

© Xephon plc 2003

November 2003

97

In this issue

AIX

3 Updating anti-virus driver files
12 Brocade FC network port

investigation
20 The awk command
35 Manage FTP process
53 Character to hex
54 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Updating anti-virus driver files

One of the most important issues is to protect your system
against viruses. Generally, viruses spread by e-mails. This
means it is vital to ensure that your mail gateways (MTAs – Mail
Transfer Agents) have the latest virus driver files to protect your
system. The virus driver files are produced by companies for
their appropriate anti-virus products and the anti-virus API used
by the attachment filter’s virus scanner. They are updated
frequently, usually whenever a new virus threat is identified.
Therefore, to avoid being infected by the new viruses it is very
important to put the updates on the mail servers as soon as a
newer version virus driver is available. I have written a script that
works on our MTAs at regular intervals using the system
scheduling tool, cron. In our company the script works every hour
and downloads and updates the virus driver files when it finds a
new package available on the vendor’s FTP server.
Cron entry:
Ø * * * * /usr/local/av/ftp_av.sh > /dev/null 2>&1

Steps of the script:
1 It checks whether an FTP process is hung from a previous

execution of the script. If yes, it is killed in order to keep the
system clear of the hanged processes.

2 It first FTPs an information file (update.ini). This small
information file contains the version number of the latest
virus driver files. That version number is compared with the
version of the virus drivers in the MTAs. If they differ, the
script will FTP the new virus driver package.
An information file looks like this:
UPDATE.INI

[SuperDat-IA32]
EngineVersion=426Ø
DATVersion=4285

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FileName=sdat4285.exe
FileSize=5569972
Checksum=BB1E,BDF2

[ZIP]
EngineVersion=Ø
DATVersion=4285
FileName=dat-4285.zip
FilePath=/pub/antivirus/datfiles/4.x/
FileSize=3227863
Checksum=4FF2,D26D
MD5=a8d394e5fec242Ø9bdca2a6Øad2b569b

[Incremental]
EngineVersion=Ø
DATVersion=4285
FileName=delta.ini
FileSize=13Ø3
Checksum=7Ø83,697F

[Engine-LINUX]
EngineVersion=424Ø
FileName=elnx424Ø.zip
FileSize=1ØØ6785
Checksum=781E,B2DE
MD5=d4612Ø1cf97ce2ef79b91f6cc34d32Ø2
FilePath=/pub/antivirus/engine/4.x/

[Engine-NETWARE]
EngineVersion=424Ø
FileName=nw424Ø.zip
FileSize=33Ø3598
Checksum=1C67,E3DA
MD5=de2e91112364289Ø5ce867ddfab41ee7
FilePath=/pub/antivirus/engine/4.x/

In this information file (update.ini), it is important to get the
DAT Version number:
DATVersion=4285

4285 is the newest version number of the virus driver, which
has to be compared with the current version number of the
virus driver on the mail server.
/usr/local/sendmail/smmfilter-2.4/bin/avupdate –c

avupdate: DAT version in /var/db/mime-filter/drivers.4284 is 4284

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Since the DAT version on the vendor FTP site is greater than
the local mail server, the new package (dat-4285.tar) has to
be downloaded. 4285 should be the highest number in the
directory; in other words, the latest virus driver available.

3 After the new package is successfully downloaded, it is
installed. After successful installation of the new package,
the script sends an e-mail to the sendmail administrators
saying that a new package has been received with an
attached log file. If not successfully completed, it sends an
e-mail to the sendmail administrators with the error text and
the log file in order to examine what went wrong.

An example of an e-mail sent by a script is:
Wed Aug 13 22:31:43 CEST 2ØØ3

STARTING FTP (GET)

Connected to ftp.nai.com.
22Ø sncwebftp5 Microsoft FTP Service (Version 5.Ø).
331 Anonymous access allowed, send identity (e-mail name) as password.
23Ø-You are connected to ftp.nai.com.
23Ø-Your use is subject to the terms and
23Ø-conditions in Legal.TXT and Usage.TXT files.
23Ø-*Mirror sites at FTPEUR.NAI.COM and FTPDE.NAI.COM*
23Ø Anonymous user logged in.
Interactive mode off.
2ØØ Type set to I.
25Ø CWD command successful.
Hash mark printing on (1Ø24 bytes/hash mark).
2ØØ PORT command successful.
15Ø Opening BINARY mode data connection for update.ini(748 bytes).
#
226 Transfer complete.
748 bytes received in Ø.ØØØ111 seconds (6581 Kbytes/s)
local: update.ini remote: update.ini
221 Thanks for using ftp.nai.com!

INFO: update.ini file RECEIVED!

AVUPDATE

Connected to ftp.nai.com.
22Ø sncwebftp6 Microsoft FTP Service (Version 5.Ø).
331 Anonymous access allowed, send identity (e-mail name) as password.
23Ø-You are connected to ftp.nai.com.
23Ø-Your use is subject to the terms and conditions

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

23Ø-in Legal.TXT and Usage.TXT files.
23Ø-*Mirror sites at FTPEUR.NAI.COM and FTPDE.NAI.COM*
23Ø Anonymous user logged in.
Interactive mode off.
2ØØ Type set to I.
25Ø CWD command successful.
Hash mark printing on (1Ø24 bytes/hash mark).
2ØØ PORT command successful.
15Ø Opening BINARY mode data connection for dat-4285.tar(371712Ø bytes).
226 Transfer complete.
371712Ø bytes received in 745.9 seconds (4.867 Kbytes/s)
local: dat-4285.tar remote: dat-4285.tar
221 Thanks for using ftp.nai.com!
INFO: dat-4285.tar FILE RECEIVED!
<<< 22Ø venus FTP server (Version 4.1 Thu Sep 12 23:46:23 CDT 2ØØ2)
ready.
>>> USER smadmin
<<< 331 Password required for smadmin.
>>> PASS sendmail
<<< 23Ø-Last unsuccessful login: Wed Jul 16 22:Ø6:18 CEST 2ØØ3 on ftp
<<< 23Ø-Last login: Tue Aug 12 Ø1:Ø7:Ø9 CEST 2ØØ3 on ftp
<<< 23Ø User smadmin logged in.
>>> CWD /var/db/mime-filter/ftp
<<< 25Ø CWD command successful.
>>> TYPE A
<<< 2ØØ Type set to A; form set to N.
>>> PASV
<<< 227 Entering Passive Mode (217,11Ø,62,85,249,189)
>>> RETR update.ini
<<< 15Ø Opening data connection for update.ini (748 bytes).
<<< 226 Transfer complete.
>>> CWD /pub/antivirus/datfiles/4.x
<<< 25Ø CWD command successful.
>>> TYPE I
<<< 2ØØ Type set to I.
>>> PASV
<<< 227 Entering Passive Mode (217,11Ø,62,85,249,191)
>>> RETR dat-4285.tar
<<< 15Ø Opening data connection for dat-4285.tar (371712Ø bytes).
<<< 226 Transfer complete.
>>> QUIT
<<< 221 Goodbye.
avupdate: current driver directory is /var/db/mime-filter/drivers.4284
avupdate: DAT version in /var/db/mime-filter/drivers.4284 is 4284
avupdate: venus: trying 217.1Ø1.55.55...
avupdate: connected to venus [217.1Ø1.55.55]
avupdate: DAT version at venus is 4285
avupdate: downloading temporary copy to /var/db/mime-filter/new/dat-
4285.tar
avupdate: unpacking /var/db/mime-filter/new/dat-4285.tar

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

avupdate: renaming driver directory: drivers.4285, keeping Ø old drivers
avupdate: drivers updated to version 4285

INFO: AVUPDATE successfully executed ...

We see that in this case the new package, 4285, is successfully
installed and Version 4284 is now updated to Version 4285.
Avupdate tries to start the anti-virus engine using the driver files
currently in /var/db/mime-filter/drivers. The attachment filter
regularly samples the modification time of one of the driver files
it knows to exist to see whether that timestamp has changed.
When a discrepancy is discovered, it will close and re-open the
anti-virus engine to begin making use of the new virus driver files.

FTP_AV.SH
#!/bin/ksh
#
Adnan Akbas , Turkcell , 13.Ø5.2ØØ2
#
The script transfers and installs virus driver files to the Mail
Transfer Agents. Works from Crontab every hour and makes FTP
and update, if a new package is available on the vendor's FTP
server.

Variables

av_srv=ftp.nai.com
av_user=anonymous
av_pwd=venus@turkcell.com
av_dir=/pub/antivirus/datfiles/4.x
local_dir=/var/db/mime-filter/ftp
logfile=${local_dir}/log/av_'date +%H.%M'.log

Check if a ftp process is hanged before. If yes kill!

pid1='ps -ef | grep "ftp_av.sh" | grep -v grep | grep -v "$$" | grep -v
"view ftp_av.sh" | awk '{print $2}''
pid2='ps -ef | grep "ftp.nai.com" | grep -v grep | awk '{print $2}''

if [[$pid1 = +([Ø-9])]] && [[$pid1 > 1]] ; then
 kill $pid1 > /dev/null 2>&1
fi

if [[$pid2 = +([Ø-9])]] && [[$pid2 > 1]] ; then
 kill $pid2 > /dev/null 2>&1

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi

Delete old files

rm $local_dir/dat-*.tar | tee -a $logfile 2>&1
rm $local_dir/update.ini | tee -a $logfile 2>&1

Check if we are in the right directory in local server

cd ${local_dir} > $logfile
if [$(pwd) != ${local_dir}]
then
 echo "ERROR: Cannot change to ${local_dir} ... FILE NOT RECEIVED" |
tee $logfile
 exit 8
fi

Start FTP Job for the info-file. This info-file contains the version
number of the latest virus driver files.

print | tee -a $logfile
echo "$(date)" | tee -a $logfile
print | tee -a $logfile
print | tee -a $logfile
echo "STARTING FTP (GET) " | tee -a $logfile
print | tee -a $logfile

ftp -v -n ${av_srv} << ! | tee -a $logfile
user $av_user $av_pwd
prompt
bin
cd ${av_dir}
hash
get update.ini
bye
!

print | tee -a $logfile

Check if successfully connected to ftp.nai.com

cat $logfile | grep "Connected to ftp.nai.com" > /dev/null 2>&1
if [$? != Ø]
then
 echo "ERROR: Cannot connect to ${av_srv} ... FILE NOT RECEIVED !!!"
| tee -a $logfile
 exit 9
fi

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Checking if the user could logged in.

cat $logfile | grep "Login failed" > /dev/null 2>&1
if [$? -eq Ø]
then
 echo "ERROR: Login failed, check user and password ... FILE NOT
RECEIVED !!!" | tee -a $logfile
 exit 1Ø
fi

Checking if the target directory and file exists.

cat $logfile | grep "does not exist" > /dev/null 2>&1
if [$? -eq Ø]
then
 echo "ERROR: Target file does not exist. ... FILE NOT RECEIVED !!!"
| tee -a $logfile
 exit 11
fi

Checking if ftp is successful

cat $logfile | grep "bytes received in"
if [$? -eq Ø]
then
 echo "INFO: update.ini file RECEIVED!" | tee -a $logfile
else
 echo "ERROR: update.ini file NOT RECEIVED!" | tee -a $logfile
 exit 14
fi

Getting the version number in the info-file that is downladed.

let dat_ver_nai='cat update.ini | grep DATVersion | sort | uniq | awk -
F= '{print $2}''

Getting the version number of the current virus driver installed.

let dat_ver_local='/usr/local/sendmail/smmfilter-2.4/bin/avupdate -c |
awk '{print $7}''

Comparing the version numbers to determine if a newer version exists
to be installed.

if [[${dat_ver_nai} -eq ${dat_ver_local}]]
then
 print | tee -a $logfile
 echo "Local dat-file version and remote dat-file versions are the
same - ${dat_ver_nai}" | tee -a $logfile
 print | tee -a $logfile

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 touch /home/libk/rzxoper/log/check_'hostname'.log
 exit Ø
else

print | tee -a $logfile
echo "AVUPDATE" | tee -a $logfile
print | tee -a $logfile

Here seen that virus driver is old therefore FTP the new package.

ftp -v -n ${av_srv} << ! | tee -a $logfile
user $av_user $av_pwd
prompt
bin
cd ${av_dir}
hash
get dat-${dat_ver_nai}.tar
bye
!

Checking if ftp is successful

nfiles='cat $logfile | grep "bytes received in" | wc -l'
if [$nfiles -eq 2]
then
 echo "INFO: dat-${dat_ver_nai}.tar FILE RECEIVED!" | tee -a
$logfile
 cp -p ${local_dir}/dat-*.tar /pub/antivirus/datfiles/4.x >>
$logfile 2>&1
 cp -p ${local_dir}/update.ini /pub/antivirus/datfiles/4.x >>
$logfile 2>&1
else
 echo "ERROR: Unknown failure ...dat-${dat_ver_nai}.tar FILE NOT
RECEIVED !!!" | tee -a $logfile
 exit 12
fi

rm -r /var/db/mime-filter/new > /dev/null 2>&1

Performing the virus driver update locally.

/usr/local/sendmail/smmfilter-2.4/bin/avupdate -s $(hostname) -U smadmin
-P sendmail -u ${local_dir} -vvv >> $logfile 2>&1

if [$? -eq Ø]
then
 print | tee -a $logfile
 echo "INFO: AVUPDATE successfully executed ..." | tee -a $logfile
 /usr/bin/mailx -s "new av paket is received! - ${dat_ver_nai}"
sendmailadmins@turkcell.com < $logfile > /dev/null 2>&1

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

else
 print | tee -a $logfile
 echo "ERROR: AVUPDATE failure !!!" | tee -a $logfile
 exit 13
fi

rm /pub/antivirus/datfiles/4.x/dat-*.tar >> $logfile 2>&1
rm /pub/antivirus/datfiles/4.x/update.ini >> $logfile 2>&1

fi

print | tee -a $logfile
echo "FINISHED: $(date)" | tee -a $logfile
print | tee -a $logfile
"ERROR: update.ini file NOT RECEIVED!"

The exit codes from the script are:
• Exit 8: “ERROR: Cannot change to local directory ... FILE

NOT RECEIVED”.
• Exit 9: “ERROR: Cannot connect to FTP Server ... FILE NOT

RECEIVED !!!”.
• Exit 10:“ERROR: Login failed, check user and password ...

FILE NOT RECEIVED !!!”.
• Exit 11:“ERROR: Target file does not exist. ... FILE NOT

RECEIVED !!!”.
• Exit 12:“ERROR: Unknown failure ...dat-????.tar FILE NOT

RECEIVED !!!”.
• Exit 13:“ERROR: AVUPDATE failure !!!”.
• Exit 14:“ERROR: update.ini file NOT RECEIVED!” .
Adnan Akbas
System Administrator
TURKCELL (Germany) © Xephon 2003

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Brocade FC network port investigation

When using storage area networks, tools are necessary to
manage the interconnected environment. Although there are
powerful tools coming from several Fibre Channel (FC) switch
vendors and others, there is only basic integration for doing this
on the AIX command line. Therefore this document shows a way
to get the information directly from a Brocade FC network to AIX.
A script is given to list all the devices that are connected to active
ports of the network.

FC NETWORKS
Brocade is one of the IBM-supported manufacturers that builds
FC switch devices for Storage Area Networks (SAN). Since IBM
is an OEM vendor of Brocade, the FC switches can wear an IBM
logo. There are also some other well-known OEM vendors of
Brocade. All SAN switches can be recognized reliably by their
operating system, which, in this case, is Brocade’s Fabric OS.
The following way of checking this is a first glimpse of what we
can do to find out much more. The following AIX command line
asks the switch, via SNMP and through the network, about its
ISO object identification:
snmpinfo -c public -h switch 1.3.6.1.2.1.1.2.Ø

It starts with 1.3.6.1.4.1.1588 if a Fabric OS responds.
For the sake of simplicity we assume there is an existing and
working SAN. If several switches are interconnected with Inter-
Switch Links (ISLs), you call it a network (a ‘fabric’ in Brocade’s
parlance). The only prerequisite for a working network that I want
to name here is that every switch must have a domain identification
(DID) that is unique within one network.
Devices in arbitrated loops are identified by a three-byte code
that consists of a DID, the port number, and the loop device
number. This means they are identified mainly by the port they
are connected to.

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Since networks allow several hundreds or thousands of ports,
the identification of the devices is done not on a physical but on
a logical basis. Each device that allows point-to-point connections,
also known as network logins, has a unique 8-byte address that
is called its World-Wide Port Name (WWPN). Since it contains
some vendor information, it is often compared to the MAC
addresses in LANs.
Assigning disks or grouping devices together (called zoning) is
mostly done using those WWPNs. They simplify the cabling
since the exact port does not matter as long as it is within the
network. On the other hand, finding the port where a fibre channel
is connected is getting harder – especially when using several
patch panels or several connections within one trunk – the fibre
cables can easily be confused. It is usually not easy to double-
check the accuracy.
During my work with SANs, I sometimes missed the ability to
verify, using a simple command, where the local machines’s FC
adapters are connected. The script to list the devices connected
to the ports of a network was what I needed. I added an
interpretation option because I was tired of comparing FCs and
WWPNs manually.
#!/usr/bin/sh
#
Name: lssw - list switch port connections
#
Description: list ports of a brocade FC switch network connections
- Domain ID of the Switch where the port is
- Number of the port where a device is connected to
- the WWPN of the adapter or device that is seen
- the symbol offered by the connected device
#
Command: lssw [-r] <brocade-switch-IP-address> [<community>]
[-r] enable WWPN interpretation
<brocade-switch-IP-address>
an IP-address or name of a switch
within a brocade network
[<community>] community string if NOT "public"
#
Hints: - If the symbolic name is printed in hex digits
please add at least the following two lines of
information to the file:/etc/mib.defs . Please
start in the very first coulmn of that file:

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

#
swNsLocalEntry enterprises.1588.2.1.1.1.7.2.1
swNsPortSymb swNsLocalEntry.5 DisplayString read-only mandatory
#
- All switches within a network
need to have the same community
otherwise this command will fail
#
#---
#
check correct usage
#
if [$# -eq Ø]
then
 echo "Usage:$Ø [-r] <brocade-switch-IP-address> [<community>]"
 exit
fi
#
check for symbol interpretation option
#
interpretation=Ø
if ["x$1" = "x-r"]
then
 interpretation=1
 shift
fi
#
take whatever the switch is named
#
SWITCH=$1
#
check for community string or use default
#
COMMUNITY=public
if [$# -ge 2]
then
 COMMUNITY="$2"
fi
#
routine to extract the port number
#
porttranslated()

 m=$(echo $1|sed -e 's:^..*::')
 m=$(expr $m - 1)
 n=$(echo $1|sed -e 's:^...*::' -e 's:a:1Ø:' -e 's:b:11:' -e
's:c:12:' -e 's:d:13:' -e 's:e:14:' -e 's:f:15:')
 n=$(expr "$m" '*' "16" "+" "$n")
 if [$n -lt 1Ø]
 then
 echo " "$n

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 else
 echo $n
 fi

#
routine to do the symbol translation
#
fcstype()

 #
 # assign the given WWPN in uppercase hex letters
 #
 wwpn=$(echo $1|sed -e 's:["]::g'| tr 'a-f' 'A-F')
 #
 # try to find a local interface with the given WWPN
 #
 for fcs in $(lscfg|grep fcs)
 do
 if ["$wwpn" = "$(lscfg -vl $fcs | sed -ne '/Network Address/s/
^.*................/:::::::/p')"]
 then
 #
 # successful, print a formatted string
 # stop further interpretation
 #
 (echo $(hostname)"" && lscfg -l $fcs) |\line awk
'printf" IBM %12s %4s %5s",$1,$2,$3'
 return
 fi
 done
 #
 # the first digits of a wwpn name the manufacturer
 # show at least this information
 #
 case $wwpn in
 1Ø:ØØ:ØØ:ØØ:C9:2E:E3:7E) echo " IBM m8Ø_prod fcs1 P2-I6" ;;
 1Ø:ØØ:ØØ*) echo " EMULEX Adapter @???" ;;
 21:ØØ:ØØ*) echo " QLOGIC Adapter @???" ;;
 5Ø:Ø5:ØØ*) echo " IBM 21Ø5??Ø .???" ;;
 esac
 #
 # please extend this list if necessary
 #
 return

#
#---
#
#
#
#

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

##
#
#---
#
print Headline
#
echo "DID Port connected to WWPName Symbol of connected system"
#
ask for the switches that belong to the network
and loop the actions over all of them
#
for SWITCH in $(snmpinfo -v -m dump -h $SWITCH
1.3.6.1.4.1.1588.2.1.1.1.2.1Ø.1.4 | cut -d' ' -f3)
do
 #
 # do query switches only if the switch is reachable
 #
 ping -c 1 $SWITCH >/dev/null 2>&1
 if [$? -eq Ø]
 then
 #
 # get all FC name server entries from that switch
 #
 NSCOUNT=$(snmpinfo -v -h $SWITCH -c $COMMUNITY
1.3.6.1.4.1.1588.2.1.1.1.7.1.Ø | cut -d= -f2)
 n=Ø
 while [$n -lt $NSCOUNT]
 do
 n=$(expr $n + 1)
 #
 # collect the relevant information
 #
 ALPA=$(snmpinfo -v -h $SWITCH -c $COMMUNITY
1.3.6.1.4.1.1588.2.1.1.1.7.2.1.2.$n | cut -d= -f2)
 TYPE=$(snmpinfo -v -h $SWITCH -c $COMMUNITY
1.3.6.1.4.1.1588.2.1.1.1.7.2.1.3.$n | cut -d= -f2)
 NAME=$(snmpinfo -v -h $SWITCH -c $COMMUNITY
1.3.6.1.4.1.1588.2.1.1.1.7.2.1.4.$n | cut -d= -f2)
 SYMB=$(snmpinfo -v -h $SWITCH -c $COMMUNITY
1.3.6.1.4.1.1588.2.1.1.1.7.2.1.5.$n | cut -d= -f2)
 COS=$(snmpinfo -v -h $SWITCH -c $COMMUNITY
1.3.6.1.4.1.1588.2.1.1.1.7.2.1.1Ø.$n | cut -d= -f2)
 #
 # analyse the information found
 #
 DID=$(echo $ALPA | cut -d: -f2)
 PORT=$(echo $ALPA | cut -d: -f3)
 PORT=$(porttranslated $PORT)
 FCAL=$(echo $ALPA | cut -d: -f4)
 #
 # symbol interpretation if needed and enabled

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 #
 if ["$SYMB" = " " -a $interpretation = 1]
 then
 SYMB="$(fcstype $NAME)"
 fi
 #
 # print collected information
 #
 echo "$DID $PORT $NAME $SYMB"
 done
 fi
done
#
all done well ? good bye
#
exit Ø
#---

ABOUT SNMP
Communication is needed to investigate another device. There
are two means of transport to reach devices within a SAN from
one of its nodes. The most obvious is using the Fibre Channel
links, which are used for data transfer between CPUs and disks
or tapes. An Ethernet connection to the management interface
of a SAN switch within the network concerned is not always
present; but the Ethernet-based management interface offers
the most interesting information. The simplest way to access it
is by using the Simple Network Management Protocol (SNMP).
AIX provides the command /usr/sbin/snmpinfo to access other
networking devices via SNMP. This command is part of the
installation if the bos.net.tcp.server file set is present. Its definition
file, /etc/mib.defs, comes with the file set bos.net.tcp.client. The
full Management Information Base (MIB) for resolving Brocade
switch MIB trees is available from the Brocade Web server after
being registered.
It is not necessary to download and install the MIBs for Brocade
to use the network investigation script, but, for easier readability
of the command output, I recommend adding the following two
lines to the end of the file /etc/mib.defs:
swNsLocalEntry enterprises.1588.2.1.1.1.7.2.1

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

swNsPortSymb swNsLocalEntry.5 DisplayString read-only mandatory

I do not recommend downloading the Brocade MIBs because
they are written in ASN.1, while AIX uses a proprietory notation.
(ASN.1 is the standard notation that most network management
stations use – see Bibliography.)
The Brocade switches usually have SNMP enabled by default,
with all MIBs being accessible read-only. You can easily change
the settings on a Brocade system from the switch’s command
line using agtcfgSet, which will interactively query all parameters.
The command agtcfgshow lists the settings. It is not necessary
to enter any trap recipient or read-write access.
The port investigation script uses MIBs that are specific to
Brocade and are not shared with other vendors. Therefore, it is
likely to fail with other SAN switches.

INVESTIGATING PORTS
When calling the network investigation script, it is important to
know one accessible network address of one SAN switch from
the network you are interested in. First the script retrieves the
other switches’ addresses and later it will try to get their information
as well. The output below shows a single switch, which you can
easily determine by the DID (which is always 01). The port
number 1 is unused or the device connected to it is switched off.
Therefore this port is not listed here. The last column shows
symbolic names, which are mostly empty. Usually only the
storage targets answer with symbolic names.
lssw.sh 1Ø.2Ø.1Ø.24
DID Port connected to WWPName Symbol of connected system
Ø1 Ø 5Ø:Ø5:Ø7:63:ØØ:cc:9b:fØ "IBM 21Ø58ØØ .136"
Ø1 2 1Ø:ØØ:ØØ:ØØ:c9:2e:c7:7c ""
Ø1 3 21:ØØ:ØØ:eØ:8b:Ø3:Ø6:bd ""
Ø1 4 1Ø:ØØ:ØØ:ØØ:c9:2e:e3:7e ""
Ø1 5 21:ØØ:ØØ:eØ:8b:Ø3:dd:92 ""
Ø1 6 5Ø:Ø5:Ø7:63:ØØ:c8:9b:fØ "IBM 21Ø58ØØ .136"
Ø1 7 1Ø:ØØ:ØØ:ØØ:c9:23:33:85 ""

Mostly I am interested less in knowing the symbolic names
(where they exist) than in the devices that are behind them. So

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the interpretation function compares all local FC interfaces with
the WWPNs that are connected to the ports and replaces an
empty symbol string with one that shows system name, the
adapter name, and its slot. The slot helps particularly in LPAR
environments to avoid confusion.
There is also a section within the script that allows you to add
entries in a case list. This can be used to identify manufacturers
(as here, but not too accurately!) or to translate the WWPNs to
definitions that contain whatever you want. You simply need to
extend the list with the most exact entries at the beginning as
shown with the entry that converts the symbol of the WWPN at
port 4. Calling the script with this interpretation function leads to
more verbose output:
./lssw.sh -r 1Ø.2Ø.1Ø.24
DID Port connected to WWPName Symbol of connected system
Ø1 Ø 5Ø:Ø5:Ø7:63:ØØ:cc:9b:fØ "IBM 21Ø58ØØ .136"
Ø1 2 1Ø:ØØ:ØØ:ØØ:c9:2e:c7:7c "EMULEX Adapter @???"
Ø1 3 21:ØØ:ØØ:eØ:8b:Ø3:Ø6:bd "QLOGIC Adapter @???"
Ø1 4 1Ø:ØØ:ØØ:ØØ:c9:2e:e3:7e "IBM m8Ø_test fcs1 P2-I6"
Ø1 5 21:ØØ:ØØ:eØ:8b:Ø3:dd:92 "QLOGIC Adapter @???"
Ø1 6 5Ø:Ø5:Ø7:63:ØØ:c8:9b:fØ "IBM 21Ø58ØØ .136"
Ø1 7 1Ø:ØØ:ØØ:ØØ:c9:23:33:85 "IBM f5Ø_test fcsØ P2-I1"

Be careful when using the interpretation function, since wrong
modifications of the script or later changes to adapters may
cause mis-interpretations. These are most likely in dynamically-
changing LPAR environments.
When investigating whole networks there are not many
differences. Obviously you have to select the switch using the
DID before you concentrate on the port. Reading the remaining
output does not change. There is another helpful feature of the
Brocade switches. If you do not have network access via a LAN
to all FC switches, you can route IP traffic via the SAN for the
SNMP queries. But you still need network access to at least one
SAN switch of each network, because AIX does not support IP
within the SAN at the moment.

CONCLUSION
The script given here can be used as is to retrieve from Brocade

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FC networks the WWPNs of all active connected ports. Using its
interpretation option, the local FC adapters are resolved with
name and location code in the listing.
The SNMP strings and the composed commands given in this
script can be used outside the script for quicker retrieval. The
installation of MIBs is not needed, but, for a readable character
representation, at least a two-line extension to the file /etc/
mib.defs is given and recommended.
The script does not provide zoning information, but does allow an
unrestricted view to the ports of the network.

REFERENCES
The Fibre Channel Management Integration MIB.
Subsystem Device Driver (SDD for AIX).
Brocade Web server.
Andreas Neuper
PROFI Engineering Systems (Germany) © Dr Andreas Neuper 2003

The awk command

awk is one of the most important commands you should master
in shell programming since it can perform many of the functions
available in other commands, and often in a more efficient
manner since a single command performing multiple functions
is usually faster than multiple commands each performing a
single function. Learning the rules, construction, and syntax
used in awk is no easy task, however, and it will probably require
extensive practice before you are totally familiar with its
capabilities.
This article will introduce you to the standard awk functions, and
a future article will introduce more complex awk operations.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

CAPABILITIES OF AWK
Amongst other things, awk is a text selection and alteration tool
that has its own powerful pattern matching and programming
language with which to specify a variety of complex text processing
operations. The syntax is similar in many ways to C, and it uses
variables and programming constructs such as testing and
looping.
If you have a file containing data held in the form of text strings,
you can use awk to process the data to change the layout and
perform comparisons and calculations at the same time. awk
can also be used to filter out unwanted lines in a file, or to check
that a file conforms to a particular layout specification.
No changes are made to the original file on which awk operates
and by default its output is sent to standard output. As a text
manipulator, it can do everything that sed can do, and more, but
you may find that the construction of the command is more
complex than that of sed, not in its syntax (of which sed is the
undoubted master), but in its logic, and will usually require a
greater number of lines of awk coding.
You may ask awk to extract, manipulate, and perform
computations with information from a file. The structure of the
information in the file must be consistent, and for lines that are
similar, each piece of information must be in the same position
in each line, or record, of the file. The awk program treats each
line of a file as a set of fields, normally separated by spaces or
tabs, although you can specify any separator you wish.

CONSTRUCTION OF AWK COMMANDS
At its simplest, awk selects a line from a file according to
selection criteria, which can be text patterns as in grep or sed.
When awk operates on a file, the selection and action process
can be represented by:
awk pattern {action} file(s)

This means that every line which matches the specified pattern

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

should have the action performed on it. You can run the same
pattern and action combination on multiple files at the same time;
in this case awk concatenates the output of all files and treats it
as a single file input.
Both the pattern and action are optional, and a pattern with no
corresponding action simply selects the matched record for
display on standard output. An action with no associated pattern
is performed on all records in the file. In other words, a missing
pattern matches all lines in the file.
The search pattern can be a simple text string or it can be a
regular expression as used in sed, although there are additional
operators available in awk that cannot be used in sed.
As an example of a simple search pattern, we can find all the lines
containing Smith in the stars file by using:
awk /Smith/ stars

The default action is to print only the selected lines. If you don’t
specify any pattern, awk will perform the specified action on all
lines in the file, and in this case you must specify an action, even
if all you want to do is print the lines. For example:
awk {print} stars

The actual action, or program ({print}), to be used must be the
first argument to the command, and the remaining arguments
are the files to be processed. We can use both a pattern and
action together with:
awk /Smith/{print} stars

although in this particular case the result would be the same if we
omitted the {print}. In the syntax used above there must be no
spaces between the pattern and action, nor anywhere else in this
combination.
As awk’s capabilities are expanded, the programs will become
more complex and many will contain metacharacters. These
must be enclosed in quotes to make sure that awk sees them,
and it is good practice to use single quotes since in many cases

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

double quotes will not do. If both a pattern and action are included
as arguments to awk and either contains metacharacters, you
must quote both within a single set of quotes. You will also
discover that it is particularly difficult, if not almost impossible, to
quote single quotes within the awk script.
There is also an option to put awk subcommands in a file and
then use this file as a command line option.

REFERENCING FIELDS
One of the things that awk can do is operate on individual fields
within a line. Every line or record in a file is composed of fields,
which are separated by field separators. These are normally
spaces or tabs but can be changed to whatever you like by using
the FS variable, or the
-F option to awk.
Fields are referenced by the notation $n, where n is the number
of the field you want. $1 is the first field on the line, $2 the second,
and so on, and $0 refers to the whole line. The maximum number
of fields you can have in a line is 99.
The default value of FS is blank, so that by default fields are
separated by one or more spaces or tabs. If FS contains a single
non-blank character, then fields are separated by that single
character. If FS contains more than one character, then fields are
separated by patterns matching this regular expression.
Suppose we want to find all the Smiths in the stars file, but we
want to see only the first name and the contestant number. We
can do this by using:
awk '/Smith/ {print $1 " - " $3}' stars

Note that we had to specifically insert space characters (and also
in this case the minus character) in the output by enclosing them
in quoted strings in the print statement. If you used a print
statement such as:
print $1,$3

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

then the fields would appear on the output with a single space
between them.
By using this method of referencing fields on a line it is possible
to rearrange your output into a different order. For example, if we
wanted to reorder the names in the stars file by putting the last
name first, followed by the first name, this could be achieved
with:
awk '{print $2 ", " $1 "^I" $3}' stars

which has an action but no pattern. In this case the missing
pattern selects every record in the file.

USING AWK COMMANDS IN A FILE
If in the above example we wished to perform this exercise on a
number of files, this could best be achieved by putting the awk
program into a file and using the -f option.
Suppose we create a file called swap, which contains the awk
program:
{print $2 ", " $1 "^I" $3}

The awk program is now simply a line in a file. The single quotes
surrounding the command are no longer necessary. This program
can now be run on any file that needs rearranging:
awk -f swap popstars > popstars.new
awk -f swap tenstars > tenstars.new
awk -f swap footiestars > footiestars.new

BUILT-IN PATTERNS
There are two special built-in patterns within awk, called BEGIN
and END. If BEGIN appears as a pattern, it matches the
beginning of the file, so that you can execute a number of
subcommands before processing starts on the lines of input.
Similarly, the pattern END matches the end of the file, and you
can then execute further commands after processing has been
completed on all the lines of input.

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

You could use these to put a header and a trailer on a report you
are producing. As a simple example, let’s produce a list of our
competitors, with the first and last names swapped. First we
construct a source file, called report, containing the following
awk commands (the ^Is represent tabs):
BEGIN {

print
print "Competitor ^I^INumber"
print

}

{ print $2, $1 "^I^I" $3}

END {
print
print "Number of competitors = " NR }

awk is very flexible about syntax. Braces can be located either
within the BEGIN or END sections or in the body of the program.
They can be on lines of their own, or both on the same line with
a command in between, or the starting brace can be on the same
line as the BEGIN or END. There is also no requirement for
spaces on either side of the braces. You can, if you wish, place
a semi-colon at the end of each line, as if you were programming
in C. There is not much point in doing this normally unless you
wanted to include two or more commands on the same line.
In the BEGIN section, all the actions between the opening { and
the closing } are performed before the data file is processed.
After the BEGIN section follows the body of the program, which
in this case consists of only the single print statement; this
statement operates on all lines since no pattern is specified. The
last section is the END section, which will be executed after all
the lines have been processed.
This program can be run with, for example:
awk -f report popstars tenstars footiestars

In the last line of the program is a reference to the variable NR.
This is a built-in awk variable that in this example contains the
number of records processed. Because it is not quoted in our

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

print statement, it is understood by awk to be a variable and so
its value is substituted into the output.

FORMATTING PRINTED OUTPUT
In our example above, instead of using print, which has fairly
limited formatting capabilities, we can use the printf
subcommand, which gives much greater control over the final
output. The formatting expressions are very similar to that for the
printf command. By using printf we could shorten the report
program to:
BEGIN {printf "\nCompetitor ^I^INumber\n\n"}

{ print $2, $1 "^I^I" $3}

END {printf "\nNumber of competitors = " NR "\n"}

printf does not automatically supply a newline, which must be
explicitly specified as \n. Note that we must enclose the final \n
on our last line in quotes since it comes after the NR variable,
which is outside our quotes. Another commonly used escape
sequence is \t for a tab.
Generally speaking, printf is not used just to shorten awk source
files. By far its most important use is in formatting the output from
shell scripts so that fields are aligned, thus making the output
easier to read. This alignment can be achieved by using the full
syntax of printf:
printf ("format expression", arg1 [,arg2, . .])

As we have seen, the parentheses and format expression
followed by the comma are not essential. The format specifications
are each preceded by a per cent sign, and the following characters
are most commonly used to define the output:
• c - single ASCII character
• d - decimal integer
• f - floating point format
• o - octal number

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• s - string of characters
• x - hexadecimal number
• % - the % character
Whenever you have a format specification, you must have a
corresponding argument, which can be either a variable name,
a number, or a quoted string. If an argument is missing, you will
get an awk error message when you try to run your script. If there
are more arguments than there are format specifications, the
argument will be ignored. You can also specify the width of the
field using the following format:
%[justifier]width[.precision]specifier

For example:
printf ("|%-1Øs|\t|%8.2fp per |%3d Kg\n", "Apples", 12.2, $3)

where $3 is a variable whose value is 2, will produce output:
|Apples | | 12.2Øp per | 2 Kg

The vertical bars have been introduced to give some idea where
the fields start or finish. By default, if no justifier is specified, the
text will be right-justified; a ‘-’ justifier will left-justify. When using
floating point format, the first number is the total width of the field,
and the second integer specifies the number of decimal places;
remember that the decimal point itself occupies one of the
characters specified by the width.
Fields are automatically padded out with spaces if the number of
characters is less than the width. If the number of characters is
greater than the width specification, then all the characters will be
printed out, which may spoil your formatting. The exception to
this is when a number is in floating point format and only the
specified number of decimal places are printed, even though the
non-decimal part may contain more characters than the total
width of the field.

FORMATTING AWK COMMANDS IN SCRIPTS
So far we have mainly discussed using awk with a source file

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

containing all the subcommands, but this may not always be
desirable, and indeed some shell programmers do not like this
approach, preferring instead to write their scripts as self-contained
entities.
When you write scripts containing all the awk subcommands,
you should be careful to format the script so that it is easy to read,
remembering that at some future date someone other than
yourself may have to read and understand your script, and, more
importantly, make alterations to it. This will be much simpler if you
have adopted a consistent formatting style.
Using source scripts does not require the commands to be
surrounded by quotes, but when included in a shell script these
must be quoted otherwise you will get syntax errors. The easiest
to read formatting could look something like the following:
awk '

BEGIN {
command1
command2 . . .

}

{
command3
command4 . . .

}

END {
command5
command6 . . .

}
' filename

By indenting the subcommands in the BEGIN, END, and main
sections, and by separating the sections with blank lines, it is
much easier to see where the commands belong, and
consequently make debugging easier. If you do not have a
BEGIN and END section, you may also see awk commands
written like:
cat filename |
awk '{

command1
command2 . . .

}'

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

In this example we have piped the output to awk and placed the
command itself at the start of the next line. This type of format
may be preferable if you have a long pipeline to produce input for
awk so that it is then relatively simple to determine where the
command starts and finishes.

USING VARIABLES
There are three different types of variable used within awk.
These are:
• Built-in awk variables.
• User variables defined within awk.
• Variables passed in to awk.

Built-in variables
We have already come across one built-in variable, NR, which
actually stands for the number of the current input line. We used
NR as a count of the total number of lines, but this is not always
accurate since it assumes that every line in the file contains
information we want to process, which is not always the case. If
we had had blank lines in our file, then using NR to represent the
total number of competitors would not have been correct.
Another predefined variable is NF, which contains the number of
fields on the current line or record. This variable could be used
to check the syntax of a file using a conditional expression (which
is discussed later). You can do this by adding a further field to any
of the lines of the stars file and then running:
awk 'NF > 3 {print "Too many fields on line " NR}' stars

The NF variable is frequently used to print the last field on a line
where you are uncertain of the number of fields since this may
vary from line to line. Instead of using $3, say, you would instead
use $NF, since this would extract the value associated with the
last field on the line. For example:
awk '{print $NF}' stars

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A variable which is also quite useful is the FILENAME variable,
which is set equal to the name of the file currently being
processed by awk. Suppose we wished to match patterns in a
number of files, then this could be achieved with:
awk '/Smith/ {print FILENAME ":" $Ø}' *stars

You should be aware that when you are processing a number of
files as above, then the NR variable gets incremented for each
record that is read sequentially through all the files. It is not reset
to 1 when the FILENAME variable changes. You could overcome
this problem by using the variable FNR, which gives the current
input line in the current file. You can see the difference by running
the following:
awk '/Smith/ {print FILENAME ":" $Ø " : line " NR}' *stars
awk '/Smith/ {print FILENAME ":" $Ø " : line " FNR}' *stars

By default awk assumes that fields are separated by spaces or
tabs. If the file you want to process has some other field
separator, you should set the value of the FS variable to that
separator. Alternatively you could use the -F option on the awk
command line, but you must set the value in the BEGIN section
before the first input line is read.
For example, to print the names of all users who have the Korn
shell as the initial shell, enter:
awk -F: '/ksh/ {print $1}' /etc/passwd

or using a statement within the awk source file:
BEGIN { FS = ":" }

You may often see multiple awk commands with different -F
options piped into each other in order to extract fields from input
lines. For example, if we wanted to display the number of free
megabytes in rootvg, we could use the pipeline:
lsvg rootvg | grep FREE | awk -F: '{print $3}' |
awk -F"(" '{print $2}' | tr -d ")"

Similarly, output produced by the print statement has a default
field separator of one space. If you want a different separator, you
should change the value of the output field separator, OFS.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

There are two other built-in variables similar to FS and OFS.
These are RS, the input record separator, and ORS, the output
record separator. By default they are both set to the new-line
characters, so that records and lines equate to the same thing on
input, and print statements write each record as a separate line
of output.
If you wish to change any of these built-in variables, it is best to
do so in the BEGIN section.

User-defined variables
You can define your own variables for use in awk; the name can
consist of letters, digits, and underscores, but it cannot start with
a digit. A variable is defined the first time it is mentioned, and awk
initializes it to zero, or to a null string. You don’t have to specify
what type of variable it is since awk will figure it out from the
context. You should be careful not to use variable names which
may be the same as an awk subcommand. If in doubt, use
upper-case variable names.
Suppose that the stars file contained scores in a competition
instead of telephone numbers, and we wished to calculate the
average score. To do this we could first create an awk program
in a file called average:
{ total = total + $3 }
END { print "Average score is ", total / NR }

To compute the average with awk, we use:
awk -f average stars

This is a very simple program and because variables are
automatically initialized we don’t need a BEGIN section. The first
line of the program adds the value of the third field of each record
of the data file to the variable called total.
The second line contains a print statement in the END section,
so that it is done after all lines in the file have been processed.
First we print the message Average score is, and then on the
same line we print the value of total divided by NR to show the
average score.

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In this program we have assumed that the input file has the
correct layout: that there are no blank lines, and that each line
does have a score in its third field. This is a very sloppy program
and we should have checked for such things. We can ensure that
our output is more accurate by using:
/^$/ { blank = blank + 1 }
{ total = total + $NF }
END { print "Average score is " , total / (NR - blank) }

The first line now allows us to check for completely blank lines
(you could modify this to check for spaces and tabs also), and if
one is encountered then we add 1 to the variable blank, which
we finally subtract from NR to give an accurate count of the
number of lines. We have used the $NF variable to extract the
value of the last field since this will allow us to have contestants
with more than a first and last name. It still doesn’t check that this
field contains valid numbers, but you will shortly see how this also
can be achieved.

Variables passed to awk
It is sometimes necessary to pass variables from the main part
of your script to the awk command. You can do this by using the
-v option to awk, which must be specified before any -f argument.
By using this option, you specify variables that will be available
in the BEGIN section before any input line has been read, and
also throughout the rest of the awk script.
As an example, let us assume that we want the ability to print the
average scores for all contestants in our stars file with the same
last name. First we produce our average script, which contains
lines like the following:
{ if (match ($2,name) != Ø) {

total = total + $NF
nameline = nameline + 1
}

}
END {

print "Average score is " , total / nameline
}

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

For the time being, let us ignore the command construction of the
first line and its corresponding syntax. What the first line does is
make a string comparison between $2 and the variable name,
which we pass into the script from the command line. If there is
a match, then we increment the total and nameline variables to
allow us to produce our final average score; if there are no
matches then the next line of input is processed. Although we
have not done so here, we should really check that nameline
does not have a value 0, which means we should exit without
printing since there are no matches.
We call this script from the command line using:
awk -v name=Smith -f average stars

You can read in any number of variables to awk by using multiple
-v options. If you are reading in a variable which is set to another
variable’s value within your shell script and which contains
spaces or other metacharacters, you must quote this variable
with, say, -v name="$NAME".

MATCHING USING CONDITIONAL EXPRESSIONS
We can use conditional expressions within awk to match simple
character strings, or to determine whether the values of numeric
fields satisfy certain criteria. These expressions are really just
shorthand notations for the if subcommand. As an example,
consider:
awk '$NF >= 2ØØ' stars

This will print out the lines with the contestant numbers greater
than or equal to 200. Similarly:
awk '$NF >= 1ØØ && $NF < 2ØØ' stars

or:
awk '($NF >= 1ØØ) && ($NF < 2ØØ)' stars

will print out the lines with contestant numbers greater than or
equal to 100 and less than 200. The double && is the conditional
operator and indicates that both conditions must be met for the

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

action to be taken, which in this case is the default action, ie print
out the line. The second of the examples shows how you can
increase the readability by enclosing your conditional expressions
inside brackets – this will certainly be a requirement when your
conditional expressions become complex constructions of &&
and || operators.
You should be aware that when you want to check that something
is equal to a particular value, you must use the double equals
notation, otherwise prepare yourself for endless hours of fun
debugging shell scripts where you use the single equals instead!
For example:
awk '$NR == 5' stars

Now suppose that we wanted to print out the lines containing the
name Smith, this can be achieved with:
awk '$2 ~ /Smith/' stars

The ~ means ‘match’, that is, test whether field 2 contains the
pattern enclosed between the slashes; it does not necessarily
have to match the whole field and the pattern mith would achieve
the same result. You can exclude lines containing this pattern
with !~. For example, you can print out all lines which do not have
a contestant number starting with 3 by using:
awk '$NF !~ /3../' stars

We could add further conditions by requesting that only the
Smiths with contestant numbers less than 300 be printed:
awk '$2 ~ /Smith/ && $NF < 3ØØ' stars

If two patterns are separated by a comma, the action will be
performed on all lines between an occurrence of the first pattern
and the next occurrence of the second pattern. For example:
awk '$2 ~ /Becks/, /Seles/' stars

will print out all the lines from Becks to Seles inclusive.
If there is more than one occurrence of the first pattern, then all
the lines from the first occurrence of the first pattern to the first
occurrence of the second pattern, inclusive, will be printed, and

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Manage FTP process

Manage FTP process (mfp) is a utility that automates the whole
process of performing FTP. Some organizations do a great deal
of file transfer via ftp throughout the day at various times and
without any automated processing, which can be quite time
consuming and prone to errors. This utility allows configuration
records to be defined for each FTP task and, once it is defined,
the daemon processing the mfp utility will continue FTPing at
regular intervals. The utility provides a lot of flexibility in managing
FTP configuration records (ie commenting out existing entries,
un-commenting commented out entries, logically deleting entries,
purging all logically-deleted entries, etc).
Any changes made to configuration files must be followed up by
executing the appropriate option in the menu to reload the
configuration file, otherwise the changes in the configuration file
will not take effect. The biggest drawback with this utility is that
it performs FTP in serial mode, that’s to say that it reads an FTP
configuration record, does the FTP, and then moves on to the
second configuration record, etc.

INSTALLATION
mfp.sh requires the following directory structure:
$MFP_ROOT_DIR

then all lines from the next occurrence of the first pattern to the
next occurrence of the second pattern will be also be printed; and
so on. If there are no further occurrences of the second pattern,
then all the lines from the last occurrence of the first pattern to the
end of the file will be printed.
Tonto Kowalski
Guru (UAE) © Xephon 2003

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 |
 | -------- config
 |
 | -------- log
 |
 | -------- script
 |
 | -------- temp
 |

Define $MFP_ROOT_DIR in the script mfp.sh and create these
sub-directories before attempting to run mfp.sh.
If the script is run without this directory structure in place, it will
display the appropriate error message.

SECURITY
mfp.ksh can be run only by $AUTHORISED_USER, which is
currently set to root. Because the configuration file, log file, and
temporary files may contain passwords, the umask for all file
creation is set to 077, which gives read and write access to
$AUTHORISED_USER only.

TUNABLE PARAMETERS
Tunable parameters are:
1 $FTP_INTERVAL in pfari.ksh – this controls the duration of

sleep between each pass of configuration file. It has been set
to 900 seconds (15 minutes). This can be adjusted from
mfp.ksh during runtime.

2 $WAIT_ON_CONFIG_INFO in pfari.ksh – this controls the
duration of sleep while looking to establish any available
configuration information. This can be adjusted in pfari.ksh.

The debug option can be switched on and off during runtime from
mfp.ksh.
Once pfari.ksh is started, any changes to the configuration file
will take effect only if the configuration files are reloaded after
they have been changed.

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Do not hand-edit the configuration file because some intricate
logic is applied via mfp.ksh to maintain this file.

MFP.KSH
#! /usr/bin/ksh
###
Name : mfp.ksh (manage FTP process)
Overview : The shell script provides a menu-based interface to
manage all aspects of a process which FTPs files from
a host server to one or many nominated servers at an
adjustable regular interval.
Notes : 1. The script contains following functions:
o InitialiseVariables
o InitialiseLogFile
o DisplayMessage
o LogMessage
o HandleInterrupt
o MoveCursor
o ProcessExit
o DisplayMenu
o ProcessMenuOption
o InstanceCheck
o GetRemoteHostName
o GetRemoteDirectoryName
o GetRemoteFileName
o GetRemoteUserId
o GetRemotePassword
o GetLocalDirectoryName
o GetLocalFileName
o GetAction
o GetComment
o IsFTPDaemonRunning
o PerformSanityCheck
o AddEntryToConfigFile
o ModifyConfigFileEntry
o ReplaceEntryInConfigFile
o StartFTPDaemon
o KillFTPDaemon
o StopFTPDaemon
o SwitchOffDebug
o SwitchOnDebug
o AdjustFtpInterval
o ReloadConfigurationFile
o PurgeDeletedEntriesFromConfigFile
o ViewLogFile
o ViewConfigFile
o TrimLogFile
o ShowRemoteServerStatus

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

o main
3. Host server is defined as the server on which this
script is running.
4. The script starts a daemon process called pfari.ksh
to perform the FTP at a regular interval.
5. The following directory structure is required by the script:
$MFP_ROOT_DIR
|
|------ log
|
|------ script
|
|------ config
|
|------ temp
|
|
###
Name : InitialiseVariables
Overview : The function initializes all module constants and
working variables.
Notes :
###
InitialiseVariables ()
{
AUTHORISED_USER="root"
USER='id | cut -d'(' -f2 | cut -d')' -f1'
define root directory
MFP_ROOT_DIR="${HOME}/ftp" ; export MFP_ROOT_DIR
MFP_LOG_DIR="${MFP_ROOT_DIR}/log" ; export MFP_LOG_DIR
MFP_LOG_FILE="${MFP_LOG_DIR}/mfp.log" ; export MFP_LOG_FILE
temporary directory
MFP_TEMP_DIR="${MFP_ROOT_DIR}/temp" ; export MFP_TEMP_DIR
MFP_FTP_INTERVAL_FILE="${MFP_TEMP_DIR}/ftp_interval.tmp" ; export
MFP_FTP_INTERVAL_FILE
TEMP_FILE_1="${MFP_TEMP_DIR}/mfp_1.tmp"
TEMP_FILE_2="${MFP_TEMP_DIR}/mfp_2.tmp"
configuration file
MFP_CONFIG_DIR="${MFP_ROOT_DIR}/config" ; export MFP_CONFIG_DIR
MFP_CONFIG_FILE="${MFP_CONFIG_DIR}/pfari.config" ; export
MFP_CONFIG_FILE
define script directory
MFP_SCRIPT_DIR="${MFP_ROOT_DIR}/script" ; export MFP_SCRIPT_DIR
FTP_INTERVAL=4 ; export FTP_INTERVAL
terminal capabilities
BOLDON='tput smso' ; export BOLDON
BOLDOFF='tput rmso' ; export BOLDOFF
ESC="\ØØ33["
menu title
MENU_TITLE="${BOLDON}Maintain FTP Process${BOLDOFF}"

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ERROR="mfp.ksh:ERROR:"
INFO="mfp.ksh:INFO:"
fuction return values
TRUE=Ø
FALSE=1
DEBUG_FLAG="${FALSE}" ; export DEBUG_FLAG
exit status
SEC=Ø
FEC=1
sleep duration
SLEEP_DURATION=3
an integer variable for numeric test
integer DUMMY_INT=Ø ; export DUMMY_INT
DATETIME='date "+%d/%m/%Y at %H:%M:%S"'
messages
INTERRUPT="Program Interrupted\; Quitting early"
WORKING="Working"
INVALID_ENTRY="Invalid Entry"
OS_ERROR="\${ERR_MSG}"
FTP_DAEMON_ALREADY_RUNNING="Daemon script \${MFP_SCRIPT_DIR}/pfari.ksh
is already running"
FTP_DAEMON_NOT_RUNNING="Daemon script \${MFP_SCRIPT_DIR}/pfari.ksh is
not running"
FTP_DAEMON_KILLED="Successfully killed executing daemon script
\${MFP_SCRIPT_DIR}/pfari.ksh"
FTP_DAEMON_STARTED="Successfully started daemon script
\${MFP_SCRIPT_DIR}/pfari.ksh"
FTP_DAEMON_NOT_STARTED="Failed to start daemon script
\${MFP_SCRIPT_DIR}/pfari.ksh"
VARIABLE_NOT_SET="Variable \${VAR} is not defined"
DIR_NOT_EXIST="Directory \${DIR} does not exist"
SCRIPT_NOT_FOUND="Script \${SCRIPT} not found"
NO_CONFIG_FILE="\${MFP_CONFIG_FILE} does not exist"
ENTRY_EXISTS="Entry already exists in configuration file"
CONFIG_FILE_NOT_EXISTS="Configuration file \${MFP_CONFIG_FILE} does not
exist"
NO_CONFIG_FILE_ENTRIES="Configuration file \${MFP_CONFIG_FILE} does not
have any entries"
INVALID_ACTION_PARAM="\${P_ACTION}, is an invalid action for
ModifyConfigFileEntry\(\)"
NO_ENTRY_TO_REMOVE="No configuration file entries found for removal"
NO_ENTRY_TO_COMMENT_OUT="No configuration file entries found for
commenting out"
NO_ENTRY_TO_UNCOMMENT="No configuration file entries found for
uncommenting"
NO_ENTRY_TO_REPLACE="No configuration file entries found for replacing"
NO_CHANGE="No change made"
NO_LOG_FILE="Log file, \${MFP_LOG_FILE} does not exist"
INSTANCE_RUNNING="An instance of mfp.ksh is already running"
NO_DELETED_ENTRIES_TO_PURGE="No deleted entries found for purging"
DELETED_ENTRIES_PURGED="Successfully purged \${NO_DELETED_ENTRIES}

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

deleted entries"
DAEMON_NOTIFIED="Successfully notified daemon"
INVALID_CONFIG_RECORD="Invalid config record, \${BAD_CONFIG_RECORD}"
NO_ENTRIES_FOUND="No log records found for
\${LOG_TRIM_FORMATTED_FROM_DATE} or for later date"
LOG_NOT_TRIMMED="Failed to trim log file"
DATE_NOT_NUMERIC="Date, \${LOG_TRIM_FROM_DATE} not numeric"
INVALID_MONTH="Month, \${MONTH} is invalid"
ENTER_DATE="Must enter a date \(DDMMYYYY\) "
INVALID_DATE_LENGTH="Date, \${LOG_TRIM_FROM_DATE} has invalid length"
INTERVAL_NOT_NUMERIC="FTP interval, \${FTP_INTERVAL} not numeric"
ZERO_INTERVAL="FTP interval must be greater than zero"
INVALID_DAY="\${DAY}, is invalid day for month, \${MONTH}"
RELOAD_CONFIG_FILE="Must reload configuration file"
SERVER_REACHABLE="Server, \${REMOTE_SERVER} is reachable"
SERVER_NOT_REACHABLE="Server, \${REMOTE_SERVER} is not reachable"
PINGING_SERVER="Pinging remote server, \${REMOTE_SERVER}"
NOT_AUTHORISED_USER="Must be \${AUTHORISED_USER} to run the script"
}
###
Name : InitialiseLogFile
Overview : The function initializes the global log file.
Notes : 1. This log file is also written to by the daemon process
pfari.ksh.
###
InitialiseLogFile ()
{
if [! -s "${MFP_LOG_FILE}"]
then
 # initialise the file
 echo " FTP Log File On ${DATETIME} " >
${MFP_LOG_FILE}
 echo " ======================================" >> \
 ${MFP_LOG_FILE}
fi
return $TRUE
}
##
Name : HandleInterrupt
Overview : The function calls ProcessExit.
Notes :
##
HandleInterrupt ()
{
DisplayMessage I "${INTERRUPT}" N
ProcessExit $FEC
}
###
Name : MoveCursor
Input : Y and X coordinates
Returns : None

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Overview : It moves the cursor to the required location (Y,X).
Notes :
###
MoveCursor ()
{
YCOR=$1
XCOR=$2
echo "${ESC}${YCOR};${XCOR}H"
}
##
Name : ProcessExit
Overview : The function calls ProcessExit.
Input : Exit Code
Notes :
##
ProcessExit ()
{
assign parameter
EXIT_CODE="$1"
rm -f ${TEMP_FILE_1}
rm -f ${TEMP_FILE_2}
exit ${EXIT_CODE}
}
##
Name : LogMessage
Overview : The function writes a message into the log file
Input : 1. Message type (E = Error, I = Informative)
2. Error Code as defined in DefineMessages ().
Notes :
##
LogMessage ()
{
MESSAGE_TYPE=$1
MESSAGE_TEXT='eval echo "${2}"'
if ! InitialiseLogFile
then
 return $FALSE
fi
DATETIME='date "+%d/%m/%Y %H:%M:%S"'
if ["${MESSAGE_TYPE}" = "E"]
then
 echo "${ERROR}${DATETIME}:${MESSAGE_TEXT}" >> ${MFP_LOG_FILE}
else
 echo "${INFO}${DATETIME}:${MESSAGE_TEXT}" >> ${MFP_LOG_FILE}
fi
}
##
Name : DisplayMessage
Overview : The function displays a message
Input : 1. Message type (E = Error, I = Informative)
2. Error Code as defined in DefineMessages ().

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3. Message to be acknowledged flag (Y=yes N=no)
Notes :
##
DisplayMessage ()
{
MESSAGE_TYPE=$1
MESSAGE_TEXT='eval echo $2'
ACKNOWLEDGE_FLAG="$3"
default the message acknowledge flag
if ["${ACKNOWLEDGE_FLAG}" = ""]
then
 ACKNOWLEDGE_FLAG="Y"
fi
#clear
MoveCursor 24 1
if ["${MESSAGE_TYPE}" = "E"]
then
 if ["${ACKNOWLEDGE_FLAG}" = "Y"]
 then
 echo "${BOLDON}${ERROR}${MESSAGE_TEXT}${BOLDOFF}\c"
 else
 echo "${BOLDON}${ERROR}${MESSAGE_TEXT}...${BOLDOFF}\c"
 fi
else
 if ["${ACKNOWLEDGE_FLAG}" = "Y"]
 then
 echo "${BOLDON}${INFO}${MESSAGE_TEXT}${BOLDOFF}\c"
 else
 echo "${BOLDON}${INFO}${MESSAGE_TEXT}...${BOLDOFF}\c"
 fi
fi
examine message acknowledge flag
if ["${ACKNOWLEDGE_FLAG}" = "Y"]
then
 read DUMMY
else
 sleep ${SLEEP_DURATION}
fi
return ${TRUE}
}
###
Name : DisplayMenu
Overview : The function displays a menu.
Notes :
###
DisplayMenu ()
{
 clear
 echo "
 ###
 # ${MENU_TITLE} #

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 # #
 # 5. Start FTP daemon #
 # 1Ø. Stop FTP daemon #
 # 15. Kill FTP daemon #
 # 2Ø. View FTP Configuration File #
 # 25. Add Entry to Configuration File #
 # 3Ø. Delete Entry from Configuration File #
 # 35. Comment Out Entry in Configuration File #
 # 4Ø. Uncomment Entry in Configuration File #
 # 45. Replace Entry in Configuration File #
 # 5Ø. Purge Deleted Entries in Configuration File #
 # 55. Reload Configuration File #
 # 6Ø. Adjust FTP Interval #
 # 65. Switch On DEBUG for FTP #
 # 7Ø. Switch Off DEBUG for FTP #
 # 75. View FTP Log File #
 # 8Ø. Trim Log File #
 # 85. Display Remote Server Status #
 # #
 # 99. Exit #
 ###
 Enter Option ----> \c
 "
 read OPTION
}
###
Name : StartFTPDaemon
Overview : The function starts the FTP daemon, pfari.ksh, in the
background.
Notes :
##
StartFTPDaemon ()
{
if IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_ALREADY_RUNNING}" N
 return ${FALSE}
fi
nohup ${MFP_SCRIPT_DIR}/pfari.ksh > ${TEMP_FILE_1} 2>&1 &
if ! IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_NOT_STARTED}" N
 sed s/*//g ${TEMP_FILE_1} > ${TEMP_FILE_2}
 ERR_MSG='cat ${TEMP_FILE_2}'
 DisplayMessage E "${OS_ERROR}" N
 return ${FALSE}
fi
#
LogMessage I "${FTP_DAEMON_STARTED}"
echo "\n" >> ${MFP_LOG_FILE}
DisplayMessage I "${FTP_DAEMON_STARTED}" N

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

return $TRUE
}
###
Name : KillFTPDaemon
Overview : The function kills the FTP daemon using kill -9 <pid>
command.
Notes :
##
KillFTPDaemon ()
{
if ! IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_NOT_RUNNING}" N
 return ${FALSE}
fi
get the process id
FTP_DAEMON_PID='ps -eaf | grep -v "grep" | \
 grep "${MFP_SCRIPT_DIR}/pfari.ksh" | awk {'print
$2'}`
while true
do
 # send kill signal
 kill -KILL ${FTP_DAEMON_PID} 2> /dev/null
 if ! IsFTPDaemonRunning
 then
 LogMessage I "${FTP_DAEMON_KILLED}"
 DisplayMessage E "${FTP_DAEMON_KILLED}" N
 return ${TRUE}
 fi
done
}
###
Name : StopFTPDaemon
Overview : The function stops the FTP daemon using kill -15 <pid>
command.
Notes : 1. The FTP daemon terminates after the current FTP is
complete; otherwise it terminates straight away.
##
StopFTPDaemon ()
{
if ! IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_NOT_RUNNING}" N
 return ${FALSE}
fi
get the process id
FTP_DAEMON_PID='ps -eaf | grep -v "grep" | \
 grep "${MFP_SCRIPT_DIR}/pfari.ksh" | awk {'print
$2'}`
send kill signal
kill -TERM ${FTP_DAEMON_PID} 2> /dev/null

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

DisplayMessage I "${DAEMON_NOTIFIED}" N
}
###
Name : ViewConfigFile
Overview : The function allows users to view the FTP config file
Notes :
##
ViewConfigFile ()
{
if [! -f ${MFP_CONFIG_FILE}]
then
 DisplayMessage E "${NO_CONFIG_FILE}" N
 return $FALSE
fi
cp ${MFP_CONFIG_FILE} ${TEMP_FILE_1}
view ${TEMP_FILE_1}
}
###
Name : ViewLogFile
Overview : The function allows users to view the FTP log file
Notes :
##
ViewLogFile ()
{
if [! -f ${MFP_LOG_FILE}]
then
 DisplayMessage E "${NO_LOG_FILE}" N
 return $FALSE
fi
cp ${MFP_LOG_FILE} ${TEMP_FILE_1}
view ${TEMP_FILE_1}
}
###
Name : ValidateDate
Overview : The function validates a date for DDMMYYYY format.
Notes :1. Having validated the date, it formats the input date in
DD/MM/YYYY format and stores it in ${LOG_TRIM_FORMATTED_FROM_DATE}.
##
ValidateDate ()
{
supplied date is ${LOG_TRIM_FROM_DATE}
LEAP_YEAR=$FALSE
validate for non numeric
integer DUMMY_INT
(DUMMY_INT=${LOG_TRIM_FROM_DATE}) 2> /dev/null
if [$? -ne Ø]
then
 DisplayMessage E "${DATE_NOT_NUMERIC}" N
 return $FALSE
fi
valiadate for length

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

DATE_LENGTH='echo "${LOG_TRIM_FROM_DATE}\c" | wc -c'
if [${DATE_LENGTH} -ne 8]
then
 DisplayMessage E "${INVALID_DATE_LENGTH}" N
 return $FALSE
fi
validate day
DAY='echo ${LOG_TRIM_FROM_DATE} | cut -c1-2'
MONTH='echo ${LOG_TRIM_FROM_DATE} | cut -c3-4'
YEAR='echo ${LOG_TRIM_FROM_DATE} | cut -c5-8'
establish leap year
if ["`expr ${YEAR} % 4`" -eq Ø]
then
 LEAP_YEAR=${TRUE}
fi
validate month
if ["${MONTH}" != "Ø1" -a "${MONTH}" != "Ø2" -a "${MONTH}" != "Ø3" -a
\
 "${MONTH}" != "Ø4" -a "${MONTH}" != "Ø5" -a "${MONTH}" != "Ø6" -a \
 "${MONTH}" != "Ø7" -a "${MONTH}" != "Ø8" -a "${MONTH}" != "Ø9" -a \
 "${MONTH}" != "1Ø" -a "${MONTH}" != "11" -a "${MONTH}" != "12"]
then
 DisplayMessage E "${INVALID_MONTH}" N
 return $FALSE
fi
if ["${MONTH}" = "Ø1" -o "${MONTH}" = "Ø3" -o "${MONTH}" = "Ø5" -o \
 "${MONTH}" = "Ø7" -o "${MONTH}" = "Ø8" -o "${MONTH}" != "1Ø" -o \
 "${MONTH}" = "12"]
then
 if [[$DAY -lt 1 || $DAY -gt 31]]
 then
 DisplayMessage E "${INVALID_DAY}" N
 return $FALSE
 fi
elif ["${MONTH}" = "Ø4" -o "${MONTH}" = "Ø6" -o "${MONTH}" = "Ø9" -o
\
 "${MONTH}" = "11"]
then
 if [[$DAY -lt 1 || $DAY -gt 3Ø]]
 then
 DisplayMessage E "${INVALID_DAY}" N
 return $FALSE
 fi
elif ["${MONTH}" = "Ø2" -a "${LEAP_YEAR}" = "${TRUE}"]
then
 if [[$DAY -lt 1 || $DAY -gt 29]]
 then
 DisplayMessage E "${INVALID_DAY}" N
 return $FALSE
 fi
elif ["${MONTH}" = "Ø2" -a "${LEAP_YEAR}" = "${FALSE}"]

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

then
 if [[$DAY -lt 1 || $DAY -gt 28]]
 then
 DisplayMessage E "${INVALID_DAY}" N
 return $FALSE
 fi
fi
LOG_TRIM_FORMATTED_FROM_DATE="${DAY}/${MONTH}/${YEAR}"
return $TRUE
}
###
Name : TrimLogFile
Overview : The function allows users to trim the log file
Notes :
##
TrimLogFile ()
{
if [! -f ${MFP_LOG_FILE}]
then
 DisplayMessage E "${NO_LOG_FILE}" N
 return $FALSE
fi
while true
do
 tput clear
 echo "Enter date (DDMMYYYY) to trim log file from (q to quit):\c"
 read LOG_TRIM_FROM_DATE
 case ${LOG_TRIM_FROM_DATE} in
 q) return $FALSE ;;
 "") DisplayMessage E "${ENTER_DATE}" N ;;
 *) if ValidateDate
 then
 break ;
 fi ;;
 esac
done
get the starting line number to start trimming from
LOG_TRIM_START_LINE_NO='grep -n ${LOG_TRIM_FORMATTED_FROM_DATE} \
 ${MFP_LOG_FILE} | cut -d':' -f1 | head -1'
if ["${LOG_TRIM_START_LINE_NO}" = ""]
then
 # log file does not contain any entries for the suppiled date and
 # later date
 DisplayMessage I "${NO_ENTRIES_FOUND}" N
 return $FALSE
fi
delete all records from the log file for supplied and later date
adjust the line number for three header records (in case supplied
date has covered the header records
if [$LOG_TRIM_START_LINE_NO -eq 1]
then

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 LOG_TRIM_START_LINE_NO='expr $LOG_TRIM_START_LINE_NO + 2'
fi
ed <<! ${MFP_LOG_FILE} > ${TEMP_FILE_1} 2>&1
${LOG_TRIM_START_LINE_NO},\$d
w
q
!
if [$? -ne Ø]
then
 DisplayMessage I "${LOG_NOT_TRIMMED}" N
 return $FALSE
fi
}
###
Name : ShowRemoteServerStatus
Overview : The function allows users to find out a remote server's
status.
Notes :
##
ShowRemoteServerStatus ()
{
get remote server name
while true
do
 tput clear
 echo "Enter remote server name(q to quit):\c"
 read REMOTE_SERVER
 case ${REMOTE_SERVER} in

 "") DisplayMessage E "${INVALID_ENTRY}" N ;;
 q) return $FALSE ;;
 *) #
 # ping the server
 #
 DisplayMessage I "${PINGING_SERVER}" N ;
 ping ${REMOTE_SERVER} > ${TEMP_FILE_1} 2>&1 ;
 if [$? -eq Ø]
 then
 DisplayMessage I "${SERVER_REACHABLE}" N ;
 return $TRUE ;
 else
 DisplayMessage E "${SERVER_NOT_REACHABLE}" N ;
 sed s/*// ${TEMP_FILE_1} > ${TEMP_FILE_2} ;
 ERR_MSG='cat ${TEMP_FILE_2}' ;
 DisplayMessage E "${OS_ERROR}" N ;
 return $FALSE ;
 fi ;;
 esac
done
}
###

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Name : PurgeDeletedEntriesFromConfigFile
Overview : The function allows a user to purge the configuration
file of all deleted entries
Notes : 1. Records marked for deletion earlier will be removed.
2. Lines that need to be deleted have the following structures:
Entry History <-- history record heading
<date> Entry Deleted
#D#<configutation record> <-- deleted entry
#D##C#<configutation record> <-- deleted entry
##
PurgeDeletedEntriesFromConfigFile ()
{
get line numbers for all deleted entries
grep -n ^#D# ${MFP_CONFIG_FILE} | cut -d':' -f1 > ${TEMP_FILE_1}
establish no of deleted entries
NO_DELETED_ENTRIES='cat ${TEMP_FILE_1} | wc -l'
if [$NO_DELETED_ENTRIES -eq Ø]
then
 DisplayMessage I "${NO_DELETED_ENTRIES_TO_PURGE}" N
 return $FALSE
fi
while true
do
#{
 # get next entry line no to be deleted
 ENTRY_LINE_NO='grep -n ^#D# ${MFP_CONFIG_FILE} | cut -d':' -f1 | head
-1'
 if ["${ENTRY_LINE_NO}" = ""]
 then
 # purged all delete entries
 break
 fi
 # establish the line no for history records' heading
 # initialise the line no to be substracted from the
 # deleted entry no to get to history header record
 LINE_ABOVE=1
 while true
 do
 HISTORY_REC_HEADING_LINE_NO='expr $ENTRY_LINE_NO - ${LINE_ABOVE}'
 # print this line and compare
 HISTORY_REC_HEADING='sed -n ${HISTORY_REC_HEADING_LINE_NO}p
${MFP_CONFIG_FILE}'
 if ["${HISTORY_REC_HEADING}" = "# Entry History"]
 then
 # found the line for history header record
 # decrement by 1 to get the comment line above
 HISTORY_REC_HEADING_LINE_NO='expr
${HISTORY_REC_HEADING_LINE_NO} - 1'
 break
 else
 # increment the line no to be substracted

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 LINE_ABOVE='expr ${LINE_ABOVE} + 1'
 fi
 done
 # remove the deleted entry together with its history
 ed <<! ${MFP_CONFIG_FILE} > /dev/null
${HISTORY_REC_HEADING_LINE_NO},${ENTRY_LINE_NO}d
w
q
!
done
#}
DisplayMessage I "${DELETED_ENTRIES_PURGED}" N
}
###
Name : ReloadConfigurationFile
Overview : The function allows users to instruct the FTP daemon
process to reload the config file.
Notes : 1. The function sends a PIPE signal to the running
pfari.ksh process.
##
ReloadConfigurationFile ()
{
if ! IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_NOT_RUNNING}" N
 return ${FALSE}
fi
get the process id
FTP_DAEMON_PID='ps -eaf | grep -v "grep" | \
 grep "${MFP_SCRIPT_DIR}/pfari.ksh" | awk {'print
$2'}`
send signal
kill -PIPE ${FTP_DAEMON_PID} 2> /dev/null
DisplayMessage I "${DAEMON_NOTIFIED}" N
}
###
Name : AdjustFtpInterval
Overview : The function allows users to instruct the FTP daemon
process to adjust FTP interval.
Notes : 1. The function sends an EMT signal to the running
pfari.ksh process.
##
AdjustFtpInterval ()
{
if ! IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_NOT_RUNNING}" N
 return ${FALSE}
fi
get the FTP interval from user
integer DUMMY_INT

 51© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

while true
do
 tput clear
 echo "Enter required FTP interval (in seconds or q to quit):\c"
 read FTP_INTERVAL
 case ${FTP_INTERVAL} in
 q) return $FALSE ;;
 "") DisplayMessage "${INVALID_ENTRY}" N ;;
 *) #
 # validate for numaric
 (DUMMY_INT=${FTP_INTERVAL}) 2> /dev/null ;
 if [$? -ne Ø]
 then
 DisplayMessage E "${INTERVAL_NOT_NUMERIC}" N ;
 elif [$FTP_INTERVAL -le Ø]
 # must be greater than Ø
 then
 DisplayMessage E "${ZERO_INTERVAL}" N ;
 else
 break ;
 fi ;;
 esac
done
echo "${FTP_INTERVAL}" > ${MFP_FTP_INTERVAL_FILE}
get the process id
FTP_DAEMON_PID='ps -eaf | grep -v "grep" | \
 grep "${MFP_SCRIPT_DIR}/pfari.ksh" | awk {'print
$2'}`
send signal
kill -EMT ${FTP_DAEMON_PID} 2> /dev/null
sleep 4
DisplayMessage I "${DAEMON_NOTIFIED}" N
}
###
Name : SwitchOnDebug
Overview : The function allows users to instruct the FTP daemon
process to switch on debug.
Notes : 1. The function sends a USR1 signal to the running
pfari.ksh process.
##
SwitchOnDebug ()
{
if ! IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_NOT_RUNNING}" N
 return ${FALSE}
fi
get the process id
FTP_DAEMON_PID='ps -eaf | grep -v "grep" | \
 grep "${MFP_SCRIPT_DIR}/pfari.ksh" | awk {'print
$2'}`

 52 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

send signal
kill -USR1 ${FTP_DAEMON_PID} 2> /dev/null
DisplayMessage I "${DAEMON_NOTIFIED}" N
}
###
Name : SwitchOffDebug
Overview : The function allows users to instruct the FTP daemon
process to switch off debug.
Notes : 1. The function sends a USR2 signal to the running
pfari.ksh process.
###
SwitchOffDebug ()
{
if ! IsFTPDaemonRunning
then
 DisplayMessage E "${FTP_DAEMON_NOT_RUNNING}" N
 return ${FALSE}
fi
get the process id
FTP_DAEMON_PID='ps -eaf | grep -v "grep" | \
 grep "${MFP_SCRIPT_DIR}/pfari.ksh" | awk {'print
$2'}`
send signal
kill -USR2 ${FTP_DAEMON_PID} 2> /dev/null
DisplayMessage I "${DAEMON_NOTIFIED}" N
}
###
Name : ReplaceEntryInConfigFile
Overview : The function allows users to replace an entry in the
configuration file.
Notes :1. The function calls the following functions:
o GetRemoteHostName
o GetRemoteDirectoryName
o GetRemoteFileName
o GetRemoteUserId
o GetRemotePassword
o GetLocalDirectoryName
o GetLocalFileName
o GetAction
o GetComment
2. The function adds a history record
##
ReplaceEntryInConfigFile ()
{
prepare header for list of values file
header consists of 4 lines
echo "Configuration File Entries on ${DATETIME}" > ${TEMP_FILE_1}
echo "==" >>
${TEMP_FILE_1}
echo "To Replace an Entry Delete Corresponding Line and Save the
File\n" >> \

 53© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 ${TEMP_FILE_1}
LOV_FILE_NO_HEADER_LINES=4
find all entries except marked for commented and deletion
grep "Remote_Host=" ${MFP_CONFIG_FILE} | grep -v "^#C#" | grep -v "^#D#"
>> ${TEMP_FILE_1}
does the list of values file have any entries
LOV_FILE_LINES='wc -l ${TEMP_FILE_1} | awk {'print $1'}'
if [${LOV_FILE_LINES} -le ${LOV_FILE_NO_HEADER_LINES}]
then
 DisplayMessage E "${NO_ENTRY_TO_REPLACE}" N
 return $FALSE
fi

Editor’s note: this article will be concluded next month.

Character to hex

I recently needed to give a user group a way of converting
characters to hex. I came up with two solutions – one a command
and the other a little shell script.
The command is:

perl -e 'printf "%X\n", ord("A");'

which will return the hexadecimal representation of the ASCII
character 'A' (41).

My simple (ksh) script was:
#!/bin/sh
export CHAR="B"
HEX=$(perl -e 'printf "%X\n", ord($ENV{CHAR});')
print "$CHAR = $HEX"

Stephen Hare
AIX Systems Expert (USA) © Xephon 2003

Arif Zaman
DBA/Developer (UK) © Xephon 2003

AIX news

Embarcadero has announced Job Scheduler
3.0, which provides database administrators
with centralized control of cross-platform,
enterprise-wide job scheduling. The latest
version provides support for the companys
data integration solution, Embarcadero
DT/Studio, and introduces a new Java-based
scheduler server to support AIX 5.1, Solaris
2.7/2.8, HP-UX 11.00, and Red Hat Linux
7.1 or later, and Windows.

Built-in database maintenance wizards,
instant HTML reporting and documentation,
and an easy-to-use centralized console help
to further streamline job scheduling.

This latest version provides wizards that
assist users in integrating DT/Studio tasks
with other enterprise operations. Users can
employ the integration of business processes
and data with the ease of managing
everything from a single interface.

For further information contact:
Embarcadero Technologies, 425 Market
Street, Suite 425, San Francisco, CA 94105,
USA.
Tel: (415) 834 3131.
URL: http://www.embarcadero.com/
products/jobscheduler/index.asp.

* * *

Sybase has announced that Version 4.0 of
Integration Orchestrator, a business process
management and enterprise application
integration solution, is now available on AIX
and HP-UX, in addition to Windows and
Solaris.

Sybase Integration Orchestrator’s open,
standards-based technology enables
incremental deployment of projects,
speeding overall time-to-deployment and
reducing project risk, says the company. It

also supports store-and-forward/message
queuing and targeted messaging – a feature
that delivers rapid execution of time-critical
transactions.

For further information contact:
Sybase, One Sybase Drive, Dublin, CA
94568, USA.
Tel: (925) 236 5000.
URL: http://www.sybase.com/products.

* * *

Advanced Digital Information Corporation
(ADIC) has announced Version 2.2 of
StorNext Management Suite (SNMS), its
data management software for open system
SANs.

The product now supports AIX, SuSE
Linux, and the latest versions of Windows XP
and Windows 2003 server. Support has also
been extended to new tape-based storage
systems, including AIT WORM drive
technology, StorageTek 9940B drives, and
ADIC’s new Scalar i2000 automated tape
library.

With SNMS, users define data management
policies that both place newly-created data
on appropriate disk types and automatically
move existing data between expensive,
enterprise disk systems, low-cost ATA
arrays, and tape media. Locating data
automatically on different media types based
on quality of service, access time, and
protection requirements allows IT managers
to reduce their total ownership costs while
managing the life-cycle of data.

For further information contact:
ADIC, 11431 Willows Road NE, Redmond,
WA 98052, USA.
Tel: (425) 881 8004.
URL: http://www.adic.com/stornext.

x xephon

	Updating anti-virus driver files
	Brocade FC network port investigation
	The awk command
	Manage FTP process
	Character to hex
	AIX news

