
© Xephon Inc 2005

July 2005

117

In this issue

3 De-allocation of AIX system
resources

7 Proactive AIX update tools and
techniques

19 Run a common script across a
list of servers

29 Tape management system –
part 2

50 AIX news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
$275.00 in the USA and Canada; £180.00 in
the UK; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 2000 issue, are available
separately to subscribers for $24.00 (£16.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

De-allocation of AIX system resources

De-allocation of system resources is helpful for benchmarking
applications or trouble-shooting and reproducing application
problems. It might happen that you have to de-allocate a CPU
(reduce your system CPU) to simulate a performance problem
with your application that your customers are reporting on
their two-CPU system, which you cannot reproduce in your lab
on your four-CPU system. Other uses for the de-allocation of
system resources would be to get base-line benchmark
numbers for your application’s performance with various
system configurations. It also allows you to dynamically take
a failing CPU off-line.

In today’s world of logical partitioning with LPAR and DLPAR,
the same thing can be accomplished. But when you do not
have the convenience of using logical partitioning DLPAR to
de-allocate or allocate resources, this procedure will be handy.
It will show you how to de-allocate CPU and memory from your
system as if they had never been introduced into the AIX
system, and how to re-allocate them.

We will start by de-allocating a CPU – but before we start, we
need to know the hardware architecture of the platform you
are running (whether it is PCI or micro-channel, MCA) because
the procedures will differ. To determine your platform
architecture, you can use one of the following commands:

bootinfo –p

or:

lscfg | grep "Model Architecture"

If the output from the commands is chrp or rspc, it means that
your platform architecture is PCI. If the output is rs6k or
rs6ksmp, the platform architecture is MCA.

For PCI systems, you use the following procedure to de-
allocate CPUs; but remember that you need a system with a

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

minimum of three CPUs to use the de-allocation procedure.
Please note that the actual output from the commands may
differ on your system from the examples:

• Check how many CPUs are physically on your system and
how many are active:

lsdev –Cc processor

procØ Available ØØ-ØØ Processor

proc1 Available ØØ-Ø1 Processor

proc2 Available ØØ-Ø2 Processor

proc3 Available ØØ-Ø3 Processor

bindprocessor -q

The available processors are: Ø 1 2 3

• Note: to enable run-time processor de-allocation, you
must change a kernel parameter called cpuguard. If the
cpuguard kernel parameter is disabled, you will not be
able to de-allocate CPUs successfully. The cpuguard
requires a minimum of three CPUs:

lsattr -El sysØ -a cpuguard

cpuguard disable CPU Guard True

chdev -l sysØ -a cpuguard=enable

• The command used to de-allocate CPU is cpu_deallocate,
and it is part of the bos.rte.control fileset:

/usr/sbin/cpu_deallocate cpu_id

where cpu_id is the logical CPU ID. For more information
on this command please refer to the command man
pages.

The logical CPU ID is not necessarily the same number
that is associated with proc# in lsdev -Cc processor
output. The proc#s are often not in sequence.

• After de-allocation of the CPU, you can check for available
processors:

bindprocessor -q

The available processors are: Ø 2 3

 # lsattr -El proc2

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

state disable Processor state False

type PowerPC_POWER3 Processor type False

frequency 2ØØØØØØØØ Processor Speed False

The deactivation is immediate. To reactivate the CPUs, the
system must be rebooted.

For MCA systems, you can use the cpu_state command,
which is more flexible and is part of the bos.mp fileset. You do
not have to re-boot to reactivate the deactivated processor.
Actually, if you reboot the system after deactivating a processor,
this processor will stay disabled. Note that the following
examples were taken from the command man pages because
I do not have an MCA system to test on (because MCA
platforms are very old and few are still in production) – but I
included the procedure just in case.

cpu_state -l | { -d | -e } ProcessorNumber

where:

• -d – disables the specified processor.

• -e – enables the specified processor.

• -l – lists the status of all processors.

Examples:

• To list all processors:

cpu_state –l

Name Cpu Status Location

procØ Ø Enabled ØØ-ØP-ØØ-ØØ

proc1 1 Enabled ØØ-ØP-ØØ-Ø1

proc2 2 Enabled ØØ-ØQ-ØØ-ØØ

proc3 3 Enabled ØØ-ØQ-ØØ-Ø1

• To disable processor 1:

cpu_state –d 1

cpu_state –l

Name Cpu Status Location

procØ Ø Enabled ØØ-ØP-ØØ-ØØ

proc1 1 Disabled ØØ-ØP-ØØ-Ø1

proc2 2 Enabled ØØ-ØQ-ØØ-ØØ

proc3 3 Enabled ØØ-ØQ-ØØ-Ø1

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• To re-enable processor 1:

cpu_state –e 1

cpu_state –l

Name Cpu Status Location

procØ Ø Enabled ØØ-ØP-ØØ-ØØ

proc1 1 Enabled ØØ-ØP-ØØ-Ø1

proc2 2 Enabled ØØ-ØQ-ØØ-ØØ

proc3 3 Enabled ØØ-ØQ-ØØ-Ø1

Since we mentioned the command bindprocessor before, it
is important to know that this command can be used to bind
or unbind the kernel threads of a process to a certain processor,
in addition to the listing of available processors that we saw it
doing earlier. You can use this command, which is part of the
bos.mp fileset, to bind a process of your application to a
certain CPU, therefore simulating a single CPU system. For
example:

• To bind process with PID 339215 to CPU 0:

/usr/sbin/bindprocessor 339215 Ø

• To unbind the same process from CPU 0:

/usr/sbin/bindprocessor –u 339215

Not only can you deactivate a CPU, you can also deactivate
memory. To change your memory configuration with AIX, you
need to use the rmss command, which is part of the
bos.perf.tools fileset. For more information on the rmss
command, refer to the command man pages. You do not have
to reboot your machine to go back to your original parameters:

• To print the current memory size, enter:

/usr/bin/rmss -p

Simulated memory size is 2Ø48 Mb.

• To change your current memory size to 1024MB (meaning
to deactivate 1GB of memory and use only half of the
original memory), enter:

/usr/bin/rmss -c 1Ø24

Simulated memory size changed to 1Ø24 Mb.

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• To reset the memory size to the real memory size of the
machine, enter:

/usr/bin/rmss -r

Simulated memory size is 2Ø48 Mb.

Basim Chafik
Senior Systems Analyst
IBM Certified Advanced Technical Expert (CATE)
Plexus (Division of BancTec) (Canada) © Xephon 2005

Proactive AIX update tools and techniques

AIX operating system updates are a complicated and
sometimes confusing activity. The reasons for this is the
combination of a very high number of new system features
that are introduced, requirements to support new hardware
devices, and the need to fix bugs that are discovered in the
system. This article will review the terminology used by IBM to
classify the fixes and updates, and the tools that system
administrators can use to integrate them on their computers.

TERMINOLOGY

IBM uses the following terms to describe the AIX updates.

PMR

A Problem Management Record (PMR) is a unique IBM ID
tracking record for customer-reported problems.

APAR

An Authorized Program Analysis Report (APAR) associates a
fix to a PMR. APAR numbers can be used to obtain the
required fix. When documenting software requirements, it’s
best to list the APAR number rather than the PTF (described
later) or PMR number. You will always be able to determine

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

whether an APAR is installed on your system using the
command instfix -ivk APAR_NUMBER, whereas installed
PTFs are not traceable

PTF

A Program Temporary Fix (PTF) provides a fix to a reported
defect. The fix is called temporary because it disappears when
it is incorporated into the next release of the product. PTFs
may contain a single fix, but generally contain multiple fixes
and are associated with a single fileset.

All released PTFs on AIX are classified in order of seriousness:

1 Security advisories

2 Maintenance release information

3 Critical fixes

4 Latest software fixes

5 Installation tips

6 PTFs in errors

7 High impact.

To be informed by e-mail about AIX release correctives, you
should subscribe at https://techsupport.services.ibm.com/
server/pseries.subscriptionSvcs.

Note: APARs and PTFs are tightly coupled in that PTFs
contain multiple APAR fixes. An APAR is a single fix that is
delivered via a PTF packaging.

ML

IBM releases cumulative fixes for the AIX operating system
that are called Maintenance Level packages. These packages
are usually made available two or three times a year for each
supported version of AIX.

The Maintenance Level package schedule is published at

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

http://www.ibm.com/servers/eserver/support/pseries/news/
2005/01/2005aixschedule.html.

You can subscribe to the Maintenance Bulletins that announce
the release of MLs by using the subscription service described
above.

Critical Fixes

IBM periodically publishes recommendations for installation
of Critical Fixes. These fixes should be used to upgrade
systems installed with a particular ML. Fixes identified as
critical may also be classified as HIPER, PE, security, or may
warrant special awareness. Critical fixes can be downloaded
from http://www-1.ibm.com/servers/eserver/support/pseries/
criticalfixes.html.

Emergency fixes

In addition to APARs and PTFs, IBM issues emergency fixes.
When resolution of a problem cannot wait for a generally-
available fix, IBM may provide an emergency fix. The
emergency fix (efix) management solution allows users to
track and manage efix packages on a system. An efix package
might be an emergency fix, debug code, or test code that
contains commands, library archive files, or scripts that run
when the efix package is installed.

The efix management solution consists of the efix packager
(epkg) command and the efix manager (emgr) command.

The epkg command creates efix packages that can be installed
by the emgr command. The emgr command installs, removes,
lists, and verifies system efixes.

AIX emergency fixes can be downloaded from http://
techsupport .services. ibm.com/server/aix.ef ixmgmt/
home.html.

A convenient collection of URL links pointing to IBM pages
enabling manual downloading of various kinds of fixes is

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

located at http://www-1.ibm.com/servers/eserver/support/
pseries/aixfixes.html.

COMPARE_REPORT COMMAND

Now you have the ability to identify, find, and download fixes.
But how do you actually decide which fixes a particular system
needs?

You can use the AIX compare_report command to compare
the filesets installed on a system with the contents of a fileset
image repository or with a list of available updates that may be
downloaded from the IBM support site. These comparisons
will produce reports that simplify the process of determining
the fixes to install to bring a system to the latest maintenance
level or the latest level. Reports that are created using the list
of available updates can be uploaded directly to http://www-
1 . i b m . c o m / s e r v e r s / e s e r v e r / s u p p o r t / p s e r i e s /
moreservices.html. (Select AIX 5.1, 5.2, or 5.3 to request the
exact fixes needed for the system.)

The compare_report command was introduced in AIX 5L
Version 5.2 and maintenance level 5100-03 of Version 5.1
(APAR IY33992) in the bos.rte.install fileset. It provides an
easier way to maintain the software installed on the system
and encourages updating to the latest maintenance level.

The following example compares the software installed on a
system with the list of available updates that can be downloaded
from the IBM Web site. It shows the steps to determine the list
of fixes necessary to bring the system up to maintenance level
5200-05.

Step 1

Download the file containing a list of available updates from
the IBM Web site onto your system.

The file (for example, LatestFixData52) contains a list of fixes
that are in the latest maintenance package as well as the

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

latest available fixes that have been released after the latest
maintenance package. This file should be on the IBM Web
site. A sample portion of the file is shown below:

2ØØ5.Ø3.29

#

Platform: AIX 5.2

Data file: LatestFixData52

Origin: IBM Server Support Site

#

Description:

Colon separated file containing a list of what filesets are available

in the latest maintenance package and all fixes released after the

latest maintenance package.

#

Format:

PTF number : base fileset name : version.release.modification.fix :

package indicator

#

The package indicator is either the word LATEST_LEVEL or a word

indicating that the fix is part of the latest maintenance package.

#

U8ØØ712:IBMGrid.AppServer:1.1.Ø.3:LATEST_LEVEL

U8ØØ718:IBMGrid.CMM:1.1.Ø.3:LATEST_LEVEL

U8ØØ714:IBMGrid.OGSA:1.1.Ø.3:LATEST_LEVEL

U8ØØ717:IBMGrid.Policy:1.1.Ø.3:LATEST_LEVEL

U8ØØ716:IBMGrid.ServiceGroup:1.1.Ø.3:LATEST_LEVEL

U8ØØ713:IBMGrid.Toolbox:1.1.Ø.3:LATEST_LEVEL

U8ØØ715:IBMGrid.WebApp:1.1.Ø.3:LATEST_LEVEL

U485984:IMNSearch.rte.DBCS:2.4.Ø.1Ø:ML52ØØØ5

U485985:IMNSearch.rte.SBCS:2.4.Ø.1Ø

…

Step 2

Run compare_report to generate a report of necessary fixes.

The compare_report command is available with AIX Version
5.1 in the 5.1.0.35 or later version of the bos.rte.install fileset
(APAR IY33992), and in AIX Version 5.2. To run the command
on an AIX 5.1 system that is at an earlier version than
maintenance level 5100-03, ftp the script for the
compare_report command.

To determine the fixes necessary to bring a system up to
maintenance level 5100-03, compare the software installed
on a system (-s option) with the report containing a list of

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

available updates (-r option). Enter the following command:

/usr/sbin/compare_report -s -r /tmp/LatestFixData51 -l

This will generate the two lower-level reports (-l option) – /tmp/
lowerthanmaint.rpt (a list of filesets on the system which are
at a lower level than the latest maintenance level)
and /tmp/lowerthanlatest1.rpt (list of filesets on the system
that are at a lower level than the latest level).

Note: the compare_report command in AIX 5.1 is available
only from the command line. In AIX 5.2, the command is also
available through the SMIT menus using fastpath smitty
compare_report.

Sample report output – disk file

A lowerthanmaint.rpt file can then be uploaded to the IBM Web
site to request the listed PTFs (see Step 3).

Step 3

Upload the comparison report file to the IBM Web site.

The fix release information section of the IBM Web site allows
you to upload a file that has been generated by the
compare_report command. The PTF numbers contained in
the comparison report file will be used to provide the requested
fixes. After uploading the file, you can download the requested
fixes (PTFs) through the normal IBM Web site interfaces.

SUMA – SERVICE UPDATE MANAGEMENT ASSISTANT

The Service Update Management Assistant (SUMA) provides
further advancement in the operations required to keep a
server or number of servers up to date with the latest
maintenance updates. The automation provided by this tool
enables a systems administrator to perform the tasks in an
unattended and controlled way. In addition, SUMA includes
integrated scheduling capabilities to enable repeating tasks
and unattended downloads during periods of low network
activity. SUMA is installed via the fileset bos.suma.

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

The Service Update Management Assistant is available by
default with the AIX 5L Version 5.3 operating system installation.
It should be noted that SUMA is available for AIX 5.1 and AIX
5.2 in the form of APARs. All SUMA modules and the suma
command are contained in the bos.suma fileset.

SUMA requires the latest patch level of perl.rte (5.6.0.10 for
OS Version 5.1; 5.8.0.10 for OS Version 5.2) as well as the
perl.libext fileset (2.0.56.0 for OS Version 5.1; 2.0.58.0 for OS
Version 5.2). These should be included automatically when
installing the bos.suma fileset.

SUMA also requires an active connection to the Internet.
Proxies are supported and secure queries and downloads are
supported if OpenSSL is installed. OpenSSL is not installed by
default, but is available on the Toolbox for Linux Applications
CD.

The lslpp -p bos.suma command can be used to verify the
requisites for the bos.suma fileset:

root:/home/root: lslpp -p bos.suma

 Fileset Requisites

 --

Path: /usr/lib/objrepos

 bos.suma 5.2.Ø.Ø

 *prereq bos.rte 5.2.Ø.Ø

 *prereq perl.rte 5.8.Ø.1Ø

 *prereq perl.libext 2.Ø.58.Ø

Path: /etc/objrepos

 bos.suma 5.2.Ø.Ø

 *prereq bos.rte 5.2.Ø.Ø

 *prereq perl.rte 5.8.Ø.1Ø

 *prereq perl.libext 2.Ø.58.Ø

Use the lslpp -f bos.suma command to examine the list of
directories and files that are required to install the SUMA
feature:

root:/home/root: lslpp -f bos.suma

 Fileset File

 --

Path: /usr/lib/objrepos

 bos.suma 5.2.Ø.Ø

 /usr/suma/lib/SUMA/FixInventory.pm

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 /usr/suma/lib/SUMA/Policy.pm

 /usr/share/man/info/en_US/a_doc_lib/cmds/aixcmds5/suma.htm

 /usr/lpp/bos.suma/README

 /usr/suma/lib/SUMA/Download.pm

 /usr/suma/lib/msg.map

 /usr/suma/bin/sm_suma

 /usr/suma/lib

 /usr/suma/lib/SUMA/Scheduler.pm

 /usr/suma/lib/SUMA/DBMStanzaDir.pm

 /usr/suma/lib/SUMA

 /usr/suma/lib/SUMA/SoftwareInventory.pm

 /usr/suma/bin/suma_mgdb

 /usr/suma/lib/SUMA/NotifyCache.pm

 /usr/suma/bin/suma

 /usr/sbin/suma -> /usr/suma/bin/suma

 /usr/suma/lib/SUMA/PolicyFactory.pm

 /usr/suma/lib/SUMA/StanzaDB.pm

 /usr/suma/lib/SUMA/GConfig.pm

 /usr/suma/lib/SUMA/Util.pm

 /usr/suma/lib/SUMA/Messenger.pm

Path: /etc/objrepos

 bos.suma 5.2.Ø.Ø /var/suma/tmp

 /var/suma

 /var/suma/data

SUMA activity is based on the concept of the ‘task’. Multiple
tasks can be created and stored to perform separate functions.
Configurable task defaults are used to fill in underlying options
not explicitly overridden when invoking SUMA. Base
configuration settings affect all operations.

SUMA functionality is available from the command line via the
suma command, located in /usr/suma/bin, with a symbolic
link in /usr/sbin.

The usage information of the suma command is shown in the
following:

root@:/usr/lpp/bos.suma: suma -h

Usage:

• Create, edit, or schedule a SUMA task:

 suma { { [-x][-w] } | -s CronSched } [-a Field=Value]... [TaskID]

• List SUMA tasks:

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

suma -l [TaskID]...

• List or edit the default SUMA task:

suma -D [-a Field=Value]...

• List or edit the SUMA global configuration settings:

suma -c [-a Field=Value]...

• Unschedule a SUMA task:

suma -u TaskID

• Delete a SUMA task:

suma -d TaskID

The command can be used to perform the following operations
on a SUMA task:

• Create

• Edit

• List

• Schedule

• Unschedule

• Delete.

The specified operation will be performed on the task
represented by a unique task identifier (TaskID). If the TaskID
is not specified for create or edit operations, the create
operation will be assumed, and a unique TaskID will be
generated. The suma -l command displays all SUMA tasks if
the TaskID is not specified. The suma -c command entered
without any additional flag will list the SUMA global configuration
settings.

Each task can implement one of the following actions:

• Preview – specifies that a download preview will be
performed. No filesets will be downloaded. In addition to
previewing the filesets that would be downloaded, this
option can also be used to generate an e-mail notification

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

listing the fixes that are available on the IBM Support Web
site.

• Download – specifies that filesets will be downloaded
according to the specified request type.

• Download and clean – specifies that filesets will be
downloaded based on the specified request type, followed
by a clean operation. The clean operation will remove
filesets that are not needed from the download target
directory, such as updates that have been superseded by
a newer fix level that has been downloaded. This can help
manage the size of the fix repository.

The request type (RqType) parameter of suma commands
determines the particular updates to be downloaded.

When suma is run with an RqType of Security, Critical,
IOServer, or Latest, the RqType is the only required field.
Other RqType values (APAR, PTF, ML, Fileset) will require
specification of additional Field=Value information:

• APAR – specifies a request to download an APAR.

• PTF – specifies a request to download a PTF.

• ML – specifies a request to download a specific
maintenance level.

• Fileset – specifies a request to download a specific fileset.

• Security – specifies a request to download the latest
security fixes.

• Critical – specifies a request to download the latest critical
fixes.

• IOServer – specifies a request to download the latest I/O
server fixes.

• Latest – specifies a request to download all the latest
fixes.

SUMA performs various types of filtering on the fixes requested

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

for download. To ensure that only the desired fixes will be
downloaded, comparisons can be performed against an
inventory of software installed on a system, a directory
containing a repository of fixes, or the maintenance level of
the system .

At the completion of a download operation, SUMA displays
logs, or e-mails a summary report showing the number of fixes
that were downloaded successfully, any fixes that failed to
download, and fixes that were skipped because they were
already present on the system. A preview option is also
available if you wish to generate a list of fixes that are available
on the IBM Support Web site.

SUMA downloads can be scheduled or executed immediately.
By scheduling a policy, an unattended download can be set up
to conform to a client’s maintenance window. SUMA also
provides support for scheduling policies at flexible intervals,
such as hourly, daily, weekly, and monthly. This allows the
download to occur at an optimal time or can be used to
establish the frequency to check for the availability of certain
fixes.

Scheduled policies can also be designated as repeating.
Repeating policies for certain fix types, such as APAR, PTF,
or Maintenance Level, will be repeated according to the
selected interval, and then deleted when the specific fix or
maintenance level is found. Other fix types, those released as
a group on an on-going basis, such as Critical, Security, I/O
Server and Latest, will continually be repeated at the specified
interval until the policy is unscheduled. Policies can also be
scheduled to be non-repeating, in which case they will be run
once and then removed from the system.

Another area where SUMA provides a lot of flexibility is
logging. SUMA supports six different verbosity levels that can
be uniquely set for sending information to the screen, a log file,
or as a part of an e-mail notification. The levels are listed
below, ordered from the least to the most amount of information
displayed:

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• OFF – no information is displayed or logged.

• ERROR – displays error messages and other highly
important messages.

• WARNING – displays warning messages in addition to
ERROR messages.

• INFO – displays informational messages in addition to
WARNING messages.

• VERBOSE – displays verbose informational messages in
addition to INFO messages.

• DEBUG – displays debug output for debugging purposes.
This setting is not used for normal operations.

To enable your system for automated downloads of
maintenance fixes, SUMA provides both command line and
menu-driven System Management Interface Tool (SMIT)
interfaces.

REFERENCES

1 AIX 5L Differences Guide Version 5.3 Edition, SG24-
7463-00.

2 Update your AIX system with SUMA – http://www-
128.ibm.com/developerworks/eserver/ l ibrary/es-
updateaix.

3 Suma Command Reference – http://
p u b l i b . b o u l d e r . i b m . c o m / i n f o c e n t e r / p s e r i e s /
index.jsp?topic=/com.ibm.aix.doc/cmds/aixcmds5/
suma.htm.

Alex Polak
System Engineer
APS (Israel) © Xephon 2005

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Run a common script across a list of servers

INTRODUCTION

This script, runbatch, is used to run a common script across
a list of one or more servers. The script uses passwordless
ssh to execute the script on remote servers, and distribution
of the script is done through secure copy (scp). Only new
versions of the common script will be remotely copied if the
RCS (Revision Control System) version number is different
from the local version.

Typical usage would be to execute a script on all your servers
and collect the output in a log file. An error log file is also kept.

Note: this script can easily be modified to work on any flavour
of Unix by simply setting the appropriate PATH variable to
match the system commands of your Unix system.

PREREQUISITES

OpenSSH V3.6p1 (or more recent) is prerequisite software
that needs to be installed on every server.

RCS (Revision Control System) is prerequisite software that
needs to be installed on at least one server.

The RCS software can be found and downloaded from IBM’s
AIX Toolbox Download page at http://www-1.ibm.com/servers/
aix/products/aixos/linux/download.html.

All software found on IBM’s AIX Toolbox Download page is in
RPM (Redhat Package Manager) format. So, you will need to
have the rpm.rte LPP installed before you can install the
RPMs. The rpm.rte AIX installp format can be found at ftp://
ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/INSTALLP/
ppc/rpm.rte.

OpenSSH can be found on the Bull Freeware site at http://
www.bullfreeware.com.

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SOFTWARE INSTALLATION

Installation of Revision Control System

Revision Control System is a file version management tool.
You can download RCS from IBM’s AIX Toolbox Download
page in RPM format.

To install the package, simply type the command:

rpm –i rcs-5.7-2.aix5.1.ppc.rpm

Installation of openSSH

OpenSSH is the open-source version of secure shell. You can
download it from the Bull Freeware site (www.bullfreeware.com)
for any version of AIX. To install the package, which comes in
exe format, simply follow the instructions found on Bull’s site
at www.bullfreeware.com/install_down.html.

Once the package is installed, you will have to generate the
server’s keys by using the command:

ssh-keygen -t rsa1 -f /usr/local/ssh/etc/ssh_host_key -N ""

ssh-keygen -t rsa -f /usr/local/ssh/etc/ssh_host_rsa_key -N ""

ssh-keygen -t dsa -f /usr/local/ssh/etc/ssh_host_dsa_key -N ""

You may have to change the path where your server’s keys will
be stored (ie /usr/local/ssh/etc).

SETTING UP PASSWORDLESS SSH

In order to set up passwordless ssh, you must first create a
user on all your servers that will be used to execute the
common script. You may optionally use an existing user or
even the root account (at your risk).

For my example, I chose to create a special user called ‘batch’
and group ‘batch’ to execute this script.

First create a new AIX group, which will contain only the
passwordless SSH user, batch. I have chosen to name the
group batch with a gid of 522:

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

mkgroup -'A' id='522' batch

Next, create the user batch with a uid of 673 and a shell of ksh:

mkuser id='673' pgrp='batch' groups='batch' shell='/usr/bin/ksh'

home='/home/batch' \

gecos='Runbatch script user' batch

Note: do not give this user a password in AIX. Authentication
will be done using SSH.

In order to allow the user batch to log in to all servers without
a password, you must generate the private/public key pair.

First, as root, change user to batch, and in batch’s home
directory type:

su - batch

ssh-keygen -t dsa -f .ssh/id_dsa

A password will be asked for. Do not enter a password, just
press Enter.

Now, go the .ssh directory, and you will find two new files –
id_dsa and id_dsa.pub.

The second one is the public key. Rename it thus:

cd .ssh

mv id_dsa.pub authorized_keys2

chmod 6ØØ authorized_keys2

Now, try to log in to the same server using ssh to verify that
things have worked.

Note: the first time you log in to a server using ssh, even
though it is passwordless, it will ask you if you want to
permanently add that host to the list of known hosts. You must
answer ‘yes’.

The next time you log in to the remote server, no password or
questions will be asked.

Note: this system will work as long as none of the machines
changes its IP address. If this server changes its IP address,
you will have to regenerate the public/private keys. If any of
the other servers changes its IP address, you will have to

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

manually delete it from the known_hosts file in the .ssh
directory and answer ‘yes’ to permanently add that host to the
list of known hosts again.

You will have to run this procedure on every server that you
wish to be able to run the common script. However, you will not
need to recreate the private/public key pair on every server.

After you have created the group and user on your server,
simply copy the file from the first server onto the new server:

/home/batch/.ssh/authorized_keys

Now, change the permissions for the local batch account thus:

chown –R batch:batch /home/batch

chmod –R 7ØØ /home/batch

chmod 6ØØ /home/batch/.ssh/authorized_keys

Once again, try to log in to this new server using ssh to verify
that things worked correctly.

Continue this procedure until all your servers have been
configured.

SETTING UP VERSIONING USING RCS

In order to ensure that we do not needlessly copy the common
script to every server, we will use RCS to version our scripts.
This practice also allows us to keep back-ups of our scripts.

For help on using RCS, see http://www.gnu.org/software/rcs/
rcs.html.

For the purpose of this article, I will show you some basic RCS
commands to set up versioning of our scripts.

First, create a directory named RCS, which will hold RCS
version information:

mkdir /home/batch/RCS

Now, in your common scripts (my test script is called script.sh),
do the following:

1 Add Id at the top of the script:

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

#

Id

#

2 Check-in (ci) the file:

ci –i script.sh

3 Check-out and check-in the file again:

co -l script.sh

ci –u script.sh

4 Look in file script.sh now:

#

$Id: script.sh,v 1.1 2ØØ5/Ø2/24 17:23:58 prattico Exp $

#

Now, every time you wish to make a change to your script, you
simply follow this sequence:

1 Check-out the file using the co command:

co –l script.sh

2 Modify the script:

vi script.sh

3 Check-in the file using the ci command:

ci –u script.sh

Your version number will automatically increase at every
check-in if there is a change to the script.

RUNBATCH SCRIPT
#!/bin/sh

Set your PATH variable for system commands here

export PATH=/usr/bin:/usr/sbin

Some script name and server settings

BASENAME='basename $Ø' # Script name

HOSTNAME='hostname' # Where am I running

###

Modify these parameters to match your environment

###

SERVERLIST=/home/batch/serverlist

 # Path to file with all your server names

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ERRFILE=$BASENAME"_error.log"

 # Default file name where errors will go

LOGFILE=$BASENAME"_results.log"

 # Default file name where scripts results will go

USER=batch # User which can ssh to all server passwordless

SSH=/usr/local/bin/ssh # Path to ssh executable

SCP=/usr/local/ssh/bin/scp # Path to scp executable

###

DO NOT MODIFY ANYTHING BELOW HERE UNLESS YOU KNOW WHAT YOU'RE DOING

###

Initialize some variables

SERVERS=""

SCRIPT=""

VERBOSE=Ø

BREAK=Ø

Help on script usage function

function usage {

 echo "\n The script $BASENAME is used to execute a script"

 echo " on one or more AIX servers using passwordless ssh."

 echo "\n Syntax: $BASENAME -b script [-s \"host1 host2...

hostn\"][-v][-o outputfile][-e errorfile][-h]"

 echo "\n Description of flags and parameters:"

 echo "\n -h : help"

 echo " -b : full path to script to execute"

 echo " -s : list of servers to process"

 echo " -v : verbose mode"

 echo " -o : Path to file which will store results (default:

$LOGFILE)"

 echo " -e : Path to file which will store errors (default:

$ERRFILE)"

 echo "\n Examples: $BASENAME -b script.sh"

 echo " $BASENAME -b script.sh -s \"myserv1

myserv2\""

 echo " $BASENAME -h\n\n"

 exit

}

Preliminary checks function - basic sanity checks

function run_preliminary_checks {

 if [[! -r $SERVERLIST && -z $SERVERS]];

 then

 echo "\nERROR: file $SERVERLIST is not available\n"

 exit 1

 fi

 lsuser $USER > /dev/null 2>&1

 if [[$? != Ø]];

 then

 echo "\nERROR: User $USER does not exist\n"

 exit 1

 fi

 if [[! -x $SSH]];

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 then

 echo "\nERROR: $SSH is not available\n"

 exit 1

 fi

 if [[! -x $SCP]];

 then

 echo "\nERROR: $SCP is not avaialable\n"

 exit 1

 fi

}

Function to find local version of script to execute on all servers

function get_local_version {

 LV='grep "\\$Id" ${SCRIPT} | grep -v grep | awk '{print $4}''

 if [[-z $LV]];

 then

 echo "\nERROR: Version of script $SCRIPT on $HOSTNAME is not

available\n"

 exit 1

 fi

 [$VERBOSE -eq 1] && echo "Local version of script : $SCRIPT is

$LV\n"

}

Function to find remote version of script to execute on all servers

function check_version {

 # $1=SERVER $2=SCRIPT

 CMD="su - $USER -c $SSH $1 grep -s '\\\$Id' $2 | grep -v grep |

awk '{print \$4}'"

 RV='$CMD'

 if [[-z $RV]];

 then

 [$VERBOSE -eq 1] && echo "WARNING: Script $2 on $1 is

not available\n"

 else

 [$VERBOSE -eq 1] && echo "Remote version of script : $2

is $RV\n"

 fi

}

Function which executes script on remote server

function run_script {

 # $1=SERVER $2=SCRIPT

 [$VERBOSE -eq 1] && echo "Running script $2 on server $1\n"

 su - $USER -c $SSH -q $1 $2 >> $LOGFILE

}

Function to copy script to remote server using scp

function scp_latest_version {

 # $1=SERVER $2=SCRIPT

 su - $USER -c $SCP -q $2 $USER@$1:$2

}

Function to verify ssh is available and functional

function check_ssh {

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 su - $USER -c $SSH -q -l $USER $1 "exit";

 if [[$? -ne "Ø"]];

 then

 echo "\nERROR: ssh for user $USER is not functional on

server $1" >> $ERRFILE

 BREAK=1;

 fi

}

Main

while getopts :b:s:o:e:hv arg

do

 case $arg in

 h) usage

 ;;

 b) SCRIPT=$OPTARG

 ;;

 s) SERVERS=$OPTARG

 ;;

 o) LOGFILE=$OPTARG

 ;;

 e) ERRFILE=$OPTARG

 ;;

 v) VERBOSE=1

 ;;

 \?) usage

 ;;

 *) usage

 ;;

 esac

done

Verify we have the name of the script to execute on servers

if [[-z $SCRIPT]];

then

 echo "\nERROR: the path to the script to execute is required!\n"

 usage

fi

Script exists and is it executable?

if [[! -x $SCRIPT]];

then

 echo "\nERROR: the script $SCRIPT is not available or not

executable!\n"

 echo "Verify, correct and try again.\n"

 exit

fi

Erase old work files, in case...

/usr/bin/rm -f $LOGFILE $ERRFILE

run_preliminary_checks

get_local_version

if [[-z $SERVERS]];

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

then

 for server in 'cat $SERVERLIST'

 do

 [$VERBOSE -eq 1] && echo "Processing server $server - `date`..."

 check_ssh $server

 if [[$BREAK -eq 1]];

 then

 BREAK=Ø;

 continue

 fi

 check_version $server $SCRIPT

 if [[$LV != $RV]];

 then

 [$VERBOSE -eq 1] && echo "Synchronising $SCRIPT on

remote server $server"

 scp_latest_version $server $SCRIPT

 fi

 run_script $server $SCRIPT

 done

else

 for server in $SERVERS

 do

 [$VERBOSE -eq 1] && echo "Processing server $server - `date`..."

 check_ssh $server

 if [[$BREAK -eq 1]];

 then

 BREAK=Ø;

 continue

 fi

 check_version $server $SCRIPT

 if [[$LV != $RV]];

 then

 [$VERBOSE -eq 1] && echo "Synchronising $SCRIPT on

remote server $server"

 scp_latest_version $server $SCRIPT

 fi

 run_script $server $SCRIPT

 done

fi

[$VERBOSE -eq 1] && echo "\nScript output file : $LOGFILE"

[$VERBOSE -eq 1] && echo "Script error file : $ERRFILE\n"

exit Ø

TESTING

In order to test that everything is working properly, create a
test script that issues a simple command such as hostname.
Make sure to use RCS.

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Here is my sample script:

#!/bin/sh

$Id: script.sh,v 1.1 2ØØ5/Ø2/24 17:23:58 prattico Exp $

#

/usr/bin/hostname

Now, issue the runbatch script as follows:

runbatch –b script.sh –s "server1 server2 server3" -v

Verify your output logs to ensure that everything ran smoothly.

CREATING A SERVERLIST FILE

If you want to simplify batch execution, the runbatch script can
optionally use a file with a list of servers on which to run the
common script.

The format of the serverlist file is a single server name per line
with no blank lines allowed in the text file. Here is an example:

server1

server2

server3

servern

The default path for your serverlist file is /home/batch/serverlist.
If you change the path, simply make the same change in the
runbatch script.

To use the serverlist file, do not put the -s flag on the command
line:

runbatch –b script.sh -v

Elvio Prattico
Consultant
PRATTICO Consulting (Canada) © Xephon 2005

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Tape management system – part 2

This month we continue the code for a tape management
system.

DB_UPDATE.KSH
#!/bin/ksh

##

This script will update the tape database. It should not

be executed by a user.

##

home=/var/tapesys

host='hostname'

pid="$$"

Date='date'

label_log="$home/bin/label_log.ksh"

Check freespace in database directory

df -k $home|tail -1|read a b free d e

$label_log "Database freespace: $free kB"

if ["$free" -lt "1Ø24Ø"] ; then

 $label_log "Full filesystem - unable to update database"

 echo "Error updating tape database - directory full"

 echo "Call AIX Support. Process will pause here."

echo "\n`tput smso`DO NOT Press [ENTER] until told to do so.`tput rmso`"

 read foo

 echo "Safety check - Press [ENTER] again."

 read anotherfoo

fi

$HOME/BIN/BACKUP.KSH
$home/bin/lockdb.ksh "DB Update"

 date='date'

 sec="$home/bin/sec"

 s2d="$home/bin/s2d"

 no_rewind=".1"

 args="$#"

 my_fullname="$Ø"

 myname='basename $Ø'

 tmp="/tmp/tapedb.$$"

tapes.db is a listing of the most current versions of each tape.

tape_history.db is the status of all tapes since they have been used.

 if ["$args" -eq "2"] ; then

 device="$1"

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 backup="$2"

 mt -f $device rewind

 $label_log "Read tape label from db_update"

 label='$home/bin/tape_label.ksh get $device'

 echo $label:$host:$backup:Ø >>$home/db/tape_history.db

 volser='echo "$label"|cut -f1 -d":"'

 $label_log "Begin module 1 update tape database for volser:

$label:$host:$backup"

 $label_log "Tape history updated from module 1"

 grep -v $volser $home/db/tapes.db >$tmp

 echo $label:$host:$backup:Ø >>$tmp

 $label_log "Create temporary volser record from module 1"

 $label_log "End module 1 update tape database for volser:

$label:$host:$backup"

 else

 $label_log "Begin module 2 update tape database for volser: $1"

 echo "$1" >>$home/db/tape_history.db

 $label_log "Tape history updated from module 2"

 volser='echo "$1"|cut -f1 -d":"'

 $label_log "Module 2 update tape database for volser: $volser"

 grep -v $volser $home/db/tapes.db >$tmp

 $label_log "Database updated from module 2"

 echo $1 >>$tmp

 $label_log "End module 2 update tape database for volser: $1"

 fi

 cp -p $tmp $home/db/tapes.db

 $label_log "Database updated from main module"

 rm $tmp

$home/bin/unlockdb.ksh "DB Update"

DEFCHECK.KSH

#!/bin/ksh

Script to check the tape database to see whether a currently

mounted tape is defective or not.

tape_drive=${1}

home="/var/tapesys"

tmp="/tmp/tape.$$"

tapes="$home/db/tapes.db"

label_log="$home/bin/label_log.ksh"

host='hostname'

rc=Ø

while : ; do

 mt -f $tape_drive rewind 2>/dev/null

 if ["$?" -ne "Ø"] ; then

 echo "`basename $Ø`: Tape drive $tape_drive is not ready"

 echo "or other tape error."

 while : ; do

 echo " "

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 echo "Press a to abort this command"

 echo "Press c to continue this command immediately"

 echo "Press w to wait 2Ø seconds and try again"

 echo " "

 echo "Enter here --> \c"

 read option

 if [-z "$option"] ; then

 echo "Please select a/c/w"

 continue

 fi

 if ["$option" = "a"] ; then

 rc=2

 exit $rc

 fi

 if ["$option" = "c"] ; then

 break

 fi

 if ["$option" = "w"] ; then

 sleep 2Ø

 break

 fi

 continue

 done

 else

 break

 fi

done

$label_log "Defective tape check"

$home/bin/tape_label.ksh get $tape_drive >$tmp

tmp_label=$($home/bin/tape_label.ksh get $tape_drive)

volser=$(echo ${tmp_label}|cut -f1 -d":")

volser=$(echo ${tmp_label}|cut -f1 -d":")

created=$(echo ${tmp_label}|cut -f2 -d":")

created=$(echo ${tmp_label}|cut -f2 -d":")

foo='grep $volser $tapes|grep -i defective'

defective_tape="$?"

If the result code is "Ø", then we found the string

"Defective" in the database.

rm $tmp

if ["$defective_tape" -eq "Ø"] ; then

 $label_log "volser $volser is defective"

 exit 1

else

 $label_log "volser $volser is NOT defective"

 exit Ø

fi

Exit with a "1" if the tape is defective, and "Ø" if it is not.

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

LABEL_LOG.KSH
#!/usr/bin/ksh

This program tracks activity as tape labels are read/written

home="/var/tapesys"

h=$(hostname)

label_log="${home}/log/tapesyslog"

argv="$@"

d=$(date)

echo "$d $h: $argv" >> $label_log

exit Ø

LOCKDB.KSH

#!/usr/bin/ksh

home=/var/tapesys

host='hostname'

pid="$$"

lock="$home/db/dbupdate.lck"

Args="$@"

Date='date'

label_log="$home/bin/label_log.ksh"

image="%-1Ø.1Øs%-6Ø.6Øs%-25.25s\n"

if [-r $lock] ; then

 printf $image "$host:" "database lock attempt failed $Date" "($Args)"

>> $home/log/dblocklog.log

 $label_log "Database lock failed"

 while : ; do

 echo "\n\nThe tape database is currently being updated"

 cat $lock

 echo "I will wait until the other process finishes"

 echo "To clear this condition, remove the file $lock."

 echo "But be sure you know what you are doing..."

 sleep 5

 if [! -r $lock] ; then

 echo "\nLock has been released...continuing\n\n"

 tput rmso

 break

 else

 echo "Lock is still present"

 fi

 done

fi

echo "Host: $host Process: $pid Date: $Date" >$lock

$label_log "Database locked"

printf $image "$host:" "database locked $Date" "($Args)" >> $home/log/

dblocklog.log

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

PRINTDF.KSH
#!/bin/ksh

Menu for generating reports on the tape system

Written 3/2/2ØØ1 Bill V.

z=Ø

y=Ø

x=Ø

w=Ø

format="%-35.3Øs%-15.12s%-15.12s%-8.6s%-1Ø.8s%-8.6s%-35.33s\n"

Filesystem 1Ø24-blocks Free %Used Iused %Iused Mounted on

/dev/exportlv 294912Ø 21717Ø8 27% 7Ø8 1% /furn_export

df -k |head -1|read a b c d e f g h i

printf $format "$a" "$b" "$c" "$d" "$e" "$f" "$g $h"

for line in 'lsfs|awk {'print $3'}' ; do

 df -k $line 2>/dev/null |tail -1|read a b c d e f g h i

 if ["$?" -eq "1"] ; then

 continue

 fi

 mount|grep $line 2>/dev/null 1>&2

 if ["$?" -eq "1"] ; then

 continue

 fi

 printf $format "$a" "$b" "$c" "$d" "$e" "$f" "$g $h"

 z='expr $z + 1'

 y='expr $y + $b'

 x='expr $x + $c'

done

echo ""

printf $format "Total: $z" "$y" "$x"

exit Ø

PRINTL.KSH
#!/bin/ksh

Script wrapper to print out stuff!

if ["$#" -ne "2"] ; then

 echo "Oops - try again"

 echo "$Ø queue file"

 exit 1

fi

q=$1

f=$2

date='date +%m/%d/%Y'

time='date +%H:%M:%S'

date_time="$date $time"

title='### TAPE REPORTS ###'

tmp="/tmp/printl.$$"

echo $date_time >$tmp

echo $title >> $tmp

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

cat $f >>$tmp

qprt -dc -#v -#j -P $q -q '6ØØ' -s lineprinter -p17 -T "$title2" -z'+'

$tmp 2>/dev/null

if ["$?" -ne "Ø"] ; then

 echo "There was a problem printing the report."

 echo "I will try again with different parameters,"

 echo "however, the report may be more difficult to read.\n"

 lp -d $q $f 2>/dev/null

 sleep 1Ø

fi

sleep 5

rm $tmp

PRINTP.KSH
#!/bin/ksh

Script wrapper to print out stuff!

if ["$#" -ne "2"] ; then

 echo "Oops - try again"

 echo "`basename $Ø` queue file"

 exit 1

fi

q=$1

f=$2

date='date +%m/%d/%Y'

time='date +%H:%M:%S'

date_time="$date $time"

title='### TAPE REPORTS ###'

tmp="/tmp/printl.$$"

echo $date_time >$tmp

echo $title >> $tmp

cat $f >>$tmp

qprt -dc -#v -#j -P $q -q '6ØØ' -T "$title2" $tmp 2>/dev/null

if ["$?" -ne "Ø"] ; then

 echo "There was a problem printing the report."

 echo "I will try again with different parameters,"

 echo "however, the report may be more difficult to read.\n"

 lp -d $q $f 2>/dev/null

 sleep 1Ø

fi

sleep 5

rm $tmp

PROC_HIST_REPORT.KSH
#!/usr/bin/ksh

VOLSER="$1"

home="/var/tapesys"

s2d="/$home/bin/s2d"

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

tape_history="$home/db/tape_history.db"

ofile="$home/reports/tape_detail.$VOLSER"

>$ofile

format="%-13s%-29.26s%-29.26s%-1Ø.1Øs%-5s%-4Ø.38s\n"

for tape_rec in 'cat $tape_history|grep ^$VOLSER' ; do

 volser='echo $tape_rec|cut -f1 -d":"'

 if ["$pvol" = " "] ; then

 pvol=$volser

 fi

 creation='echo $tape_rec|cut -f2 -d":"'

 lifetime='echo $tape_rec|cut -f3 -d":"'

 host='echo $tape_rec|cut -f4 -d":"'

 backup='echo $tape_rec|cut -f5 -d":"'

 location='echo $tape_rec|cut -f6 -d":"'

 creation_time='$s2d $creation'

 foo='echo "$creation+$lifetime"|bc'

 expiration_time='$s2d $foo'

passes='grep $volser $tape_history|wc -l'

 if ["$location" -eq "Ø"] ; then

 loc="ON"

 elif ["$location" -eq "1"] ; then

 loc="OFF"

 else

 loc="UNK"

 fi

 printf $format "$volser" "$creation_time" "$expiration_time" "$host"

"$loc" "$backup" >> $ofile

 passes='grep $volser $tape_history|wc -l'

 echo "Total: $passes" >> $ofile

done

PROC_RANGE.KSH
#!/bin/ksh

Receive input in the form of "1Ø-15,6,8,2Ø-3Ø,4-5" and it will

return:

1Ø 11 12 13 14 15 6 8 2Ø 21 22 23 24 25 26 27 28 29 3Ø 4 5

This should be fun.

quiet=Ø

nl=1

if ["$#" -ne "Ø"] ; then

 while ["$#" -gt "Ø"] ; do

 var=$1

 if ["$var" = "-q"] ; then

 quiet=1

 fi

 if ["$var" = "-1"] ; then

 nl=Ø

 fi

 shift

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 done

fi

if ["$quiet" -eq "Ø"] ; then

 echo "Enter a range of numbers, format a-b,c,d-e ..."

fi

read range

orig_range="$range"

done=Ø

delim=","

field=Ø

terminator=",EOD"

range1="${range}${terminator}"

range=$range1

if ["$quiet" -eq "Ø"] ; then

 echo "Range is $orig_range:\n"

fi

while [$done -eq Ø] ; do

 field='expr $field + 1'

 data='echo "$range"|cut -f $field -d "$delim"'

 if ["$data" = ""] ; then

No commas found, assume only one range

 data="$range"

 fi

 if ["$data" = "EOD"] ; then

 done=1

 break

 fi

 foo='echo "$data"|grep "-" 1>/dev/null'

 if ["$?" -eq "Ø"] ; then

 left='echo "$data"|cut -f1 -d"-"'

 right='echo "$data"|cut -f2 -d"-"'

 while ["$left" -le "$right"] ; do

 echo "$left \c"

 if ["$nl" -eq "1"] ; then

 echo ""

 fi

 left='expr $left + 1'

 done

 else

 echo "$data \c"

 if ["$nl" -eq "1"] ; then

 echo ""

 fi

 fi

done

if ["$nl" -eq "Ø"] ; then

 echo " "

fi

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

SCRATCH_REPORT.KSH
#!/usr/bin/ksh

home="/var/tapesys"

label_log="$home/bin/label_log.ksh"

$label_log "Running scratch report"

echo "/dev/null" | $home/bin/tape_report.ksh foo scratch ### 1>/dev/null

2>&1

DT='date +%D-%T'

cat $home/reports/scratchreport.txt|mail -s "Tape Scratch Report

for $DT" ops,root

SCRATCH_TEST.KSH

#!/bin/ksh

trap "exit 1" 1 2 3 4 5 6 7 8 9 1Ø 11 12 13 14 15

#set -x

tape_drive="${1}"

home="/var/tapesys"

It would seem that some other processes sometimes

cause a device contention when doing a scratch test.

Perhaps this is caused by a previous command not finishing

with the tape driver (it is still perhaps rewinding).

So, I'll put a sleep here....

sleep 15

h=$(hostname)

label_log="${home}/bin/label_log.ksh"

retries=3

retried=1

while : ; do

 ${label_log} "Scratch test"

 tmplabel=

 tmplabel=$(${home}/bin/tape_label.ksh get ${tape_drive})

 volser=$(echo ${tmplabel}|cut -f1 -d":")

 VL=$(echo "${volser}" |wc -c |awk {'print $1'})

 if ["$VL" -lt "6"] ; then

 while ["$retried" -lt "$retries"] ; do

 $label_log "Corrupted VOLSER $volser detected ${retried}"

 echo "Attention - corrupted tape information received"

 echo "Attempt number ${retried} to recover."

 sleep 15

 mt -f ${tape_drive} rewind

 sleep 15

 ${label_log} "Scratch test retry"

 tmplabel=

 tmplabel=$(${home}/bin/tape_label.ksh get ${tape_drive})

 volser=$(echo ${tmplabel}|cut -f1 -d":")

 VL=$(echo "${volser}" |wc -c |awk {'print $1'})

 if ["$VL" -lt "6"] ; then

 retried='expr $retried + 1'

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 else

 echo "Successfully recovered tape label on attempt ${retried}."

 $label_log "Successfully recovered tape label on attempt ${retried}."

 $label_log "Offending tape is: $tmplabel"

 retried=99

 break

 fi

 done

 if ["$retried" -ne "99"] ; then

 echo "After ${retried} attempts, unable to read tape label"

 echo "Contact AIX on-call support ASAP"

 echo "Press [ENTER] to exit after you have called someone"

 echo "and you have been instructed what to do next."

 read foo

 exit 1

 fi

 fi

 created=$(echo ${tmplabel}|cut -f2 -d":")

 retention=$(echo ${tmplabel}|cut -f3 -d":")

 if ${home}/bin/synch_test.ksh $tmplabel

 then

 ${label_log} "volser ${volser} is in synch with db"

 synch_test=Ø

 else

 ${label_log} "volser ${volser} is NOT in synch with db"

 synch_test=1

 fi

 now='$home/bin/sec'

 ((scratch = ${created} + ${retention}))

 scratch_date='$home/bin/s2d $scratch'

 now_date='$home/bin/s2d $now'

 if ["${scratch}" -le "$now"] ; then

 scratch_tape=1

 else

 scratch_tape=Ø

 fi

 sleep 15

 if ["${synch_test}" -eq "1"]

 then

 echo "Tape $volser is not in synch with the database - I'll try

the next one"

 echo "[Press Ctrl-C to cancel this operation at any time]"

 $label_log "volser $volser is NOT in synch with the database"

 mt -f $tape_drive rewoffl

 if ["${h}" = "sapqam" -o "${h}" = "discus1"] ; then

 sleep 9Ø # Give the library time to switch tapes.

 else

 echo "Press [ENTER] after a new tape has been inserted"

 read somethingnew

 fi

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 elif ["${scratch_tape}" -eq "Ø"]

 then

 echo "Tape $volser is not scratch - I'll try the next one"

 echo "[Press Ctrl-C to cancel this operation at any time]"

 $label_log "volser $volser is NOT scratch"

 mt -f $tape_drive rewoffl

 if ["${h}" = "sapqam" -o "${h}" = "discus1"] ; then

 sleep 9Ø # Give the library time to switch tapes.

 else

 echo "Press [ENTER] after a new tape has been inserted"

 read somethingnew

 fi

 else ["$scratch_tape" -eq "1"]

 $label_log "volser $volser is scratch and in synch with database"

 tmplabel=

 exit Ø

 fi

done

YNC.KSH
#!/bin/ksh

This is a report that will read tape labels and compare

the internal tape library with the tape database.

Exceptions will be identified in the report output.

Command line options:

$1 = tape device

if ["$#" -ne "1"] ; then

 echo "Please specify a tape drive...\n"

 exit 1

fi

device=$1

boj='date'

home="/var/tapesys"

tapes="$home/db/tapes.db"

Ymd='date +%Y%m%d'

hms='date +%H%M%S'

report="$home/reports/syncreport.${Ymd}_${hms}.txt"

tmp="/tmp/sync.$$.txt"

i1="%-72.5Øs%-5Ø.4Øs\n"

i2="%-1Ø.8s%-31s%-31s%-1Ø.8s%-31s%-34.31s%-2s\n"

touch $report

printf $i1 "Tape Information" "Library Information" >>$report

printf $i2 "Volser" "Creation Date/Time" "Expiration Date/Time" "Volser"

"Creation Date/Time" "Expiration Date/Time" " " >>$report

clear

>$tmp

while : ; do

 t=Ø

 x=1

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 echo "How many tapes are in the library?"

 echo "Enter \"Ø\" to finish reading and"

 echo "generate the report"

 read t

 if ["$t" -ne "Ø"] ; then

 while ["$x" -le "$t"] ; do

 dd if=$device count=1 2>/dev/null |tee -a $tmp

 mt -f $device rewoffl

 echo "Press [ENTER]"

 read foo

 x='expr $x + 1'

 done

 else

 break

 fi

done

clear

echo "Processing report..."

for line in 'cat $tmp' ; do

 tvolser='echo "$line"|cut -f1 -d":"'

 tcreate='echo "$line"|cut -f2 -d":"'

 tscratc='echo "$line"|cut -f3 -d":"'

 t1='expr $tcreate + $tscratc'

 lvol='grep "$tvolser:" $tapes'

 lvolser='echo "$lvol"|cut -f1 -d":"'

 lcreate='echo "$lvol"|cut -f2 -d":"'

 lscratc='echo "$lvol"|cut -f3 -d":"'

 l1='expr $lcreate + $lscratc'

 tc='$home/bin/s2d $tcreate'

 ts='$home/bin/s2d $t1'

 lc='$home/bin/s2d $lcreate'

 ls='$home/bin/s2d $l1'

 if ["$tcreate" -ne "$lcreate" -o "$t1" -ne "$l1"] ; then

 flag="X"

 else

 flag=" "

 fi

 printf $i2 "$tvolser" "$tc" "$ts" "$lvolser" "$lc" "$ls" "$flag" >>

$report

done

echo "Report is $report"

SYNCH_TEST.KSH

#!/bin/ksh

trap "exit 1" 1 2 3 4 5 6 7 8 9 1Ø 11 12 13 14 15

#set -x

current tapesys location

home="/var/tapesys"

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

tapes_db="${home}/db/tapes.db"

hostname should include vars.ksh but would need to override home

dir. Will change soon.

h=$(hostname)

script for logging.

label_log="${home}/bin/label_log.ksh"

Log synch test

${label_log} "Synch test"

the label from the tape should be passed as an argument. That way

we don't need to read the tape again.

tmplabel=${1}

get volser from the tape label so we can compare to database

volser=$(echo ${tmplabel}|cut -f1 -d":")

search tape database for volser.

db_label=$(grep ${volser} ${tapes_db})

Set database label to be the first 3 fields to compare to tapelabel.

db_label="$(echo ${db_label}|cut -f1 -d":"):$(echo ${db_label}|cut -f2 -

d":"):$(echo ${db_label}|cut -f3 -d":")"

compare labels from tape and database. return Ø if it's the same, 1

otherwise

echo "dblabel: ${db_label} \ntmplabel: ${tmplabel}"

if [${db_label} != ${tmplabel}]

then

 exit 1

else

 exit Ø

fi

TAPE_LABEL.KSH
#!/bin/ksh

##

This script will be the wrapper around our tape management

system. You pass this script the following parameters:

tape_label.ksh [action] [tape device]

Action:

get Reads the tape label

init Initialize new tapes

make [retention] Writes a tape label

with a retention = [retention]

change Change a tape label

#

tape device A tape drive in /dev/???

format

Example: tape_label.ksh make /dev/rmt2

Creates a tape label on the tape in /dev/rmt2

##

#date=$(date)

home="/var/tapesys"

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

label_log="${home}/bin/label_log.ksh"

sec="${home}/bin/sec"

s2d="${home}/bin/s2d"

host=$(hostname)

no_rewind=".1"

args="$#"

my_fullname="$Ø"

myname=$(basename $Ø)

sec_day=864ØØ

sec_week=6Ø48ØØ

sec_year=314496ØØ

sec_rotation=24192ØØ

sec_rotation is the default time length to save a tape.

sec_rotation = (sec_day * 7) * 4

As of writing, sec_rotation=24192ØØ, or roughly 4-weeks.

Let's begin

action="$1"

device="$2"

save_time="$3"

no_rw="${device}${no_rewind}"

if [! -e $no_rw] ; then

 echo "Error: tape device $no_rw does not exist"

 exit 2

fi

The following code segment is called only when the "init" module

is executed. The init module calls another copy of the program

for each tape to initialize, but passes an "X" as the 3rd option

indicating that we want a 1-second retention on the tape.

In other words, by the time the initialization is completed,

the tape is scratch.

rewind="mt -f $device rewind"

eject="mt -f $device rewoffl"

skip="mt -f $device fsf 1"

#tmp="/tmp/tape.$$.tmp"

$label_log "Label action $@"

if ["$action" = "get"] ; then

 $rewind

 /usr/bin/dd if=$device 2>/dev/null

fi

if ["$action" = "make"] ; then

 $rewind

 if ["$save_time" = "X"] ; then

 sec_rotation=1

 fi

 echo "Enter volser: \c"

 read volser

 s=$(${sec})

scratch=${sec_rotation}

 echo "$volser:$s:${sec_rotation}"|/usr/bin/dd of=$device 2>/dev/null

 $label_log "'make': $volser:$s:${sec_rotation}"

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

fi

if ["$action" = "change"] ; then

 if ["$args" -eq "3"] ; then

st=$(echo "$save_time*$sec_day"|bc 2>/dev/null)

 ((st = save_time * sec_day))

save_time=$st

 sec_rotation=$st

 fi

 $rewind

 current_label=$($my_fullname get $device)

 current_volser=$(echo "$current_label"|cut -f1 -d":")

 current_create=$(echo "$current_label"|cut -f2 -d":")

 current_scratch=$(echo "$current_label"|cut -f3 -d":")

 s=$($sec)

 scratch=$sec_rotation

 echo "$current_volser:$s:$scratch"|/usr/bin/dd of=$device 2>/dev/null

 $label_log "'change': $current_volser:$s:$scratch"

fi

if ["$action" = "init"] ; then

 clear

 file=$save_time

 if [! -r $file] ; then

 echo "File $file does not exist. Please check file and re-execute"

rm $tmp 1>/dev/null 2>&1

 exit 3

 fi

 echo "If you like to enter a description for these initialized tapes,"

 echo "enter it in the space below. If you just press ENTER, no"

 echo "description will be entered. This description will be used for"

 echo "all tapes in this initilization process."

 echo "For new tapes, enter a date initialized as a description."

 read Descr

 if [-z "$Descr"] ; then

 Descr="Reinitialized"

 else

 Descr1='echo "$Descr"|sed "s/ /_/g"'

 Descr="$Descr1"

 fi

 echo "Description will be: \"$Descr\" "

 for volser in 'cat $file|grep -v "#"' ; do

 $label_log "Reinit volser: $volser"

 echo "\nProcessing volser: $volser"

 echo "Writing new label"

 echo $volser |$my_fullname make $device X 1>/dev/null 2>&1

 echo "New label: `$my_fullname get $device`"

 echo "Updating tape database"

 $home/bin/db_update.ksh $device "$Descr"

 $eject

 if ["$host" = "sapqam"] ; then

 sleep 45

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 else

 echo "Press ENTER after next tape is inserted"

 read myfoo

 fi

 echo " "

 done

 echo "Initialization completed"

fi

#rm $tmp 1>/dev/null 2>&1

TAPE_REPORT.KSH
#!/bin/ksh

Menu for generating reports on the tape system

Written 3/2/2ØØ1 Bill V.

home="/var/tapesys"

tapes="$home/db/tapes.db"

tape_history="$home/db/tape_history.db"

label_log="$home/bin/label_log.ksh"

sec="$home/bin/sec"

s2d="$home/bin/s2d"

format="%-13s%-29.26s%-29.26s%-1Ø.1Øs%-5s%-4Ø.38s%-5s\n"

z1="#"

hash1="###"

host='hostname'

if ["$#" -ge "1"] ; then

 batchf=1

 batch=$1

 report=$2

else

 batchf=Ø

fi

main() {

clear

echo $hash1

echo "# Tape Library Processing #"

echo "# #"

echo "# 1. Generate tape scratch report #"

echo "# 2. Generate list of all tapes #"

echo "# 3. Generate list of tapes for a specific backup #"

echo "# 4. Generate list of tapes for a specific host #"

echo "# 5. Generate tape history report #"

echo "# 6. Generate offsite tape report #"

echo "# 7. Generate onsite tape report #"

echo "# 8. Generate a daily tape movement report #"

echo "# 9. Generate a report of all defective/discarded tapes #"

echo "# 1Ø. Generate a tape aging report #"

echo "# 11. Read a label on a tape currently in the tape drive #"

echo "# 12. Mark a tape as \"BAD\" in the database #"

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

echo "# 13. Mark a \"BAD\" tape as scratch in the database #"

echo "# 14. Reset the scratch report pointer #"

echo "# 15. Create an advance scratch tape report #"

echo "# 2Ø. Backup the tape database #"

echo "# 3Ø. Purge the old tape backups #"

echo "# 5Ø. Mark tapes OFFSITE #"

echo "# 6Ø. Mark tapes ONSITE #"

if ["$ADM_USER" -eq "1"] ; then

 echo "# ## #"

 echo "# # Administrative menu # #"

 echo "# # 7Ø. Edit tape database # #"

 echo "# # 71. Initialize tapes # #"

 echo "# # 73. Generate list of tapes not offsite nor onsite# #"

 echo "# # 74. Change retention time for a tape # #"

 echo "# # Administrative menu # #"

 echo "# ## #"

fi

echo "# 99. Exit #"

echo "# #"

echo $hash1

echo "Please enter your selection (1-6Ø,99): \c"

read menu

echo $menu

if ["$menu" -eq "99"] ; then

 exit Ø

fi

if ["$menu" -eq "3435"] ; then

 if ["$ADM_USER" -eq "Ø"] ; then

 ADM_USER=1

 else

 ADM_USER=Ø

 fi

fi

if ["$menu" -eq "1" -o "$menu" -eq "15"] ; then

 scratch_report

fi

if ["$menu" -eq "2"] ; then

 all_tape_report

fi

if ["$menu" -eq "3"] ; then

 backup_report

fi

if ["$menu" -eq "4"] ; then

 host_report

fi

if ["$menu" -eq "5"] ; then

 history_report

fi

if ["$menu" -eq "6"] ; then

 offsite_report

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

fi

if ["$menu" -eq "7"] ; then

 onsite_report

fi

if ["$menu" -eq "8"] ; then

 daily_report

fi

if ["$menu" -eq "9"] ; then

 discard_report

fi

if ["$menu" -eq "1Ø"] ; then

 aging_report

fi

if ["$menu" -eq "11"] ; then

 read_tape_label

fi

if ["$menu" -eq "12"] ; then

 make_tape_bad

fi

if ["$menu" -eq "13"] ; then

 make_tape_good

fi

if ["$menu" -eq "14"] ; then

 rm $home/reports/scratchreport.txt 2>/dev/null

fi

if ["$menu" -eq "2Ø"] ; then

 backup_tape_db

fi

if ["$menu" -eq "3Ø"] ; then

 purge_backup_tape_db

fi

if ["$menu" -eq "5Ø"] ; then

 mark_offsite

fi

if ["$menu" -eq "6Ø"] ; then

 mark_onsite

fi

if ["$menu" -eq "7Ø" -a "$ADM_USER" -eq "1"] ; then

 manual_edit_db

fi

if ["$menu" -eq "71" -a "$ADM_USER" -eq "1"] ; then

 init_tapes

fi

if ["$menu" -eq "73" -a "$ADM_USER" -eq "1"] ; then

 other_tapes

fi

if ["$menu" -eq "74" -a "$ADM_USER" -eq "1"] ; then

 change_retention

fi

main

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 }

discard_report() {

$label_log "Defective tape report"

clear

now=$(${sec})

now_date=$(${s2d} ${now})

tmp="/tmp/report.$$"

>$tmp

echo "Discarded/defective tapes as of: $now_date\n" >> $tmp

printf $format "Volser" "Date Defective" "Expiration time" "Host" "LOC"

"Contents" " Usage" >> $tmp

printf $format "--------" "--------------" "--------------" "----" "--"

"--------" " ----" >> $tmp

found=Ø

echo "Processing \c"

for tape_rec in 'cat $tapes|grep -i -E "discard|defect" |sort -n -k3,6'

; do

 volser='echo $tape_rec|cut -f1 -d":"'

 creation='echo $tape_rec|cut -f2 -d":"'

 lifetime='echo $tape_rec|cut -f3 -d":"'

 host='echo $tape_rec|cut -f4 -d":"'

 backup='echo $tape_rec|cut -f5 -d":"'

 location='echo $tape_rec|cut -f6 -d":"'

 creation_time='$s2d $creation'

 let foo=$creation+$lifetime

 expiration_time='$s2d $foo'

 passes='grep $volser $tape_history|wc -l'

 if ["$location" -eq "Ø"] ; then

 loc="ON"

 elif ["$location" -eq "1"] ; then

 loc="OFF"

 else

 loc="UNK"

 fi

 printf $format "$volser" "$creation_time" "$expiration_time" "$host"

"$loc" "$backup" "$passes" >> $tmp

 found='expr $found + 1'

 echo ".\c"

done

 clear

 echo "\nRecords found: $found\n" >>$tmp

 cat $tmp

 echo "\nWould you like a printed report "

 echo "If Yes then enter the printer name"

 echo "(or just press [ENTER] to NOT print the report)"

 read q

 if [-n "$q"] ; then

 $home/bin/printl.ksh $q $tmp

 sleep 3

 fi

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 cp $tmp $home/reports/discardreport.txt

 rm $tmp

 }

##

scratch_report() {

log action

clear

set now_date variable

now=$(${sec})

now_date=$(${s2d} ${now})

if ["$menu" -eq "15"] ; then

 echo "Enter number of days to post-date the scratch report"

 read scr_ndays

 if ["${scr_ndays}X" != "X"] ; then

 post_date='echo "$scr_ndays*864ØØ"|bc'

 post_now='echo "$post_date+${now}"|bc'

 now=$post_now

 now_date='$s2d ${now}'

 rm $home/reports/scratchreport.txt 2>/dev/null

 $label_log "Post-dated scratch report for $now_date

(days=${scr_ndays})"

 fi

else

 $label_log "Scratch tape report"

fi

tmp="/tmp/report.$$"

>$tmp

echo "Scratch tapes as of: $now_date ($now)\n" >> $tmp

printf $format "Volser" "Creation time" "Expiration time" "Host" "LOC"

"Contents" " Usage" >> $tmp

printf $format "--------" "------------" "--------------" "----" "--" "-

-------" " ----" >> $tmp

found=Ø

Gfound=Ø

lastvolser="X"

if [! -r $home/reports/scratchreport.txt] ; then

 echo "Existing scratch report not found - creating a new one"

 most_recent_tape=2

 report_run=1

else

 most_recent_tape='cut -f2 -d":" $tapes|sort -n |tail -1'

 report_run='grep 'Scratch tapes' $home/reports/scratchreport.txt|cut

-f2 -d"("|cut -f1 -d")" 2>/dev/null'

fi

if ["$most_recent_tape" -lt "$report_run"] ; then

 rm $tmp

 cat $home/reports/scratchreport.txt

 echo "\nWould you like a printed report "

 echo "If Yes then enter the printer name"

 echo "(or just press [ENTER] to NOT print the report)"

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Why not share your expertise and earn money at the
same time? AIX Update is looking for shell scripts,
program code, JavaScript, etc that experienced users
of AIX have written to make their life, or the lives of
other users, easier. Articles can be of any length and
should be e-mailed to the editor, Trevor Eddolls, at
trevore@xephon.com.

 read q

 if [-n "$q"] ; then

 $home/bin/printl.ksh $q $home/reports/scratchreport.txt

 sleep 3

 fi

else

 echo "Processing \c"

 for tape_rec in $(cat $tapes|sort -n -k3,6) ; do

 volser=$(echo $tape_rec|cut -f1 -d":")

 creation=$(echo $tape_rec|cut -f2 -d":")

 lifetime=$(echo $tape_rec|cut -f3 -d":")

 ((foo = creation + lifetime))

 if ["$lastvolser" = "X"] ; then

 lastvolser=$(echo "$volser"|cut -c1-3)

 fi

 ### Tape is scratch

 if ["$foo" -le "$now"] ; then

 creation_time=$($s2d $creation)

 expiration_time=$(${s2d} ${foo})

 passes=$(grep -c $volser $tape_history)

 host=$(echo $tape_rec|cut -f4 -d":")

 backup=$(echo $tape_rec|cut -f5 -d":")

 location=$(echo $tape_rec|cut -f6 -d":")

 if ["$location" -eq "Ø"] ; then

 loc="ON"

 elif ["$location" -eq "1"] ; then

 loc="OFF"

Editor’s note: this article will be concluded next month.

Bill Verzal
Project Leader
Komatsu America (USA) © Bill Verzal 2005

AIX news

Dassault Systemes and IBM have announced
Version 5 Release 15 of their Product Life-cycle
Management (PLM) portfolio, comprising
CATIA for collaborative product development,
and ENOVIA and SMARTEAM for product
data and life-cycle management, collaboration,
and decision support.

Concurrently, Dassault Systemes announced
V5R15 of DELMIA for digital development of
factory and production processes.

The new releases provide unified working
environments or desktops, targeting the specific
needs of user communities such as engineering,
manufacturing, and enterprise users.

V5R15 uses the open and lightweight 3DXML
format, which means that customers can
communicate in 3D by sharing 3D
representations of the virtual product throughout
the extended enterprise. V5R15 also introduces
a new 3D XML viewer.

For further information contact:
URL: www.3ds.com/V5R15, www.ibm.com/
software/plm.

* * *

Cendura has announced that its Dependency
Visualization module, which captures and maps
the dependencies and inter-relationships
between IT assets, is now available as a part of
the Cohesion Suite. The new module provides
IT organizations with comprehensive
dependency and relationship visualization
across complex, distributed, multi-tiered, and
custom-developed application infrastructures.

The module supports the IBM Tivoli Discovery

Library, part of IBM’s new IT Service
Management solutions for helping enterprises
better align hardware and software resources
with business needs.

Cohesion allows IT organizations to discover,
track, and take inventory of the tens of
thousands of configuration items existing in
complex enterprise applications. With this
information users can quickly troubleshoot
configuration-related problems, proactively
institute IT controls over those configurations to
harden their infrastructure, and enforce best
practices for application management.

Applications supported include AIX 5L, DB2
UDB, Informix Database Server, IBM HTTP
Server, WebSphere MQ, and WAS.

For further information contact:
URL: www.cendura.com/news/030805.html.

* * *

IBM has announced Version 3.2 of Parallel
Engineering and Scientific Subroutine Library
(ESSL) for AIX 5L, its scalable mathematical
subroutine library.

The product is tuned for optimum performance
on clusters of POWER4 and POWER5 servers
connected with the IBM pSeries High
Performance Switch, and tuned for
BladeCenter JS20 processors and POWER5
servers connected with a Myrinet-2000 Switch
with Myrinet/PCI-X adapters.

For further information contact:
URL: www.ibm.com/servers/eserver/clusters/
software/order_guide.pdf.

* * *

x xephon

	De-allocation of AIX system resources
	Proactive AIX update tools and techniques
	Run a common script across a list of servers
	Tape management system - part 2
	AIX news

