
© Xephon Inc 2004

July 2004

105

In this issue

3 Securing Apache with SSL
10 Filesystem check
16 Reporting information about

space on shark storage (ESS)
28 Tuning memory performance on

AIX
41 Up and running with NTP
47 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
$275.00 in the USA and Canada; £180.00 in
the UK; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 2000 issue, are available
separately to subscribers for $24.00 (£16.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Securing Apache with SSL

To secure Web server communications, ideally one would
want to encrypt communications between the Web server and
the calling browser for information that is regarded as sensitive
or personal. This can be accomplished using Apache and
Secure Socket Layer (SSL). To determine whether a browser
has a secure connection to a Web site, look at the toolbar. If
you see the padlock icon in a closed position, this indicates
that the connection is to a secure server where the traffic is
encrypted. In a normal connection (using HTTP) the padlock
would be in an open position.

SSL is the open standard security protocol for the secure
transfer of sensitive information over the Internet. As a protocol,
it runs above TCP/IP and below HTTP. When using SSL, the
server and client can exchange secure information after being
authenticated through the use of keys. When a connection to
an SSL-aware site is established, a little padlock icon in the
locked position appears on your browser. This informs you that
the page is now encrypted; also, the URL starts with https:
rather than http:.

The packages for SSL to function with are Apache, of course,
and Open_SSL. The SSL Apache packages can be found on
the AIX ToolBox Linux Application CD. They are in either
source or binary RPMs. A better alternative is to download the
source from the Apache Web site and compile it. I installed
Apache into the /opt/freeware/apache directory; your directory
structure may be different.

The Mod_SSL module provides cryptography via the SSL and
the Transport Layer Security (TLS). The OpenSSL contains
the OpenSSL toolkit. OpenSSL enables the creation of private
keys and certificates. Once the Apache packages have been
installed, Apache needs to be restarted:

/opt/freeware/apache/sbin/apachectl stop

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/opt/freeware/apache/sbin/apachectl start

Be sure to check the Apache error log for errors or any
inconsistencies. To have a tidy directory to hold the keys and
certificates, I created two directories: one for the server’s keys
and one for the server’s certificates.

THE KEYS

Using traditional methods, a symmetrical encryption is used to
encrypt/decrypt information – in other words, the same key is
used to both encrypt and decrypt. When sending a key to
another party, there is no way of knowing, while sending,
whether it has arrived safely with the person you intended to
send it to. This is a big problem, especially when dealing with
data communication over the Internet. Fortunately, a solution
is at hand, that is to use two keys instead – a private key and
a public key. The server generates both of these keys. As its
name suggests, the public key is available to anyone who
wants to read it. This key is used to encode the data that is sent
back from the client to the server. The private key is kept on the
server in a secure location. This key is used to decode
incoming communication. The use of these keys allows the
server and client to communicate in a private manner. To
reiterate, only the server that holds the private key can read
messages encrypted by the public key. Many clients can hold
the public key, but there is only one private key holder that can
unlock the information from those public keys. A server can
have many private keys, but all of them will be random and
unique. An ISP will undoubtedly have many private keys for
the different domains it hosts.

DIGITAL CERTIFICATES

A Digital Certificate is an electronic document used to identify
the provider of a public key. This stops impersonation or mis-
use of a public key. Certification Authorities (CA) issue
certificates. They are trusted companies that verify the identity
of the site that a client connects to. This type of process is akin

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

to when you apply for a passport – you need to provide proof
of who you are, like a birth certificate and a proposal form from
an outstanding citizen. This type of service is the same as that
provided by a CA. When applying for a Certificate request, the
CA will check who you are by various means. At the least this
will involve proof of who you are, generally a copy of your
company/organization registration certificate and a hardcopy
from the WHOIS database. Once a certificate is issued, which
can take up to a week, it will bind the public key to the name
of the requester on the certificate, usually an FQDN, though
not necessarily so. Only a public key certified by the certificate
will work with the corresponding private key. In this article we
will generate our own temporary certificate. The process is the
same as for a CA, but of course a CA will not have signed our
certificate. But proof of concept will prevail. When you have a
CA-signed certificate, the clients will automatically acknowledge
the certificate and thus secure communication begins. They
are also guaranteeing the identity of the organization or
company to whom the certificate has been issued. With a self-
signed certificate, some browsers will prompt you that an
unsigned certificate is about to be loaded by your browser, but
of course you still get the secure connection.

THE PROCESS OF SSL

The SSL server authentication allows a browser to confirm a
server’s identity. SSL-aware software on the (client) browser
can use standard public-key encryption to check that a server’s
certificate is valid and has been issued by a Certificate
Authority. This can be found in the browser’s list of trusted
CAs.

The SSL client authentication allows a server to confirm a
user’s identity, using the same techniques. Here’s what happens
when an SSL connection occurs:

• The client sends a request to connect.

• The server sends a signed certificate (this includes the
public key).

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• The client verifies the certificate signer, by checking its
acceptable CA list.

• The client generates a session key to be used for encryption
and sends it to the server encrypted with the server’s
public key.

• The server uses the private key to decrypt the client-
generated session key.

• Client and server exchange information (encrypted, of
course).

CREATING THE PRIVATE KEY

A cipher key needs to be at least 1024 bits – anything below
this is not considered good for for secure commercial
communication. Using the OpenSSL utility, an RSA-based key
using the triple DES cipher can be generated:

openssl genrsa –des3 1Ø24 > /opt/freeware/apache/ssl.key/server.key

If you own more than one domain name that runs from your
server, it makes sense to prefix the key with the domain name,
like so:

openssl genrsa –des3 1Ø24 >/opt/freeware/apache/ssl.key/

www.somecompany.key

When generating a key, it will prompt for a password/pass
phase to be entered; openssl will prompt for this password
every time Apache starts up. Do remember to document it!
Alternatively it may not be appropriate within your business
operating environment to have Apache prompt for a password
every time it starts up; in that case create a non-encrypted key,
by not specifying the -des3 option, like so:

openssl genrsa 1Ø24 > /opt/freeware/apache/ssl.key/server.key

The key needs to be read and written by root only. If this task
is not carried out, a user or some third party could get hold of
the key and, heaven forbid, impersonate your secure server:

chmod 6ØØ /opt/freeware/apache/ssl.key/server.key

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

GENERATING A CERTIFICATE REQUEST

As discussed previously, we will look at creating a self-signed
certificate. However, to create a certificate request to send to
a CA, enter the following command:

openssl req –new –key /opt/freeware/apache/ssl.key/server.key –out /

opt/freeware/apache/ssl.csr/server.csr

The above command will use the private key just created
(server.key) and use it to generate a certificate request file
(server.csr). You will be prompted for the password/phase you
gave when the private key was generated. A series of questions
will follow. When completed, the next step is to send the file to
a CA. Three common CAs are:

• www.thawte.com

• www.verisign.com

• www.instanstssl.com.

GENERATING A SELF-SIGNED CERTIFICATE

A self-signed certificate should always be considered a
temporary certificate until you receive a valid one from a CA.
However, having said that, it is quite common to see self-
signed certificates used internally within company LANs/
WANs.

To properly validate a certificate requires a private key, which
has already been generated. The next step is to create the
self-signed certificate.

As with the Certificate Request, you will be prompted for the
password or phase you entered when creating the private key.
If you decided not to enter a password for your key then you
will not be asked for a password when generating your
certificate:

openssl req -new -key /opt/freeware/apache/ssl.key/server.key -x5Ø9 -

days 365 -out /opt/freeware/apache/ssl.crt/server.crt

This uses the configuration from /opt/freeware/apache/ssl/
openssl.cnf.

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name, or a DN.

There are quite a few fields but you can leave some blank. For
some fields there will be a default value. If you enter ‘.’, the field
will be left blank.

Country Name (2 letter code) [AU]:GB

State or Province Name (full name) [Some-State]:Essex

Locality Name (eg, city) []:Grays

Organization Name (eg, company) [Internet Widgits Pty Ltd]:A Company Ltd

Organizational Unit Name (eg, section) []:Payroll

Common Name (eg, your name or your server's hostname) []:bumper

Email Address []:dtansley@techemail.com

The above command will generate a file called server.crt,
containing the self-signed certificate, located in /opt/freeware/
apache/ssl.crt/ssl.crt, using the private key (server.key) created
earlier. The –days parameter is for how long the certificate will
be valid before being rejected by a browser. In the above
example the certificate will be valid for a year (365 days);
alternatively you can have the temporary certificate valid for
28 days if you so wish, using the parameter:

-days 28

The x509 is the standard used when creating certificates; it
defines the data and signature parts of the certificate, where
data will consist of the serial number, public key, and issuer of
the certificate.

A series of questions is then presented as in the above output.
Please input the answers to the best of your ability. Some of
the questions already have a default answer and you can hit
Enter on these if you wish.

Please note, the Common Name should match up with the
URL of your Web server. If you are on a private network, input
the server name here instead. For example if users use, say,
bumper as the URL to point to your internal Web server, then
use bumper as the Common Name.

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

After all the information has been entered a self-signed
certificate (server.crt) file will be created.

INFORMING APACHE ABOUT SSL

If you compiled Apache from source, you may find you have a
separate ssl.conf file, where all the SSL options must go.
Alternatively, edit the httpd.conf file. Although Apache comes
pretty much SSL aware, it will need checking, especially on the
secure port and the location of the certificates and keys. Most
entries go inside the <VirtualHost> block:

Listen 80

Listen 443

<VirtualHost _default_:443>

virtual servername - same as your web server

 ServerName www.bumper.co.uk

virtual document root – change to suit

DocumentRoot "/opt/freeware/www/html"

 # SSL Engine Switch:

SSLEngine on

server certificate

SSLCertificateFile /opt/freeware/apache/ssl.key/server.key

Server Private Key:

SSLCertificateFile /opt/freeware/apache/ssl.crt/server.crt

</VirtualHost>

RUNNING SSL

The next step is to restart Apache:

/opt/freeware/apache/sbin/apachectl stop

/opt/freeware/apache/sbin/apachectl startssl

If you have installed the binary version then start Apache with
the DSSL flag:

/opt/freeware/apache/sbin/httpd -DSSL

When SSL is running HTTPS it will listen on port 443, with
normal HTTP listening on port 80. Use netstat –a to determine
that both http and https are listening.

OpenSSL can also be used to test the handshake of OpenSSL,
using an SSL/TLS connection. The following command will

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

produce a long list of connection details, using the key and
certificate information that is currently installed. It is a good
source to further diagnose any problems if HTTPS is running,
but the browser cannot connect to the secure server. It is also
gives a good grounding in understanding the process of how
OpenSSL interacts:

openssl s_client -connect localhost:443 –state

To access a Web page over a secure communication, point a
Web browser to one of your Web pages. The URL should start
with https, and not http, the ‘s’ indicating a secure HTTP site.
So to access a Web server called bumper you would use:

https://bumper

For the local host use:

https://localhost

Please note: there is no need to specify the port number for a
secure connection.

Depending on the type of browser being used, it may prompt for
a series of confirmations before the certificate is loaded by the
browser that it is connecting to a secure site. When the connection
is established, the padlock icon on the browser will be in a locked
position. The certificate details can be displayed by clicking on
the padlock. Notice that the ‘Certificate State’ entry states it is a
self-signed certificate.

David Tansley
Global Production Support (IBM p-series) (UK) © Xephon 2004

Filesystem check

AIX system administration is always a time-consuming job.
One major issue is that of looking after filesystems. Often
applications write data to a filesystem until the filesystem is

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

filled up and the application stops running. Although AIX error
reporting detects that a filesystem is full, it would be nice to
have someone alert you before a filesystem becomes full.

The following script does exactly this. The script checks the
specified filesystems and sends an e-mail to specified users.
In my environment there is one host, which has one filesystem
that is mounted over NFS on all the other AIX hosts. So I
placed the scripts and all the necessary files in that filesystem.
I have created an entry in the crontab on every host. The script
is run every hour.

The script reads two filetypes:

1 File sgr_fs_'hostname'

The first filetype contains the name of the filesystem and
the limit. The limit represents the percentage limit when an
alert is fired. The scripts checks the %Used value of the df
command (see example below):

df /tmp

Filesystem 512-blocks Free %Used Iused %Iused Mounted on

/dev/hd3 72Ø896 361424 5Ø% 2955 4% /tmp

The name of the file contains the hostname. For every host
that needs to be checked, there is one file in the above
mentioned filesystem. Thus the script can be run on
different hosts without changing the script. The layout of
the file is shown below. Lines that contain # are ignored.

filesystems that need to be checked

file layout:

#

<filesystem> <limit>

#

<filesystem> = file system (mount point) that must be checked

<limit> = if limit in % is exceeded action is taken

#

/tmp 80

/usr 90

/ 80

end of file

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

2 File sgr_fs_mailrec and sgr_fs_mailrec_'hostname'

The second file contains the e-mail addresses of every
user who needs to be notified. In my environment I had a
problem that on different hosts different users needed to
be notified. So I created two similar files. The first file
contains the users who always need to be notified, the
second file contains the hostname in its name and all the
users that need to be notified on that specific host. When
the script finds both files, they are concatenated. Lines
that contain # are ignored.

File sgr_fs_mailrec:

mail recipients for e-mail notification

to exclude a person, just comment out the line using

#

format: name@domain

#

#

admin@mailhost.com

end of file

File sgr_fs_mailrec:

mail recipients for e-mail notification on a specific host

to exclude a person, just comment out the line using

#

format: name@domain

#

#

application.owner@mailhost.com

end of file

WHAT DOES THE SCRIPT DO?

The first function, check_email_rec, checks the availability of
the file with the e-mail recipients. If the host-specific file is
found, it is concatenated with the normal e-mail recipient’s file.

The second function, check_inputfile, checks the availability
of the file that contains the names of the filesystems to be
checked. If it is not found, it just exits with a message written
to the log file.

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The third function, check_filesystem, reads the input file. If the
filesystem to be checked is not available, a message is written
to the logfile and it exits. If the filesystem exists, it is checked
using the df command.

Using the set command splits the output of df into $-Variables.
Then the fifth parameter, which contains the usage value, is
compared with the limit value in the input file. If the usage value
exceeds the limit value an e-mail is sent to all the specified
users.

And here is the script:

#!/usr/bin/sh

#

#

define variables

export FS=/usr/rz/proclib/sgr_fs_'hostname'

export EMAIL_FILE=/tmp/email.$$

export EMAIL=/tmp/email_cat.$$

export EMAIL_REC_HOST=/usr/rz/proclib/sgr_fs_mailrec.'hostname'

export LOG=/tmp/sgr_fs_logfile.$$

export EMAIL_REC=/usr/rz/proclib/sgr_fs_mailrec

###

#

FUNCTION check_email_rec

#

#

if there is a host specific e-mail recipient file available then

set input file for email-recipients to that file name

check_email_rec()

{

if [! -a $EMAIL_REC_HOST -o ! -s $EMAIL_REC_HOST]

then

 cat $EMAIL_REC > $EMAILelse

EMAIL=$EMAIL_REC_HOST

 cat $EMAIL_REC_HOST $EMAIL_REC > $EMAIL

fi

}

End of funtion

###

###

#

FUNCTION check_inputfile

#

#

is file with filesystems to be checked?

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

if no then do nothing and exit

check_inputfile()

{

if [! -a $FS -o ! -s $FS]

then

 echo ‚date‚ $0 „File $FS cannot be found or is empty" >> $LOG

 echo 'date' $0 "********** END *********************" >> $LOG

 exit 0

fi

}

End of funtion

###

###

#

FUNCTION check_filesystem

#

#

read file with filesystem to check

check_filesystem()

{

while read F L

 do

 if ["$F" != "#"]; then

 #ignore line if first character is comment

 if [! -d $F]

 then

 echo 'date' $0 "Filesystem $F to be checked" >> $LOG

 echo 'date' $0 "cannot be found " >> $LOG

 echo 'date' $0 "********** END ************" >> $LOG

 exit 0

 else

 set 'df -P $F | tail +2' # get last line of df commend

 set 'echo $5 | tr -d %' # get percentage field

 if [$1 -gt $L]; then # compare percentage field with

 # limit in file

 generate_email $1

 fi

 fi

 fi

done <$FS

}

End of funtion

###

###

#

FUNCTION generate_email

#

#

generate_email()

{

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

E-mail alerts

Our e-mail alert service will notify you when new issues
of AIX Update have been placed on our Web site. If
you’d like to sign up, go to http://www.xephon.com/aix
and click the ‘Receive an e-mail alert’ link.

for k in 'cat $EMAIL | grep "^[a-zA-Z]"'

do

 ls -l $F >> $EMAIL_FILE # file to be sent to email recipients

 mail -s "Filesystem $F on `hostname` is $1 % full" $k <

$EMAIL_FILE

 rm $EMAIL_FILE

done

rm $EMAIL

}

End of funtion

###

###

#

Main function

#

check_email_rec;

check_inputfile;

check_filesystem;

Robert Schuster
Systems Administrator (Germany) © Xephon 2004

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Reporting information about space on shark
storage (ESS)

Unfortunately, there is no AIX command that displays
information about the total space and available space on shark
storage that is connected to a server. In other words, we
needed a df –k-like command to see how much space is
allocated and how much space is free on our shark storage
disks. That’s why I have written a script, shark_space.sh,
which gets the following information.

If you do not specify a flag:

• Which sharks are connected

• How much space is allocated

• How much space is free.

An example of the output:

shark 17152 -- 238Ø8 MB total , 222Ø8 MB free (93%)

shark 18142 -- 199984 MB total , 55Ø4 MB free (2%)

shark 14654 -- 95232 MB total , 1Ø6Ø8 MB free (11%)

In the example above, 171152, 18142, and 14654 are the
shark ids, which indicates that three sharks are connected to
the server and they have the space statistics shown.

If the –m flag is specified, then the script mails the output in
a certain format to a dedicated AIX server, which collects all
the shark space output from all the servers using shark
storage in our company. Additionally, it logs this information to
a history file for later use.

An example of the history log file (shark_space_history.log):

..

..

--

Shark Space at: Ø6/Ø2/2ØØ4

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

shark 17152 -- 238Ø8 MB total , 222Ø8 MB free (93%)

shark 18142 -- 199984 MB total , 55Ø4 MB free (2%)

shark 14654 -- 95232 MB total , 1Ø6Ø8 MB free (11%)

--

--

Shark Space at: 13/Ø2/2ØØ4

shark 17152 -- 238Ø8 MB total , 2Ø6Ø8 MB free (86%)

shark 18142 -- 199984 MB total , 55Ø4 MB free (2%)

shark 14654 -- 95232 MB total , 1Ø2Ø8 MB free (1Ø%)

--

--

Shark Space at: 2Ø/Ø2/2ØØ4

shark 17152 -- 238Ø8 MB total , 182Ø8 MB free (76%)

shark 18142 -- 199984 MB total , 55Ø4 MB free (2%)

shark 14654 -- 95232 MB total , 1Ø2Ø8 MB free (1Ø%)

--

--

Shark Space at: 27/Ø2/2ØØ4

shark 17152 -- 238Ø8 MB total , 182Ø8 MB free (76%)

shark 18142 -- 199984 MB total , 55Ø4 MB free (2%)

shark 14654 -- 95232 MB total , 82Ø8 MB free (8%)

--

--

Shark Space at: Ø5/Ø3/2ØØ4

shark 17152 -- 238Ø8 MB total , 166Ø8 MB free (69%)

shark 18142 -- 199984 MB total , 55Ø4 MB free (2%)

shark 14654 -- 95232 MB total , 82Ø8 MB free (8%)

--

..

..

To have an overall weekly report, all servers using shark
storage must have a crontab entry as follows (which works
every Friday at 05:00 am.):

Ø 5 * * 5 /usr/local/sbin/shark_space.sh -m > /dev/null 2>&1

Let’s say the server that collects output is myserver1 and
shark_space.sh –m works on myserver2, myserver3, … ,
myservern. Then the format of the output that is sent to
myserver1 would be as follows:

<hostname>:<shark id>:<total space>:<free space>

An example (with three sharks):

myserver2:17152:238Ø8:222Ø8

myserver2:18142:199984:55Ø4

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

myserver2:14654:95232:1Ø6Ø8

I can give the content of the mail I am sending to myserver1 as
an input to a script named write2file.sh on myserver1. To be
able to do that, add the following entry to the /etc/aliases file
on myserver1:

ess: "| /home/user555/write2file.sh"

Note: the command sendmail -bi must be run after /etc/
aliases file is updated for any changes to affect sendmail
operation.

Whenever I send a mail to ess@myserver1.domain.com from
myserver2, … , myservern, the write2file.sh on myserver1 will
be executed. Basically, write2file.sh gets the content of the
mails and appends them to a file.

And the last step is to execute a third script, shark_summery.sh,
from crontab on myserver1 to add all the allocated and
available space for each shark and prepare a weekly report.
After that, this report is sent to the appropriate people/managers
as an Outlook mail.

Crontab entry (must be after shark_space.sh –m):

Ø 6 * * 5 /usr/local/sbin/shark_summery.sh > /dev/null 2>&1

(It works every Friday at 06:00 am.)

A weekly report example:

 WEEKLY SHARK SPACE REPORT:

 Hostname: myserver2

 Shark 17115 -- 85712Ø MB used 1952Ø MB free

 Shark 18142 -- 3Ø95Ø4 MB used 53888 MB free

 Shark 14654 -- 1166624 MB used 496ØØ MB free

 Hostname: myserver6

 Shark 17115 -- 952Ø MB used 3952 MB free

 Hostname: myserver11

 Shark 18142 -- 95232 MB used 6336 MB free

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 Hostname: myserver12

 Shark 17115 -- 8Ø944 MB used 16848 MB free

 Hostname: myserver16

 Shark 17115 -- 63392Ø MB used 8152Ø MB free

 Hostname: myserver18

 Shark 17115 -- 71424 MB used 2336 MB free

 Hostname: myserver21

 Shark 17115 -- 718992 MB used 33616 MB free

 Shark 14654 -- 666624 MB used 666624 MB free

 Hostname: myserver27

 Shark 17115 -- 952Ø MB used 384Ø MB free

 Shark 18142 -- 37888 MB used 1Ø88Ø MB free

 Hostname: myserver29

 Shark 17115 -- 119Ø24 MB used 8Ø16 MB free

 Shark 18142 -- 238Ø8 MB used 17792 MB free

 Hostname: myserver33

 Shark 18142 -- 47616 MB used 624Ø MB free

 Hostname: myserver44

 Shark 18142 -- 14272 MB used 1Ø2Ø8 MB free

 Hostname: myserver45

 Shark 17115 -- 199984 MB used 55Ø4 MB free

 Shark 18142 -- 238Ø8 MB used 222Ø8 MB free

 Hostname: myserver48

 Shark 17115 -- 19Ø192 MB used 4Ø432 MB free

 Shark 18142 -- 4736 MB used 2496 MB free

 Shark 14654 -- 95232 MB used 25Ø88 MB free

 Hostname: myserver55

 Shark 18142 -- 95232 MB used 4736 MB free

 Hostname: myserver57

 Shark 17115 -- 15256Ø MB used 17952 MB free

 Shark 14654 -- 15256Ø MB used 17952 MB free

 Hostname: myserver61

 Shark 17115 -- 18944 MB used 4Ø32 MB free

 ...

 ...

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 ##################################

 # TOTAL SPACE SUMMARY #

 ##################################

 Shark 17115: 299Ø GB

 Shark 18142: 636 GB

 Shark 14654: 2Ø32 GB

SHARK_SPACE.SH
#!/bin/ksh

#

###

#

Adnan Akbas, Turkcell

#

Version 1.Ø 22.Ø2.2ØØ3

Version 1.1 Ø5.Ø4.2ØØ3 mailing output to myserver1

#

This script displays information about total space and

available space on sharks connected to this server.

#

If the -m flag is specified, then the script mails the

output in a certain format to myserver1 which collects

all shark space output ...

#

###

This function displays usage of this script

function usage {

[[-n ${DEBUG}]] && set -x

cat << EOF

Usage: ${script} [-m] [-v] [-h]

 -m: Output mail to "$mailto"

 -v: Version

 -d: Debug

 -h: Help

This script displays information about total space and

available space on sharks connected to this server, if

no flag is specified. If the -m flag is specified, then

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the script mails the output in a certain format to the

dedicated server ...

EOF

exit

}

This function displays the version info.

function version {

[[-n ${DEBUG}]] && set -x

print

echo "$ver - Author: Adnan Akbas - Turkcell"

exit

}

This function checks whether a vpath exists on this server

function check {

[[-n ${DEBUG}]] && set -x

Get all vpaths

vpath_list='lsdev -C -c disk -s dpo -t vpath -F name'

Is there a shark connected?

if [["${vpath_list}" = ""]]

then

 print

 print "NO Shark Storage Device is connected !!!"

 print

 exit

fi

}

This function checks whether a volume group is active

function check_if_active {

[[-n ${DEBUG}]] && set -x

lsvg -o | grep -q $vg

[[$? = Ø]] && vg_active=true

}

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

This function determines the shark ids connected to this server

function get_shark_ids {

[[-n ${DEBUG}]] && set -x

for vpath in $vpath_list

do

 # get device unit serial number

 odmget -q "name = $vpath" CuDv|egrep connwhere|awk '{print $3}'|tr

'\"' ' ' | cut -c5-9

done

}

This function adds spaces total/free in sharks

function calculate {

[[-n ${DEBUG}]] && set -x

Getting all sharks that are connected to an array named shark

set -A shark 'get_shark_ids | sort | uniq'

let num_of_sharks=${#shark[*]}-1

initializing the counters

let i=Ø

while ((i <= $num_of_sharks))

do

 let shark_total[$i]=Ø

 let shark_free[$i]=Ø

 let i=${i}+1

done

for vpath in $vpath_list

do

 let pp_size='lspv $vpath | grep "PP SIZE" | awk '{print $3}''

 vg='lspv $vpath | grep "VOLUME GROUP" | awk '{print $6}''

 let pp_total='lsvg -p $vg | grep $vpath | awk '{print $3}''

 let pp_free='lsvg -p $vg | grep $vpath | awk '{print $4}''

 shark_id='odmget -q "name = $vpath" CuDv|egrep connwhere|awk '{print

$3}'|tr '\"' ' ' | cut -c5-9'

 vg_active=false

 check_if_active

 if $vg_active

 then

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 # Finding total disk size in MB for each vpath

 let disk_size=${pp_size}*${pp_total}

 # Finding free disk size in MB for each vpath

 let disk_free_size=${pp_size}*${pp_free}

 shark_id='lsvpcfg $vpath | awk '{print $5}' | cut -c4-8'

 let i=Ø

 while ((i <= $num_of_sharks))

 do

 # Adding the size allocated/free in each shark storage

 if [[$shark_id = ${shark[$i]}]]

 then

 let shark_total[$i]=${shark_total[$i]}+${disk_size}

 let shark_free[$i]=${shark_free[$i]}+${disk_free_size}

 fi

 let i=${i}+1

 # This calculation takes a while and produces no output, so

 # this command puts . on the screen while the loop turns

 echo ".\c"

 done

 echo ".\c"

 fi

done

print

print

}

This function sends the shark space usage output via mail in a

certain format to the appropriate server and logs the output

also in a history file if the script is executed with "-m" option.

If no flag is specified, it displays shark space usage output only

on the screen ...

function result {

[[-n ${DEBUG}]] && set -x

let i=Ø

if $mail

then

 echo "--" >>

$logfile

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 print "Shark Space at: $today" >> $logfile

 while ((i <= $num_of_sharks))

 do

 # Sends mail to the server (alias) with a certain format

 echo "`hostname`:${shark[$i]}:${shark_total[$i]}:${shark_free[$i]}"

| mailx $mailto

 # And logs to the output to a history file for later use

 print "shark ${shark[$i]} -- ${shark_total[$i]} MB total ,

${shark_free[$i]} MB free ($(((${shark_free[$i]} * 1ØØ) /

${shark_total[$i]}))%)" >> $logfile

 let i=${i}+1

 done

 echo "--" >>

$logfile

else

 # Prints result on the screen

 while ((i <= $num_of_sharks))

 do

 print "shark ${shark[$i]} -- ${shark_total[$i]} MB total ,

${shark_free[$i]} MB free ($(((${shark_free[$i]} * 1ØØ) /

${shark_total[$i]}))%)"

 let i=${i}+1

 done

fi

}

Variables

script='basename ${Ø}'

logfile=/var/adm/shark_space_history.log

today='date +"%d/%m/%Y"'

ver="Version 1.1 Ø5.Ø4.2ØØ3"

mail=false

Here you can determine which server (alias) you can send your output

mailto=ess@rscØØ3eØ.eil.risnet.de

Main

Getting the options

while getopts :mvdh opt

 do

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 case $opt in

 v) version ;;

 m) mail=true ;;

 d) export DEBUG=yes ;;

 h) usage ;;

 *) usage ;;

 esac

 done

checking ifwhether we are in debug mode?

[[-n ${DEBUG}]] && set -x

Running the appropriate functions

check

calculate

result

If we are in debug mode, turn off

[[-n ${DEBUG}]] && unset DEBUG

WRITE2FILE.SH
#!/bin/ksh

###

#

Adnan Akbas, Turkcell

#

Ø8.Ø4.2ØØ3

#

This script works when a mail comes to the ess alias and

writes the content of the mail (shark space statistics)

to a file for later calculation

#

###

Variables

Variables

Main

while read line

do

 # getting rid of the mail headers

 echo $line | grep -q "^*"

 if ["$?" = "Ø"]

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 then

 echo $line >> $logfile

 fi

done

Deleting log files older than a month

 find ${local_dir} -name "shark_*" -mtime +3Ø -exec rm {} \;

######################################

SHARK_SUMMARY.SH
#!/bin/ksh

###

#

Adnan Akbas, Turkcell

#

Ø9.Ø4.2ØØ3

#

This script prepares the report about shark space and

sends it to the appropriate people via Outlook mail.

#

###

Variables

today='date +"%d%m%Y"'

local_dir=/var/adm/tmp

logfile=${local_dir}/shark_${today}.out

outfile=/tmp/sharks.out

mailto=adnan.akbas@turkcell.com.tr,trevore@xephon.com

MAIN

Getting all servers into an array

let i=Ø

cat $logfile | awk -F: '{print $1}' | sort | uniq |

 while read host

 do

 # getting rid of the "*"

 server[$i]=${host#**}

 let i=${i}+1

 done

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

start to prepare the report

print > $outfile

print "WEEKLY SHARK SPACE REPORT:" >> $outfile

print >> $outfile

for srv in 'echo ${server[*]}'

do

 echo "Hostname: ${srv#**}" >> $outfile

 cat $logfile | grep $srv |

 while read line

 do

 shark_id='echo $line | awk -F: '{print $2}''

 shark_total='echo $line | awk -F: '{print $3}''

 shark_free='echo $line | awk -F: '{print $4}''

 print "Shark $shark_id -- $shark_total MB total , $shark_free MB

free" >> $outfile

 done

 print >> $outfile

done

Getting all sharks into an array

let i=Ø

cat $logfile | awk -F: '{print $2}' | sort | uniq |

 while read ids

 do

 id[$i]=$ids

 let i=${i}+1

 done

echo "##################################" >> $outfile

echo "# TOTAL SPACE SUMMARY #" >> $outfile

echo "##################################" >> $outfile

print >> $outfile

let total=Ø

for shark in 'echo ${id[*]}'

do

 cat $logfile | grep $shark | awk -F: '{print $3}' |

 while read size

 do

 let total=${total}+${size}

 done

 echo "Shark ${shark}: $(($total / 1Ø24)) GB" >> $outfile

 total=Ø

done

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Tuning memory performance on AIX

VIRTUAL MEMORY CONCEPTS

The Virtual Memory Manager (VMM) is the part of the AIX
operating system that is responsible for servicing memory
requests from the operating system and users’ applications.
Virtual memory segments are divided into units called pages;
each page is either located in real physical memory (RAM) or
stored on disk until it is needed. Similarly to other modern
operating systems, AIX utilizes virtual memory to address
more memory than is physically available in the system. The
management of memory pages in RAM or on disk is handled
by the VMM.

REAL MEMORY MANAGEMENT

In AIX, virtual memory segments are partitioned into 4096-
byte units called pages. Some systems also support a larger
page size, typically accessed only through the shmat system
call. Similarly, real memory is divided into 4096-byte page
frames. The VMM has two major functions:

• Manage the allocation of page frames.

• Resolve references to virtual memory pages that are not
currently in RAM (stored in paging space) or do not yet
exist.

Finally, send the report via mail

mail -s "Weekly shark space report" $mailto < $outfile

Adnan Akbas
Senior System Administrator
TURKCELL (Germany) © Xephon 2004

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In order to fulfil these functions, the VMM maintains a free list
of available page frames. The VMM also uses a page-
replacement algorithm to determine which virtual memory
pages currently in RAM will have their page frames reassigned
to the free list. The page-replacement algorithm takes into
account the existence of persistent versus working segments,
repaging, and VMM thresholds, which can be set by the
system administrator.

FREE LIST

The VMM maintains a list of free (unallocated) page frames
that it uses to satisfy page faults. Generally AIX tries to use all
of RAM all of the time, except for a small amount that it
maintains on the free list. To maintain this small amount of
unallocated pages, the VMM uses page outs and page steals
to free up space and reassign those page frames to the free
list. The virtual memory pages whose page frames are to be
reassigned are selected using the VMM’s page-replacement
algorithm.

PERSISTENT OR WORKING MEMORY SEGMENTS

AIX distinguishes between different types of memory segment.
To understand the VMM, it is important to understand the
difference between working and persistent segments. A
persistent segment has a permanent storage location on disk.
Files containing data or executable programs are mapped to
persistent segments. When a JFS or JFS2 file is opened and
accessed, the file data is copied into RAM. VMM parameters
control when physical memory frames allocated to persistent
pages should be overwritten and used to store other data.

Working segments are transitory and exist only during their
use by a process. Working segments have no permanent disk
storage location. Process stack and data regions are mapped
to working segments and shared library text segments. Pages
of working segments must also occupy disk storage locations
when they cannot be kept in real memory. The disk paging

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

space is used for this purpose. When a program exits, all its
working pages are immediately placed back on the free list.

COMPUTATIONAL VERSUS FILE MEMORY

Computational memory, also known as computational pages,
consists of the pages that belong to working storage segments
or program text (executable files) segments. File memory (or
file pages) consists of the remaining pages. These are usually
pages from permanent data files in persistent storage.

WORKING SEGMENT AND PAGING SPACE

Working pages in RAM that can be modified and paged out are
assigned a corresponding slot in paging space. The allocated
paging space is used only if the page needs to be paged out.
However, an allocated page in paging space cannot be used
by another page. It remains reserved for a particular page for
as long as that page exists in virtual memory. Because persistent
pages are paged out to the same location on disk from which
they came, paging space does not need to be allocated for
persistent pages residing in RAM.

The VMM has three page space allocation policies:

• Late Page Space Allocation (LPSA)

• Early Page Space Allocation (EPSA)

• Deferred Page Space Allocation (DPSA)

We will discuss the differences between them later in this
article.

VMM MEMORY LOAD CONTROL FACILITY

When a process references a virtual memory page that is on
disk, because it either has been paged out or has never been
read in, the referenced page must be paged in, and this might
cause one or more pages to be paged out if the number of
available (free) page frames is low. The VMM attempts to steal

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

page frames that have not been referenced recently and,
therefore, are not likely to be referenced in the near future,
using a page-replacement algorithm.

A successful page replacement keeps the memory pages of all
currently-active processes in RAM, while the memory pages
of inactive processes are paged out. However, when RAM is
over-committed, it becomes difficult to choose pages for page
out because they will probably be referenced in the near future
by currently running processes. The result is pages that are
likely to be referenced soon might still get paged out and then
paged in again when actually referenced. When RAM is over-
committed, continuous paging in and paging out, called
thrashing, can occur. When a system is thrashing, the system
spends most of its time paging in and paging out instead of
executing useful instructions, and none of the active processes
makes any significant progress. The VMM has a memory load
control algorithm that detects when the system is thrashing
and then attempts to correct the condition.

VIRTUAL MEMORY MONITORING TOOLS

The primary memory monitoring tools are vmstat, ps, and
svmon.

The vmstat command

The vmstat command summarizes the total active virtual
memory used by all the processes in the system, as well as the
number of real memory page frames on the free list. Active
virtual memory (the avm column of the vmstat report) is
defined as the number of virtual memory working segment
pages that have actually been touched. To determine the
amount of virtual memory accessed by the system, multiply
the value in the avm column by 4,096. This number can be
larger than the number of real page frames in the machine
because some of the active virtual memory pages may have
been written out to paging space.

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

When determining whether a system might be short on memory
or if some memory tuning needs to be done, run the vmstat
command over a set interval and examine the pi and po
columns on the resulting report. These columns indicate the
number of paging space page-ins per second and the number
of paging space page-outs per second, respectively. If the
values are constantly non-zero, there might be a memory
bottleneck. Having occasional non-zero values is not a concern,
because paging is the main activity of virtual memory. Run the
vmstat command with the –s flag to observe summary statistics
of paging and system events since system initialization. If the
recently added –I flag is specified, physical I/O queue
information (p) as well as fi (file page-ins per second) and fo
(file page-outs per second) statistics are listed.

The following are a few abridged samples of vmstat usage:

vmstat 5 5

kthr memory page faults cpu

---- ---------- ------------------------ ------------ -----------

r b avm fre re pi po fr sr cy in sy cs us sy id wa

1 1 1444137 6743241 0 0 0 0 0 0 997 6089 1156 1 1 98 1

0 0 1445119 6739821 0 0 0 0 0 0 2445 10792 6410 1 3 96 0

3 0 1445140 6730397 0 0 0 0 0 0 6561 33460 24121 4 17 78 0

2 1 1445150 6730347 0 0 0 0 0 0 1275 84809 1403 3 4 88 5

0 0 1445492 6729994 0 0 0 0 0 0 988 4747 1022 1 2 97 0

vmstat –I 5 5

 kthr memory page faults cpu

-------- ---------- ------------------------ ------------ -----------

r b p avm fre fi fo pi po fr sr in sy cs us sy id wa

1 1 0 1446320 6632273 6 30 0 0 0 0 1024 6225 1261 1 1 98 1

1 0 0 1446329 6620125 0 2452 0 0 0 0 8031 33061 28065 1 5 95 0

2 0 0 1446364 6607257 3 2550 0 0 0 0 8419 33573 29503 1 5 94 0

9 1 0 1446267 6597284 3 2080 0 0 0 0 6830 34832 24290 5 13 80 3

1 0 0 1445354 6590870 0 1512 0 0 0 0 5302 102199 17389 3 7 90 0

vmstat –s

 kthr memory page faults cpu

-------- ---------- ------------------------ ------------ -----------

r b p avm fre fi fo pi po fr sr in sy cs us sy id wa

1 1 0 1446320 6632273 6 30 0 0 0 0 1024 6225 1261 1 1 98 1

1 0 0 1446329 6620125 0 2452 0 0 0 0 8031 33061 28065 1 5 95 0

2 0 0 1446364 6607257 3 2550 0 0 0 0 8419 33573 29503 1 5 94 0

9 1 0 1446267 6597284 3 2080 0 0 0 0 6830 34832 24290 5 13 80 3

1 Ø Ø 1445354 659Ø87Ø Ø 1512 Ø Ø Ø Ø 53Ø2 1Ø2199 17389 3 7 9Ø Ø

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The ps command

The ps command gives useful information on memory usage.
The most useful fields to watch are:

• SIZE – the virtual size of the data section of the process in
1KB units.

• RSS – the real-memory size of the process in 1KB units.

• %MEM – the percentage of real memory used by this
process.

The SIZE column
The v flag, with the ps command, generates the SIZE column.
This is the virtual size (in paging space) in kilobytes of the data
section of the process (displayed as SZ by other flags). This
number is equal to the number of working segment pages of
the processes that have been touched multiplied by 4. If some
working segment pages are currently paged out, this number
is larger than the amount of real memory being used. SIZE
includes pages in the private segment and the shared library
data segment of the process, as shown in the following
example:

ps avw |grep –v PID| sort +5 -r |head -n 5

 1155158 pts/0 A 2:10 596 179316 179248 xx 38 52 1.8

2.0 /usr/j

ava14/jre/bin/java -Xms128m -Xmx256m -DAMC=AMC -DAMC

 757956 pts/1 A 0:00 10 1320 1272 xx 188 228 0.0 0.0

-ksh

 356528 lft0 A 0:00 16 1068 852 xx 40 60 0.0 0.0

/usr/sbi

n/getty /dev/console

 1568960 pts/1 A 0:00 0 636 700 xx 52 64 0.0 0.0

ps avw

 1Ø937Ø6 pts/Ø A Ø:ØØ 9 616 844 xx 188 228 Ø.Ø Ø.Ø

-ksh

The RSS column
The v flag also produces the RSS column, as seen in the
previous example. This is the real memory (resident set) size,
in kilobytes, of the process. This number is equal to the sum

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

of the number of working segment and code segment pages
in memory multiplied by 4. Remember that code segment
pages are shared among all the currently running instances of
the program.

If you want to sort to the sixth column, you will get the output
ordered using the RSS column, as shown in the following
example:

ps avw|grep –v PID| sort +6 -r |head -n 5

827538 pts/0 A 0:00 1 2596 3884 xx 9026 1288 0.0 0.0

perl -d .

/testperl abp v600

 946416 pts/1 A 0:01 0 2644 3148 xx 416 504 0.0 0.0 -

tcsh

 868482 pts/0 A 0:01 0 2288 2792 xx 416 504 0.0 0.0 -

tcsh

 807154 pts/2 A 0:00 8 1320 1260 xx 189 216 0.0 0.0 -

ksh

 200858 0 A 0:00 9 1088 872 xx 40 60 0.0 0.0 /

usr/sbin/getty /dev/console

The %MEM column
The %MEM column is generated by the u and v flags. This is
calculated as the sum of the number of working segment and
code segment pages in memory multiplied by 4 (that is, the
RSS value), divided by the size of the real memory of the
machine in KB, multiplied by 100, rounded to the nearest full
percentage point. This value attempts to convey the percentage
of real memory being used by the process. Unfortunately, like
RSS, it tends to exaggerate the cost of a process that is
sharing program text with other processes. Further, the
rounding to the nearest percentage point causes all of the
processes in the system that have RSS values under 0.005
times real memory size to have a %MEM of 0.0. For example:

ps auw |head -n 1; ps au |egrep -v "RSS"|sort +3 -r |head -n 5

 942178 - A 0:42 393 52764 52800 xx 39 56 0.3 1.0

/usr/ja

 528386 - A 0:00 112 9232 28180 xx 48602 18948 0.0 1.0

ora_s00

 504056 - A 0:00 125 9052 28000 xx 48602 18948 0.0 1.0

ora_pmo

 262284 - A 0:00 234 9232 27836 xx 45224 18604 0.0 1.0

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

ora_s00

 532484 - A 0:00 5 8832 27780 xx 48602 18948 0.0 1.0

ora_s00

 536582 - A Ø:ØØ Ø 882Ø 27768 xx 486Ø2 18948 Ø.Ø 1.Ø

ora_sØØ

You can combine all these columns into one output by using
the gv flags. For example:

ps gvw|head -n 1; ps gv|egrep -v "RSS" | sort +6b -7 -n -r |head -n 5

 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM

COMMAND

 942178 - A 0:44 393 52764 52800 xx 39 56 0.3 1.0

/usr/ja

 528386 - A 0:00 112 9232 28180 xx 48602 18948 0.0 1.0

ora_s00

 504056 - A 0:00 125 9052 28000 xx 48602 18948 0.0 1.0

ora_pmo

 262284 - A 0:00 234 9232 27836 xx 45224 18604 0.0 1.0

ora_s00

 532484 - A Ø:ØØ 5 8832 2778Ø xx 486Ø2 18948 Ø.Ø 1.Ø

ora_sØØ

The columns from the previous output that are described in the
following sections are also of interest.

The PGIN column
The PGIN column shows the number of page-ins caused by
page faults. Since all I/O is classified as page faults, this is
basically a measure of I/O volume.

The TSIZ column
The TSIZ column shows the size of text (shared program)
image. This is the size of the text section of the executable file.
Pages of the text section of the executable program are
brought into memory only when they are touched, that is,
branched to or loaded from.

This number represents only an upper bound on the amount
of text that could be loaded. The TSIZ value does not reflect
actual memory usage.

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The TRS column
The TRS column shows the size of the resident set (real
memory) of text. This is the number of code segment pages
multiplied by 4. This number exaggerates the memory usage
of programs that have multiple instances running.

The svmon command

The svmon command provides a more in-depth analysis of
memory usage. It is more informative, but also more intrusive,
than the vmstat and ps commands.

The svmon command captures a snapshot of the current state
of memory. There are some significant changes in the flags
and in the output from the svmon command between AIX
Version 4.3.2 and AIX Version 4.3.3.

You can use four different reports to analyse the displayed
information:

• Global (-G) – displays statistics describing the real memory
and paging space in use for the whole system.

• Process (-P) – displays memory usage statistics for active
processes.

• Segment (-S) – displays memory usage for a specified
number of segments, or the top 10 highest memory usage
processes, in descending order.

• Detailed segment (-D) – displays detailed information on
specified segments.

Additional reports are available in AIX Version 4.3.3 and later,
as follows:

• User (-U) – displays memory usage statistics for the
specified login names. If no list of login names is supplied,
memory usage statistics display all defined login names.

• Command (-C) – displays memory usage statistics for the
processes specified by the command name.

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Workload management class (-W) – displays memory
usage statistics for the specified workload management
classes. If no classes are supplied, memory usage statistics
display all defined classes.

To support 64-bit applications, the output format of the svmon
command was modified in AIX Version 4.3.3 and later. Additional
reports are available in operating system versions later than
AIX Version 4.3.3, as follows:

• Frame (-F) – displays information about frames. When no
frame number is specified, the percentage of used memory
is reported. When a frame number is specified, information
about that frame is reported.

• Tier (-T) – displays information about tiers, such as the tier
number, the superclass name when the -a flag is used,
and the total number of pages in real memory from
segments belonging to the tier.

VIRTUAL MEMORY TUNING TOOLS

The command vmtune, which was the primary tool for system
tuning tasks under AIX 4.3 and AIX 5.1, has been replaced
under AIX 5.2 by the vmo command.

The main parameters to be controlled by these commands in
order to tune the AIX VMM system are minperm, maxperm,
and maxclient.

VMM parameters minperm and maxperm specify memory
thresholds for the page-replacement algorithm in order to
control JFS file memory cacheing:

• If the percentage of RAM occupied by file pages rises
above maxperm, page replacement steals only file pages.

• If the percentage of RAM occupied by file pages falls
below minperm, page replacement steals both file and
computational pages.

• If the percentage of RAM occupied by file pages is between

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

minperm and maxperm, page replacement will steal only
file pages unless the file repaging rate is higher than the
computational repaging rate.

The parameter strict_maxperm is used to place a hard limit on
how much RAM is used as a persistent file cache.

The VMM parameter maxclient specifies memory thresholds
for the page-replacement algorithm in order to control JFS2
file memory cacheing. JFS2 pages are allocated from the
client segment. The upper limit for client page allocation is
based on the value of the maxclient parameter. Once the
number of client pages in memory reaches maxclient, page
replacement is started on the client pages. JFS2 will compete
for client pages with other client segment users such as NFS
or compressed file systems. To reduce the likelihood of
replacing working storage pages because of a large amount of
JFS pages in RAM, reduce the value of the maxclient parameter.
For instance, to limit maxclient pages to 50% of cache,
execute:

vmo –p –o maxclient%=5Ø

TUNING A PAGE SPACE ALLOCATION METHOD

Late page space allocation

The late paging space allocation policy means that paging
space disk blocks are not allocated until the corresponding
pages in RAM are touched. This policy was a default prior to
AIX 4.3.2. Using this policy provides better system performance
while preventing processes from unnecessarily using too
much paging space. However, there is no guarantee that a
process will always have sufficient paging space available if it
needs to page out because some other process can start later
and consume all the paging space.

Early page space allocation

Early page space allocation means that paging space disk

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

blocks are reserved or assigned to a process as soon as
memory is requested. The early policy can be turned on by
setting the PSALLOC environmental variable to the value
early. This can be done from within the process or at the
command line (PSALLOC=early command). When the process
uses the malloc() subroutine to allocate memory, this memory
will now have paging-space disk blocks reserved for this
process, ie they are reserved for this process so that there is
a guarantee, should the process need to page out, that there
will always be paging space slots available for it. If you are
using an early policy and if CPU saving is a concern, you may
want to set another environment variable called
NODISCLAIM=true so that each free() subroutine call does
not also result in a disclaim() system call.

Deferred page space allocation

On some systems, page space may not ever be needed –
even if all the pages accessed have been touched. This is
most common on systems with very large amounts of RAM.
The deferred page space allocation policy, introduced with AIX
4.3.2.6, will further delay the allocation of paging space until it
is necessary to page out the page – which results in no wasted
paging space allocation. This can save huge amounts of
paging space. This policy, however, can cause over commitment
of paging space in cases where more virtual memory than
available RAM is accessed.

Choosing between LPSA and DPSA

Running the vmtune command with the -d option enables the
turning on or off of deferred page space allocation in order to
preserve the late page space allocation policy. A value of 1
indicates that DPSA should be on, and a value of 0 indicates
that DPSA should be off. If you choose to turn off DPSA, make
sure that the kernel level is AIX 4.3.2.6 or higher. On AIX 5.2
the following command will turn off/on DPSA:

vmo –p –o defps=<0 or 1>

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Watching paging space and virtual memory

The vmstat command (avm column), ps command (SIZE,
SZ), and other utilities report the amount of virtual memory
actually accessed because, with DPSA, the paging space may
not get touched. The svmon command (up to AIX 4.3.2)
shows the amount of paging space being used, so this value
may be much smaller than the avm value of the vmstat
command.

It is safer to use the lsps -s command than the lsps -a
command to look at available paging space because the
command lsps -a shows only paging space that is actually
being used. But the command lsps -s will include paging
space being used along with paging space that was reserved
using the EPSA policy.

Utilization of shared memory to lower paging space usage

Processes can explicitly map files directly into memory, which
avoids buffering and the system call overhead caused by it.
System calls shmat(0) and mmap() can be used to perform
this. Alternatively, shared memory segments can be used by
multiple processes/threads to share data. Typical use is by
database applications to implement a large database buffer
cache. Each shared memory segment consumes 256MB of
RAM. Before AIX 4.2.1, only 10 regions could be attached.
With 4.2.1 and later releases, 11 regions can be attached
(many more with 64-bit applications starting with AIX 4.3.0).

Extended shared memory provides for more granular shared
memory regions. Its usage is turned on by setting the
environmental variable EXTSHM=ON. The size of a shared
memory region can be from 1 byte to 256MB, but the address
space consumption will be rounded up to the next page (4096)
boundary. This method essentially removes the limitation of 11
shared memory regions.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

REFERENCES

1 IBM Certification Study Guide – pSeries AIX System
Support, IBM Corporation, SG24-6185.

2 AIX 5L Performance Tools Handbook, SG24-6039-01.

Alex Polyak
System Engineer
APS (Israel) © Xephon 2004

Up and running with NTP

NTP, the Network Time Protocol, allows different hosts to
synchronize their (internal) time clocks across networks, to an
internal or external time server. The service xntpd uses NTP
to synchronize the computers’ time. In a typical NTP set-up, an
internal server will synchronize against a stratum 1 (primary)
or stratum 2 (secondary) time server; other internal hosts will
then synchronize off this host. Where there is a large network
of hosts, this workload would be spread to other internal time
servers. This will usually be based on geographical location or
subnets, creating a pyramid hierarchy set-up.

To poll a stratum server, which is usually free, all that is
required is that you e-mail the host administrator with a
courtesy e-mail informing them that you wish to use their
resources. Make sure that your firewall allows the NTP protocol
through – which is UDP at port 123. To locate a stratum time
server near to you, check out: http://www.boulder.nist.gov/
timefreq.

It may be the case that because of internal policies, accessing
external time servers is not an option. This is only an
inconvenience, not a show stopper. You can have an internal
server as the designated time server, and the rest of the
internal hosts can poll the time from that one server. Remember,

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

however, that if you have many hosts, it is best to split them up.
A good rule-of-thumb is to have no more than 15 servers
polling an internal time server.

SETTING UP NTP ON THE SERVER

First make sure the xntpd server is not running:

stopsrc –s xntpd

The file /etc/ntp.conf holds the key information on xntpd. If the
server will be polling from an external time server, you need to
put the DNS entry for this machine in here. A typical file could
look like:

server time.nist.gov # external

server swisstime.ethz.ch # external

driftfile /etc/ntp.drift

tracefile /etc/ntp.trace

The entry server denotes what follows – it will be a time server
that this host is to time synchronize against; in this case it is the
time server host (time.nist.gov). Notice that there is another
server entry for another time server. Although not required, it
allows for redundancy in case the first time server goes off-line
for a long period. The xntpd will then synchronize against this
server. When xntpd is initially started, it will poll the time
difference between the local host and the time server as
denoted by the server entry. How much difference there is in
the time frequency or drift is stored in the file /etc/ntp.drift.
Xntpd uses this stored value to gradually reduce the drift in
time ticks on the internal host. The trace file is used by xntpd
when tracing utilities are invoked, like the utility ntptrace.

The next task is to start the xntpd service:

startsrc –s xntpd

Using ntpq or xntpdc, which can be invoked interactively or
via the command line, one can see whether a server is
synchronized, though be aware it may take a few hours to fully
synchronize against a stratum time server. Eventually you will

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

see a ‘*’ or a ‘+’ against the time server. The ‘*’ indicates that
the server is synchronized, a ‘+’ denotes that it is actively
seeking to synchronize:

ntpq -p

 remote refid st t when poll reach delay offset disp

==

* time.nist 192.43.244.18 1 u 130 400 377 35.24 -1.625 7.16

+ swisstime 129.132.2.21 1 u 8Ø 1Ø24 377 39.52 -6.794 3.43

Looking at the above output from ntpq, we can see that the
local host is polling the server time.nist every 400 seconds, but
for swisstime, it is every 1024 seconds. The local host is 1.625
seconds behind the clock on the server time.nist. Also notice
that both of the servers are (st) stratum 1 servers.

Be sure to check out /var/adm/messages; all loss and re-
synchronized events of the time server will be logged there.

If for some reason you are not allowed to use an external time
server, then the next best option is to set up an internal master
time server. The configuration for this is as follows:

server 127.127.1.0 #local stratum host clock

fudge 127.127.1.Ø stratum 14

The server address of 127.127.1.0, indicates to xntpd that this
is on the local host and it will treat this as a reference clock.
Because the internal clock will probably not be very accurate,
the stratum level is reduced to 14. The smaller the stratum’s
number, the higher and more accurate it is in the xntpd
hierarchy; the larger the number, the less accurate it is for time
synchronization.

One can also use a router to poll the time, because most have
xntpd built in. Generally these routers get the time externally.
Be sure to check with the network administrator that the router
is set up for xntpd. The router will undoubtedly be broadcasting
this UDP information. Be sure to have the following additional
entry after the router’s server address/FQDN has been added:

Broadcastclient

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SETTING UP NTP ON THE CLIENTS

Once the internal server is synchronized, the next task is to set
up the remaining clients within the network to poll the internal
time server.

Be sure to first make sure the xntpd service is not running:

stopsrc –s xntpd

On each client host put an entry in its ntpd.conf that points to
the internal time server. For example, assume the local (master)
time server is 192.168.1.10, then the following entries will
need to be in each ntp.conf file on each client:

Server 192.168.1.10 # internal ukaix08

driftfile /etc/ntp.drift

tracefile /etc/ntp.trace

Before starting the xntpd service you will need to get the
current time synchronized using the ntpdate command. First
check that ntpd can communicate with the host, by using
ntpdate in debug mode; no changes will take effect.

ntpdate –d 192.168.1.10

25 Mar 11:48:55 ntpdate[1576960]: 3.4y

receive(192.168.1.10)

transmit(192.168.1.10)

< more output …… . . >

stratum 14, precision -17, leap ØØ, trust ØØØ

Next, do the actual date synchronization from the client:

ntpdate 192.168.1.10

25 Mar 12:ØØ:39 ntpdate[88388]: adjust time server 192.168.1.1Ø offset

Ø.ØØ2747sec

If you get a port in use message, then you are most probably
still running xntpd. Stop it and re-run the ntpdate command.

When ntpdate has completed, restart the service xntpd:

startsrc –s xntpd

Using the ntpq or xntpdc utility check that the client is polling
from the internal timeserver. The synchronization process
should not take more than a few minutes because the ntpdate

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

command has just been used:

ntpq -p

remote refid st t when poll reach delay offset disp

==

*ukaixØ8 LOCAL(Ø) 14 u 29 64 377 Ø.34 Ø.ØØØ Ø.Ø5

The utility ntptrace can be used to trace the source of your
timeserver. Simply enter ntptrace on the command line and it
will display information about the source of your time server
and the distance. It is a very good tool if you find that the local
host’s time drift is getting greater.

A good port of call for any problems is the /var/adm/messages
file. The following segment shows that the service was stopped
and restarted, with the client able to re-synchronize successfully
with the host 192.168.1.10:

Mar 25 12:00:23 ukaix12 xntpd[9916]: SRC stop issued.

Mar 25 12:00:23 ukaix12 xntpd[9916]: exiting.

Mar 25 12:01:14 ukaix12 xntpd[87984]: 3.4y

Mar 25 12:01:14 ukaix12 xntpd[87984]: tickadj = 1000, tick = 10000,

tvu_maxslew = 99000

Mar 25 12:01:14 ukaix12 xntpd[87984]: precision = 10 usec

Mar 25 12:Ø5:31 ukaix12 xntpd[87984]: synchronized to 192.168.1.1Ø,

stratum=14

Xntpd is very easy to configure, and is very low
maintenance once up and running with a basic
configuration. Xntpd can also be used with authentication
and access control options, to properly secure the service.

David Tansley
Global Production Support (IBM p-series) (UK) © Xephon 2004

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Contributing to AIX Update

Why not share your expertise and earn money at the
same time? AIX Update is looking for shell scripts,
program code, JavaScript, etc, that experienced users
of AIX have written to make their life, or the lives of their
users, easier. We are also looking for explanatory
articles, and hints and tips, from experienced users.

We will publish your article (after vetting by our expert
panel) and send you a cheque, as payment, and two
copies of the issue containing the article. Articles can be
of any length and should be e-mailed to the editor,
Trevor Eddolls, at trevore@xephon.com.

A free copy of our Notes for Contributors, which includes
information about payment rates, is available from our
Web site at www.xephon.com/nfc.

AIX news

IBM has launched the eServer i5, which is
powered by the Power5 microprocessor. An i5
was known as iSeries, and before that, as an
AS/400. The Power5 chip offers simultaneous
multithreading (SMT), which effectively
transforms a single processor core into two
logical processors. The Power5 has two
processor cores, and therefore is able run four
application threads simultaneously.

So, the IBM eServer i5 can integrate and run
multiple operating systems simultaneously. And
the reason it is relevant is because one of those
operating systems is AIX 5L, the others are
i5/OS, Linux, and Windows.

For further information contact your local IBM
representative.

* * *

Citadel Security Software has announced
Hercules 3.0, its vulnerability management
solution.

Running on AIX as well as HP-UX and Mac OS
X, the product offers a host-based quarantine
remediation solution, ConnectGuard.
ConnectGuard quarantines all traffic from
remote and local machines reconnecting to the
network, checks for security policy compliance,
and performs remediations on out-of-
compliance machines before they are allowed to
connect.

Laptops that spend any time outside the
corporate firewall pose a threat when they
connect to the network behind the corporate
firewall. By scanning a system for vulnerabilities
as it is connecting to the network and blocking

the connection while vulnerability mitigation is
facilitated, Citadel helps overcome the problem.

For further information contact:
Citadel Security Software, 8750 N Central
Expy, Suite 100, Dallas, TX 75231, USA.
Tel: (214) 520 9292.
URL: http://www.mendocinosoft.com/pages/
products.htm.

* * *

Triversity has announced that Transactionware
Enterprise, a J2EE POS solution, now supports
core products of Microsoft’s .NET platform.
Transactionware Enterprise runs on AIX,
Windows, Linux, and other operating systems,
and Transactionware Enterprise extends its
versatility with the ability to support IBM 4690
clients and other non-Java environments.

Transactionware Enterprise’s J2EE POS is
designed to work in harmony with and
complement .NET applications and services
running on the Windows XP and Windows
Server family of operating systems. Employing
core .NET products such as SQL Server 2000
and Active Directory, and leveraging
technology standards like XML and Web
services, Transactionware Enterprise
applications such as POS and mobile POS may
be deployed as part of a retail organization’s
larger .NET initiative.

For further information contact:
Triversity, 3550 Victoria Park Avenue, Suite
400, Toronto, Ontario, M2H 2N5 Canada.
Tel: (416) 791 7100.
URL: http://www.triversity.com/
newsandevents/release_040112a.html.

x xephon

	Securing Apache with SSL
	Filesystem check
	Reporting information about space on shark storage (ESS)
	Tuning memory performance on AIX
	Up and running with NTP
	AIX news

