
© Xephon plc 1998

February 1998

28

3 ... AIX menus
12 .. Serial Storage Architecture versus SCSI
18 Monitoring AIX with PCs revisited
35 AIX performance in client/server systems
47 Contributing to AIX Update
48 .. AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 1998. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: HarryLewis@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75067
USA
Telephone: 940 455 7050

Australian office
Xephon/RSM
GPO Box 6258
Halifax Street
Adelaide, SA 5000
Australia
Telephone: 08 223 1391

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update. To find
out more about contributing an article, see
Notes for contributors on Xephon’s Web
site.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £170.00
in the UK; $255.00 in the USA and Canada;
£176.00 in Europe; £182.00 in Australasia
and Japan; and £180.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £15.00 ($22.50) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com
(you’ll need the user-id shown on your ad-
dress label to access it).

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 3

AIX menus

A while ago, I developed a full-screen menuing system for VM/VSE
(the system was presented in an article in VSE Update Issue 21). Given
how useful this system has been to our installation, I decided to port
it to an AIX environment, and have, therefore, written a similar system
using a Korn shell script. An interesting point is that the ksh script uses
much less code than its REXX equivalent, thanks to ksh’s select
menu_list function.

The main reason for writing this menuing system is to provide a means
of organizing commands and scripts in one place. End-users need only
remember one command (menu) to invoke all the commands and
scripts they need. This relieves them of the burden of memorizing
commands and scripts, which, in a large installation, is quite onerous.
This is especially true of the AIX environment, where commands
often have a bewildering array of flags and operands.

This menuing system also makes it easier for system administrators
to provide end-users with exactly what they require to access system
functions. All supported scripts and commands can be controlled from
one central location. Users themselves also have the opportunity to set
up their own tables, by grouping commands they use frequently in a
customizable table (menuuser) in their $home/bin directory.

The main script is called menu. End-users are presented with a menu
system after entering the command menu at their workstation.
Thereafter they simply pick a numeric selection and the system does
the rest. All frequently used scripts and commands can be made
available on the menus. Users navigate through menus and submenus,
scrolling back and forth, in search of the required function. To re-
display the menu, they simply press ‘enter’.

You’ll find that, with this system, the time required to train new users
is reduced. This means that users become productive sooner than they
would if they had to use a standard AIX system.

MENU is truly table-driven, which means that anyone can tailor it to
their shop’s specific needs by doing nothing more complex than

4 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

creating a number of two-column tables, an example of which is
shown below.

==> Exit to prompt -exit@

AIX systems -MENU MENUAIX.tab@

CICS systems -MENUCIC1@

SFS systems -MENUSFS1@

User-defined functions -MENU MENUUSER.tab@

SMIT -smitty@

In this example (which corresponds to a file called menu.tab), the first
item on each line is the menu item descriptor. The second is either the
name of the submenu or a series of commands. A minus sign (‘-’) is
used as the separator and an ‘at’ sign (‘@’) is the newline indicator.
The ‘@’ is chosen because of IFS override in the script. I include the
prompt ‘== >’ in all tables to show users the way out of the menuing
system. An alternative to this is to use CTRL-C. As you can see, the
menu script is itself invoked to create submenus – for instance, by the
entry menu menuaix.tab. All table entries are sorted on column one
before presentation.

While there is no limit on how many items you can have in your tables,
if the list is too long, items will scroll off the screen. I recommend
breaking long lists into separate tables, grouping commands and
scripts by function.

As this menuing system is table driven, you should be able to
implement it in your shop in less than an hour. Here are the steps
necessary for a speedy implementation:

1 Download all of the ksh scripts and tables from Xephon’s Web
site.

2 Update menu.tab so that it includes references to all submenu
tables. Make sure you include the two special characters ‘-’ and
‘@’ wherever necessary.

3 Set up other submenu tables with your scripts and commands. If
necessary, enter multiple commands on one line by separating
them with semicolons (‘;’).

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 5

4 Change variable header_message to suit your company’s needs
in menu script.

5 Change variable cics_naming_standard to reflect your company’s
standard in the menucic1 script.

6 Change variable sfs_naming_standard to reflect your company’s
standard in the menusfs1 script.

7 Change variable where to your bin directory.

8 That’s all! Issue the menu command, sit back, and enjoy!

MENU KSH
#!/bin/ksh
#
This script sets up the full-screen selection feature
accessing tables.
#
Date Author Description
970716 Dave Tang Program originator
#
MENU ksh is the main script. It reads a MENU table in your
$HOME/bin directory. This ksh script can also be called by
other scripts that need to set up a selection menu. If so,
you need to supply a table name as a parameter. There are
two columns in supply table. The column to the left of the
'-' is the command description for the user. The column to
the right of the '-' is the actual command or another ksh
script to be called. Use an '@' sign as a line terminator.
You can nest as many tables as you wish.
#
USAGE="usage: $0 TableName Text Text2"
#
Tablename, Text, and Text2 are optional. Tablename if not
supplied, the default is MENU in your $HOME/bin. Text is
the message to override the standard header. Text2 is the
selected target system. It can be an sfs server or a
cics region.
#
Other script and tables related to MENU
MENU.tab - Main menu table required to start MENU
MENU.tmp - work file
MENUCIC1 - script to set up CICS environment
MENUCIC1.tab - set up by MENUCIC1 for region selection
MENUCIC2.tab - CICS selection table
MENUCIC3.tab - CICS selection table

6 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MENUSFS1 - script to set up SFS environment
MENUSFS1.tab - set up by MENUSFS1 for SFS selection
MENUSFS2.tab - SFS selection table
MENUUSER.tab - End-user's own selection table
MENUSET - script to prompt user for selection variable
MENUAIX.tab - AIX selection table
#
trap 'print "Program $0 because of Cntl C"' INT

header_message='Welcome to Southam Magazine & Information Group'
where='/home/dtang/bin'

if a table is supplied, use it, otherwise use $HOME/bin/MENU.tab
if [[$# -eq 0]]
then
 table_name="$where/MENU.tab"
else
 table_name="$1"
fi
text=$2
text2=$3

PS3 is the default prompt for select to set up the menu
PS3="Enter your choice, to redisplay menu, hit enter: "

check to see if the table name exist.
if ! [[-f $table_name]]
then
 print "Cannot locate table file $table_name"
 print "Please correct and re-submit"
 exit
fi

check whether the user table exists; if not, copy one from
'where'; otherwise, use the MENUUSER.tab the user has set up
if ! [[-f $HOME/MENUUSER.tab]]
then
 cp $WHERE/MENUUSER.tab $HOME/MENUUSER.tab
fi

table_sorted=$HOME/MENU.tmp # all tables entries are sorted
sort -o $table_sorted $table_name

read the table entries and concatenate them to build variable
while read line # read table entries
do
 list="$list $line"
done < $table_sorted

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 7

IFSsave=$IFS # save current IFS
IFS='@' # use @ as field separator
clear
uname -n | read machine

if [[$text2 != '']]
then
 target_system=$text2
else
 target_system="N/A"
fi

function header
{
print -r '*'
print -r "* $header_message"
print -r '*'
print -r ''
print -r " Accessing table => $table_name "
print -r " machine, subsystem => $machine, $target_system"
print -r ''

if [[$text != '']] && [[$text != 'NONE']]
then
 print -r $text
else
 print -r '**** Description *********** **** Commands **********'
fi
}
end of header function

header
select menu_list in $list # set up display menu
do
 command=${menu_list#*-} # shift left until '-'
 IFS=$IFSsave # to allow operand in command
 case $command in # use command instead of menu_list
 exit) clear
 exit;;
 *) eval $command
 print "\nCommand processed successfully";;
 esac
done

menuset is a script that sets environment variables passed to other
scripts or subcommands. This is necessary as ksh does not allow a
child script to pass a variable back to the parent script. Run menuset
using a period (‘.’) to pass the variable.

8 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MENUSET KSH
#!/bin/ksh
#
ksh does not allow a child script to pass parameters back to
its parent script. To overcome this problem, MENUSET is coded
to pass variables to a subsequent script or command. In our
case, this is a CICS region name or an SFS server name.
#
Date Author Description
970512 Dave Tang Program originator
#
USAGE="usage: $0"
#

stop='N'
Set up a 'while loop' to ask for the inquiry
while [[$stop = 'N']]
do
 print ""
 print "Please enter the data which you want to inquire"
 read input_parm
 if [[$input_parm = '']]
 then
 print "You did not provide any input"
 else
 stop='Y'
 export MENUINFO=$input_parm
 fi
done

MENUCIC1
#!/bin/ksh
#
MENUCIC1 - This script asks the user to select a CICS region.
It calls the MENU main script to set up a selection menu.
#
MENUCIC1.tab - the CICS region selection table
MENUCIC2.tab - the CICS function selection table
MENUCIC3.tab - the CICS resource inquiry selection table
#
Date Author Description
970512 Dave Tang Program originator
#
USAGE="usage: $0"

cics_naming_standard="cics.SSCICS" # your CICS naming standard

work_file=$HOME/bin/MENU.tmp # set up temp work file

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 9

file_name=$HOME/bin/MENUCIC1.tab

lssrc -a | grep $cics_naming_standard > $work_file
if [[-e $file_name]] # if work file exist
then
 rm $file_name
fi

while read line # build CICS region table
do
 cics_region=${line%% *} # keep only the 1st variable
 cics_region=${cics_region#*.} # keep only the region name
 print "$cics_region -print $cics_region >
$work_file;exit@" >> $file_name
done < $work_file

text_info has to be in one continuous line for now as a
positional parm.
text_info='Please.select.your.desired.CICS.region'

call MENU script with the table name and text info
MENU MENUCIC1.tab $text_info # display selection menu

read cics_region < $work_file
text_info='NONE'
export REGION=$cics_region
MENU MENUCIC2.tab $text_info $cics_region

MENUCIC1.TAB (CREATED BY MENUCIC1)

SSCICS1 -print SSCICS1 > /home/dtang/bin/MENU.tmp;exit@
SSCICS2 -print SSCICS2 > /home/dtang/bin/MENU.tmp;exit@
SSCICS3 -print SSCICS3 > /home/dtang/bin/MENU.tmp;exit@
SSCICS4 -print SSCICS4 > /home/dtang/bin/MENU.tmp;exit@
SSCICS5 -print SSCICS5 > /home/dtang/bin/MENU.tmp;exit@
SSCICS6 -print SSCICS6 > /home/dtang/bin/MENU.tmp;exit@

MENUCIC2.TAB
==> Return Previous -exit@
View console.msg -view /var/cics_regions/$REGION/console.msg@
View console.msg1 -view /var/cics_regions/$REGION/console.msg.1@
View console.msg2 -view /var/cics_regions/$REGION/console.msg.2@
View all console.msg* -view /var/cics_regions/$REGION/cons*@
View CSMT log -view /var/cics_regions/$REGION/data/CSMT.out@
View CSMT log1 -view /var/cics_regions/$REGION/data/CSMT.out.1@
View CSMT log2 -view /var/cics_regions/$REGION/data/CSMT.out.2@
View all CSMT logs -view /var/cics_regions/$REGION/data/CSMT*@

10 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Inquire CICS resources -MENU MENUCIC3.tab@
View symrec -view /var/cics_regions/$REGION/symrecs@
Display CICS CPU usage -ps caugx | grep cics | head -12@

MENUCIC3.TAB (INQUIRES ABOUT CICS RESOURCE DEFINITION)
Communication -cicsget -c cd -r $REGION -l | more@
Transaction -cicsget -c td -r $REGION -l | more@
Files -cicsget -c fd -r $REGION -l | more@
Gateways -cicsget -c gd -r $REGION -l | more@
Gateway Servers -cicsget -c gsd -r $REGION -l | more@
Journals -cicsget -c jd -r $REGION -l | more@
Listeners -cicsget -c ld -r $REGION -l | more@
Monitoring -cicsget -c md -r $REGION -l | more@
Programs -cicsget -c pd -r $REGION -l | more@
Regions -cicsget -c rd -r $REGION -l | more@
Schema File Definitions -cicsget -c scd -r $REGION -l | more@
Transient Data Queues -cicsget -c td -r $REGION -l | more@
Temporary Storage Queues -cicsget -c tsd -r $REGION -l | more@
Users -cicsget -c ud -r $REGION -l | more@
Terminals -cicsget -c wd -r $REGION -l | more@
Products -cicsget -c xa -r $REGION -l | more@
==> Return Previous -exit@

MENUSFS1 (SCRIPT TO SET UP SFS SERVER)
#!/bin/ksh
MENUSFS1 - This script asks the user to select an SFS server.
It calls the MENU main script to set up a selection menu.
#
MENUSFS1.tab - the SFS server selection table
MENUSFS2.tab - the SFS server function selection table
#
Date Author Description
970515 Dave Tang Program originator
#
USAGE="usage: $0"

sfs_naming_standard="SFS" # your CICS naming standard

work_file=$HOME/bin/MENU.tmp # set up temp work file
file_name=$HOME/bin/MENUSFS1.tab
sfs_directory="/var/cics_servers/SSD/cics/sfs"
ls $sfs_directory | grep $sfs_naming_standard > $work_file
if [[-e $file_name]] # if work file exist
then
 rm $file_name
fi

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 11

while read line # build sfs server table
do
 print "$line -print $line > $work_file;exit@" >>
$file_name
done < $work_file

text_info='Please.select.your.desire.SFS.region'
MENU MENUSFS1.tab $text_info # display selection menu

read sfs_region < $work_file
text_info='NONE'
export REGION=$sfs_region
export ENCINA_SFS_SERVER="/.:/cics/sfs/$REGION"
export ENCINA_TK_SERVER=$ENCINA_SFS_SERVER
MENU MENUSFS2.tab $text_info $sfs_region

MENUSFS1.TAB (SET UP BY MENUSFS)
SFSCICS1 -print SFSCICS1 > /home/dtang/bin/MENU.tmp;exit@
SFSCICS2 -print SFSCICS2 > /home/dtang/bin/MENU.tmp;exit@
SFSCICS3 -print SFSCICS3 > /home/dtang/bin/MENU.tmp;exit@
SFSCICS4 -print SFSCICS4 > /home/dtang/bin/MENU.tmp;exit@
SFSCICS5 -print SFSCICS5 > /home/dtang/bin/MENU.tmp;exit@
SFSCICS6 -print SFSCICS6 > /home/dtang/bin/MENU.tmp;exit@

MENUSFS2.TAB
==> Return Previous -exit@
List logical volumes -sfsadmin list lvols@
List files (all) -sfsadmin list files | more@
Query file by name -. MENUSET;sfsadmin query file $MENUINFO | more@
List files (OFD) -sfsadmin list ofds | more@
Close file by id -. MENUSET;sfsadmin terminate ofd $MENUINFO@
Query SFS usage -. MENUSET;sfsadmin query lvol $MENUINFO | more@
Query server inf -sfsadmin query server@
Query working dir -tkadmin query workingdirectory@
List transaction -tkadmin list transactions@
Query checkpoint intvl -tkadmin query checkpointinterval@
Query identity -tkadmin query identity@

MENUUSER.TAB (DEFAULT END-USER TABLE)
==> Return Previous -exit@
Who is logged on? -whoami@
Display env. variables -env | more@
Display printer status -lpstat@
What is the OS level -oslevel@
Change my password -passwd@

12 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

What is my current dir. -pwd@
What machine I logged on? -uname -n@
Check backup log -/home/iopsc02/seelog.sh@

MENUAIX.TAB
==> Return Previous -exit@
Query File System -df | more@
Query Env variables -env | more@
Query login -finger | more@
Change password -passwd@
Query Alias -alias | more@
Query Printers -lpstat | more@
Query Devices -lsdev -C -H | more@
Query Memory -lsattr -El sys0 -a realmem@
Query Physical Volumes -lspv | more@
Query Paging usage -lsps -a@
Query Subsystem -lssrc -a | more@
Display IO stats -iostat | more@
Display network usage -netstat | more@
Display system stats -vmstat@
Display current processes -ps -ef | more@
Display processes by name -. MENUSET;ps -ef | grep -i $MENUINFO | more@
Display top 10 CPU users -ps gvaxc | head -10@

Dave Tang
Manager, Systems Engineering
Southam Information (Canada) © Xephon 1998

Serial Storage Architecture versus SCSI

The growth in power of CPUs over the past two decades has been
substantial, allowing processors to keep up with the demands made on
them by an ever increasing volume of data that needs processing. The
performance, and more importantly price/performance, of today’s
Unix and NT servers doubles every 12 to 18 months. Today’s Intel
desktop provides over 100 times the performance of the original IBM
PC, for close to the original price.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 13

However, the technology for storing, managing, and accessing data
has not kept up with the growth in demand for data storage. Today
many companies have storage strategies for midrange and small data
servers based on the SCSI protocol, which has increased its maximum
performance by only a factor of eight in the same time as processor
performance has grown by a factor of over 50.

The industry has been waiting for the arrival of a storage technology
that provides users with significant performance, capacity, and
reliability benefits, while at the same time lowering the overall cost of
storage. IBM’s Serial Storage Architecture, SSA, has brought this and
more to the industry. For an introduction to SSA and its advantages,
see SSA – Serial Storage Architecture in AIX Update Issue 11,
September 1996.

THE SCSI STANDARD

The Small Computer Systems Interface (SCSI) became the de facto
standard for midrange systems, especially those running Unix, in the
1980s. While the performance and throughput of SCSI has been
enhanced over the past ten years, the underlying technology and
protocols have remained essentially unchanged.

The bandwidth of the original SCSI-1 standard was 5 Mb/sec
transmitting 8-bit words. The SCSI-2, SCSI-2 Fast, SCSI-2 Fast/
Wide, and Ultra SCSI have significantly enhanced the original standard,
increasing the word size to 16-bits and extending the maximum data
transfer rate to 40 Mb/sec.

SCSI ISSUES AND LIMITATIONS

SCSI is a bus-based architecture, meaning that all communication
between SCSI devices and the host system are over a 68-pin cable (for
SCSI-2 Differential Fast/Wide). The maximum total length of cable
from the CPU to the terminator is 25 meters. This effectively rules out
remotely connected SCSI devices. SCSI cabling is not only
cumbersome, but also adds to the cost of SCSI-based systems. You
can have a total of seven SCSI devices on a SCSI interface adapter any
time. Ultra SCSI increases this to a total of 15 devices on an adapter

14 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

card. It takes coordination to transfer information between devices or
between a computer and a device successfully – a process known as
arbitration.

The main limitation of SCSI interfaces is generally not a result of
shortcomings in data throughput. Instead, it’s usually the result of
problems with access to data via the shared arbitrated bus that
connects the SCSI devices. While the speed and width of the SCSI bus
have increased over time, when there are multiple devices on a shared
bus, and more than one is attempting to transfer data, performance still
suffers. In many cases, the communication overhead arising from
arbitration between devices attempting to transfer data is larger than
the actual volume of data being transferred.

Data flow across the SCSI bus can be compared to a single lane bridge
that is used to transfer information to and from both sides. Information
can only flow from a single source, in a single direction. Arbitration
manages traffic across the bridge. However, the more arbitration, the
less data can be transferred.

THE NEW STANDARDS

Recognizing that the performance of disk subsystems is becoming
more of an issue, vendors have been working diligently to introduce
storage technology that has the ability to meet the scalability and
reliability requirements of the future. Different technologies have
been proposed to alleviate the bottlenecks in data transfer rates and
other limitations of SCSI.

The new technologies centre around creating serial interfaces that
extend distances and increase data transfer rates between devices. The
concept of serial interfaces between subsystems brings several benefits
to storage subsystems. A comparison of the characteristics of typical
serial interfaces and the SCSI bus is shown below.

 Serial interface SCSI bus

Maximum number Over 120 Up to 15 (7)
of devices that
can be attached

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 15

 Serial interface SCSI bus

Maximum distance Over 25 metres Up to 3 meters
between attached
devices

Type of cabling Serial wire or 68-pin shielded
 fibre-optic

Cabling costs Inexpensive Fairly expensive

Bandwidth Up to 100 Gb/sec Up to 40 Mb/sec

Maximum number of Up to 8 Up to 2
hosts supported

Maximum distance Up to 2500 meters A few meters
between storage
devices and host

Two standards for serial interfaces are currently being promoted in the
industry. One is an arbitrated serial loop called FC-AL (Fibre Channel
Arbitrated Loop). The second is a non-arbitrated serial loop, called
SSA (Serial Storage Architecture).

FIBER CHANNEL ARBITRATED LOOP

FC-AL uses an ‘arbitrated loop’, meaning that there remains a single-
lane bridge for data flow. Its 100MB/sec data transfer rate and support
of up to 126 devices on a loop are much higher than SCSI. Several
vendors plan to deliver FC-AL products to the market, though none
are shipping at the time of writing.

Issues concerning FC-AL

• The FC-AL protocol incurs an overhead for each data transfer
associated with loop arbitration.

• Frames (units of information transfer) are transmitted in only one
direction around the entire loop.

• Only two devices can communicate at any time on the loop.

• If a device is removed, or the link fails, the entire subsystem fails.
The only way to avoid this is to install an optional, redundant
second loop.

16 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• All devices in the loop share in the work of transmitting data,
which passes through each node in the loop.

Although FC-AL is a new design that offers substantially higher
performance than SCSI, FC-AL still suffers from many of the I/O
bottlenecks of SCSI, and is more expensive than SCSI.

SSA

A second serial access technology is IBM’s Serial Storage Architecture.
SSA is a low-cost, high performance serial interface that was designed
not only for disks, but also for other I/O devices such as CD-ROM
drives, optical drives, tape drives, and even printers.

Although the SSA specification allows the connection of up to 128
disk drives, current SSA adapters from IBM support only up to 48
disks on a loop and two loops per adapter. Each loop contains two read
paths and two write paths, all of which are able to transfer data
concurrently at up to 20 Mb/sec.

SSA adapters can transfer data on each loop’s four data paths
simultaneously; each data path runs at 20 Mb/sec, so the effective
bandwidth is 80 Mb/sec. Given that each adapter supports two loops,
adapters provide an effective bandwidth of 160 Mb/sec.

SSA cabling costs are significantly lower than SCSI. SSA requires a
simple dual twisted pair cable compared with SCSI-2’s 68-pin cable.
SSA devices may be located up to 82 feet apart, and IBM has
introduced a Fibre-Optic Extender that extends the maximum distance
between nodes to 2400 meters.

For both SCSI and FC-AL, the arbitration overhead is the limiting
factor to data transfer rates. SSA overcomes this using an un-arbitrated
serial loop. Consequently, initiating a data transfer on an SSA loop
requires only three commands, compared with 12 that are required to
initiate a transfer on a SCSI bus (eight of the 12 commands are
required solely for arbitration).

SSA adapters select the optimum data path between devices in order
to maximize performance. If a link fails, the SSA adapter simply

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 17

chooses an alternative route, rather than crippling communication to
the entire drive. Hot-swappable cables and drive modules on SSA disk
subsystems add to its high-availability features. Below is a comparison
of the main features of SSA subsystems and their SCSI counterparts.

Feature SCSI SSA

Cable type 68-conductor 4-conductor
 shielded cable twisted-pair
 (SCSI-2 Differential,
 Fast/Wide)

Maximum cable 25 metres total 25 metres
length between devices

Cable costs High Low

Device Set manually Set dynamically
addressing

Cable termination Terminator required Not required
 at end of bus (closed serial
 loop)

Fault tolerance Only one data path No single point of
 (bus) is provided; failure (multiple
 if it fails, data paths)
 communication with
 the device is lost

Maximum throughput Up to 40Mb/sec Up to 160 Mb/sec

Disk drives SCSI SSA and SCSI
supported compatible

SUMMARY

Meeting future storage requirements means that disk subsystems will
have to be larger, faster, more reliable, more efficient, and have better
price/performance than ever before. Serial technologies, such as
IBM’s SSA, represent a shift in storage technology for small to
medium-sized systems that may satisfy future needs for storage and,
in time, replace the popular SCSI standard.

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 1998

18 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Monitoring AIX with PCs revisited

In a previous article in AIX Update (see Monitoring AIX with PCs,
Issue 22 pages 3–32 and Issue 23 pages 12–38) I presented a set of
tools for monitoring AIX using PCs. The original tools provided
facilities for real-time monitoring and reporting of AIX systems, and
were primarily for monitoring filesystem and CPU utilization. This is
now expanded to system-wide monitoring. The new tools presented
in this article allow you to focus on what is important in your system,
thus making the production of system reports more streamlined and
enabling you to analyse performance problems in a way that is more
meaningful to your installation.

The tools generate both graphs and reports, thus doing more than just
putting figures on a page. In my experience, managers like graphs,
even though every one seems to have his or her own preferrence as to
style and presentation.

The idea behind the tools is to collect AIX system statistics in text files
that PC spreadsheets and database packages can process. I’ll start by
dealing with sar reports, turning them into comma-separated text
files. This is, obviously, not an option if you don’t have sar reporting
set up, so I’ll also discuss ways of monitoring and reporting using
standard system monitoring tools. While regular sar files contain
much useful information, their style of presentation can make them
difficult to use with PCs. By turning sar files into CSV text files that
PCs can read without cutting and pasting, the process of monitoring
and reporting is made easier and less prone to error.

A sample sar output is shown in Figure 1 opposite. It shows the output
of sar -u, which reports on CPU activity. On some PC packages, such
output can be loaded, without modification, as a space-delimited file.
This is not an ideal solution as it requires data to be in columns and
may affect the formatting of the -resulting data. Also, analysis of data
spanning more than one day requires the data to be manipulated
further.

The example that follows assumes that sar is set up to produce a file
for each day of the month and that, at any time, only one month’s worth

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 19

of statistics exists (files with older data are overwritten). sar files are
placed in the directory /var/adm/sa/ and have names conforming to
the pattern sadd, where the dd is the day.

The format of this file can easily be turned into comma separated text
using the following sed command (which replaces one or more spaces
with a comma):

sar -f /var/adm/sa/sadd | sed "s/[]*[]/,/g" > textfile.txt

This format is more useful than the previous one as it separates data
items with commas, though it still leaves headers and footers in the
output. These can cause problems to PC packages when the file is
loaded, so it’s best to eliminate them. However, they also contain
useful information, such as the date of the measurements, that would
be lost if they’re simply deleted. Therefore they need to be processed,
for instance, by encoding the date in each entry in the file.

If the file is to be used by a relational database, then a further
requirement is that it should have a ‘key’ field. This has the added
benefit of making the data much easier to use. A key field enables easy
loading and appending of files as it eliminates duplicate records
within the database. This would, for instance, prevent the same file
being loaded into the database twice. A suitable candidate for a key
field is the date (including the time), which is unique within a sar
collection.

The process discussed below uses sar files that already exist, making

AIX serv1 1 4 002019375900 10/09/97

00:00:02 %usr %sys %wio %idle
01:00:01 5 15 2 79
02:00:01 5 13 2 81
..
..
22:00:02 58 19 3 20
23:00:02 29 17 2 51

Average 38 18 2 42

Figure 1: Sample sar report

20 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

it necessary to be able to process a previous day’s output. This
involves being able to generate a previous date for the key field. Once
the file name is generated, the existing data has to be processed into
a comma separated file. At the end of the process any necessary
housekeeping takes place. The entire process can be broken down into
the following five steps:

1 Generating the name of the sar file.

2 Generating delimited text files.

3 Scheduling the process.

4 Transferring the files.

5 Housekeeping.

GENERATING THE SAR FILE NAME

The first step is to generate the date for which data is to be processed.
This enables the system to select the correct sar file and to generate
(if necessary) a key field for later use. The script below (calcdate)
calculates dates back to the start of the previous year using a given day
parameter. The output of this script is used to calculate the key field,
select the correct sar file, and convert the date to a format suitable for
use by sed (used later in the controlling scripts).

calcdate may have up to eight parameters passed to it, though, for the
purpose of this example, it needs to be in the format shown below,
which also appears in the format script.

calcdate 1 -s -yj -d -sp

The first parameter specifies the number of days previous to the
current date for which the date is to be calculated. For instance:

1 Specifies that the previous day’s date is to be calculated.

3 Specifies that the date from three days previously is to be
calculated (this is useful for calculating Friday’s date on Mondays).

The second parameter specifies the separator for the output. In this
instance the parameter is:

-s Fields in the output are to be separated by spaces.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 21

The third, fourth, and fifth parameters specify the date format for the
output.

-yj Specifies that the output should comprise the year (yy) and Julian
date.

-d Specifies that the output should comprise the day number in the
month (used to get the sar file)

-sp Specifies that the date should be formatted for use by sed (in dd\/
mm\/yy format).

CALCDATE SCRIPT
#!/bin/ksh
integer gto
integer DATEJ
integer YEAR
integer TOTAL_DAYS
integer LEAP_DAYS
integer NUM_WEEKS
integer CALC_WEEKS
integer DIFF_DAYS
integer DAY_INT
integer jul
integer year
integer lyear
integer diff
integer LEAR_TOT
MINUS=$1
filedat[1]=31
filedat[2]=28
filedat[3]=31
filedat[4]=30
filedat[5]=31
filedat[6]=30
filedat[7]=31
filedat[8]=31
filedat[9]=30
filedat[10]=31
filedat[11]=30
filedat[12]=31
PASS[1]=$1
PASS[2]=$2
PASS[3]=$3
PASS[4]=$4
PASS[5]=$5
PASS[6]=$6

22 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PASS[7]=$7
PASS[8]=$8
SET="N"
leap_year_valid()
{
integer r
r=$1
let FOUR=$r/4*4
let HUNDRED=$r/100*100
let FOUR_HUN=$r/400*400
if [["$FOUR" = "$r" && "$HUNDRED" != "$r" || "$FOUR_HUN" = "$r"]]
then
LEAP_TOT=366
SET="Y"
return 0
else
LEAP_TOT=365
SET="N"
return 1
fi
}
name_of_day ()
{
#Calculate day name (taking Saturday as the first day and Sunday
#as day zero for decimal display)
DATEJ=$jul
YEAR=$year
if ["$SET" = "Y"]
then
 LEAP_DAYS=YEAR/4-1
else
 LEAP_DAYS=YEAR/4
fi
TOTAL_DAYS=$YEAR*365+LEAP_DAYS+DATEJ
NUM_WEEKS=$TOTAL_DAYS/7
CALC_DAYS=$NUM_WEEKS*7
DIFF_DAYS=$TOTAL_DAYS-$CALC_DAYS
case "$DIFF_DAYS" in
 2)
 DAYNAME="Sunday"
 DAY_INT=0
 ;;
 3)
 DAYNAME="Monday"
 DAY_INT=1
 ;;
 4)
 DAYNAME="Tuesday"
 DAY_INT=2
 ;;

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 23

 5)
 DAYNAME="Wednesday"
 DAY_INT=3
 ;;
 6)
 DAYNAME="Thursday"
 DAY_INT=4
 ;;
 0)
 DAYNAME="Friday"
 DAY_INT=5
 ;;
 1)
 DAYNAME="Saturday"
 DAY_INT=6
 ;;
 esac
}
generate_year_day()
{
year=$(date +%Y)
jul=$(date +%j)-$MINUS
leap_year_valid $year
DAY_LOOP=$jul
while [$DAY_LOOP -le 0]
do
 year=$year-1
 leap_year_valid $year
 let DAY_LOOP=DAY_LOOP+$LEAP_TOT
done
let jul=$DAY_LOOP
}
M_D_Y_calc()
{
leap_year_valid $year
if [["$?" = "0"]]
then
 let filedat[2]=29
else
 let filedat[2]=28
fi
leapjul=$jul
let i=1
let total=0
while [[i -lt 13]]
do
 if [[$total -lt $jul]]
 then
 temp=${filedat[i]}
 let total=$total+$temp

24 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 let month=$i
 fi
 let i=i+1
done
let temp=${filedat[month]}
let str=$total-$temp
let day=$jul-$str
amonth="$month"
aday="$day"
if [[month -lt 10]]
then
 amonth="0$month"
fi
if [[day -lt 10]]
then
 aday="0$day"
fi
}
month_name()
{
case "$amonth" in
 01)
 LONGMON="January"
 ;;
 02)
 LONGMON="February"
 ;;
 03)
 LONGMON="March"
 ;;
 04)
 LONGMON="April"
 ;;
 05)
 LONGMON="May"
 ;;
 06)
 LONGMON="June"
 ;;
 07)
 LONGMON="July"
 ;;
 08)
 LONGMON="August"
 ;;
 09)
 LONGMON="September"
 ;;
 10)
 LONGMON="October"

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 25

 ;;
 11)
 LONGMON="November"
 ;;
 12)
 LONGMON="December"
 ;;
 esac
}
if ["$1" = "?"]
then
 print " Options available"
 print " -----------------"
 print " -n Day Number (0-6 0=Sunday)"
 print " -nn Short Day Name eg Mon"
 print " -nnn Long Day Name eg Monday"
 print " -d Day Of Month (With leading 0)"
 print " -m Month Number (With leading 0)"
 print " -mm Short Month eg Jan"
 print " -mmm Long month name eg January"
 print " -y Short Year eg 97"
 print " -yy Long Year eg 1997"
 print " -j Julian Day"
 print " -yj Year and julian day eg 97261"
 print " -sp Output mm\/dd\/yy"
 exit 0
fi
########Check number of paramenters passed, exit if too many
if [$# -gt 8]
then
 print "Too many parameters"
 exit
fi
generate_year_day
M_D_Y_calc
name_of_day
month_name
SPACE=""
gto=1
while [[gto -lt 8]]
do
gto=gto+1
if ["${PASS[$gto]}" = "-n"]
then
 OUT_PASS[$gto]=$DAY_INT
fi
if ["${PASS[$gto]}" = "-nn"]
then
 OUT_PASS[$gto]=`echo $DAYNAME|cut -c1-3`
fi

26 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if ["${PASS[$gto]}" = "-nnn"]
then
 OUT_PASS[$gto]=$DAYNAME
fi
if ["${PASS[$gto]}" = "-d"]
then
 OUT_PASS[$gto]=$aday
fi
if ["${PASS[$gto]}" = "-m"]
then
 OUT_PASS[$gto]=$amonth
fi
if ["${PASS[$gto]}" = "-mm"]
then
 OUT_PASS[$gto]=`echo $LONGMON|cut -c1-3`
fi
if ["${PASS[$gto]}" = "-mmm"]
then
 OUT_PASS[$gto]=$LONGMON
fi
if ["${PASS[$gto]}" = "-y"]
then
 OUT_PASS[$gto]=`echo $year|cut -c3-4`
fi
if ["${PASS[$gto]}" = "-yy"]
then
 OUT_PASS[$gto]=$year
fi
if ["${PASS[$gto]}" = "-j"]
then
 OUT_PASS[$gto]=$jul
fi
if ["${PASS[$gto]}" = "-yj"]
then
 OUT_PASS[$gto]=`echo ${year}$jul|cut -c3-`
fi
if ["${PASS[$gto]}" = "-sp"]
then
 OUT_PASS[$gto]=$aday"\/"$amonth"\/"$year
fi
if ["${PASS[$gto]}" = "-s"]
then
 SPACE=" "
fi
if ["${PASS[$gto]}" = "-/"]
then
 SPACE="/"
fi
done
OUTPUT=""

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 27

gto=1
while [[gto -lt 8]]
do
 gto=gto+1
 if ["${OUT_PASS[$gto]}" != ""]
 then
 addt=gto+1
 if ["${OUT_PASS[$addt]}" != ""]
 then
 OUTPUT=$OUTPUT"${OUT_PASS[$gto]}"$SPACE
 else
 OUTPUT=$OUTPUT"${OUT_PASS[$gto]}"
 fi
 fi
done
print $OUTPUT
#end

GENERATING THE DELIMITED TEXT FILES

Each sar file and all its parameters need to be processed separately, the
end result being a file that PC packages can format and process
correctly. The scripts in this article support all the sar parameters
below for system-wide reporting. They do not, however, break down
information in reports to individual processors using the -P flag. If you
require this level of reporting, then you should modify the scripts.

-a Reports on the use of file access system routines.

-b Reports on buffer activity.

-c Reports on system calls.

-k Reports on kernel process activity.

-m Reports on message and semaphore activity.

-q Reports queue statistics.

-r Reports paging statistics.

-u Reports processor statistics.

-v Reports on process, kernel-thread, i-node, and file table status.

-w Reports on system switching activity.

-y Reports on tty device activity.

28 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The idea is to process data into delimited text files for use by PC
packages. In our set-up, four different types of delimited file are
generated. Two them comprise collected sar statistics for particular
calendar months. One file contains raw data and the other averaged
data. This provides us with historical data for our month-end reporting,
also enabling additional month-end reporting to be carried out quickly.
The other two sets of files are generated and stored for specifically
requested days; these files are loaded into a database and are available
for historical or trend analysis of system performance. Again, raw data
and averages are kept in separate files. This enables a more flexible
approach, though you may wish to modify the scripts if you don’t
require this level of flexibility.

The next script (control_load, shown below) controls the entire
process. It checks the requested number of days’ worth of sar files to
be processed and moves the formatted files to the correct place on the
system. The script requires three (positional) parameters that need to
be in the format shown below.

control_load 1 -n -zz

The first parameter is the number of previous days’ worth of data to
be processed.

1 Only the previous day’s sar file is to be processed.

3 The sar file from three days previously is to be processed (for
instance, if called on Monday, then Friday’s file is processed).

The second parameter controls the process of putting a header in the
day files.

-n No header is placed in the files for the day.

-h A header is placed in the files for the day.

The third parameter controls which sar parameter options are to be
processed.

-zz Results in all sar parameter options being processed.

"-a -c" Only file access system routines and system calls are
processed.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 29

CONTROL_LOAD SCRIPT
#!/bin/ksh

#Variable Definition
HOME=/usr/home/it032x
DATA_HOME=$HOME/system_stats
MONTH_FILE=$DATA_HOME/month_files
MACHINE_ID="MAN"

delete_files()
{
for d in $SAR_STRING
do
 SEL=`echo $d|cut -c 2|tr -A "[a-z]" "[A-Z]"`
 rm -f $DATA_HOME/${MACHINE_ID}???${SEL}.TXT
done
rm -f $DATA_HOME/HEDSAR*
}

month_file_control()
{
FILE_TAG_LONG=`$HOME/calcdate $LOOP -s -mm -d|tr "[a-z]" "[A-Z]"`
FILE_TAG=`echo $FILE_TAG_LONG|awk '{print $1}'`
DAY_TAG=`echo $FILE_TAG_LONG|awk '{print $2}'`

if [["$1" = "SAR"]]
then
 DATA_CONTAIN=${DATA_HOME}/Datafile3
 DATA_OUTPUT=${MONTH_FILE}/${MACHINE_ID}${SEL}${FILE_TAG}.TXT
 HEAD=${DATA_HOME}/HEDSAR
else
 DATA_CONTAIN=${DATA_HOME}/Datafile4
 DATA_OUTPUT=${MONTH_FILE}/${MACHINE_ID}${SEL}${FILE_TAG}A.TXT
 HEAD=${DATA_HOME}/HEDSARAVE
fi

grep `tail -1 $DATA_CONTAIN` $DATA_OUTPUT 1>/dev/null 2>&1

if [["$?" != "0"]]
 then
 if [[! -s $DATA_OUTPUT]]
 then
 cat $HEAD >> $DATA_OUTPUT
 fi
 cat $DATA_CONTAIN >> $DATA_OUTPUT
fi
}

daily_file_control()

30 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

{
if [["$1" = "SAR"]]
then
 DATA_CONTAIN=${DATA_HOME}/Datafile3
 DATA_OUTPUT=${DATA_HOME}/${MACHINE_ID}SAR${SEL}.TXT
 HEAD=${DATA_HOME}/HEDSAR
else
 DATA_CONTAIN=${DATA_HOME}/Datafile4
 DATA_OUTPUT=${DATA_HOME}/${MACHINE_ID}AVE${SEL}.TXT
 HEAD=${DATA_HOME}/HEDSARAVE
fi
 if [[! -s $DATA_OUTPUT && "$HEADER" = "-h"]]
 then
 cat $HEAD >> $DATA_OUTPUT
 fi

 cat $DATA_CONTAIN >> $DATA_OUTPUT
}

#Main Script Start

SAR_STRING=$3
HEADER=$2

if [["$SAR_STRING" = "-zz"]]
then
 SAR_STRING="-a -b -c -k -m -q -r -u -v -w -y"
fi

delete_files

for i in $SAR_STRING

do
LOOP=$1

while [LOOP -gt 0]
do
 print " $i $LOOP started `date +"%H:%M"`"

 $HOME/format $LOOP $i $2

 SEL=`echo $i|cut -c 2|tr -A "[a-z]" "[A-Z]"`

 #daily_file_control SAR

 month_file_control SAR

 if [["$i" != "-v"]]
 then

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 31

 # daily_file_control AVE
 month_file_control AVE
 fi

 print " $i $LOOP completed `date +"%H:%M"`"

 let LOOP=LOOP-1

done

rm -f $DATA_HOME/HEDSAR*
done
#end

The lines underlined in the script control the location where files
generated by the script are kept and the RS/6000 machine name. They
are as follows:

HOME=/usr/home/it032x
DATA_HOME=$HOME/system_stats
MONTH_FILE=$DATA_HOME/month_files
MACHINE_ID="MAN"

• HOME points to where script files reside.

• DATA_HOME points to where daily delimited text files reside.

• MONTH_FILE points to where monthly delimited text files
reside.

• MACHINE_ID stores the RS/6000 system name for which
statistics are being collected.

Make the necessary changes to these lines to suit your directory
structure (don’t forget to create the directories before running any
scripts!).

The control_load script calls the format script to perform the
necessary formatting of the files. This script strips out all the
unnecessary parts of the normal sar output to produce a usable text
file. The first procedure of the script is to remove the header and footer
from the sar file. It does this simply by removing the top four lines (the
header) and the last two lines (the footer). The fourth line of any sar
report contains information about what is being collected, so this is
saved to a separate file for later use. The line containing averages is
also hived off into another file for later use. What remains is used for

32 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

in-depth daily analysis.

The exception to the above is when processing output from sar -v
(system tables), which contains no averaged information. In this
instance only the last line of output (the footer) is stripped out and no
files of averages are generated. The output of sar -q, which reports on
queue statistics, also needs special handling. When this report is
generated by sar, a zero value is represented by a null field in the
report. Therefore, when formatting this output, eight spaces are hard
coded for each of the four possible entries. Make sure you check the
files generated from the output of sar -q to ensure they are consistent
with the information held in the sar file.

The format script is called from control_load as shown below:

format $LOOP $i $2

The first positional parameter is the number of days previously for
which data is to be processed.

$LOOP The first positional parameter comes from the call to the
control_load script.

The second parameter is the current sar parameter to process.

$i Used to loop through the sar parameters.

The third parameter controls what is done with the header.

$2 The second positional parameter from the call to the
control_load script.

FORMAT SCRIPT
#!/bin/ksh

HOME=/usr/home/it032x
DATA_HOME=/usr/home/it032x/system_stats
FORMLOG=${DATA_HOME}/form1
SAR_REPORTS=/var/adm/sa
VAR_SPLIT=`$HOME/calcdate $1 -s -yj -d -sp`
YEAR_JUL=`echo $VAR_SPLIT|awk '{print $1}'`
SAR_DATE=`echo $VAR_SPLIT|awk '{print $2}'`
YES_DATE=`echo $VAR_SPLIT|awk '{print $3}'`
PASSED=$2

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 33

>$DATA_HOME/Datafile2
>$DATA_HOME/Datafile4

header_line()
{
 HEAD_ROW=`cat $FORMLOG|head -4 |tail -1 | sed "s/[]*[]/,/g" |cut -
f2- -d,`
 print "Key,Date,Time,"$HEAD_ROW >$DATA_HOME/HEDSAR
 if [["$PASSED" != "-v"]]
 then
 print "Key,Date,"$HEAD_ROW >$DATA_HOME/HEDSARAVE
 fi
}
queue_set()
{
 FIRST=`tail -$ROTATE $DATA_HOME/Datafile1 | head -1 |cut -c9-40|sed
"s/[][][][][][][][]/,/g"|sed "s/ * /,/g"`
 SECON=`tail -$ROTATE $DATA_HOME/Datafile1 | head -1 |cut -c1-8`
 echo $SECON$FIRST|sed "s/^/$KEY\,$YES_DATE\,/g">>$DATA_HOME/
Datafile2
}

sar $2 -f $SAR_REPORTS/sa${SAR_DATE} > $FORMLOG

if [[! -s $DATA_HOME/HEDSAR]]
then
 header_line
fi

NO_LINES=`cat ${FORMLOG}|wc -l`

let TAIL_CHOP=NO_LINES-4
if [["$PASSED" != "-v"]]
then
 let HEAD_CHOP=TAIL_CHOP-2
else
 let HEAD_CHOP=TAIL_CHOP-1
fi

cat ${FORMLOG}|tail -$TAIL_CHOP|head -$HEAD_CHOP>$DATA_HOME/Datafile1

COUNT=0

while [$COUNT -lt $HEAD_CHOP]
do

 let ROTATE=HEAD_CHOP-COUNT
 let IDENT=COUNT+1

34 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 HOURMIN=`tail -$ROTATE $DATA_HOME/Datafile1 | head -1|cut -c 1-2,4-
5`
 KEY="k"$YEAR_JUL"."$HOURMIN$IDENT

 if [["$PASSED" != "-q"]]
 then
 tail -$ROTATE $DATA_HOME/Datafile1 | head -1| sed "s/^/
$KEY\,$YES_DATE\,/g">>$DATA_HOME/Datafile2
 else
 queue_set
 fi

 let COUNT=COUNT+1

done
if [["$PASSED" != "-v"]]
then
 AVERAGE=`cat ${FORMLOG}|grep Average|sed "s/[]*[]/,/g"|cut -f2- -
d,`
 KEY="k"$YEAR_JUL
 print $KEY","$YES_DATE","$AVERAGE|sed "s/\\\//g" >$DATA_HOME/
Datafile4
fi

sed "s/[]*[]/,/g" $DATA_HOME/Datafile2 > $DATA_HOME/Datafile3
#end

The scripts below comprise all the building blocks necessary for
creating delimited text files.

1 calcdate

2 control_load

3 format .

You can produce all the necessary formatted text files by using the
following command from the directory where the script files where
placed:

control_load 1 -n -zz

This results in 21 files being placed in the directory defined as the
location of your daily collection.

This article continues in next month’s issue of AIX Update.

Robert Russell (UK) © Xephon 1998

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 35

AIX performance in client/server systems

This article outlines the building blocks of client/server systems,
looking at the role of AIX in such systems and examining how the
components affect performance. It also outlines some of the commercial
tools for AIX that can be used to monitor client/server systems.

OVERVIEW

Many companies rely on AIX servers to provide business-critical
functions. Increasingly, technical solutions are being built that use
multiple client/server components. These are connected via LANs
and WANs, and may also use middleware. The number of hardware
and software components involved for processing even simple requests
is growing almost exponentially. Although this provides considerable
flexibility for delivering innovative and timely business solutions, it
presents many issues for maintaining performance and service levels.

Nowadays the complexity of client/server architectures may make it
extremely difficult to identify the exact bottleneck or bottlenecks that
cause performance problems. Technical support staff typically have
an ever increasing workload and may not have the time to identify the
cause of a slowdown. However, for business-critical systems, it’s
essential that problems are quickly identified and resolved.

CLIENT/SERVER ARCHITECTURES

Some years ago, the Gartner Group devised a method of classifying
client/server systems into five categories. This method has since
gained widespread acceptance. More recently new technologies have
added to this picture. Distributed transaction processing, video on
demand, and complex mixed-mode client/server systems at first seem
difficult to classify using this system. Generally though, these are
variations on the existing categories rather than completely new ones.
The more common client/server systems can be classified as:

l Distributed presentation

This category comprises systems that exploit the video and

36 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

graphics capabilities of intelligent clients (typically PCs) to
improve the appearance of a traditional character-based Unix
applications.

2 Distributed data

This category comprises client/server systems that provide unified
and transparent access to data stored at various locations in the
network. It includes two main types of application. The first is the
network server. In this type of system, a workstation runs a
software program, called a redirector, that intercepts attempts to
access disks on network systems. It examines the drive name or
letter and, where appropriate, redirects the disk access via the
network to the server.

The second type of application is the distributed database, where
subsets of the data reside on different database servers. When the
user submits an SQL request to retrieve data, the request is
examined to determine where the data is located. It may well span
two or more servers. Each database is asked to return data in its
subset and the results are merged and returned to the originator as
one complete result set.

3 Distributed logic

There are many instances where end users collate information
from several sources to build reports or interact with a number of
systems in order to complete a single task. For instance, a stock
system must be queried before an order can be placed in the
ordering system. Many companies have written client applications
that ‘front-end’ a number of server applications. These front-ends
can be more user-friendly than server systems, they remove the
need to toggle between server applications, and they can also add
considerable extra intelligence that improves the speed at which
an operator can interact with a customer.

TRANSACTION PROCESSING

Developers are creating ever more sophisticated client/server
applications incorporating multiple servers and traditional host-based
applications. Managing the integrity of these applications is becoming

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 37

very complex. For instance, what happens if an application has
opened several databases to write information and then a link is lost
to one of them? This situation requires the application to cancel
updates to all other databases. When this involves heterogeneous
databases, possibly from more than one vendor, and a mixture of SQL-
based and host-based applications, this back-out process can become
very complex.

Frequently a transaction is a logical unit of work that may involve a
number of applications on more than one system, with a transaction
processing server managing all other applications. The server is
responsible for synchronizing all applications, thus eliminating much
of the effort involved with error handling. IBM’s CICS is probably the
best known transaction processing system, though others are available,
such as Tuxedo and Encina.

NETWORKS

The network is the infrastructure in client/server systems. It is the glue
that links clients and servers. As networks are required to handle more
and more information, they are increasingly the bottleneck in client/
server systems.

LAN topology: Ethernet, Token Ring, wireless

There are two predominant LAN topologies. Ethernet is the most
common as a result of its low cost. Ethernet is fine for low to medium
volumes, though it begins to struggle when network traffic approaches
45% of capacity. Most Ethernets run at 10 Mbps, though new
technologies, such as 100BASE-T, provide 100 Mbps capacity. As a
result of its design, Ethernet has an exponential degradation in
performance with increasing volumes. This means that a level of
traffic is reached when performance slows down severely.

For AIX systems the other widespread LAN topology is IBM’s Token
Ring. This provides between 4 Mbps and 16 Mbps of capacity. Token
Ring’s throughput tends to degrade linearly with increasing throughput,
making performance problems more predictable than with Ethernet.

In order to extend the capacity of LANs in terms of both data and

38 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

attached devices, break LANs down into smaller units and use
repeaters, bridges, and routers to interconnect them. Note that although
spare PCs make good bridges and routers, they often become
bottlenecks.

WAN topology

Where physically remote LANs need to be interconnected, there are
a number of options that tend to be grouped under the term WAN. The
links can be based on telephone lines, ISDN, microwaves, radio, and
fibre-optic cable. Typically cost dictates which type of link is chosen.
These links are often far slower than LANs, so care must be taken to
restrict the volume of data transmitted across them. ATM is an
example of the new generation of high-speed connections for both
WAN and links. ATM runs at 155 Mbps.

Protocol stack: TCP/IP, IPX/SPX, NetBIOS

This is the software running in both client and server that provides the
‘electronic envelopes’ used to exchange information. There are many
different standards available, with TCP/IP, IPX/SPX, and NetBIOS
being the predominant ones for client/server systems. Each of them
has it strengths and weakness. For running across WANs, TCP/IP is
the preferred standard. IPX/SPX often performs poorly across WANs,
but is very effective on LANs. Performance is dependent on the
interconnection between the LANs and WANs. Some routers possess
a high degree of intelligence, and this can improve the performance
of some protocols across WAN links significantly.

Many protocols, such as IBM’s SNA, regularly transmit a ‘polling
message’. This is used to ensure that the host and the target are still in
contact and that the link is not broken. When this message is received,
an immediate response must be sent from the target system. If this
response is not received within a given time period, the connection
times out and the link is discontinued. This causes problems on some
WAN that use public links, as they often charge per character and
packet sent over the link. Such networks are typically optimized for
large packets of data and don’t work as effectively when small packets
containing just polling information are sent.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 39

Networks based on X.25 are normally configured to send 128-byte
packets. In order to send polling information, the network must be
reconfigured to send smaller packets. This often limits network
performance and increases charges. Some routers support a facility
known as ‘spoofing’, whereby the router intercepts polling messages
and emulates the response, thus keeping the link open without
clogging up the network with low-value polling information.

Remote access: dial-up V34, ISDN

Remote users need to be able to dial in directly to servers or to attach
to a gateway that emulates local network attachment. This allows
them to access the facilities of a remote LAN. Remote connections
tend to be fairly slow, typically 14.4 Kbps or 28.8 Kbps. This works
well for e-mail and similar applications, though it’s too slow for data-
intensive applications. ISDN is slowly emerging as an alternative that
offers greater speed, though it suffers from high initial connection
costs that have limited its acceptance. In the UK, ISDN provides two
64 Kbps circuits plus a low speed voice and signalling circuit. 56 Kbps
modems are now beginning to make inroads into the market and 64
Kbps modems are on the horizon. Such developments are likely to
limit ISDN’s role.

MIDDLEWARE

Middleware is a transparent layer of software that isolates applications
from the complexities of the underlying hardware and networks. This
new-ish term covers a large range of technologies. Note that some
database vendors have hijacked this term, using it to refer to software
that allows various clients and ‘foreign’ databases to connect into their
database. Middleware is a much wider subject than this, being a
strategic component in the building of complex client/server systems.
It’s difficult to provide an exact outline of all of the areas covered by
middleware, but the following list gives a general overview:

• Data access. This is the traditional type of middleware used to
enable a wide range of clients to access SQL databases. It can also
be used to provide local access to files held on remote systems.
It provides a generic interface for applications to access data

40 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

easily, regardless of the data’s location. Data access drivers sit on
top of the networking software. Examples include Microsoft’s
Open DataBase Connectivity (ODBC) and the Network File
System (NFS).

• Object brokers. These are used to enable applications to be built
where the actual application code resides on different servers.
When an application calls a particular procedure or subroutine,
this may not be on the local server. The object broker intercepts
the call and routes it to the system where the code is resident. The
code is then executed and the results returned to the local system.
In concept this is similar to the Dynamic Link Libraries (DLLs)
used in many multitasking systems such as OS/2, Windows NT,
and Unix. Typically object brokers are used to link different
implementations of C++, where inconsistencies in link editing,
for example, normally cause problems. CORBA is a standard for
object brokers from various vendors.

• Distributed transaction processing. Although transaction
processing is really a form of client/server, it does have a role to
play in linking computer systems together. It can be used as the
glue to link and manage complex client/server transactions in
mission critical environments.

• Messaging (MOM). This lets applications communicate using
simple structured messages. In many ways it’s similar to e-mail,
to the extent that some messaging middleware uses e-mail to
transport its messages. It is by its nature asynchronous, thus
providing applications with a means of handling delays when
waiting for responses from other applications.

• E-mail. This is an effective means of exchanging information
between applications. E-mail facilities are a standard part of most
organizations’ IT infrastructure. There are a range of programming
interfaces that enable developers to write co-operative
applications. E-mail provides a low cost way of linking
applications where e-mail delivery speeds are acceptable. MAPI/
VIM are standard interfaces for applications to communicate via
e-mail.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 41

• Screen scrapers. These middleware programs are used to interface
with character-based Unix applications. The program can be used
to present the information in a more graphical and user friendly
format and it can also be used to automate the exchange of
information between incompatible systems.

• Encapsulation. This is based on screen scraping, but uses SQL-
type statements to enable developers to create applications that
access data in character based systems. An application server is
typically used that looks like a traditional database server. This
interfaces with Unix systems. When SQL requests are received,
it captures screens from these systems and returns them as a result
set back to the requester.

• Transparent resource access. DCE is an example of a product that
spans a range of middleware categories. It is designed to isolate
the user from the source of the information with which they work.
It provides features such as NetWare-like file access, Kerberos
security, distributed printing, and date and time services.

• File access. This works by intercepting local file access requests
and re-routing them to a remote server. This process is often
referred to as redirection. It enables workstations to access a
considerably wider range of information than is available locally.
Typical enabling products include Novell NetWare and Microsoft
LAN Server. Under AIX, NFS is a good example of a file access
product.

This is only a partial list of middleware types (it is reckoned there are
eighteen types in all). However, a full discussion of the more obscure
products is outside of the scope of this article.

FILE SERVERS

Fileservers such as those based on NFS, Novell NetWare, and Microsoft
LAN Server have become the predominant means for sharing
information on LANs. While they are still complete computer systems
in their own right, and their performance is still dependent on the
balance between the CPU, memory, I/O, as the workload resulting
from requests they receive via the network, you also need to consider

42 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

the following factors when investigating performance bottlenecks:

• LAN adapters. There are a wide range of LAN adapters in the
marketplace for Token Ring, Ethernet, and emerging standards
such as 100BASE-T. There are considerable performance
variations between different adapters.

• Buffers. Network cards have a small amount of memory that is
used to hold microcode or buffer information being transferred to
and from the network. In some systems, it is possible to alter the
memory allocated to each service being using via the network
adapter. Most Unix systems do not allow this to be altered, but PC
systems generally do. This allocation of memory can impact
performance.

• Cache. Accessing information on disk drives is slower than
accessing information in memory by a few orders of magnitude.
File servers attempt to pre-fetch information from the disk drives
and hold it in memory. For instance, when a sequential file is
opened, the file server attempts to read the entire file into
memory. When the application asks for the next record in the file,
this is sent via memory rather than from disk. This is caching. For
many servers, the amount of memory allocated to the cache has
a considerable impact on performance. Servers provide statistics
that detail the ratio of read requests met from cache against the
percentage that required physical I/O. Where a low percentage is
being met from cache, increasing the memory can provide
worthwhile performance improvements. It is also possible to
define the amount of memory allocated to caching on some Unix
systems. If there’s spare capacity, then it may be worth allocating
more memory to caching.

• I/O subsystem. This is the connection between the disk drives,
LAN adapters, and the processor. The speed of this link can be a
bottleneck. There are two main components, one being the
connection between the peripheral device and the computer’s
data bus. Modern high-performance disk drives tend to use the
SCSI standard as the means of accessing the drives, though for
AIX SSA is a higher-performance alternative. There are other
proprietary formats, but they are fairly rare compared with SCSI.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 43

PC servers tend to use a mixture of IDE, EIDE, and SCSI. IDE has
largely been superseded by the enhanced IDE standard, or EIDE,
which provides mid-range SCSI-type performance at a lower
cost. SCSI is the preferred choice for higher transfer rates and for
large disk drives.

• Data path to user (hops and routers). Even if the server is suitably
configured, its potential may never be realized if it is constrained
by the network linking the client to the server. As networks grow
in size and complexity, it is rare for users to be connected directly
to the same LAN as the server. The intermediate links can often
constrain throughput. Modern routers are capable of very high
throughput, but tend to be expensive. Frequently servers are also
used as routers and old, low specification PCs are commonly used
as bridges for no other reason than because they are available.
Though cost-effective, Intel-286 or 386-based PCs are often
under specified for the job and cause severe bottlenecks; their
replacement with faster PCs or dedicated routers and bridges can
bring significant performance gains. A quick survey of the
network, paying particular attention to these intermediate links,
can soon identify bottlenecks. A LAN analysis tool is particularly
useful for collecting evidence as to where problems lie. Some
modern network management tools, such as IBM’s NetView
6000, can provide useful information as well.

DATABASE SERVERS

The database server is a blend of file server and application server,
dedicated to retrieving relational information via SQL requests.
Tuning these servers is a complex task that has been described in a
number of good books. This section is therefore very much of an
overview. Every database requires different methods to resolve
performance issues, though they all have common features. Overall
performance is governed by the balance between the CPU, memory,
and I/O in relation to the workload, as is the case with file servers.
Performance issues can be split into data design and implementation.
Some of the common ones are:

• Data design. The way in which the data is organized is the single

44 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

most important factor in determining performance. Careful
consideration needs to be given as to how information is to be
retrieved and an efficient strategy needs to be devised to meet
these needs. Formal data analysis and normalization are very
important. Although these are often regarded as ‘chores’, they
have a critical bearing on performance.

• Symmetrical Multi-Processing (SMP). IBM’s SP/2 servers support
multiple-processor configurations – a feature that’s also supported
by AIX. Many databases, such as Oracle, can take advantage of
SMP to allow processor power to be expanded easily. SMP also
allows load balancing, allocating tasks evenly across the
processors. Additionally, with many databases you’ll find that
most of the workload is being carried out by only a few processes.
SMP allows each of these processes to be allocated its own
processor, providing considerable improvements in performance.

• Caching. Databases make heavy demands on I/O systems when
reading and writing large quantities of data. Caching can make a
considerable difference to this. Always configure the cache in
line with the manufacturer’s recommendations. The ratio of
cache hits to physical reads is very important and should be
monitored carefully. Memory is often the single largest physical
factor in determining performance. Prices for memory are
decreasing rapidly, so it’s now usually more cost-effective to
improve performance by adding RAM than by any other single
means.

• Indexes. Records in tables are accessed using keys. You can either
find the record by searching the data stored on the disk drive itself
or by searching a replica list of keys kept in memory. The
memory-based key is referred to as an index. Searching an index
is many times faster than using a disk-based key. As indices
consume memory, their number is normally kept to a minimum.
However, where a table is regularly accessed through a particular
key, it is worth making this an index. The difference in access
times when using an indexed key and a physical key can be an
order of magnitude or more. Ideally you should study data access
patterns to determine which keys should be indexed.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 45

• SQL. In this context, SQL can be regarded as the language used
to specify the data that needs to be retrieved or inserted into the
database. As with most programming languages, there are usually
many ways of coding the same query, and the exact form of the
statement often has an impact on performance. There is often a
considerable difference in the SQL written by experienced and
inexperienced staff. Particular care should be taken to make sure
that indexed keys are used wherever possible.

• Optimization. Modern databases provide facilities to translate an
SQL query into the optimum method to retrieve the required
information. This is often referred to as query optimization. The
database follows a set of rules known as a strategy to determine
how to retrieve data. The optimizer can improve performance,
though it tends to struggle when working on poorly written
queries as it has only a limited ‘knowledge’ of the data. Most
databases, such as Sybase produce a log showing the optimization
strategy selected for each query. This can be a useful reference
when trying to tune queries as it often highlights areas where
indexes and other techniques may help.

• Distributed data. Modern databases allow the designer to split
the data itself between a number of servers. This is useful when
information is derived from a number of locations, but needs to
be centrally accessible. Although distributed databases usually
offer ‘location transparency’, this usually has an impact on
performance. A query performed on a local server is much faster
than one on a remote server. When queries require data to be
retrieved from several different systems, the speed of the query
is dependent on the slowest link in the chain.

• Replication. Problems with accessing distributed databases have
led to the development of an alternative strategy known as
replication. This involves keeping copies of the data at remote
sites. Replication works best when read-only access to data is
required at the replication sites, as it provides rapid access to the
data. If this is not the case, then replication makes it necessary to
synchronize the various copies of the data, which can be a
complex issue if the information can be updated on both the

46 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

replicated and the master databases. Synchronization requires the
use of ‘two-phase commits’ or other similar strategies. A
workaround is to allow only read-only access to replicated
copies, allowing updates only on the master.

• LAN adapter. As is the case with file servers, the throughput of the
LAN adapter can be a bottleneck. The netstat command may be
used to provide useful information about the LAN adapter’s
performance. If necessary, it is usually possible to add a second
adapter to increase the throughput.

• Mirroring . With business critical systems, mirroring is often used
to provide protection against disk failure. Mirroring simply
copies data between the main disk drive and a drive used as a
back-up. Mirroring can be performed by either hardware or
software, depending on the system and application. The trend is
towards using RAID-based storage, where an intelligent SCSI
disk drive controller automatically copies the data between
different drives. If one fails, data is still available. Software
replication performs the same function, but incurs a CPU overhead.
Where possible use hardware caching as this improves
performance.

• Locking strategy with multi server/domain queries. Although
databases may provide concurrent access to the same data for
many users, they only allow one user to update the information
at any time. When a table is opened for updating, the database
typically locks the record concerned to prevent two users from
simultaneously updating it. Depending on the database, a number
of different locking strategies can be used to ensure data integrity.
This includes column, record, and table locking. The chosen
method is usually a compromise between ensuring data integrity
and minimizing the impact on other users who wish to update the
same information. Once a transaction has locked a record, another
user wishing to update the record must wait until the lock is
released. With interactive transactions the delay can be
considerable. Another possibility is that two applications need to
access the same set of records in different tables. Then, it’s
possible to get a deadlock where each application tries to access
the same files.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 47

When a query is on a distributed database, all components of the
database must be locked until all updates are complete. This can
have a considerable impact on performance when some systems
are connected by slow links, so this needs to be considered at
design time.

This article concludes in next month’s issue of AIX Update.

Steve Butler (UK) © Xephon 1998

Contributing to AIX Update

AIX Update is primarily written by practising AIX specialists
in user organizations – not journalists, or consultants, or
marketing people. In our view, the information and advice
provided by such people – people like you and your colleagues
– are far more valuable to their fellow professionals than the
alternatives available from other sources.

We don’t expect you to write an original article from scratch –
just send us listings or specifications of any relevant programs,
utilities, scripts, user modifications, or other code that might be
of use to other installations, with a short explanation of why it
was developed and what it does. And most IS departments
produce a great many internal technical reports and other
documents, many of which can easily be adapted for publication.

Contributors aren’t just helping their fellow professionals –
they also receive a significant material reward themselves. We
pay good rates for the articles we publish: $250 (£170) per 1000
words if we get copyright, and $140 (£90) per 100 lines of code.

A copy of Notes for contributors can be obtained from Xephon’s
Web site at www.xephon.com.

IBM has announced Version 3.6 of its C and
C++ compilers for AIX, OS/2, and Windows
NT. The new tools aim to provide cross-
platform portability – the AIX version
supports applications developed using IBM
C Set++ for AIX Version 3.1.4, and once
applications are migrated to the new
compiler, they can be ported to either OS/2 or
NT.

Version 3.6 also supports the creation,
execution, and debugging of 64-bit C
applications for AIX 4.3. Prices start at
US$1,899.

IBM has also begun shipping Torrent
Systems’ Orchestrate, a tool for building and
deploying parallel programs. The software
supports SMP and SP systems running AIX,
and allows systems to be written that are
fully capable of running in parallel against
large volumes of record-oriented transaction
data. Prices start at $7,800 per developer.

For further details, contact your local IBM
representative.

* * *

Compuware has announced that Uniface
applications now run on AIX Version 4.3
with full support for new OS features, such as
interoperability between 32-bit and 64-bit
applications.

For further information contact:
Compuware Corp, 31440 Northwestern

Highway, PO Box 9080, Farmington Hills,
MI 48334, USA
Tel: +1 810 737 7300
Fax: +1 810 737 7199
Web: www.compuware.com

Compuware Ltd, 163 Bath Road, Slough
SL1 4AA, UK
Tel: +44 1753 774000
Fax: +44 1753 774200

* * *

SAS Institute has launched a universal
ODBC driver designed to make SAS data
available to ODBC-compliant applications,
making it possible to access such data
without SAS software. U-ODBC lets users
open and query SAS data sources resident on
AIX from desktop platforms. ODBC drivers
are also available for other Unix platforms,
OS/2, Macintosh, and DEC OpenVMS,
VAX, and Alpha.

For further information contact:
SAS Institute, SAS Campus Dr, Cary, NC
27513, USA
Tel: +1 919 677 8000
Fax: +1 919 677 8123
Web: www.sas.com

SAS Institute, Wittington House, Henley
Road, Medmenham, Marlow, Bucks SL7
2EB
Tel: +44 1628 486933
Fax: +44 1628 483203

AIX news

x xephon

	AIX menus
	Serial Storage Architecture versus SCSI
	Monitoring AIX with PCs revisited
	AIX performance in client/server systems
	Contributing to AIX Update
	AIX news

