ftp operation in batch mode:

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TP_NODE=mastst
SOURCE_FILE="/export/home/zamana/sh/a.dat"
REMOTE_FILE="/export/home/zamana/temp/a.dat"
#
FTP_COMM_FILE="/tmp/ftp.dat"
FTP_ERROR_FILE="/tmp/ftp.err"
#
USER="zamana"
PWD="powerØ1"
#
cat <<! > ${FTP_COMM_FILE}
open ${FTP_NODE}
user ${USER} ${PWD}
put ${SOURCE_FILE} ${REMOTE_FILE}
bye
!
#
ftp -n <${FTP_COMM_FILE} > ${FTP_ERROR_FILE} 2>&1
#
if [-s ${FTP_ERROR_FILE}]
then
 echo "FTP failed "
else
 echo "FTP succeeded"
fi
#
rm ${FTP_COMM_FILE}
rm ${FTP_ERROR_FILE}
#

Notes:
• Create a script as described above and execute it to perform

the ftp.
• The -n option with ftp tells ftp not to try an automatic logon.
For ftp to perform an ftp operation in batch mode with automatic
login, there must exist a .netrc file in the home directory of the ftp
initiator on the server from which ftp is being initiated.
The contents of the .netrc file are:
machine mastst login zamana password powerØ1

#TP_NODE=mastst
#SOURCE_FILE="/export/home/zamana/sh/a.dat"
#REMOTE_FILE="/export/home/zamana/temp/a.dat"
#

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

FTP_COMM_FILE="/tmp/ftp.dat"
FTP_ERROR_FILE="/tmp/ftp.err"
#
#USER="zamana"
#PWD="powerØ1"
#
cat <<! > ${FTP_COMM_FILE}
put ${SOURCE_FILE} ${REMOTE_FILE}
bye
!
#
ftp mastst <${FTP_COMM_FILE} > ${FTP_ERROR_FILE} 2>&1
#
if [-s ${FTP_ERROR_FILE}]
then
 echo "FTP failed "
else
 echo "FTP succeeded"
fi
#
rm ${FTP_COMM_FILE}
rm ${FTP_ERROR_FILE}
#

Notes:
• Create a script as described above and execute it to perform

the ftp.
• ftp mastst tells the ftp to initiate an automatic login using the

contents of .netrc file.
• The contents of .netrc file are as follows:

machine < remote_host_name> login < remote_userid>
password < remote_userid_password>

WAIT
Run a script in the background from within a script and wait for
it to finish:
ERROR_FILE=/tmp/process_invoice.err
#
echo " Enter Invoice Period\c"
read INVOICE_PERIOD
#
launch process_invoice executable in the background

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and wait for it to complete
#
process_invoice &
#
store the process id
#
PID="$!"
wait for the process to finish
#
wait ($PID)
#
check the error file
#
if [-s ${ERROR_FILE}]
then
 echo "Process failed"
else
 echo "Process succeeded"
fi

Note: without the wait command, the process will fall through to
checking the error file, which will not produce the correct check.

TAR
Make a tar file containing all the files in the current directory:
CUR_DIR=/u1/product/oracle/8.1.7
PARENT_DIR=/u1/product/oracle
#
TAR_FILE="ora817.tar"
#
cd ${PARENT_DIR}

tar -cf ${TAR_FILE} ./8.1.7/*

Note: the tar file contains relative path name ./8.1.7. When this
tar file is opened, a directory called 8.1.7 will be created under the
directory from which the tar command was initiated.
Open a tar file with a relative path name:
PRODUCT_DIR=/u1/product/oracle
#
we want to open the tar file under directory ${PRODUCT_DIR}.
#
copy the tar file from, let's say, /tmp, into this directory
#

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

cp /tmp/${TAR_FILE} ${PRODUCT_DIR}
#
tar -xf ${TAR_FILE}

TEE
Send output to a file as well as to a terminal:
LOG_FILE=/tmp/f1.log
touch ${LOG_FILE}
echo "Initializing …." | tee -a ${LOG_FILE}

TRUSS
Generate a trace file for running an executable:
SOURCE_FILE=a.c
EXE_FILE=a.out
TRACE_FILE=truss.out

Listing for $SOURCE_FILE:
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <curses.h>
main ()
{
pid_t pid ;
pid = fork () ;
if (pid > Ø)
{
 printf("Parent\n");
}
else
{
 printf("Child\n");
}
}

Generation of a trace file:
truss -o truss.out -f ${EXE_FILE}

Listing for ${TRACE_FILE}:
21883: execve("a.out", ØxFFBEF96C, ØxFFBEF974) argc = 1
21883: resolvepath("/usr/lib/ld.so.1", "/usr/lib/ld.so.1", 1Ø23) = 16
21883: open("/var/ld/ld.config", O_RDONLY) Err#2 ENOENT

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

21883: open("/usr/lib/libc.so.1", O_RDONLY) = 3
21883: fstat(3, ØxFFBEEFB4) = Ø
21883: mmap(ØxØØØØØØØØ, 8192, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, Ø) =
ØxFF3AØ
ØØØ
21883: mmap(ØxØØØØØØØØ, 77824Ø, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, Ø)
= ØxFF2
8ØØØØ
21883: mmap(ØxFF334ØØØ, 32736, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_
FIXED, 3, 671744) = ØxFF334ØØØ
21883: open("/dev/zero", O_RDONLY) = 4
21883: mmap(ØxFF33CØØØ, 6216, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_F
IXED, 4, Ø) = ØxFF33CØØØ
21883: munmap(ØxFF326ØØØ, 57344) = Ø
21883: memcntl(ØxFF28ØØØØ, 13182Ø, MC_ADVISE, ØxØØØ3, Ø, Ø) = Ø
21883: close(3) = Ø
21883: open("/usr/lib/libdl.so.1", O_RDONLY) = 3
21883: fstat(3, ØxFFBEEFB4) = Ø
21883: mmap(ØxFF3AØØØØ, 8192, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED, 3, Ø)
 = ØxFF3AØØØØ
21883: close(3) = Ø
21883: open("/usr/platform/SUNW,Ultra-Enterprise-1ØØØØ/lib/
libc_psr.so.1", O_RD
ONLY) = 3
21883: fstat(3, ØxFFBEEEØC) = Ø
21883: mmap(ØxØØØØØØØØ, 8192, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, Ø) =
ØxFF39Ø
ØØØ
21883: mmap(ØxØØØØØØØØ, 16384, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, Ø)
= ØxFF38
ØØØØ
21883: mmap(ØxØØØØØØØØ, 8192, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE, 4, Ø
) = ØxFF37ØØØØ
21883: close(3) = Ø
21883: close(4) = Ø
21883: munmap(ØxFF39ØØØØ, 8192) = Ø
21883: fork() = 21884
21884: fork() (returning as child ...) = 21883
21883: ioctl(1, TCGETA, ØxFFBEE9E4) = Ø
21884: ioctl(1, TCGETA, ØxFFBEE9E4) = Ø
21883: write(1, " P a r e n t\n", 7) = 7
21883: llseek(Ø, Ø, SEEK_CUR) = 8866Ø
21884: write(1, " C h i l d\n", 6) = 6
21883: _exit(1)
21884: llseek(Ø, Ø, SEEK_CUR) = 8866Ø
21884: _exit(1)

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Note: the options used with the truss command are as follows:
• -o – output file name.
• -f – follow child process as well.

CAT
Number the records in a file:
INPUT_FILE=/u1/zamana/f1_not_numbered.dat
OUTPUT_FILE=/u1/zamana/f1_numbered.dat

cat -n ${INPUT_FILE} > ${OUTPUT_FILE}

FILE
Find out about a file type:
QUERY_FILE=/tmp/f1

echo "xxxxxx" > ${QUERY_FILE}

file ${QUERY_FILE}

Output:
f1: ascii text

Or:
SOURCE_FILE=/tmp/a.c
QUERY_FILE=/tmp/a.out
cc -o ${QUERY_FILE} ${SOURCE_FILE}
file ${QUERY_FILE}

Output:
a.out: executable

SIZE
Find out the number of bytes allocated for different segments in
an executable:
SOURCE_FILE=/tmp/a.c
QUERY_FILE=/tmp/a.out
cc -o ${QUERY_FILE} ${SOURCE_FILE}

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

size ${QUERY_FILE}

Output:
1222 + 344 + Ø = 1566

Notes:
• The first number is the number of bytes allocated for text.
• The second number is the number of bytes allocated for

data.
• The third number is the number of bytes allocated for

uninitialized data.
• The fourth number is the total number of bytes allocated to

the file, which may or may not be equal to the size shown by
the ls –l command because the space allocation for a file is
made using a number of blocks that is a constant until
changed.

SCRIPT
Capture everything from the screen:
script

Notes:
• The command will initialize a file called typescript in the

current directory and write everything from the screen into
this file.

• Press ctrl-d to terminate the process.

MKFIFO
Make a pipe file to transfer a file’s contents to be compressed:
PIPE_FILE=/tmp/pipe.dat
COMPRESSED_FILE=/tmp/f1.Z
mkfifo ${PIPE_FILE}
compress < ${PIPE_FILE} > ${COMPRESSED_FILE}

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Notes:
• The compress command will read from file, ${PIPE_FILE}

and compress the content into ${COMPRESSED_FILE}.
• Another process must exist that will write to ${PIPE_FILE}.
• The ideal use of this is a situation where a large intermediate

file needs to be generated before being compressed (eg an
Oracle export file).

DIFF AND ED
Generate a diff file suitable for use with the ed command in order
to re-create a changed file:
ORI_FILE=/tmp/ori_file.dat
FILE_VERSION1=/tmp/file2.dat
DIFF_FILE=/tmp/changes.dat

Description of $ORI_FILE:
This article is an illustrated usage of various commands.
Each command is explained in the context of its usage.

Description of $FILE_VERSION1:
This article is an illustrated usage of various commands
and features.
Each command is explained in the context of its usage.
The article is written by Arif Zaman.

Generation of diff file:
diff -e ${ORI_FILE} ${FILE_VERSION1} > ${DIFF_FILE}

Notes:
• The file ${VERSION_CHANGES} contains commands that

are suitable for use with the ed command to generate the
Version1 file from the original file.

• The contents of ${DIFF_FILE} are as follows:
2a
The article is written by Arif Zaman.
.
1c

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This article is an illustrated usage of various commands
and features.
.

• To generate Version1 of the file from the original file, do the
following:
– Add the command 1,$p to the end of file ${DIFF_FILE}.
– Run the following command:

ed - ${ORI_FILE} < ${DIFF_FILE} > ${FILE_VERSION1}

• Notice changes are applied in reverse order, with the changes
later in the file appearing first. This is essential whenever
you’re making changes based on line numbers; otherwise,
changes made earlier in the file may change the numbering,
rendering the later parts of the script ineffective.

Apply multiple diff files in order to re-create the required version
of an original file:
ORI_FILE=/tmp/ori_file.dat
FILE_VERSION1=/tmp/file1.dat
FILE_VERSION2=/tmp/file2.dat
VERSION1_CHANGES=/tmp/ver1_changes.dat
VERSION2_CHANGES=/tmp/ver2_changes.dat

Description of $FILE_VERSION2:
This article is an illustrated usage of various commands
and features.
Each command is explained in the context of at least one of its usages.
The article is written by Arif Zaman.

Generating Version1 changes:
diff -e ${ORI_FILE} ${FILE_VERSION1} > ${VERSION1_CHANGES}

Generating Version2 changes:
diff -e ${FILE_VERSION1} ${FILE_VERSION2} > ${VERSION2_CHANGES}

Generation of Version2 file:
(cat ${VERSION1_CHANGES} ${VERSION2_CHANGES} ; echo ‘1,$p’) | ed -
${ORI_FILE} \
Ø ${FILE_VERSION2}

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

OD
Dump contents of a file that might contain certain control
characters:
FILE_NAME=/u1/zamana/name.dat

od -c ${FILE_NAME}

Note: any control characters will be displayed with either familiar
notation (eg line feed with \n) or the ASCII equivalent number (eg
004 or 033).
Arif Zaman
ETL Developer (UK) © Xephon 2003

Regular expressions and pattern matching

So far in this series of articles, our major exposure to pattern
matching and regular expressions has been via the case and
expr commands. You may already be familiar with the relatively
simple usage of filename generation characters, but in this
article we are going to devote ourselves to the more complex
regular expressions that a number of commands use to match
text, usually deploying the patterns against the contents of a
particular file, or against their standard input.
Filename generation can also be an integral part of shell
programming. For example, your script may want to generate a
list of filenames on which you want to perform a number of
operations. The way in which files are matched to generate your
list, using ls say, can be quite different from matching text using
the regular expressions understood by other commands, and
where necessary we will show how the metacharacters differ in
their usage.
There are a number of commands involved in the extraction and
manipulation of text using regular expressions, consisting mostly
of metacharacters, but, just to keep you on your toes, the syntax

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

used in expressions varies from command to command; some
metacharacters used by one command may not be available in
others, and some perform different functions depending on the
command in which they are used. To add to the confusion there
are commands such as the case statement, which appear to
have a mix of regular expressions and filename generation-type
matches.
You are undoubtedly familiar with grep, but you may not be
familiar with its stable mate, egrep, which uses an extended set
of metacharacters for pattern matching, or fgrep, which is
equivalent to grep -F and treats each pattern as a string, rather
than a regular expression. The family of greps are most commonly
used to match text in files. sed and awk are two very useful
commands that rely heavily on the use of regular expressions,
particularly sed. And let’s not forget everybody’s favourite, vi,
which is an extension of ed, the line editor, and which makes
extensive use of pattern matching when you use its search and
replace operators.
Regular expressions allow you to write simple or complex
patterns, but because of the differences in interpretation by
commands, and possibly also your own misconceived level of
understanding of regular expressions, not to mention making
simple errors, you can quite often achieve matches that are not
what you expect. If your script does something irreversible with
its matches, then be absolutely certain you know what you are
doing. The rule is, ‘test the pattern to see what it matches before
using it in earnest’. You have been warned!
To understand pattern matching and regular expressions you
must become familiar with the functions that each metacharacter
performs, and our discussions will, by necessity, involve not only
the complex expressions, with which you may be unfamiliar, but
also simple pattern matching expressions which you probably
know already, although we will not dwell too long on them since
we don’t want to bore you to death! So, if some of the material
is already known to you, then my sincere apologies.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

REGULAR EXPRESSIONS
A regular expression is a sequence of characters which may
contain any of the standard alphanumeric characters, in addition
to a number of metacharacters having their own particular
matching abilities. We may also want to match metacharacters
themselves, and these will have to be escaped to ensure that
they are treated as ordinary characters, not metacharacters. You
should not think of regular expressions as matching words, but
matching individual characters, which may themselves constitute
words, but not necessarily so.
To illustrate this, let us consider an example of the tr command
which tends to be used with a simple form of pattern matching.
If we used tr with the following syntax:
tr 'cat' 'dog' . .

it would certainly change every instance of cat to dog, which is
what we may have wanted to do, but the translation is not of
words, but of characters, so that every c will be changed to a d,
every a to an o, and every t to a g, so that the word that will be
changed to the completely incomprehensible ghog. Merely
matching patterns is often the easy bit, but changing the match
to something different, and making sure that you have also not
changed anything else, is the hard part.

Metacharacter functions in pattern matching
Metacharacters used in regular expressions and pattern matching
perform three basic functions, although there may be variations
from these:
• Matching literal characters themselves.
• Grouping characters into strings for matching, or placing

them into classes to match any one of a number of characters.
• Acting as operators to match zero, one, or more, of a single

character, or group of characters; in filename generation,
some of these operators also match literal characters.

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In the following sections we will consider the different
metacharacters and the function each performs, whether it be for
use in regular expressions, or in filename generation. When we
talk about escaping metacharacters to convert them into ordinary
characters, we mean preceding them, in most cases, with a
backslash, \. Just about every command seems to interpret the
backslash as an escape character, whereas, usually due to
syntax reasons, we often cannot escape the metacharacters by
enclosing them in single quotes, say.

MATCHING WITH . (DOT)
The dot metacharacter is used to match literal characters. In
regular expressions it is effectively a wildcard that matches any
single character, except a newline. For example, a.c matches
abc, a9c, a:c, etc.
To match the dot itself during regular expressions it must be
escaped, but when used in filename generation this is not
necessary since it only matches the character . (dot).

MATCHING WITH [...]
This construction is used to match a class of literal characters
and matches any one, or more, of the characters enclosed
between the brackets. For example, [abc] matches any pattern
containing a, or b, or c, or ab, or ac, etc. If you wanted to match
any combination of abc followed by the numbers 1 or 2, or both,
then you could use the pattern [abc][12]. The pattern [abc12]
would achieve the same thing, but could also contain matches
that consisted of the numbers only, or of the letters only, which
is not what we want.
If you wish to match a bracket itself in your regular expression,
using grep for example, you can neither quote it, nor escape it
with a single backslash; any attempts to do this will result in an
imbalance error message and you can only match brackets by
escaping them with a double backslash, quoting the single
backslash followed by the bracket, or by enclosing them in

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

brackets themselves. For example:
grep [[]
grep '\['
grep "\["
grep \\[

The double backslash method means that the first backslash
escapes the second, and then forces the shell to pass a single
backslash followed by a bracket to the grep command. The
single backslash now tells grep to treat the following character
as a literal character, rather than as a metacharacter. Similarly,
the quoted backslash and bracket are passed as a whole to grep
to interpret them in the same way.
There are certain peculiarities when you use the brackets
method to match a single bracket, and the actual location within
the surrounding brackets can be quite important, depending on
what you are trying to achieve. For example, suppose you have
a file containing the lines:
line with [
line with]
line with a

Then:
grep []] matches line with].
grep []a] matches line with] and line with a.
grep [a]] matches nothing.
grep [[] matches line with [.
grep [[a] matches line with [and line with a.
grep [a[] matches line with [and line with a.
The rule seems to be ‘the bracket you want to match must be the
first character within the surrounding brackets’. This applies, of
course, only when you want to match a single bracket. Either of
the above two methods for matching brackets can result in some
strange-looking regular expressions. For example, if you have a
variable var containing the string abc[def]ghi, then to use expr

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

to extract the brackets and their contents from the variable, we
must use the syntax:
expr $var : ".*\(\\[.*\\]\).*"

or:
expr $var : ".*\([[].*[]]\).*"

Instead of using grep for matching brackets and other similar
metacharacters, however, it can often be better to use fgrep to
avoid using escape characters since the bracket is interpreted by
fgrep as a simple string character, not a metacharacter. As you
will see, there are also a small number of metacharacters
available with egrep, and which can also be used with grep
provided they are escaped. For readability it is perhaps better to
use egrep in these cases.

Matching ranges
A hyphen (-) is used to match a range of characters according to
the current collating sequence. For example, [a-z] will match any
lower-case alphabetic character. Other useful ranges are [A-Z]
for all upper case characters, [0-9] for all digits, and any
combinations such as [a-zA-Z], or [a-z0-9].
You should be aware that the pattern [a-Z] will not match all upper
and lower case characters since A to Z come before a to z in the
ASCII collating sequence, and so the pattern will match only a,
-, and Z. The similar pattern, [A-z], will match all the upper and
lower case characters, but also a number of other characters that
fall within this collating sequence.
If you want to match the hyphen itself, this must be either the first
or last character in the expression, such as [-+*/], for example,
or you can use a backslash to escape it.

Excluding characters
Within our braces we can not only specify which characters we
want to match, we can also specify the characters we want to

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

exclude from matches. We do this in regular expressions by
using the caret, ^, which must be the first character after the
leading bracket in order for the shell to interpret it as an exclusion
character. If the caret appears anywhere else in the brackets, or
has been escaped, it is treated as an ordinary character.
When excluding characters during filename generation, instead
of the caret we use the exclamation mark, !, as our exclusion
character. The same comments regarding positioning are
applicable.
It is often easier to use an exclusion expression than to specify
pattern lists of all the characters you want to match. For example,
if we wanted to include all non-alphabetic characters, it is easier
to use the pattern [^0-9a-zA-Z] or [!0-9a-zA-Z] for filename
generation (strange filenames!) than it is to explicitly state all the
characters you want to match.

MATCHING WITH &
The ampersand (&) is a metacharacter that is used in a small
number of commands to represent the remembered characters
matched by the regular expression. It is used only in commands
such as sed and vi, which have substitute operations to allow
character strings to be modified and replaced. In such
circumstances, the & can be used as a shorthand notation to
represent the whole of the matched pattern, which you may want
to prefix with characters, or to add characters to the end of the
string, or both.
As an example, suppose you have a text file with lines containing
a series of three-digit numbers and you would like to change
each of these numbers to 99nnn00. You can achieve this change
with:
sed "s/[0-9][0-9]*/99&00/" filename

This command says, ‘search for any digit, followed by zero or
more digits, and replace this pattern with 99, followed by the
remembered pattern (&), followed by 00’.

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MATCHING WITH ^ (CARET)
The caret is one of the two metacharacters used in both regular
expressions and filename generation, which, depending on its
position in the expression, can match either the character itself
or can be used to signify a particular position within the string to
be matched. If the caret is in the first position of the expression,
it matches the start of the line. If it appears anywhere else, it is
the caret character itself, unless, of course, it is used as an
exclusion character in square brackets (unlikely to be used in
filename generation).
For example, if we wanted to match strings which started with a
caret, but were not followed by a lower-case character, we could
use the expression:
^^[^a-z]

We can also escape the caret if we want to match the character
itself, no matter where it appears in our expression. In the
example above, if our string to be matched included a double
caret, we could use:
\^^[^a-z]

MATCHING WITH $
The $ is the second of our positional metacharacters that can be
used either to match the dollar character or to signify the end of
a string or line; the latter interpretation applies only when the $
is situated at the end of our expression.
For example, f..k$ would match four-letter words starting with f
and ending with k, situated at the end of our line. To take this one
stage further, ^f..k o..$ would match lines which started with a
four-letter word beginning with f, followed by three-letter word
beginning with o, followed by the end of the line; fork out on a
line of its own would thus be matched.
Similarly you can use both of the positional metacharacters to
match a blank line using ^$.

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The $ causes the same problems as brackets when you want to
match the character itself. You cannot use commands such as:
grep $
grep '$'
grep "$"
grep \$

to extract lines from a file containing the dollar character because
the shell will interpret the dollar as the end of a line and so grep
will print out every line in the file. To get round this you must use
either the double or quoted backslash pattern we used to match
a single bracket, or enclose the dollar with brackets.
Searching for the $$, $*, and $# shell variables also causes
problems and you must use patterns such as:
grep [$][$]
grep [$][*]
grep [$][#]

Similarly, if you want to search for a dollar at the end of a line then
you must use the pattern [$]$.

MATCHING MULTIPLE OCCURRENCES

Repeating with *
The * character is probably the most commonly used pattern
matching metacharacter, but in regular expressions its importance
is not in matching a particular character (apart from itself when
escaped or enclosed in brackets) but as an operator to signify
zero or more occurrences of the character(s) in the regular
expression that precedes it, whether it be a single specified
character, one contained in a class of characters surrounded by
brackets, or one which is generated from a regular expression.
In filename generation, of course, it serves a different function
and will match any character apart from a . (dot).
We have already seen its usage in our expr examples above,
where we used .*; the dot matches any character and * produces
zero or more of them. This is a catch-all pattern to generate any

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

number of characters and is usually preceded, or followed, by
some regular expression which further defines the specific
characters we want to match.
As an example, consider a text file containing the following lines:
Candy can can can
Candy can't can can
Candy cannot can can
Candy can not can can

What we want to do is extract all the lines with negative
statements, which we can do with the following grep command:
grep "can[no']*t"

In this example the * operator checks for multiple occurrences of
any of the characters in the brackets, so that the expression will
extract can’t, cannot, and can not, but will ignore any lines that
do not contain at least one can followed by zero or more of the
characters in the brackets, and then followed by the letter t. This
expression will thus exclude the positive statement.
As you may have noticed, we have enclosed our expression in
double quotes, but it is not essential that grep expressions
always be quoted. In this particular example the single quote is
included in the pattern and unless it is quoted with double quotes
the shell will present us with the secondary prompt since it would
expect a closing single quote. You only need to quote grep’s
expressions if they contain characters that could be interpreted
by the shell as special characters.

Repeating with ?
The question mark (?) operates much like the *, but matches
zero or one occurrence of the character(s) in the regular expression
that precedes it. Do not confuse its usage in regular expressions
with that in filename generation where the shell recognizes ? as
a wildcard representing a single character, which is equivalent to
the dot in regular expressions.
The question mark is a metacharacter which is available only in
a selected number of commands, such as egrep and awk.

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

If we wanted to extract lines from the text file we used above,
containing either cannot or can not, then we could use the
command:
egrep "can[n]?n"

Repeating with +
The plus (+) metacharacter behaves in a similar way to the
question mark, but matches one or more occurrences of the
character(s) in the regular expression that precedes it. It is also
available only in a selected number of commands, such as
egrep and awk.
If from our text file we wanted to extract the lines containing
cannot and can’t, we could use the command:
egrep "can[n']+"

MATCHING ALTERNATIVE OCCURRENCES AND GROUP MATCHES
There may be occasions when you want to match one or more
expressions by using a single command, and we have already
encountered one such construction, which is used extensively in
case statements. This uses the vertical bar (or pipe symbol if you
prefer), |, to match any one of a number of regular expressions.
This metacharacter is also available in commands such as
egrep and awk.
Using our text file above, we can enter the following command
to extract all lines containing can’t, cannot and can not:
egrep "can[]*n|can'"

or, the even simpler:
egrep "[]?no|'"

The first regular expression before the vertical bar matches
cannot and can not, and the second expression matches can’t.
In this extended metacharacter set we also have parentheses to
group expressions. They can be used with egrep and awk, and
are also available with grep if they are escaped. If we wanted to

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

match lines containing just can’t and cannot, we could have
used the command:
egrep "can('|n)"

In this particular expression we match can followed by either of
the characters ‘ or n, as an alternative to writing “can’|cann” as
our pattern. As you may have noticed, there are usually multiple
ways of writing pattern matching expressions, and whichever
you use is immaterial provided that it extracts only the characters
you want.
The major difference between using brackets and parentheses
in regular expressions, such as in the examples above, is that the
square brackets contain individual characters to be matched,
whereas parentheses show whole strings that are either expressly
stated or are implied from further regular expressions contained
within the parentheses; we have already seen examples of this
when we used escaped parentheses with the expr command to
match strings.
To further show that the parentheses match whole strings rather
than individual characters, suppose our text file also contained
the line Candy cannt can can. If we then used the command:
egrep "can(not)+"

we would match only the line containing cannot since we are
looking for the can characters followed by one or more
occurrences of the string not, and not the can characters
followed by one or more occurrences of any of the individual
characters, n, o, or t, which would have matched the line
containing cannt had this been the case.

CLOSURES
There are a pair of metacharacters that allow you to specify the
number of times you want a string of characters, or a regular
expression, to be repeated. The metacharacters in question are
braces, { }. They are available with the grep and sed commands
if they are escaped, not with awk at all, and with egrep they do

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

not need to be escaped.
The braces enclose one or two arguments, which is where they
get their name, enclosures. The format of an enclosure is:
{n,m}

where n, the minimum number of repeats, and m, the maximum
number of repeats, are integers between 0 and 256. The above
format will specify any number of occurrences of the preceding
regular expression, or single character, or string, between n and
m inclusive. If you specify {n} without an m, then exactly n
occurrences are matched. Similarly, with {n,} then at least n
occurrences will be matched.
There are a number of shorthand abbreviations for expressing
some enclosures:
• * is equivalent to {0,}, meaning repeat the preceding pattern

zero or more times.
• + is equivalent to {1,}, meaning repeat the preceding pattern

one or more times.
• ? is equivalent to {0,1}, meaning repeat the preceding

pattern zero or once only.
In order to show some examples of the use of enclosures, let us
assume our text file contains the following lines:
Candy can cancan
Candy can't can can
Candy cannot can can
Candy cannt cancan
Candy can not can can

To extract lines containing nn, we could use:
egrep "can{2}"

or:
egrep "can{2,}"

To extract lines containing cancan, however, we would use:
egrep "(can){2}"

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This time we have enclosed the string can in parentheses so that
we look for multiple occurrences of the whole string, rather than
just the letter n, which we did in the previous example. If we
wanted to extract the lines containing can can, we cannot use:
egrep "(can){2}"

since this will not extract a single line, unless each of our lines
contains a space at its end. We also cannot use:
egrep "(can){2}"

since this will also extract the line containing can cancan, which
is not what we want. Instead we have to use:
egrep "t(can){2}"

This searches for the lines containing a t, followed by a space,
followed by the string can, so that it excludes the line containing
cancan.
Tonto Kowalski
Guru (UAE) © Xephon 2003

Using tape libraries with AIX

This article focuses on tape libraries from the AIX system
administrator’s point of control, namely the tapeutil and related
commands. It discusses some physical aspects like size and
location as well as logical aspects like enabling autoloader or
partitioning. Some of the most recent changes and enhancements
are also mentioned. It does not cover the selection of media type
or recommend one or more high-level back-up software products.
For ease of use a script is part of the document that adds some
SMIT menus to handle the library, especially the medium changer.

TAPE LIBRARIES AND AUTOLOADER
This article concentrates on tape libraries and autoloaders. They

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

are systems with one or more drives, more tape storage slots
than drives, and a roboter that can be accessed from AIX.
Being more exact, there is a difference between a tape library
and an autoloader. Usually the autoloader is physically a small
library with a single tape drive and robotic. But the handling is
much simpler and makes the whole library appear as a single
drive with a virtual tape that spans across all physical tapes. Most
autoloaders can be switched to the library mode, but the set of
tapes written in autoloader mode is not readable in library mode.
Some models with LCD displays are in autoloader mode when
displaying automatic and in library mode when displaying random
access.

The location
Because of the SCSI-bus limitations, the libraries have been
close to the systems in the past. For disaster recovery the tapes
have been removed from the library. Since there are fibre
channel tape drives, the library can be up to 10km away from the
systems. Having systems and library in different disaster sections,
the removal of tapes may be reduced and therefore the recovery
may be speeded up. The environmental stress for the tapes can
be reduced as well.

The size
A tape library often seems to provide a huge amount of space.
Usually the space is directly related to the data that is stored on
disk drives. But most back-up policies need multiple copies of the
data, eg for the last week a recovery for each day must be
possible. Therefore you will have a number of copies of existing
data and a number of copies of already deleted data that needs
to go to the library. In addition each tape is usually not filled to the
rim, but to an estimated two thirds.
Not considering the long-term back-up tapes that will be removed
from the library, the minimum total size of it can be calculated like
this:

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

library = 3 / 2 * (data * versions + datadeleted * 2) + 2 *
cartridgesize * hosts

where the last term comes in for the boot images of each system.
Consider this example; for three ERP systems with 600GB data
you will need:
• 600GB in 10 versions (a full week and three for three weeks

before).
• 100GB for the hourly incrementally backed up log files.
• Three boot cartridges.
This means 6TB for the database and 200GB log files, resulting
in a library size of 9.3TB + 6 cartridges for mksysbs. Assume you
decided to use LTO2 cartridges with 200GB (uncompressed).
Therefore the library should have at least 53 cartridges. There is
a benefit of compression and incremental back-ups, but there is
also some growth. For the sake of simplicity it is assumed to
match in the first year.

The type
There is not enough space here to describe all libraries. The
parts of each library are numbered. Mostly each type is numbered
consecutively, ie the medium changers, the tape drives, and a
fair number of cartridge slots. Optionally there may be a number
of so-called mail slots, which may be used to import and export
cartridges. The numbers that are given are used by the library
control command tapeutil.
We do not bother about the exact type of drives because there
is a wide variety of proprietary drives, eg AIT from Sony, DLT from
Quantum, MagStar from IBM, and many others. There are also
a few industry standard technologies, like the Linear Tape Open
(LTO), which now is available in its second generation. Tape
recording is also divided into helical and linear recording methods.
And there are many more differences. However, the technical
specifications of the tape drive or library may affect availability of
certain functions described below.

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Tape devices
There are two types of device we need to consider with tape
libraries (excluding those being created for back-up software, eg
lbX for TSM). First, there are the tape drive devices, which cannot
be distinguished from the stand-alone ones. Second, there is
usually one medium changer, which controls the library robotics.

Tape drives
Usually raw magnetic tape drive devices are associated with /
dev/rmtX, with X being the number of available drives.
In certain cases one might need to modify the access behaviour.
This can be achieved by calling the tape device with its dot
extension. As mentioned, the X part of the rmtX.Y file name
specifies which tape drive is used. The first tape drive connected
is rmt0, the second is rmt1, and so on. The .Y extension on the
file name specifies the tape drive access and writing density as
shown in the following chart:
Special Retension Rewind Density Unload Trailer
File on Open on Close Profile on Close Label
rmt* no yes 1 No No
rmt*.1 no no 1 No No
rmt*.2 yes yes 1 No No
rmt*.3 yes no 1 No No
rmt*.4 no yes 2 No No
rmt*.5 no no 2 No No
rmt*.6 yes yes 2 No No
rmt*.7 yes no 2 No No
rmt*.null yes no 2 No No
rmt*.1Ø no no 1 No No
rmt*.2Ø no yes 1 Yes No
rmt*.4Ø no yes 2 No Yes
rmt*.41 no no 2 No Yes
rmt*.6Ø no yes 2 Yes Yes

Some of the devices have been available with AIX for a long time,
and some of them are not very often referenced. The rmt*.null is
meant for debugging and developing and there are some
similarities with /dev/null, ie it does not bother any real drives and
every action completes successfully. Note: the rmt*.10 bypasses
normal close processing and the tape is left at the current

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

position. With LTO and Magstar the density bit is ignored. More
details can be found in IBM Ultrium Tape Device Drivers Installation
and User’s Guide.

Medium changer devices
Mostly the medium changer is accessed through a child device
of the first library drive. More precisely, there is a LUN-1 to the
same SCSI ID, where the LUN-0 tape drive rmt0 is connected.
In some cases (eg 3494) there is a separate (serial) connection,
which is assigned to another device like /dev/rmt0.smc.
The medium changer accepts commands issued by the ATape
driver. The standard interface command in AIX is tapeutil. In the
case of a serial connection to the 3494, the medium changer is
supported by IBM 3494 Enterprise Tape Library Manager Control
Program (atldd). The installation is decribed in Chapter 40 of
GC35-0154-09, the IBM TotalStorage Tape Device Drivers
Installation and User’s Guide.

The tapeutil command
As already mentioned the tapeutil command allows you to
control the library functions. tapeutil (for ATape driver download
see a IBM FTP Server section /storage/devdrvr) in Version
7.1.5.0 has a lot of subcommands:
Usage: tapeutil [-f Device Subcommand [Subcommand ...]]

 General Subcommands:
 devinfo inquiry [Page] print "Text"
 reserve release reqsense
 reset logpage "Page" modepage "Page"
 qrypath resetpath disablepath "Primary | Alternate | Number"
 path checkpath enablepath "Primary | Alternate | Number"
 tur vpd fuser
 passthru loop [Count] sleep "Seconds"
 kill

 Medium Changer Subcommands:
 allow prevent audit [Address [Count]]
 inventory mount [Slot] position "Destination"
 elementinfo unmount [Slot] move "Source" "Destination"
 devids exchange "Source" "Dest1" "Dest2"

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Tape Subcommands:
 append bsf [Count] bsr [Count]
 autoload eof [Count] weof [Count]
 noautoload eofimm [Count] weofimm [Count]
 compress fsf [Count] fsr [Count]
 nocompress erg logsense
 load erase display "Message"
 mtdevice rewind read -d Destination [-c Count]
 qrypos retension write -s Source
 seod status rtest [-b Blocksize] [-c Count] [-r Repetition]
 offline parms wtest [-b Blocksize] [-c Count] [-r Repetition]
 rewoffl sync rwtest [-b Blocksize] [-c Count] [-r Repetition]
 unload volid "Name" setpos [Blockid]
 list sdp "Number" chgpart "Number" [Blockid]
 density idp qrypart
 sili prevent allow
 nosili

 Service Aid Subcommands:
 dump [Filename] fmrtape resetdrive ucode "Name"

There are some Installation and Update FAQs as well as the
Tapeutil Documentation (Chapter 8) available at IBM.

Generic tape control commands
The most frequently-used commands are those within the Tape
Subcommands section. Some of those commands are well-
known and accessible by the System V standard command mt:
weof eof fsf bsf fsr bsr rewind offline rewoffl status

After a tape is inserted into a drive you may forward or backward
search for files or records, and write an end of file mark. If finished
you may rewind and offload by a single or separate commands.
Additionally the AIX-specific command tctl supports the self-
explaining subcommands:
erase retension read write reset

The remaining subcommands in that section may be used for
testing, to modify the behaviour of the drive/library (eg function
as autoloader), or are related to barcode labels. Throughout this
and all other sections are also commands to improve scripting.

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Service Aid and general subcommands
The Service Aid subcommands are used in the case of defects
or hardware maintenance, eg firmware updates. The general
subcommands provide mostly debugging functionality and
commands to manipulate the access to the drives. The reserve/
release command allows users to block a device for exclusive
access, eg within a fibre channel. The other subcommands of
these sections are not considered here in detail.

Medium Changer Subcommands
Most important for handling cartridges are the Medium Changer
Subcommands. While move moves a single cartridge from one
slot to another, exchange additionally moves a cartridge present
in the target slot to another space. The mount and unmount
commands allow you to move a tape between a slot and a drive.
With position the access times may be reduced by having the
accessor lurking in front of the given slot.

The library inventory
Elementinfo gives a short overview of the components within
the library, while inventory lists all the details of those elements.
Usually part of the information is not available when connecting
the library to the power. It needs to be collected with the audit
command, which checks in which slots cartridges are and with
what labels. And for a big library this may take as long as you
would expect (or even longer!).
The subcommand inventory gives you a lot of information.
When moving the tapes around it can be helpful to reduce the
amount of data to the most relevant parts. The following script
picks only the slots where cartridges are present. After the slot
number it displays from where the cartridge comes, what type the
slot is, and what label was read.
#!/usr/bin/sh
#
command: showlabel <smc#>
#
example: # showlabel smcØ

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ID [From] Type <Label>
32 [32] Slot address <F2Ø6C38>
33 [33] Slot address <F2Ø6C39>
[...]
if [$# -lt 1]
then
 exit -1
fi
echo "ID [From] Type <Label>"
(tapeutil -f /dev/$1 inventory 2>/dev/null && echo) |\lineawk '
 if(NR>1)
 if(index($Ø," ")>1)
 address=$NF;
 type=$1 " " $2
 else
 if(index($Ø," ")==1)
 if($1=="Source") former=$NF;
 if($2=="Tag") label=$4
 if($2=="Present") media=$4
 else
 if(media=="Yes")
 printf"%d [%2s] %s <%s>",address,former,type,label

 '

Inventory does not care for the AIX drive naming. The only way
of mapping drives and slot numbers is by looking at the SCSI IDs
and LUNs. Moreover, usually it is more interesting to have a view
of the cartridges within the drives than the drive itself. The
following script presents the AIX name together with the bus
address, the slot number, and the cartridge label:
#!/usr/bin/sh
#
command: showdrive <rmt#>
#
examples: # showdrive rmtØ
rmtØ (LUN Ø,Ø) 16 <-- 66 <F2Ø6C38>
showdrive rmt1
rmt1 (LUN 1,Ø) 17 empty
if [$# -lt 1]
then
 exit -1
fi
DRIVE=$1
echo "$DRIVE ("
LUN=$(lscfg -l $DRIVE | awk 'if(NR==3)split($2,a,",");printf"Logical
Unit.* %s",a[2]')

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SID=$(lscfg -l $DRIVE | awk 'if(NR==3)split($2,a,",");c=split(a[1],b,"-
");printf"SCSI.* %s",b[c]')
tapeutil -f /dev/$DRIVE inventory 2>/dev/null |\linegrep -p "$LUN"
|\linegrep -p "$SID" |\lineawk '
 if(index($Ø," ")>1)
 address=$NF;
 type=$1 " " $2
 else
 if(index($Ø," ")==1)
 if($1=="Source") former=$NF;
 if($2=="Tag") label=$4
 if($1=="SCSI") scsi=$NF
 if($1=="Logical") lun=$NF
 if($2=="Present") media=$4
 else
 if(media=="Yes")
 printf"LUN %d,%d) %d <-- %2s <%s>",scsi,lun,address,former,label
 else
 printf"LUN %d,%d) %d empty",scsi,lun,address
'

Positioning the tape
Frequently with large cartridges, like the Ultriums, one wants to
add another archive after the last record on tape. Using the rmt*.1
(or rmt*.10) device you can avoid moving the tape after the
command has completed:
tapeutil -f/dev/rmtØ.1 seod

This command spaces to the end of data and leaves the drive at
that position. If you do not retension or rewind on open or before,
your data goes to the end of the tape.
With the setpos and the qrypos subcommands, you can
position the tape at an arbitrary block. Either the blockid must be
given or the tape must be previously treated with qrypos, which
causes the drive to remember the blockid.

Tape cartridges
According to the IBM recommendations Tape Backup – Handling
tape cartridges (IBM document ID: MIGR-39484) and Tape
Backup – Media operation and care considerations (IBM
document ID: VLAR-42XRPP) you should obey the rules for

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

media handling that are distributed with the media, ie avoid any
kind of radiation or other environmental threats, particularly try to
keep the media protection lid shut to reduce tape contact to a
minimum.
It is recommended that you store the cartridges vertically and use
barcode labels. The barcode label is meant to simplify access to
the reference information. If no barcode label is used, one should
use the reference information on the label itself. This should
specify the cartridges’ characteristics. The label should identify
who stored what information, when, and in which format. The
software should export the reference information to the cartridges
as well.

Tape drive cleaning
The environment for tape libraries and the drives within them
must be clean. Otherwise the commonly assumed lifetimes of
tapes and drives will not be reached. Moreover this can result in
data loss.
But even within a clean environment there is still some dirt left
within the drives when working with the tapes. Therefore the
drives need to be cleaned. There was a time when this had to
happen on a regular basis, eg 8mm with 2.3GB capacity had to
be cleaned every month or after 30 hours of operation. Newer
tape drives indicate their need for cleaning on their control panel.
Within most libraries there are functions that automatically load
the cleaning cartridges to allow proper function without manual
intervention.
A tape drive needs cleaning when one of the following conditions
occurs:
• Its LCD/LED display indicates cleaning.
• The attached system’s error report indicates cleaning.
• Certain media changes are executed (eg AME after MP in

8mm drives).

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Operating hours exceeded (usually only the withdrawn 3570
and older drives without service indicator).

The more modern the drives are, the less the tape touches the
head and the positioning coils. In consequence there is less need
for cleaning.

Cleaning cartridges
Every cleaning cartridge has its lifetime, ie it may be used for a
limited time only. After that time it should not be reused for any
drive. Most cleaning tapes have a lifetime of between 12 and 50
cleaning cycles. Details for non-LTO and non-Magstar are
mentioned in the corresponding chapters of the IBM Tape Help
Package, which also gives the correct order numbers.

Cleaning the drive
In some libraries, like the Magstar MP series ones, its controller
counts the times the cleaning cartridge is used. If there is no
library support, the usage times must be counted manually.
Many recent drives support a kind of self-administration with
respect to their cleaning needs. Using the SCSI bus to read the
drives’ memory, the utape command allows you to find out how
many hours of operation have passed since the last cleaning
cycle:
/usr/lpp/diagnostics/bin/utape -vcnd /dev/rmtØ

The time in hours since the last usage of the cleaning tape is
reported. The utape program is part of the ATape driver distribution
and is described as performing the following actions:
Usage: utape [-h] | [-d <device>] [-n|-t|-l]
 utape -c [-v] -d <device> -n | -l | -t -f [<filename>] |-D

where:
• -c – command line.
• -v – verbose mode.
• -h – usage statement.

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• -d – device name.
• -n – time since last cleaned.
• -t – trace table.
• -l – logsense data.
• -f – write to file.
• -D – write to DOS diskette.
The command is also documented in almost all pSeries user
guides, eg for the model F80. It can be used to retrieve the log
sense or trace information to floppy or file. Both ways may help
to track down errors, but are less useful in day-to-day business.
TAPE PERFORMANCE

While the IBM Tape Help Package mentions a lot of influencers
on tape performance, we take some as given, like the CPU’s
power or bus speeds. Nevertheless, there is still a lot that we can
do to identify good performance.

Topology and throughput
Check the topology for theoretical and practical throughput.
Convert all theoretical values to MBps (or MB/s), since it is the
usual unit for measuring the speed of tape drives. GBph (Gbyte
per hour) may be converted to MBps by dividing by 3.6, while
Gbps (gigabit per second) may be converted to MBps by
multiplying the number in front of the units by 125. This means
if you can back-up an SSA-Array with 216GB within 5 hours, your
tape performance is 43.2GBph, which is 43.2/3.6MBps=12MBps.
Topology means how the data source and the tape drives are
connected. For each transfer you need a path. With dedicated
SCSI this is rarely a problem. With fibre channel you need to
watch out. Like on a motorway, it does not help having four lanes
at each end when in between the traffic is narrowed to a single
lane.
As a rule of thumb, try to connect each modern tape drive on a

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

separate path and if unavoidable use a maximum of two drives
per path, where the path and the drive generation should match.

Compression
For performance reasons, it is important to choose the right
location for compression. Most drives perform best when always
having a filled buffer. Therefore it is necessary to deliver a
continuous and uninterrupted stream that is capable of sending
faster than 50% of the nominal drive performance. LTO2, for
example allows adaptive speed control between 18 and 35MBps.
The following example does some maths on compression. A
2Gbps FC link allows a theoretical performance of
2*125MBps=250MBps (practical throughput is less, see
documentation). Having 4 LTO-2 drives on a single 2Gbps path
it would be sufficient to send already compressed data to those
drives, meaning a maximum throughput of 4 drives at 35MBps/
drive or 140MBps in total. But uncompressed data may double
the ratio of path-to-drive demands, ie you have to send with
70MBps/drive to keep each drive streaming with 35MBps, since
compression reduces the amount of data before it’s put on the
tape after receiving it at the drive. In situations with extremely
compressible data, a throughput of up to 120MBps per drive is
possible. In conclusion, it is better to have a dedicated 2Gbps
path to a maximum of two LTO-2 drives if full performance is
required even with uncompressed data. (Please note that you
can assume most video, audio, and picture data will already be
compressed.)
Another rule of thumb is to compress the data at the source
system if your weakest component(s) are the cabling (aka
networks), and to rely on the hardware compression in the drives
if your weakest component(s) belong to the systems.

Testing
Testing is not that easy when talking about compression. Most
people use a cat /dev/zero or the AIX-specific command lptest
to generate a data stream. But be aware that both streams may

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

be pretty well compressed. These are not good input for testing
a tape drive with compression enabled. The following table
shows that even the oldest compression programs like pack
reduce a stream of zeros to an eighth of its original size:
Size in Bytes Command Filename

524288 dd if=/dev/zeroof=/tmp/zero bs=32k count=16 /tmp/zero
65546 pack /tmp/zero /tmp/zero.z
1283 compress /tmp/zero /tmp/zero.Z
548 gzip /tmp/zero /tmp/zero.gz
45 bzip2 /tmp/zero /tmp/zero.bz2

2Ø48ØØ lptest 1Ø23 >/tmp/lptest /tmp/lptest
17Ø713 pack /tmp/lptest /tmp/lptest.z

9745 compress /tmp/lptest /tmp/lptest.Z
148Ø gzip /tmp/lptest /tmp/lptest.gz
1794 bzip2 /tmp/lptest /tmp/lptest.bz2

I do recommend some MP3 audio data or, even better, some
MPEG4 or DIVX video data, which was tested with bzip2
compression before. In principle GIF and JPEG data would be
also a good choice, but you are going to need a lot of them, since
they should not repeat within one buffer filling at least.

Buffer size
When thinking about block size, keep two things in mind:
• The device driver.
• The application.
The operating system uses a device driver to communicate with
a device. Therefore we need to determine the blocksize currently
set for the tape drive by an AIX system command:
lsattr -El rmtØ # (Write down this blocksize)

Setting the blocksize will be done with the following command:
chdev -a block_size=32768 -l rmtØ

One may use smit tape and its sub menus to achieve the same
result. LTO Generation 2 supports buffer size of 64Kbyte (ie
block[lowbar]size=65536).
Please be aware that there can be several difficulties when

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

having the wrong blocksize. Using blocksize 0 allows you to read
all kinds of data but performance might be quite bad. Booting
from tape might need a certain blocksize. Please verify that your
mksysb tapes will work if you change the block size.
For calculating the block size with which a tape was recorded,
proceed as follows:
• Write down this blocksize:

lsattr -El rmtX

• Set the tape drive’s blocksize to 0 (if not already at 0):
chdev -a block[lowbar]size=0 -l rmtX

• Determine the blocksize the tape was written at:
dd if=/dev/rmtX bs=1024k count=1 [verbar] wc -c

• Set the blocksize for the tape:
chdev -a block[lowbar]size=... -l rmtX

• Process the tape.
• Set the blocksize to the recorded original or the new desired

value:
chdev -a block[lowbar]size=... -l rmtX

In practice (native AIX back-up commands)
The most common native AIX applications for back-up are
discussed here. Specialized back-up applications like Tivoli
Storage Manager or Legato Networker are not discussed. See
their documentation for details.
For modern tapes, a block size of 32KB should be a minimum
consideration when writing to tape. This is the block size we’ll
use. If you are not familiar with the commands, please consult
the manual to avoid surprises, since some commands might
exhibit some strange behaviour; eg cpio has a file limit of 2GB,
and pax may restrict path components to less than 100 characters.
The following back-up commands are invoked without

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

compression because they are described for local usage. The
situation changes when the target tape drive is located at a
remote site and must be accessed via a LAN (or, even worse,
through a WAN). There is some reference in the chapter about
back-up and restore in the AIX Base Administration Guide on
how to modify the commands discussed here to write data to a
remote drive.
When the bandwidth to the remote system is or might be a
bottleneck so that the drive lacks data to write continously, then
the data should be compressed before sending it across the
network. Therefore, add a local pipe through a compression
command before calling the remote operation, eg with rsh. An
example is the following back-up/restore command pair:
tar -cdf- ...pathname... | rsh remotehost "dd of=/dev/rmtØ ..."
rsh remotehost "dd if=/dev/rmtØ ..." | tar -xvpf- pathname

which should be modified in the following way to avoid a
bottleneck:
tar -cf- ...pathname... | gzip -c | rsh remotehost "dd of=/dev/rmtØ ..."
rsh remotehost "dd if=/dev/rmtØ ..." | gzip -cd | tar -xvpf- pathname

Other commands may be modified in a similar way. Also the
compression command may be varied. Particularly on older
systems, you should pay attention to how fast the compression
commands work, since they might be a bottleneck themselves.

Back-up with backup
The blocksize option for backup is set by using the option -b
number. The meaning of number depends on the back-up
method:
• The flag -level (typically used with -u) results in a back-up by

inode, where number specifies the number of 1024-byte
blocks for a single output operation. The default value for
number is 32, which means 32,768 bytes per write.

• The flag -i results in a back-up by name, where number
specifies the number of 512-byte blocks for a single output

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

operation. The default value for number is 100, which means
51,200 bytes per write.

It is up to you to ensure that the write size is an even multiple of
the tape’s physical block size.
The backup command in i-node mode is equivalent to the dump
(not AIX!) command known from other Unixes. It should be
applied only to unmounted or read-only file systems to avoid
inconsistencies. The by-name mode is more similar to tar or
cpio and is used by mksysb and savevg.

SAVE Volume Group savevg and MaKe SYStem Backup mksysb
The command mksysb writes a savevg for the rootvg to tape,
after preloading it with a boot code that allows easy restoral. The
mksysb cannot be used with an autoloader device. Autoloaders
can be temporarily set to the normal library mode by using
tapeutil -f /dev/rmt0 noautoload write -s backup.tar, but this
is not recommended for mksysb.
While mksysb is documented to behave like backup as far as
it concerns the block size, the savevg command seems to adapt
to the physical block size. The option handling for changing block
size is identical to the backup command.

Tape ARchiver tar
The tar command originally supports a default buffer size of 10K,
which is described in the man page as maximum back-up size.
Some man pages apparently describe the default block size of
tar as 512K (which is wrong).
The only way to increase the block size with tar, when writing to
tape, is to use the cluster block option -N. Using -N64 results in
32KB written to tape in a single operation. Since tar is not able
to determine the large block sizes automatically, it is highly
recommended to use this option for all operations including read.

CoPy from Input to Output cpio
The cpio command is a wonderful tool if you prefer to select the

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

files to back-up with a non-trivial find command. It supports a
default blocksize of 512 bytes when using the option -B. Mutually
exclusive with it is the option -C. With -C64 you will achieve 32K
block sizes.
When writing to tape, the block size must be equal or a multiple
of physical block size. When reading from tape, the block size
should not be larger than the physical block size.

Portable Archive eXchanger pax
Apparently, pax was created to reconcile the tar and the cpio
fans (although I don’t know many people who use it). It allows you
to specify the output format with -x either to be:
• ustar with the tar default block size of 10K.
• cpio defaults to the block size of 20K.
Both allow the blocksize to be varied between one and 64 times
512 bytes, allowing a maximum of 32K. The syntax is -b 32k or
-b 64b.

Data Dump dd
The dd command is very flexible and may be used to convert any
input that comes from standard input to a tape drive with a
specified blocksize. dd if=zz of=/dev/rmt0 bs=32k takes the
input from zz to the tape drive rmt0 using a block size of 32K.

Doing back-ups

Conventional back-up
As described in the AIX System Management Guide in the
chapter Backup and Restoring Information, user data can be
backed up incrementally by i-node (here level 5):
DO THE BACKUP
close the file system
umount /filesystem
check the file system
fsck /filesystem

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

backup the file system by i-node incrementally
with a block size of 32k bytes (not necessary for 32k)
backup -b32 -5 -uf/dev/rmtØ /filesystem
verify that the backup is readable
restore -tvf /dev/rmtØ
BACKUP COMPLETED

For a regular back-up it is usually more appropriate to do a back-
up by name, which also allows you to restore single files. Here
is just a simple example to back-up some directory trees. Since
there is no need to unmount the file system for this variant the
previous script would consist of a single line.
If you are using a library with at least seven tapes, the following
script can be used to do a daily back-up and to overwrite each
tape after one week. Save these lines to a file and call this script
daily with cron. The seven slots starting with firstslot are used for
this back-up:
prepare the tape slot numbering
tapedrive=/dev/rmtØ
firstslot=32
weekday=$(date +%w)
storeslot=$(expr $firstslot + $weekday)
preparing the tape drive
/usr/bin/tapeutil -f /dev/smcØ mount $storeslot
erase last weeks backup and rewind the tape
/usr/bin/tapeutil -f $tapedrive erase rewind
DO THE BACKUP
/usr/sbin/backup -if$tapedrive.1 /home/some
/usr/sbin/backup -if$tapedrive.1 /home/further
BACKUP COMPLETED
cleaning up; unloading the tape drive
/usr/bin/tapeutil -f /dev/smcØ unmount $storeslot

Point-in-time back-up
New with AIX 5.2 are the commands backsnap and snapshot.
Using the backsnap command allows you to redirect a point-in-
time copy of a JFS2 filesystem directly to tape. Here’s an
example of how to back-up a user’s home directory exactly the
way it looks when the command is executed (no matter whether
the user erases files while the back-up is written to tape):
backsnap -R -m /tmp/snapshot/myuser -s size=16M -i -b 64 -f /dev/rmtØ

 51© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

This command creates a logical volume with a size of 16
megabytes and then creates a snapshot for the /home/myuser
file system on the newly-created logical volume. From that
copied data, a back-up is taken to /dev/rmt0. The -R means
remove this snapshot after the back-up is complete. The sequence
-i -b 64 tells the back-up to make a back-up by name and use 32K
instead of 51.2K block size.

CHECK TAPES
The file system check fsck for file systems is a common action.
A tape should be checked as well. There are some commands
that may be helpful.

Tape check tapechk
The tapechk command does a very simple job by rewinding and
reading a specified number of files, eg tapechk 3 reads the
specified three files. The variable TAPE must be set to use a drive
other than /dev/rmt0.

Tape copy tcopy
The tcopy command was originally designed to copy from one
tape to another. If called with two arguments that are tape drives,
eg tcopy /dev/rmt0 /dev/rmt3, data is read from the first and
written to the second. If there is only one argument, all back-up
images with their size are displayed for the specified tape drive.
The following test runs show example output, when it is called
with a single loaded tape drive as an argument. First, a drive with
a good cartridge:
tcopy /dev/rmtØ
 tcopy: Tape File: 1; Records: 1 to 3; Size: 8Ø.
 tcopy: File: 1; End of File after: 3 Records, 24Ø Bytes.
 tcopy: Tape File: 2; Records: 1 to 4Ø63; Size: 262144.
 tcopy: Tape File: 2; Record: 4Ø64; Size 189518.
 tcopy: File: 2; End of File after: 4Ø64 Records, 1Ø6528Ø59Ø Bytes.
 tcopy: Tape File: 3; Records: 1 to 2; Size: 8Ø.
 tcopy: File: 3; End of File after: 2 Records, 16Ø Bytes.
 read: There is an input or output error.

 52 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 tcopy: The end of the tape is reached.
 tcopy: The total tape length is 1Ø6528Ø99Ø bytes.

Now look at the output for a cartridge that is damaged. Please
note that there is always a read error before the end of tthe tape
is reached. The message printed is either the general message
as in the above example or the previous error, if any:
 # tcopy /dev/rmtØ
 tcopy: Tape File: 1; Records: 1 to 3; Size: 8Ø.
 tcopy: File: 1; End of File after: 3 Records, 24Ø Bytes.
 tcopy: Tape File: 2; Records: 1 to 1552; Size: 262144.
 [...]
 tcopy: Tape File: 2; Record: 5Ø334; Size 66337.
 read: The media surface is damaged.
 tcopy: Tape File: 2; Records: 5Ø335 to 51122; Size: 262144.
 tcopy: File: 2; End of File after: 51122 Records, 133651148ØØ Bytes.
 read: The media surface is damaged.
 tcopy: The end of the tape is reached.
 tcopy: The total tape length is 13365115Ø4Ø bytes.

TAPEUTIL.SH
#!/usr/bin/sh
##
Description:
This shell script adds a tapeutil management option to your
SMIT's top level menu APPLICATIONS which is initially empty.
##
You do not need to provide parameters.
##
NAME=tapeutil
##
Inform the installer what is going to happen
##
cat <<***
 You are currently executing a script to add
 a \'\'tapeutil" management to your SMIT menu
 called "Applications" (top level) for one of
 your applications. Please note that it is
 verified to find a correct installation of
 \'\'tapeutil", but not the existence of a
 tape library.

##
Checking for a correctly installed 'tapeutil' before writing stanza
file
##

 53© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

alias atapeinfo="lslpp -ch Atape.driver | tail -1"
if [! $(atapeinfo|cut -d: -f5) = "COMMIT"]
then
 if [! $(atapeinfo|cut -d: -f5) = "APPLY"]
 then
 echo " Please commit or replace Atape.driver first."
 exit -1
 fi
 echo " You do not have an Atape.driver installed."
 if [-x /usr/local/bin/lwp-request]
 then
 lwp-request -P "http://proxy" \
 ftp://index.storsys.ibm.com/devdrvr/AIX/Atape.'*'.bin \
 >/usr/sys/inst.images/Atape.recent.bin
 inutoc /usr/sys/inst.images
 echo " A Recent version was downloaded to file:/usr/sys/inst.images"
 else
 echo " Downloaded it from ftp://index.storsys.ibm.com/devdrvr/AIX/"
 fi
 exit -1
fi
if [! $(atapeinfo|cut -d: -f6) = "COMPLETE"]
then
 echo " Your Atape.driver installation is not complete."
 exit -1
fi
echo " You are using Atape.driver $(atapeinfo|cut -d: -f3)."
##
Are we allowed to do it ...
##
if [$(id -u) -ne Ø]
then
 # USER is not root; do not execute the script
 echo " Gain root priviledges before executing this script."
 exit -1
fi
ODMDIR=/usr/lib/objrepos
SEQN=$(date +%Y%m%d%H%M%S)
echo "\t\t... adding your menu now"
##
Writing stanza file and add it to ODM in file:/usr/lib/objrepos/
##
cat <<*** >/tmp/smitty.add
sm_menu_opt:
 id_seq_num = "1998"
 id = "apps"
 next_id = "tapeutil"
 text = "Tape Library Management Utility"
 text_msg_file = ""
 text_msg_set = Ø

 54 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 text_msg_id = Ø
 next_type = "m"
 alias = ""
 help_msg_id = ""
 help_msg_loc = ""
 help_msg_base = ""
 help_msg_book = ""
sm_menu_opt:
 id_seq_num = "1999"
 id = "$NAME"
 next_id = "smc"
 text = "Medium Changer List Commands"
 text_msg_file = ""
 text_msg_set = Ø
 text_msg_id = Ø
 next_type = "m"
 alias = ""
 help_msg_id = ""
 help_msg_loc = ""
 help_msg_base = ""
 help_msg_book = ""

Editor’s note: this article will be concluded next month.
Andreas Neuper
PROFI Engineering Systems (Germany) © Dr Andreas Neuper 2003

AIX news

Opsware has announced its Automated
Script Execution (ASE) Subsystem, a new
capability for executing scripts across
hundreds or thousands of servers. It’s
designed to simplify the way IT
administrators make everyday changes such
as auditing configurations, changing
passwords, or reconfiguring network
settings on servers.

ASE, among other things, lets IT
administrators use Opsware APIs to retrieve
information from the Opsware platform,
enabling a single script to adapt itself
dynamically to many different environments
and situations.

It incorporates an audit trail, role-based
access control, encrypted communications,
and digital signatures for all scripts, and it can
simultaneously execute scripts from one
central location across thousands of servers.

Supported platforms include AIX, HP-UX,
Linux, Solaris, and Windows.

For further information contact:
Opsware, 599 N Mathilda Avenue,
Sunnyvale, CA 94085, USA.
Tel: (408) 744 7300.
URL: http://www.opsware.com/software/
index.htm.

* * *

Candle has introduced PathWAI Secure for
WebSphere MQ, which expands the
protection of information across the
WebSphere MQ environment by combining
existing security and management
applications with encryption software from
RSA.

Increased authentication verifies the
identities of message senders and recipients,

PKI support strengthens security, and there’s
an expanded ability to validate that data
transmissions and message archives that have
not been altered.

The software supplements the user
authorization capabilities of various external
security programs, such as RACF, ACF2,
and Top Secret on OS/390, as well as
operating system security tools for Unix and
Windows systems.

The software supports AIX, OS/390, z/OS,
AS/400, HP-UX, Solaris, and Windows NT,
2000, and XP.

For further information contact:
Candle, 201 N Douglas St, El Segundo, CA
90245, USA.
Tel: (310) 829 5800.
URL: http://www.candle.com/www1/cnd/
portal /CNDportal_Channel_Master/
0,2258,2683_1896860,00.html.

* * *

BMC has announced new Patrol tools for
SAP application management, which are
designed to propagate relevant third-party
availability and performance data into the
Computer Center Management System
(CCMS) of the SAP Basis Release 4.6.

User response time breakdown and alerting
on response time breaches are provided, as
well as support for PeopleSoft 8.8 and
PeopleTools 8.42 and for AIX 5.1 and Oracle
9i platforms.

For further information contact:
BMC, 2101 CityWest Blvd, Houston, TX
77042, USA.
Tel: (713) 918 8800.
URL: http://www.bmc.com/products/
documents/09/92/20992/20992/index.htm.

x xephon

	Controlling shark mirror locations
	More illustrated usage of various shell commands and shell features
	Regular expressions and pattern matching
	Using tape libraries with AIX
	AIX news

