

© Xephon plc 2003

October 2003

96

In this issue

AIX

3 Handling command line
parameters using getopts

10 Automated mechanism for
changing passwords – part 2

18 Complex sed operations
33 Implementing I/O multipathing

using HP Auto Path XP product
49 November 2000 – October 2003

index
51 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Handling command line parameters using getopts

When creating robust shell scripts, remember that they should
ideally be capable of handling command line parameters or
options, checking user input, and trapping and recovering from
errors. In this article I will look at handling multiple command line
arguments using getopts. Getopts is an in-built shell function
that takes away from the system administrator or user the
tedious tasks of checking correctly-parsed parameters.
When parsing parameters to a script, the most standard form is
to prefix the parameter name with a hyphen (-), followed by the
actual value or argument. For instance to tar up the directory /
usr/local with a verbose option is:
$ tar -xvf /usr/local/ /dev/rmtØ

Where f is the name of the files or directories.
Of course tar is a binary file, but, by using getopts, your scripts
can handle these types of argument.
The basic format of getopts is:
getopts [options] opstring name

Getopts is used within a while loop, usually with a few case
statements thrown in, depending on the complexity of the actual
script. A very simple script, sampleopt.sh, using getopts is
shown below:
#!/bin/bash
while getopts pvf opt
do
 case "$opt" in
 p) PRINT="$OPTARG"
 echo "PRINT is selected"
 ;;
 v) VERBOSE="$OPTARG"
 echo "VERBOSE is selected"
;;
 f) FILENAME="$OPTARG"
 echo "FILENAME is selected"
;;

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 \?) echo "Invalid Option"
 exit 1;;
 *) echo "Unknown Options"

exit 1
;;
 esac
done

The script takes the arguments p, v, and f. These values are the
opstring, and the name of the variable is $opt. When values are
parsed to the sampleopt.sh script from the command line, the
valid options are printed.
Running the above script with different options could produce the
following:
$ sampleopt -v -p
VERBOSE is selected
PRINT is selected
$ sampleopt -v -c
VERBOSE is selected
sample1: illegal option -- c
Invalid Option

UNDERSTANDING GETOPTS
Looking more closely at the listing, we see that getopts reads the
opstring and knows these are valid options to be used in the
script. It will look for all arguments that start with a hyphen. When
an option that contains a value is read in, it is assigned to the
special variable $OPTARG. If a match is found, then the getopts
variable $OPTARG is set to $opt. This process is repeated using
a while loop until there are no more options left. When getopts
has finished processing all the arguments, it returns a non-zero
status, which means that all arguments were parsed successfully.
The special variable $OPTIND holds the next argument that is to
be processed. When getopts is initially run it is set to 1. We will
discuss $OPTFIND shortly.
There is a lot that can be done to the script to make it handle
different arguments. For instance, the print option should be set
to off by default; only when the user parses -p do we want to print.
If the operation is to be verbose, the user should be able to

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

choose whether it is on or off; this option should be parsed to the
script. If no verbose option is parsed then a default value should
be set. When a filename is parsed we need to check that the file
does exist; indeed, the script should be able to handle more than
one file.
When using getopts you can specify what options require a
parameter by using the colon. A colon precedes an option that
must have a parameter or value. So the following getopts
snippet:
getopts pv:f: opt

would mean that the options v and f require a value parsed with
them and are compulsory, but the p option is optional. When
getopts encounters an error it will print a rather unfriendly
message, as in the previous example (illegal option -c). To
suppress these messages put a colon before any of the options,
like so:
getopts :pv:f: opt

This colon will also parse any unmatched options to the variable
‘?’, allowing a case statement to trap these errors. Generally the
? character is used to produce a usage statement, but you are
not forced to do so. You can use the standard -help option if you
wish by putting a pattern match in a case statement.

CHECKING WITHIN GETOPTS
When dealing with getopts errors, it is best to throw up a usage
statement to the user, showing all the available parameters. Not
only is this the standard, it is considered good form. The usage
statement should be enclosed as a function, thus enabling you
to call it from anywhere in your script. Because this is an error call,
the script should exit with a status 1. A simple usage function for
our script would be:
usage()
{
echo -e "usage: `basename $Ø` [-p to print] [-v on or off] -f
filename"
echo " -p print file defaults to no"

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

echo " -v on for verbose, off for silent, defaults to on"
echo " -f filename"
exit 1
}

Users who do not know the different parameters or arguments of
a script sometimes just type the script name and hope to see a
usage statement – we must not disappoint these users. Using a
test condition, we can tell whether the shell variable $# is empty.
If it is, then we print a usage statement.
The $# variable holds the total number of parameters being
parsed to the current script:
if [$# = Ø]; then
 echo "No parameters found"
 usage
fi

Handling default values is simple enough, just put these default
values in your script before any main input processing is started.
PRINT=Ø
VERBOSE=on

If the user wants to have verbose on, then we need to check
whether the user has passed the correct value. Using a simple
case statement will accomplish this quite nicely – notice the use
of different ways of writing on and off so as to trap most if not all
possible ways. If the value passed does not match our case
pattern match, then the script throws up a usage statement and
exits:
 case "$VERBOSE" in
 on|On|ON) ;;
 off|Off|OFF) ;;
 *) echo "Verbose option must be 'on' or 'off'"
 usage;;
 esac

Checking for a valid filename passed is quite easy – all we need
to do is check that the file actually exists and has a size greater
than zero bytes. If none of these conditions is met using the test
operator -s, then we exit with a usage statement:
 if ! [-s "$FILENAME"]; then

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 echo "File '$FILENAME' does not exist"
 usage
 fi

To handle multiple files, simply put a ‘for’ loop around the file
option parameter:
 for FILENAME in $FILES
 do
file exist & size > Ø bytes
 if ! [-s "$FILENAME"]; then
 echo "File '$FILENAME' does not exist"
 usage
 fi
 done

One shortfall that getopts suffers from is that arguments cannot
have spaces in them. At best it will treat this as an undefined
option, at worst it will ignore it completely. When parsing more
than one value as an option enclose it with quotes, like so:
-f "/home/dxtans/report.txt /home/dxtans/monthly.txt"

To correctly process all the options using getopts we must shift
to the next value being processed. As the variable $OPTIND
holds the next current argument, all we need is a simple shift
statement directly after the ‘while’ loop, so we are dealing with the
current argument being processed:
shift 'expr $OPTIND - 1'

Now with the above topics discussed we can put together a more
robust script, which handles command line options quite nicely.
The complete script is shown below:
$ sampelopt -?
usage: sampelopt [-p to print] [-v on or off] -f filename
 -p print file defaults to no
 -v on for verbose, off for silent, defaults to on
 -f filename
Processing three files with verbose on
$ sampelopt -f "/home/dxtans/file1.txt /home/dxtans/file2.txt /home/
dxtans/file3.txt" -v off -p
processing ...
PRINT is 1
VERBOSE is off
FILENAME is /tmp/file1.txt
=========

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

processing ...
PRINT is 1
VERBOSE is off
FILENAME is /tmp/file2.txt
=========
processing ...
PRINT is 1
VERBOSE is off
FILENAME is getdt2
=========
processing ...
PRINT is 1
VERBOSE is off
FILENAME is dx
=========
Another typical use could be;
$ sampleopt.sh -p -v on -f "/tmp/dt1 /tmp/dt3"
processing ...
PRINT is 1
VERBOSE is on
FILENAME is /tmp/dt1
=========
processing ...
PRINT is 1
VERBOSE is on
FILENAME is /tmp/dt3
=========
Listing 2. sampleopt.sh
#!/bin/bash
sampleopt
usage()
{
echo "usage: `basename $Ø` [-p to print] [-v on or off] -f filename"
echo " -p print file defaults to no"
echo " -v on for verbose, off for silent, defaults to on"
echo " -f filename"
exit 1
}
if [-z $#]; then
 echo "No parameters found"
 usage
fi
#default values
PRINT=Ø
VERBOSE=on
while getopts :pv:f: opt
do
 case "$opt" in
 p) PRINT=1

;;

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 v) VERBOSE="$OPTARG"
 case "$VERBOSE" in
 on|On|ON) ;;
 off|Off|OFF) ;;
 *) echo "Verbose option must be 'on' or 'off'"
 usage;;
 esac
;;
 f) FILES="$OPTARG"
 for FILENAME in $FILES
 do
file exist & size > Ø bytes
 if ! [-s "$FILENAME"]; then
 echo "File '$FILENAME' does not exist"
 usage
 fi
 done
;;
 \?)
 usage ;;
 *) usage ;;
 esac
done
shift 'expr $OPTIND - 1'
for FILENAME in $FILES
do
echo "processing ...\nPRINT is $PRINT\nVERBOSE is $VERBOSE\nFILENAME is
$FILENAME "
echo "========="
your actual processing statements go here.
done

Running this with a non-existent file produces:
$ sampelopt -f "file3.txt" -v off -p
File 'file3.txt' does not exist
usage: sampelopt [-p to print] [-v on or off] -f filename
 -p print file defaults to no
 -v on for verbose, off for silent, defaults to on
 -f filename

I have not covered all the options getopts has to offer, but
hopefully enough to show you that you can handle command line
options in your scripts with renewed confidence and vigour.
David Tansley
Global Production Support (IBM-p series) (UK) © Xephon 2003

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Automated mechanism for changing passwords –
part 2

This month we conclude the article on changing passwords.

PASSCH.SH
#!/bin/ksh
##
This script changes the password for a given user by changing the
lastupdate & password fields in /etc/security/passwd file.
##
This function replaces encrypted_passowrd & lastupdate in /etc/
security/passwd
function replace_pass {
lsuser $usr > /dev/null 2>&1
if [[$? = Ø]] ;then
chk='cat $pwd_file | grep ${usr}: | wc -l'
if [chk -eq 1] ; then
 if [[${#epass} = 13]] ; then
 if [[$lupdate = +([Ø-9])]] ; then
 let lno='nl -ba $pwd_file | grep ${usr}: | awk '{print $1}''
 twolines='sed -n "$((${lno}+1))','$((${lno}+2))'p' $pwd_file |
grep -E "password|lastupdate" | wc -l'
 if [$twolines -eq 2] ; then
 # taking out encrypted password field
 encrypted_pw='sed -n "$((${lno}+1))','$((${lno}+2))'p'
$pwd_file | grep password | awk -F= '{print $2}''
 # taking out the lastupdate field
 lastupdate='sed -n "$((${lno}+1))','$((${lno}+2))'p'
$pwd_file | grep lastupdate | awk -F= '{print $2}''
 # getting out the spaces from the strings
 epass_old='print $encrypted_pw | tr -d '\Ø''
 lupdate_old='print $lastupdate | tr -d '\Ø''
 # Backup the passwd file
 cp -p $pwd_file $bck_pwd_file > /dev/null 2>&1
 if [[$? = Ø]] ; then
 # replacing new encrypted password
 sed s#$epass_old#$epass# $pwd_file > $new_pwd_file
 # replacing new lastupdate field
 sed s#$lupdate_old#$lupdate# $new_pwd_file > $pwd_file
 rm $new_pwd_file
 if [[$usr != root]] ; then
 pwdadm -c $usr
 fi

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 else
 print "$retstr2Ø5"
 exit 2Ø5 # backing up the passwd file was not successful
 fi
 else
 print "$retstr2Ø4"
 exit 2Ø4 # sed could not get the correct lines in /etc/
security/passwd
 fi
 else
 print "$retstr2Ø3"
 exit 2Ø3 # lastupdate is not in correct format
 fi
 else
 print "$retstr2Ø2"
 exit 2Ø2 # encrypted passowrd is not in correct format
 fi
else
 print "$retstr2Ø1"
 exit 2Ø1 # cannot find user in /etc/security/passwd file or string
douple found
fi
else
 print "$retstr2Ø7"
 exit 2Ø7 # user does not exist
fi
}
##
variables
scr_name=$Ø
usage="$scr_name <user> <encrypted_passowrd> <lastupdate>"
pwd_file=/etc/security/passwd
bck_pwd_file=/etc/security/passwd.old
new_pwd_file=/etc/security/passwd.new
###
error codes
retstr2Ø1="cannot find $usr in /etc/security/passwd file or string
douple found! PASSWORD NOT CHANGED !!!"
retstr2Ø2="encrypted password is not in correct format! PASSWORD NOT
CHANGED !!!"
retstr2Ø3="lastupdate is not in correct format! PASSWORD NOT CHANGED
!!!"
retstr2Ø4="sed could not get the correct lines in /etc/security/passwd!
PASSWORD NOT CHANGED !!!"
retstr2Ø5="backing up the passwd file was not successful! PASSWORD NOT
CHANGED !!!"
retstr2Ø6="Wrong number of parameters are given! PASSWORD NOT CHANGED
!!!"
retstr2Ø7="User $1 does not exist! PASSWORD NOT CHANGED !!!"
MAIN

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

if [[$# = 3]] ; then
 usr='print $1 | tr -d '\Ø''
 epass='print $2 | tr -d '\Ø''
 lupdate='print $3 | tr -d '\Ø''
 replace_pass
else
 print "$retstr2Ø6"
 exit 2Ø6 # Wrong number of parameters are given
fi

STAGE 3/UPDATER.SH
The script works on the main system if the password for the given
user is successfully changed on the target system. In this stage,
the files are updated on the main system. For non-root password
changes, these files are not updated, but the new password for
the user of the system is logged in a history file. As I explained
above, every group in the company has a directory and it is
identified using the file .which_group_needs_which_pw. The
new password files are then updated in the appropriate group
directory.
We have five groups:
• flgrp – first level support
• slgrp – second level support
• sapgrp – SAP
• dbagrp – DBA
• webgrp – Web.
For all groups under /pwl/ there exists a directory on the main
system:
• flgrp – first_level
• slgrp – second_level
• sapgrp – sap
• dbagrp – dba
• webgrp – web.

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

All directories belong to root, and every group has its own group
permissions. The permissions for all directories are rwxr-s---.
Additionally, ACL is activated so that the group system is
authorized to have access to the directories.
So for example under the directory /pwl/web, which only the Web
group can access, there is a list of systems that they need to
know the root passwords for:
tcellØØ2.turkcel.com.tr
tcellØØ2.turkcel.com.tr.old
tcellØØ5.turkcel.com.tr
tcellØØ5.turkcel.com.tr.old
tcellØØ7.turkcel.com.tr
tcellØØ7.turkcel.com.tr.old
...
...

The format of each file is as follows:
<hostname with domain> <ip> <user> <8-char-passwd>

eg:
tcellØØ5.turkcell.com.tr 1Ø.55.2Ø3.3Ø root H?%,EjSV

For:
/usr/local/sbin/updater.sh

The script has the following steps:
1 If the password for the given user is successfully changed on

the target system then this script is executed by the host.
2 It unzips goner.gz and takes the information.
3 If the given user is root then all groups are identified as

needing the password. It moves the password files to .old
and creates the new file with the new information under the
directories.

4 It deletes the transfer file goner.
5 It makes a tar file of the /pwl directory with its subdirectories,

where all the password files are sent/ftp to another server in
another location/city in case of disaster.

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

6 If ftp is successful, it deletes the compressed tar file on the
main system.

7 Int performs an incremental back-up with Tivoli System
Management.

8 A history log (date, server, user, and password) of manual
and automatic executions of the password mechanism is
kept in a file:

...
 Mon Mar 24 13:Ø3:44 CET 2ØØ3 tcellØ88 root P41qbØ7G
 Mon Mar 24 14:Ø3:Ø9 CET 2ØØ3 tcellØØ2 root inz8lErk
 Mon Mar 24 15:Ø3:46 CET 2ØØ3 tcellØ44 root Cpzz,,J6
 Mon Mar 24 16:Ø3:59 CET 2ØØ3 tcellØ55 root Es,/UeN)
 Mon Mar 24 17:Ø3:19 CET 2ØØ3 tcellØØ2 root fu:?fa4H
 Mon Mar 24 17:22:22 CET 2ØØ3 tcellØ42 tradnan 12345678
 Mon Mar 24 18:Ø3:36 CET 2ØØ3 tcellØ77 root adnanakb
 Mon Mar 24 18:16:43 CET 2ØØ3 tcellØ78 root xdnanakb
 Mon Mar 24 19:Ø3:Ø6 CET 2ØØ3 tcellØ65 root CyIcB7MD
 Mon Mar 24 19:39:16 CET 2ØØ3 tcellØ12 trahmet adnanakb
 Mon Mar 24 2Ø:Ø1:5Ø CET 2ØØ3 tcellØ33 root akbasadn
 Mon Mar 24 21:Ø3:14 CET 2ØØ3 tcellØ99 root W9y:cTp(
 Tue Mar 24 22:Ø3:17 CET 2ØØ3 tcellØØ2 root yVhcW5t1
 Tue Mar 24 23:Ø3:23 CET 2ØØ3 tcellØ55 root H885;K2b
 Tue Mar 25 ØØ:Ø3:26 CET 2ØØ3 tcellØØ7 root OqV;HeV/
 Tue Mar 25 Ø1:Ø3:56 CET 2ØØ3 tcellØ45 root tqMeM3/U
 Tue Mar 25 Ø2:Ø3:56 CET 2ØØ3 tcellØ18 root Au:ai_?_
 Tue Mar 25 Ø3:Ø3:29 CET 2ØØ3 tcellØØ2 root HPcØz)E)
 Tue Mar 25 Ø4:Ø3:Ø5 CET 2ØØ3 tcellØ33 root uPohFB?9

...

...

9 The /pwl/.work/running file is removed so it can be created
at the next time of execution.

Each step has an exit code in case of error.

UPDATER.SH
#!/bin/ksh
##
This script updates the files belonging to the groups in the company.
This way every group member can see the new passwords they need to
know.
##

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

varibales
goner_zipfile=/pwl/.work/goner.gz
goner_file=/pwl/.work/goner
grps="first_level second_level sap dba web"
fname=/pwl/.which_group_needs_which_pw
grps_dir=/pwl
pwdlog=${grps_dir}/.work/history_passwd
local_dir=/pwl/.work
run_file=${local_dir}/running
tar_file=${local_dir}/pwds.tar
tar_send_to=spdcws
tar_target_dir=/home/ftpuser
logfile=${local_dir}/ftp_${tar_send_to}.log
tar_user=ftpuser
tar_pwd=xxxxxx
##
error codes
retstr151="ERROR: $goner_zipfile could not be uncompressed! FILES NOT
UPDATED !!!"
retstr152="ERROR: $goner_zipfile does not exist or empty! FILES NOT
UPDATED !!!"
retstr153="ERROR: Could not tar the directory structure! TAR FILE NOT
SENT !!!"
retstr154="ERROR: Tar file could not be compressed! TAR FILE NOT SENT
!!!"
retstr155="ERROR: Cannot change to ${local_dir}! TAR FILE NOT SENT !!!"
retstr156="ERROR: Cannot ping ${tar_send_to}! TAR FILE NOT SENT !!!"
retstr157="ERROR: Cannot connect to $tar_send_to ! TAR FILE NOT SENT
!!!"
retstr158="ERROR: Login failed, check user and password! TAR FILE NOT
SENT !!!"
retstr159="ERROR: Unknown failure! TAR FILE NOT SENT !!!"
retstr16Ø="ERROR: TSM backup not successful!!!"
###
unzipping the goner file
if [-s $goner_zipfile] ; then
 /usr/bin/gzip -d $goner_zipfile > /dev/null 2>&1
 if ["$?" != "Ø"] ; then
 print "$retstr151"
 exit 151 # file not uncompressed
 fi
else
 print "$retstr152"
 exit 152 # file does not exist or empty
fi
getting the info from goner file
user='cat $goner_file | awk '{print $2}''
chosen_host='cat $goner_file | awk '{print $1}''
de_passwd='cat $goner_file | awk '{print $3}''
if [[$user = "root"]] ; then

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

#lastupdate='cat $goner_file | awk '{print $4}''
#en_passwd='cat $goner_file | awk '{print $5}''
updating files for the groups
random_line='grep "$chosen_host" $fname'
chosen_ip='echo $random_line | awk '{print $2}''
chosen_domain='echo $random_line | awk '{print $1}''
chosen_host_with_domain="$chosen_host.${chosen_domain#*.}"
for grp_name in $grps
do
 print $random_line | awk '{print $4}' | grep -q $grp_name
 if [$? -eq Ø]
 then
 if [-s ${grps_dir}/${grp_name}/${chosen_host_with_domain}] ; then
 mv ${grps_dir}/${grp_name}/${chosen_host_with_domain}
${grps_dir}/${grp_name}/${chosen_host_with_domain}.old
 print $chosen_host_with_domain $chosen_ip $user $de_passwd >
${grps_dir}/${grp_name}/${chosen_host_with_domain}
 else
 print $chosen_host_with_domain $chosen_ip $user $de_passwd >
${grps_dir}/${grp_name}/${chosen_host_with_domain}
 fi
 fi
done
Making a tar file from the directory structure
tar -cf $tar_file $grps_dir > /dev/null 2>&1
if [$? -eq Ø] ; then
 chmod 4ØØ $tar_file > /dev/null 2>&1
 compress -f $tar_file > /dev/null 2>&1
 if [[$? != Ø]] ; then
 print "$retstr154"
 exit 154 # tar file not compressed
 fi
else
 print "$retstr153"
 exit 153 # could not tar the directory structure
fi
FTP the compressed tar file to another host for backup
Check whether we are in the right directory in local server
cd ${local_dir} > $logfile
if [[$(pwd) != ${local_dir}]]
then
 print "$retstr155"
 exit 155 # cannot change to the local directory
fi
Check whether target is pingable
ping -c 2 ${tar_send_to} 1 > /dev/null 2>&1
if [[$? != Ø]]
then
 print "$retstr156"
 exit 156 # cannot ping Host

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

fi
Start FTP Job
ftp -v -n ${tar_send_to} << ! >> $logfile
user $tar_user $tar_pwd
prompt
bin
cd ${tar_target_dir}
put pwds.tar.Z
bye
!
Check whether successfully connected to Host
grep -q "Connected to spd999eØ" $logfile
if [$? != Ø]
then
 print "$retstr157"
 exit 157 # Cannot connect to Host
fi
Checking whether the user could log in.
grep -q "Login failed" $logfile
if [$? -eq Ø]
then
 print "$retstr158"
 exit 158 # Login failed check user/passwd
fi
Checking whether ftp is successful
grep -q "bytes sent in" $logfile
if [[$? != Ø]]
then
 print "$retstr159"
 exit 159 # Unknown failure
else
 rm ${tar_file}.Z > /dev/null 2>&1
fi
Backing up with TSM
print >> $logfile
print « -- « >> $logfile
print >> $logfile
dsmc inc $grps_dir -subdir=yes >> $logfile 2>&1
grep -q "Successful incremental backup of" $logfile
if [$? != Ø]
then
 print "$retstr16Ø"
 exit 16Ø # TSM backup not successful
fi
fi
history logging
print " `date` $chosen_host $user $de_passwd" >> $pwdlog
chmod 4ØØ $pwdlog
deleting the goner (transfer) file
rm $goner_file > /dev/null 2>&1

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Complex sed operations

Under normal circumstances, sed reads a line to be processed
and then performs any operations relating to the line, either from
subcommands in a source file or directly from the command line,
one after the other. When all of these have been applied, it then
reads in the next line, performs operations on this line, and so on.
In this article we will discuss how we can break up the normal flow
control so that our lines can be processed in non-standard ways.

USING THE EDIT BUFFERS
Two work spaces, or temporary buffers, are used by sed for
holding the line being modified:
• The pattern space
• The hold space.

The pattern space
When sed processes an input file, it performs the following
operations:
• It first reads each input line into its pattern space edit buffer.
• All the sed subcommands which select that line are then

applied in sequence.
• The modified line is then written to standard output.
• The pattern space is cleared and the process is repeated for

each succeeding line in the input file.

deleting the indicator file
rm $run_file > /dev/null 2>&1

Adnan Akbas
System Administrator
TURKCELL (Germany) © Xephon 2003

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The advantage of reading one line at a time into the pattern space
is that large files can be processed without having to read the
whole file into memory, and thus use up valuable memory
resources. Although this is not quite so important in modern
systems, which tend to have much greater amounts of memory,
it does speed up processing since the system does not have to
wait for the whole file to be loaded into memory.
When there are multiple operations to be performed on each line,
at some stage the current pattern space version of the line may
have changed out of all recognition from its original state. If
subsequent operations are dependent on the original version of
the line, then these operations may not be executed. This
problem can usually be rectified by changing the order in which
the various operations in your script, source file or command line
are performed.
As an example, let us assume that we want to change the
following line in our stars file:
Brooklyn Becks 1Ø2

so that Becks becomes Spicer, and the contestant number is
changed to 305.
If we use the command:
sed -e s/Becks/Spicer/ -e /Becks/s/1Ø2/3Ø5/ stars

then this will not work since the first operation changes Becks to
Spicer in the pattern space, and the second operation now looks
in the pattern space for the string Becks, which no longer exists,
and so the second operation is never performed. To get round
this we must reverse the operations. This example shows that
you must give some thought to the order in which you want to
execute your sed subcommands.

The hold space
The hold space is analogous to the edit buffers used in vi to
contain deleted or yanked text from the main edit buffer. You can
use the hold space to keep a copy of something that was in the

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

pattern space, and then achieve cut and paste type operations
similar to yank and put operations in interactive editors. The
contents of both the pattern and hold spaces can be copied to
each other.
There are a number of operators that allow you to move data
between the pattern and hold spaces:
• h or H

Copy (h) or append (H) the contents of the pattern space to
the hold space. The copy overwrites, whereas the append
puts a newline after the contents of the hold space and then
adds the contents of the pattern space.

• g or G
Copy (g) or append (G) the contents of the hold space to the
pattern space. The copy again overwrites, and the append
puts a newline after the pattern space contents and then
adds the contents of the hold space. Think of the pattern
space as the primary space from which all operations are
performed and then this becomes a get operation.

• x
Exchange the contents of the pattern and hold spaces.

EXAMPLES USING PATTERN AND HOLD SPACES
Manipulation of the pattern and hold spaces can take some time
to get used to, and you will probably find that you need several
attempts with your subcommands before you get things right.
The following examples may help you towards an easier
understanding of how these two edit buffers work within sed.

Example 1
Since the hold space is initially empty, an easy way to make a file
double-spaced is to use the G operation to append the hold
space after each line in the pattern space:
sed G stars

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

As each line is read into the pattern space, a newline is
appended, followed by a blank line from the hold space; this
combination produces the double spacing. If, instead, you use
the g operation, which overwrites the pattern space with the hold
space, then the output is a series of blank lines, as many as there
are in the stars file.

Example 2
We can exchange the first and second line in the stars file by
creating the following source file:
$ vi source

1{
h
d

}
2G

and then running:
sed -f source stars

This first line is read into the pattern space and then copied to the
hold space (h). After this has been completed it is then deleted
from the pattern space with the d operator. Since the pattern
space is now empty, nothing is written to standard output.
The second line is read into the pattern space, which now
consists of this single line, and the only operation to be performed
on line 2 is to append the contents of the hold space (2G). When
this has been done, the contents of the pattern space are written
to standard output.
The remaining lines of the file have no operations performed
against them and they are displayed without alteration as each
is read into the pattern space.

Example 3
Suppose we wanted to move to the end of the file all lines in the
stars file whose contestant numbers start with the number 1.
This can be achieved with:

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

sed -e "/1../H" -e "/1../d" -e '$G' stars

As each line is read into the pattern space, sed tests whether
there is a match for the number 1 followed by 2 characters. If
there is, then the line is appended (H) to the hold space, after
which it is deleted from the pattern space (d), and since the
pattern space is now empty, nothing is written to standard output.
If a line does not match our test criteria after being read into the
pattern space, then there is no operation to be performed on it
and it is written directly to standard output. Eventually, the hold
space will contain all lines with the pattern 1...
When the last line is read into the pattern space, sed determines
that there is an operation to be performed on it ($G). The contents
of the hold space are thus appended to this last line, and the
pattern space is then written to standard output.
Notice that there is a blank line in the output after the current last
line. This is because we are appending to the hold space and an
append operation puts a newline after the current contents of the
hold space before adding the pattern space. Since initially the
hold space contains nothing, this results in nothing followed by
a newline, which gives us a blank line at the start of the hold
space. You can remove the blank line from the output with:
sed -e "/1../H" -e "/1../d" -e '$G' stars | sed "/^$/"d

Notice also that in order to get the lines copied after the last line
in the file, we enclose the $G in single quotes. This is a case
where double quotes cannot be used since the shell would then
try to substitute a value for the shell variable named G, which is
not what is intended.

MULTIPLE PATTERN SPACE LINES
We have already created multiple lines in the pattern space by
using the G operator to append the contents of the hold space,
but let us now consider how we can read two or more lines from
our input straight into the pattern space and then perform our edit
operations directly on these. Before we can do this we must first
understand the next operator.

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Reading the next line
There are two next operators, n and N, which are used in sed
source files and which operate in slightly different ways. The first
of these, n, will empty the contents of the pattern space to
standard output (unless it has been suppressed of course, in
which case it just empties the pattern space), and then read in
the next line of input without returning control to the top of the
source file script.
As a simple example, assume that in error we have duplicated
all lines containing the name Smith in our stars file, and that the
duplicates are situated beneath the originals (if not, you can
always sort the file). We can delete these extra lines by creating
a sed source file containing the following lines:
/Smith/{

n
/Smith/d

}

When you run this script, as each line is read into the pattern
space, sed checks to see whether there is a match for the string
Smith. If there is, then it starts to run all operations contained in
the braces, but immediately finds an n operator, which tells it to
ignore the remainder of the operations in the braces and instead
read the next line into the pattern space. If that line also contains
the string Smith, then it is deleted.
When using source scripts similar to the one above, any operations
prior to the n will obviously not be applied to the new input line.
In our example above we were only interested in deleting the next
input line so there was no requirement to perform further
operations on it, but in other circumstances you may wish to carry
out some other edit operation, rather than just delete the line.
Similarly, operations performed prior to the n will not be applied
to the new line.
The next operator we have used so far merely replaces the
current line in the pattern space with the next input line, but the
N operator allows us to read additional lines into the pattern
space so that we can perform edit operations on multiple lines

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

separated by newline characters, which we must specifically
match with \n if we want to perform some substitute command
across the lines.
You should be aware that when there are multiple lines in the
pattern space, ̂ matches the start of the first line, and $ matches
the end of the last line.
To see how the N operator works, let us assume that in our stars
file we want to exchange the contestant numbers on any pair of
lines throughout the whole file (let’s not worry about why!), so that
the first the two lines, for example, would now look like:
Vicky Spicer 2Ø1
Serena Smith 1Ø2

and each succeeding pair of lines will also have the numbers
swapped. One of the ways we can do this is with a source file with
the complicated-looking substitute command (usually easier to
construct than to read):
N
s/\([Ø-9]*\)\n\(.*[^I]\)\([Ø-9]*\)/\3\
\2\1//

So how does this work? When sed reads a line into the pattern
space, it immediately appends the next line (N) to the pattern
space. In the first part of the substitution command, which is
enclosed between the first pair of forward slashes, we have three
groups of expressions enclosed by escaped parentheses. We
have met constructions like this before when we used the expr
command, and each one instructs sed to remember the characters
extracted by the enclosed expression.
The pattern matching works on the multi-line pattern space and
says “match zero or more digits (remember this as string 1),
followed by a newline (\n), followed by zero or more characters
in turn followed by a single tab or space (remember this as string
2), followed by zero or more digits (remember this as string 3)”.
If you consider the first two lines of the stars file, then the
remembered strings are:
string 1 "1Ø1"

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

string 2 "Serena Smith "
string 3 "2Ø1"

The start of our pattern space also contains:
"Vicky Spicer "

but we do not need to remember these characters since we do
not intend to do anything other than print them.
The second part of the substitution, which as you will see is split
over two lines, says “substitute the pattern space text extracted
by the regular expressions from the first part of the command,
with the third remembered string, followed by a newline, followed
by the second remembered string, followed by the first
remembered string”. This exchanges the contestant numbers,
sends the pattern space to standard output, and then continues
with the next pair of lines.
The remembered strings are shown as \1, \2, and \3, which are
shorthand notations for the first, second, and third strings
respectively. These are distinct from the other character used for
remembered patterns, &, which remembers all the characters
matched between the first two forward slashes (/.../), whereas
the escaped numbers only remember those matched from the
expressions enclosed in escaped parentheses (\(...\)).
To insert a newline into the second part of the substitution
command we cannot, unfortunately, use \n again and instead we
must resort to an escaped newline as shown. This ensures that
a newline is inserted between the two lines in the pattern space.
There is a major bug in our sed script since it assumes that there
is an even number of lines within our text file. If there is an odd
number, then the final line will have no further line to read into the
pattern space and this results in the last line not being printed. To
get round this we ensure that the first line of the source script is
$p. With an even number of lines we will never satisfy this match
since our lines are read in pairs, but if there is an odd number then
this will print the last line and then exit.
It can be quite frustrating using these complex pattern matching

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

expressions with sed. For example, we could not use either of
the following as the first part of the substitute expression to swap
our contestant numbers:
s/\([0-9]*\)\n\(.*\)\(.*\)/

or:
s/\([0-9]*\)\n\(.*\)\([0-9]*\)/

since sed can match neither the \(.*\) nor the \([0-9]\) unless it is
preceded by a character that it can definitely identify, such as a
specific space or tab, not the catch all .*. Extensive experimentation
may be required to achieve your goal.

Input and output loops
Using a combination of the N, D, and P operators, it is possible
to construct input/output loops to allow operations to be performed
on multi-line pattern spaces. You are already familiar with the first
of these operators, but not the other two.
The D operator is similar to its lower-case cousin, but instead of
deleting the whole of the pattern space, it deletes everything up
to the first newline. It does not cause a new line of input to be read,
but instead it returns control to the top of the script so that the
subcommands can then be applied to the text that still remains
in the pattern space.
The P operator usually follows the N operator and prints out
everything up to the first newline in the pattern space. The lower
case p, by comparison, prints out the whole of the pattern space
when the script has finished all its operations on the current line,
and then reads in the next line. P allows you to output part of the
multi-line pattern space, and then continue operations on what
is left in the pattern space. It does not return control to the top of
the script.
To understand how these work, suppose we have a file containing
the following text:
The company is called Atlas

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Widgets. For many years, Atlas
Widgets was the market leader in Atlas
and Widgets production.

What we want to do is change every occurrence of Atlas
Widgets, to Atlas Universal Widgets. It is relatively simple to
construct a sed script, which changes every occurrence where
both Atlas and Widgets are on the same line, but in our text file
above they are on different lines and so we must give a great deal
more thought as to how we are going to achieve this.
Consider the following sed script, and what happens when it is
executed:
/Atlas$/{

N
/\nWidgets/{

s// Universal&/
P
D

}
}

When this script is executed against our text file, it reads the first
line into the pattern space, finds a match for Atlas at the end of
the pattern space, and then reads in the second line (N);
remember that $ matches the end of the last line in a multi-line
pattern space, not the end of any line, although in this case it is
not relevant since initially we only have a single line in the pattern
space when we test for the match. The pattern space will now
contain:
The company is called Atlas\nWidgets. For many years, Atlas

The next line of the sed script now tries to match a newline in the
pattern space followed by Widgets. If this is successful, then the
substitute command replaces the remembered pattern,
\nWidgets (represented by the double empty slashes, //) with
<space>Universal\nWidgets; the & also signifies the
remembered pattern, but sed does not allow us to use it in the
first part of the substitution. The pattern space now contains:
The company is called Atlas Universal\nWidgets. For many years, Atlas

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The P operator now prints out ‘The company is called Atlas
Universal’, which is all the text up to the \n, and the D operator
deletes this text and then passes control to the top of the script
to continue processing with what still remains in the pattern
space. sed again finds a match for Atlas$ in the pattern space,
reads in the third line and repeats the above process, eventually
printing out ‘Widgets. For many years, Atlas Universal’.
When control is again passed to the top of the script after the D
operator has completed, sed finds a match for Atlas at the end
of the third line, which is all that remains in the pattern space. It
then reads the fourth line into the pattern space, but no match is
found for \nWidgets since Widgets is not at the start of its line
and is preceded by a space. The remaining script subcommands
are not executed and sed prints out the third line without
alteration. The script finishes executing, and exits for this line.
Finally, the fourth line is read into the pattern space and the script
is then executed for this line, which results in the last line being
printed without alteration since sed can find no text matches. Our
final output looks like:
The company is called Atlas Universal
Widgets. For many years, Atlas Universal
Widgets was the market leader in Atlas
and Widgets production.

LABELS AND BRANCHING
Let us now look at two commands that allow you to jump to
specified locations in a sed script. The branch command, b,
allows you to unconditionally transfer execution control to labels
located elsewhere in the script. The second, the test command,
t, is a conditional transfer dependent on a substitute command
changing the current line; it also branches to a label.
A label appears on a line of its own and can consist of up to seven
characters preceded by a colon. No spaces are permitted
between the colon and the label name, and you must be careful
not to put a space or tab at the end of the line since they will be
considered to be part of the label name.

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

When you jump to a label using either the branch or test
commands, you must put a space between the command and
the label name. You must also be careful not to put a space at the
end of the line.

The branch command
The branch subcommand has the format:
[address]b[label]

If the label does not exist, then control is transferred to the end
of the script and the contents of the pattern space will be
displayed. To understand how branching works, create the
following text file:
This example shows \
how to join lines \
ending in a backslash.
No backslash, then\
no join.

What we would like to do is create a sed script to join each line
in our text file that ends in a backslash with the line that follows
it. Consider the following script:
s/\\[^I]*$/\\/
: join
/\\$/{

s/[a-z],.!?]\\/& /
s/\\ / \\/
N
s/\\\n//
b join

}

The first substitute command, s/\\[^I]*$/\\/, selects a line that
ends with a \ followed by zero or more spaces or tabs, and then
changes this pattern to a single backslash; the \\ combination is
used to escape a single \. This allows us to get rid of spaces and
tabs that appear after the backslash since these would not
normally be visible when we look at the text file, and they are not
required.

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The /\\$/ pattern now selects all lines that end in a backslash, and
the commands in the braces that follow are all executed against
lines now matching this pattern.
The first and second substitute commands in the braces are
together used to match lines that end in a backslash not
preceded by a space, such as the penultimate line in our text file,
and then insert the space. The first, s/[a-z],.!?]\\/& /, adds a
space after the backslash, and the second, s/\\ / \\/, exchanges
the space and backslash so that we have a standard pattern
against which we can now use the third substitution command.
The N subcommand now appends the next line, embedding a
new-line character directly after the \, and the s/\\\n// command
then deletes the \ and embedded new-line (\n). The first \ in the
pattern again escapes the second \, but it is not necessary to
escape the third \ since it, together with the n, indicates the new-
line character to the shell.
Finally, the b join command branches back to the label, : join,
to continue checking for a \ at the end of the newly joined line,
which is still in the pattern space. Without this branch, sed would
write the joined line directly to output before checking for a further
\, and, if necessary, reading in the next line. The branch will thus
allow all the lines with backslashes to be joined together.
Our sed source file currently has a bug in it. Remember that the
N subcommand causes sed to stop immediately if there are no
more lines of input. It does not copy the pattern space to standard
output before stopping, which means that, if the last line of the
input ends with a \, it is not copied to the output. We can get round
this by changing our source file to:
s/\\[^I]*$/\\/
: join
/\\$/{

s/[a-z],.!?]\\/& /
s/\\ / \\/
$b end
N
s/\\\n//
b join

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

}
:end
s/\\$//

We have now introduced a second branch command before the
N operator to check whether we are on the last line of the file. If
so, then we branch to the label, :end, so that the N operator is
not executed. The script then continues and runs the final
substitution, which deletes the backslash at the end of our last
line. This construction ensures that our final line is printed.
Note that the above substitution commands will have to be
modified if any of your lines contain backslashes that are not at
the end of the line.

The test command
The test subcommand is identical to the branch subcommand
with its syntax:
[address]t[label]

It will only branch to a label if there has been a successful
substitution on the currently addressed line; if there is no label,
it will branch to the end of the file.
To see how this subcommand works, assume we have a text file
containing the following lines, where the second directory name
in the path has been erroneously interchanged with the final file
name:
/home/file1/user1
/home/file2/bin/user1
/home/file3/user2
/home/file4/lib/user2

What we want to do is swap these back so that we have the
correct pathname. We can do this by using the following sed
source file:
s-/\(.*\)/\(.*\)/\(.*\)/\(.*\)-/\1/\4/\3/\2-
t
s-/\(.*\)/\(.*\)/\(.*\)-/\1/\3/\2-

We have used the minus sign with the substitution command to

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

surround the pattern match and replacement parts of the
command in order to avoid escaping the forward slashes in the
pathname and so make the commands easier to read (!).
Both of the substitutions are used to extract the characters
following each slash (\(.*\) and remember them. From earlier in
the article you will remember that the escaped digits in the
second part of the command represent the remembered strings
from the first part in the order they have been processed from left
to right. We must use two substitution commands in our script
since we have to exchange different strings for three and two
directory pathnames; for three directories we must exchange the
second and fourth strings, and for two directories it must be the
second and third strings.
Our first substitution is performed on any pathname matching
three directories, and the second is performed on pathnames
with two directories. When we have made our substitution on a
three directory pathname, we then want to continue with the next
line of the file. The t command, which follows the first line, checks
that there has been a successful substitution for a three directory
pathname and then jumps to the end of our source file, thus
allowing processing to start with the next line. If the substitution
was not successful, the input line contains only two directories in
the pathname and so the second substitution command is run
against this line.
When you make substitutions on lines containing multiple identical
matches you must always perform them on the line which gives
you the greatest number of matches first, before jumping to the
end of your source file with the t command. If you do it in the
reverse order, ie least first, then your first substitution will always
be successful and you will then jump to the end of the source file
and thus miss out the appropriate substitution command for the
line.
Tonto Kowalski
Guru (UAE) © Xephon 2003

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Implementing I/O multipathing using HP Auto Path
XP product

I/O multipathing is an essential feature of modern operating
systems. AIX 5L Version 5.2 provides a new feature called
Multipath I/O (MPIO), which allows for a single device (disk, lun)
to have multiple paths through different adapters. These paths
must reside within a single machine or logical partition of a
machine. Multiple machines connected to the same device are
considered as clustering and not as MPIO.
Unfortunately, earlier versions of AIX that are still in use do not
include this feature and MPIO is presently supported only for
SCSI devices.
So what solution can be used to implement multipathing for
configurations that use modern fibre channel-based storage?
Unfortunately no single answer can be found. For instance EMC
Storage arrays have as a prerequisite usage of PowerPath EMC
software, IBM ESS Shark users must use SDD (Subsystem
Device Driver), while IBM FASstTXXX users use a totally different
and specific implementation included in the
devices.fcp.disk.array.rte fileset.
This article will discuss the HP Auto Path XP V04-01 product,
which provides multipathing support for computers running AIX
and connected to HP Disk Array XP128, XP256, and XP1024.
These storage devices are OEM versions of the following
storage devices produced by Hitachi:
• Hitachi Lightning 9900 V Series (9900V)
• Hitachi Lightning 9900
• Hitachi Freedom Storage 7700E
• Hitachi Thunder 9200
• Hitachi Freedom Storage 5800
• Hitachi Freedom Storage 5700E.

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Not surprisingly, the software itself has been produced by Hitachi
as well.

AUTO PATH FEATURES
The major features of Auto Path are:
• Load balancing – when multiple paths connect a host and

storage, Auto Path distributes the load across multiple paths
to prevent a heavily-loaded path from affecting processing
speed.

• Path failover – when multiple paths connect a host and
storage, Auto Path switches to another path if there is a
failure in the current path being used. This allows processing
to continue without interruption because of path failure.

• Fallback – when a path recovers from an error, Auto Path
places the path online. This enables the maximum number
of paths to be online, allowing Auto Path to ensure that the
number of paths to which it can distribute loads is the
maximum possible in that situation.

• Path health checking – Auto Path can automatically check
the status of the paths at user-specified time intervals. This
eliminates the need for repeatedly performing manual checks
of the path status.

INSTALLATION PREREQUISITES
System prerequisites for using the Auto Path XP for AIX are:
• Operating system:

– AIX 4.3.3 with maintenance level of 09 or later.
– AIX 5.1 with maintenance level of 02 or later and patch

IY37437.
– AIX 5.2 and patch IY39860.

• Host-based adapters:

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

– IBM Fibre Channel Adapter FC6227:
o Adapter firmware level should be 3.22A0 or later.
o AIX 4.3.3 driver (df1000f7) level should be 4.3.3.75

or later.
o AIX 5.1 driver (df1000f7) level should be 5.1.0.10 or

later (AIX 5.1 Fiber Driver patch is required; it is
called devices.pci.df1000f7.com.5.1.0.36.bff and is
found in IY37437).

o AIX 5.2 driver (df1000f7) level should be 5.2.0.0 or
later.

– IBM Fibre Channel Adapter FC6228:
o Adapter firmware level should be 3.82A1 or later.
o AIX 4.3.3 driver (df1000f9) level should be 4.3.3.75

or later.
o AIX 5.1 driver (df1000f9) level should be 5.1.0.10 or

later (AIX 5.1 Fiber Driver patch is required; it is
called devices.pci.df1000f7.com.5.1.0.36.bff and is
found in IY37437 patch).

o AIX 5.2 driver (df1000f9) level should be 5.2.0.0 or
later.

• HP XP disk arrays models and minimum firmware levels:
– XP256 52-42-52-00/00
– XP512 01-10-00-00/13
– XP1024 21-01-24-00/00.

• VisualAge C++ Runtime 5.0.0.0 or later. When using
VisualAge C++ Runtime 6.0.0.0 in AIX 5.1 be sure to install
the IY33524 patch.

INSTALLATION AND CONFIGURATION PROCESS
The following description of the installation process assumes

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

that all storage and SAN hardware has been already configured
and connected and that the storage has not yet been defined.
The Auto Path product is installed from CD-ROM. Hitachi
Network Objectplaza Trace Library is installed together with Auto
Path.
Note: you must uninstall previous versions of Auto Path before
upgrading to the current version.
To install Auto Path:
1 Log on as a user with root permission.
2 Insert the CD-ROM into the drive. You do not need to mount

the medium.
3 Create the /var/DLM directory, and then create a licence key

file (dlm.lic_key) in the /var/DLM directory.
The following example shows how to create the licence key
123456789ABCDEF:
mkdir /var/DLM
echo 123456789ABCDEF>/var/DLM/dlm_lice.key

Make sure to store the licence key in a safe place – at present
it is generated by HP, based on the serial number of the XP
array to which your server is connected. After successful
completion of the installation process, the file containing the
licence key will be deleted.

4 Install the software from the CD by executing the following
command:
installp –aXgd /dev/cdØ all

5 Check that the software has been properly installed by
executing the following command:
lslpp -L|grep -i auto
 AutoPath.rte 4.Ø.1Ø2.1 C F Auto Path

The installation status of the fileset should be C for commit.
6 Add directory /usr/DynamicLinkManager/bin to the PATH

environment variable:

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

export PATH=$PATH: /usr/DynamicLinkManager/bin

7 Set up the configuration file.
Note: if you would like all the disks to be recognized by the
DLM driver, this step is unnecessary. Continue to the next
one.
There are two ways to limit the DLM drivers managed by
Auto Path:
• Define the disks (hdisk) that you would like the DLM

driver to recognize in the /usr/DynamicLinkManager/
drv/dlmfdrv.conf file.

• Define the disks that you would not like the DLM driver
to recognize in the /usr/DynamicLinkManager/drv/
dlmfdrv.unconf file.

A specification in the dlmfdrv.unconf file has priority over a
specification in the dlmfdrv.conf file. Therefore, if the same
disk is defined in both the dlmfdrv.conf and dlmfdrv.unconf
files, the DLM driver will not recognize the defined disk.
When including the disk specification in the configuration
file, remember to make sure that all disks representing the
same logical unit of storage device are included in the same
configuration file.
There are two methods to verify the lun number of a
particular disk. The first one is to use the following command:
lsattr -El hdisk27|grep lun_id|awk '{print $2}'
Øx27ØØØØØØØØØØØØ

The second one uses the HP xpinfo utility:
root@rsh7ØØ1:/home/root: xpinfo -d|awk -F,
'{print $1," ",$3}'|sort –A –b +1

/dev/rhdisk29 Ø1
/dev/rhdisk31 Ø1
/dev/rhdisk3Ø Ø2
/dev/rhdisk32 Ø2
/dev/rhdisk1 Ø3
/dev/rhdisk15 Ø3

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/dev/rhdisk16 Øb
/dev/rhdisk2 Øb
/dev/rhdisk17 1Ø
/dev/rhdisk3 1Ø
/dev/rhdisk33 11
/dev/rhdisk35 11
/dev/rhdisk18 12
/dev/rhdisk4 12

8 Execute the following command to start the DLM configuration
manager:
dlmcfgmgr

This command will load the DLM drivers and the DLM alert
driver into the kernel and create the DLM, a device pointing
to the luns available to the system and not masked out in the
configuration files.

9 Execute the following command to verify that DLM drivers
have been successfully loaded into the kernel:
lsdev –C | grep dlm

You should expect output similar to the following:
lsdev -C|grep -i dlm
dlmadrv Available DLM Alert Driver
dlmfdrv1 Available DLM Driver
dlmfdrv Available DLM Driver
dlmfdrv2 Available DLM Driver

This listing shows that a single instance of a DLM Alert Driver
(dlmadrv) as well as a single instance of non-lun-specific
DLM driver (dlmfdrv) are available as well as two lun-specific
(dlmfdrv1 and dlmfdrv2) drivers.
You should check the output from the previous command to
verify that all lun-specific drivers have been defined according
to the physical connectivity configured in your SAN.
Check the file /usr/DynamicLinkManager/log/dlmcfgmgr1.log
for error messages.

10 At this stage you are ready to use DLM devices for storage
allocation. You can use the special SMIT menus located
under System Storage management/Logical Volume

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

manager/DLM Volume Groups.
Or you can use the utilities located in /usr/
DynamicLinkManager/bin. These include: dlmmkvg,
dlmsavevg, dlmrestvg, dlmexportvg, dlmrecreatevg,
dlmsyncvg, dlmextendvg, dlmreducevg, dlmunmirrorvg,
dlmimportvg, dlmreleasevg, dlmvaryoffvg, dlmreorgvg,
dlmvaryonvg, dlmrmdev, dlmlsvg, dlmrestorevgfiles,
dlmcfgmgr, dlmmgr, dlmchvg, and dlmmirrorvg.
Please note that although you are directing these commands
to operate on a single instance of a lun-specific driver, the
underlying DLM operations will use all available I/O paths.

COMMANDS AND OPERATIONS
The basic format of the Auto Path command is:
dlnkmgr operation-name [parameter [parameter-value]

There are six types of operation – clear, help, offline, online,
set, and view.

Clear
The clear command is used to clear management information
from the Auto Path internal buffers. The general format of the
command is:
dnkmgr clear –pdst [-s]

The single optional -s parameter enables execution of the
command without requesting user confirmation.

Help
The help command is used to display the format of various Auto
Path commands. The general format of the command is:
dnkmgr help [operation-name]

The single optional -s parameter enables execution of the
command without requesting user confirmation.

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Offline
The offline command is used to transfer an online path to an
offline state. The general format of the command is:
dnkmgr offline [-path] –pathid AutoPATH_ID [-s]

A number of precautions must be taken before executing this
command:
• The last path accessing a device cannot be placed offline.
• Placing too many paths offline may prevent path switching

if an error occurs.
The -path parameter is optional.
The -pathid AutoPATH_ID specifies the unique AutoPATH_ID
that Auto Path has assigned to the path during system start-up.
Leading zeros in the AutoPATH_ID can be omitted.
The optional -s parameter enables execution of the command
without requesting user confirmation.

Online
The online command is used to transfer an offline path to an
online state. The general format of the command is:
dnkmgr online [-path] –pathid AutoPATH_ID [-s]

The -path parameter is optional.
The -pathid AutoPATH_ID specifies the unique AutoPATH_ID
that Auto Path has assigned to the path during system start-up.
Leading zeros in the AutoPATH_ID can be omitted. If no -pathid
parameter is specified all offline paths are placed in an online
state.
The optional -s parameter enables execution of the command
without requesting user confirmation.

Set
The set command is used to alter different characteristics of
Auto Path. The general format of the command is:

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

dlnkmgr set [-lb {on|off}]
[-ellv log-level]
[–elfs log-size]
[-systflv trace-level]
[-pchk {on [-intvl execution-interval] | off]
[-afb {on [-intvl execution-interval] | off]
[-s]

The -lb parameter enables or disables the load balancing
function of Auto Path. The default value is on.
The -ellv parameter specifies the level of information collected
into the error log. The possible values are:
0 Do not collect an error log.
1 Collect error information for the Error level or higher.
2 Collect error information for the Warning level or higher.
3 Collect error information for the Information level or higher (ie

all levels).
The default value is 3.
The -elfs parameter specifies in KB the size of the error log file.
The supported range is between 100 and 9900. The default is
1000.
If the size of the error log file reaches the specified value, Auto
Path switches to a new file and outputs the data to it. All old files
except for the preceding one are deleted.
The -systflv parameter specifies the level of trace output. The
possible values are:
0 Do not output any trace.
1 Only output error information.
2 Output a summary of program operation.
3 Output details of program operation.
4 Output all information.
The default trace level is 0.

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Larger trace level values cause a greater number of logs to be
output. To accommodate a greater number of logs, data wrapping
is applied by Auto Path to reduce the time required for deleting
old logs.
The history and results of user-issued commands are output to
the trace files regardless of the trace level.
The -pchk parameter enables or disables path health checking.
The default value is off. The path health checking function
checks paths that are online as well as offline (E). Path health
checking does not check the status of paths in the offline(C)
status because of the execution of the offline operation. Possible
values are:
• on: Enabled – enables error path checking in the specified

time interval. Automatic fallback places the status of the
recovered path online.

• off: Disabled – disables error path automatic fallback (default).
• intvl execution-interval – specifies the path health checking

interval with a value immediately following on. When you
omit the interval, path health checking defaults to every 30
minutes.
Specify the path health checking interval in minutes between
1 and 1440. The default value is 30 minutes.
The interval setting does not take effect immediately. When
this parameter is changed, the setting is stored, and the
setting takes effect after the OS or the Auto Path manager
is restarted. When the OS or the Auto Path manager is
restarted, path health checking is executed according to the
most-recently-specified execution interval.
When you change the execution interval, the new setting
takes effect only after path health checking is executed
once, using the interval specified previously. When you want
to change the execution interval immediately, execute the
dlnkmgr set -pchk off command to disable path health
checking, wait for more than five seconds, and then execute

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the dlnkmgr set -pchk on -intvl execution-interval command.
This will change the path health checking execution interval.

The -afb parameter enables or disables automatic path fallback.
The default value is off.
Possible values are:
• on: Enabled – automatic failback of the failed paths is

performed at a specified interval. The recovered path is
returned online.

• off: Disabled – automatic failback is not performed (default).
• intvl execution-interval – specifies the path health checking

interval with a value immediately following on. When you
omit the interval, path health checking defaults to every 1
minute.

When automatic fallback is newly turned on, or the Auto Path
manager is activated, the first automatic fallback is performed
after the duration of the specified interval.
Settings on automatic fallback remain valid after the system is
turned off and restarted. The interval value is maintained even
after the automatic fallback is turned off. The stored value is used
when automatic fallback is set on again and no value is set for the
interval at that time.
Only the paths containing an error are subject to the automatic
fallback operation.
The paths having an error when the DLM manager is activated
are also included in the automatic fallback operation.
With the addition of the auto fallback, only normal paths are
subject to health check.
The optional -s parameter enables execution of the command
without requesting user confirmation.

View
The view command enables the display of Auto Path settings

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and I/O path status.
The general format of the command to display system information
is:
dlnkmgr view -sys [-sfuc | -msrv | -adrv | -pdrv]

This form of the command enables the display of the following
specific information about Auto Path path settings:
• -sfunc flag displays information about the Auto Path function

settings.
• -msrv flag displays information about the Auto Path manager.
• -adrv flag displays information about the Auto Path alert

driver.
• -pdrv flag displays information about the Auto Path driver.
If you do not specify the value for this parameter, the command
displays all program information.
Auto Path function settings displayed by the view command are:

• Auto Path version – the Auto Path version number consisting
of four to six characters.

• Load balance – set the load balancing function: on for
enabled, and off for disabled.

• Support cluster – set the cluster support function and the
type of cluster server (see note 1 below). Cluster support
function (see note 2 below) settings are on for enabled and
off for disabled. The type of cluster server is HACMP.

• Elog level – error logging level:
0 Do not collect an error log.
1 Collect error information for the Error level or higher.
2 Collect error information for the Warning level or higher.
3 Collect error information for the Information level or

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

higher (ie all levels).
• Elog file size (KB) – size of the error log file in KB.
• Trace level – trace output level:

0 Do not output any trace.
1 Only output error information.
2 Output a summary of program operation.
3 Output details of program operation.
4 Output all information.

• Path health checking – this function’s settings are on for
enabled and off for disabled. When path health checking is
on, the execution interval (in minutes) is displayed in
parentheses.

Note 1: Auto Path automatically recognizes the cluster
configuration and sets the cluster support function. The setting
cannot be changed manually.
Note 2: when you use Auto Path for AIX systems in a cluster
configuration, off is displayed in the Support Cluster field;
however, the cluster support function operates normally.
The general format of the command to display I/O path information
is:
dlnkmgr view –path [-hdev host-device-name] [-t]

The -path parameter specifies the path for which you want to
display information. You can also specify a host device that the
path accesses. If you do not specify the subsequent parameter,
the command displays information for all paths.
The -t disables the display of titles for each information item.
Host Device path information displayed by the view command

includes:
• Paths – sum of the number of displayed paths, indicated by

up to five decimal numbers.

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• OnlinePaths – number of available paths in the displayed
paths, indicated by up to five decimal numbers.

• PathStatus – status of the displayed paths. Online: all paths
are available. Reduced: some of the paths are available.
Offline: no paths are available.

• IO-Counts – total I/O count for the displayed paths, indicated
by up to ten decimal numbers.

• IO-Errors – total I/O error count for the displayed paths,
indicated by up to ten decimal numbers.

• PathID – AutoPATH_ID, indicated by up to six decimal
numbers.

• PathName – path name, indicated by a string of up to 19 one-
byte characters. A path name consists of the port number for
the host bus adapter, bus number, target ID, and host LU
number, each of which is separated by a period (full stop).

• DskName – storage subsystem name, indicated by a string
of up to 38 one-byte characters. A storage subsystem name
consists of the vendor ID, product ID, and serial number,
each of which is separated by a period (full stop).

• iLU – LU number of the storage subsystem, indicated by a
string of up to four one-byte characters.

• ChaPort – port number of the channel adapter, indicated by
a string of two one-byte characters.

• Status *– status of the path. Online, online; offline(C),
offline by a command; offline(E), offline because of an error.

• Type – attribute of the path. Own: owner path, non: non-
owner path.

• IO-Counts – total I/O count for the path, indicated by up to ten
decimal numbers.

• IO-Errors – total I/O error count for the path, indicated by up
to ten decimal numbers.

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• DNum – device number, indicated by up to three decimal
numbers.

• HDevName – host device name.
In AIX systems, the hdisk is displayed in this field. When the file
system is not mounted, a hyphen (-) is displayed.
Note: a path that has the same PathName as a path whose
status is offline(E) may be in an error status even though its
status is online.

REFERENCES
1 HP StorageWorks Auto Path XP for AIX Installation Guide,

Fourth Edition, April 2003 (located in file installation_guide.pdf
on Installation CD).

2 Hitachi Dynamic Link Manager (AUTO PATH) User’s Guide
for IBM AIX Systems, Revision MK-92DLM111-1, October
2002 (located at \Auto Pathhelp\en\index.htm on the
Installation CD).

3 HP StorageWorks Disk Array XP128: Owner’s Guide.
4 HP StorageWorks Disk Array XP1024: Owner’s Guide.
5 Hitachi Lightning 9900 V Series User and Reference Guide,

MK-92RD100.
6 Hitachi Lightning 9900 V Series IBM AIX Configuration

Guide, MP-92RD119.
7 Hitachi Lightning 9900 User and Reference Guide, MK-

90RD008.
8 Hitachi Lightning 9900 IBM AIX Configuration Guide, MK-

90RD014.
9 Hitachi Thunder 9200 User and Reference Guide, MK-

90DF504.
10 Hitachi Thunder 9200 IBM AIX Host Installation Guide, MK-

91DF544.

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

11 Hitachi Freedom Storage 5000 Series Software Configuration
User’s Guide, BO-98DF376.

Alex Polyak
System Engineer
APS (Israel) © Xephon 2003

You don’t have to lose your subscription to AIX Update
when you move to another location – let us know your
new address, and the name of your successor at your
current address, and we will send AIX Update to both of
you, for the duration of your subscription. There is no
charge for the additional copies.

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

#! 77.15-29
AIX 5L 65.7-11, 89.3-11
Apache 63.8-22, 64.15-37
Architecture 66.7-11
Arithmetical operators 90.32-47
At command 85.31-40
Awk 83.31-47, 84.23-36
Back-up 68.11-34, 68.35-40,

69.36-51, 70.16-22, 70.5-11,
82.6-11, 87.29-38,
87.38-47, 88.10-23

Bottlenecks 67.3-9
Capacity Upgrade on
Demand (CUoD) 92.3-12
Carriage return 87.28, 88.3-10
Case 82.33-43
Change directory 85.41-46
Checking 69.16-26
Cloning 79.6-7
Command line 62.3-8
Command line parameters 96.17-23
Communications Server 83.30
Conditional operators 86.20-28
Conversion 72.22-29, 77.47
Core dumps 80.44-47
Cpp 83.3-8
cron 64.3-5
CVS 92.13-29
daemons 90.12-15
DB2 UDB 92.30-43
Debugging 63.48-51
Directory 61.13-23
DNS 69.6-10
Documenting system 67.46-51
Dspmsg 61.3-13
ELiza 75.34-41
Emacs 75.23-33, 76.7-12, 77.30-46
e-mail 90.9-11
Ernotify 84.7-11
Error messages 66.3-6, 92.12, 95.3-5

ESS 67.14-16
Execute 72.3-4
Failed logins 70.3-4
Failover 66.35-51, 67.27-33
Fast path 78.35-39
Fileset-level integrity 67.9-13
Filesystem 79.19-26, 86.3-7,

94.3-5, 81.3-4, 90.3-8
File transfer 67.33-45
Find 72.3-4
For 87.17-28
Formatting 68.3-6
FTP 70.23-40
GlancePlus 62.9-23, 66.12-22
Grep 83.17-30
HACMP 64.3-5, 75.12-22
Head 80.16-23
History 74.16-22
HMT 70.11-15
HTML 61.43-62
If 84.16-23
Informix 69.36-51
Installp 73.34-45
Inventory Scout 65.29-35
I/O 96.3-16
IP stack 73.3-6
Load balancing 79.30-43
LVM 68.7-10, 69.11-15
magic 90.30-31
Mail 84.7-11
Maintenance level 85.47
Make 86.29-47
Management 78.15-25
Man command 65.11-28
Memory management 79.15-17
Microcode Discovery Service 65.29-35
Migration 77.11-14
Mirroring 75.19-22, 75.41-47,

84.37-47, 93.3-9
Monitoring 82.28-33, 90.3-8

November 2000 – October 2003 index

Items below are references to articles that have appeared in AIX Update since Issue
61, November 2000. References show the issue number followed by the page
number(s). Back-issues of AIX Update are available back to issue 49 (November
1999). See page 2 for details.

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Multi-pathing 68.41-51,
69.27-35, 96.3-16

Mv 83.3-8
Name resolution 84.3-6
Network 61.24-42, 62.34-51, 87.3-7
Network Time Protocol (NTP) 94.6-14
NMON 82.28-33
ODM 65.3-6
P690 75.34-41
Passwords 95.32-47, 96.24-31
Pattern matching 93.19-31
Performance 72.15-21,

82.28-33, 89.3-11
Performance Toolbox 87.7-16
Perl 79.3-6
Pipe 75.3-4
PowerPath 80.34-43
Print 91.9-24
Printing 61.62-63, 82.3-6
Processes 76.12-18, 89.23-35
Program execution 79.26-29
PSeries 76.3-6
QA-system 74.11-15
Quorum 75.15-22
Quoting 79.8-14
RAM filesystem 79.18
Recovery 75.41-47,

86.3-7, 94.3-5
Redirecting 78.3-14
Regular expressions 93.19-31
Removing users 80.12-15
Return values 83.9-17
Rm 83.3-8
RMC 73.6-16
Routing 76.21-30
Rsync 84.37-47
Samba 62.23-27
SAN 78.40-43
Saving space 75.3-4
Saving time 75.3-4
Security 71.10-29, 78.43,

81.23-36, 85.24-30
Sed command 95.20-32, 96.32-45
Sendmail 72.13-14
Shark 93.3-9
Shell 76.18-20

Shell commands 91.25-37, 93.9-18
Shell functions 74.3-10, 81.36-47
Shell programming 77.15-29, 89.12-22,

90.16-30
Shell prompts 69.3-5
Shell script 76.30-47, 77.3-10,

78.25-35, 81.10-22,
94.44-51, 95.5-20

Shutdown 70.41-42
Smit 66.23-34, 78.17, 78.35-39
Solaris 70.43-51, 71.38-44
Source code 88.23-39, 89.36-47
SP/2 62.27-31, 63.3-8, 76.3-6
Space 71.3-9, 79.19-26
Spooling 81.5-9
SSA 61.43-62, 71.30-37, 75.12-22
Start-up 70.41-42
Storage 63.23-48
Syslog 86.8-20
System configuration 85.3-9
System time 94.6-14
Tail 80.16-23
Tape libraries 93.31-51, 94.15-44
Tape manager 72.30-51, 73.17-33
Tar 87.29-38
TCP 91.3-9
Terminals 91.37-47
Terminate 62.32-33
Test command 85.9-23
TimeFinder 74.11-15
Tivoli Storage Manager (TSM) 75.5-11
Tnsnames.ora 74.23-51
Tr command 64.38-51
Uniq command 82.12-27
Until 88.40-51
Upgrade 72.5-12
Utility 64.6-15, 67.23-27
Variables 80.3-11, 80.24-34
VGDA 75.15
VGSA 75.15
Vi command 65.35-51, 67.17-22
Vmtume 84.12-15
Wc command 71.45-51
While 88.40-51
Windows integration 62.23-27

AIX news

Group 1 Software has announced the release
of its new Universal Coder, the first product
built on Group 1’s new LESLIE architecture.
LESLIE enables organizations to integrate
Group 1’s data quality services seamlessly
across the enterprise. The Universal Coder
incorporates Group 1’s address validation,
correction, and standardization technologies
for over 220 countries and dependencies
worldwide.

LESLIE is a platform-independent enterprise
data quality architecture. Group 1’s new
Universal Coder provides flexibility by
letting organizations implement global
address data quality in their own enterprises,
or even access this functionality via hosted
services using the same API. The Universal
Coder can process global address data in a
single pass - mixed data from any number of
countries can be submitted and processed
simultaneously. The Universal Coder
supports Java, COM, C, and C++ interfaces
and can be easily integrated into a .NET
environment.

The Universal Coder is currently available on
AIX, Sun Solaris, HP UX, Linux, and
Windows NT.

For further information contact:
Group 1 Software, 4200 Parliament Place,
Suite 600, Lanham, MD 20706-1844, USA.
Tel: (888) 413 6763.
URL: http://www.g1.com/News/
disppr.asp?PR_ID=235.

* * *

IBM has announced Lotus Domino
Collaboration Express and Lotus Domino
Utility Server Express. The products offer
the performance, security, and dependability
of IBM Lotus Notes and Domino 6 to small
and mid-size businesses, IBM says. The
messaging and collaboration server provides
e-mail, group scheduling, discussion forums,
team workplaces, and Domino’s custom
application capabilities. Customers have
multiple client access choices, including
Lotus Notes or Domino Web Access
(iNotes), Domino Access for Microsoft
Outlook, or Domino Web Mail.

Both packages work on a variety of operating
systems, including AIX, Intel-based Linux,
Microsoft’s Windows, and Sun
Microsystems’ Solaris.

IBM likes to think of the products as cheap,
easy-to-use, and simple to install and
manage.

For further information contact your local
IBM representative.
URL: http://www.lotus.com/products/
product4.nsf/wdocs/dominoexpress.

* * *

x xephon

	Handling command line parameters using getopts
	Automated mechanism for changing passwords - part 2
	Complex sed operations
	Implementing I/O multipathing using HP Auto Path XP product
	November 2000 - October 2003 index
	AIX news

