
© Xephon Inc 2004

September 2004

107

In this issue

3 Writing a daemon process
9 LPAR back-up over a network

16 Creating a cacheing DNS
27 Teach me DB2 on AIX! – part 2
44 Parsing output of tapeutil

command
48 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
$275.00 in the USA and Canada; £180.00 in
the UK; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 2000 issue, are available
separately to subscribers for $24.00 (£16.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Writing a daemon process

INTRODUCTION

Daemons are processes that live for a long time. Often they are
started when the system is bootstrapped and terminated when
the system is shut down. We say they run in the background,
because they don’t have any controlling terminal. Unix systems
have numerous daemons that perform day-to-day activities.

Writing a daemon involves:

• Writing a daemon program.

• Creating a dedicated process in which to run the daemon
program.

WRITING A DAEMON PROGRAM

The rules for writing a daemon program are as follows:

1 Construct a loop that will be executed at regular intervals in
order to do its work.

2 Implement the regular intervals by issuing a sleep system
call.

3 Implement proper signal handling, and designate a signal
for termination.

4 Do not send any messages to stdout or stderr.

5 Implement an interface to a central error logging system.

FORK () AND EXEC ()

We need to be familiar with the fork () and exec () function calls,
which will be used to create new processes and execute a
desired program in that process.

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

fork ()

The only way a new process is created in Unix is by an existing
process calling the fork function. Exceptions to this rule are
three processes – swapper, init, and pagedaemon – which are
created by the kernel as part of bootstrapping.

The new process created by fork is called a child process. This
function is called once but returns twice. A process id of 0 is
returned to the child process and the process id of the child
process is returned to the parent process. Because it is not
possible for a parent to obtain its child’s process id, the fork ()
returns the child process id to its parent. The reason that the
fork () returns 0 to the child process is that this can be used to
establish whether or not this is the parent or child process. It is
safe to return 0 by fork () to the child process because only the
init process can have this process id and, therefore, when the
child process id calls getpid (), it will receive its proper process
id, and when it calls gettpid, it will receive its proper parent
process id.

Both the child and parent continue executing with the instruction
that follows the call to fork (). The child is a copy of the parent.

The following is a list of the properties of the parent that are
inherited by the child:

• Real user id, real group id, effective user id, effective group
id.

• Supplementary group ids.

• Process group id.

• Session id.

• Controlling terminal.

• Set-user-ID flag and set-group-ID flag.

• Current working directory.

• Root directory.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• File mode creation mask.

• Signal mask and dispositions.

• The close-on-exec flag for any open file descriptors.

• Environment.

• Attached shared memory segments.

• Resource limits.

The differences between the parent and child are:

• The return values from fork.

• The process ids are different.

• The two processes have different parent process ids – the
parent process id of the child process is the parent; the
parent process id of the parent does not change.

• The child’s values for tms_utime, tms_stime, tms_cutime,
and tms_ustime are set to 0.

• File locks set by the parent are not inherited by the child.

• Pending alarms are cleared for the child.

• The set of pending signals for the child is set to the empty
set.

exec ()

exec () is used to execute a new program in the child process
that would be created by the fork (). When a process calls exec
(), that process is completely replaced by the new program, and
the new program starts executing as its main function. The
process id does not change across an exec () because a new
process is not created. Exec merely replaces the current
process (its text, data, heap, and stack segments) with a brand
new program from disk.

There are six different exec functions, and differences are
mainly the different methods of passing various arguments.

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

DAEMON CHARACTERISTICS

Daemon characteristics are:

1 All the daemons run with superuser privilege (a user id of 0).

2 None of the daemons has a controlling terminal, and
terminal name is set to a question mark when process
details are displayed.

3 The parent of all daemons is the init process.

CODING RULES

The coding rules are:

1 The first thing to do is to call fork and have the parent exit.
This does several things. First, if the daemon was started
as a simple shell command, having the parent terminate
makes the shell think that the command is done. Second,
the child inherits the process group id of the parent, but gets
a new process id – we’re guaranteed that the child is not a
process group leader. This is a prerequisite for the call to
setsid that is done next.

2 Call setsid to create a new session, which leads to the
following steps:

– the process becomes a session leader of a new
session.

– the process becomes the process group leader of a
new process group.

– the process is tied up with no controlling terminal.

3 Change the current working directory to the root directory.
The current working directory inherited from the parent
could be on a mounted filesystem. Since daemons normally
exist until the system is rebooted, if the daemon stays on
a mounted filesystem, that filesystem cannot be unmounted.

4 Set the file mode creation mask to 0. The file mode creation

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

mask that’s inherited could be set to deny certain
permissions. If the daemon process is going to create files,
it may want to set specific permissions. For example, if it
specifically creates files with group-read and group-write
enabled, a file mode creation mask that turns off either of
these permissions would undo its efforts.

5 Unneeded file descriptors should be closed. This prevents
the daemon process from holding open any descriptors that
it may have inherited from its parent (which could be shell
or some other process). Exactly which descriptors to
close, however, depends on the daemon.

6 Start executing the daemon program in the child process.

ERROR LOGGING

One problem a daemon has is to how to handle error messages.
It can’t just write to standard error, since it shouldn’t have a
controlling terminal. We don’t want all the daemons writing to
the console device since this can make administration difficult.
We also don’t want each daemon writing its own error messages
into a separate file. It would be a headache for anyone
administering the system to keep up with which daemon writes
to which file and to check those files on a regular basis. A central
daemon error logging facility is required.

Use the following errlog () to log any errors to system log:

include <sys/err_rec.h>

int errlog (void *ErrorStructure, unsigned int length)

For example:

char err_msg[12Ø];

char module_details[] ="LogTrimmer" ;

int buf_len;

struct err_rec ErrorStructure ;

ErrorStructure *ptr ;

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

if (error condition)

{

 ptr->error_id = <error_no> ;

 strcpy(ptr->resource_name, module_details) ;

 strcpy(ptr->detailed_data = err_msg) ;

 errlog (ptr , size(ptr)) ;

}

PROCESS CREATION AND EXECUTION

An example of process creation and the execution of a daemon
program is shown below:

#include <sys/types.h>

#include <sys/stat.h>

#include <fctnl.h>

int CreateDaemonProcess (void)

{

pid_t pid;

/*

* call fork ()

*/

if (pid = fork() < Ø)

/*

* fork () failed

*/

 return (-1) ;

else if (pid != Ø)

/*

* this is the parent process

*/

 exit(Ø) ;

/*

* child or daemon process continues

*/

setsid () ;

chdir ("/");

umask(Ø);

/*

 * execute daemon program in this child process

 */

 execle ("/home/admin/bin/LogTrimmer");

return (Ø);

}

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

COMMON USAGE

A common use for a daemon process is as a server process.
In general, a server is a process that waits for a client to contact
it, requesting some type of service. This communication between
client and server process can be one-way or two-way. The area
of interprocess communication is where numerous examples of
two-way communication between a client and a server process
can be found.

Arif Zaman
DBA/Developer (UK) © Xephon 2004

LPAR back-up over a network

We have several IBM pSeries Model 630s and 650s that
replaced several SP/2 frames. The pSeries models don’t have
any tape drives, so we had to look for a way to back up the
system data using mksysb. Because we shut down the SP/2
frames, we had no use for the Control Workstation that was
attached to one of the SP/2 frames, so we decided to use the
CWS machine after uninstalling all the PSSP stuff (we still call
it CWS) and the tape drive attached to it. But then we ran into
another problem. We could not back up all logical partitions
(LPARs) at once, and on one tape. What we now do is back up
all LPARs of one pSeries machine on one day, all LPARs of
another pSeries machine the next day, and so on. Since we set
up all LPARs using NIM we can restore the machine using NIM
in the case of a disaster. A short description of how to use NIM
commands to restore a machine is at the end of this article.

To achieve this we wrote two scripts, both started by an
appropriate crontab entry. One script (later called
net_backup.ksh) does the back-up on every LPAR and is
located on all LPARs; the other script (later called
tape_backup.ksh) writes the mksysb files to tape and is located
on the Control Workstation.

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Machine hostname family-name

pSeries 1: u31aix u3
u32aix u3
u33aix u3

pSeries 2: u41aix u4
u42aix u4
u43aix u4
u44aix u4

pSeries 3: u51aix u5
u52aix u5
u53aix u5
u54aix u5

We grouped all LPARs of one pSeries into ‘families’. We just
use the hostnames because they fit into that schema. Because
in our case the hostname is part of the name for the mksysb, it
should be easy to adjust the filenames to fit every individual
environment.

The naming convention for the machines is shown in Figure 1.
This naming convention makes it easier later to back up all
mksysb files. If your hostnames do not follow any conventions
you can name the mksysb files with any name you like, so that
a group of mksysb files are always written to tape at once. Just
adjust the corresponding variables in the scripts. We can also
group one ‘family’ in order to write all the mksysb file for all the
machines in one ‘family’ to tape at once.

LPAR SCRIPT NET_BACKUP.KSH

We created a logical volume big enough to hold several mksysb
files on the CWS, and mounted the filesystem /lpar/mksysb.
This filesystem holds the mksysb files of every single LPAR and
the logs in a separate directory. This filesystem is mounted over
NFS on every LPAR. The naming conventions are as follows:

Figure 1: The naming convention

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• mksysb file:

/lpar/mksysb/<machinenname>.<date>

(eg u31aixot.21112003.)

• logfiles of mksysb:

/lpar/mksysb/net_backup/<date>.log

• logfiles of tape back-up:

/lpar/mksysb/netbackup/tapebackup.log

As already mentioned, the scripts are started via crontab. The
back-ups for all LPARs on one pSeries machine are started on
one day, for all the LPARs of the next pSeries on the next day,
and so on (as Figure 2 shows). After all back-ups are finished,
the mksysb files for all LPARs on one pSeries are written to
tape. The time schedules represent my environment and must
be adjusted to every individual environment.

The corresponding crontab entry looks like this:

ØØ 22 * * 1 /etc/net_backup.ksh

This means that the script runs every Monday at 22:00. As
shown in Figure 2, this applies to all machines with a name
starting u3*. On Tuesday, all machines starting with u4* will do
their mksysb back-up, and so on. And here is the script:

#!/usr/bin/ksh

#

Name: /etc/net_backup.ksh

#

It will mount CWS:/lpar/mksysb to /mksysb

logs are written to /mksysb/net_backup/$DATE.log

#

Exit Code Ø = All Fine

Exit Code 1 = Couldn't mount

Exit Code 2 = Couldn't umount

#

declare variables

BACKDIR=/mksysb

NAME=$(hostname)

DATE=$(date +%d%m%Y)

LOG=/mksysb/net_backup/$DATE.log

LOCALLOG=/tmp/$DATE.mksysb.log

 12
©

 2004. X
ephon U

S
A

 telephone (214) 340 5690, fax (214) 341 7081.

F
igure 2: Starting the scripts

##

a
f
t
e
r

t
h
i
s
,

l
e
t
'
s

c
h
e
c
k

w
h
e
t
h
e
r

m
o
u
n
t

w
o
r
k
s

#

i
f

i
t

d
o
e
s
,

g
o

a
h
e
a
d
,

o
t
h
e
r
w
i
s
e
,

b
r
e
a
k

#

Machine Day of Time of Crontab

 name Script name back-up backup Entry

u31aix /etc/net_backup.ksh Monday 2Ø:ØØ ØØ 2Ø * * 1 /etc/net_backup.ksh

u32aix /etc/net_backup.ksh Monday 2Ø:15 15 2Ø * * 1 /etc/net_backup.ksh

u33aix /etc/net_backup.ksh Monday 2Ø:3Ø 3Ø 2Ø * * 1 /etc/net_backup.ksh

CWS /etc/tape_backup.ksh Monday 21:3Ø 3Ø 23 * * 1 /etc/tape_backup 3

u41aix /etc/net_backup.ksh Tuesday 2Ø:ØØ ØØ 2Ø * * 2 /etc/net_backup.ksh

u42aix /etc/net_backup.ksh Tuesday 2Ø:15 15 2Ø * * 2 /etc/net_backup.ksh

u43aix /etc/net_backup.ksh Tuesday 2Ø:3Ø 3Ø 2Ø * * 2 /etc/net_backup.ksh

u44aix /etc/net_backup.ksh Tuesday 2Ø:45 45 2Ø * * 2 /etc/net_backup.ksh

CWS /etc/tape_backup.ksh Tuesday 21:3Ø 3Ø 23 * * 2 /etc/tape_backup 4

u51aix /etc/net_backup.ksh Wednesday 2Ø:ØØ ØØ 2Ø * * 3 /etc/net_backup.ksh

u52aix /etc/net_backup.ksh Wednesday 2Ø:15 15 2Ø * * 3 /etc/net_backup.ksh

u53aix /etc/net_backup.ksh Wednesday 2Ø:3Ø 3Ø 2Ø * * 3 /etc/net_backup.ksh

u54aix /etc/net_backup.ksh Wednesday 2Ø:45 45 2Ø * * 3 /etc/net_backup.ksh

CWS /etc/tape_backup.ksh Wednesday 21:3Ø 3Ø 23 * * 3 /etc/tape_backup 5

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

mount $BACKDIR

if [$? -eq Ø]

 then

 # We are fine just log that it works

 echo "$NAME.$DATE: Mount of $BACKDIR successful." >> $LOG

 else

 # No good. Lets log and stop right here

 echo "$NAME.f$DATE: Mount of $BACKDIR failed. Error. Exiting." >>

$LOCALLOG

 echo "$NAME.$DATE: No Backup of $NAME created" >> $LOCALLOG

 exit 1

fi

Now we got a mount.

The next step is creating our backup

echo "$NAME.$DATE: Starting mksysb at $(/usr/bin/date +%H:%M)" >> $LOG

/usr/bin/mksysb '-e' '-i' $BACKDIR/$NAME.$DATE $>> LOCALLOG

Here we go. Lets see if backup was successful.

if [$? -eq Ø]

 then

 # Yes it was successful. Write a log message

 echo "$NAME.$DATE: Mksysb successful finished at $(/usr/bin/date

+%H:%M)" >> $LOG

 else

 echo "$NAME.$DATE: Mksysb finished with errors at $(/usr/bin/date

+%H:%M)." >> $LOG

 echo "$NAME.$DATE: See $LOCALLOG on $NAME for further informations."

>> $LOG

fi

umount $BACKDIR

if this does not work, we alert the admin, to have a look at it.

otherwise we are finished.

if [$? -eq Ø]

 then

 # We are done.

 exit Ø

 else

 # Write a log and go to sleep anywhere

 # This stuff is admin work not neccessary to care about

 echo "$NAME.DATE: umount of $BACKDIR unsuccessful. Please have a

look at $NAME" >>

$LOG

 exit 2

fi

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Should never get here.

exit Ø

CWS SCRIPT TAPE_BACKUP.KSH

This script mainly does two things. First it does a back-up of all
mksysb files for all LPARs of one pSeries machine. After all
mksysb files are successfully written to tape, it deletes all those
files in order to have enough space for new back-ups. Don’t
forget to change the tapes after every back-up, label the tapes
with the correct names, and store them in a safe place!

The corresponding crontab entry looks like this (see also Figure
2 above):

3Ø 23 * * 1 /etc/tape_backup 3

3Ø 23 * * 2 /etc/tape_backup 4

3Ø 23 * * 3 /etc/tape_backup 5

And here is the script:

#!/usr/bin/ksh

#

At first, define variables before we go along

BACKDIR="/lpar/mksysb"

TAPE="/dev/rmtØ"

DATE=$(/usr/bin/date +%d%m%Y)

GROUP="u$1?aix"

LOG=$BACKDIR/net_backup/tapebackup.log

echo "$DATE: Starting tape backup at $(/usr/bin/date +%H:%M)" >> $LOG

/usr/bin/tar -cvf$TAPE $BACKDIR/$GROUP*.$DATE >> $LOG

if [$? -eq Ø]

 then

 # All went fine. Write log and go to next step

 echo "$DATE: $GROUP successfully backed up to tape. Backup ended $(/

usr/bin/date +%H:%M)" >> $LOG

 else

 # something went wrong. Write log and stop before deleting.

 echo "$DATE: $GROUP backup failed. Exiting." >> $LOG

 exit 1

fi

Backup went fine

Remove the old backup files

echo "$DATE: Deleting files of $GROUP from $DATE." >> $LOG

for i in $(ls -al $BACKDIR/$GROUP*.$DATE | awk '{ print $9 }')

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 do

 # echo what we delete and then delete it

 echo "$DATE: Deleting $i from filegroup $GROUP" >> $LOG

 rm $i >> $LOG

 if [$? -eq Ø]

 then

 # Deleted successful.

 echo "$DATE: Done." >> $LOG

 else

 # Something went wrong. Log information

 echo "$DATE: Deleting $i failed." >> $LOG

 fi

done

Eject tape to prevent accidently overwriting it

echo "$DATE: Setting Tape to offline" >> $LOG

/usr/bin/tctl -f $TAPE offline >> $LOG

if [$? -eq Ø]

 then

 # Tape is ejected

 echo "$DATE: Done. Backup of $GROUP on $DATE finished" >> $LOG

 exit Ø

 else

 # Tape is not ejected

 echo "$DATE: Failed. Eject tape manually from drive!" >> $LOG

 exit 2

fi

Should never get here

exit Ø

RESTORE SCENARIO

If you use NIM to set up all the machines, the restore scenario
could look like the following.

Restore the tape with the proper mksysb files to the CWS, into
the directory /lpar/mksysb, using the following command:

tar -xvf/dev/rmtØ /lpar/mksysb

Now all the files for one pSeries are on disk on the CWS. You
must copy the appropriate mksysb file to the NIM master for the
machine to be restored. After that set up NIM to restore the
machine using smit commands:

#smitty nim

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

—> Perform NIM Administration Tasks

—> Manage Resources

—> Define a Resource

o mksysb

* Resource Name: <name of mksysb>

* Serve for Resource: <local NIM server>

* Location for Resource: <where is the file on the NIM server>

<Enter>

After that, allocate the resources and set the NIM client
machine to bos_inst using the appropriate NIM command and
do a network boot.

Robert Schuster and Robert Frenzel
System Administrators (Germany) © Xephon 2004

Creating a cacheing DNS

Bind, the DNS package, can be downloaded from the Bull Web
site (bind 9.2.1.0). Do not use the bind package shipped with
the 5.2 distribution CDs because it contains an old package
build. Even better is to download the source and build the
package yourself from www.isc.org. Throughout this article I
will use the names bind and named interchangeably because
bind is synonymous with named.

A cacheing DNS does exactly what its name suggests, it
caches your resolved queries. The process is as follows. A
query is sent to the cacheing server to be resolved. It firsts
looks in its cache to see whether the query has been resolved
before. If it has, it will send the resolved query straight back to
the client. If it does not have it in its cache, it will then go off to
the next DNS (this part of the process is repeated, depending
on whether the request is answered or not). The query will then
be sent back to cacheing DNS and then sent back to the client.
If the query is resolved, it will then reside in the cache’s DNS.
This cycle is repeated for each look-up.

At some point, a previously-resolved host may have changed

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

its IP address; so how can one know whether the local cache
is up to date? Well, when a client tries to resolve a host that is
not in the cache, the resolved query is sent back with a TTL
(Time To Live) appended to it. This is the amount of time before
the resolved query in the cache can be considered stale or
suspect. So when a client tries to resolve a host again, the DNS
will check its cache, see whether this host has previously been
resolved, and if it has it will then check the TTL; if it has expired
or been breached, the cacheing DNS will go off to the Internet
and resolve it again, using the process mentioned earlier. One
can also clear (delete) the DNS cache by restarting named.

WHY CHOOSE A CACHEING DNS?

In a nutshell, you choose a cacheing DNS to save time and
reduce network traffic. If you have a ropey network, and your
host times out a lot trying to query your master DNS, then install
a cacheing server. If you are on a dial-up connection to the
Internet, why bother trying to resolve hosts from your ISP’s
DNS all the time? Get the queries cached locally – install a
cacheing DNS. Of course, by having a cacheing DNS, all the
work is done by a main DNS and not your cacheing DNS.

SETTING UP A CACHEING DNS

Most if not all of the required configuration files will be installed
with the bind package; all that is required is for the administrator
to configure them. Sounds easy? It is. There are only three
main files to configure for a basic cacheing server: named.conf,
localhost.rev, and root.cache.

Assume for this article that our domain is called
somecomany.co.uk

The first task is to decide the order of DNSs we wish to query.
We point at ourselves with the loopback address of 127.0.0.1.
The file which specifies the order of servers to be queried is /
etc/resolv.conf. To build a bit of redundancy into our queries,
you should always specify at least two DNS servers. In the

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

example listing below, another DNS server is specified with an
IP address of 192.168.4.50. In this file, one can also specify
the default domain. This is the domain that will be appended to
your queries when you try to resolve a host that does not have
a dot in its name; in our case this would be the domain
somecompany.co.uk, as in the example. Typically these would
be internal hosts to the network. If your company has more than
one internal domain, use the search statement instead of the
domain statement in resolv.conf. For example if a company had
two domains, called uk.somecompany.local and
eu.somecompany.local, then one would use:

search uk.somecompany.local eu.somecompany.local

In the following example using nslookup, we resolve an internal
host, webserver1. Because the hostname does not contain
any dots, the domain (somecompany.co.uk) is appended to it.
Please try to use dig to resolve queries; nslookup is being
gradually used less. It is used here for illustration purposes
because of its minimal output.

Default Server: localhost

Address: 127.Ø.Ø.1

> webserver1

Name: webserver1.somecompany.co.uk

Address: 192.168.4.2Ø

In the next example, we resolve a hostname that does contain
dots in its name. The domain (somecompany.co.uk) does not
get appended to it.

Default Server: localhost

Address: 127.Ø.Ø.1

> www.skynews.co.uk

Name: www.skynews.co.uk

Address: 63.121.1Ø6.133

Example listing for /etc/resolv.conf:

domain somecompany.co.uk

nameserver 127.Ø.Ø.1

nameserver 192.168.4.5Ø

A decision that also has to be taken is to decide on whether one

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

wants the local hosts resolved first by trying the /etc/hosts file
or using the DNS. If all queries should first try the /etc/hosts and
then go off to the DNS, edit the /etc/netsvc.conf file and add the
following:

order hosts, dns

Alternatively, if one wishes to first try the DNS then /etc/hosts,
use the following:

order dns, hosts

One can also use the environment variable NSORDER to
specify the look-up order, like so;

export NSORDER=hosts,bind

The decision one makes will be based on whether the AIX box
has a loaded /etc/hosts file. By that I mean many host entries.

The file called named.conf, located in /etc, tells named what
type of server it is to run, what type of options, the zone files to
use, and the location of the named directory. A typical listing for
/etc/named.conf is shown below. The forward slashes ‘//’ are
comment lines.

// resolv.conf

// location of zone files

options {

 directory '/var/named';

 };

// root.cache file - hints file

zone "." {

 type hint;

 file "root.cache"'

 };

// loopback file.

 Zone "Ø.Ø.127.in-addr.arpa"{

 Type master;

 File "localhost.rev"

 };

In the above listing, in the options clause, we are informing
named where to find the zone files – I have specified /var/
named. The next line defines the zone and location of the

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

root.cache file (sometimes known as the hints file or named.ca).
When named starts up, it goes off to locate the root servers
that have been defined in root.cache. The "." means the root
domain. The type hint tells named that there are pointers in this
file pointing to the root servers that are defined within the file.
Remember to copy the above zone files to the directory that is
specified in the ‘directory’ options clause. Please note: a
cacheing DNS does not contain any internal zones.

The loopback file localhost.rev (sometimes known as
named.local), tells named that this is the master for its own
loopback address. The zone "0.0.127.in-addr.arpa" is a special
name denoting that this is a loopback assignment. Every DNS
server must have a master, so what better place than the local
loopback address? After all, the point of a cacheing server is to
cut back on network traffic.

For security and access purposes, it is also a good idea to use
access control lists (acl) – especially if the cacheing DNS is
pointing to a main DNS on the Internet. One will undoubtedly
want only internal clients to access the local cacheing DNS:

acl "internalhosts" { 192.168.2.Ø/24; 192.168.3.Ø/24; 192.168.4.Ø/24};

In the above command the acl list is given a name to reference
the list by. In our example the list is called internalhosts, and
only IP addresses that match this list will be allowed or denied
to successfully query the DNS. The list contains in this example
the (network address part) subnets 192.168.2.0 to 192.168.4.0.
It is always a good idea to put the acl statement(s) at the top of
/etc/named.conf, because one cannot reference them before
they are defined. Now within the options clause use:

allow-query {"internalhosts"};

We have now stated that IP addresses matching the list of
internalhosts are allowed to query.

CACHE FOR INTERNAL OR EXTERNAL ROOT SERVERS

The root.cache file located in /var/named, as detailed in /etc/

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

named.conf, contains the names and the IP addresses of the
root name servers on the Internet. When named is first started,
this file is read to help named locate a root server. Once
named has located one, its authoritative list of root servers are
downloaded. The root.cache is installed by default when the
named package is installed. You can also download the file from
the Web: just do a search on ‘root.cache file’; you will soon pick
one up.

Alternatively, use dig to download the current root servers:

dig @a.root-servers.net . ns > /var/named/root.cache

If the cacheing server is to query your main (master) internal
DNS or your external ISP’s DNS, just put their pointers in this
file instead and leave it at that. So assuming our internal
(master) DNS is called sample_main_dns and it has an IP of
192.168.4.50, we would have the following entry in /var/
named/root.cache for an internal root server:

. 14D IN NS sample_main_dns.

sample_main_dns. 14D A 192.168.4.5Ø

Please note the use of the dot (.) at the beginning of the host
entry. The NS stands for nameserver; the A stands for addresses
(as in IP address). The NS and A records are pointers to the root
server. In 14D, the D stands for days, and means that these
entries should be cached for 14 days before they are considered
stale or untrustworthy. However, be aware that the time entries
should be taken as is; in root.cache they are really there only
for historical reasons. It is up to you to make sure the entries
are up to date, so download the root.cache from the Internet at
regular intervals – once a month should suffice. The format in
the listing above must be used, however, whether for a
downloaded Internet root.cache file, external or internal use, as
just described.

LOOPBACK, THE LOCAL REVERSE LOOK-UP FILE

The local reverse look-up file is generated by default at
installation time in most cases. The loopback address is

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

127.0.0.1. This is used for all loopback addresses, so do not
change it! When named is started, it will query this address as
the named server on your host. Of course, to point other hosts
to this cacheing DNS, you must give it its machine IP address
in the /etc/resolv.conf and not the loopback address – but you
knew that anyway, didn’t you? The next listing shows a pretty
much generic localhost.rev file for the loopback. Notice the first
line, $TTL 1D. If another DNS queries our cacheing server, then
the returned resolved query should be considered stale after
one day. The @ means the current origin, which in the
localhost.rev file means the localhost, though strictly speaking
it is the 0.0.127.in-addr.arpa.

The loopback zone, in the localhost.rev file:

$TTL 1D

@ IN SOA localhost. root.localhost. (

 ØØ1 ; serial

 3H ; refresh

 15M ; retry

 1W ; expiry

 1D) ; minimum

 IN NS localhost.

1 IN PTR localhost.

The SOA (Start Of Authority) defines the settings for the zone.
The root.localhost is the e-mail address for this zone. Most of
the entries are here for historical reasons; they have no
meaningful function. However, the PTR entry is used. It maps
the loopback address to the localhost.

STARTING NAMED

To start named automatically when the AIX box comes up,
make sure it is uncommented in /etc/rc.tcpip:

start /usr/sbin/named "$src_running"

Alternatively, it can be started using:

startsrc –s named

When configuring or altering named, you should also

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

continuously tail the messages file (in a new shell session)
when re-starting named. The file /var/adm/messages is where
all named’s information is sent. For instance:

$ tail –f /var/adm/messages

To test the set-up, use either of the following resolving utilities,
to make sure you are resolving hosts correctly:

nslookup, host or dig

Generally speaking, you can tell if a resolved host is in your
cache, by using nslookup. If it comes back with ‘Non-authoritative
answer’, this indicates that the host was resolved, but is not
authoritative or it cannot guarantee the validity of the resolved
query. You do not get this message if the DNS has to go out to
a root server to get the answer.

That’s it, you are ready to go – the basic DNS cacheing server
is now configured.

BIND AND RNDC

The command line utility rndc, which comes with bind, allows
one to remotely or locally administer named. Several commands
are available; be sure to see the man page on this. However,
to use rndc, one must first generate configuration files. The
utility rndc-confgen, which comes bundled with bind, will print
lines to standard output that must/should be added to
named.conf. It also prints lines that it recommends should be
used to create the main rndc configuration file, rndc.conf. The
actual key file, rndc.key, is also created for you. This file is
referenced by rndc.conf and named.conf respectively. Using
these keys, named will accept connections only from a matching
key over an authenticated channel, and this includes from the
localhost. It is not necessary to have this feature, named will
run OK without rndc, although from a security point of view it
makes sound sense.

The following will generate an rndc-key (rndc.key) file for you,
in /etc:

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/usr/local/sbin/rndc-confgen –a

The contents of the created file are shown below:

key "rndc-key" {

 algorithm hmac-md5;

 secret "BivytJga3nHJ2GR4GLHØØA==";

};

The actual key is called, surprisingly, rndc-key, and is a generated
hashed md5.

To let rndc-confgen print lines informing the user of the
recommended lines that should be put in the named.conf and
rndc.conf file, simply run the utility with no options. Several
lines are printed to standard output:

/usr/local/sbin/rndc-confgen

Start of rndc.conf

key "rndc-key" {

 algorithm hmac-md5;

 secret "BivytJga3nHJ2GR4GLHØØA==";

};

options {

 default-key "rndc-key";

 default-server 127.Ø.Ø.1;

 default-port 953;

};

End of rndc.conf

Use with the following in named.conf,

adjusting the allow list as needed:

key "rndc-key" {

algorithm hmac-md5;

secret "BivytJga3nHJ2GR4GLHØØA==";

};

#

controls {

inet 127.Ø.Ø.1 port 953

allow { 127.Ø.Ø.1; } keys { "rndc-key"; };

};

End of named.conf

Copy the following contents from the output of rndc-confgen:

key "rndc-key" {

 algorithm hmac-md5;

 secret "BivytJga3nHJ2GR4GLHØØA==";

};

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

options {

 default-key "rndc-key";

 default-server 127.Ø.Ø.1;

 default-port 953;

};

And paste the contents into a new file in /etc called rndc.conf.

Copy the following contents from the output of rndc-confgen:

key "rndc-key" {

 algorithm hmac-md5;

 secret "BivytJga3nHJ2GR4GLHØØA==";

 };

 controls {

 inet 127.Ø.Ø.1 port 953

 allow { 127.Ø.Ø.1; } keys { "rndc-key"; };

 };

And append to the /etc/named.conf file. Be sure to delete the
comment lines (start with hashes). Notice that the port number
used for the rndc channel communication is 953; normal bind
queries use port 53.

The ‘rndc-key’ is the name referenced throughout the config
files. Now named can be controlled from the localhost via the
rndc command only if both keys match in each file. This is
specified using the allow option ‘allow {127.0.0.1;}’. Please
note, one can still start named from the command line as per
normal, and stop named using the ‘kill’ command.

If you find you are having trouble with the rndc configuration,
you can copy the above examples from this article onto their
machine – it will work. Using rndc one can, amongst other
tasks, reload the cache, gather statistics, or dump the cache.
For example:

#/usr/local/sbin/rndc status

Bringing together /etc/named.conf using the acl lists and rndc
configuration, from what has been discussed in this article, the
new look /etc/named.conf is shown below:

// resolv.conf

// acl list, only local clients can query

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

acl "internalhosts" { 192.168.2.Ø/24; 192.168.3.Ø/24; 192.168.4.Ø/24};

// rndc control line for localhost

controls {

 inet 127.Ø.Ø.1 port 953

 allow { 127.Ø.Ø.1; } keys { "rndc-key"; };

 };

// the actual key !

 key "rndc-key" {

 algorithm hmac-md5;

 secret "BivytJga3nHJ2GR4GLHØØA==";

 };

// location of zone files

options {

 allow-query {"internalhosts"};

 directory '/var/named';

 };

// root.cache file - hints file

zone "." {

 type hint;

 file "root.cache"'

 };

// loopback file.

 Zone "Ø.Ø.127.in-addr.arpa"{

 Type master;

 File "localhost.rev"

 };

Setting up a cacheing DNS is pretty straightforward, either with
or without rndc support. I recommend clearing down the cache
of a cacheing DNS at least once a week. This task can be run
from cron.

David Tansley
Global Operations
ACE Overseas General (UK) © Xephon 2004

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Teach me DB2 on AIX! – part 2

This month we continue our series of articles looking at DB2
UDB running on AIX and comparing it with DB2 on mainframes.

MORE UTILITIES

Only the following DB2 utilities will be contrasted: load utility,
runstats utility, generate DDL, quiesce utility, and repair utility.

OS/390 (load utility):

• The OS/390 load utility loads one or more tables in a TS. It
does not load the entire database as is the case in UDB.
The tables to be loaded must exist. Any index defined on the
table will be built automatically as part of the load. Load also
checks Referential Integrity (RI).

• The OS/390 load has a new function called cross loader,
which allows the OS/390 load to accept as input the
contents of a cursor instead of a sequential dataset. The
cursor can be reading a remote table. Here is an example
of loading a mainframe table from the cursor input of an AIX
UDB table. The cursor can be built just before the load
statement using the three-part name of the remote UDB
table.

EXEC SQL

DECLARE C1 CURSOR FOR

SELECT *

FROM UDB.UDBØ3Ø.DEPARTMENT

ORDER BY 1 DESC

ENDEXEC

LOAD DATA

REPLACE

INCURSOR C1

INTO TABLE UDBØ3Ø.DEPT

• To enable such load capability, the cross loader package
DSNUGSQL has to be bound in DB2 OS/390 and in DB2

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

UDB. The TCP/IP connectivity and three-part name has to
be set up in the CDB of DB2 OS/390.

• The cross loader function is supported from UDB to OS/390
and from UDB to UDB, but not from OS/390 to UDB.

• Keep in mind the difference between load REPLACE and
load RESUME.

• Remember also that the dynamic features LISTDEF and
TEMPLATES can be used effectively with OS/390 load.

• Think of the impact of loading tables that have triggers
defined on them. These triggers in turn can induce
sequences...!

• Think of the impact of loading tables that have columns
defined as Identity column datatypes...!

• Remember that one cannot load Materialized Query Tables
(MQT). These tables are refreshed and not loaded.

• The -Display utility(*) will show all the running OS/390
utilities and their status including the load utility. The
equivalent of the Display Utility in UDB is the Load Query
command, which shows the status of the UDB load while it
is running.

• In OS/390 one can terminate any utility including the load
utility by -Term utility(<utility id>), whereas in UDB one
has to reissue the same load statement syntax but replace
the INSERT or REPLACE keywords with the keyword
TERMINATE.

UDB (load utility):

• The traditional load utility in UDB is the IMPORT utility. But
there is also an ‘official’ LOAD utility in UDB.

• The input files for the IMPORT utility as well as for the
LOAD utility are files with the formats ASCII, delimited
ASCII, or IXF.

• The target for the IMPORT utility as well as for the LOAD

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

utility can be only one table. Contrast that with OS/390,
which can load several tables that are in a TS.

• The LOAD utility in UDB, as with OS/390, can build any
index defined on the table during loading, but, unlike OS/
390 load, it cannot check Referential Integrity (RI).

• The IMPORT utility in UDB, on the other hand, can build any
index defined on the table and can also check RI. This is
one important difference between the two UDB utilities
(LOAD and IMPORT).

• The same option of REPLACE and RESUME of the OS/390
load utility exists in the UDB LOAD utility, but in UDB the
RESUME keyword is replaced with a keyword INSERT.

• The UDB LOAD utility, just like the OS/390 load utility,
expects the target DB2 table to exist.

• The UDB IMPORT utility also expects the target table to
exist unless one includes the CREATE option in the IMPORT
command. In that case the IMPORT utility will create the
target table if it does not exist. That is also a difference
between the two UDB load utilities.

Here are some examples:

$DB2 "CONNECT TO nick"

$DB2 IMPORT FROM c:\filename.del OF DEL MESSAGES udbØ3Ø.msg

 INSERT INTO udbØ3Ø.tablename(columnname1,columnname2,etc);

$DB2 IMPORT FROM c:\filename.ixf OF IXF COMMITCOUNT 1ØØØ

 MESSAGES udbØ3Ø.msg REPLACE_CREATE INTO udbØ3Ø.tablename;

$DB2 LOAD FROM C:\filename.del OF DEL MESSAGES udbØ3Ø.msg

 INSERT INTO udbØ3Ø.tablename;

$DB2 LOAD FROM C:\filename.del OF DEL MESSAGES udbØ3Ø.msg

 REPLACE INTO udbØ3Ø.tablename;

• Is the creation of the DB2 table (if it did not exist) the only
significant difference between UDB LOAD and UDB
IMPORT? The answer is no. The real difference is
performance. The UDB LOAD is a better performer because
while the IMPORT utility loads one record at a time into the

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

DB2 table, the UDB LOAD takes several records from the
input file and builds pages from them and loads several
pages in the DB2 table at a time. This speeds things up.

• The IMPORT utility commits only after a successful import,
otherwise it rolls back all the inserted records, ie either
success of the entire load or failure of the entire load. There
is nothing in between. So, one might ask, what happens if
the IMPORT fails half way? My advice is to do what I do in
OS/390. Before executing the IMPORT utility take a full
image copy and a quiesce point. If the IMPORT utility fails
then recover using the full image copy or recover to the
taken quiesce point. This is the simplest strategy. I would
personally use the same strategy if UDB LOAD fails too.

• How can one display the progress of the load utility in UDB?
The Load Query command in UDB can show the status of
the LOAD.

OS/390 (runstats utility):

• The main purpose of the runstats utility is to gather statistics
on TSs, tables, columns, and indexes (in contrast to UDB
where it gathers statistics on tables, columns, and indexes).

• The runstats utility records the statistical information in the
OS/390 catalog so that the optimizer can choose an
efficient access path to the data. An efficient access path
reduces response time.

• One can interrogate the OS/390 catalog to see whether
runstats has been run or not. A value of -1 in the relevant
column indicates that runstats has not been run.

• One runs the runstats utility on TSs and their indexes, not
on tables as in UDB.

• One runs the runstats utility frequently on TSs and indexes
that are very volatile, so the catalog always contains up-to-
date information about DB2 objects.

• One can run the runstats utility in SHERLEVEL REFERENCE
or SHERLEVEL CHANGE.

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

UDB (runstats utility):

• The runstats command in UDB serves the same function
as its counterpart in OS/390.

• Its main purpose is to gather statistics on tables, columns,
and indexes (not on TSs as in OS/390) in order to allow the
optimizer to choose an efficient access path, which in turn
reduces response time.

Here is an example:

$DB2 RUNSTATS ON TABLE udbØ3Ø.tablename AND INDEXES ALL SHRLEVEL CHANGE

• The runstats command records the statistical information
in the UDB SYSSTAT views of the UDB catalog, whereas in
OS/390 the information was recorded in the SYSIBM
tables.

• One can interrogate the SYSSTAT views to see whether
runstats has been run or not. A value of -1 in the relevant
column indicates that runstats has not been run.

Here is an example of the interrogation:

SELECT * FROM SYSSTAT.TABLES;

• One runs runstats frequently on tables and indexes that
are very volatile, so the catalog always contains up-to-date
information about DB2 objects.

• One can run runstats in UDB in SHERLEVEL REFERENCE
or SHERLEVEL CHANGE.

OS/390 (generate DDL):

• Sometimes the DBA needs to go to the DB2 catalog and
generate DDL for an existing DB2 object or objects for the
purpose of cloning. There are third-party products such as
Bachman, BMC tools, CA tools, and Compuware tools, that
can help the DBA to do DDL generation. There is no IBM
utility as far as I know to generate mass DDL from the DB2
catalog. Some may say the IBM support utility DB2PLI8 is
such a tool. I disagree. I personally think the DB2PLI8 is not
suitable for mass DDL generation.

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

UDB (generate DDL):

• On the other hand, UDB has a very nice and effective utility
that can generate DDL for an existing DB2 object or objects
or for the entire UDB database for the purpose of cloning
the database from one region to another. This utility is
called db2look.

Here is a sample of a db2look command to generate DDL
for an existing database:

$db2 "CONNECT TO nickdatabase"

$db2look -d olddatabase -a -o -l -e -x

outputddlforolddatabase.ddl -e -x -l

• Once the DDL is generated and stored in
outputddlforolddatabase the DBA edits this output file and
changes the name references of the old database to the
new database name, and then executes the file by issuing
the following command:

$db2 –tvf outputddlforolddatabase.ddl.

• One can also use the DESCRIBE command to get the DDL
for a table or the indexes on the table just like QMF in the
OS/390. Here are two examples:

$DB2 "DESCRIBE TABLE <udbØ3Ø.table name> SHOW DETAIL

$DB2 "DESCRIBE INDEXES FOR TABLE <udbØ3Ø.table name> SHOW DETAIL

OS/390 (quiesce utility):

• Quiesce is used to establish a recovery point (an RBA or
LRSN point) for a TS or TS SET, or indexspace or partition.

• This RBA or LRSN point will be recorded in the
SYSIBM.SYSCOPY catalog table.

• The LISTDEF of DB2 OS/390 feature can be used neatly
with the quiesce utility.

UDB (quiesce utility):

• The equivalent of the quiesce utility of OS/390 in UDB is the
following command:

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

$DB2 QUIESCE TABLESPACES FOR TABLE <udbØ3Ø.table name>

• This command will establish a recovery point (not RBA as
in OS/390 but a timestamp). This recovery point is written
to the HISTORY FILE, compared with SYSIBM.SYSCOPY
of OS/390.

OS/390 (repair utility):

• Repair utility in OS/390 is used to repair data and remove
pending statuses of TSs.

UDB (repair utility):

• There is no real equivalent to the repair utility of OS/390.
The nearest equivalent is DB2DART, which can run only in
read mode, unlike the repair of OS/390, where one can
update and zap the data.

EXPLAIN FACILITIES

OS/390:

• The ultimate objective of the EXPLAIN functionality with
OS/390 as well as UDB is to see the access path of a
particular SQL statement chosen by the optimizer to access
the data. The DBA then analyses the access decision
made by the optimizer. As a result of the DBA analysis of the
optimizer decision, the SQL statement may be modified or
an index may be created on some column in the accessed
table to achieve a good access path.

• To achieve the above objective, the DBA needs to create
three EXPLAIN tables. The DDL for these three tables for
OS/390 can be found in SDSNSAMP(dsntesc).

• The DBA can influence the optimizer decision by zapping
various catalog tables with favourable statistics.

• Sometimes the optimizer’s decision might not be the best
access path despite all the available information. In this
case the DBA needs to suggest to the optimizer a ‘hint’ that
the optimizer can use to come up with a desired access

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

path. The hint can be inserted in the PLAN_TABLE, which
is one of the three EXPLAIN tables in OS/390.

• There is an alternative method to interrogating the EXPLAIN
tables manually via SQL. This alternative is to use a
graphical tool called Visual Explain for OS/390. This is a
nice graphical tool that should be installed on the DBA WS.
It needs some kind of connectivity installed on the WS,
such as DB2 Connect, to access the DB2 OS/390 machine.

• OS/390 has three EXPLAIN tables, UDB has seven. These
tables are different from each other in structure and in the
information they contain. Even the Visual Explain graphical
tools are different from one platform to another. There is
one Visual Explain product for OS/390 and one for UDB.

• One can invoke EXPLAIN also via the BIND command. This
functionality is the same as in UDB.

UDB:

• The ultimate objective of the EXPLAIN functionality in UDB
is the same as in OS/390, which is to see the access path
of a particular SQL statement chosen by the optimizer to
access the data.

• There are seven EXPLAIN tables that need to be created.
To achieve that objective, the DBA needs to execute the
DDL file supplied by IBM containing the definitions of these
seven tables as follows:

$db2 -tvf $HOME/sqllib/misc/EXPLAIN.DDL

• Once the EXPLAIN tables are created, one can invoke the
EXPLAIN function for a specific SQL statement. Here is an
example of how to invoke the EXPLAIN from the command
line interface:

EXPLAIN ALL WITH SNAPSHOT FOR "SELECT * FROM udbØ3Ø.nicktable"

• The DBA can interrogate the UDB optimizer decision
manually via SQL or graphically using the Visual Explain
product.

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• The DBA can influence the optimizer by zapping various
UDB catalog SYSSTAT views with favourable statistics.
However, unlike the OS/390 DB2 DBA, you cannot give a
hint to the optimizer for it to take it into consideration when
calculating its access path. The hint functionality is not
supported in UDB.

• There is another quick procedure to do EXPLAIN in UDB:

– connect to your database.

– create EXPLAIN tables as above.

– just before your query, set a special UDB register to a
value of EXPLAIN:

$db2 "set current explain mode explain"

– if the query is a static query then EXPLAIN the query by
running the db2expln utility, which can be found in
$INSTHOME/sqllib/bin.

– if the query is a dynamic query then EXPLAIN the query
by running the dynexpln utility, which can be found in
$INSTHOME/sqllib/bin.

– after doing the EXPLAIN, whether for static or dynamic
SQL statements, run the db2exfmt utility, which goes
to the explain tables and formats the result in an easy-
to-read textual report. The db2exfmt can be found in
$INSTHOME/sqllib/bin.

• So the whole quick procedure becomes:

$connect to SAMPLE

$db2 "set current explain mode explain"

 $db2 "select * from org"

 $db2exfmt

TRACES AND STATISTICS

OS/390:

• In OS/390 we have statistics or accounting reports for

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

performance (for UDB we have snapshot and events
statistics).

• To get these performance reports one needs to start DB2
traces either via the ZPARM parameters or manually by
issuing:

-start trace command

• The values in the ZPARM can be updated dynamically in
Version 8 without needing to start or stop the DB2 subsystem
(it is the same for UDB snapshot statistics, but not for event
statistics).

• Once DB2 traces start, statistics start accumulating until
one stops the trace.

• The destination of the trace statistics records is SMF, GTF,
or Monitor.

• One can use DB2PM or equivalent third-party products to
produce performance reports from the gathered statistical
records.

UDB:

• For UDB there are two kinds of statistics that can be
collected: one is called snapshot statistics (this may be
roughly compared with the statistics coming from OS/390),
the other is called events statistics.

– Snapshot statistics:

• Give a snapshot view of the state of the resource
consumption at the instance level or at the
application level from the time the DBA starts the
trace.

• Can be started in two ways:

i by changing the dbm cfg parameters called
switches (there are only six of them. Note that
I said dbm cfg not db cfg). For example:

$db2 "UPDATE DBM CONFIGURATION USING <name of the dbm

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 parameter such as DFT_MON_STMT> ON

ii by explicitly updating one or more of the six
snapshot switches using the following update
command as an example:

$db2 "UPDATE MONITOR SWITCHES USING STATEMENT ON

(So do you see the similarity with OS/390 about
starting the statistics via the ZPARM parameters
or manually?)

• by the way, if the DBA wants to know all the
available monitor switches s/he issues the following
command:

$db2 "GET MONITOR SWITCHES"

• in both UDB and OS/390, once the DBA starts
gathering the statistics, the process will continue
until it is stopped.

• also in both UDB and OS/390, there is no need to
recycle the DB2 subsystem or the instance for

the statistics parameters to take effect.

• to view gathered snapshot statistics, for example
for ‘locks’, one can issue the following UDB
command:

$ db2 "GET SNAPSHOT FOR LOCKS ON Nickdatabase.

The result will be shown on the command line results window.

– Event statistics:

• the event statistics of UDB can be thought of as
sleeping UDB objects for a particular database not
for an instance.

• one has to create these DB2 objects using SQL
DDL statements and, of course, like any other DB2
objects, the DBA has to give it a name.

• once these events objects are created, they are
stored in SYSCAT.EVENTMONITORS and

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SYSCAT.EVENTS tables of the UDB database
catalog. These objects stay in the UDB catalog
doing nothing. Whenever the DBA wants to take
event statistics, the DBA needs to interrogate what
kind of event objects he has created a priori in a
particular database. Once the DBA knows what
event objects are stored in the catalog, he can
activate the desired ones.

• once activation occurs, the activated event monitor
is not a sleeping object any more. It becomes
active, collecting information as it was designed to
do.

• here is an example of creating an event:

$DB2 "CREATE EVENT MONITOR <give it a name such

 as nickevntmonitor> FOR DEADLOCKS WRITE TO FILE

 '/eventmonitors/deadlock/nickevntmonitor'"

• here is an example of how to activate an event:

$DB2 "SET EVENT MONITOR nickmonitor STATE =1"

• here is an example of how to deactivate an event:

$DB2 "SET EVENT MONITOR nickmonitor STATE =Ø"

• here is an example of how to view an event:

 $DB2 "DB2EVMON -PATH '/eventmonitors/deadlock/nickevntmonitor'"

The output of the db2evmon utility will be displayed
on screen by default, but one can direct it to a file
for later analysis.

DB2 GOVERNOR

OS/390:

• Though the objective of the OS/390 governor and the UDB
governor are the same, ie to monitor the excessive usage
of database resources by applications (SQL statements)
and to take corrective action based on supplied rules; the
ways it is implemented in OS/390 and UDB are different.

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• For example in OS/390 the governor places its rules in a
specific table called DSNRLSTxx situated in a specific TS
called DSNRLSxx belonging to a specific database called
DSNRLST. In UDB the governor is just a process (daemon)
that monitors databases according to rules that are stored
not in a table but in a file.

• In OS/390 the governor is called the Resource Limit
Facility (RLF). One can start it through SPUFI with the
command -start RLIMIT, or start it automatically via the
ZPARMS when booting the DB2 subsystem.

• In OS/390 there is only one governor for the entire DB2
subsystem. However, there can be many tables containing
the rules of engagement provided that only one table
containing the rules is active at any one time.

• There are two kinds of governing in OS/390 – reactive
governing, and predictive governing.

UDB:

• As was said above, the UDB governor is implemented
differently from the OS/390 governor although the objective
is the same.

• There can be several concurrent active UDB governors,
each monitoring a different database and writing to its own
log file. Contrast that with the OS/390 governor, which is
one per DB2 subsystem.

• As far as I know there is no predictive governing in UDB as
with OS/390.

• The UDB governor daemon is called db2gov.

• Here is one example of how to start the UDB governor:

$DB2GOV START nickdatabase

<name_of_cfg_file_that_contains_covernor_rules>

<name_of file_or_log_ that_contains_actions_taken_by_governor>

 $DB2GOV START nickdatabase nickrules.cfg nick.log

If the daemon governor was running for a long time, it could

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

potentially have created several log files such as nick.log.0,
nick.log.1, or nick.log.2, etc. The DBA can list these log files
and then use DB2GOVLG utility to read the chosen one.
Here is an example of interrogating the UDB governor log
file:

$DB2GOVLG nick.log.Ø

• Here is an example of how to stop the UDB governor:

$DB2GOV STOP nickdatabase

• There is no equivalent to a governor log file in OS/390. The
MVS syslog and DSNMSTR address space in an OS/390
environment may contain some information in that regard.

BUFFER POOLS

OS/390:

• OS/390DB2 provides many options for data page sizes.
The size of the data page is determined by the buffer pool
in which one defines the tablespace. For example, a table
space that is defined in a 4KB buffer pool has 4KB page
sizes, and one that is defined in an 8KB buffer pool has 8KB
page sizes. (Indexes – unlike TS – must always be defined
in 4KB buffer pools.)

• The buffer pools are areas of memory within the DBM1
address space in which DB2 stores temporary pages of
TSs and indexes. When an application needs a row from a
DB2 table, DB2 retrieves the page containing the required
row from DASD into the buffer pool area incurring an I/O. If
the page is in the buffer pool area then no I/O is incurred.
So buffer pools and their sizes are of the utmost importance
to performance.

• In DB2 Version 7 and earlier, virtual memory was constrained
because of DB2’s 2GB limit on the size of the DB2 DBM1
address space (31-bit addressability). In its effort to satisfy
more demands for memory usage for the buffers, DB2
Version 7 and before extended the buffer area above the

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

line to something called hyperpools and dataspace areas.
But that was history. Now, with the z/OS and z/Series
machines and the 64-bit addressability, the DBM1 address
space has gone from 2GB to 16 exabytes (2**64). Thus
larger buffer pools can be allocated in virtual memory and
the definition of data spaces and hiperspaces previously
designed to get around the old 2GB limit are no longer
required.

• Buffer pools in OS/390 are allocated at installation or
migration time. Page sizes for OS/390 buffer pools are
4KB, 8KB, 16KB, and 32KB.

For each page size kind, there are the following predefined
buffer pools:

– 4KB page buffer pools are named BP0, BP1 to BP49.

– 8KB page buffer pools are named BP8K0, BP8K1 to
BP8K9.

– 16KB page buffer pools are named BP16K0, BP16K1
to BP16K9.

– 32KB page buffer pools are named BP32K, BP32K1 to
BP32K9.

• One can change the attributes of OS/390 buffer pools and
their sizes with the ALTER BUFFERPOOL command. The
size is the number of pages in that particular pool.

• In OS/390 one assigns a tablespace or an index to a
particular buffer pool by a clause in any of the following SQL
statements: CREATE TABLESPACE, ALTER TABLESPACE,
CREATE INDEX, or ALTER INDEX. The buffer has to exist
before the DBA creates the TS. It’s the same idea with
UDB, the buffer has to exist before one creates the TS. The
only difference between OS/390 and UDB in this regard is
that the buffers in OS/390 are predefined at installation
time whereas in UDB one explicitly creates a buffer.

• In OS/390 one can display active buffers via SPUFI or one can

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

interrogate the DB2 catalog to see which TS is associated with
which buffer.

UDB:

• In DB2 UDB, unlike OS/390, the DBA can create bufferpools with
the CREATE BUFFERPOOL command. Here are two examples:

CREATE BUFFERPOOL nickbpool

size 2ØØØ

pagesize 4Ø96

Or:

CREATE BUFFERPOOL nickbpool

size 1ØØØ

pagesize 8192

• How many buffer pools can one create in UDB? The answer
is 4096 pools.

• Despite the fact that UDB (like OS/390 DB2 Version 8)
uses 64-bit addressability, the DB2 UDB still uses the
equivalent concept of the old hiperpools of OS/390, which
is called Extended Storage (estore memory) to provide a
second level of cacheing for pages.

• There is a well-known diagram about memory usage that
can be found in any book on UDB memory. Please find that
diagram and see where the bufferpools and the extended
memory storage (estore) reside.

• Remember, in UDB, the page size of the TS is entered as
part of the CREATE TABLESPACE statement. Remember,
again in UDB, a bufferpool with the correct page size needs
to be created before creating the tablespace that uses this
page size.

• In DB2 OS/390, there is no parameter in the CREATE
TABLESPACE statement to indicate the page size to be
used (as is the case in UDB). However, by specifying the
predefined bufferpool to be used, the page size of the TS is
set.

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• The default buffer pool in UDB is called IBMDEFAULTBP
and is 1000 4KB pages. It is created by the execution of the
CREATE DATABASE command.

• Do you remember in OS/390 that there are read and write
engines? They also exist in UDB, and are called I/O
Servers. Their number is configurable by a parameter
called num_ioservers in the db cfg file. These I/O Servers
read pages from DASD into the buffer pools at the request
of a db2agent process.

• There is one db2agent per application in UDB. However, in
Version 8 with the advent of ‘concentration pooling’, a
db2agent does not need to stay allocated until the application
transaction finishes. It can serve other applications.

• To find out the current active bufferpools in UDB, one can
issue the following two commands:

$DB2 "UPDATE MONITOR SWITCHES USING BUFFERPOOL ON"

$DB2 "GET SNAPSHOT FOR BUFFERPOLLS ON nickdatabase >

 /tmp/nickdatabase/bufferpools.txt

Or one can interrogate the SYSCAT.BUFFERPOOLS catalog
table.

EDM POOL

OS/390:

• In OS/390 there is a piece of memory called Environmental
Descriptor Manager (EDM) pool. Among the many things it
contains are package structures (ie access plans sections)
and DBDs.

UDB:

• In UDB, the equivalent of the EDM pool is two pieces of
memory or caches:

– a cache for the packages, which is called
PCKCACHESIZE.

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Parsing output of tapeutil command

For those of you with a tape library that supports the atape
drivers, and hence provide a use of the tapeutil command, you
may have found that tapeutil is not very script friendly. For
example, if you want to write a back-up script that mounts tapes
in the library via the robotics, it`s quite cumbersome. I use this
script, parse_tu.sh, to put the output of tapeutil –f /dev/smcx
inventory into a script-friendly format.

For example:

tapeutil –f /dev/smcØ inventory

would result in:

tapeutil -f /dev/smcØ inventory

Reading element status...

Robot Address 1

 Robot State Normal

 ASC/ASCQ ØØØØ

 Media Present No

 Source Element Address Valid ... No

 Media Inverted No

 Volume Tag

Import/Export Station Address 16

 Import/Export State Normal

 ASC/ASCQ ØØØØ

 Media Present No

 Import Enabled Yes

– a cache to hold the DBDs known as catalog cache, but
its real name is CATALOGCACHE_SZ

These parameters are updatable per database in the db.cfg
file.

Nicola Nur
Senior DBA (Canada) © Xephon 2004

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 Export Enabled Yes

 Robot Access Allowed Yes

 Source Element Address Valid ... No

 Media Inverted No

 Volume Tag

Drive Address 256

 Drive State Normal

 ASC/ASCQ ØØØØ

 Media Present Yes

 Robot Access Allowed No

 Source Element Address 411Ø

 Media Inverted No

 Same Bus as Medium Changer Yes

 SCSI Bus Address 1

 Logical Unit Number Valid No

 Volume Tag Ø45Ø19L2

Drive Address 257

 Drive State Normal

 ASC/ASCQ ØØØØ

 Media Present Yes

 Robot Access Allowed No

 Source Element Address 16

 Media Inverted No

 Same Bus as Medium Changer Yes

 SCSI Bus Address 2

 Logical Unit Number Valid No

 Volume Tag Ø45ØØ9L2

Slot Address 4Ø96

 Slot State Normal

 ASC/ASCQ ØØØØ

 Media Present Yes

 Robot Access Allowed Yes

 Source Element Address 4Ø96

 Media Inverted No

 Volume Tag Ø45ØØ4L2

Slot Address 4Ø97

 Slot State Normal

 ASC/ASCQ ØØØØ

 Media Present No

 Robot Access Allowed Yes

 Source Element Address Valid ... No

 Media Inverted No

 Volume Tag

And so on...

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

By running

parse_tu.sh smcØ

I get:

parse_tu.sh smcØ

Robot Address: 1 State: Normal Volume:

IO Address: 16 State: Normal Volume:

Drive Address: 256 State: Normal Volume: Ø45Ø19L2

Drive Address: 257 State: Normal Volume: Ø45ØØ9L2

Slot Address: 4Ø96 State: Normal Volume: Ø45ØØ4L2

Slot Address: 4Ø97 State: Normal Volume:

Slot Address: 4Ø98 State: Normal Volume: Ø45ØØ5L2

Slot Address: 4Ø99 State: Normal Volume: Ø45ØØ7L2

Slot Address: 41ØØ State: Normal Volume: Ø45ØØ6L2

Slot Address: 41Ø1 State: Normal Volume: Ø45ØØ8L2

Slot Address: 41Ø2 State: Normal Volume: Ø45Ø1ØL2

Slot Address: 41Ø3 State: Normal Volume: Ø45Ø13L2

Slot Address: 41Ø4 State: Normal Volume: Ø45Ø14L2

Much easier to use in scripts!

Here is the script:

#!/usr/bin/ksh

>/tmp/tu_info_x1

tapeutil -f /dev/$1 inventory >/tmp/tu_info_x1

grep -E 'Robot Address|Robot State|Volume Tag|Import/Export Stat|Drive\

Address|Drive State|Slot Address|Slot State' /tmp/tu_info_x1\ >/tmp/

tu_info_x2;

#

#

while read one two three four; do

one_two='echo onetwo'

case $one_two in

 RobotAddress)

 export Robot_Address=$three

 read one two three four;

 export Robot_State=$four

 read one two three four;

 export Robot_Volume=$four;

 echo "Robot Address: " $Robot_Address " State: " $Robot_State "\

Volume: " $Robot_Volume;;

 Import/ExportStation)

 export IO_Address=$four;

 read one two three four;

 export IO_State=$four;

 read one two three four;

 export IO_Volume=$four;

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 echo "IO Address: " $IO_Address " State: " $IO_State " Volume: "\

$IO_Volume;

;

 DriveAddress)

 export Drive_Address=$three;

 read one two three four;

 export Drive_State=$four;

 read one two three four;

 export Drive_Volume=$four;

 echo "Drive Address: " $Drive_Address " State: " $Drive_State "\

Volume: " $Drive_Volume;;

 SlotAddress)

 export Slot_Address=$three;

 read one two three four;

 export Slot_State=$four;

 read one two three four;

 export Slot_Volume=$four;

 echo "Slot Address: " $Slot_Address " State: " $Slot_State "\

Volume: " $Slot_Volume;;

esac

done </tmp/tu_info_x2

exit

#

David Miller
Database Architect
Baystate Health Systems (USA) © Xephon 2004

AIX news

Software AG has announced Version 4.2 of
Tamino XML Server, its native XML server.
The new version provides accelerated data
access, advanced security, and expanded query
and text retrieval functions. It also offers XML-
based message persistence for auditing and
tracking, business document management, and
a metadata repository in support of a Service-
Oriented Architecture (SOA). These updates
enable Tamino to better support multiple roles
for enterprise integration and software
developers.

Tamino XML Server version 4.2 is currently
shipping in three editions – Enterprise Edition,
Standard Edition, and Developer Edition. As
well as AIX 5L V5.2 (64 bit), the product also
runs on Linux for S/390 and zSeries, Windows
XP Professional, Solaris 8 and 9 (64 bit), and
HP-UX 11i (PA RISC 64).

For further information contact:
Software AG, 11190 Sunrise Valley Drive,
Reston, VA 20191, USA.
Tel: (703) 860 5050.
URL: http://www2.softwareag.com/
C o r p o r a t e / N e w s / l a t e s t n e w s /
20040630_Tamino421_Release_page.asp.

* * *

OctetString has announced Version 3.0 of
Virtual Directory Engine (VDE), its virtual
technology for connecting and transforming
identity information between enterprise systems
software.

OctetString’s VDE Suite connects applications
to sources of identity information, including
LDAP, RDBMS, Active Directory, or
Windows NT Domain-based. Information from
one or more of these identity repositories can be
joined, federated, or otherwise virtually

consolidated to present a single view of identities
to applications via LDAP, XML, and JDBC.
VDE is 100 percent Java and is certified on
platforms that include AIX, HP-UX, Linux,
Windows, and Solaris.

Version 3.0 delivers simplified configuration,
accelerated deployment, and greater
extensibility to users.

For further information contact:
Octet String, 10 N Martingale Road, 4th Floor,
Schaumburg, IL 60173, USA.
Tel: (847) 358 9358.
URL: http://www.octetstring.com/products/
VDE.php.

* * *

FileNet has announced Version 3.0 of P8, its
ECM (Enterprise Content Management)
platform. The new version now offers XML
Web Service-based access to provide more
platform-independent connectivity and
interoperability, and supports requirements for
Service Oriented Architectures (SOAs).

Using the product, businesses will be able to
develop content-rich applications that deliver
information when and where it is needed to
empower business partners, suppliers, and
employees to help decision-making.

FileNet P8 3.0 runs on AIX, Windows, Solaris,
and HP/UX.

For further information contact:
FileNet, 3565 Harbor Blvd, Costa Mesa, CA
92626-1420, USA.
Tel: (714) 327 3400.
URL: http://www.filenet.com/English/News/
Global-English/Current_Press_Releases/
071904webserv.asp.

x xephon

	Writing a daemon process
	LPAR back-up over a network
	Creating a cacheing DNS
	Teach me DB2 on AIX! - part 2
	Parsing output of tapeutil command
	AIX news

