

© Xephon plc 2004

January 2004

99

In this issue

AIX

3 Automatic expanding
filesystems (jfs and jfs2)

12 Manage FTP process – revisited
13 Logical Partitioning Facility

(LPAR) planning and
implementation

26 Curses programming
48 Recovering deleted files
50 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Automatic expanding filesystems (jfs and jfs2)

INTRODUCTION
Sites tend to buy gigabytes of storage when disks are filled with
data. Bytes are cheap to buy, and users don’t mind if they use
10KB or 1GB. They won’t clean it up and they need it all online.
Oracle, for example, copes with this by having databases with
self-expanding files.
Administrators are the people who maintain disk space and they
have to identify any problems. This can take a lot of time, and it
is always too late to ease the pain of users who can’t work any
more because of the problem.
The administrator can do a few things to make space available
in the filesystem, including:
• Removing or zeroing files – this is the easiest way to create

free space. Sometimes, however, the freed space in the
filesystem is still not enough.

• Expanding the filesystem, if possible. Sometimes the
volumegroup has to expand to give the filesystems space to
grow.

• Create another filesystem, move files into it, and/or add/
move datafile(s) to a database.

We have agents running in the system, which notice whether a
filesystem is (eg) 85% full. We can get an e-mail saying,
‘filesystem A is 85% full’. Now we don’t have to inspect each
filesystem every day, but we do have to expand them by ourself.
If the users are complaining at 23:00 or batches are experiencing
errors because the filesystems are completely filled, I may not be
happy, but I can solve the problem.
I wrote a script that will expand the filesystem (jfs and jfs2) in
batch. This script can be executed every time a filesystem
reaches the maximum percentage full.

 4 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The way to make it as fast as possible is to create volumegroups
with a pp-size corresponding to the filesystem size. This works
because a large filesystem of 50GB with a pp-size of 4MB will
need a lot of space to expand into. It would be better to place it
in a volumegroup with a pp-size of 128MB or more.
The agent does not work on AIX 5. To make it work, there is a
script called check_fsvg. This checks the filesystems that have
to be checked. If a filesystem is ‘overloaded’ and needs expanding,
it calls bigger_jfs, which releases any available free space in the
volumegroup(s) where the filesystem resides. We need to check
the free space to ensure that the filesystems can grow as much
as they need to. Once a day the administrator gets a single
message per volumegroup if the free space in the volumegroup
is too small. In the script the amount of free space, eg 10%, can
be set. This is for all volumegroups.
This script runs every 30 minutes. This is done by the crontab of
a user who is allowed to expand filesystems.

BIGGER_JFS SCRIPT
The script bigger_jfs is called by check_fsvg to expand the
filesystem. The script will check the named filesystem(s) and the
volumegroup(s) where the filesystem(s) resides. If there is too
little free space in a volumegroup, the administrator named at the
beginning of the script will be mailed.
Name : bigger_jfs
Last change : 27_Ø8-Ø3 Teun Post creation script
Description : expand a filesystem
Example : bigger_jfs /usr 85
#---
Begin script bigger_jfs
if [$# -lt 1]
then echo "Missing parameter. "
 echo "Example call script using parameters: bigger_jfs fs 9Ø"
 echo " fs – filesystem, needed to be expanded. (mandatory)"
 echo " 9Ø – filesystem max. % full, after expanding "
 echo " optional, default = 8Ø%, minimum = 6%"
 exit 1
 fi

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Variables
unix_administrator="AIX_administrators@yourcompany.com"

Get machine name, messages can appear on any machine
machine='uname -n'

Check existence of the filesystem, if not: leave
df -I $1 1>/dev/null 2>/dev/null
if [$? -ne Ø]
then echo "Filesystem $1 doesn't exist, script exiting"
 echo "Exit 2 : bigger_jfs"
 exit 2
 fi

Default perc. max filled = 8Ø, when given as parameter: use that one
max_perc=8Ø
if ["$2"]
then max_perc=$2
 fi

Max perc. smaller than 6? Don't bother – leave with a message.
if [$max_perc -lt 6]
then echo "Maximum perc filled of ${2}% less than 6%, script exiting."
 echo "Exit 3 : bigger_jfs"
 exit 3
 fi

Get real size and perc filled, if perc less than max: exit
size='df -I $1| grep $1'
perc='echo $size | cut -f5 -d " "| tr -d "%"'
if [$perc -lt $max_perc]
then echo "Filesystem $1 has been filled for $perc%, max=$max_perc%,
filesystem will not been changed."
 echo "Exit 4 : bigger_jfs"
 exit 4
 fi

Redirect output to mail
exec >/tmp/bigger_jfs.$$

Take a snapshot of the situation before expanding filesystem for
administration purposes
size='echo $size | cut -f2 -d " "'
echo "Filesystem $1 in $machine has got "
echo " filled for \t\t: $perc%"
echo " maximum filled allowed: $max_perc%, "
echo " action \t\t\t\t\t: filesystem will be expanded."
echo "\nSize filesystem $1: size=$size blocks of 512 bytes before
expanding."

 6 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Expand the filesystem just 1 extra lp.
Check the filesystem is below maximum given.
while [$max_perc -lt $perc]
do let size=$size+1
 # Actually change the filesystem
 chfs -a size=$size $1 >/dev/null 2>/tmp/bigger_jfs.tmp
 retc=$?
 if [$retc -ne Ø]
then echo "\n\nError in expanding filesystem $1 info: Returncode $retc "
 # There has been an error: full disk or max LP's of logical
 # volume reached. Mail all messages (including error!)
 cat /tmp/bigger_jfs.tmp
 size='df -I $1| grep $1'
 size='echo $size | cut -f2 -d " "'
 echo "\nInformation of filesystem $1 after error in expanding it: "
 echo " - filled\t: $perc%, "
 echo " - size \t: $size blocks of 512 bytes."
 rm /tmp/bigger_jfs.tmp

 # Mail all messages
 mail -s "Error in expanding filesystem $1 in $machine"
$unix_administrator </tmp/bigger_jfs.$$
 rm /tmp/bigger_jfs.$$
 echo "Exit 5 bigger_jfs"
 exit 5
 fi

 # Refresh variables for the next loop
 size='df -I $1| grep $1'
 perc='echo $size | cut -f5 -d " "| tr -d "%"'
 size='echo $size | cut -f2 -d " "'
 done

Filesystem is succesfully expanded: mail it!
echo "\nInformation of filesystem $1 after expanding: "
echo " - % filled\t: $perc%, "
echo " - size \t: $size blocks of 512 bytes."

mail -s "Filesystem $1 expanded on $machine" $unix_administrator </tmp/
bigger_jfs.$$

Get rid of temp file and leave the script
rm /tmp/bigger_jfs.$$

End script bigger_jfs

CHECK_FSVG SCRIPT
Name : check_fsvg

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Purpose : - check if filesystems had to be expanded
- check if volumegroups had to be expanded
- generate mail if a volumegroup is too small
Author : T.W. Post
Creation date : 31-1Ø-2ØØ3
==
#
Begin script check_fsvg
Define variable volumegroup minimum free percentage (for all vgs)
vg_min_free_perc=1Ø
#
Define variable administrator mail to get the mail generated by
this script
administrator_mail="unix_administrator@yourcompany.com"

in filesystem_files resides the file which contains the
filesystems that had to be expanded + their max % filling
filesystems_file="/user_data/trigger_file_systems"

Use date vars to make sure volumegroup mail
is just one time send in aday
DATE='date +%d%m'
date_file=/user_data/trigger_file_systems.date

Part one: check filesystems
Get all filesystems in a file
df -Ik | grep -v "Mounted on" >/tmp/trig_fs.tmp

read filesystem name and perc. filled
cat /tmp/trig_fs.tmp | while read one two three four perc fs
 do
 check='fgrep $fs $filesystems_file'
 if ["$check"]
 then # filesystem has to be checked
 max_perc_used='echo $check | cut -f1 -d" "'
 per='echo $perc| tr "%" " "'
 if ["$max_perc_used" -lt "$per"]
 then # expand filesystem
 bigger_jfs $fs $max_perc_used
 fi
 fi
 done

#
Part Two : check volumegroups in which the checked filesystems resides
#

Check whether the script is running the first time this day
yes: clean it
no : ok.

 8 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

DATE_SEND='fgrep "$DATE" $date_file 2>/dev/null'
if [! "$DATE_SEND"]
then >$date_file
 fi

List all online volumegroups
lsvg -o | while read volume_group
 do
 # List filesystems in the volumegroup
 lsvg -l $volume_group >/tmp/trig_fs.tmp 2>/dev/null

 # Check only a volumegroup if a checked filesystem resides in it
 check=""
 cat /home/data/trigger_file_systems | while read p fs
 do
 check='fgrep $fs /tmp/trig_fs.tmp'
 if ["$check"]
 then break
 fi
 done
 if ["$check"]
 then # volumegroup has to be checked: get data
 lsvg $volume_group 2>/dev/null | grep -E "TOTAL PPs|FREE PPs"
>/tmp/trig_fs.tmp2
 cat /tmp/trig_fs.tmp2 | while read one two tree four five got_it six
 do
 if ["$vg_size"]
 then vg_free=$got_it
 else vg_size=$got_it
 fi
 done
 # get the minimum free pp's in the volumegroup
 let vg_min=vg_size*vg_min_free_perc/1ØØ
 if [$vg_free -lt $vg_min]
 then # Volumegroup has to few free space
 # Mail it to the group administrator

 # Check whether mail for this volumegroup has been sent this day
 DATE_SEND='fgrep "$DATE $volume_group" $date_file 2>/dev/null'
 if ["$DATE_SEND"]
 then continue
 else echo "$DATE $volume_group" >>$date_file
 fi

 # get formatted data
 lsvg $volume_group 2>/dev/null | grep "PP SIZE" >/tmp/trig_fs.tmp2
 read one two tree four five got_it six</tmp/trig_fs.tmp2
 exec >/tmp/trig_fs.tmp3
 echo "Volumegroup $volume_group has to be expanded (
hostname : `hostname`)"

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 echo " actual data : pp-size $got_it $six"
 echo " total pp's: $vg_size "
 echo " free pp's: $vg_free "
 let vg_free=vg_free*got_it
 echo " = $vg_free $six"
 echo " "
 echo " minimal free % : $vg_min_free_perc "
 echo " = $vg_min PP's "
 let vg_min_mb=vg_min*got_it
 echo " = $vg_min_mb $six"
 exec >/dev/tty

 # mail the message
 mail -s "Volume group $volume_group in `hostname` has to
be expanded" $administrator_mail</tmp/trig_fs.tmp3
 fi
 fi
 done

remove work-files
rm /tmp/trig_fs.tmp
rm /tmp/trig_fs.tmp2
>/dev/null because there isn't always mail! (i presume)
rm /tmp/trig_fs.tmp3 2>/dev/null
End script check_fsvg

EXAMPLE FILES
Example data in the file /user_data/trigger_file_systems:
8Ø /oracle_database_fs1
9Ø /oracle_archive
85 /user_data

This means that if the filesystem /oracle_database_fs1 grows to
more than 80%, the filesystem will be expanded by bigger_jfs.
/user_data/trigger_file_systems.date:
Ø611
Ø611 datavgØ1
Ø611 datavgØ3
Ø6 November volumegroup_mail_mailed_to_administrator

It will be filled by the script.
Crontab entry:
3Ø * * * * /usr/local/bin/check_fsvg

 10 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This means that every 30 minutes every day the script /usr/local/
bin/check_fsvg will be run.

EXAMPLE OUTPUT

Example 1: output bigger_jfs
The filesystem has to be expanded, but the disk is full before the
filesystem reaches the maximum percentage to be used.
bigger_jfs /testme 6Ø
Mail Header:
 Error in expanding filesystem /testme in AIX_machine1
Mail body:
Filesystem /testme in AIX_machine1 has got
 filled for : 88%
 maximum filled allowed: 6Ø%,
 action : filesystem will be expanded.

Size filesystem /testme: size=524288 blocks of 512 bytes before
expanding.
Error in expanding filesystem /testme info: Returncode 1
Ø516-4Ø4 allocp: This system cannot fulfill the allocation request.

There are not enough free partitions or not enough physical volumes
to keep strictness and satisfy allocation requests. The command
should be retried with different allocation characteristics.

Information of filesystem /testme after error in expanding it:
 - filled : 83%,
 - size : 557Ø56 blocks of 512 bytes.

This means that you must expand the volumegroup because
there is no free space available.

Example 2: output bigger_jfs
Here the filesystem has been successfully expanded:
bigger_jfs /testme

Mail header:
Filesystem /testme expanded on AIX_machine1

Mail body:
Filesystem /testme in AIX_machine1 has got
 filled for : 1ØØ%
 maximum filled allowed: 8Ø%,

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 action : filesystem will be expanded.

Size filesystem /testme: size=229376 blocks of 512 bytes before
expanding

Information of filesystem /testme after expanding:
 - % filled: 79%,
 - size : 294912 blocks of 512 bytes.

Example 3 : output check_fsvg
Here there is a 2,296MB filesystem that can still expand but the
volumegroup size must be increased to ensure that there will be
enough free space in the future.
Mail header:

Volume group datavgØ1 in AIX_machine1 has to be expanded
Mail body:
Volumegroup datavgØ1 has to be expanded (hostname : AIX_machine1)
 actual data : pp-size 4 megabyte(s)
 total pp's: 4341
 free pp's: 574
 = 2296 megabyte(s)

 minimal free % : 1Ø
 = 434 PP's
 = 1736 megabyte(s)

Teun Post
AIX Administrator/Oracle DBA (The Netherlands) © Xephon 2004

If you have ever experienced any difficulties with AIX, or
made an interesting discovery, you could receive a cash
payment, a free subscription to any of our Updates, or
a credit against any of Xephon’s wide range of products
and services, simply by telling us all about it.
More information about contributing an article to a
Xephon Update, and an explanation of the terms and
conditions under which we publish articles, can be found
at http://www.xephon.com/nfc.
Articles, or article proposals, can be sent to the editor,
Trevor Eddolls, at any of the addresses shown on page
2. Alternatively, you can e-mail him at
trevore@xephon.com

 12 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Manage FTP process – revisited

Last month we published the code for the mfp utility, which
automates the whole process of performing FTP. Here are an
example configuration record and a sample log file.

SAMPLE CONFIGURATION RECORD
FTP Configuration file
Do not Edit by Hand
Use mfp.ksh to add/remove Entries
Apply Appropriate File Protection to Safeguard Password Entries
#C# Records are commented out
#D# Records are logically deleted
#D##C# Records are commented out and then logically deleted
#
#
Entry History

26/Ø2/2ØØ3 at 17:Ø1:12 Creation
#
Remote_Host=mastst:Remote_Dir=/
tmp:Remote_File=f1.remote:Remote_Uid=zamana:Remote_Pwd=powerØ1:Local_Dir=/
tmp:Local_File=f1.local:Action=put:Comment=Test
#
Entry History

26/Ø2/2ØØ3 at 17:Ø3:Ø1 Creation
#
Remote_Host=host1:Remote_Dir=/users/export/
zamana:Remote_File=test.dat:Remote_Uid=zamana:Remote_Pwd=powerØ1:Local_Dir=/
tmp:Local_File=f1.local:Action=put:Comment=Test

SAMPLE LOG FILE
 FTP Log File On 26/Ø2/2ØØ3 at 17:ØØ:Ø1
 ======================================
mfp.sh:INFO:26/Ø2/2ØØ3 18:12:11:Successfully started daemon script /
export/home/zamana/ftp/script/pfari.ksh

pfari.sh:INFO:26/Ø2/2ØØ3 18:12:22:Performing FTP for configuration
record Remote_Host=mastst:Remote_Dir=/
tmp:Remote_File=f1.remote:Remote_Uid=zamana:Remote_Pwd=powerØ1:Local_Dir=/
tmp:Local_File=f1.local:Action=put:Comment=Test
pfari.sh:INFO:26/Ø2/2ØØ3 18:12:22:Preparing script file

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

pfari.sh:INFO:26/Ø2/2ØØ3 18:12:22:Executing ftp command
pfari.sh:INFO:26/Ø2/2ØØ3 18:12:22:Successfully performed FTP

pfari.sh:INFO:26/Ø2/2ØØ3 18:12:22:Performing FTP for configuration
record Remote_Host=host1:Remote_Dir=/users/export/
zamana:Remote_File=test.dat:Remote_Uid=zamana:Remote_Pwd=powerØ1:Local_Dir=/
tmp:Local_File=f1.local:Action=put:Comment=Test
pfari.sh:INFO:26/Ø2/2ØØ3 18:12:22:Preparing script file
pfari.sh:INFO:26/Ø2/2ØØ3 18:12:22:Executing ftp command
pfari.sh:ERROR:26/Ø2/2ØØ3 18:12:23:Failed to perform FTP
host1: unknown host
Verbose mode on.
Not connected.
Not connected.
Local directory now /tmp
Not connected.

pfari.sh:INFO:26/Ø2/2ØØ3 18:12:23:Sleeping for 4

Arif Zaman
DBA/Developer (UK) © Xephon 2004

Logical Partitioning Facility (LPAR) planning and
implementation

PARTITIONING OVERVIEW
Logical partitioning enables selected IBM pSeries systems
additional operation and configuration flexibility. Available for
free, LPAR allows system administrators to configure a single
computer into a number of independent systems. Each of these
systems, also referred to as partitions, can manage private
hardware resources such as processors, memory,
I/O adapters, and devices.
Logical partitioning (LPAR) does not limit the number of hardware
resources that are contained in a partition. A partition could have
any number of the available processors assigned to it, limited
only by the total number of processors. Similarly, a partition could
have any amount of memory, limited only by the total amount of

 14 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

memory available. An I/O adapter is physically installed in one of
many slots in the system. However, with LPAR, any I/O adapter
in any I/O drawer can be assigned to any partition. Each partition
is an independent system running, possibly, different versions or
types of operating system.
Partitions, while sharing the same physical hardware, after
completion of the configuration, are booted and used as
independent systems.
Partition management is performed using the hardware
management console (HMC). Each system that is running
partitions and managed by the HMC is referred to as a managed
system. A managed system is capable of being configured to
use logical partitions (LPARs) or a full system partition. Each
partition on a server is defined by a profile. Profiles for logical
partitions are created and managed using the HMC.
If your computing needs are considered to be technical, real-
time, or high-performance computing, a special type of partitioning
called affinity logical partitioning is recommended – if supported
by your hardware (presently models p670 and p690).
Dynamic Logical Partitioning (DLPAR) allows you to implement
changes to your partitions at any time without affecting a
partition’s operation.
Dynamically changing a partition enables a partition’s resources
to be changed while the partition is up and running. The operating
system that is running in the partition can configure and use
additional hardware without being rebooted. In a DLPAR
environment, the processors, memory, or input/output adapters
can be added, moved, or removed after the partition is up and
running.
Systems that are capable of performing dynamic logical
partitioning can support the following tasks:
• Processor tasks:

– adding processors to a partition

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

– moving processors from one partition to another
– removing processors from a partition.

• Memory tasks:
– adding memory to a partition
– moving memory from one partition to another
– removing memory from a partition.

• Input/output tasks:
– adding a PCI adapter
– moving a PCI adapter
– removing a PCI adapter.

An affinity logical partition is a special type of logical partition that
has its processors and memory resources located physically
close to one another in order to increase performance for
computing-intensive workloads. Processors needed for a partition
can be grouped to use the closest physical memory available.
Hardware resources for affinity partitioning are defined using the
HMC. When creating an affinity partition, the HMC automatically
determines which processors and memory are grouped and
allows you to choose which type of grouping you want. The HMC
then creates a profile for each affinity partition and a system
profile that contains the affinity partitions for the managed
system.
Affinity partitioning is best suited for use in technical computing,
real-time computing, and high-performance computing. A system
that is set up to use affinity logical partitions can dynamically
move I/O devices. However, in order to change the quantity of
processors or memory assigned to an affinity logical partition,
the partition must be rebooted
A special partition called the full system partition assigns all your
managed system’s resources to one large partition. The full
system partition is similar to the traditional, non-partitioned

 16 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

method of operating a system. Because all resources are
assigned to this partition, no other partitions can be started when
the full system partition is running. Likewise, the full system
partition cannot be started while other partitions are running.
The HMC allows you to switch from the full system partition to
logical partitions.

PARTITIONING BENEFITS
Partitioning enables more flexible computer systems deployment
and operation. The ability to confine workloads to dedicated
operating system instances, while sharing hardware and
environmental resources such as floor space, power supply, and
air conditioning, provides many opportunities that have not been
available in previous generations of servers. The following are
some examples of optimizations of computer operations
achievable with partitioning.

Server consolidation
Disparate computer workloads running on a number of smaller
servers can be consolidated to a single, larger machine sharing
environmental and machine resources. Additionally, it is possible
to adjust the configuration of partitions to reflect changes in the
demands of the workloads.

Merge development, test and production environments
The typical life-cycle of software project development can be
reflected in the partitioning of the server used. At the beginning,
most of the resources can be allocated to a partition used for
development purposes. When alpha and beta versions of a
project have been released, part of the resources can be taken
to form a test partition. With the release of the production version,
most of the resources can be allocated to the partition running
production, while development and testing partitions can be
reduced to a minimal set of resources needed for software
maintenance.

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Consolidating multiple versions of the same operating system
It is possible to configure separate partitions containing different
maintenance levels, and even different versions of operating
systems, to enable the thorough testing of mission-critical
applications before committing to adoption of the latest fixes
released by the operating system vendor.

Consolidating different operating systems
At present it is possible to configure separate partitions containing
installations of AIX and Linux on the same hardware, enabling
the use of different operating systems on a single server.

Scalability balancing
Partitioning enables systems managers to shift computer
resources according to the actual demand of the workloads
without oversizing system capabilities to fit peak demands. Such
adaptations can be performed automatically by the execution of
scripts according to predefined schedules or dynamic load
changes.

Consolidate applications requiring different time zone settings
Partitioning enables multiple regional workloads to be
consolidated onto a single server. The different workloads can
run in different partitions, with different operating systems, as
well as with different time and date settings.

PARTITIONING PLANNING
In the following sections I will present a case study describing the
implementation of a single partitioned system.

Requirements
The following are the requirements given to the system
administrator.
Design a system to provide a development project with two

 18 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

servers. The first is to function as a development server with the
following capacity – two 1.45GHz Power4 processors and 4GB
of RAM. The second has to function as a test server with six
1.45GHz Power4 processors and 12GB of RAM. Both servers
are to run the latest maintenance level of AIX 5.2 operating
system. The system should have the ability to shift more
processor and memory capacity to the test server at the expense
of development server capacity.
According to the site’s server configuration standards, each
server has to fulfil the following additional demands:
• It must contain two system disks – one on-line, the other

used for alt_disk_install back-up.
• It must contain two fibre channel adapters for redundant

connection to a mass storage subsystem.
• It must contain two network adapters – one Gigabit Ethernet,

the other Fast Ethernet.
• Each system must have access (not necessarily concurrently)

to the following peripheral devices: CD-ROM or DVD-ROM
drive used for system and software installations; 4mm DAT
tape used for operating system back-ups and restores; and
an ASCII or graphical console.

Proposed hardware configuration
After consultation with IBM technical personnel, the following
system hardware was specified:
• One eSeries pServer Model p650.
• Eight 1.45GHz CPUs.
• 16GB of RAM.
• Four 36GB internal disks. The system has been explicitly

ordered with split internal SCSI connections enabling each
pair of disks to connect to separate SCSI adapters, with each
adapter assigned to a different partition. One of the adapters

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

is a built-in, on-board adapter while the other is a separate,
external adapter.

• Four fibre channel adapters.
• Two Gigabit Ethernet adapters.
• One Fast Ethernet adapter (one built-in Fast Ethernet adapter

to be used as well).
• One GXT135 graphical adapter.
• One internal DVD-ROM.
• One external 4mm DAT tape.
• One external DVD-ROM.
• Two dual-ported SCSI adapters.
The total number of non-built-in adapters is ten. The basic
system drawer CEC has only seven I/O slots, one of which is
occupied by a special SCSI bus splitter card. Therefore an
additional D10 I/O drawer had to be ordered to accommodate all
adapters.
The external DVD-ROM and DAT tape are installed in a separate
external I/O device drawer.
HMC controller, which is Model 365 Intel server running RedHat
Linux 7.2, is another essential addition to the system.
We have chosen a compact drawer containing a keyboard and
a flat screen to double as the system console and the HMC
console. In order to achieve this we had to order a special KVM
switch from IBM.
All the equipment has been installed in a single T00 Rack.

Actual partition set-up
This section will describe how the initial requirements have been
fulfilled by allocation of particular system resources to different
partitions.

 20 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Processor allocation
No special issues here. Each LPAR needs at least one processor.
The development partition has been defined with one as the
minimum number of processors, and two as the desired and
maximal number. The testing partition has been defined with six
as the minimum and desired number of processors and seven
as the maximum number.

Memory allocation
When a machine is in full system partition mode (no LPARs), all
the memory is dedicated to AIX 5L. When a machine is in LPAR
mode, some of the memory used by AIX is relocated outside the
AIX-defined memory range. For instance in the case of a single
small partition (256MB), the first 256MB of memory will be
allocated to the hypervisor, part of the system firmware
implementing partitioning support, 256MB is allocated to
Translation Control Entries (TCEs) and to hypervisor per partition
page tables, and 256MB for the first page table for the first
partition. TCE memory is used to translate the I/O addresses to
system memory addresses. Additional small page tables for
additional small partitions will fit in the page table block. Therefore,
the memory allocated independently of AIX to create a single
256MB partition is 768MB (0.75GB).
With the previous memory statements in mind, the LPAR
requires at least 2GB of memory for two or more LPARs.
The following rules apply only for partitions with AIX 5L or Linux
(if available):
• The minimum memory for an LPAR is 256MB. Additional

memory can be configured in increments of 256MB.
• The memory consumed outside AIX is from 0.75GB up to

2GB, depending on the amount of memory and the number
of LPARs.

• For AIX 5L Version 5.1, the number of LPARs larger than
16GB is limited to two in a system with 64GB of installed
memory, because of the memory alignment in AIX 5L
Version 5.1.

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Installed memory: 16384 MB

Partition name Memory amount (MB) Page table usage
development 11,520 256
test 4,224 128

Figure 1: Installed memory

LPARs that are larger than 16GB are aligned on a 16GB
boundary. Because the hypervisor memory resides at the
lower end of the memory and TCE resides at the upper end,
only two 16GB boundaries are available.

• With AIX 5L Version 5.2, there are no predefined limits
concerning partitions larger than 16GB, but the total amount
of memory and hypervisor overhead remains a practical
limit.

Note: to create LPARs running AIX 5L Version 5.2 or Linux larger
than 16GB, the checkbox Small Real Mode Address Region
must be checked (on the HMC, LPAR Profile, and Memory
Options dialog). Do not select this box if you are running AIX 5L
Version 5.1.
Page 16 of Planning for Partitioned-System Operations contains
a table detailing the approximate memory overhead and
approximate memory available for partitions for different
combinations of total memory size, number of partitions, and
versions of the operating system running in the partition.
In our two-partition 16GB RAM system, the actual size of the
memory available for allocation to partitions in a 16GB RAM
system with all LPARs running AIX 5.2 is between 15GB and
15.25GB.
The development partition has been defined with 2GB as the
minimum size of memory and 4GB as the desired and maximum
size. The testing partition has been defined with 8GB as minimum,
1GB as the desired size of memory, and 15GB as the maximum
size.

 22 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

An examination of the memory tab of the system properties of our
system displays the table shown in Figure 1.
Our preference has been to allocate the smaller partition with all
the required memory at the expense of the partition containing
the greater amount of the resource.

I/O slots allocation and peripheral devices mapping
This section requires careful planning and knowledge of particular
computer resources.
The I/O devices are assigned at the slot level to the LPARs,
meaning an adapter installed in a specific slot can be assigned
to only one LPAR. If an adapter has multiple devices, such as the
4-port Ethernet adapter or the Dual Ultra3 SCSI adapter, all
devices are automatically assigned to one LPAR and cannot be
shared.
The internal devices can also be assigned to LPARs, but in this
case the internal connections must be taken into account.
Devices connected to an internal SCSI controller must be treated
as a group, as must devices containing an IDE device that share
the same PCI bridge.
The internal disks, the media bays, and the external SCSI port
of systems with internal disks are all driven by one SCSI chip on
the I/O backplane. This chip is connected to one of the PCI-X-to-
PCI-X bridges, which in terms of an LPAR is equal to a slot.
Therefore, in a standard configuration, all SCSI resources in the
disk and media bays, including external disks connected to the
external SCSI port, must be assigned together to the same
LPAR. There is no requirement to assign them to a particular
LPAR – in fact, they can remain unassigned if the LPAR
minimum requirements are obtained using devices attached to
a SCSI adapter in the CEC or I/O drawer.
This can result in complications when an LPAR with the internal
SCSI resources is active and a second LPAR needs to be
installed using the internal media devices. In a standard
configuration, this is not possible without shutting down the

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

active LPAR containing all the internal SCSI devices. In this
scenario, when the second LPAR is installed using all the internal
SCSI devices, you must be careful not to override the disks of the
first LPAR.
To avoid this problem, the best solution for providing access to
CD-ROMs and DVD-RAMs for different LPARs is probably to use
an externally-attached DVD-RAM (FC 7210 Model 025) with a
storage device enclosure (FC 7212 Model 102). This external
DVD-RAM could be connected to a PCI SCSI adapter (FC 6203),
which makes it easy to move the DVD-RAM between different
LPARs. This solution also provides the advantages of sharing
this DVD-RAM between several servers by attaching it to SCSI
adapters in different servers.
Every LPAR needs its disks for the operating system. Systems
with internal disks are connected to the internal SCSI port. As
described previously, all SCSI devices, including all internal
disks, could be assigned only to the same LPAR unless the

Physical location Adapter Purpose
U0.1-P2-I1 10/100/1000 Base-TX Network

 PCI-X adapter connectivity
U0.1-P2-I2 FC adapter SAN

 connectivity
U0.1-P2-I3 GXT135P graphics adapter Graphical

 console
U0.1-P2/Z1 Wide/Ultra-3 SCSI I/O Built-in DVD-

 controller internal port 1 ROM connectivity
U0.1-P2/Z2 Wide/Ultra-3 SCSI I/O Internal disks

 controller internal port 2 connectivity
U0.1-P2/E1 10/100 Mbps Ethernet PCI Network

 adapter II – internal connectivity
U0.1-P2-I6 FC adapter SAN

 connectivity
I/O Group/Group ISA bus Keyboard, mouse
_128/U0.1-P2 and serial ports

 connectivity

Figure 2: I/O adapters for the development partition

 24 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

system has the capacity to install SCSI splitters, enabling the
connection of groups of internal disks to different SCSI adapters.
Without such a solution being available to a particular server,
external disk space is necessary in order to configure multiple
LPARs. Space has to be allocated for external disk subsystems
or additional I/O drawers containing disks. The external disk
space must be attached with a separate adapter for each LPAR
by using SCSI, SSA, or fibre-channel adapters, depending on
the subsystem.
The internal serial ports, diskette drive, keyboard, and mouse are
connected to an ISA bus that is finally connected to the RIO to
PCI-X host bridge. Therefore, these ports and the diskette drive
could only be assigned together to one LPAR, but these resources
are independent of the SCSI resources.
The number of RIO cards installed has no effect on the number
of LPARs supported other than the limitations related to the total
number of I/O drawers supported, and the ability to meet the

Figure 3: I/O adapters for the test partition

Physical location Adapter Purpose
U0.2-P1-I1 FC adapter SAN

 connectivity
U0.2-P1-I2 10/100/1000 Base-TX Network

 PCI-X adapter connectivity
U0.2-P1-I3 10/100 Mbps Ethernet Network

 PCI Adapter II connectivity
U0.2-P1-I4/Z1 Wide/Ultra-3 SCSI I/O External DVD-

 Controller port 1 ROM connectivity
U0.2-P1-I4/Z2 Wide/Ultra-3 SCSI I/O External

 Controller port 2 tape connectivity
U0.2-P1-I6 FC Adapter SAN connectivity
U0.1-P2-I5 Wide/Ultra-3 SCSI I/O
(The only exception Controller port 2 Internal disks
to our I/O slot connectivity
assignment
preference rule)

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LPAR minimum requirements in a particular configuration.
In addition to these limitations, the ISA I/O resources can neither
be added nor removed using dynamic LPAR, including any
devices sharing the same PCI-X bridge, such as serial ports,
native keyboard and mouse ports, and the diskette drive.
For consistency, we have decided to stick to the following rule as
much as possible: we prefer to allocate I/O adapters from a CEC
drawer (U0.1) to a development partition, and I/O adapters from
an external drawer (U0.2) to a test partition.
Figure 2 shows the list of I/O adapters required for the development
partition.
In Figure 3 is the list of I/O adapters required for the test partition.
We have met all permanent I/O adapter assignment needs. We
can transfer the slot U0.2-P1-I4/Z2 from the test partition to the
development partition (and back) in order to provide access to a
tape device. We can transfer the slots I/O Group/Group_128/
U0.1-P2 and U0.1-P2-I3 from the development partition to the
test partition in order to provide access to the console display and
keyboard/mouse.

REFERENCES
1 AIX 5L Version 5.2 AIX Installation in Partitioned Environment,

SC23-4382. IBM Corporation
2 Effective System Management Using the IBM Hardware

Management Console for pSeries, SC24-7038, IBM
Corporation

3 Planning for Partitioned-System Operations, SA38-0626,
IBM Corporation

4 Site and Hardware Planning Information, SA38-0508, IBM
Corporation

5 IBM Hardware Management Console for pSeries Installation
and Operations Guide, SA38-0590, IBM Corporation

 26 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Curses programming

What is curses? Curses is a package of functions in the Unix
library for use in C programs that need to manipulate screens in
a non-line-oriented way. Before the advent of GUIs (Graphical
User Interfaces), curses packages were used widely to create
user interfaces for any interactive programs. For example,
SQL*Forms, Oracle’s flagship product for creating database
application, used the curses package to create all its user
interfaces.
Curses programming is all about creating interactive applications
(reading input from a box on the terminal or outputting a piece of
data in a box drawn at a certain location on the terminal, etc)
using special curses functions.
The word ‘curses’ is also used to refer to this concept of
interactive programming under Unix.

EXAMPLE SOURCE CODE LISTING
 1 #include <curses.h>
 2 #include <time.h>
 3 #include <signal.h>
 4
 5 /***
 6 * Name : uaccess.c
 7 *
 8 * Overview : The program draws a window on the screen and
 9 * accepts two separate inputs, userid and

6 Electronic Service Agent for eServer pSeries User’s Guide,
LCD4-1060, IBM Corporation

7 PCI Adapter Placement reference, SA38-0538, IBM
Corporation

Alex Polak
System Engineer
APS (Israel) © Xephon 2004

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 1Ø * password, from two separate fields.
 11 * Notes : 1. To compile this program do as follows:
 12 * cc -o password password.c /usr/lib/libcurses.a
 13 *
 14 ***/
 15
 16 /*
 17 #
 18 # Function Prototypes
 19 #
 2Ø */
 21 int main (void);
 22 void MakeField (WINDOW *ptr, short ycor, short xcor, short
field_length) ;
 23 void ClearField (WINDOW *ptr, short ycor, short xcor, short
field_length);
 24 void ClearMessage (WINDOW *ptr) ;
 25 void DisplayMessage (WINDOW *ptr, char *msg) ;
 26 void WriteText (WINDOW *ptr, short ycor, short xcor, char
*text) ;
 27 void GetUserid (void) ;
 28 void GetPassword (void);
 29 void DisplayTime (WINDOW *ptr);
 3Ø void HandleInterrupt (int);
 31 /*
 32 #
 33 # declare global variables
 34 #
 35 */
 36 WINDOW *wptr; /* pointer to the window structure */
 37 WINDOW *subwptr; /* pointer to the window structure */
 38 char dummy[2];
 39 char uid[2Ø];
 4Ø char pwd[2Ø];
 41
 42 int WINWIDTH = 8Ø; /* width for main window */
 43 int WINHEIGHT = 23; /* heigh for main window */
 44 int WINXCOR = Ø; /* x coordinate for location */
 45 int WINYCOR = Ø; /* y coordinate for location */
 46
 47 int SUBWINWIDTH = 4Ø; /* width for subwindow */
 48 int SUBWINHEIGHT = 1Ø; /* heigh for subwindow */
 49 int SUBWINXCOR = 15; /* x coordinate for location */
 5Ø int SUBWINYCOR = 5; /* y coordinate for location */
 51
 52
 53
 54 int UIDFIELDXCOR = 12; /* x coordinate for userid field */
 55 int UIDFIELDYCOR = 4; /* y coordinate for userid field */
 56 int UIDFIELDLEN = 2Ø; /* field length for userdid field*/

 28 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 57 int PWDFIELDXCOR = 12; /*x coordinate for password field*/
 58 int PWDFIELDYCOR = 6; /*y coordinate for password field*/
 59 int PWDFIELDLEN = 2Ø; /*field lenght for password field*/
 6Ø
 61 int UIDTEXTXCOR = 2; /*x coordinate for userid boiler
plate text */
 62 int UIDTEXTYCOR = 4; /* y coordinate for userid boiler
plate text */
 63 int PWDTEXTXCOR = 2; /* x coordinate for password boiler
plate text */
 64 int PWDTEXTYCOR = 6; /* y coordinate for password boiler
plate text */
 65
 66 int WHTEXTXCOR = 1Ø; /* x coordinate for text in window
heading */
 67 int WHTEXTYCOR = 2; /* y coordinate for text in window
heading */
 68
 69 int MSGFIELDXCOR = 1; /* x coordinate for message field*/
 7Ø int MSGFIELDYCOR = 2Ø; /* y coordinate for message field*/
 71 int MSGFIELDLEN = 77; /* field length for message field*/
 72 int MSGTEXTXCOR = 1; /* x coordinate for message */
 73 int MSGTEXTYCOR = 2Ø; /* y coordinate for message */
 74
 75 int MSGACKXCOR = 1; /* x coordinate for message
acknowledge field */
 76 int MSGACKYCOR = 21; /* y coordinate for message
acknowledge field */
 77 int MSGACKLEN = 6Ø; /* field length for message
acknowledge field */
 78
 79 int TIMEFIELDXCOR = 59; /* x coordinate for time field*/
 8Ø int TIMEFIELDYCOR = 1; /* y coordinate for time field*/
 81 int TIMEFIELDLEN = 19; /* field length for time field*/
 82
 83 /***
 84 *
 85 * Name : main ()
 86 *
 87 * Overview : The functions implements processing structure.
 88 *
 89 * Notes :
 9Ø ***/
 91 int main (void)
 92 {
 93
 94 signal (SIGINT, (void *)HandleInterrupt);
 95
 96 /*
 97 * initialise the screen

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 98 */
 99 initscr(); /* mandatory function call */
 1ØØ
 1Ø1 /*
 1Ø2 * create main window
 1Ø3 */
 1Ø4 wptr = newwin(WINHEIGHT,WINWIDTH,WINYCOR,WINXCOR);
 1Ø5
 1Ø6 if (wptr == (WINDOW *) NULL)
 1Ø7 {
 1Ø8 printf("ERROR:Failed to create the window\n");
 1Ø9 exit (1);
 11Ø }
 111 /*
 112 * draw a box around the main window
 113 */
 114 box(wptr,Ø,Ø); /* X and Y cordinates relative to window */
 115 /*
 116 * refresh screen
 117 */
 118 wrefresh(wptr);
 119 /*
 12Ø * make sub-window
 121 */
 122 subwptr =
subwin(wptr,SUBWINHEIGHT,SUBWINWIDTH,SUBWINYCOR,SUBWINXCOR);
 123 if (subwptr == (WINDOW *) NULL)
 124 {
 125 printf("Failed to create the sub-window\n");
 126 exit (1);
 127 }
 128 /*
 129 * draw a box around the sub window
 13Ø */
 131 box(subwptr,Ø,Ø);
 132 wrefresh(subwptr);
 133 /*
 134 * write heading in the sub-window window
 135 */
 136 WriteText(subwptr,WHTEXTYCOR,WHTEXTXCOR, "User Access Form");
 137 /*
 138 * make field for accepting userid
 139 */
 14Ø MakeField(subwptr,UIDFIELDYCOR,UIDFIELDXCOR, UIDFIELDLEN);
 141 /*
 142 * write boiler plate text for userid field
 143 */
 144 WriteText(subwptr,UIDTEXTYCOR,UIDTEXTXCOR,"Userid");
 145 /*
 146 * make field for accepting pwd

 30 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 147 */
 148 MakeField(subwptr,PWDFIELDYCOR,PWDFIELDXCOR, PWDFIELDLEN);
 149 /*
 15Ø * write boiler plate text for password
 151 */
 152 WriteText(subwptr,PWDTEXTYCOR,PWDTEXTXCOR,"Password");
 153 /*
 154 * make the field for message
 155 */
 156 MakeField(wptr,MSGFIELDYCOR,MSGFIELDXCOR, MSGFIELDLEN);
 157 /*
 158 * make the field for date and time
 159 */
 16Ø MakeField(wptr,TIMEFIELDYCOR,TIMEFIELDXCOR, TIMEFIELDLEN);
 161 DisplayTime (wptr);
 162 /*
 163 * get inputs
 164 */
 165 while (1)
 166 {
 167 GetUserid () ;
 168 GetPassword ();
 169
 17Ø /*
 171 * password must be the same as userid
 172 */
 173 if (strcmp(uid, pwd))
 174 DisplayMessage(wptr, "ERROR:Invalid password");
 175 else
 176 break ;
 177
 178 }
 179 /*
 18Ø * remove all the window resources
 181 */
 182 endwin ();
 183
 184 }
 185
 186 /***
 187 *
 188 * Name : WriteText ()
 189 *
 19Ø * Overview : The functions writes text on the screen
 191 *
 192 * Notes :
 193 ***/
 194 void WriteText (WINDOW *ptr, short ycor, short xcor, char
*text)
 195 {

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 196 /*
 197 * move the cursor to right location
 198 */
 199 wmove(ptr,ycor,xcor);
 2ØØ waddstr(ptr,text);
 2Ø1 wrefresh(ptr);
 2Ø2
 2Ø3
 2Ø4 }
 2Ø5
 2Ø6 /***
 2Ø7 *
 2Ø8 * Name : DisplayMessage ()
 2Ø9 *
 21Ø * Overview : The functions displays an informatiove or error
 211 * message on message line
 212 *
 213 * Notes :
 214 ***/
 215 void DisplayMessage (WINDOW *ptr, char *msg)
 216 {
 217
 218 /*
 219 * display error/informative message
 22Ø */
 221 wattron (ptr, A_REVERSE);
 222 WriteText(ptr,MSGTEXTYCOR,MSGTEXTXCOR,msg);
 223 wattroff (ptr, A_REVERSE);
 224 /*
 225 * display acknowledgement message
 226 */
 227 WriteText(ptr,MSGACKYCOR,MSGACKXCOR,"Please acknowledge
message...");
 228 wgetstr(ptr,dummy);
 229
 23Ø }
 231
 232 /***
 233 *
 234 * Name : ClearMessage ()
 235 *
 236 * Overview : The functions clears the message from from the
 237 * message line and acknowledgement message from
 238 * the acknowledgement message line
 239 * Notes :
 24Ø ***/
 241 void ClearMessage (WINDOW *ptr)
 242 {
 243
 244 /*

 32 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 245 * clear message line
 246 */
 247 short i ;
 248 short xcor = MSGFIELDXCOR ;
 249
 25Ø wattron (ptr, A_REVERSE);
 251 for (i=Ø ; i<MSGFIELDLEN ; i++)
 252 {
 253 wmove(ptr,MSGFIELDYCOR, xcor);
 254 waddstr(ptr," ");
 255 xcor++ ;
 256 i++ ;
 257 wrefresh(ptr);
 258
 259 }
 26Ø
 261 /*
 262 * clear message acknowledge line
 263 */
 264 wattroff (ptr, A_REVERSE);
 265
 266 xcor = MSGACKXCOR ;
 267
 268 for (i=Ø ; i<MSGACKLEN ; i++)
 269 {
 27Ø wmove(ptr,MSGACKYCOR, xcor);
 271 waddstr(ptr," ");
 272 xcor++ ;
 273 i++ ;
 274
 275 }
 276
 277 wrefresh(ptr);
 278
 279
 28Ø }
 281
 282 /***
 283 *
 284 * Name : ClearField ()
 285 *
 286 * Overview : The functions clears the field
 287 *
 288 * Notes :
 289 ***/
 29Ø void ClearField (WINDOW *ptr, short ycor, short xcor, short
field_length)
 291 {
 292
 293 static short i ;

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 294
 295 wattron (ptr, A_REVERSE);
 296 for (i=Ø ; i<field_length ; i++)
 297 {
 298 echo();
 299 wmove(ptr,ycor,xcor);
 3ØØ waddstr(ptr," ");
 3Ø1 xcor++ ;
 3Ø2 wrefresh(ptr);
 3Ø3
 3Ø4 }
 3Ø5
 3Ø6
 3Ø7 }
 3Ø8
 3Ø9
 31Ø
 311 /***
 312 *
 313 * Name : MakeField ()
 314 *
 315 * Overview : The functions draws a field on the screen within
 316 * the main window
 317 * Notes :
 318 ***/
 319 void MakeField (WINDOW *ptr, short ycor, short xcor, short
field_length)
 32Ø {
 321 /*
 322 * make field
 323 */
 324 short i ;
 325 wattron (ptr, A_REVERSE);
 326
 327 wmove(ptr,ycor,xcor);
 328
 329 for (i = Ø; i < field_length; i ++)
 33Ø waddstr(ptr," ");
 331 wattroff (ptr, A_REVERSE);
 332 wrefresh(ptr);
 333
 334 }
 335 /***
 336 *
 337 * Name : GetUserid ()
 338 *
 339 * Overview : The functions accepts input from userid field.
 34Ø *
 341 * Notes :
 342 ***/

 34 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 343 void GetUserid (void)
 344 {
 345
 346
 347 int xcor_var, xcor, ycor ; /* absolute xcoordinate within
field */
 348 int last_pos = Ø ; /* last positon indicator for field */
 349 int ch ;
 35Ø int i = Ø ;
 351
 352 while (1)
 353 {
 354 keypad(subwptr, TRUE);
 355 /*
 356 raw();
 357 */
 358 ClearField(subwptr,UIDFIELDYCOR,UIDFIELDXCOR, UIDFIELDLEN);
 359 ClearMessage(wptr);
 36Ø strcpy(uid,"");
 361 wattron (subwptr, A_REVERSE);
 362 /*
 363 * place the cursor on the first character position in field
 364 */
 365 wmove(subwptr,UIDFIELDYCOR,UIDFIELDXCOR);
 366 xcor_var =Ø;
 367 noecho();
 368 i=Ø ;
 369 while (1)
 37Ø {
 371 /*
 372 * accept a character but it wouldn't be displayed
 373 * we need to explicitly add this character to the field
 374 */
 375 ch=wgetch(subwptr);
 376 if (ch == 1Ø)
 377 {
 378 /*
 379 * newline entered ; assume input completed
 38Ø */
 381 uid[i]='\Ø';
 382 break ;
 383 }
 384
 385 else if (ch == KEY_LEFT)
 386 {
 387 /*
 388 * only move cursor to the left if a character has
 389 * been typed in the field
 39Ø */
 391 if (xcor_var > Ø)

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 392 {
 393 /*
 394 * adjust x-coordinate
 395 */
 396 xcor_var--;
 397 wmove(subwptr,UIDFIELDYCOR,(UIDFIELDXCOR + xcor_var));
 398 /*
 399 * set last position indicator to false
 4ØØ */
 4Ø1 last_pos = Ø;
 4Ø2 }
 4Ø3 }
 4Ø4 else if (ch == KEY_BACKSPACE)
 4Ø5 {
 4Ø6 if (xcor_var > Ø)
 4Ø7 {
 4Ø8 xcor_var--;
 4Ø9 wmove(subwptr,UIDFIELDYCOR,(UIDFIELDXCOR + xcor_var));
 41Ø waddch(subwptr,' ');
 411 wmove(subwptr,UIDFIELDYCOR,(UIDFIELDXCOR + xcor_var));
 412 wrefresh(subwptr);
 413 last_pos = Ø;
 414 i-- ;
 415 }
 416 }
 417 else if (xcor_var == (UIDFIELDLEN - 1))
 418 {
 419 /*
 42Ø * cursor is on last character position in the field
 421 */
 422 if (last_pos)
 423 {
 424 /*
 425 * a character has already been accepted for
 426 * the last position in the field
 427 */
 428 beep();
 429 }
 43Ø else
 431 {
 432 /*
 433 * accept this character in the last position and display it
 434 */
 435 if (isalnum (ch) || isspace (ch))
 436 {
 437 waddch(subwptr, ch);
 438 wrefresh(subwptr);
 439 uid[i]=ch ;
 44Ø i++;
 441 /*

 36 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 442 * set the last position indicator to true
 443 */
 444 last_pos = 1;
 445 }
 446 }
 447 }
 448 else
 449 {
 45Ø /*
 451 * check for acceptable characters
 452 */
 453 if (isalnum (ch) || isspace (ch))
 454 {
 455 waddch(subwptr, ch);
 456 xcor=Ø ;
 457 getsyx(ycor,xcor);
 458 /* uid[i]=ch ; */
 459 uid[xcor - 27]=ch ;
 46Ø xcor_var++;
 461 i++;
 462 }
 463 }
 464 }
 465 /*
 466 * check the input string
 467 */
 468 if (strcmp(uid,"") == Ø)
 469 DisplayMessage(wptr, "ERROR:Must enter user id");
 47Ø
 471 else
 472 break ;
 473 }
 474
 475 }
 476
 477 /***
 478 *
 479 * Name : GetPassword ()
 48Ø *
 481 * Overview : The functions accepts input from password
 482 * field.
 483 * Notes :
 484 ***/
 485 void GetPassword (void)
 486 {
 487
 488 int xcor_var, xcor, ycor ;
 489 int last_pos = Ø ;
 49Ø int ch ;
 491 int i = Ø ;

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 492
 493 while (1)
 494 {
 495 keypad(subwptr, TRUE);
 496 raw();
 497 ClearField(subwptr,PWDFIELDYCOR,PWDFIELDXCOR, PWDFIELDLEN);
 498 ClearMessage(wptr);
 499 strcpy(pwd,"");
 5ØØ wattron (subwptr, A_REVERSE);
 5Ø1 /*
 5Ø2 * place the cursor on the first character position in field
 5Ø3 */
 5Ø4 wmove(subwptr,PWDFIELDYCOR,PWDFIELDXCOR);
 5Ø5 xcor_var =Ø;
 5Ø6 noecho();
 5Ø7 i=Ø ;
 5Ø8 while (1)
 5Ø9 {
 51Ø /*
 511 * accept a character but it wouldn't be displayed
 512 */
 513 ch=wgetch(subwptr);
 514 if (ch == 1Ø)
 515 {
 516 /*
 517 * newline entered ; assume input completed
 518 */
 519 pwd[i]='\Ø';
 52Ø break ;
 521 }
 522
 523 else if (ch == KEY_LEFT)
 524 {
 525 if (xcor_var > Ø)
 526 {
 527 xcor_var--;
 528 wmove(subwptr,PWDFIELDYCOR,(PWDFIELDXCOR + xcor_var));
 529 last_pos = Ø;
 53Ø }
 531 }
 532 else if (ch == KEY_BACKSPACE)
 533 {
 534 if (xcor_var > Ø)
 535 {
 536 xcor_var--;
 537 wmove(subwptr,PWDFIELDYCOR,(PWDFIELDXCOR + xcor_var));
 538 waddch(subwptr,' ');
 539 wmove(subwptr,PWDFIELDYCOR,(PWDFIELDXCOR + xcor_var));
 54Ø wrefresh(subwptr);
 541 last_pos = Ø;

 38 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 542 i-- ;
 543 }
 544 }
 545 else if (xcor_var == (PWDFIELDLEN - 1))
 546 {
 547 /*
 548 * cursor is on last character position in the field
 549 */
 55Ø if (last_pos)
 551 {
 552 /*
 553 * a character has already been accepted for
 554 * the last position in the field
 555 */
 556 beep();
 557 }
 558 else
 559 {
 56Ø /*
 561 * accept this character in the last position and display it
 562 */
 563 if (isalnum (ch) || isspace (ch))
 564 {
 565 wmove(subwptr,PWDFIELDYCOR,(PWDFIELDXCOR + xcor_var));
 566 wrefresh(subwptr);
 567 pwd[i]=ch ;
 568 i++;
 569 /*
 57Ø * set the last position indicator to true
 571 */
 572 last_pos = 1;
 573 }
 574 }
 575 }
 576 else
 577 {
 578 /*
 579 * check for acceptable characters
 58Ø */
 581 if (isalnum (ch) || isspace (ch))
 582 {
 583 xcor=Ø ;
 584 getsyx(ycor,xcor);
 585 pwd[xcor - 27]=ch ;
 586 xcor_var++;
 587 i++;
 588 wmove(subwptr,PWDFIELDYCOR,(PWDFIELDXCOR + xcor_var));
 589 }
 59Ø }
 591 }

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 592 /*
 593 * check the input string
 594 */
 595 if (strcmp(pwd,"") == Ø)
 596 DisplayMessage(wptr, "ERROR:Must enter password");
 597
 598 else
 599 break ;
 6ØØ }
 6Ø1
 6Ø2 }
 6Ø3
 6Ø4
 6Ø5
 6Ø6 /***
 6Ø7 *
 6Ø8 * Name : DisplayTime ()
 6Ø9 *
 61Ø * Overview : The function displays the data and time.
 611 *
 612 * Notes : 1. tm_s->tm_year will return year from 19ØØ.
 613 *
 614 ***/
 615 void DisplayTime (WINDOW *ptr)
 616 {
 617
 618 time_t time_int ;
 619 struct tm *tm_s ;
 62Ø
 621 char today[3Ø];
 622
 623 time(&time_int);
 624 tm_s = localtime(&time_int);
 625
 626
 627 sprintf (today,"%Ø2d/%Ø2d/%Ø2d %Ø2d:%Ø2d:%Ø2d", tm_s-
>tm_mday,tm_s->tm_mon +1,
 628 tm_s->tm_year + 19ØØ,
 629 tm_s->tm_hour,tm_s->tm_min, tm_s->tm_sec);
 63Ø wmove(ptr,TIMEFIELDYCOR, TIMEFIELDXCOR);
 631 wattron (ptr, A_REVERSE);
 632 waddstr(ptr,today);
 633 wrefresh(ptr);
 634
 635
 636 }
 637 /***
 638 *
 639 * Name : HandleInterrupt ()
 64Ø *

 40 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 641 * Overview : The function displays a message and exits.
 642 *
 643 * Notes :
 644 *
 645 ***/
 646 void HandleInterrupt (int signo)
 647 {
 648
 649 DisplayMessage(wptr, "ERROR:Program interrupted; quitting
early");
 65Ø /*
 651 * remove all the window resources
 652 */
 653 endwin ();
 654
 655 exit (1);
 656
 657 }
 658
 659

SOURCE CODE ANALYSIS
1-3 Header files. Curses.h is relevant to all curses

programming.
21-30 Function prototypes.
36-37 Two pointer declarations. These pointers point to a

pre-defined structure called a WINDOW. Curses.h
includes the definition for WINDOW.

38-81 Variable declarations, used for dimensions of specific
windows.

91 Main ().
94 Function call for the interrupt signal.
99 Function call to initscr (). It’s a mandatory function call

for all curses programming. It must be made at the
beginning of any curses activity.

104-110 Creation of the main window. The function used is
newwin () with the desired dimensions. The returned
pointer is assigned to wptr.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

114 Draw a box around the main window. The function
used is box ().

118 Refresh the screen using wrefresh (). Having defined
a window, any subsequent activity in that window must
follow a call to wrefresh ().

122-127 Draw a sub-window. The function used is subwin ()
with the desired arguments.

131 Draw a box around the sub-window.
132 Refresh the screen.
136 Write heading for the sub-window by invoking WriteText

(), which is defined in the program.
140-144 Draw a field on-creen to capture the user-id by calling

MakeField () and WriteText ().
148-152 Draw a field on-screen to capture a password by

calling MakeField () and WriteText ().
156 Draw a field on-screen for displaying the message.
160-161 Draw a field on-screen for display date and time.

Display data and tile by calling DisplayTime().
165-178 Get user-id from the screen. Get password from the

screen. If they are the same
 Break
Else
 Continue

182Curses function call to endwin (). This is required in order
to return the terminal to normal working mode.

CONCEPT OF A WINDOW
A window is an internal data representation of an image of what
a particular rectangular section of the terminal display may look
like. The terminal display as a whole could be said to be a

 42 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

window, in which case its dimensions will be defined as 25 x 80.
A window with dimensions of one character in length and one
character in height is, in fact, a window of the size of a character.
This is the smallest window that curses could possibly handle,
but a window could also have dimensions of 128 characters in
length and 50 characters in height. This would be bigger than
most terminal screens, but, nonetheless, it is still a window.

Data structure called window
To master the various functions used in the example above, you
need to understand the curses data structure known as a
window, since almost all of the curses routines manipulate this
structure in some way.
It is defined in curses.h as follows:
struct _win_st
{

short _cury, _curx; /* current coordinates */
short _maxy, _maxx; /* max coordinates */
short _begy, _begx; /* (Ø,Ø) screen coordinates */
char _flags;
short _yoffset; /* actual begy is _begy+_yoffset */
bool _clear, /* clearok() info */

_leave, /* leaveok() info */
_immed, /* window in immediate mode */
_sync; /* auto syncup of parent */

WINDOW *_padwin; /* "pad" area for current window */
#ifdef _VR3_COMPAT_CODE

_ochtype **_y16; /* MUST stay at this offset in WINDOW */
#endif

short *_firstch; /* first change in line */
short *_lastch; /* last change in line */
short _tmarg, _bmarg; /* scrolling region bounds */

 /* MUST stay at this offset in WINDOW */
unsigned _scroll : 1; /* scrollok() info */
unsigned _use_idl : 1;
unsigned _use_keypad : 1;
unsigned _notimeout : 1;
unsigned _use_idc : 1;
chtype _attrs; /* current window attributes */
chtype _bkgd; /* background, normally blank */
int _delay; /* delay period on wgetch */

 /* Ø: for nodelay */
 /* <Ø: for infinite delay */
 /* >Ø: delay time in millisec */

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

short _ndescs; /* number of descendants */
short _parx, _pary; /* coords relative to parent (Ø,Ø) */
WINDOW *_parent; /* the parent if this is a subwin */
chtype **_y; /* lines of data */
short _nbyte; /* number of bytes to come */
short _index; /* index to hold coming char */
char _waitc[CSMAX];/* array to hold partial m-width char */
bool _insmode; /* TRUE for inserting, */

 /* FALSE for adding */
};

 typedef struct _win_st WINDOW ;
 extern WINDOW *stdscr , *curscr ;

This structure is in fact curses’ internal representation of a
window. It contains all the necessary data and information which
curses needs to manage the window on the terminal screen. For
curses, anything inside or belonging to a window is modifiable.

Physical terminal screen and default window
Before curses can manage the terminal screen it needs to know
what it looks like. Therefore, when curses starts up (after the
invocation of initscr ()), the first thing it does is clear the screen.
It then places the cursor in the home position, which is the top left-
hand corner of the screen. Curses then knows exactly what the
physical screen looks like and where the cursor is situated.
The external pointer variables stdscr and curscr defined in
<curses.h> are two virtual-window pointers. These windows are
initially the size of the physical screen and created by the curses
start-up function initscr (). The stdscr window is provided for
developers, while the curscr window is generally reserved for
internal curses use.

Physical terminal dimensions and windows
A window can be the same size as or smaller or bigger than the
physical terminal screen. A physical terminal can display more
than one window. The home coordinates (0,0) for any window is
the top left-hand corner of the screen.

 44 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SCREENS, WINDOWS, AND TERMINALS
The following list defines each of these terms, which are used
widely in the discussion of curses programming.

Screen
A screen is a terminal’s physical output device.

Window
Window objects are two-dimensional arrays of characters. Curses
provide stdscr, a default window which is the size of the terminal
screen. You can use the newwin function to create others.
To refer to a window, use a variable declared as WINDOW *.
There are three sub-types of window:
• Subwindow – a window that has been created within another

window (the parent window) and whose position has been
specified with absolute screen coordinates.

• Derived window – a subwindow whose position is defined
relative to the parent window’s coordinates rather than in
absolute terms.

• Pad – a special type of window that can be larger than the
screen.

Terminal
A terminal is the input and output device that character-based
applications use to interact with the user.

CREATING NEW WINDOWS, SUBWINDOWS, AND DERIVED
WINDOWS

New windows
If you want to use a window other than the default windows
supplied by curses (stdscr and curscr), you need to create it

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

before it can be accessed. Curses provides the following function:
WINDOW *neww_ptr
 neww_ptr = newwin (lines, cols, begy, begx) .

where:
• lines is the maximum vertical dimension of the new window,

specified in units of lines.
• cols is the maximum horizontal dimension of the new

window, specified in units of columns.
• begy is the Y coordinate for the new window in relation to the

stdscr (0, 0).
• begx is the X coordinate for the new window in relation to the

stdscr (0, 0).
Note: the X and Y coordinates are relative to the home coordinates
of the default window, pointed to by stdscr, and are located at 0,
0.

Subwindows
WINDOW *subw_ptr
subw_ptr = newwin (neww_ptr, lines, cols, begy, begx) .

The X and Y coordinates are relative to the home coordinates of
the default window, pointed to by stdscr, and are located at 0,0.

Derived windows
WINDOW *derw_ptr
derw_ptr = newwin (neww_ptr, lines, cols, begy, begx) .

The X and Y coordinates are relative to the home coordinates for
the parent window.

CURSES FUNCTIONS
There are a lot of curses functions for screen manipulation. In
fact, for each standard input and output function there exists a
corresponding curses function.

 46 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In general, functions that take a pointer to a window as one of the
parameters are prefixed with w (eg, wrefresh, wmove, etc);
otherwise, functions act on the default window pointed to by
stdscr (eg refresh, getch etc).

Curses library
The library is libcurses.a and its usual location is /usr/include/lib.

INTERACTIVE SHELL
The program creates the effect of two independent windows on
the terminal screen with a shell running in each.
/***
* Name : twinmish (two window multiplexing interactive shell)
* Overview : A two window multiplexing interactive shells.
* Notes : 1. Compile the program as follows:
* cc -o twinmish twinmish.c /usr/lib/libcurses.a
**/
/***
* INCLUDE FILES
**/
#include <curses.h>
#include <signal.h>
#include <fcntl.h>
#include <unistd.h>
/***
* FUNCTION PROTOTYPES
**/
int main (void);
int CreateWindows (void);
int CreateShells (void);
void DisplayError (char *msg, int line_no);
void DisplayWindowTitle (char *msg) ;
void HandleSignal (int signo);
/***
* MODULE CONSTANTS
**/
/*
 * function return codes
 */
#define SUCCESS 1
#define FAILURE Ø
#define BUFSIZE 128
/* maximum number of multiplexed windows */
#define MAX_WIN 2

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/* template for multiplexed channels */
typedef struct {
 WINDOW *win ; /* window for this channel */
 int out[2]; /* file descriptor for output */
 int err[2]; /* file descriptor for err */
 int in[2]; /* file descriptor for input */
 int pid ; /* pid of process controlling this window */
 } WIN ;
/* multiplexed channel array */
WIN w[MAX_WIN] ;
/* template of window positions */
typedef struct {
 int lines; /* no of lines in window */
 int cols; /* no of columns in window */
 int begy; /* y co-ordinate for window */
 int begx; /* x co-ordinate for window */
 } WINPOS ;
/* define window positions */
static WINPOS pos[MAX_WIN] = {
 { 11,79, Ø,Ø },
 /* specification of ist window */
 { 1Ø,79,14,Ø }
 /* specification of 2nd window */
 } ;
int pid ;
/***
* Name : main
* Overview : The function implements processing structure.
* Notes :
**/
int main (void)
{
int nc ; /* no of characters read */
char buffer[BUFSIZE] ;
int i, c ;
int cwin = Ø ; /* current window */
/* set the signal */
signal (SIGCLD, (void *)HandleSignal);
/* create two windows */
if (CreateWindows () != SUCCESS)
 return (FAILURE) ;
/* create two shells */
if (CreateShells () != SUCCESS)
 return (FAILURE) ;
nodelay (stdscr, TRUE);
noecho ();
raw();
DisplayWindowTitle ("Top Window");
for (i= MAX_WIN -1 ; i >= Ø ; i--)
 wrefresh (w[i].win) ;

 48 © 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* start polling following devices for input
 * input file descriptor
 * keyboard */
while (1)
 {
 /* read from input pipe in each window */
 for (i=Ø ; i < MAX_WIN ; i++)
 {
 /* stdout channel in[Ø]
 * shell would have written to in[1] */
 nc = read (w[i].in[Ø],buffer,BUFSIZE -1) ;
 buffer[nc]='\Ø' ;
 waddstr (w[i].win, buffer);
 /* stderr channel */

Editor’s note: this article will be concluded next month.
Arif Zaman
DBA/Developer (UK) © Xephon 2004

Recovering deleted files

Here’s the situation: a newish AIX programmer deleted their
latest program file in error and wanted to know what to do next.
First, they wanted to know what the AIX equivalent to the DOS
UNDELETE command was. Sad to say, there is no UNDELETE
command in AIX.
I suggested that they restore from the most recent back-up
(previous night) and they would have to re-enter all the changes
made since then. Unfortunately there was a problem with the
most recent back-ups. The file could be restored, but not
straightaway.
What to do next? Well, because of the way AIX stores data, each
file has an inode (index-node) structure associated with it
containing information about the file owner, permissions, size,
the physical disk blocks the file is stored on, etc. If a file is deleted,
it remains on the disk; it’s just the inodes that are marked as being
free for use. If the disk is heavily used, the inode will be reused

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

and the disk space will be written over. If it is not used, the file will
still be sitting there without any pointers to it.
All I/O activity on the relevant partition must be stopped and the
partition unmounted. We placed the system in single-user mode
to prevent other processes from overwriting the disk blocks or
inodes previously used by the ‘erased’ file.
A raw copy of the partition containing the missing file had to be
made and the system brought back into multi-user mode,
allowing normal system operation to continue. Parts of a file
could have been scattered in a non-contiguous manner over the
entire partition.
The next stage was to recover the data.
We did consider writing a shell script that would copy all files
being deleted to a different folder before deleting them in the
original folder. We could then write a second script (called
UNDELETE.SH, say), which would copy the required file back
from this second folder to the original folder.
Editor’s note: we would be interested to hear how other users
have got on with the problem of recovering accidentally deleted
files.
Susan Alnutt
DBA (UK) © Xephon 2004

AIX news

Softek, part of the Fujitsu group, has
announced Softek Replicator, which runs on
AIX, z/OS, Windows, HP-UX, Linux and
Solaris, and supports any storage array, such
as those from EMC, HDS, H-P, IBM, or
StorageTek.

The product replicates data writes to one
drive array or disk to another across an IP
link. The replication is done at the host level,
not by the drive array controller. EMC’s
SRDF is a controller-based replicator only
working with EMC arrays. Softek
Replicator, because it is host-based, is
independent of the drive arrays and controller
firmware.

AIX’s JFS file system is supported, which,
Softek claims, is unique.

For further information contact:
Softek, 1250 East Arques Avenue, M/S 317,
Sunnyvale, CA 94085, USA.
Tel: (408) 746 7638.
URL: http://www.softek.fujitsu.com/en/
products/replicator.

* * *

UniPress Software has announced Version
6.0 of its FootPrints software specifically
designed to optimize the performance,
reliability, and scalability of DB2. This new
version, FootPrints for DB2, provides
organizations running DB2 in AIX
environments with a seamless, integrated,
Web-based service desk to centralize and
automate internal Help Desk operations and
external customer service activities.

FootPrints provides a Web-based system that

includes centralized customer-request
tracking, self-service online capabilities,
two-way e-mail management, knowledge
management, and reporting.

For further information contact:
UniPress Software, 2025 Lincoln Highway,
Edison, New Jersey 08817, USA.
Tel (732) 287 2100.
URL: http://www.unipress.com/footprints/
whatsnew.html.

* * *

Nuance has announced Version 3.0 of its
Vocalizer software. The product enables
automated access to everything from account
balances to flight information, e-mail reading
to voice-activated dialling.

In addition to the Windows and SPARC
Solaris operating systems, Nuance Vocalizer
3.0 now also supports AIX to enable
companies with IBM DirectTalk platforms to
take advantage of its advanced TTS features.

Nuance has also introduced a new Canadian
French text-to-speech (TTS) voice, updated
North American English voices, and made a
number of other enhancements to its Nuance
Vocalizer 3.0 text-to-speech software
including: improved name pronunciation,
reduced memory utilization, expanded
handling of terms from key vertical markets,
and broader operating system support.

For further information contact:
Nuance, 1005 Hamilton Court, Menlo Park,
CA 94025, USA.
Tel: (650) 847 0000.
http://www.nuance.com/corp/index.html.

x xephon

	Automatic expanding filesystems (jfs and jfs2)
	Manage FTP process - revisited
	Logical Partitioning Facility (LPAR) planning and implementation
	Curses programming
	Recovering deleted files
	AIX news

