
© Xephon plc 1998

June 1998

32

3 Performance management and
measurement

17 AIX filesystems
22 RISC System Cluster Technology
40 SMP’s SystemGuard and Fast IPL
43 Contributing to AIX Update
44 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 1998. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: HarryLewis@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75067
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £175.00
in the UK; $265.00 in the USA and Canada;
£181.00 in Europe; £187.00 in Australasia
and Japan; and £185.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £15.00 ($22.50) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com
(you’ll need the user-id shown on your ad-
dress label to access it).

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 3

Performance management and measurement

It’s my aim in this article to discuss performance measurement and
management in broad terms, so that you can evaluate how to set about
this task. I also intend to provide an overview of the benefits that are
available from a methodical approach to performance management,
and to provide practical advice on performance management for AIX
systems. This article is aimed at AIX administrators who have perhaps
mastered the use of a number of performance tools and now wish to
bring them together into a cohesive structure for performance
management.

UNIX PERFORMANCE IN THE SERVER MARKET

The past ten years has witnessed a substantial change in the way
computers are used in business. During this time, IBM’s dominant
position in the mainframe market has been undermined by ‘plug-
compatible’ manufacturers, while advances in microprocessor
technology has made systems smaller and faster. At the same time the
use of networks has increased over a thousandfold.

Microsoft’s marketing wizardry has made it the main force in desktop
systems and allowed it to move into the server market, where it has
eroded Unix’s dominance of the bottom end of the market. Other
major players, like Sun Microsystems, HP, and Digital (now part of
Compaq), have emerged from their traditional markets to take large
slices of the corporate IT cake. The business world has been turned
upside down by technology.

Every week brings a new announcement of faster processors, faster
disks, and improved operating systems and databases, and each new
software release requires more powerful systems on which to run. As
software sophistication increases, so does its system requirements.

IBM AND THE RS/6000

The RS/6000 was sidelined by IBM for many years as a small system
that probably wouldn’t catch on. When IBM finally realized what was

4 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

happening they had almost missed the boat, and it took a considerable
investment to bring the RS/6000 in line with the very successful HP-
9000. IBM, with their might, enormous user base, and successful
marketing techniques, managed to stay in the game and even to get
ahead of it.

IBM now has tens of thousands of RS/6000s installed in the UK alone,
and well over half a million worldwide. This is an impressive
achievement, even for IBM. Since the release of the first Symmetric
Processing (SP) system, IBM has notched up sales averaging 1,300
per annum worldwide, putting the number of SP frames at around
4,000 (they cost on average $250,000 each).

IBM’s revenue for worldwide sales of the RS/6000 is over $25 billion.
With 2,500 technical specialists working on AIX, five manufacturing
plants churning them out, and sales operations in 120 countries, this
demonstrates a considerable commitment to this platform.

Although losing out to Microsoft at the desktop and workstation level,
the RS/6000 is holding its own at workgroup level, with growth of
around 11% to 12% per year, and is surging ahead at the enterprise
server level with growth of over 40% a year.

In October 1997 IBM launched the RS/6000 Enterprise Server Model
S70. This advanced server supports full 64-bit symmetric
multiprocessing (SMP) with up to 12 processors and many in-built
reliability features. It’s designed to run all of a medium sized company’s
business or act as a ‘super server’ to a number of smaller network
servers. S70 prices start at $125,000, which is relatively inexpensive
for a system that’s more powerful than mainframes were just ten years
ago.

As the machines increase in speed and capacity, so too does the need
for systems and performance management. AIX 4.3, which is required
to run the S70 in 64-bit mode, provides many performance
improvements, especially when running 64-bit applications, but is
still only an operating system. AIX won’t analyse the workload and
redistribute it for better throughput. It won’t monitor the disk and the
cache. It won’t measure application resource usage, and it provides no
estimates of future capacity requirements.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 5

PERFORMANCE MEASUREMENT

A major issue in most distributed systems is how to collect performance
data about applications running on network servers. How often should
data be collected? How detailed should it be? Where should it be
stored? How will the process of collecting data affect the performance
of both servers and the network?

In this respect AIX is arguably the best of the various versions of Unix.
Its sophisticated graphical interface, which emerged in its present
form in AIX 3.2, has been built on considerably and has largely
eliminated the need for the command level interface. This, in turn, has
altered the skill level of Unix system administrators, who may not be
as familiar with commands used to obtain performance information,
such as sar, iostat, vmstat, and netstat, as their predecessors.
Administrators want to have easy, graphical interfaces to their
performance information. They require recent and historical
information for performance management and they don’t want the
process of collecting performance data to cause them further
management problems.

System adminstrators need performance tools to enable them to
monitor and manage their systems that don’t incur a significant
overhead and that require minimum system management.

Throughout this article I provide examples using Landmark System’s
PerformanceWorks. As a product manager for PerformanceWorks,
I’m clearly not a disinterested observer. Thus, readers should be aware
that other performance management systems are available for Unix
systems in general and AIX systems in particular, and they should
evaluate the various products available with reference to the needs of
their particular systems.

DATA COLLECTION IN THE DISTRIBUTED ENVIRONMENT

The best way to collect data from a network server is using a local
agent running on the server. The alternative is to collect data across the
network by polling, which is slow and network-intensive. Polling can
also fail to identify problems in time for action to be taken. Note that,
while the agent doesn’t impose a performance penalty on the network,

6 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

it imposes an overhead on the server, so it has to be written to be as
small and efficient as possible. Figure 1 shows a typical network
architecture with distributed agents and stores.

There are several requirements of an agent:

• It has to have a mechanism to access the required data.

• It has to be able to monitor that data frequently.

• It must be able to test the data against pre-defined thresholds.

• It must be able to send alerts when thresholds are broken (greater
than, less than, matching pattern, etc).

• It must be able to collect data at predefined intervals and relay it
to a central component that stores it.

This is true of all information about any part of the operating system
or database.

Figure 1: Local data collection

HP-UX HP-UX AIX
Central
point

HP-UX
Oracle

AIX
Oracle

Windows
NT

AIX
Oracle

HP-UX
Oracle

LAN 1 LAN 2 Data
Data

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 7

OPERATING SYSTEMS

Within the operating system there are a number of areas that must be
monitored:

• CPU
This is the primary resource at every server and workstation. CPU
consumption has to be measured at both the system and process
level. An overview of kernel and user CPU consumption provides
a quick view of total processor activity, while more detailed
statistics about processor queue length, the number of systems
calls, and the number of page faults can help to evaluate the CPU
load. Showing processor usage for each process allows
administrators to identify heavy CPU users, while a breakdown
by processor in an SP machine highlights potential load imbalance
(Figure 2 – the screenshot is from PerformanceWorks).

Figure 2: Graphical and tabular information with drill-down

8 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Memory
As before, it’s necessary to start with a high level overview of
system and user memory consumption to highlight potential
problems. This information should be used alongside paging
rates to highlight problems, such as processes using excessive
memory, ‘memory leaks’, lack of paging space, and poor use of
memory. This requires the ability to view memory usage by
process. Increasing the available memory can result in dramatic
performance improvements in AIX, as long as memory is
responsible for bottlenecks, something that can only be ascertained
by examining current and historical usage. (See Figure 3.)

Figure 3: Monitoring processes for memory use and paging

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 9

• Cache
Cacheing is an efficient mechanism for reducing I/O to disk. An
analysis of the cache hit ratio provides information on how well
the cache is being used – a low value requires further investigation.
The size of the cache may need adjusting to suit the type of I/O
load. Sequential I/O should yield a high cache hit ratio. However,
the presence of many pinned records uses up available cache
memory quickly as do ‘lazy writes’. Also, low priority applications
and processes that use cache take longer to fill the application
buffer (they may be paged out), thus tying up memory. Each of
these areas need to be looked at in order to obtain the best use of
the system’s cache.

Figure 4: Analysing disk and cache I/O

10 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Disk I/O
I/O to disk is often the slowest function performed by a computer.
Even with the latest fast SCSI drives, each I/O can still take as
long as 10,000 processor instructions. It’s essential, therefore, to
monitor disk I/O. Both programs and the operating system can
request I/O. Paging and swapping cause I/O. File access causes
I/O. Loading programs causes I/O. Monitoring which applications
perform I/O to particular volumes allows you to reduce the time
spent by the system waiting for I/O. The information you require
to assess the I/O includes the amount of data transferred, the
number of physical I/Os, the number of activities queued, the
time taken for each I/O, and the related cacheing information.
Figure 4 on page 9 shows a display of disk and cache I/O.
Historical data allows you to know when I/O problems began and
to assess their impact on various applications and users.

Figure 5: Network I/O at the server level

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 11

• Network I/O
Communication between systems is fundamental to many mission-
critical applications. At each server or workstation it is possible
to obtain details of all packets arriving at and leaving from the
machine. These may be expressed in terms of datagrams, frames,
segments, or packets, depending on the protocol or interface in
use. It’s also necessary to look at the fragmentation of IP packets
when using TCP/IP and at the success or failure of any connections
made. All of these measurements may be made at the server/
workstation level. (See Figure 5 opposite.)

DATABASES

Many well-known databases don’t use standard filesystem access.
They have their own I/O mechanisms and therefore bypass operating
system I/O counters. Databases are ‘structured’, meaning that a
request can cause one or many physical I/Os. Data held in tables is
accessed either sequentially or through an index, depending on how
the programmer has coded the query using SQL. Logs or journals are
kept to enable recovery and backout.

A database is usually a complete system within the operating system.
It may suffer from memory, CPU, paging, cache, and I/O problems,

Figure 6: Reporting on applications

12 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

just as the operating system does. Databases are further complicated
by having to allow many users to access the same tables, sometimes
causing locking problems and delays to the user transactions.

Each database system varies in its mechanism for storing and retrieving
data, and therefore requires a different agent to access and store
performance data. The agent is responsible for compiling information
about incoming SQL calls and their effect on performance. This
means collecting detailed statistics about tasks, tables, indexes, data
spaces, errors, locks encountered, processes invoked, and actual I/Os
being performed, in addition to other machine resources being used.

On top of all this, information about network access to the database
can usually be recorded. This information is different from that
gathered at the operating system level and relates only to network I/
O performed specifically in relation to the database. Figure 6 on page
11 shows some ‘off the shelf’ reports for Oracle, Sybase, and Microsoft
SQL Server provided by PerformanceWorks.

THE NETWORK

As mentioned previously, it is possible to obtain a significant amount
of information about the size, number, and rate of network packets
sent and received by the server. Timings for network packets is a little
more difficult to obtain, as user information may not be identifiable
from the packet information. There are several ways of monitoring
network activity, including ‘sniffer’ products that monitor the actual
network cable and record the amount of data passing. Other products
record specific transactions by their TCP/IP header and monitor each
send/receive pair. These products record timings, destinations, and
the total number of message pairs required to make up a complete
transaction.

As more client/server applications are deployed and more use is made
of networked applications, so network monitoring is becoming an
essential part of enterprise performance management. Most companies
have e-mail systems and many are implementing intranets in their
internal networks. Use of these facilities demands additional bandwidth,
leaving less for other applications.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 13

Collecting information about network use is difficult as the overhead
associated with examining every network packet makes such analysis
impractical. Analysing a specific transaction provides a better solution,
though it may fail to highlight instances when network traffic is
approaching its limit. A combination of products is probably required
to cover all aspects of the network monitoring that are required.

One product worth considering here is Optimal Expert from actualIT,
which analyses a transaction route across the network and provides a
modelling facility to identify ways to speed up throughput.

END-TO-END RESPONSE TIME

In order to set up and monitor end-user Service Level Agreements
(SLAs), it’s necessary first of all to define what measurements of
service level are important to end-users. Are system availability,
application availability, network access, and response time being
provided to a guaranteed standard? Each of these will probably
comprise part of the agreement – after all, providing a user with 100%
system availability without ensuring that a critical application is
running is a little pointless.

End-to-end response time has lately become a measure of service that
users tend to require of SLAs. On mainframe systems it has always
been possible to measure this (or at least to make a reasonable
‘guesstimate’), though this has not been possible in distributed
environments.

There are several mechanisms now being developed by hardware and
software vendors to address this problem. A consortium of HP, Tivoli,
Landmark, and others has developed a mechanism called Application
Response Measurement (ARM) that provides end-to-end response
timing for applications. This requires some input from the user, in
terms of either an application call to be monitored or a definition of
what constitutes the transaction. Hopefully ARM will allow
administrators to identify transactions that cause users undue delay
and to focus tuning effort on aspects of performance that provide the
most benefit to users.

14 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

USING THE INFORMATION

Performance tuning is a never-ending process. Just when you think
the system is running well, something changes – a change to a
program, a new application, a new user, more customers, etc – and the
whole process begins afresh. Every change, however small, has an
effect on the operation of servers and networks. Collecting all of the
information discussed above enables these effects to be identified
quickly and reacted to, thus keeping the performance at a constant
level (or, at least, within the service level agreement).

Performance data can also be used to perform intensive tuning
exercises, where the objective is to reduce response time and improve
user productivity. The result of such an exercise can be dramatic and
have a positive effect on the whole enterprise, even when only part of
it is directly affected. This is because the reduced resource requirements
of the ‘tuned’ application allow other applications to use more, thus
improving their throughput and response.

As no two systems are the same, it is meaningless to quote performance
targets for which to aim, such as ‘80% CPU’ and ‘60% cache hit ratio’.
Administrators usually look for ‘rules of thumb’ to guide them when
tuning systems, and usually feel let down when none are forthcoming.
AIX, surprisingly, runs far better when heavily loaded than with only
a light load. There are upper and lower boundaries for this, perhaps
between 70% and 95% CPU load. 100% CPU load is even better, but
leaves little room for the normal peaks and troughs of the average
day’s work.

The following suggestions are for general performance tuning:

1 Analyse disk usage by process.

– Split the most heavily used files and databases across multiple
physical disks.

– Put the system’s pagefile(s) on less heavily used disks.

– Use raw data partitions for databases where possible – their
I/O routines are generally more efficient than standard AIX
routines.

– Buy more disks as spreading the load improves performance.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 15

– Buy more disk controllers (again, spread the load).

– Use faster disks and faster channels (use SCSI II where
possible).

2 Analyse the paging rates. High paging (over 50 pages/sec) could
be caused by a single large application as well as by many running
simultaneously.

– Adjust the mix of applications to compensate.

– Check processes for memory leaks by monitoring them over
a period of time.

– Remove non-essential processes from the mix.

– Increase the pagefile size. It should be at least three times the
real memory size, though much more than four times provides
only marginal benefit.

– Add more memory.

3 Analyse total CPU usage. If it is at 100% regularly:

– Analyse operating system CPU usage – it may have a
memory problem.

– Check the historical performance figures – did CPU utilization
increase suddenly, in which case did the increase coincide
with an application change, or was it gradual?

– Analyse CPU usage by process in case one process is
hogging the CPU.

– Consider offloading some of your workload.

– Upgrade the CPU.

4 Analyse network traffic. Note that traffic for different network
protocols is usually collected separately. If traffic is high:

– High volume traffic for local applications is not a problem as
long as the network is capable of handling it, though remote
applications should keep volume to a minimum.

16 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

– If many users use a common application and run it on the
server and not locally, then distribute the application code.

– If your network has routers or bridges, use TCP/IP in
preference to any other protocol.

– Implement switching technology for better throughput and
balancing.

– Consider upgrading the network itself to Fast Ethernet,
ATM, FDDI, etc.

– Ensure the backbone in a large distributed network is as fast
as economically possible.

5 Use hourly or daily summary information on I/O, paging, CPU,
and disk space usage to plan hardware upgrades. A minimum of
three month’s worth of historical information is required for this.

It’s worth pointing out that most of the above tips are based on evening
out usage so that no single resource causes a bottleneck.

It is also important when tuning a system to monitor processes that
comprise each application and to understand the way the application
works. Planning can then be carried out to accommodate new users or
increased transaction volumes. Planned growth is always better than
‘fire fighting’, and having a proper performance management strategy
along with good performance tools makes life considerably easier.

SUMMARY

While IBM and other manufacturers continue to increase the speed,
reliability, processing power, and performance of their systems, each
new system costs that little bit more. The fact that organizations
continue to pay for upgrades proves that performance is an issue. With
good management, performance can be managed and demand
anticipated.

Ross McCarroll
Product Manager © Software Products Limited 1998

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 17

AIX filesystems

A filesystem is a hierarchical tree structure comprising files and
directories. This type of structure actually resembles an inverted tree,
with the trunk at the top and its branches at the bottom (at least, as it’s
normally graphically portrayed). The file tree uses directories to
organize data and programs into groups, thus allowing the management
of several directories and files at the same time.

A filesystem is a hierarchical structure with a single root. The structure
includes the base filesystems and any created filesystems. If a filesystem
is to be accessible, then it must be mounted on a directory mount point.
Multiple filesystems may be mounted on a directory structure that
presents a single filesystem image.

AIX supports multiple filesystem types, including:

• Journaled File System (JFS)

This is the basic filesystem type. It supports the entire set of
filesystem commands.

• Networked File System (NFS)

A filesystem type that permits files on remote systems to be
accessed as though they are on the local machine.

• CD-ROM File System (CDRFS)

A filesystem type that allows the contents of a CD-ROM to be
accessed through normal filesystem interfaces (open, read, and
write).

Both local and remote filesystems are accessed using the mount
command. This makes the filesystem available for read and write
access from one’s system. Mounting or unmounting a filesystem
usually requires system group membership. Filesystems can be
mounted automatically, as long as they’re defined in the /etc/filesystems
file. Unless a user or process is accessing it, local and remote
filesystems can be unmounted with the unmount command.

18 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

JOURNALED FILE SYSTEM (JFS)

AIX’s basic filesystem is the Journaled File System (JFS). This
filesystem uses database journaling techniques to maintain structural
consistency. This prevents damage to the filesystem when the system
is halted abnormally – an abnormal halt in an AIX system results in
loss of information in RAM, but does not damage the filesystem. You
can imagine the looks of horror I get from users of other types of Unix
when I nonchalantly turn off my AIX system – this can cause untold
damage to other types of Unix, requiring expert use of fsck (filesystem
check) and fsdb (filesystem debugger) to restore the system.

Every journaled filesystem resides on a separate logical volume. The
operating system mounts journaled filesystems during initialization
using information in the /etc/filesystems file. This multiple filesystem
configuration is useful for system management functions, such as
backup, restore, and dd, as it isolates part of the file tree to enable one
to work on it.

There are three types of journaled filesystem:

• Standard
This is the standard AIX Version 3 filesystem, with a maximum
filesystem size of 2 GB.

• Compressed
A compressed JFS has its data automatically compressed using
LZ compression before being written to disk. Data is automatically
expanded when read from disk.

• Large file enabled
This filesystem has a maximum size of 128 GB. This type of JFS
has been available since AIX Version 4.2.

NETWORKED FILE SYSTEM (NFS)

The Network File System (NFS) is a distributed filesystem that allows
users to access files and directories located on remote computers and
use them as if they were local. This allows users to issue operating
system commands to create, remove, read, write, and set file attributes
on remote files and directories.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 19

CD-ROM FILE SYSTEM (CDRFS)

The CD-ROM File System (CDRFS) allows users to access the
contents of a CD-ROM using normal filesystem interfaces, such as
open, read, and close. It’s a read-only local filesystem that uses the
AIX Logical File System (LFS) layer to support the following volume
and file structure formats:

• The ISO 9660:1988(E) standard
The CDRFS supports ISO 9660 level 3 interchange and level 1
implementation.

• The High Sierra Group specification
This predates the ISO 9660 standard and provides backward
compatibility with earlier CD-ROMs.

• The Rock Ridge Group Protocol
This specifies extensions to the ISO 9660 standard that are fully
compliant with ISO 9660 and provide full POSIX filesystem
semantics based on the System Use Sharing Protocol (SUSP) and
the Rock Ridge Interchange Protocol (RRIP), thus enabling users
to mount and access CD-ROMs in the same way as any other
Unix filesystem.

• The CD-ROM eXtended Architecture File Format
The CD-ROM eXtended Architecture (XA) format specifies
extensions to the ISO 9660 that are used in CD-ROM-based
multimedia applications, such as PhotoCD. AIX supports only
the Mode 2 Form 1 sector format.

PRACTICE

Enough theory. What implications do these various formats have
when it comes to creating and mounting filesystems? The standard
Unix command to make a filesystem is the appropriately named mkfs
(make filesystem). This command can be used to make only journaled
filesystems. The crfs command (create filesystem), on the other hand,
creates filesystems and stores information about them in the /etc/
filesystems file.

• Creating a standard JFS:

20 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

mkfs logical_volume

or

crfs -v jfs -p rw -d logical_volume -m mount_point -A yes
 -t no -a frag=4096 -a nbpi=4096 -a ag=8

• Creating a compressed JFS:

mkfs -ocompress=LZ,ag=8,frag=512,nbpi=512 logical_volume

or

crfs -v jfs -a compress=LZ -p rw -d logical_volume -m mount_point
 -A yes -t no -a frag=512 -a nbpi=512 -a ag=8

• Creating a large file-enabled JFS:

mkfs -obf=true,ag=64,nbpi=4096 logical_volume

or

crfs -v jfs -a bf=true -p rw -d logical_volume -m mount_point
 -A yes -t no -a -a nbpi=4096 -a ag=64

• Creating an NFS:

/usr/sbin/mknfsmnt -f mount_point -d remoteDirectory -h
 remoteHost -n -N -A -t rw -w bg -H -Y -Z -X

• Creating a CDRFS:

crfs -v cdrfs -p ro -d cd0 -m mount_point -A yes

The parameters -ocompress=LZ, -a compress=LZ, -obf=true, and
-a bf=true may be included depending on whether mkfs or crfs is
used to make either a compressed or large file-enabled JFS. So, what
are the ag, frag, and nbpi parameters?

ag specifies the allocation group size in megabytes. An allocation
group is a grouping of inodes and disk blocks, similar to Berkely
Software Distribution (BSD) cylinder groups. The default ag value is
eight. This option applies only to AIX Version 4.2 or later.

frag specifies the JFS fragment size in bytes. A filesystem fragment
is the smallest unit of disk storage that can be allocated to a file. The
default fragment size is 4,096 bytes.

nbpi specifies the number of bytes per inode (‘nbpi’). The nbpi is the

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 21

ratio of filesystem size in bytes to the total number of inodes. The
default nbpi value is 4,096 bytes. The values 32,768, 65,536, and
131,072 are available only to AIX Version 4.2 or later.

If these additional parameters seem unnecessary, then consider a
filesystem on a news server. Most articles are less than 1,024 bytes in
size, which means that three quarters of the filesystem is wasted. This
comes from the fact that the fragment size (4,096 bytes) minus size of
an average file (1,024 byes) leaves 3,072 wasted bytes per fragment.

Some limitations:

• Only JFS filesystems created with the default ag, bf, compress,
frag, and nbpi values and a size of less than 2 gigabytes are
recognized by an AIX Version 3.2 system. Furthermore,
filesystems created with an ag value greater than eight are not
recognized by AIX Version 4.1.

• The ag, bf, compress, frag, and nbpi attributes are set at
filesystem creation and cannot be changed after the filesystem is
created. The size attribute defines the minimum filesystem size
and cannot be decreased once the filesystem is created (a
workaround is presented in Decreasing filesystem size in AIX
Update Issue 31, page 3).

• The root filesystem (/) cannot be compressed.

As briefly mentioned in AIX large file support in the April 1998 issue
of AIX Update, the command dumpfs (dump filesystem) provides
information on the filesystem. The command:

dumpfs /dev/hd4 | pg

Produces the following output:

/dev/hd4:
magic 0x65872143 cpu type 0x0
file system type 0 file system version 1
file system size 32768 fragment size 4096
block size 4096 allocation grp size 2048 (frags)
inodes/allocation grp 4096 compress 0
file system name / volume name root
log device 0xa0003 log serial number 0x12
file system state 1 read only 0
last change Fri Apr 30 10:55:17 DFT 1998

22 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The command also produces some other information that experts can
use to debug a filesystem.

CONCLUSION

Don’t be overwhelmed by all the parameters available when creating
a filesystem – just use smit to obtain default parameters. It’s to its
credit that AIX supports as many options and alternatives as it does
when it comes to storing information in filesystems.

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 1998

RISC System Cluster Technology

This articles examines the RS/6000’s RISC System Cluster Technology,
discussing its features and benefits.

INTRODUCTION

They always say (whoever ‘they’ are is a question in its own right!)
that you shouldn’t start a discussion with an apology. However, before
too many people get upset, let’s just say that the contents of this article,
some of the opinions expressed in it, and my interpretation of them
may not necessarily be agreed upon by all readers. I would also like
to point out that the opinions expressed here are not in any way those
of IBM, but are mine alone (though they may, in places, coincide with
those of IBM, if an organization can be said to have an opinion).

Discussions of computing in general and the issue of increased
availability and clustering in particular can quickly become
unnecessarily complex, so I’ve assumed familiarity with common
IBM products to try and keep the discussion as simple as possible.
Anything which is not (at least in my opinion) common knowledge I
will try to highlight as I go along. There has to be a limit, however, at

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 23

which explanation for explanation’s sake offers no value, so if you get
lost along the way stick with it through the more complex stuff and it’ll
get back to reality sooner or later (I hope!).

The basic premise of this article is that we are on the threshold of a new
technology that brings with it a new set of benefits. Before you groan,
put your head in your hands, and complain that you’ve just got to grips
with the last lot of stuff IBM foisted on you, let me say that RISC
System Cluster technology offers the first real opportunity for lights-
out computing in a Unix environment. In my opinion this is neither
hype nor ‘vapourware’ – it’s a product you can see and touch. There’s
some work to be done in implementing this technology, but the
benefits are there to be had.

RISC SYSTEM CLUSTER TECHNOLOGY

HACMP (High Availability Cluster Multi Processing) for AIX is the
best selling and most widely installed Unix high availability and
clustering product around. The product is also highly rated by industry
consultants, such as DH Brown. So, if the product is so good, why
change it? The answer is that there are things that it either doesn’t do
or could do better.

Number one on this list is scalability. HACMP supports only up to
eight nodes per cluster. This is more than most – if not all – of its
competitors offer, but still falls short of the scaleability required by
some organizations, even if it meets the current needs of most users.
Note the ‘current’ – IBM predicts demand for larger and larger clusters
for delivering cost-effective processing power. Larger clusters means
more scaleability. The current limit is a historic rather than technical
limitation, so we need to remove it in order to move forward. It arises
from the mechanism used by the HACMP Cluster Manager for
‘heartbeating’. The bi-directional heartbeat mechanism requires each
node to check its two neighbours for life, and it’s one factor that limits
scaleability. Another limitation arises from broadcasting that occurs
when a failure is detected. As cluster size increases, more network
bandwidth is required by this. While network bandwidth is relatively
cheap these days, it’s still possible to improve the current mechanism.
So, at some point we need to change the heartbeat mechanism.

24 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Secondly, most industry studies that have investigated the causes of
outages and downtime have found software and user error to be much
more likely causes than hardware failure. The traditional HACMP
product is primarily designed to monitor hardware. It has no more
than a primitive ability to use AIX functions to monitor software.
While it is possible to enhance HACMP and AIX to provide more
comprehensive monitoring mechanisms, this demands a sound
knowledge of AIX and good programming skills. These skills are both
in short supply and expensive, so few organizations have invested in
putting software monitoring and management through HACMP into
practice. There are a few organizations with whom I have worked that
have implemented this, and their clusters really are something to
behold. However, if more organizations are to follow their lead, then
it makes sense for the vendor to offer a series of well-defined and
easily extensible mechanisms to allow the monitoring of software and
the automation of basic user functions.

A final reason for a new clustering technology is that IBM has a
plethora of clustering products that really ought to be unified. In the
AIX arena there are two major management products for clusters:
HACMP and PSSP (the system management product for RS/6000
SPs). In addition, there are workload management tools, such as
Loadleveler and Network Dispatcher/Interactive Session Support,
and other utilities, such as NetTape and RVSD to name but two. Each
of these offers its own features and benefits, in addition to which
people often prefer one function in one environment and a different
function in another, as long as functions are tailored to their own
environments. IBM would rather offer you a unified product, however,
as testing every product in every environment is impractical, expensive,
and makes it difficult to guarantee support. Additionally, a customer
buying a $50,000 system usually needs only part of its functionality,
and may not be able to afford the infrastructure required by components
designed for $5,000,000 systems.

However, what if the underlying infrastructure allowed anything to
work anywhere? This would provide benefits to both customers,
who’d be able to use the product they need, and vendors, who’d be
freed from the tyranny of supporting multiple products and
environments.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 25

THE UNDERLYING COMPONENTS

Let’s work through the list of components in a roundabout fashion.
HACMP doesn’t have a heartbeat mechanism that scales, so where
can we find a scalable heartbeat mechanism? The product that
provides this is Scalable POWERparallel (to give it its full name) or
SP. Actually it’s PSSP that provides the heartbeat mechanism, not the
SP hardware. SP scales to very large systems – the ‘largest’ systems
in the world (depending on your definition of ‘large’) are SP systems
comprising hundreds of nodes. Hence the SP heartbeat mechanism is
proven to scale well. The heartbeat component in PSSP is called
Topology Services, and has been present in PSSP releases for some
time.

Topology Services (or ‘HATS’ – High Availability Topology Services)
provides a unidirectional heartbeat mechanism. Nodes are installed in
a ‘heartbeat ring’ so that each node checks on its downstream
neighbour. This reduces the overhead of the mechanism compared to
its bi-directional equivalent in HACMP. Also included are functions,
such as source routing and reliable messaging (the ability to guarantee
delivery of a message to a cluster node provided there is at least one
network path to it), that are provided by Topology Services to create
a solid foundation on which to build a clustering architecture. The
downside of unidirectional heartbeat rings is that it generally takes
longer to discover failures than using bi-directional rings. However,
the added efficiency of HATS means that the difference is small for
small clusters (‘small’ still means clusters of more than eight nodes).
In larger clusters the difference is greater, though this is perhaps what
you’d expect of larger, more complex systems.

The layer above Topology Services is Group Services (HAGS), which
provides a mechanism for processes and subsystems to coordinate
activities, synchronize, and transfer data reliably. These services may
be provided to a set of interrelated processes belonging to the same
application or to processes from different applications. Processes that
wish to use Group Services facilities subscribe to a group. Group
members use voting protocols to coordinate their activities and
transfer state data to each other. While this article isn’t really about
what Group Services is or what services it provides, it is nevertheless
important to know that this component is a key part of the infrastructure.

26 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The final component of the underlying cluster infrastructure is Event
Management (HAEM). This component is the focus of this article and
I’ll discuss in detail both its facilities and the way in which its power
may be harnessed to drive automated recovery and automated
operations. Event Management includes a Resource Monitor that
provides information to its local Event Management daemon. Event
Management daemons pass information to one another using Group
Services, thereby providing a unified Event Management environment
that’s both consistent and cluster-wide, and also allows events to be
ordered in terms of when they occurred. An Event Management client
registers its interest in one or more events using a construct called a
‘predicate’. When the event occurs, and the conditions defined in the
predicate are met, the Event Management client is notified.

I hope these three key components – Topology Services, Group
Services, and Event Management – are familiar to users of SP
systems, as they’ve been part of PSSP for a while. Users of generic RS/
6000 systems may also be aware of them – as well as being parts of
PSSP, these components are also parts of something rather uncatchily
named ‘RISC System Cluster Technology’ (RSCT). Readers may also
have read about an IBM technology called ‘Phoenix’. This was far too
catchy a name for IBM, and was probably also trademarked to the hilt,
so Phoenix became RSCT. Note that early press releases mentioned
IBM’s intention to deliver Phoenix technology on platforms other
than RS/6000 SP systems – RSCT is the vehicle for this. It will become
the key enabling technology for both SP systems and generic RS
platforms, and is the first step in the process of merging PSSP and
HACMP.

Event Management provides facilities that dramatically extend the
ability of products such as HACMP to provide availability services.
With any computing system, results are only as good as the data that
is provided – the key data suppliers to Event Management are its
resource monitors. There are five or six resource monitors that are
supplied with the system to address the main monitoring requirements
of most systems. In addition, an API is available that makes it
relatively simple to create new resource monitors. Resource monitors
either monitor resources themselves or rely on other sources of data,
such as the Performance Toolbox (PTX) or the AIX error log. Rather

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 27

than looking at the whole spectrum of availability options, it is
probably best to concentrate on one or two key areas where the use of
Event Management either provides new functionality, such as a
simple mechanism for software monitoring, or allows a task to be
completed more simply than before, such as reacting to a new error log
entry. Throughout this discussion, it’s important to remember that, as
Event Management provides a single view of events throughout the
cluster, an Event Management client reacting to an event doesn’t have
to be physically on the node at which the event occurs.

Resource monitors supply information about the resources on a
system. A resource is an entity that provides a service either to users
or the system. For each attribute of a resource, the resource monitor
defines something called a ‘resource variable’. Thus a disk resource
might have a series of attributes, such as percentage of space used,
percentage of time busy, etc, in which we might be interested. As it’s
likely that there are many resources of a particular resource type in the
system, a mechanism is needed to differentiate between them. The
resource monitor does this by providing different instances of the
resource variable. So, if a cluster node has three disks, the disk
resource monitor would report three instances of the disk resource
variable for that node.

Reporting by the resource monitor to the Event Management subsystem
occurs at predefined times. This may be periodically, at configurable
intervals, or every time the measured attribute changes.

The Event Management client acts on information about the condition
of system resources. A condition in which an EM client is interested
is called a predicate; an EM client indicates that it wishes to be notified
when the state of a specific resource instance matches a certain
condition by registering a predicate for this particular resource variable
instance. The predicate is thus a condition that a resource variable
must meet in order to generate an event. More strictly, it is a relational
expression involving an instance of a resource variable and other
elements, such as constants and the value of the variable instance from
the previous observation. This predicate is applied to each instance of
the resource variable as it is observed. If the predicate is true, an event
is generated. Just to add to the fun (some might say complexity), more

28 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

than one predicate may be applied to any instance of the same resource
variable at the same observation.

A simple predicate might be X < 10, where X is a resource variable that
represents the percentage of free space in a file system. This predicate
generates an event whenever the file system’s free space is observed
to be less than 10%.

A predicate has to take one of the following forms:

expression rel_op constant

expression rel_op expression

predicate log_op predicate

unary_op predicate

unary_op expression

where:

expression:: var_name

 var_name arith_op constant

 var_name arith_op expression

var_name:: X

 X@var_name_mod

var_name_mod:: one of P, R, PR, sbs_sn, Psbs_sn

unary_op:: !

rel_op:: one of == != < > <= >=

log_op:: one of && ||

arith_op:: one of * / % + -

sbs_sn:: a structured field serial number

Operators have the same meaning and precedence, and parentheses
are used in the same way for grouping, as in C. Predicates use the letter
‘X’ to represent the resource variable name. The variable name may
be repeated in the predicate and may be in any one of its modified
forms.

Here are some examples of valid predicate definitions:

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 29

X == 0

The value of the resource variable instance is equal to zero.

X < 20 || X > 80

The value of the resource variable instance is less than 20 or greater
than 80.

!(X < 20 || X > 80)

The value of the resource variable instance is neither less than 20 nor
greater than 80.

X@R > X@PR

The current raw value of the variable instance is greater than the
previous observed raw value.

X >= X@P + 5

The current value of the variable instance is greater than or equal to
the value of the variable instance from its previous observation plus
five.

Having covered the concept of a predicate, we now need to apply it to
resource variables.

As stated before, a resource variable is associated with an attribute of
a system resource. It has a name, a value type, a data type, an instance
vector, and (optionally) a location.

The name of a resource variable is a string that consists of a resource
name followed by a resource attribute (using periods as separators).
There is a convention for naming resource variables in a hierarchical
fashion starting with the vendor that supplies the resource. Some
example resource variable names are:

IBM.PSSP.aixos.CPU.%user

IBM.PSSP.aixos.Mem.Kmem.inuse

IBM.PSSP.aixos.PagSp.%totalfree

IBM.PSSP.aixos.Disk.busy

As most resources in the system are not unique, the various instances
of a type of resource need unique identifiers to be referenceable. This

30 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

is provided by multiple instances of the resource variable. This means
that there needs to be a method of uniquely identifying each resource
and its associated variables. This is provided by an instance vector.
Each resource in the system is associated with one, and only one,
instance vector. An instance vector is a list of elements, where an
element is a name-value pair that allows unique identification.

The form of an instance vector is defined by the form of the resource
variable with which it is associated. The name of a vector element
must be unique within a given variable’s instance vector. These names
may be used in other instance vectors and may or may not have the
same form. In other words, the name space for instance vector element
names is local to each defined resource variable. Wildcards may be
used when referring to instance vector elements when the event that
is being monitored may occur at more than one location. The set of
values in the instance vector uniquely identify the resource in the
system. By extension, they also uniquely identify the resource variable
in the system.

Below are examples of PSSP resource variable names and instance
vectors.

Resource variable name Instance vector

IBM.PSSP.aixos.CPU.user NodeNum=5

IBM.PSSP.aixos.CPU.user NodeNum=3

IBM.PSSP.aixos.Disk.busy NodeNum=*;Name=hdisk0

IBM.PSSP.aixos.Disk.busy NodeNum=5;Name=hdisk1

IBM.PSSP.aixos.FS.%totused NodeNum=5;VG=rootvg;LV=hd4

IMPLICATIONS AND EXAMPLES FOR AVAILABILITY

HACMP is not normally responsible for monitoring processes.
However, Event Management allows it to take on this role with the aid
of a resource monitor that monitors processes. This provides two
Event Management resource variables:

IBM.PSSP.Prog.pcount

IBM.PSSP.Prog.xpcount

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 31

These two variables provide similar functions, so care should be taken
to ensure the correct one is used. IBM.PSSP.Prog.pcount is associated
with all processes that are running a program, regardless of how the
program was called. IBM.PSSP.Prog.xpcount, on the other hand, is
associated only with those processes that are running a specified
program as a result of calling an exec() routine. Typically, a process
runs a program by calling an exec() routine, specifying the program.
It’s possible, however, that a process is running a program after
inheriting it from its parent process, and not from calling an exec()
routine. Some daemons do this. For example, the ps output below
shows that only the process whose PID is 16706 called an exec()
routine to run the biod program. All other processes inherited biod
from their parent process – the process with PID 16706.

ps -ef | grep biod

root 15942 16706 0 Oct 12 - 0:16 /usr/sbin/biod 6

root 16706 2344 0 Oct 12 - 0:15 /usr/sbin/biod 6

root 16972 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6

root 17224 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6

root 17486 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6

root 17744 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6

Use IBM.PSSP.Prog.pcount to monitor processes that inherit programs,
and IBM.PSSP.Prog.xpcount to monitor processes that explicitly call
an exec() routine to run programs.

Using IBM.PSSP.Prog.pcount to monitor certain classes of program,
such as those that create child processes to run other programs, may
generate unwanted events. Consider inetd as an example. inetd’s
function is to spawn other daemons. When a service is requested of a
daemon it controls, inetd calls fork() to create a child process. The
child process starts out running the inetd program, but soon calls an
exec() routine to run the appropriate daemon, such as telnetd. Therefore,
for a brief period, more than one process is running the inetd program.
If IBM.PSSP.Prog.pcount is used to monitor inetd, events might be
generated showing these child processes running inetd during this
period. To avoid these ‘false’ events, it would be better to use
IBM.PSSP.Prog.xpcount.

32 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

As this example demonstrates, you need some knowledge of how a
program operates in order to decide the best way to monitor it. For
most cases, it is probably appropriate to use the .xpcount resource
variable to monitor programs. However, if the program to be monitored
is inherited by long-running processes that don’t call an exec()
routine, .pcount might be appropriate.

Both IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount have
instance vectors that specify the program name, the user name, and the
node number. Wildcards cannot be used to specify the ProgName and
UserName instance vector elements, but can be used to specify
NodeNum.

If you wish to monitor the inetd process on node 5, the instance vector
to use is:

ProgName=inetd;UserName=root;NodeNum=5

A change in the value of either IBM.PSSP.Prog.xpcount or
IBM.PSSP.Prog.pcount indicates that the number processes running
the program has changed. To determine whether the number has
increased or decreased, compare the current value of the process count
with the previous value. This comparison should be in the predicate,
generating different events if the number increases or decreases.

Suppose the event you’re monitoring is a change in the number of
processes running a program. The predicate for this event is:

X@0 != X@1

This doesn’t tell you whether new processes have started or existing
processes have stopped or died, only that the number of processes has
changed. If you wish to monitor for a reduction in the number of
processes (resulting from processes stopping or dying), the predicate
is:

X@0 < X@1

This is used to monitor a set of processes with the same name, such as
the biod daemon example above. If you’re monitoring process death
(when no processes run the program), the predicate tests that the
number of processes running the program equals zero:

X@0 == 0

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 33

This can also be used to monitor for the existence of a single important
process.

Both IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount are
designed to monitor programs that have long lifetimes. If they are
used to monitor programs that run for only a few seconds, they may
fail to detect them.

The choice of recovery action to handle the death of a process event
has to be made with care. While it may seem that the obvious course
of action is to restart the process, this can lead to further problems.
Consider the following examples:

• A resource is or becomes unavailable

In many situations, when a process fails it’s not because of a fault
in the process itself but as a result of a problem elsewhere in the
system. For instance, suppose a process logs activity to a file.
When the filesystem that contains the log file fills up, the process
is unable to log, and so abends. In this situation, restarting the
process has no effect whatsoever, as the process simply dies
again. Only by rectifying the underlying cause of the process’s
death can the process be restarted successfully.

• Controlled stop of a process versus process death

When a process is stopped in a controlled fashion it often
performs clean-up activities. If a process dies, no clean-up
occurs, and so an attempt to restart the process fails. Consider an
application that runs as a single process. When the application
runs, it stores its process ID in the file /tmp/app.PID. This file
exists to prevent multiple instances of the process from running
on the system at the same time. Should the application’s process
fail, an attempt to restart it will also fail as the file /tmp/app.PID
has not been deleted. This fools the start-up routine into thinking
that an instance of the application is already running on the
system. The only way to restart the application is by first
removing the remains of the previous instance of the application.

• Failure of one of a number of multiple interrelated processes

Many applications consist of multiple interrelated processes.

34 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Such processes often communicate by some proprietary
mechanism, such as using an area of shared memory. In such
instances, the uncoordinated restart of a single process from the
group may lead to additional problems. For instance, the newly
restarted process may simply be unable to communicate with the
ones from the original invocation of the application.

When running an application that consists of multiple processes,
you should always restart the entire application if one of its
constituent processes fails, rather than restarting just the failed
process (unless you’re sure that processes that comprise the
application may be restarted independently).

• Controlled process death

It is difficult for Event Management to differentiate between the
real failure of a process and a controlled stop, particularly if the
process is stopped legitimately by a qualified user. This requires
the recovery process to differentiate between the two. It’s annoying
for users to kill a process only to see it restart a few moments later.

This example shows how an action is taken in response to an event
about a software or (more correctly) process failure. This function was
not easily and reliably available before, and has been added through
RSCT. A range of other functions have also been added that, while not
actually new, are much simplified or extended.

Consider, for example, the way the system normally reacts to an event
that writes an entry to the AIX error log. Such events are mainly of
interest as a result of the fact that they’re used to monitor devices that
are not monitored by HACMP itself. To monitor the AIX error log you
create an error notification object. When an error is logged by a device
driver, the error logging process compares the error with the list of
objects in which you’re interested. If a match is found, an event is
generated. Anyone who’s ever tried to use error notification ‘in anger’
knows how much ‘fun’ it can be! RSCT makes this whole process
much easier.

Just as in the case of processes, there is a resource monitor that
monitors the error log. The Event Management resource variable used
for monitoring the AIX error log is:

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 35

IBM.PSSP.pm.errlog

IBM.PSSP.pm.errlog contains information from an entry written to
the AIX error log. The sole instance vector for the resource variable
is NodeNum. This specifies the number of the node on which the error
log that you wish to monitor resides. As in many other situations, the
NodeNum instance vector element may be ‘wildcarded’. The resource
variable’s value is a structured byte-string that contains strings of data
from the AIX error notification daemon.

If we wish to monitor the AIX error log on node 1 of the cluster, the
instance vector is:

NodeNum=1

A change in the value of an instance of IBM.PSSP.pm.Errlog indicates
that a new entry has been written to the error log(s) being monitored.
To monitor changes to the error log (which indicate new log entries)
use the predicate:

X@0 != X@P0

In other words, you’re interested in instances when the value of SBS
field serial number 0 (the sequence number of the error) is different
from its previous value. Each entry in the AIX error log has a sequence
number; these are assigned in increasing order.

Creating a condition with a predicate like this tells you that an error
has occurred and has been logged. It doesn’t tell you anything about
the importance of the error. To monitor the error log for a specific error
or set of errors, use a predicate similar to the one below.

X@0!=X@P0 && X@1=="0x476b351d"

In the above predicate, X@1 refers to SBS field serial number 1. This
is the error id associated with the error. In this case, 476B351D is the
error id for a TAPE_ERR2 error, which is a permanent failure of a tape
drive attached to the system. The above predicate could also have been
written in the form:

X@0!=X@P0 && X@8=="TAPE_ERR2"

Here X@8 is the field in the SBS that contains the error label. To
identify the error label or error id for a particular error, use the

36 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

command errpt -t (the error id for a failure is the first field and the
error label is the second field in the command’s output).

The action used to handle an error log entry event depends on such
factors as how critical the resource is within the system, and whether
recovery is possible (in which case you’ve got to decide where
recovery should take place). There are various generic actions that
may be taken, including:

• Restart the failed resource locally.

• Failover the resource to another local resource.

• Failover the resource to another cluster node.

Hopefully this example illustrates how RSCT dramatically improves
the availability of the system. Availability is not just about failure
handling, however – you also need good system management to
ensure that the system remains available.

IMPLICATIONS AND EXAMPLES FOR SYSTEMS MANAGEMENT

AIX provides many facilities, such as the Logical Volume Manager
and its dynamically pageable kernel, to reduce downtime arising from
system management. The function that a component such as HACMP
adds to this is the ability to maintain a service to end users while a
cluster node is down for maintenance, such as applying system fixes
or upgrading software and hardware. This improves system availability.
In effect this is like a controlled failure – a node goes down and its
workload is automatically moved to a surviving node so users can
continue working. When the maintenance process is complete, the
node can be reintegrated into the cluster, and its workload restored to
its original location. This process may be repeated on other cluster
nodes to allow maintenance of all systems.

It’s important to differentiate between the service provided by a node,
which can be provided by other cluster nodes, and that provided by the
cluster as a whole. Using HACMP, all high-availability services
provided by individual nodes may be moved to other nodes.

There are a number of areas still that need to be addressed in order to

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 37

improve availability and reduce administration. As computer systems
get larger and more complex they become increasingly hard to
manage. Clustering adds to this problem. Ten independent systems in
a network are significantly easier to manage than ten systems in a
cluster because of interdependencies between clustered systems.
Consequently, tools are needed to assist cluster management.

Another consideration is that mission-critical systems should have as
little reliance on external resources as possible. As much of the
necessary functionality should be on the local system as possible. This
allows swifter action to be taken in response to a failure, and also
increases the likelihood of corrective action working.

Consider the case of a component failure in a computer system and its
recovery. In the vast majority of cases, the system is significantly
faster than operators in detecting the failure of a component. The time
it takes for the system to detect a failure depends on how often the
component is used, sampled, or monitored for correct operation. The
time it takes for an operator to detect the same failure depends on a
complex set of factors, such as whether he or she is present when a
physical manifestation of the problem arises (a message on a console,
a warning light on a device, smoke billowing out of a component, etc)
and the tools that are available to assist in isolating an error, and is also
dependent on the skill of the operator in question. Even the most
skilled operator is potentially several orders of magnitude slower than
the system in detecting a failure. Until a problem is detected and the
failing component identified, no recovery action can take place.

When it comes to recovery from failure, the system again has an
advantage in terms of speed. This may not, however, be as important
as its advantage in being able to take correct action. My experience is
that skilled operators know what action to take and promptly start the
correct recovery procedure. But what if the operator is new to the job
or is unfamiliar with this particular system? What if this recovery
procedure hasn’t been invoked for several months or even years?
What if there isn’t a recovery procedure for this failure that has been
defined within the organization? In the worst case, an incorrect
recovery action could be invoked that actually causes more trouble
than the original problem! Whatever the situation, operators usually

38 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

take longer to recover from the failure. This is time when the system
is probably unavailable to run its production workload.

RSCT provides facilities to allow system conditions to be handled
automatically before they require maintenance. Administrators can
monitor trends in the state of various system components as they
change over time or against a pre-defined set of thresholds using
Event Management and an appropriate set of instance vectors and
predicates. This allows potential problems to be rectified before they
become critical and result in failure. The result is a perceptible
increase in availability as the recovery of non-critical problems is
usually quicker than the recovery of critical problems and failures.
While the system still needs to be taken off-line to perform certain
maintenance tasks, using RSCT reduces planned downtime.

HACMP and RSCT can be regarded as providing ‘system intelligence’.
Once configured, the facilities they provide mimic those of a skilled
operator who’s always on duty and never makes mistakes. This allows
the system to react swiftly to conditions as they arise, to select the
correct course of action to handle a particular event, and to run this
action in the most suitable way to maintain the availability of the
system. If the action itself fails, RSCT can even determine a secondary
approach to handle the condition and use that instead.

To illustrate the power of Event Management in automating system
operations, consider the following two examples of the automation of
common tasks. One of the most common and easily avoidable causes
of outages on Unix and other systems is a failure to perform periodic
housekeeping, resulting in filesystems becoming full. While many
sites implement cron jobs to manage filesystems, if cron runs at night
and the critical filesystem becomes full during the day, you have a
problem on your hands. However, you can use Event Management to
automate disk space management. In an AIX environment the main
critical filesystems are likely to be /, /var, and /tmp. Filesystem space
can be monitored using the resource variable:

IBM.PSSP.aixos.FS.%totused

The typical instance vectors for monitoring filesystems across a
cluster are:

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 39

NodeNum=*;LV=hd4;VG=rootvg

NodeNum=*;LV=hd9var;VG=rootvg

NodeNum=*;LV=hd3;VG=rootvg

A typical predicate for the ‘approaching full’ condition is:

X>90

When this evaluates to true, an event is generated and an automatic
action can be taken to free up filesystem space.

Another common problem with heavily loaded and badly configured
systems is paging space running out. As AIX uses virtual memory, it
relies on correctly functioning paging space(s). If paging space runs
low, processes may fail. If paging space runs out, the system may fail.
The system monitors the number of free paging space blocks and can
detect a shortage. When the number of free blocks falls below a
threshold known as the ‘paging space warning level’, the system
informs all processes (excepts kprocs) of the condition by sending a
SIGDANGER signal. If the shortage continues and falls below a
second threshold known as the ‘paging space kill level’, the system
sends a SIGKILL signal to alert processes that don’t have a signal
handler for SIGDANGER (the default action is to ignore SIGDANGER).
The system continues sending SIGKILL signals until the number of
free paging space blocks is above the paging space kill level. If you
don’t wish to kill processes in this fashion because they don’t handle
SIGDANGER appropriately, then you need a warning mechanism.
This may be implemented using the following Event Management
resource variable:

IBM.PSSP.aixos.PagSp.totalfree

By default, SIGDANGER is first sent when the number of free paging
space pages falls below 512, though this may be changed using
vmtune. The predicate for the resource variable thus needs to be
triggered before this limit is reached, for example using:

X<600

While proper capacity planning should ensure that this event does not
occur, additional paging space could be automatically added or other
action taken to restrict the heaviest users of page space if it does.

40 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CONCLUSION

I hope these simple examples show you something of the power of
RSCT and its ability to enhance availability and automate system
management. While IBM has been at the forefront of clustering
technology, it hasn’t always backed this up with products for managing
clusters. Given the current focus on clustering that’s resulted from
Microsoft’s Wolfpack (which has still to live up to its promises), the
industry seems to have woken up to the reality of clustering. Perhaps
now RSCT will get the attention it deserves.

John Easton
IBM (UK) © Xephon 1998

SMP’s SystemGuard and Fast IPL

I consider myself a Unix professional with good AIX skills.
Nevertheless there are still many things that I haven’t come across and
that still trip me up – no matter how much you know about a system
of the complexity of AIX, there are always things left to learn. Here’s
something that I learned about the hard way and would like to share
with you.

While working at an AIX site recently, I was more than a little
surprised at having to wait almost ten minutes for a model 7012 G to
boot. After using info to investigate why this might be the case and
finding nothing special, I asked around and looked at the Operators
Guide. Here’s what I discovered about the lengthy boot process (or,
as IBM calls it, IPL or Initial Program Load) when using RS/6000s
with symmetric multiprocessors.

SYSTEMGUARD

IBM’s Symmetric MultiProcessor (SMP) products are designed to be
used as servers in commercial environments. The availability of these
servers and their resources is very important. Given that such servers

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 41

often operate unattended or in remote locations, remote diagnostics
and services are key components.

IBM’s family of SMP servers all have a service processor, called the
SystemGuard, that continually monitors the system’s hardware and
operating system. If, for example, a CPU were to fail, the system
would detect this, reboot itself automatically, and run without the
failed CPU.

The main features of the SystemGuard are:

• Initialization of process flow management.

• Local and remote system control (power-on/off, diagnostics,
reconfiguration, maintenance).

• Console mirroring to make remote actions visible and controllable
by the customer.

• Run-time surveillance.

POWER-ON TESTS (PON)

PON is run by SystemGuard whenever the system is powered on.
PON comprises two types of test:

• Tests of the processor, cache, memory, and related hardware.
These test, understandably, cannot be turned off.

• Tests of other system resources. These other tests can be turned
off by setting the ‘Fast IPL’ flag.

HOW TO SET FAST IPL

If the Fast IPL flag is enabled, SystemGuard skips the Power-On Self
Test (POST). By default, the Fast IPL flag is disabled. Furthermore,
if you enable it remains enabled for one reboot and is then automatically
disabled by the system.

There are three ways to enable Fast IPL: through the Stand-By Menu
in Stand-By mode, through the Maintenance Menu, or by using AIX
commands.

42 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Setting Fast IPL from the Stand-By menu

1 Set the System Key to Service.

2 Enter the Stand-By menu with the command sbb.

3 Enter ‘1’ to select Set Flags.

4 Enter ‘6’ to set the Fast IPL flag.

Setting Fast IPL from the Maintenance menu

1 Enter the Maintenance menu.

2 Enter ‘8’ to select the SET PARAMETERS menu.

3 Enter ‘4’ from the SET PARAMETERS menu to select the
MISCELLANEOUS PARAMETERS menu.

4 Enter ‘3’ to enable the Fast IPL flag.

Setting Fast IPL from an AIX command prompt

1 Log into AIX as a root user.

2 Type mpcfg -df to find the index of the Fast IPL flag and see its
current value.

3 The index number should be 11 and the current value should be
zero (by default).

4 Type mpcfg -cf 11 1 to change the status of the Fast IPL flag to
enabled. ‘c’ is for ‘change’, ‘f’ is for ‘flags ‘11’ is the index, and
‘1’ the value itself’.

Fast IPL is now enabled and will last one reboot. Reboot the system
with reboot or nicer, or shutdown with shutdown -Fr. You’ll find the
time it takes to reboot the system is reduced from more then ten
minutes to only one or two.

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 1998

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 43

Contributing to AIX Update

AIX Update is primarily written by practising AIX specialists
in user organizations – not journalists, or consultants, or
marketing people. In our view, the information and advice
provided by such people – people like you and your colleagues
– are far more valuable to their fellow professionals than the
alternatives available from other sources.

We don’t expect you to write an original article from scratch –
just send us listings or specifications of any relevant programs,
utilities, scripts, user modifications, or other code that might be
of use to other installations, with a short explanation of why it
was developed and what it does. And most IS departments
produce a great many internal technical reports and other
documents, many of which can easily be adapted for publication.
Xephon’s editorial staff will transform even the most informal
listing or document into a polished article fit for publication.
So you don’t have to spend any time on reformatting or
rewriting your contribution – just send it as it is and we’ll do the
rest.

Contributors aren’t just helping their fellow professionals –
they also receive a significant material reward themselves. We
pay good rates for the articles we publish: $250 (£170) per 1000
words if we get copyright, and $140 (£90) per 100 lines of code.

A copy of Notes for contributors can be downloaded from
Xephon’s Web site at www.xephon.com. Articles for submission
to AIX Update can be sent to the editor, Harry Lewis, at
HarryLewis@compuserve.com.

IBM has announced AIX Version 4.3.1,
offering greater scalability, extended
support for standards, and conformance to
the Open Group’s Unix98 specification. It
also includes the first full release of Web-
based System Manager and eNetwork
LDAP Directory Version 1.1.1.

The Web-based System Manager is for
managing AIX systems from anywhere, and
includes management tools for devices, print
queues, communications, file systems,
logical volumes, back-ups, users and groups,
processes, and subsystems.

The eNetwork LDAP directory is based on
LDAP Version 2 plus some extensions for
Version 3, using DB2 as the directory data
storage facility.

System performance has been improved
with streamlined JFS locking, Java
performance is claimed to have improved by
up to 40% using new versions of the Java
toolkit (1.1.4) and the JIT compiler, there’s
also improved DES and CDMF encryption
and decryption algorithms, and an optional
fork interface primarily for use by
applications such as Web servers.

AIX 4.3.1 now supports a maximum of
32,767 open files per process, one million
open files per system, 32,767 threads per
process, and 2GB shared or mapped files.

The product is shipping now and there won’t
be any changes to current pricing.

IBM also announced Version 3.2 of its
eNetwork Firewall for AIX, which combines
application proxies, ‘Socks’ circuit gateway,
and filtering architectures that work together
to provide more flexibility than a single
firewall architecture product.

It includes Socks v5 security protocol
standard, which supports User Datagram
Protocol (UDP) applications such as
net.meeting, RealAudio, and RealVideo. It
also provides real-time performance
statistics by both application and user-id, and
outbound authentication. Some of the
facilities come via Aventail.

Also new is Security Dynamics ACE/Server
software and two SecurID tokens for two-
factor user authentication. There’s also
support for eight translated languages,
including French, Japanese, Korean, and
Chinese.

Out now, it costs US$2,499 for a 25-user
licence.

For further details contact your local IBM
representative.

* * *

Bull has begun shipping an enhanced Escala
family of AIX clusters, including its first 64-
bit model, and Web-based tools for
simplified administration and management
of both production and OLTP-intensive
applications. Prices start at US$30,000.

AIX news

x xephon

	Performance management and measurement
	AIX filesystems
	RISC System Cluster Technology
	SMP’s SystemGuard and Fast IPL
	Contributing to AIX Update
	AIX news

