

© Xephon plc 2003

September 2003

95

In this issue

AIX

3 Get rid of confusing error
messages

5 Shell script library – part 2
20 The sed command
33 Automated mechanism for

changing passwords
50 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Get rid of confusing error messages

At some AIX installations, you can observe curious error messages
in the errpt output after a reboot or if you start the configuration
manager, cfgmgr.
If you analyse the occurrences, ie where it happens and where
it doesn’t, you can find out why it happens.
On all systems where no graphic adapter is installed or onboard
and where no additional configuration steps have been done, the
error messages look like this:
IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
E85C5C4C Ø6242ØØ3Ø3 P S CFGLFT SOFTWARE PROGRAM ERROR

or:
E85C5C4C Ø6261837Ø3 P S STARTLFT SOFTWARE PROGRAM ERROR

A reduced view of errpt -a looks like:
LABEL: GRAPHICS
IDENTIFIER: E85C5C4C
Class: S
Type: PERM
Resource Name: CFGLFT
Description
SOFTWARE PROGRAM ERROR
Probable Causes
SOFTWARE PROGRAM
Failure Causes
SOFTWARE PROGRAM
 Recommended Actions
 IF PROBLEM CONTINUES TO OCCUR REPEATEDLY THEN DO THE FOLLOWING
 CONTACT APPROPRIATE SERVICE REPRESENTATIVE
 REPORT DETAILED DATA
Detail Data
DETECTED FAILED RC ERROR LOCATION
 cfglft build_dds 32 1114 31

A reduced view of errpt -a -N STARTLFT looks like:
LABEL: GRAPHICS
IDENTIFIER: E85C5C4C
Class: S
Type: PERM

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Resource Name: STARTLFT

The output is the same as with the other error message:
Detail Data
DETECTED FAILED RC ERROR LOCATION
startlft Ø 12Ø4 6

The procedure to overcome this problem is as follows. It should
be applied only to systems where no graphic adapter is installed
or in use.
Make a system back-up:

smit backsys

lscons should point to an available tty like /dev/tty0. If it doesn’t,
use smit console to change it.
Next, use inittab:

cat /etc/inittab | grep dt

Comment statement like:
dt:2:wait:/etc/rc.dt

Next, check which graphic devices are present with:
lsdev -C | egrep '(lft|rcm|sioma|gxme)'

Remove them (otherwise you get problems at the next step):
 rmdev -dl lftØ
 rmdev -dl rcmØ
 rmdev -dl siomaØ
 rmdev -dl gxmeØ

Finally, check whether the graphics fileset is installed:
lslpp -l devices.graphics.com

Then check its dependants with:
lslpp -d devices.graphics.com

The output looks like this:
 Fileset Dependants
 --
 <Fileset> is a requisite of <Dependents>

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Path: /usr/lib/objrepos
 devices.graphics.com 4.3.3.75
 devices.pci.3353cØ88.com 4.3.3.Ø

 Path: /etc/objrepos
 devices.graphics.com 4.3.3.75
 NONE

 lslpp -l devices.pci.3353cØ88.com

 Fileset Level State Description
 --
 Path: /usr/lib/objrepos
 devices.pci.3353cØ88.com 4.3.3.25 COMMITTED E15 Graphics Adapter
 Family
 Common Software

Now you can choose to remove the graphics device fileset and
its dependants with one command:

installp -ug devices.graphics.com

Clear the errorlog with:
errclear -N CFGLFT,STARTLFT Ø

Issue cfgmgr and afterwards check errpt again.
This will get rid of confusing error messages.
Imhotep
Unix System Administrator (Austria) © Xephon 2003

Shell script library – part 2

This month we conclude the code for a shell script that uses a
library containing predefined function definitions.
 # consider allowed characters
 if ["${NEXT_CHAR}" != "Ø" -a \
 "${NEXT_CHAR}" != "1" -a "${NEXT_CHAR}" != "2" -a \
 "${NEXT_CHAR}" != "3" -a "${NEXT_CHAR}" != "4" -a \
 "${NEXT_CHAR}" != "5" -a "${NEXT_CHAR}" != "6" -a \

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 "${NEXT_CHAR}" != "7" -a "${NEXT_CHAR}" != "8" -a \
 "${NEXT_CHAR}" != "9"]
 then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_CHAR_IN_STRING}"
 fi
 return $FALSE
 fi
 fi
 COLUMN_POS='expr $COLUMN_POS + 1'
done
validate for minus inteher
if ["${NEGATIVE_INTEGER}" = "${TRUE}"]
then
 # minimum length must be two
 if ['echo "${P_STRING}\c" | wc -c' -lt 2]
 then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_LEN_FOR_NEGATIVE_INT}"
 fi
 return $FALSE
 fi
fi
FUNCTION=""
return $TRUE
}
###
Name : CheckDateFormat
Overview : The function validates a string for a date with one of the
following date formats:
- YYYYMMDD
- YYYYMM
- DDMMYYYY
- MMYYYY
Input : String1 (date to be checked)
String2 (required Format)
Returns : TRUE if string matches required format
FALSE otherwise
Usage : if ! CheckDateFormat "Ø1Ø12ØØ2" "DDMMYYYY"
then
echo "Invalid date format"
fi
Notes : 1.The function validates day, month, and year separately
and, therefore, it is possible that if day and month are
swapped the validation will still succeed (ie Ø1Ø22ØØ3
Ø2Ø12ØØ3). The function does not guard against this kind
of transposition.
##

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

CheckDateFormat ()
{
define function name
FUNCTION="${FUNCTION}:CheckDateFormat"
assign parameters
if [$# -ne 2]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_NO_ARGS}"
 fi
 return $FALSE
fi
P_DATE_STRING="$1"
P_DATE_FORMAT="$2"
validate against null
if ["${P_DATE_STRING}" = ""]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${NULL_DATE_STRING}"
 fi
 return $FALSE
elif ["${P_DATE_FORMAT}" = ""]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${NULL_FORMAT_STRING}"
 fi
 return $FALSE
fi
LEN_BEFORE_P_STRING='echo "${P_STRING}\c" | wc -c'
LEN_AFTER_P_STRING='echo "${P_STRING}\c" | tr -d "${META_CHARS}" |\
 wc -c'
if [$LEN_BEFORE_P_STRING -ne $LEN_AFTER_P_STRING]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${META_CHARS_IN_STRING}"
 fi
 return $FALSE
fi
validate for numeric
save current $FUNCTION stack
PREV_FUNCTION="${FUNCTION}"
if ! IsNumeric "${P_DATE_STRING}"
then
 return $FALSE
fi
restore $FUNCTION stack

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FUNCTION="${PREV_FUNCTION}"
validate for length
if ["${P_DATE_FORMAT}" = "YYYYMMDD" -o "${P_DATE_FORMAT}" = "DDMMYYYY"
]
then
 REQ_DATE_STRING_LEN=8

elif ["${P_DATE_FORMAT}" = "YYYYMM" -o "${P_DATE_FORMAT}" = "MMYYYY"]
then
 REQ_DATE_STRING_LEN=6
else
 # wrong date format supplied
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_DATE_FORMAT}"
 fi
 return $FALSE
fi
IN_DATE_STRING_LEN='echo "${P_DATE_STRING}\c" | wc -c'
if [${IN_DATE_STRING_LEN} -gt ${REQ_DATE_STRING_LEN}]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${TOO_MANY_DIGITS}"
 fi
 return $FALSE
elif [${IN_DATE_STRING_LEN} -lt ${REQ_DATE_STRING_LEN}]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${NOT_ENOUGH_DIGITS}"
 fi
 return $FALSE
fi
extract day, month, and year
if ["${P_DATE_FORMAT}" = "DDMMYYYY"]
then
 DAY='echo ${P_DATE_STRING} | cut -c1-2'
 MONTH='echo ${P_DATE_STRING} | cut -c3-4'
 YEAR='echo ${P_DATE_STRING} | cut -c5-8'
elif ["${P_DATE_FORMAT}" = "MMYYYY"]
then
 DAY=""
 MONTH='echo ${P_DATE_STRING} | cut -c1-2'
 YEAR='echo ${P_DATE_STRING} | cut -c3-6'
elif ["${P_DATE_FORMAT}" = "YYYYMMDD"]
then
 DAY='echo ${P_DATE_STRING} | cut -c7-8'
 MONTH='echo ${P_DATE_STRING} | cut -c5-6'
 YEAR='echo ${P_DATE_STRING} | cut -c1-4'

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

elif ["${P_DATE_FORMAT}" = "YYYYMM"]
then
 DAY=""
 MONTH='echo ${P_DATE_STRING} | cut -c5-6'
 YEAR='echo ${P_DATE_STRING} | cut -c1-4'
fi
establish leap year
LEAP_YEAR=${FALSE}
establish leap year
if ['expr ${YEAR} % 4' -eq Ø]
then
 LEAP_YEAR=${TRUE}
fi
validate month
if ["${MONTH}" != "Ø1" -a "${MONTH}" != "Ø2" -a "${MONTH}" != "Ø3" -a \
 "${MONTH}" != "Ø4" -a "${MONTH}" != "Ø5" -a "${MONTH}" != "Ø6" -a \
 "${MONTH}" != "Ø7" -a "${MONTH}" != "Ø8" -a "${MONTH}" != "Ø9" -a \
 "${MONTH}" != "1Ø" -a "${MONTH}" != "11" -a "${MONTH}" != "12"]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_MONTH}"
 fi
 return $FALSE
fi
validate day of the month if required
if ["${DAY}" != ""]
then
 if ["${MONTH}" = "Ø1" -o "${MONTH}" = "Ø3" -o "${MONTH}" = "Ø5" -o \
 "${MONTH}" = "Ø7" -o "${MONTH}" = "Ø8" -o "${MONTH}" = "1Ø" -o \
 "${MONTH}" = "12"]
 then
 if [[$DAY -lt 1 || $DAY -gt 31]]
 then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_DAY}"
 fi
 return $FALSE
 fi
 elif ["${MONTH}" = "Ø4" -o "${MONTH}" = "Ø6" -o "${MONTH}" = "Ø9" -o \
 "${MONTH}" = "11"]
 then
 if [[$DAY -lt 1 || $DAY -gt 3Ø]]
 then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_DAY}"
 fi
 return $FALSE

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 fi
 elif ["${MONTH}" = "Ø2" -a "${LEAP_YEAR}" = "${TRUE}"]
 then
 if [[$DAY -lt 1 || $DAY -gt 29]]
 then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_DAY}"
 fi
 return $FALSE
 fi
 elif ["${MONTH}" = "Ø2" -a "${LEAP_YEAR}" = "${FALSE}"]
 then
 if [[$DAY -lt 1 || $DAY -gt 28]]
 then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_DAY}"
 fi
 return $FALSE
 fi
 fi
fi
FUNCTION=""
return $TRUE
}
###
Name : FormatDate
Overview : The function formats date according to required format.
Input : string1 (containing date)
string2 (from format)
string2 (to format)
Returns : Formatted Date if date is formatted correctly
NULL otherwise
Usage:FORMATTED_DATE='FormatDate "Ø1Ø12ØØ2" "DDMMYYYY" "DD-MON-YYYY"'
if ["${FORMATTED_DATE}" = ""]
then
echo "Date formatting failed"
fi
Notes : 1. When invoking this function, do not set the debug option
because any debug message displayed will be assigned to
the variable (as shown above).
##
FormatDate ()
{
define function name
FUNCTION="${FUNCTION}:FormatDate"
assign parameter
if [$# -ne 3]
then

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_NO_ARGS}"
 fi
 return $FALSE
fi
P_DATE_STRING="$1"
P_FROM_DATE_FORMAT="$2"
P_TO_DATE_FORMAT="$3"
initialize formatted date with null
FORMATTED_DATE=""
define from date format
FROM_DATE_FORMAT="DDMMYYYY YYYYMMDD"
define to date format
TO_DATE_FORMAT="DD-MON-YYYY DD/MM/YYYY YYYY/MM/DD"
validate against null
if ["${P_FROM_DATE_FORMAT}" = ""]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${NULL_FROM_DATE_FORMAT}"
 fi
 return "${FORMATTED_DATE}"
elif ["${P_TO_DATE_FORMAT}" = ""]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${NULL_TO_DATE_FORMAT}"
 fi
 return "${FORMATTED_DATE}"
fi
examine date string for meta characters
LEN_BEFORE_P_STRING='echo "${P_STRING}\c" | wc -c'
LEN_AFTER_P_STRING='echo "${P_STRING}\c" | tr -d "${META_CHARS}" |\
 wc -c'
if [$LEN_BEFORE_P_STRING -ne $LEN_AFTER_P_STRING]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${META_CHARS_IN_STRING}"
 fi
 return "${FORMATTED_DATE}"
fi
validate for numeric
if ! IsNumeric "${P_DATE_STRING}"
then
 return "${FORMATTED_DATE}"
fi
FUNCTION="${FUNCTION}:FormatDate"
validate from date format

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FORMAT_VALID="${FALSE}"
for FORMAT in ${FROM_DATE_FORMAT}
do
 if ["${P_FROM_DATE_FORMAT}" = "${FORMAT}"]
 then
 FORMAT_VALID="${TRUE}"
 break
 fi
done
if ["${FORMAT_VALID}" = "${FALSE}"]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_FROM_DATE_FORMAT}"
 fi
 return "${FORMATTED_DATE}"
fi
validate to date format
FORMAT_VALID="${FALSE}"
for FORMAT in ${TO_DATE_FORMAT}
do
 if ["${P_TO_DATE_FORMAT}" = "${FORMAT}"]
 then
 FORMAT_VALID="${TRUE}"
 break
 fi
done
if ["${FORMAT_VALID}" = "${FALSE}"]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_TO_DATE_FORMAT}"
 fi
 return "${FORMATTED_DATE}"
fi
check date and from date format
if ! CheckDateFormat "${P_DATE_STRING}" "${P_FROM_DATE_FORMAT}"
then
 return "${FORMATTED_DATE}"
fi
FUNCTION="${FUNCTION}:FormatDate"
extract day , month and year
if ["${P_FROM_DATE_FORMAT}" = "DDMMYYYY"]
then
 DAY='echo ${P_DATE_STRING} | cut -c1-2'
 MONTH='echo ${P_DATE_STRING} | cut -c3-4'
 YEAR='echo ${P_DATE_STRING} | cut -c5-8'
elif ["${P_FROM_DATE_FORMAT}" = "YYYYMMDD"]
then
 DAY='echo ${P_DATE_STRING} | cut -c7-8'

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 MONTH='echo ${P_DATE_STRING} | cut -c5-6'
 YEAR='echo ${P_DATE_STRING} | cut -c1-4'
fi
format date
reformat $MONTH
if ["${MONTH}" = "Ø1"]
then
 MON="JAN"
elif ["${MONTH}" = "Ø2"]
then
 MON="FEB"
elif ["${MONTH}" = "Ø3"]
then
 MON="MAR"
elif ["${MONTH}" = "Ø4"]
then
 MON="APR"
elif ["${MONTH}" = "Ø5"]
then
 MON="MAY"
elif ["${MONTH}" = "Ø6"]
then
 MON="JUN"
elif ["${MONTH}" = "Ø7"]
then
 MON="JUL"
elif ["${MONTH}" = "Ø8"]
then
 MON="AUG"
elif ["${MONTH}" = "Ø9"]
then
 MON="SEP"
elif ["${MONTH}" = "1Ø"]
then
 MON="OCT"
elif ["${MONTH}" = "11"]
then
 MON="NOV"
elif ["${MONTH}" = "12"]
then
 MON="DEC"
fi
if ["${P_TO_DATE_FORMAT}" = "DD-MON-YYYY"]
then
 FORMATTED_DATE="${DAY}-${MON}-${YEAR}"
 echo "${FORMATTED_DATE}"
elif ["${P_TO_DATE_FORMAT}" = "DD/MM/YYYY"]
then
 FORMATTED_DATE="${DAY}/${MONTH}/${YEAR}"
 echo "${FORMATTED_DATE}"

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

elif ["${P_TO_DATE_FORMAT}" = "YYYY/MM/DD"]
then
 FORMATTED_DATE="${YEAR}/${MONTH}/${DAY}"
 echo "${FORMATTED_DATE}"
fi
FUNCTION=""
}
###
Name : Process31DaysMonths
Overview : The function processes days that fall in months
with 31 days.
Input :
Returns :
Notes :
##
Process31DaysMonths ()
{
if [$DAY -gt 31]
then
 # no of days exceed 31 days
 # set $DAY to Ø1
 DAY=1
 # increment $MONTH by 1
 MONTH='expr $MONTH + 1'
 if [$MONTH -gt 12]
 then
 # no of months exceeded 12
 # set $MONTH to Ø1
 MONTH=1
 # increment $YEAR by 1
 YEAR='expr $YEAR + 1'
 # establish leap year
 if ['expr ${YEAR} % 4' -eq Ø]
 then
 LEAP_YEAR=${TRUE}
 else
 LEAP_YEAR=${FALSE}
 fi
 fi
elif [$DAY -eq Ø]
then
 # we're taking away days from specified date
 # decrement $MONTH by 1
 MONTH='expr $MONTH - 1'
 if [$MONTH -eq Ø]
 then
 # decrement $YEAR by 1
 YEAR='expr $YEAR - 1'
 # establish leap year
 if ['expr ${YEAR} % 4' -eq Ø]

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 then
 LEAP_YEAR=${TRUE}
 else
 LEAP_YEAR=${FALSE}
 fi
 # re-initialize $MONTH to 12
 MONTH=12
 # re-initialize $DAY to last day of previous month
 DAY=31
 elif [${MONTH} -eq 1 -o ${MONTH} -eq 3 -o ${MONTH} -eq 5 -o \
 ${MONTH} -eq 7 -o ${MONTH} -eq 8 -o ${MONTH} -eq 1Ø -o \
 ${MONTH} -eq 12]
 then
 # re-initialize $DAY to last day of previous month
 DAY=31
 elif [${MONTH} -eq 4 -o ${MONTH} -eq 6 -o ${MONTH} -eq 9 -o \
 ${MONTH} -eq 11]
 then
 # re-initialize $DAY to last day of previous month
 DAY=3Ø
 elif [${MONTH} -eq 2 -a "${LEAP_YEAR}" = "${TRUE}"]
 then
 # re-initialize $DAY to last day of previous month
 DAY=29
 elif [${MONTH} -eq 2 -a "${LEAP_YEAR}" = "${FALSE}"]
 then
 # re-initialize $DAY to last day of previous month
 DAY=28
 fi
fi
}
###
Name : Process3ØDaysMonths
Overview : The function processes days that fall in months with
thirty days.
Input :
Returns :
Notes :
##
Process3ØDaysMonths ()
{
if [$DAY -gt 3Ø]
then
 # no of days exceed 3Ø days
 # set $DAY to 1
 DAY=1
 # increment $MONTH by 1
 MONTH='expr $MONTH + 1'
 if [$MONTH -gt 12]
 then

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 # no of months exceeded 12
 # set $MONTH to 1
 MONTH=1
 # increment $YEAR by 1
 YEAR='expr $YEAR + 1'
 # establish leap year
 if ['expr ${YEAR} % 4' -eq Ø]
 then
 LEAP_YEAR=${TRUE}
 else
 LEAP_YEAR=${FALSE}
 fi
 fi
elif [$DAY -eq Ø]
then
 # we're taking away days from specified date
 # decrement $MONTH by 1
 MONTH='expr $MONTH - 1'
 if [$MONTH -eq Ø]
 then
 # decrement $YEAR by 1
 YEAR='expr $YEAR - 1'
 # establish leap year
 if ['expr ${YEAR} % 4' -eq Ø]
 then
 LEAP_YEAR=${TRUE}
 else
 LEAP_YEAR=${FALSE}
 fi
 # re-initialize $MONTH to 12
 MONTH=12
 # re-initialize $DAY to last day of previous month
 DAY=31
 elif [${MONTH} -eq 1 -o ${MONTH} -eq 3 -o ${MONTH} -eq 5 -o \
 ${MONTH} -eq 7 -o ${MONTH} -eq 8 -o ${MONTH} -eq 1Ø -o \
 ${MONTH} -eq 12]
 then
 # re-initialize $DAY to last day of previous month
 DAY=31
 elif [${MONTH} -eq 4 -o ${MONTH} -eq 6 -o ${MONTH} -eq 9 -o \
 ${MONTH} -eq 11]
 then
 # re-initialize $DAY to last day of previous month
 DAY=3Ø
 elif [${MONTH} -eq 2 -a "${LEAP_YEAR}" = "${TRUE}"]
 then
 # re-initialize $DAY to last day of previous month
 DAY=29
 elif [${MONTH} -eq 2 -a "${LEAP_YEAR}" = "${FALSE}"]
 then

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 # re-initialize $DAY to last day of previous month
 DAY=28
 fi
fi
}
###
Name : ProcessMonthOfFebruary
Overview : The function processs days that fall in month of February.
Input : None
Returns :
Notes :
##
ProcessMonthOfFebruary ()
{
if ["${LEAP_YEAR}" = "${TRUE}"]
then
 if [$DAY -gt 29]
 then
 # no of days exceeded 29 for leap year
 # set $DAY to Ø1
 DAY=1
 # increment $MONTH by 1
 MONTH='expr $MONTH + 1'
 elif [$DAY -eq Ø]
 then
 # we're taking away days from specified date
 # set day to last day of January
 DAY=31
 # decrement $MONTH by 1
 MONTH='expr $MONTH - 1'
 fi
process month of February in non-leap year
elif ["${LEAP_YEAR}" = "${FALSE}"]
then
 if [$DAY -gt 28]
 then
 # no of days exceeded 28 for February in non-leap year
 # set $DAY to Ø1
 DAY=1
 # increment $MONTH by 1
 MONTH='expr $MONTH + 1'
 elif [$DAY -eq Ø]
 then
 # we're taking away days from specified date
 # decrement $MONTH by 1
 MONTH='expr $MONTH - 1'
 # set day to last day of January
 DAY=31
 fi
fi

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}
###
Name : AddDayToDate
Overview : The function adds day (+ or -) to a specified date.
Input : string1 (containing date in format DDMMYYYY)
string2 (no of days to be added or substracted)
Returns : Calculated date (in DDMMYYYY format)
if date is calculated correctly
NULL otherwise
Usage : CALCULATED_DATE='AddDayToDate "Ø1Ø12ØØ2" -35'
if ["${CALCULATED_DATE}" = ""]
then
echo "Date calculation failed"
fi
Notes : 1. When invoking this function, do not set the debug option
because any debug message displayed will be assigned to
the variable (as shown above).
##
AddDayToDate ()
{
define function name
FUNCTION="${FUNCTION}:AddDayToDate"
assign parameter
if [$# -ne 2]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${INVALID_NO_ARGS}"
 fi
 return $FALSE
fi
P_DATE_STRING="$1"
P_NO_DAYS="$2"
initialize $CALCULATED_DATE with null
CALCULATED_DATE=""
validate against null
if ["${P_DATE_STRING}" = ""]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${NULL_DATE_STRING}"
 fi
 return "${CALCULATED_DATE}"
elif ["${P_NO_DAYS}" = ""]
then
 if ["${DEBUG}" = "${TRUE}"]
 then
 DisplayMessage E "${NULL_NO_DAYS}"
 fi
 return "${CALCULATED_DATE}"

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

fi
check data format
if ! CheckDateFormat "${P_DATE_STRING}" "DDMMYYYY"
then
 return $FALSE
fi
FUNCTION="${FUNCTION}:AddDayToDate"
check no of days
if ! IsInteger "${P_NO_DAYS}"
then
 return $FALSE
fi
FUNCTION="${FUNCTION}:AddDayToDate"
extract day, month and year
DAY='echo ${P_DATE_STRING} | cut -c1-2'
MONTH='echo ${P_DATE_STRING} | cut -c3-4'
YEAR='echo ${P_DATE_STRING} | cut -c5-8'
establish leap year
if ['expr ${YEAR} % 4' -eq Ø]
then
 LEAP_YEAR=${TRUE}
else
 LEAP_YEAR=${FALSE}
fi
initialize $NO_DAYS to be added or substracted
NO_DAYS=$P_NO_DAYS
establish whether days need to be added or subtracted
ADD_DAYS=${TRUE}
if [${NO_DAYS} -lt Ø]
then
 ADD_DAYS=${FALSE}
fi
while [$NO_DAYS -ne Ø]
do
 if ["${ADD_DAYS}" = "${TRUE}"]
 then
 # increment $DAY by 1
 DAY='expr $DAY + 1'
 else
 # decrement $DAY by 1
 DAY='expr $DAY - 1'
 fi
 # process months with 31 days
 if [${MONTH} -eq 1 -o ${MONTH} -eq 3 -o ${MONTH} -eq 5 -o \
 ${MONTH} -eq 7 -o ${MONTH} -eq 8 -o ${MONTH} -eq 1Ø -o \
 ${MONTH} -eq 12]
 then
 Process31DaysMonths
 # process months with 3Ø days
 elif [${MONTH} -eq 4 -o ${MONTH} -eq 6 -o ${MONTH} -eq 9 -o \

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ${MONTH} -eq 11]
 then
 Process3ØDaysMonths
 # process month of February
 else
 ProcessMonthOfFebruary
 fi
 # increment or decrement no of days to be added by 1
 if ["${ADD_DAYS}" = "${TRUE}"]
 then
 # decrement $NO_DAYS by 1
 NO_DAYS='expr $NO_DAYS - 1'
 else
 # increment $DAY by 1
 NO_DAYS='expr $NO_DAYS + 1'
 fi
done
left pad $DAY, $MONTH and $YEAR with zeros
DAY='echo "${DAY}" | awk {'printf("%Ø2d",$1)'}'
MONTH='echo "${MONTH}" | awk {'printf("%Ø2d",$1)'}'
YEAR='echo "${YEAR}" | awk {'printf("%Ø4d",$1)'}'
CALCULATED_DATE="${DAY}${MONTH}${YEAR}"
echo "${CALCULATED_DATE}"
FUNCTION=""
}
initialize variables
InitialiseVariables

Arif Zaman
ETL Developer (UK) © Xephon 2003

The sed command

The stream editor, sed, is a non-interactive text editor that
performs editing operations on every line of a file. In its simplest
form, sed works in a similar way to other commands, such as
grep, but, when its full power is exploited, it is capable of complex
text manipulations. You can use sed and its subcommands
directly within a script, or you can modify the lines in a specified
file according to a number of edit operations located in a text
source file.
Since the output of sed is sent to standard output by default, it

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

is ideal for testing any modifications you would like to make prior
to making the changes permanent. Alternatively, if your operations
produce a lot of output, you can redirect the output to another file
and peruse it at your leisure without affecting the original file.
Once you are certain that the operations actually perform what
you are trying to achieve, then you can overwrite your original.
When a sed subcommand includes a pointer to a specific
location (address) within a file (either a line number or a search
pattern), only the addressed line or lines are affected by the
command. Otherwise the command applies to all lines.
At first sight sed is a relatively simple command, having limited
options. However, the editing operations and pattern matching
substitutions can be quite complex, and to fully understand the
intricacies of the editor requires extensive practice.
To gain a full understanding of how sed works and to experiment
with its commands, create the following file, which contains a list
of entrants for a competition we have organized, and their
associated contestant numbers.
$ vi stars

Vicky Spicer 1Ø1
Serena Smith 2Ø1
Brooklyn Becks 1Ø2
Ronaldo Romero 3Ø1
Rio Veron 3Ø2
Venus Seles 2Ø2
Zinedine Batistuta 3Ø3
Rivaldo Smith 3Ø4

Our examples will be demonstrated initially by sending the sed
output to standard output. To make the changes to stars
permanent, you should make a copy prior to running each sed
command, and only later overwrite the original, after the command
has achieved its purpose.

GENERAL SYNTAX
The general syntax for sed is:

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

sed [-n] [-e command] [-f sourcefile] [file]

The -n option suppresses all information normally written to
standard output.
The -f sourcefile option uses sourcefile to contain a prepared
set of editing commands to be applied to file.
The -e command option uses the command string to perform
an editing operation. The subcommands sed is to use are placed
within each command, and there may be any number of -e
options.

Format of sed subcommands
The sed command, when used either with subcommands
placed on the command line or with subcommands placed within
a text file, can address single or multiple lines within a file on
which it is intended to operate. The general format of these
subcommands is:
[line1[, line2]] operation [parameter]

line1 and line2 are optional line addresses that indicate the line
or lines where sed should perform its operation. If no line
addresses are specified, the operation is performed globally on
all lines. Lines can be addressed directly by number or text
pattern using fixed character strings, or indirectly by regular
expressions.
Operations, or commands, can be grouped at the same address
by surrounding the operations by braces, although this cannot be
used on the command line and we will discuss this further when
we talk about sed source files.
The only operation that can take the optional final parameter is
the s (substitute) operation. The various operations available will
be discussed shortly.

Using sed on the command line
When sed is used on the command line, the -e command option
uses command as the editing string to be applied. If you are

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

using just one -e flag, it can be omitted. If you put more than one
edit command on the sed line, each must be preceded by -e. For
example, individual operations are entered as:
sed /Zinedine/d stars
sed /Serena/s/Smith/Williams/ stars

but these can be combined in the command:
sed -e /Zinedine/d -e /Serena/s/Smith/Williams/ stars

Any spaces in the edit subcommand must be surrounded by
quotes for sed to interpret the command properly. Quotes must
also be used if the edit command contains metacharacters,
which will most likely happen when using regular expressions.
For example:
sed -e "/^[^I]*$/d" file1 > file2

where ^I represents Ctrl I, which is the symbolic representation
used to signify that a tab has been entered. It does not mean that
the characters ̂ and I have been separately entered. When you
press the tab key it will usually produce a number of blank
spaces, depending on its current size definition.

Replacing character strings
To replace a character string with a different string, the format of
the command is:
sed s/old_string/new_string/ filename

The s stands for substitute and the separator, /, can in fact be any
character that is not in either of the strings. Using the stars file,
assume that Serena Smith has married prior to our competition
and changed her name. We can change her name with:
sed s/Smith/Williams/ stars

Unfortunately this will change every line in the file which matches
the string Smith, so that Rivaldo Smith becomes Rivaldo
Williams. To change Serena Smith’s name without affecting
any other Smith, we can use:
sed "s/Serena Smith/Serena Williams/" stars

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Since the strings contain spaces, the entire substitute expression
must be surrounded with quotes since it must form only a single
argument to sed. An alternative way of achieving the same end
is by using a text pattern as a line address. For example:
sed /Serena/s/Smith/Williams/ stars

In this case the substitution of the string Williams for the string
Smith is only performed on the line containing the string Serena.
The string to be replaced can also be a regular expression. For
example, to put a left margin of a tab in the stars file, we can use:
sed "s/^/^I/" stars

where ̂ now indicates a substitution (insertion) at the start of the
line. The new string can also be a null string, in which case the
original string is deleted. To remove the contestant numbers
from the file we could use:
sed "s/[^I]*[Ø-9]*[^I]*$//" stars

This will delete the pattern, multiple spaces or tabs, followed by
multiple digits, followed by multiple spaces or tabs, followed by
the end of the line, and should take care of all possible formatting
combinations.

Replacing multiple occurrences
Usually, the s subcommand tells sed to replace only the first
occurrence of a pattern on each line. If it is intended to replace
all occurrences of the pattern on each line, then the g flag must
be used. For example:
sed s/old_string/new_string/g filename

so that:
sed /Ron/s/R/W/g stars

will change the line to Wonaldo Womero.
There may also be occasions when you would like to replace a
single character that occurs multiple times on a line, whether the
occurrences are contiguous or at separate locations on the line.
We can do this using the n flag, which is used to specify that the

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

replacement should be made for only the nth occurrence. For
example, suppose we wanted to change every second letter i on
each line to the letter a, then we could do this using:
sed s/i/a/2 stars

This would change the following lines to those shown:
Vicky Spacer 1Ø1
Zinedane Batistuta 3Ø3
Rivaldo Smath 3Ø4

Assuming that we had one or more tabs between the contestant’s
name and number, we could replace our multiple tabs with a
single colon by using:
sed -e "s/^I/:/1" -e "s/^I//" stars

The first editing command would replace the first occurrence of
a tab with the colon, and the second editing command would
replace any further tabs with nothing.

Deleting lines
To delete whole lines of text from a file, the d operation can also
be used. For example, suppose one of our contestants had
made an unexpected exit from our competition. We could delete
the name with:
sed /Zinedine/d stars

This will delete the line containing Zinedine. By using regular
expressions, it is possible to delete blank, or apparently blank,
lines. Try inserting several blank lines (with mixtures of spaces
and tabs, or completely blank with no characters) at different
locations within the file and then use:
sed "/^[^I]*$/d" stars

This command looks for the start of a line, followed by zero or
more spaces or tabs, followed by the end of the line. The d
operation then deletes all the lines made up entirely of spaces
and tabs, or no characters.

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Suppressing normal output
Normally, sed copies all input lines to the output, transformed by
the edit operations performed on them. The -n option suppresses
this normal output, and only the lines requested with the p (print)
edit operation appear on the output. For example:
$ sed -n /Smith/p stars
Serena Smith 2Ø1
Rivaldo Smith 3Ø4

$ sed -n /Ron/s/R/W/gp stars
Wonaldo Womero 3Ø1

If the same edit commands had been used without the -n option,
then all of the lines would be displayed, and each line containing
Smith (or Wonaldo) would be displayed twice. This is because
we see the normal output, as well as the specially requested
output. Try the above commands without the -n option.
The -n option is also useful for selectively displaying parts of a
file. For example:
sed -n 1,4p stars

will display only the first four lines of the file. Similarly:
sed -n 1p stars

will display the first line. The option can also be used for context
displays. For example:
sed -n 1,/Smith/p stars

will display the first line and all the lines up to and including the
next line containing the word Smith. In effect this will display only
the first two lines. Similar examples are:
sed -n /Serena/,/Rio/p stars
sed -n /Smith/,$p stars

The first command will display all the lines from the first occurrence
of Serena up to and including the line containing the word Rio,
which is four lines. If the first line address appears later in the file
than the second line address, then all the lines from the first
address up to the end of the file would be displayed. The second

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

command would display all lines from the first occurrence of
Smith to the end of the file.
The output from sed can be inverted by preceding the operation
to be performed with !, which will execute the operation on all
lines that are not matched by the addresses. For example:
sed -n /Smith/!p

will output all lines other than those containing the word Smith.

USING A SED SOURCE FILE
When sed is invoked with the -f sourcefile option, the edit
commands are taken from the named sourcefile. For example:
sed -f sourcefile file

The name of the file containing the edit commands must be the
very next argument after the -f option. As usual, you must redirect
the output to another file if you want the changes to be permanent.
Suppose, for example, we created a file called changes containing
the following commands:
/Serena/s/Smith/Williams/
/Zinedine/d
$a\
Paddy Rafter 2Ø3
1,4{
s/i/a/

s/[Ø-9]//g
}

If we then ran these commands against our stars file with:
sed -f changes stars

the following changes to the output would occur:
1 Serena Smith’s name would be changed to Serena

Williams.
2 The line containing Zinedine Batistuta would be deleted.
3 A line containing Paddy Rafter would be added at the end

of the file. The $ sign in front of the a operation stands for the
last line.

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

4 The first occurrence of every letter i on each of the first four
lines would be changed to a letter a.

5 The contestant numbers on the first four lines would be
deleted.

The output would now look like:
Vacky Spicer
Serena Walliams
Brooklyn Becks
Ronaldo Romero
Rio Veron 3Ø2
Venus Seles 2Ø2
Rivaldo Smith 3Ø4
Paddy Rafter 2Ø3

The last three lines of the changes file are an example of multiple
commands operating on a group of line addresses, which in this
example are lines 1 to 4. The first command can be placed on the
same line as the opening brace, but the closing brace must
appear on a line of its own. When using braces, spaces and tabs
are allowed at the start of the line, which allows you to indent the
operations for better readability.
You must also be aware that you cannot use quotes to surround
your commands in a source file, as you would do when editing
from the command line. If you do so, you will get error messages.
In our example above, suppose we had wanted to add more than
one line at the end of the file. This could have been achieved by
changing the a operation to:
$a\
Paddy Rafter 2Ø3\
Elton Bowie 1Ø3

When using the append operation, the \ must be placed at the
end of every line of text to be added, except the last one. You
should be aware that you cannot have any characters after the
backslash at the end of the line. If you do, and a space will
probably be the most common character since it cannot be seen,
then you will get an error message saying that a particular
function cannot be parsed.

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

If, for example, you wished to add a line in the middle of the file
after the line containing Serena Smith, this could be achieved
with:
/Serena/a\
Sepp Seaman 3Ø5

The order in which the commands appear in the edit file are not
necessarily the order in which they would be applied to the file to
be changed. There is actually a pre-processing stage where sed
sorts the commands into an order it thinks is logical. For
example, deletions take precedence over substitutions.
A further example of an edit file is given below, which can be used
to add a blank line after each line in a file:
$ vi addblank
a\
<Hit Enter key to insert blank line>

The blank lines can be added with:
sed -f addblank stars

Because a line address was not specified for the a operation, the
text (blank line) is added after every line. The -e and -f options can
be used together to make the required changes to the stars file:
sed -e /Serena/s/Smith/Williams/ -f addblank stars

When using both edit operations on the command line and edit
commands taken from a text file, the -e option must be used for
the command line operations, even if there is only one.

EDITING MULTIPLE FILES
The sed command can be given more than one filename to edit
at a time and the edit commands you specify will be applied to
all files. The line numbers increment through all the files and are
not reset to 1 at the start of each file. The $ character is used to
mean the last line of the last file.
If we split the stars file into three separate files:
egrep "[^I]+1" stars > popstars

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

egrep "[^I]+2" stars > tennisstars
egrep "[^I]+3" stars > footiestars

and use sed to print lines 4 to 7:
sed -n 4,7p tennisstars footiestars popstars

this will display:
Rio Veron 3Ø2
Zinedine Batistuta 3Ø3
Rivaldo Smith 3Ø4
Vicky Spicer 1Ø1

As far as sed is concerned, line 4 is the second line of the second
file, because the first file contained only two lines.

EDITING WITH PIPELINES
If you do not specify a file to sed, standard input is used. This
allows sed to become a useful filter used in pipelines. For
example, to apply a command to every file in a directory:
ls | sed "s/^/command /" | ksh

The output of sed is a series of lines of the form:
command file

The command lines are then executed by piping them to the shell
command ksh. Using sed in this manner is a useful technique
for executing a command on each separate file (or subdirectory)
in a directory, although you can often achieve the same end by
using xargs instead. You may find that you need to run several
consecutive sed operations against your list of files generated,
particularly if you want to build up commands with lots of
arguments. Alternatively, you could use a script.

EXAMPLES OF SED

Substitute command
While it is possible to use any character to surround the
arguments to the substitute command, the string which actually

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

addresses the line you want is surrounded by / characters – no
other character will do. The use of other characters to surround
the substitute expressions is necessary when the expression
itself contains slashes, for example, when you want to perform
a substitution on a full pathname.
An example using non-standard characters is:
sed /Serena/s-Smith-Williams- stars

The command:
sed "s,[Ø-9],,g" stars

deletes the contestant numbers from the file. This will leave
spaces and/or tabs at the end of the file, and, to get rid of these
as well, we need a more precise regular expression:
sed "s,[^I]*[Ø-9]*$,," stars

Transform operation
Another useful operation to the sed command is the y (transform)
operation. Two strings are specified, and each character in the
first string is replaced by the equivalent character in the second
string. For example:
sed y/Ø123456789/987654321Ø/ stars

will transform the contestant digits in the stars file. The two
strings must be of the same length, and no padding is allowed.
If you tried to shorten the first string with:
sed y/[Ø-9]/987654321Ø/ stars

you would get an error message. This is because the first string
is taken to be five characters long, whereas the second string is
ten characters.

Adding blank lines
We have seen how we can add blank lines to a file using a sed
source file, but how can we do this from the command line? Well,
the solution is to use a combination of sed and tr. First we add
a # to the end of every line, and then use tr to replace the # with

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the new-line character, or \012 in octal. We have to use tr to do
this since none of the sed operations will accept octal values.
The blank lines can be added with:
sed "s/$/#/" stars | tr "#" "\Ø12"

If the file that you want to be double-spaced already contains the
character, you can instead use a non-printing character, such
as Ctrl A:
sed "s/$/^A/" file | tr "\ØØ1" "\Ø12" > newfile

The ^A indicates where you type Ctrl A, not the two separate
characters ^ and A; 001 is the octal value for Ctrl A.

Double spacing
Another way to get double spacing is to use the r (read)
command to read a file containing only a blank line into the text
you want spaced out:
sed "r blankline" stars

If there is no file with the specified name you give to the r
command, you don’t get an error message; sed just carries on
and nothing gets read into your file.

Writing to files
The w (write) operation can be used to extract lines from one file
and read them into another. For example:
sed "/Smith/w smiths" stars

extracts all the lines in stars containing Smith and writes them
to the file smiths.
The w operation can be appended to an s operation, and
substitutions are performed before the lines are written to the file.
For example:
sed "s/Smith/Williams/w smiths" stars

Using the write operation we could have split our stars file with:

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Automated mechanism for changing passwords

An important security problem occurs when root passwords and
important user passwords are not regularly changed. We have
noticed in our company that we have to give the root passwords
to a lot of people (first/second level supports, administrators,
etc), which creates the need to change these root passwords
quite often. First of all, to do this is a lot of work – you have to log
on to every machine one-by-one and change it. Secondly, it is
always painful to update files to let people know that a password
has changed and identify which groups need which passwords.
That’s why I have built an automatic mechanism to change user
passwords regularly on all systems in the company and update
the appropriate files for the groups needing them.
The mechanism also works well with manual changes. Briefly, it
has three stages:

sed -n -e "/1..$/w popstars" \
-e "/2..$/w tennisstars" \
-e "/3..$/w footiestars" \
stars

Quitting at specified lines
The q (quit) operator can be used to display the head of a file. The
following command stops producing output after line number 3:
sed "3q stars

When given a search pattern, sed quits after the first occurrence
of a line containing that pattern. For instance:
sed /Rio/q stars

stops after the line containing Rio.
Tonto Kowalski
Guru (UAE) © Xephon 2003

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Stage 1/first script – a password is generated and this
password is first of all changed for a dummy user on the main
system to get the encrypted password and lastupdate fields
from the /etc/security/passwd file.

• Stage 2/second script – this is executed on the target system
where the password for a given user is to be changed. The
fields encrypted password and lastupdate obtained from the
first script are exchanged with the current fields on the target
system /etc/security/passwd file. In this way, the password
is changed.

• Stage 3/third script – this is executed on the main system
again to update the files. Every group in the company has a
directory and, using a file, it identifies in which group’s
directories the new password file is to be created. Each
group can access only their own directory. In this way, they
get the passwords they need to know.

STAGE 1/APASSWD.SH
The script works on the main system. The script works with or
without parameters. Parameters are used for manual password
changes.
Without parameters (automatic):
/usr/local/sbin/apasswd.sh

The script has the following steps:
1 The script is executed n times from the root crontab. It

depends on how often in a day you want to run the password
changing mechanism. The mechanism is started with the
apasswd.sh script, and the target host is randomly selected.

2 In the beginning the script creates/examines an indicator file
named running to ensure that only one password mechanism
is running. That is to avoid automatic and manual password
changing mechanisms coinciding. The script checks first of
all whether the running file exists under the /pwl/.work
directory. If yes, it gives an information message to try it

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

again later. If not, it starts the automatic password-changing
mechanism.

3 The script generates an 8-character password.
4 It changes the password of a dummy user named pwusr on

the main system. This happens in the script by calling a C
program called pwchanger. The C code for this program is
given below.
It’s best to make login/remote login false for the dummy user.

5 It then takes the appropriate fields encrypted password – 13
characters and lastupdate from the /etc/security/passwd
file.

6 A file containing all hostnames and which groups need which
passwords must be manually created (filename: /pwl/
.which_group_needs_which_pw). Here is an example:

#-#
#-#
#-# Format:
#-# ------
#-# host ip-address account pw_group
#-#
tcellØØ2.turkcell.com.tr 1Ø.55.2Ø1.28 root first_level,second_level
tcellØØ3.turkcell.com.tr 1Ø.55.2Ø1.29 root sap
tcellØØ4.turkcell.com.tr 1Ø.55.2Ø1.3Ø root dba,web
tcellØØ5.turkcell.com.tr 1Ø.55.2Ø1.31 root second_level,web
tcellØØ6.turkcell.com.tr 1Ø.55.2Ø1.32 root
first_level,second_level,sap,dba
tcellØØ7.turkcell.com.tr 1Ø.55.2Ø1.33 root first_level,sap
tcellØØ8.turkcell.com.tr 1Ø.55.2Ø1.34 root sap,web,dba
tcellØØ9.turkcell.com.tr 1Ø.55.2Ø1.35 root web
...
...

Each time, a hostname is randomly selected from this file.
7 Then the script prepares a one-line file named goner in a

predetermined format under the /pwl/.work directory. The
information contained in it comes from the previous steps.
Format:
<hostname> <user> <decrypted pw> <lastupdate> <encrypted pw>

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Example:
tcellØØ5 root Pk9v23u6 1Ø44434669 Yk12uP/mdfgfw

Then the goner file is zipped, goner.gz, to make the file more
secure during ftp.

8 The next step is to send the transfer file to the host
(mvsist.turkcell.com.tr).

Each step has an exit code in case of error.
With parameters (manual), first step:
/usr/local/sbin/apasswd.sh "<hostname>" "<user>" "<8-char-password>"

The script has the following steps:
1 The chosen 8-character password must not include special

characters.
2 In the beginning the script creates/examines an indicator file

named running to ensure that only one password mechanism
is running. That is to avoid automatic and manual password
changing mechanisms coinciding. The script checks first of
all whether the running file exists under the /pwl/.work
directory. If yes, it gives an information message to try it
again later. If not, it starts the automatic password-changing
mechanism.

3 In this step, it checks whether the given parameters are
correct.

4 It takes the password entered as a parameter and changes
the password of a dummy user named pwusr on the main
system. This is made in the script by calling a C program
called pwchanger.

5 It then takes the appropriate fields encrypted password – 13
characters and lastupdate from the /etc/security/passwd
file.

6 Then the script prepares a one-line file named goner in a
predetermined format under the /pwl/.work directory. The
information contained in it comes from the previous steps.

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Format:
<hostname> <user> <decrypted pw> <lastupdate> <encrypted pw>

Then the goner file is zipped, goner.gz, to make the file more
secure during ftp.

7 The next step is to send the transfer file to the host
(mvsist.turkcell.com.tr).

Manual password changing can be carried out for both root and
non-root users. The manual version of this password changing
mechanism is available because sometimes we need to give the
root password temporarily to operators. In these cases, this
mechanism allows us easily to change the password for a user
on a system for a short period. In the meantime, we have to
ensure that the automatic mechanism running from crontab
does not change the password again for this system. That’s why,
if the user is root, then this hostname is commented in the file
.which_group_needs_which_pw, which means it is excluded
from the next random selection until the comment sign is
removed for the system. Briefly, in this step the hostname is
commented in this file if the user is root.
Each step has an exit code in case of error.
The second step after making a manual password change is:
/usr/local/sbin/apasswd.sh "<hostname>" "<user>"

The manually-assigned password has to be replaced afterwards
by a randomly-generated password, and the system has to be
included again in the list. This script works with two parameters
and the steps are as follows:
1 In the beginning the script creates/examines an indicator file

named running to ensure that only one password mechanism
is running.

2 It checks whether the given parameters are correct.
3 It generates an 8-character password.
4 It changes the password of a dummy user named pwusr on

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the main system. This happens in the script by calling a C
program called pwchanger.

5 It then takes the appropriate fields encrypted password – 13
characters and lastupdate from the /etc/security/passwd
file.

6 Then the script prepares a one-line file named goner in a
predetermined format under the /pwl/.work directory. The
information contained in it comes from the previous steps.
Format:
<hostname> <user> <decrypted pw> <lastupdate> <encrypted pw>

Then the goner file is zipped, goner.gz, to make the file more
secure during ftp.

7 The next step is to send the transfer file to the host
(mvsist.turkcell.com.tr).

8 It removes the comment in front of the given hostname in the
.which_group_needs_which_pw file so that the system is
available again.

APASSWD.SH
#!/bin/ksh
##
The script generates an 8-character password and changes the password
of a dummy user. This enables the password of a randomly-selected
remote server to be changed using this 3-character encrypted password
and its last update.
A file is created including the info (encrypted password &
last update, etc) to be replaced later in a local server
/etc/security/passwd file by another script in order to change its
given user password ... This script works with and without parameters.
With parameters runs the manual password changing mechanism.
Without parameters is the automatic version, which must be scheduled
in crontab.
##
function that generates random passwords
function pwd_gen {
inserting the character set into charset array
set -A charset1 'print $letters; print $cap_letters; print $numbers;
print $chars'

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

set -A charset2 'print $letters; print $cap_letters; print $numbers'
generating a password from charset
let i=Ø
passw=""
while (($i < $char_num)) ; do
 ch='print ${charset1[$((RANDOM%${#charset1[*]}))]}'
 passw=${passw}${ch}
 let i=$i+1
done
let i=Ø
prepassw=""
while (($i < 5)) ; do
 ch='print ${charset2[$((RANDOM%${#charset2[*]}))]}'
 prepassw=${prepassw}$ch
 let i=$i+1
done
typeset -L6 passwd=$passw
typeset -L2 prepasswd=$prepassw
password=${prepasswd}${passwd}
if [[${#password} -eq "8"]] ;then
 print $password
else
 retstr="$retstr1Ø2"
 send_mail
 echo $retstr
 exit 1Ø2 # password not correctly generated
fi
}
###
This function gets out a random line from the file
function choose_line {
cat $fname | grep -v "^#"| grep . | nl |
while read index rest ; do
 line[index-1]=$rest
done
getting a random element from the array
random_line='print ${line[$((RANDOM%${#line[*]}))]}'

if [${#random_line} -eq Ø] ; then
 retstr=$retstr1Ø3
 send_mail
 echo $retstr
 exit 1Ø3 # Random line from the file is not correct
fi
}
##
This function changes the password for the dedicated user
function user_pwd_chg {
Create a file to make sure only one script is executed
touch $flag_file

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

generating a new passwd for the dedicated user
(if not manually entered) and changing the password
/usr/local/sbin/pwchanger "$usr" "${decripted_pw:=`pwd_gen`}" > /dev/
null 2>&1
if [$? -eq Ø] ; then
 prep_file
else
 retstr=$retstr1Ø1
 send_mail
 echo $retstr
 exit 1Ø1 # pwchanger is not successfully executed
fi
}
##
This function prepares the file to be sent to Host.
function prep_file {
Getting the name of the system that will have password change.
if [[$chosen_host = ""]] && [[$chosen_user = ""]] ; then
 choose_line
 chosen_host='print $random_line | awk '{print $1}''
 chosen_host=${chosen_host%%.*}
 #chosen_ip='print $random_line | awk '{print $2}''
 chosen_user='print $random_line | awk '{print $3}''
fi
getting encrypted password and lastupdate fields
from /etc/security/passwd
finding the line # where the user is
chk='cat $pwd_file | grep ${usr}: | wc -l'
if [chk -eq 1] ; then
 let lno='nl -ba $pwd_file | grep ${usr}: | awk '{print $1}''
 twolines='sed -n "$((${lno}+1))','$((${lno}+2))'p' $pwd_file | grep -
E "password|lastupdate" | wc -l'
 if [$twolines -eq 2] ; then
 # taking out encrypted password field
 epwd='sed -n "$((${lno}+1))','$((${lno}+2))'p' $pwd_file | grep
password | awk -F= '{print $2}''
 # taking out the lastupdate field
 lupt='sed -n "$((${lno}+1))','$((${lno}+2))'p' $pwd_file | grep
lastupdate | awk -F= '{print $2}''
 # getting out the spaces from the strings
 encrypted_pw='print $epwd | tr -d '\Ø''
 lastupdate='print $lupt | tr -d '\Ø''
 # writing the fields to the goner file
 echo "$chosen_host $chosen_user $decripted_pw $lastupdate
$encrypted_pw" > $goner_file
 # compressing the file not to be seen with cat during transfer.
 if [-s $goner_file] ; then
 /usr/bin/gzip -f $goner_file > /dev/null 2>&1
 if ["$?" != "Ø"] ; then
 retstr=$retstr1Ø6

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 send_mail
 echo $retstr
 exit 1Ø6 # file not compressed
 fi
 else
 retstr=$retstr1Ø7
 send_mail
 echo $retstr
 exit 1Ø7 # file does not exist or empty
 fi
 else
 retstr=$retstr1Ø5
 send_mail
 echo $retstr
 exit 1Ø5
 # sed could not get the correct lines in /etc/security/passwd
 fi
else
 retstr=$retstr1Ø4
 send_mail
 echo $retstr
 exit 1Ø4 # cannot find user in /etc/security/passwd file or string
douple found.
fi
}
###
This function sends mail to a list of users when an error has occurred
function send_mail {
echo "error/info message" | /usr/bin/mailx -s "$retstr" -r apasswd@root
$mailto
}
###
This function FTPs to the Host
function ftp_file {
Check whether we are in the right directory in local server
cd ${local_dir} > $logfile
if [[$(pwd) != ${local_dir}]]
then
 retstr=$retstr1Ø8
 send_mail
 echo $retstr
 exit 1Ø8 # cannot change to the local directory
fi
Check whether the Host is pingable
ping -c 2 ${mvs_host} 1 > /dev/null 2>&1
if [[$? != Ø]]
then
 retstr=$retstr1Ø9
 send_mail
 echo $retstr

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 exit 1Ø9 # cannot ping Host
fi
Start FTP Job
ftp -v -n ${mvs_host} << ! >> $logfile
user $mvs_user $mvs_pwd
prompt
bin
$mvs_par
put ${goner_file}.gz ‚$mvs_replace'
fi
bye
!
Check whether successfully connected to Host
grep -q "Connected to mvsist.turkcell.com.tr" $logfile
if [$? != Ø]
then
 retstr=$retstr11Ø
 send_mail
 echo $retstr
 exit 11Ø # Cannot connect to Host
fi
Checking whether the user could log in.
grep -q "Login failed" $logfile
if [$? -eq Ø]
then
 retstr=$retstr111
 send_mail
 echo $retstr
 exit 111 # Login failed check user/passwd
fi
Checking whether ftp is successful
grep -q "bytes sent in" $logfile
if [[$? != Ø]]
then
 retstr=$retstr112
 send_mail
 echo $retstr
 exit 112
fi
}
###
This function displays usage
function usage {
cat << EOT
Automatic version without parameter:
$scriptname
Changing password manual:
 (encrypted-PW-generation + put comment for <hostname>)
$scriptname "<hostname>" "<user>" "<8-char-password>"
Changing back manual changed password:

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 (PW-generation + remove comment for <hostname>)
$scriptname "<hostname>" "<user>"
EOT
}
###
This function checks whether the entered hostname is correct and
commented
function hostname_check2 {
if [[$chosen_user = "root"]] ; then
 cat $fname | grep "^#" | grep -q "$chosen_host"
 if [[$? != Ø]] ; then
 echo $outstr123
 exit 123 # manual given hostname not in List or not commented
(root)
 fi
else
 cat $fname | grep -q "$chosen_host"
 if [[$? != Ø]] ; then
 echo $outstr129
 exit 129 # manual given hostname not in List (non-root)
 fi
fi
}
###
This function checks whether the entered hostname
is correct and not commented
function hostname_check3 {
if [[$chosen_user = "root"]] ; then
 cat $fname | grep -v "^#" | grep -q "$chosen_host"
 if [[$? != Ø]] ; then
 echo $outstr128
 exit 128 # manual given hostname not in List or commented (root)
 fi
else
 cat $fname | grep -q "$chosen_host"
 if [[$? != Ø]] ; then
 echo $outstr129
 exit 129 # manual given hostname not in List (non-root)
 fi
fi
}
###
This function checks whether the entered password is valid.
function passwd_check {
if [[${#decripted_pw} = 8]] ; then
 if [[$decripted_pw != +([Ø-9,a-z,A-Z])]] ; then
 echo $outstr125
 exit 125
 fi
else

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 echo $outstr126
 exit 126
fi
}
###
This function comments the entered hostname in the file
function commenter {
xline='cat $fname | grep "$chosen_host"'
cat $fname | grep -v $chosen_host > $fname_tmp
echo "#${xline}" >> $fname_tmp
mv $fname_tmp $fname
}
###
This function uncomments the entered hostname in the file
function uncommenter {
cat $fname | grep "$chosen_host" | grep -q "#"
if [$? -eq Ø] ; then
 xline='cat $fname | grep "$chosen_host" | sed 's/.//''
 cat $fname | grep -v $chosen_host > $fname_tmp
 echo "${xline}" >> $fname_tmp
 mv $fname_tmp $fname
else
 echo $outstr124
 exit 124
fi
}
###
variables
letters="a b c d e f g h i j k l m n o p q r s t u v w x y z"
cap_letters='echo $letters | tr [:lower:] [:upper:]'
numbers="Ø 1 2 3 4 5 6 7 8 9"
chars="% / () ? + - _ > < . , ; :"
char_num=13
fname=/pwl/.which_group_needs_which_pw
fname_tmp=/pwl/.which_group_needs_which_pw_tmp
goner_file=/pwl/.work/goner
local_dir=/pwl/.work
pwd_file=/etc/security/passwd
usr=pwusr
grps="first_level second_level sap dba web"
grps_dir=/pwl
pwdlog=/pwl/.work/pwd_history
logfile=${local_dir}/ftp.log
mailto="administrators@turkcell.com.tr"
mvs_host=mvsist.eil.risnet.de
mvs_user=ftpuser
mvs_pwd=xxxxxx
mvs_par="site recfm=fb lrecl=8Ø"
mvs_replace=»IVP.ZB.SQ###.BETA48.PW»
flag_file=/pwl/.work/running

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

scriptname=$(echo $Ø)
###
error/info codes
retstr1Ø1="ERROR: pwchanger is not successfully executed! PASSWORD NOT
CHANGED FOR $usr !!!"
retstr1Ø2="ERROR: password is not correctly generated! PASSWORD NOT
CHANGED FOR $usr !!!"
retstr1Ø3="ERROR: random line from the $fname is not correct! FILE NOT
SENT !!!"
retstr1Ø4="ERROR: cannot find user in /etc/security/passwd file or
string douple found! FILE NOT SENT !!!"
retstr1Ø5="ERROR: sed could not get the correct lines in /etc/security/
passwd! FILE NOT SENT !!!"
retstr1Ø6="ERROR: $goner_file could not be compressed! FILE NOT SENT
!!!"
retstr1Ø7="ERROR: $goner_file does not exist or empty! FILE NOT SENT
!!!"
retstr1Ø8="ERROR: Cannot change to ${local_dir}! FILE NOT SENT !!!"
retstr1Ø9="ERROR: Cannot ping $mvs_host! FILE NOT SENT !!!"
retstr11Ø="ERROR: Cannot connect to $mvs_host! FILE NOT SENT !!!"
retstr111="ERROR: Login failed, check user and password! FILE NOT SENT
!!!"
retstr112="ERROR: Unknown failure! FILE NOT SENT !!!"
outstr127="ERROR: Wrong number of parameters are given !!!"
outstr128="ERROR: Given hostname not in list or already commented (user:
root) !!!"
outstr126="ERROR: Given password is not 8 characters !!!"
outstr125="ERROR: Given password must be letters and/or numbers (without
special characters) !!!"
outstr124="ERROR: Given hostname is not manual changed before! (not
commented in the file) !!!"
outstr123="ERROR: Given hostname not in list or NOT commented before
(user: root) !!!"
outstr129="ERROR: Given hostname not in list (user: non-root) !!!"
###
initialization
decripted_pw=""
chosen_host=""
chosen_usr=""
MAIN
if [-a $flag_file] ; then
 print
 echo "Password Changing Machanism is already running, please try
later!!!"
 print
else
 if [[$# = 3]] ; then # changing password manual (en_passwd gen +
putting comment sign)
 chosen_host=$1
 chosen_user=$2

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 hostname_check3
 decripted_pw=$3
 passwd_check
 user_pwd_chg
 ftp_file
 if [[$chosen_user = "root"]] ; then
 commenter
 fi
 elif [[$# = 2]] ; then # changing manual changed password (PW gen +
remove comment sign)
 chosen_host=$1
 chosen_user=$2
 hostname_check2
 user_pwd_chg
 ftp_file
 if [[$chosen_user = "root"]] ; then
 uncommenter
 fi
 elif [[$# = Ø]] ; then # automatic execution without a parameter.
 user_pwd_chg
 ftp_file
 else
 echo $outstr127
 print
 usage
 exit 127 # wrong number of parameters
 fi
fi
###

PWCHANGER.C
(/usr/local/sbin/pwchanger <user> <password>):
/*
 Use the following command to compile:

cc -o pwchanger pwchanger.c -ls
*/
#include <userpw.h>
#include <sys/types.h>
#include <pwd.h>
#include <usersec.h>
#include <errno.h>
#define KEYCRYPTLEN 2
void usage (){
 printf(«Usage: pwchanger user passwd\n»);
 exit(1);
}
main (int argc,char *argv[]){

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

int id;
struct userpw *p;
char user[PW_NAMELEN], pass[1Ø], pass2[256];
char *nwpass;
char **message;
struct userpw newpw; /* passwd structure if getuserpw fails */
if (argc != 3) usage();
/* calculate encrypted passwd ... */
strcpy(user,argv[1]);
strcpy(pass,argv[2]);
strncpy(pass2,pass,2);
nwpass=(pass,pass2);
/* infos DEBUG
 printf("passwd crypti : %s\n",nwpass);
 printf("Avant modif : \n");
 printf(«------------ \n»);
*/
/* open data bases for read and write */
 setpwdb (S_READ|S_WRITE);
 setuserdb (S_READ|S_WRITE);
p=getuserpw(user);
/* Will verify whether the user exists ... */
 /* Check whether the user exists */
 if (getuserattr(user,S_ID,&id,SEC_INT))
 {

printf(«\nuser %s inconnu ...\n\n»,user);
 return(-1);

exit(ENOENT);
 }
if (!(p=getuserpw(user))){
printf("structure passwd vide %s ...\n\n",user);
printf("%s : user\n",user);
/* initialize new userpw struct */
strcpy(newpw.upw_name,user);
newpw.upw_passwd = nwpass;
newpw.upw_lastupdate = time ((long *) Ø);
newpw.upw_flags =Ø;
printf("Nom : %s\n",user);
printf("Password : %s\n",newpw.upw_passwd);
printf("LastUpdate : %u\n",newpw.upw_lastupdate);
printf("Flags : %u\n\n\n",newpw.upw_flags);
putuserpwhist(&newpw, message);
putuserattr(user,S_PWD,"!",SEC_CHAR);
putuserattr(user,NULL,NULL,SEC_COMMIT);
p=getuserpw(user);
/*putuserpw(p); */
}
/* infos DEBUG
 printf("Nom : %s\n",p->upw_name);
 printf("Password : %s\n",p->upw_passwd);

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 printf("LastUpdate : %u\n",p->upw_lastupdate);
 printf("Flags : %u\n\n\n",p->upw_flags);
*/
strcpy(p->upw_passwd,crypt((const *)pass,(const *)pass2));
/* infos DEBUG
 printf(«Apres modif MEMOIRE : \n»);
 printf(«------------ \n»);
 printf("Nom : %s\n",p->upw_name);
 printf("Password : %s\n",p->upw_passwd);
 printf("LastUpdate : %u\n",p->upw_lastupdate);
 printf("Flags : %u\n\n\n",p->upw_flags);
*/
setpwdb(S_WRITE);
putuserpw(p);
endpwdb();
}

STAGE 2/PASSCH.SH
This script works on the local server of the given user whose
password we want to change. As soon as apasswd.sh (first
script) sends the goner file to the host (MVS system) without an
error code, then the host analyses the file and knows in which
machine the passch.sh should be executed and with which
parameters.
For script execution for remote servers on the host system we
have software called beta available:
/usr/local/sbin/passch.sh "<user>" "<encrypted password>" "<lastupdate>"

The script has the following steps and is executed by OPC/beta
on the host:
1 The hostname in the goner file decides in which system the

script is going to be executed and with which parameters.
2 Back-up the /etc/security/passwd file as /etc/security/

passwd.old.
3 Replace <user> with the encrypted password and lastupdate

fields in the /etc/security/passwd with the new ones in the
goner file.

Each step has an exit code in case of error.

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

If you have ever experienced any difficulties with AIX, or
made an interesting discovery, you could receive a cash
payment, a free subscription to any of our Updates, or
a credit against any of Xephon’s wide range of products
and services, simply by telling us all about it.
More information about contributing an article to a
Xephon Update, and an explanation of the terms and
conditions under which we publish articles, can be found
at http://www.xephon.com/nfc.
Articles, or article proposals, can be sent to the editor,
Trevor Eddolls, at any of the addresses shown on page
2. Alternatively, you can e-mail him at
trevore@xephon.com

Editor’s note: the code for passch.sh and stage 3 of this security
system will be published next month.
Adnan Akbas
System Administrator
TURKCELL (Germany) © Xephon 2003

AIX news

IBM has announced High Availability
Cluster Multi-Processing for AIX 5L, V5.1.0
(HACMP V5.1), which offers improved
usability, functionality, and performance, and
also a new optional package, HACMP/XD
(Extended Distance), which offers multiple
data back-up and disaster recovery
technologies. HACMP/XD provides
extended distance for ESS/PPRC peers and
unlimited distance for IP-connected peers
using HAGEO technology.

New Version 5 features include
consolidation of all previous forms of
HACMP (HAS, CRM, ES, ESCRM) into
one HACMP offering, fast disk fallover,
which takes less than ten second, simplified
configuration through streamlined user
interface, and heartbeat by shared disk, which
offers additional protection against network-
partitioned cluster data divergence.

There’s an enhanced security mechanism,
which removes the need for /.rhosts, an
integrated cluster file system option, which
uses GPFS 1.5, performance rewrite of
cluster verification and cluster single-point-
of-control, and customized control of startup
and fallback application and resource
behaviour.

HACMP/XD will immediately support ESS
PPRC so that HACMP/XD clusters now
support automatic fallover of disks that are
PPRC pairs.

For further information contact your local
IBM representative.
URL: http://www-1.ibm.com/servers/aix/
products/ibmsw/high_avail_network/
hacmp_51.html.

* * *

Metron has announced the launch of Athene
Version 7.4, which includes automatic

reporting, data capture and CustomDB.

With automatic reporting, users will now be
able to group servers by application and thus
receive reports on a specified application
across a group of servers, rather than on a
single server basis. The same concept of
‘grouping’ also applies to disks within
Version 7.4.

Athene 7.4 incorporates the ability to capture
Netstat data from AIX as well as HP-UX,
Solaris, and Tru64.

CustomDB provides an ‘integration’ facility
with the ability to collect data from a wide
range of different applications and
environments including network statistics
and other operating systems.

For further information contact:
Metron, Osborne House, Trull Road,
Taunton, Somerset, TA1 4PX, UK.
Tel: (01823) 259231
URL: http://www.metron.co.uk/products/
athene/index.html.

* * *

IBM has announced that it is expanding the
DB2 solutions supporting Workgroup
Edition, Workgroup Server Edition, and
Workgroup Server Unlimited Edition by
offering enhanced tools for AIX, Linux, and
Windows.

The new support is available in DB2 Table
Editor for Workgroups V4.3, DB2 High
Performance Unload for Workgroups V2.1,
DB2 Performance Expert for Workgroups
V1.1, and DB2 Web Query Tool for
Workgroups V1.3.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/.

x xephon

	Get rid of confusing error messages
	Shell script library - part 2
	The sed command
	Automated mechanism for changing passwords
	AIX news

