
© Xephon plc 1998

August 1998

34

3 I/O pacing
7 Securing and optimizing AIX’s root

user
17 Date and time manipulation
33 The benefits of 64-bit computing
46 Disk management
47 Getting rid of verbose error

messages
47 How to fsck the root filesystem
48 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 1998. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: HarryLewis@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75067
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £175.00
in the UK; $265.00 in the USA and Canada;
£181.00 in Europe; £187.00 in Australasia
and Japan; and £185.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £15.00 ($22.50) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com
(you’ll need the user-id shown on your ad-
dress label to access it).

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 3

I/O pacing

I/O pacing is best described as a black art. While some system
administrators hide at the mere mention of its name, others regard it
as the best thing since sliced bread.

I/O pacing is used to solve (or, occasionally, make worse) a specific
type of problem. Processes that are very I/O intensive and generate a
large amount of disk I/O can seriously affect the response time of less
I/O-intensive processes. Large I/O jobs can create megabyte-sized
FIFO queues, to the end of which jobs with modest I/O requirements
must add their requests. This is the problem that I/O pacing tackles –
the blocking of I/O by a few rogue processes. I/O pacing attempts to
regulate the amount of disk I/O that a single process can ‘push’ onto
the I/O queue.

Note the two qualifying terms above: ‘or make worse’ and ‘attempts
to regulate’. I/O pacing isn’t always the best solution. While it can
easily make performance worse for I/O-intensive processes, it can
also degrade the performance of less I/O-intensive jobs.

I/O pacing works by enforcing high and low ‘water marks’. A process
can ‘pump’ I/O until the amount of pending I/O reaches the high water
mark. The process must then wait for pending I/O to be de-staged to
disk. Once the amount of pending I/O reaches the low water mark, the
process can pump more I/O. The benefit of this approach is that other
processes are able to send and receive I/O while the offending process
sleeps.

The simplest thing about I/O pacing is the actual mechanics of setting
high and low water marks – from smit choose System Environments
then Change/Show Characteristics of Operating System. There you’ll
find High Water Mark and Low Water Mark fields. Note that setting
both the high and low water marks to 0 effectively disables I/O pacing.

Choosing the best values for high and low water marks is where the
problem lies. There are no hard-and-fast rules that govern these
settings. Experimentation is the only method by which they can be
established. It’s also worth bearing in mind that the optimum values

4 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

of water marks on one system are almost inevitably different (often
very different) from the optimum values on another, making it
difficult to configure systems using the same or similar settings. Why
are these settings so different on different systems? It’s simply a
matter of I/O patterns – different boxes are laid out differently, they
have different throughputs, different processes running at different
times, and differ in numerous other ways that affect I/O. In fact, the
I/O pattern on your system today may be completely different from
that in six months’ time. So, to refine my comment above, continuous
experimentation is the only method of establishing water marks.

To show the effect of I/O pacing, I set up a simple test. Given that a
large cp is very I/O intensive, I copy a large file from one disk to
another. While cp is running, ls is run on the cp destination directory.
ls is run in a continuous loop, with a five-second gap between
iterations, and is timed. By examining the time required to run ls we
can see the effect that the large cp has on it. The test program is:

/usr/bin/timex 2> cptime cp /test/bigfile /disk2/test &
while true
do
/usr/bin/timex 2> dummy ls -l /disk2/test
cat dummy >> lstime
sleep 5
done

Note that the above program also times the cp command. While I/O
pacing may improve the time it takes to execute a process that incurs
only a light I/O load (ls in this case), in so doing it may have an adverse
effect on the execution of a process that incurs a heavy I/O load (cp
in this case). To measure the effect of I/O pacing, I run the test program
and pick out the ten worst timings of the ls command. Getting the
average of the ten worst timings gives a good indication of how the
heavy I/O load affects ls. Running the test program with different high
and low water marks shows the effect of I/O pacing on both processes.

THE RESULTS
 (Average of ten worst results)

 High Water Low Water ls Time cp Time

 0 0 0.609 165.44

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 5

 High Water Low Water ls Time cp Time

 20 10 2.023 293.17

 40 10 4.022 301.40

 60 10 0.063 199.36

 60 30 0.130 192.48

 60 50 0.148 179.20

When examining the above figures, bear in mind that the response
times are averages, which has the result of masking some very poor
results – in one case (using a high/low water mark of 40/10), ls’s worst
response time was nearly 19 seconds. The best way to examine these
results is by means of charts – see Figures 1 to 4.

Figure 1: Effect of increasing high water mark on ls

Figure 2: Effect of increasing high water mark on cp

0-10 20-10 40-10 60-10
0.0

1.0

2.0

3.0

4.0

5.0

R
es

po
ns

e
tim

e

High-low water mark

Response time (ls)

0-10 20-10 40-10 60-10
0

125

250

375

500

R
es

po
ns

e
tim

e

High-low water mark

Response time (cp)

6 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Figure 3: Effect of increasing low water mark on ls

Figure 4: Effect of increasing low water mark on cp

INTERPRETING THE RESULTS

The optimum setting in the above example is a high water mark of 60
and a low water mark of 10. Using these settings, the response time of
both the cp and ls commands are near their lowest values.

Notice that, as the high water mark increases, so does ls’s response
time. The reason for this is that cp is now allowed more pending I/O,
which blocks ls’s I/O. However, this changes dramatically at high/low
water mark values of 60/10, at which point ls’s response time
decreases dramatically. I/O from cp is allowed to build up for a long
period (thus cp is faster), but must wait longer to de-stage to the low

60-10 60-30 60-50
0.00

0.05

0.10

0.15

0.20

R
es

po
ns

e
tim

e

High-low water mark

Response time (ls)

60-10 60-30 60-50
0

75

150

225

300

R
es

po
ns

e
tim

e

High-low water mark

Response time (cp)

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 7

water mark, which allows more time for ls’s I/O. In effect both
processes run faster.

Increasing the low water mark has a negative effect on ls (its response
time increases) while having a positive effect on cp (lower response
time). As the low water mark increases, the cp process has to sleep less
– it doesn’t have to wait as long for pending I/O to reach the low water
mark.

In my opinion, 60/10 is the optimum value in this example. However,
there are others who would claim that the optimum value is 0/0, as this
allows cp to run fastest – as long as you don’t care about the time it
takes to run other processes’ ls. Others would consider that 60/10 is the
best value as this is the value that allows ls to run the fastest, regardless
of whether it also works for cp.

What you find to be the optimum value depends on the type of I/O you
want to favour. Is the performance of I/O-intensive processes more
important than that of small jobs, or is the opposite the case? Do you
want to achieve a balance between heavy and light I/O processes?
Each system administrator must make this decision when determining
how to tune I/O at their installation.

John McAvoy (Ireland) © Xephon 1998

Securing and optimizing AIX’s root user

INTRODUCTION

One of the most common problems with Unix installations, including
ones running AIX, is the fact that the almighty root user cannot be
restricted in the same way as is possible with some other operating
systems. For instance, MVS administrators can use RACF to define
a ‘special user’ that has only selected privileges. However, there are
certain precautions that every administrator can take in order to secure
the root account from accidental or malicious misuse.

8 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CHARACTERISTICS OF THE ROOT USER

The root user (or, to be precise, the user that has userid zero) is an
architectural limitation to the security of every implementation of
Unix, including AIX. The existence of root makes it difficult to
implement Unix with the same level of security as we’ve become
accustomed to on mainframes and a number of other platforms. On the
one hand, everybody knows that the root account should be used
exclusively for special tasks that require permissions available only to
the root user. On the other hand, when you work with Unix on a day-
to-day basis, you get accustomed to the fact that an administrator
needs to work with root almost all of the time. In addition, it’s not just
Unix administration that requires permissions available only to root
– some applications and infrastructure services, such as a name server
or Web server, often can be run and managed only by root.

USING PERSONAL ACCOUNTS

An easy first step is to convince users to use only personal accounts
(like ‘mabel’, for ‘Michael Abel’) to logon, instead of logging on
using common IDs, such as root. As users become accustomed to
logging on using their own accounts, it becomes easier to restrict the
use of the root account. If a user really needs to work with root
privileges, he or she can use the su (‘switch user’) command. A simple
way to force people to use personal accounts is to restrict direct access
to root.

We recommend that you change and verify the following attribute of
root in order to force people to login with their personal IDs:

chuser -a login=true root

This is a precaution to ensure that the default setting that allows root
to logon at the system console has not been changed. Once this is set
you can switch off all other ways to logon as root. This measure is most
effective in organizations where systems are located in a special area
to which access is controlled either by key or a badge reader.

chuser -a rlogin=false root

This makes it impossible to logon as root using rlogin or telnet
commands over the network. It also disables logons over the LAN

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 9

using CDE or XDM, ensuring that you have to logon using your
personal account instead.

chuser -a su=true

This ensures that users can use su to assume the identity of the root
user. In other words, users logon using their personal accounts and
then use the command su -password (where password is root’s
password) to become root.

chuser -a sugroups=aixperts

This last command ensures that only members of a designated group
(‘aixperts’ in this example) can use the su command to access the root
account (which also requires them to know root’s password). It’s
possible to list more than one group in the above command (for
instance ‘aixperts, senioradms, operators’) in order to provide the
privilege to members of the listed groups.

Changing these four root account settings implements our policy of
restricting direct access to the root user. Once these measures are in
place, only members of a special group are allowed to access root by
first logging in with their personal ID and password and then switching
to root. During the su operation the user has to type in the root
password, which means that access to the system is secured firstly by
the user’s own password and then by the root account’s password.

FURTHER RESTRICTING ROOT ACCESS

Systems that require even stricter access control to the root account
may still use the procedure detailed above if they modify it in the
following way, which adds a few more restrictions to the operations
that may be carried out with su to get root permissions.

As indicated above, access to the root account is restricted to users that
are able to issue the su command, which means that one has to be a
member of a special group to access root. In addition the user also has
to know the root password, as this has to be typed in during the su
operation.

Now, to tighten control even more we create a special user who’s
responsible for security administration and is able to use only three

10 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

commands (the commands are implemented as shell scripts using the
sudo command, as described below):

lsadmin

mkadmin

rmadmin

These commands are used to display or change settings that control
whether a user is permitted to use the su command to access the root
account. In our example lsadmin lists all members of the group
‘aixperts’, mkadmin adds a user to this group, and rmadmin removes
a user from this group. Using this set of commands allows the security
administrator to control which users are allowed root permissions.
The scripts may be implemented as front-ends to AIX commands that
manage users and groups (or, to be precise, the membership of
groups).

In reality this means that even an administrator who knows the root
password can’t always access the root account on a mission-critical
system – the administrator first has to obtain this authority from the
security administrator, who is able to collect information about
systems on which root permissions have being granted and the
purpose for which they are granted. Once this information is
documented, he can then open a root account for the administrator.

Using this technique allows us to distinguish between production
systems, where it is desirable to reduce changes to a minimum, and
‘non-critical’ systems, such as those undergoing installation and
customization, on which root is used heavily and doesn’t need to be
controlled by security administration.

USING SUDO (SUPERUSER DO)

Unix, including AIX, provides the suid (‘set userid’) command that
allows programs to be executed with root privileges even when they
are started by a user logged on using a normal account. An example
of this is the passwd binary, which is used to change the user
passwords and has a suid bit set, as demonstrated by the following
exchange:

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 11

which passwd

/usr/bin/passwd

ls -l /usr/bin/passwd

-r-sr-xr-x 1 root security 11846 Feb 06 1998 /usr/bin/passwd

So, when a regular user such as mabel uses the passwd command, the
command runs under the effective userid of the owner of the program
(root). This is necessary because the file that contains mabel’s
password (/etc/security/passwd on AIX systems) may be written to
only by root. The suid trick is also used for printing and some
administrative commands – in each instance, the user that starts the
command gets more permissions because the effective userid is
switched to the owner of the program that’s executing.

sudo, a freeware utility, extends the scope of the ‘suid trick’ by
allowing programs that don’t have the suid bit set to run with root
privileges. Instead of directly calling the command the user wants to
execute, the user issues the sudo command followed by the actual
command. During execution, sudo first checks the file /etc/sudoers to
establish whether the user is allowed to execute the program. Next
sudo creates a process that runs with root authority, which it uses to
‘exec’ the command the user actually wants to run.

Let’s implement a sudo-based solution to the problem of allowing
users that don’t have access to the root password to shut down the
system. In the control file /etc/sudoers, which is created when sudo is
installed, we add the following lines:

sudoers file.
#
This file MUST be edited with the 'visudo' command as root.
#
See the man page for details on how to write a sudoers file.
#

Host alias specification
Host_Alias MYHOSTS=host1, host2, host3

User alias specification
User_Alias MYGROUP=mabel

Cmnd alias specification
Cmnd_Alias MYCMDS=/etc/shutdown

12 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

User privilege specification
root ALL=ALL
MYGROUP MYHOSTS=MYCMDS

If the user mabel tries to issue the shutdown command below, he or
she will receive an error message.

shutdown -F

As this program has no execute permission for mabel, the shell won’t
start it. However, using sudo to start the program, mabel is able to run
the program with root permissions and shut down the system:

sudo /etc/shutdown

We trust you have received the usual lecture from the local
System Administrator. It usually boils down to these two things:

 #1) Respect the privacy of others.

 #2) Think before you type.

Password:

As you can see in the above example, sudo issues a warning message
and requires the user’s password (though not root’s password) to be
typed in.

I find that sudo is a good tool for systems where only a small number
of commands and scripts have to be run with root permission by a
group of people who have only normal accounts. Groups like operators,
security administrators (see above), and users who operate printers,
work as part-time administrator, etc are good examples of those
whose need to run some programs with root permission may be
handled with sudo.

You may be interested to know that sudo is distributed as source code,
which means that it may be easily tailored in many ways to suit your
installation. For a quick solution point your browser to http://
www.bull.de/pub/ (note the trailing forward slash), which is an excellent
source of pre-compiled and pre-configured shareware tools for AIX
4.x. All tools are packed in installp format – just download, decompress,
and use smit to install them. Another freeware archive is available at
ftp://aixpdslib.seas.ucla.edu. Further tips and tricks are also available
on our Web site at http://www.resnova.de.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 13

USING SPECIAL GROUPS

Another strategy for avoiding unnecessary use of the root account is
to use the pre-defined groups that are available in AIX. As a member
of these groups, a non-root user is capable of actions normally limited
to root. Let’s take printing as an example. Every user is allowed to use
the command qprt to start a print job. Every user is also able to use
the qchk command to obtain the job number of their print job(s), so
they can use the command below to cancel them, if required.

qcan -x JOBNUMBER

But what if you’d like to create a ‘printer administrator’ who’s able to
cancel print jobs belonging to other users and is also able to start and
stop print queues? The two solutions to this problem are to let the print
administrator use the root account and to make your print administrator
a member of the printq group.

Being a member of printq enables normal users to act as system
administrators with respect to all tasks that involve printers, print
queues, and print jobs. This is a good solution to the problem of
providing designated users with enough authority to allow them to
carry out day-to-day print operations without having to provide them
with the root password.

Other examples of special groups available in AIX are security (which
covers some aspects of user administration) and system (which allows
designated users to mount CD-ROMs). One drawback should be
mentioned: these groups grant their members access to all objects of
the same type, so that, for instance, print operators have access to all
printers – there is no way to restrict permission to a subset of printers.
Thus a printer administrator who’s a member of printq is able to cancel
any print job on any queue in the entire system. The ability to have a
printer administrator for each printer is not yet implemented on AIX,
though some third-party print management software products have
implemented this facility.

ADMINISTRATIVE ROLES

To quote from the appropriate AIX manual: “roles consist of
authorizations that allow a user to execute functions normally requiring

14 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

root user permission”. This is what we’re talking about, isn’t it?
Starting with AIX 4.2.1, IBM now provides some pre-defined roles
that may be used to delegate root user permissions to other users. Here
is a list of the roles that are available:

• Manage all or basis users

• Manage all or basis users passwords

• Manage roles

• Manage backup and restore

• Manage shutdown.

A user may assume one or more of these roles in order to perform
functions related to the role. Roles allow administrators to delegate
authority to normal users to allow them to carry out a number of
administrative roles, as discussed above, without using either special
groups or sudo.

There are currently two limitations of roles of which you should be
aware: administrative roles are only available on AIX 4.2.1 (and
higher) and administrative roles are implemented in AIX commands
themselves, which means that there is no way to make other commands
‘role-enabled’ (by contrast, sudo works with every binary command
and shell script executable). The first restriction is (at the moment) one
that has to be taken seriously – there are numerous installations around
that are still using AIX 4.1 (or even AIX 3), even though they may have
already rolled out a number of AIX 4.2 or 4.3 systems. We recommend
you implement a solution that is applicable to all AIX systems used in
the installation, otherwise you’ll encounter compatibility problems
later on.

TIPS AND TRICKS

A filesystem for root

When you install AIX, the home directory of the root user is by default
the system’s root directory. On many systems this can cause two
possible problems.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 15

The first problem is that using tools like smit when you’re logged on
as root results in many large log files in root’s home directory. Since
AIX requires a certain amount of free space in the root filesystem (for
instance, during reboot), it’s a good idea to keep root’s private data
separate from system areas. Implementing a separate home directory
for root avoids this problem, which could result in the AIX system
halting unexpectedly during a system boot as a result of the root
filesystem being full.

The second problem is that no-one is as perfect as they would like to
be. Even experienced administrators may accidentally issue the
command rm -fr * . If the user is working in their private home
directory, this results in the deletion only of private data. However, if
the user is logged on as root and is working in the root directory, this
error results in disaster.

To avoid these two problems I recommend that you set up a separate
filesystem for root, for instance by creating /home/root. This ensures
that every problem caused by root is local to the new filesystem and
does not result in problems either for other users or for the system
itself. Below is a step-by-step guide of how to do this.

1 Set up a new filesystem and mount it:

crfs -v jfs -g rootvg -a size=15000 -m /home/root -A yes

mount /home/root

2 Copy existing ‘root-dot’ files to the new filesystem:

cd /home/root

cp /.* .

3 Change root’s user attributes:

chuser home=/home/root root

Verify your changes by looking at /etc/passwd and then try to login
with the modified account. Check with pwd to ensure that /home/root
is your new working directory and verify that the environment is set
up correctly (for instance, check the PATH variable to ensure that it’s
right).

16 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Creating an emergency root user

If people start to avoid logging on as the root user as a result of
measures you’ve taken, there is a danger that at some time access may
be needed to the root account and there is no-one around who knows
root’s password. In such an instance (and to cater for other emergencies
in which the root account may not be available) I recommend that you
have a second root account ready.

The problem is that neither smit nor the mkuser command can be
used to create an account that has root’s userid (0). The easiest way
around this is to edit the /etc/passwd file, copy the line that contains
the root definition, and paste it back into the file, so it contains two
copies of the line. Change the name of the duplicate account and
change its home directory to ‘/’ (in case the /home/root filesystem is
not available).

Here is an example of what /etc/passwd should look like after the
necessary changes:

root:!:0:0:Superuser:/home/root:/bin/ksh

helpme:!:0:0:Superuser emergency account:/:/bin/ksh

I’ve called the duplicate root account helpme, but feel free to name it
as you like. Many of our customers use an abbreviation of the
company’s name (for instance, rncroot for res nova consult) for the
emergency root user.

After creating the account, we give it a password that’s hard to
remember and test the login. A copy of the password is then kept in a
safe location (security guards can help here; also consider keeping the
password where emergency keys are stored). If anyone needs immediate
access to a system at any time and the normal root account is not
accessible, one may rely on that back-up login.

Michael Abel
res nova Unternehmensberatung GmbH (Germany) © Xephon 1998

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 17

Date and time manipulation

This month’s instalment concludes this article on date and time
manipulation using calcdate_diff and calcdate_time. The first part
of this article appeared in last month’s issue.

EXAMPLES OF IMPLEMENTING THE SCRIPTS

Batch milestone checks

I’ll begin by looking at one of the utilities designed to monitor
overnight batch jobs. At our site, we have a schedule of overnight
batch jobs that runs every night from Monday to Friday. The timing
of this schedule is very important as any problems would have a major
impact on our business. The batch work needs to be monitored as it
progresses, and must reach certain ‘milestones’ before set times. We
have a monitoring system that sends an alert message to the
administrator on call if any milestones are reached later than expected.
Monitoring these events is crucial to keeping batch jobs on schedule.

However, a number of designated users can vary the range, depth, and
policy of overnight batch processing work. As a result, the exact
timing and duration of batch jobs is neither constant nor under the
direct control of administrators, and this places even more emphasis
on the need to monitor the activity and timing of overnight batch work.

We noticed that problems arise during the year in the run-up to
‘period-ends’ (month-ends, year-ends, etc) when batch work takes
longer to complete. When this happens, certain milestones in our
overnight batch work fall behind schedule, which results in the pager
alert system being invoked. This, in turn, results in the administrator
on call being disturbed and signing onto the system only to find
everything running fine but behind schedule. To allow for this we
decided to keep an eye on overnight batch work and to make schedules
flexible so they can adapt to increased execution time resulting from
additional work.

18 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The utilities below were set in place to produce a daily report of
milestone events. This report quickly shows if any processes are
beginning to take longer to complete. The main utility calculates the
interval between milestone events using the calcdate_diff and
calcdate_time scripts.

Our overnight batch work produces a set of nine files that are used for
timing milestones (the files are used to calculate the elapsed time
between successive stages of the batch process). The script uses the
time stamp generated by the ls -l command to determine timings.
Although our implementation also uses information from within the
files themselves, it nevertheless provides a workable example of how
to use calcdate_diff and calcdate_time for the purpose of this article.

The nine files are produced as a result of certain events during the
batch run and must be on the system by the scheduled completion time
(the files are automatically deleted before each run to ensure that the
previous run’s files aren’t accidentally used). To give you an idea of
what’s in the files, the first one contains a time stamp from the
beginning of the run and the last one contains the time from the end
of the run. The files are called build_start, build_1.fin, build_2.fin,
through to build_8.fin (the last file produced each night). The script
listed below produces a delimited text file showing the number of
minutes between the creation time of each of the files on the system,
eg:

Key, Date, Build_1.fin, Build_2.fin....,Build_8.fin
k98001,01/01/1998,120,42....,112
k98002,02/01/1998,120,43....,112
etc

You may be interested in knowing that this file is in the same format
as described in my article on monitoring system performance
(Monitoring AIX with PCs, AIX Update Issues 23 and 24), as our
reporting system is set up to accept files in this format.

The miles1 script produces the delimited text file in the format
discussed above. I’ll explain changes you can make to the script to
adapt it to your own needs after the listing.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 19

MILES1 SCRIPT
#!/bin/ksh
###
#
Written by: Robert Russell
Usage : Builds milestone times files
Copyright : Robert Russell (1998)
Calls programs: calcdate_time
#
###

integer i
integer a
integer TOTAL_MIN_DIFF

COMMANDS=/usr/home/it032x/commands

CHECK_FILES="Build_Start:Build_1.fin:Build_2.fin\
:Build_3.fin:Build_4.fin:Build_5.fin:Build_6.fin\
:Build_7.fin:Build_8.fin"
MILESTONES=/usr/local/etc/milestones

MACHINE_ID="TPL"
FILE_EXT="Z"
SAVE_DIR=/usr/home/it032x/milestone
FIL_MON=`date +%b|tr "[a-z]" "[A-Z]"`

MONTH="00"
YEAR=`date +%Y`
DAY_DIFF="N"
TOTAL_MIN_DIFF=0

header_file()
{
integer h
h=2
while [[`echo $CHECK_FILES|cut -f$h -d:` != ""]]
do
 TEMP=`echo $CHECK_FILES|cut -f$h -d:`
 HEADER=$HEADER"$TEMP,"
h=$h+1
done
echo "Key,Date,"$HEADER
}

month_name()
{
 case $1 in
 Jan)

20 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 MONTH="01"
 ;;
 Feb)
 MONTH="02"
 ;;
 Mar)
 MONTH="03"
 ;;
 Apr)
 MONTH="04"
 ;;
 May)
 MONTH="05"
 ;;
 Jun)
 MONTH="06"
 ;;
 Jul)
 MONTH="07"
 ;;
 Aug)
 MONTH="08"
 ;;
 Sep)
 MONTH="09"
 ;;
 Oct)
 MONTH="10"
 ;;
 Nov)
 MONTH="11"
 ;;
 Dec)
 MONTH="12"
 ;;
 esac
}
#start main code
i=1
while [[`echo $CHECK_FILES|cut -f$i -d:` != ""]]
do
 a=$i+1
 CHECK_ONE=`echo $CHECK_FILES|cut -f$i -d:`
 CHECK_TWO=`echo $CHECK_FILES|cut -f$a -d:`
 if [["$CHECK_TWO" != ""]]
 then
 ls -al $MILESTONES/$CHECK_ONE|\
awk '{print $6,$7,$8}'|read ONE_MONTH ONE_DAY ONE_TIME
 ls -al $MILESTONES/$CHECK_TWO|\
awk '{print $6,$7,$8}'|read TWO_MONTH TWO_DAY TWO_TIME

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 21

 month_name $ONE_MONTH
 DATE_ONE=$ONE_DAY"/"$MONTH"/"$YEAR
 month_name $TWO_MONTH
 DATE_TWO=$TWO_DAY"/"$MONTH"/"$YEAR
 if [["$DATE_ONE" != "$DATE_TWO"]]
 then
 DAY_DIFF="Y"
 else
 DAY_DIFF="N"
 fi
 TOTAL_MIN=`$COMMANDS/calcdate_time\
 -d $DATE_ONE $ONE_TIME $DATE_TWO $TWO_TIME`
 TIME_OUT=$TIME_OUT"$TOTAL_MIN,"
 fi
i=$i+1
done

FULLNAME=$SAVE_DIR/$MACHINE_ID$FILE_EXT$FIL_MON"A.TXT"
if [[! -f $FULLNAME]]
then
 header_file > $FULLNAME
fi
grep $DATE_TWO $FULLNAME >/dev/null 2>&1
if [["$?" != "0"]]
then
 print "k"`date +"%y%j"`","$DATE_TWO","$TIME_OUT>>$FULLNAME
fi
#end

To generate timings for your files, the lines of code detailed below
must be changed. The list of files to be checked must be in both
sequential (as implied by the file’s name) and chronological order.
The script won’t function if files arrive in random order, only a
sequential order enables the script to work correctly. In our scheme,
the first file specified indicates the start of the batch run and the last
one indicates the end of the run. This script can be used to calculate
the timings between any set of ‘marker files’, which need not
necessarily be batch milestone files – the process can deal with any set
of files presented to it in sequential order.

Changes to implement miles1 script
COMMANDS=/usr/home/it032x/commands

The COMMANDS variable is used to execute the calcdate_time
script, so its directory must be the same as both calcdate_time and

22 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

calcdate_diff.
CHECK_FILES="Build_Start:Build_1.fin:Build_2.fin\
:Build_3.fin:Build_4.fin:Build_5.fin:Build_6.fin\
:Build_7.fin:Build_8.fin"

The CHECK_FILES variable contains the list of milestone files to
check. As mentioned above, these files must be listed and created in
sequential order, as implied by their names (note that creating them in
sequential order ensures they’re also listed in chronological order).

MILESTONES=/usr/local/etc/milestones

The MILESTONES variable is where the files listed in CHECK_FILES
are to be found. If your files are in separate directories, you’ll need to
modify code.

MACHINE_ID="TPL"

MACHINE_ID is the ID of the RS/6000 being checked. This value is
also used in the naming of the results file.

FILE_EXT="Z"

The FILE_EXT variable stores a tag used in naming our results file.
The one below is used in our set-up, and can be changed to suit your
requirements (or, alternatively, entirely removed from the script).

SAVE_DIR=/usr/home/it032x/milestone

The SAVE_DIR variable is used to save the results file.

Implementation of this script and transfer of the resulting file into our
reporting system allows us to produce a graphical representation of
the batch run. This makes it easier for us to identify changes to the time
it takes to run various parts of the batch process. A possible modification
to the script would be to have it note start and end times in the results
file so that reports of just this data are created. The DATE_ONE,
ONE_TIME, DATE_TWO, and TWO_TIME variables could be
added to the print statement for the results file (identified by the
FULLNAME variable) at the end of the script to achieve this.

Milestone time generation

Our batch runs need to be verified at certain points to ensure they’re

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 23

on schedule, and this requires us to time-stamp certain events as they
occur. To do this we generate ‘flag’ or ‘milestone’ files that the system
expects and uses to monitor the progress of batch processing and
activate the paging system, if necessary. In order to streamline the
process of managing these milestone files we required a list of times
throughout the night by which flag files should have been created. The
following script was used to enable us to see the dates and times of
these events. Automating this process has greatly improved it as it was
previously very error-prone.

MILE_TIME SCRIPT
#!/bin/ksh
#set -x
###
#
Written by Robert Russell
#
Produces a milestone time file based on the reference date and time
#
The first positional parameter is the start date
The second positional parameter is the start time
The third positional parameter is the milestone jump in minutes
#
eg mile_times 01/01/1998 19:00 "205:15:15:420:30:240:330"
#
###

integer POS
integer COUNT

COMMANDS=/usr/home/it032x/commands
CHECK=/usr/local/bin/Milestone_Lookout
OUT_FILE=/usr/home/it032x/data/MILE_TEMP

>$OUT_FILE
BASE_DATE=$1
ROTATE_DATE=$1
BASE_TIME=$2
PERIOD_JUMP=$3

if [["$3" = "-b"]]
 then
 STR=`grep "STR=" $CHECK|grep -v \
"#STR" |tail -2 |head -1|sed "s/\"//g"`
 fi

24 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if [["$3" = "-w"]]
 then
 STR=`grep "STR=" $CHECK|grep -v \
"#STR" |tail -1|sed "s/\"//g"`
 fi

PRIN_DATE=`$COMMANDS/calcdate_diff -dc $BASE_DATE 0 -s -nn -de -mmm -yy`
print $PRIN_DATE" "$BASE_TIME" Start Time">>$OUT_FILE
COUNT=1
POS=1

while [$COUNT -le 1]
do
 ROTATE_TIME=`echo $PERIOD_JUMP|cut -f$POS -d:`
 if [["$ROTATE_TIME" = ""]]
 then
 POS=1
 COUNT=$COUNT+1
 ROTATE_TIME=`echo $PERIOD_JUMP|cut -f$POS -d:`
 fi
 TEMP=`$COMMANDS/calcdate_time -f \
$BASE_DATE $BASE_TIME $ROTATE_TIME`
 BASE_DATE=`echo $TEMP|awk '{print $1}'`
 BASE_TIME=`echo $TEMP|awk '{print $2}'`
 PRIN_DATE=`$COMMANDS/calcdate_diff \
-dc $BASE_DATE 0 -s -nn -de -mmm -yy`
 print $PRIN_DATE" "$BASE_TIME" after \
waiting $ROTATE_TIME mins">>$OUT_FILE
 ROTATE_DATE=$BASE_DATE
 POS=POS+1
done

more $OUT_FILE
#end

CHANGES NECESSARY TO IMPLEMENT MILE_TIME

The changes below are needed to adapt this script to suit your
requirements.

COMMANDS=/usr/home/it032x/commands

The COMMANDS variable is used to execute the calcdate_time and
calcdate_diff scripts.

OUT_FILE=/usr/home/it032x/data/MILE_TEMP

OUT_FILE is used as the results file.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 25

Below is an example of this script being used from the command line:

mile_times 01/01/1998 19:00 "205:15:15:420:30:240:330"

This results in a file containing date and time entries starting at 19:00
on the 01/01/1998, with subsequent dates and times being determined
by the delays (in minutes) specified by the third positional parameter.
This is useful for calculating expected timing of events.

Period-end date calculation

This utility is similar to the one for milestone time generation, though
it deals solely with dates. This process is used at our site to enable
certain monitoring tasks to take place just before and just after period-
end batch runs. As system activity during these periods is at its peak,
we need to make a number of checks on our overall system status to
ensure a trouble-free run. Our period-ends run on a ‘4, 4, 5-week’
cycle throughout the year. The following script calculates the period-
end check dates. Developing scripts based on the calcdate_diff
program has allowed us to schedule a number of checks automatically
before each period-end. Further development has allowed us to
monitor certain events that are supposed to happen in the second week
of a period. The following script produces period-end dates based on
a 4,4,5-week cycle.

PERIOD CHECKER SCRIPT
#!/bin/ksh
###
#
Written by Robert Russell
#
Produces a period date file for the reference date
#
The first positional parameter is the reference date
The second positional parameter is the period jumps in days
The third positional parameter is the number of jumps
#
eg period_calculator 01/01/1998 "28:28:35" 4
#
###

integer POS
integer COUNT

26 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

COMMANDS=/usr/home/it032x/commands
OUT_FILE=/usr/home/it032x/data/PERIOD_DATES
FORMAT_DATE="-s -nnn -d -mmm -yy"

>$OUT_FILE
BASE_DATE=$1
ROTATE_DATE=$1
PERIOD_JUMP=$2
TIMES=$3
#PRIN_DATE=`$COMMANDS/calcdate_diff -dc $BASE_DATE 0 -s -nn -d -mmm -yy`
PRIN_DATE=`$COMMANDS/calcdate_diff -dc $BASE_DATE 0 $FORMAT_DATE`
print $PRIN_DATE>>$OUT_FILE
COUNT=1
POS=1

while [$COUNT -le $TIMES]
do
 DAYS=`echo $PERIOD_JUMP|cut -f$POS -d:`
 if [["$DAYS" = ""]]
 then
 POS=1
 COUNT=$COUNT+1
 DAYS=`echo $PERIOD_JUMP|cut -f$POS -d:`
 fi
 if [$COUNT -le $TIMES]
 then
 BASE_DATE=`$COMMANDS/calcdate_diff -dc $ROTATE_DATE -$DAYS -/ -d
-m -yy`
 #PRIN_DATE=`$COMMANDS/calcdate_diff -dc $BASE_DATE 0 -s -nn -d -
mmm -yy`
 PRIN_DATE=`$COMMANDS/calcdate_diff -dc $BASE_DATE 0
$FORMAT_DATE`
 print $PRIN_DATE>>$OUT_FILE
 ROTATE_DATE=$BASE_DATE
 POS=POS+1
 fi
done

more $OUT_FILE
#end

The above script produces a text file, formatted using the calcdate_diff
command, of period-end dates.

CHANGES NECESSARY TO IMPLEMENT PERIOD_CHECKER

COMMANDS=/usr/home/it032x/commands

The COMMANDS variable contains the location where the

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 27

calcdate_diff script is found.

OUT_FILE=/usr/home/it032x/data/PERIOD_DATES

The OUT_FILE variable contains the name and directory that contains
the results file.

FORMAT_DATE="-s -nnn -d -mmm -yy"

The FORMAT_DATE variable is used to specify the format that the
command should use for returning dates. The above example produces
dates such as ‘Wednesday 12 August 1998’.

VARIOUS SCRIPTS

The following selection of scripts covers a variety of situations that
commonly arise in data processing. In most cases, adapting the scripts
to your needs requires only the COMMANDS variable to be changed
(it contains the name of the directory where both the calcdate_diff
and calcdate_time scripts are located). All the scripts below use
calcdate_time and calcdate_diff, and serve as further examples of
how these scripts can be used.

LAST DAY OF MONTH SCRIPT

This script checks whether the date in the first positional parameter is
the last day of the month by comparing it to the following day.

#!/bin/ksh
###
#
Written by Robert Russell
#
Returns 0 if the date is the last day of month
Returns 1 if the date is not the last day of month
#
eg last_day_of_month 28/02/1996 returns 1
#
###

integer week

COMMANDS=/usr/home/it032x/commands

FIRST=`$COMMANDS/calcdate_diff -dc $1 0 -mm`

28 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LAST=`$COMMANDS/calcdate_diff -dc $1 -1 -mm`

if [["$LAST" != "$FIRST"]]
then
 print 0
else
 print 1
fi
#end

WEEK OF THE MONTH SCRIPT

This script takes the date in the first positional parameter and calculates
the week of the month it’s in, starting from the first day of the month.

#!/bin/ksh
##
#
Written by Robert Russell
#
Returns the week number in the month
#
Print the week number of the Date e.g. 1-5
#
eg what_week_of_month 01/01/1997 returns "week one"
#
##

integer week

COMMANDS=/usr/home/it032x/commands

FIRST=`$COMMANDS/calcdate_diff -dc $1 0 -mm`
week=1

for i in 7 14 21 28 35
do
LAST=`$COMMANDS/calcdate_diff -dc $1 $i -mm`

if [["$LAST" = "$FIRST"]]
then
 week=week+1
fi
done

case $week in
 1)
 print "week one"
 ;;
 2)

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 29

 print "week two"
 ;;
 3)
 print "week three"
 ;;
 4)
 print "week four"
 ;;
 5)
 print "week five"
 ;;
esac
#end

VALID DATE SCRIPT

This script can be used to process the return codes back from
calcdate_diff script. The various return codes are listed in the script.
Your own implementation may require further error handling than is
provided here.

#!/bin/ksh
###
#
Written by Robert Russell
#
Returns error messages for incorrect dates
#
###

case $1 in
 1)
 print "Problem with year in date given"
 exit
 ;;
 2)
 print "Problem with month in date given"
 exit
 ;;
 3)
 print "Problem with day in date given"
 exit
 ;;
 *)
 print "Command ended in error"
 exit
 ;;
esac
#end

30 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DAYS PASSED SINCE SCRIPT

This script calculates the number of days between the date given by
the first positional parameter and the current system date. If a second
positional parameter is used, it must be in 24-hour time format. If a
time is specified, the output is in minutes.

#!/bin/ksh
##
#
Written by Robert Russell
#
Calculates how many days or minutes have elapsed since
a provided date
#
Prints out the days/minutes
#
Uses the current system date as the reference point
#
##

COMMANDS=/usr/home/it032x/commands
CURRENT_DATE=`date +"%d/%m/%Y"`

if [["$2" = ""]]
then
VALUE=`$COMMANDS/calcdate_diff -c $1 $CURRENT_DATE`
RETURN=$?

if [["$RETURN" != "0"]]
 then
 $COMMANDS/valid_date $RETURN
 else
 print $VALUE
 fi
else
 CURRENT_TIME=`date +"%H:%M"`
 VALUE=`$COMMANDS/calcdate_time -d $1 $2 \
$CURRENT_DATE $CURRENT_TIME`
 print $VALUE
fi
#end

DAYS TO GO UNTIL SCRIPT

This script calculates the number of days from the current system date
to the date given by the first positional parameter. If a second
positional parameter is present, it must be in 24-hour time format. If

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 31

the time is specified, the output is in minutes.

#!/bin/ksh
##
#
Written by Robert Russell
#
Calculates how many days/minutes to go to a certain date
#
Prints out the days/minutes remaining
#
Uses the current system date as the reference point
#
##

COMMANDS=/usr/home/it032x/commands
CURRENT_DATE=`date +"%d/%m/%Y"`

if [["$2" = ""]]
then
 VALUE=`$COMMANDS/calcdate_diff -c $CURRENT_DATE $1`
else
 CURRENT_TIME=`date +"%H:%M"`
 VALUE=`$COMMANDS/calcdate_time \
-d $CURRENT_DATE $CURRENT_TIME $1 $2`
fi

print $VALUE
#end

CALCULATE WEEKS SCRIPT

This script calculates the number of weeks from the date given by the
first positional parameter to the current system date, starting on week
one.

#!/bin/ksh
##
Written by Robert Russell
#
Calculates the number of weeks from a given date to the system date,
starting on week one
#
###

integer WEEKS
integer COUNT
integer TEMP

32 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

COMMANDS=/usr/home/it032x/commands
CURRENT=`date +"%d/%m/%Y"`
COUNT=`$COMMANDS/calcdate_diff -c $1 $CURRENT`
TEMP=COUNT/7
WEEKS=TEMP+1
print $WEEKS
#end

LAST WEEK OF THE MONTH

This script checks that the first positional parameter is within seven
days of the end of the month. This could be changed to any number by
changing the variable DAYS_LEFT.

#!/bin/ksh
###
#
Written by Robert Russell
#
Returns 0 if the date is in the last n days of the month
Returns 1 if it is not in the last n days of the month
where n is given by DAYS_LEFT
#
###

integer week
integer DAYS_LEFT

COMMANDS=/usr/home/it032x/commands
DAYS_LEFT=7

FIRST=`$COMMANDS/calcdate_diff -dc $1 0 -mm`
LAST=`$COMMANDS/calcdate_diff -dc $1 -$DAYS_LEFT -mm`
if [["$LAST" != "$FIRST"]]
then
 print 0
else
 print 1
fi
#end

Robert Russell (UK) © Xephon 1998

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 33

The benefits of 64-bit computing

The benefits of 64-bit computing are not always fully understood, and
there are also some common myths about the performance of this new
platform – I address both these issues in this article.

INTRODUCTION

The extraordinary rate of change in information technology, and the
business pressure to use it for competitive advantage, places intense
demands on information systems. Computing platforms must now be
able to store and support a vast volume of information and make it
available to an ever-increasing number of concurrent end-users. 64-
bit departmental computing provides the latest means of securing a
temporary competitive advantage to those organizations that are able
to implement this new technology and integrate it with their existing
systems in a relatively short time frame. In time, of course, even low-
end desktop PCs will be 64-bit, just as a low-end PC now has a 32-bit
Pentium processor that would have been the envy of just about every
business user a few years back.

The PowerPC microprocessor architecture (which should not to be
confused with a particular implementation of it, such as the one in
PowerPC-based RS/6000 systems), supports both 32-bit and 64-bit
implementations. 64-bit PowerPC implementations have a number of
specific hardware features, including:

• 64-bit general purpose registers (GPRs).

• Dual execution mode, which allows the CPU to operate in either
32-bit or 64-bit mode.

• Instructions for operating on 64-bit data (load, store, logical, and
mathematical) and for controlling the execution mode (32 or 64-
bit).

• The ability to address physical memory larger than 4 gigabytes
(the largest address that can be stored in 32 bits).

34 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

WHAT DOES 64-BIT MEAN?

Doubling the number of bits from 32 to 64 does much more than
double the number of possible values – this is a result of the exponential
nature of the scale. Most people, I am sure, have heard the story about
the inventor of the game of chess (whose name is now long forgotten).
It’s said that the king was so delighted with the new game that he asked
the inventor what he could offer him as a sign of his gratitude. The
wise, but anonymous, inventor replied that he wished for some corn
– one grain on the first square, two on the second square, four on the
third square, and so on, doubling the amount of corn on each square
up to the 64th. The king, being a king, protested saying that this was
insufficient for such a clever invention, but in the end accepted.
Needless to say, the inventor lived happily ever after and was very,
very rich, as the king was unable fully to pay his debt. The amount of
grain required to fill the board is more than all the grain produced in
the world since the beginning of time!

If we use distance to make the analogy and let one be equivalent to
10nm (or ten one-millionths of a millimetre), then the maximum
number represented in 32 bits would be 43 metres (about 50 yards),
while the distance represented by 64 bits would be more than the
distance between the earth and the sun.

It’s necessary to make clear the distinction between a byte and a word.
While a byte is always a group of eight bits, a word is the unit of data
that is natively handled by the CPU. On 32-bit processors, a word is
32 bits long, and on a 64-bit processor a word is 64 bits long. Note that
this is the size of a word from the hardware’s point of view; software
may implement its own set of standards for handling data. For
instance, Windows NT defines a ‘double word’ (as in the
REG_DWORD data type) as four bytes or 32 bits – this is despite the
fact that NT is a true 32-bit operating system. Word size is an
important dimension in a computer architecture as it is used for two
distinct purposes:

• Firstly, to represent data

• Secondly, to represent addresses.

While it’s straightforward to handle 64-bit data on a 32-bit CPU,

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 35

going beyond the 4 gigabyte address limit in a 32-bit architecture is
a much more formidable problem.

It must be emphasized that most of today’s applications don’t come
even close to testing the limits of 32-bit architectures and many run
quite happily on 16-bit systems. Both Microsoft and Intel are still in
the process of migrating from 16 to 32 bits, and the difficulties that this
can present if not considered from the outset are only too apparent
from the performance problems experienced by some 16-bit Windows
applications running on 32-bit Intel processors. I expect a repetition
of this problem when these two companies move to 64-bits, which, by
all accounts, will not be before 1999 or 2000. Given that the PowerPC
was designed from the outset to be a 64-bit architecture with a fully-
functional 32-bit subset and a clear transition path, the move to 64-bits
on AIX running on PowerPC processors should be much simpler.

Some applications are, however, running into the upper limits of 32-
bit performance, and it is these that are driving the move to 64-bit data
and addresses. These applications are those that handle large volumes
of data. Over time, processors are becoming ever more powerful and
more and more data is being stored in databases. On today’s 32-bit
octo-processor systems, a maximum of 512 MB of memory is
available per processor (on average), which in many instances is
barely enough to maintain a balanced system. If powerful CPUs are
not to become I/O or memory bound, it is necessary that database
memory buffer pools are allowed to grow so that the performance of
existing systems isn’t impaired. Buffer pools are even today reaching
and exceeding the 4 GB limit imposed by 32-bit systems.

A 64-bit computer is one equipped with one or more processors
capable of handling and manipulating 64-bit data and 64-bit addresses.
On a 32-bit system, a C programmer would work with 32-bit integers
(int), long integers (long), and pointers (addresses). This is known as
‘ILP32’ system. By agreement, 64-bit systems still use 32-bit integers,
but long integers and pointers become 64-bit, giving rise to the ‘LP64’
system (notice the missing ‘I’).

The performance advantage of 64-bit hardware cannot be realized
unless the system also uses a 64-bit operating system and runs
applications designed to use 64-bit processing. This is the problem

36 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

with Sun’s Solaris – the underlying processor is 64-bit, but the
operating system supports only 32-bit applications.

To summarize, the four distinguishing features of 64-bit systems by
comparison with 32-bit systems are:

• Large virtual address space

• Large physical memory size

• Native 64-bit integer calculation

• Large files.

These features are discussed below.

LARGE VIRTUAL ADDRESSES SPACE

32-bit applications have a 4 GB (232) virtual address space. This means
that the combined size of the binary executable and working data set
cannot exceed 4 GB. Applications that work with more than 4 GB of
data benefit from large quantities of real memory (RAM) and support
for large virtual address spaces. 64-bit computing is most beneficial
to these ‘very large database’ applications (VLDBs) – while just five
years ago a database as large as 10 GB would have been rare, today
it’s commonplace. Today there are plenty of terabyte-sized databases
around (a terabyte is about a million megabytes). It’s worth bearing in
mind that a database of up to 16 GB fits in the RAM of a fully
configured Escala RL470; the performance improvement with 64-bit
will be spectacular for such applications. There are no hard-and-fast
rules to estimate just how much faster a database will run with a 64-
bit architecture, though it’s not unusual for applications to run from
two to tens of times faster when RAM is increased from 4 to 16 GB.

A 64-bit application has a virtual address space of 16 EB (16 million
TB ~ 18x1018 bytes), which is essentially limitless from the point of
view of today’s applications. This allows very large buffers to be used
by databases, and their contents to be accessed directly by memory
pointers. When combined with large physical memory, significant
performance improvement can be achieved.

In addition to being able to access more data, the size of the application’s

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 37

binary image is freed from its 4 GB limit. Though not a problem today,
the arrival of general purpose multi-processor machines and a
standardized threading environment points the way to multi-threaded
applications. In this case, the overall size of each process is likely to
grow. Further, 64-bit applications use a 64-bit XCOFF binary format,
which is somewhat larger than its 32-bit counterpart. This has the
effect of increasing the size of the working set, which in turn reduces
the efficiency of the cache hierarchy as the cache-hit ratio is reduced.

Mapping very large objects, such as file-systems and databases,
directly into the virtual address space eliminates some of the overhead
of address translation and also allows the application to benefit from
hardware-based assist mechanisms for virtual-to-physical address
translation.

LARGE PHYSICAL MEMORY

If the benefits of large virtual address spaces are to be realized,
systems must also have large quantities of real memory, otherwise the
system spends time paging virtual memory, which defeats the point of
having a 64-bit architecture. With a large physical memory (over 4
GB), applications can keep most or all of their working data in RAM,
thus eliminating costly I/O. However, the number of real-world
applications that have a working set of more than 4 GB is comparatively
small. Applications that use less than 4 GB will not experience the
same improvement in performance as those that could access more
memory, were it available.

Large physical memory also benefits 32-bit processes (those with a
four gigabyte address space) by allowing several 32-bit processes to
reside in main memory at the same time, eliminating or reducing the
need for paging by the operating system.

Additionally, for a computer system to be efficient it must have
‘balanced’ resources. This means that the overall performance of a
computer depends on physical memory, CPU, and I/O bandwidth. If
you increase one of them you should increase the other two by a
similar amount. Improvements in microprocessor performance have
not been matched by similar improvements in memory and I/O.
Additional memory helps improve the balance.

38 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

NATIVE 64-BIT COMPUTING

Handling integers larger than 32 bits on 32-bit systems generally
requires a library call. A 64-bit processor with a 64-bit word size can
manipulate and operate on 64-bit long data directly, eliminating the
library call. This feature is useful not only for scientific and technical
applications but also for commercial applications that perform 64-bit
arithmetic on 64-bit addresses.

LARGE FILES

Even though files larger than 4 GB can be handled by AIX 4.2, AIX
4.3’s 64-bit support makes this more ‘native’, as files are no longer
divided into 2 GB or 4 GB chunks. This is a direct consequence of a
large virtual address space.

COMPATIBILITY – THE CUSTOMER’S REQUIREMENT

There are over 14,000 32-bit applications that run on AIX 4.2 today.
It is essential that these applications should continue to run unmodified
on 64-bit platforms under AIX 4.3. With this new version of the
operating system, both 32 and 64-bit applications may run side-by-
side and communicate and exchange data with each other. Large
physical memory may benefit applications comprising a number of
32-bit processes, as they and all their data can reside in real memory,
and not be paged to disk.

This is a direct benefit of the PowerPC architecture (see Figure 1),
which was conceived as a 64-bit architecture from the outset, with a
32-bit mode of operation fully defined and support for binary
compatibility between the two. This means that 32-bit applications
display exactly the same behaviour when running on 64-bit hardware
as on 32-bit hardware. This greatly simplifies the transition from 32
to 64-bit architectures. For application developers, the AIX compiler
provides a compilation mode that produces binaries that will run on
any PowerPC, POWER, or POWER2 processor.

AIX 4.3 also supports both 32 and 64-bit computing. There is only one
version of the operating system, which runs on a wide range of
hardware. Once more, for an application to enjoy the benefits of 64-

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 39

bit computing it must be compiled in 64-bit mode and linked to 64-bit
objects in shared libraries.

MIXING 32 AND 64-BITS

There are a few rules that need to be taken into consideration when
mixing 32 and 64-bit hardware and software. Firstly, it isn’t possible
to run a 64-bit application on 32-bit hardware – 64-bit applications
require 64-bit registers, etc. Secondly, while apps built for AIX v3 and
versions of AIX v4 prior to 4.3 generally run on AIX v4.3, there’s no
guarantee that the converse is true.

Other than differences in addressability, there are a number of
differences between 32-bit and 64-bit execution environments. The
sizes of the following are architecture-dependent (for instance, having
64-bits on a 64-bit machine):

• Pointers types

• The C language’s ‘long’ type

• CPU registers.

32-bit
applications

(non DB)

64-bit
applications

(non DB)

32-bit DB
applications

64-bit DB
applications

64-bit (VLM) database

AIX v4.3

64-bit PowerPC CPUs

Figure 1: 64-bit PowerPC architecture

40 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Additionally, there are a number of PowerPC instructions that are
specific to 64-bit implementations of the architecture.

32-bit applications making use of 64-bit databases will not require any
modification, as the interfaces to the database remain 32-bit. The
mapping from the application’s 32-bit environment to the database’s
64-bit environment is handled by the API.

A number of development tools have been modified to generate
warnings when architecture-specific code is encountered (they
specifically look for code that would make a transition from 32 to 64-
bits more difficult). These tools include lint , ar, strip , ranlib , and
dump.

THE BENEFITS OF 64-BIT APPLICATIONS

Large database applications are the real beneficiaries of the arrival of
64-bit processors. These applications can make the most of the very
large physical memory and virtual address space that 64-bit systems
offer. Savings in execution time that fully configured 64-bit systems
offer in relation to 32-bit systems means that, in general, the extra cost
of the larger system is quickly repaid. Applications that make use of
large database technology are becoming increasingly common in
Enterprise Resource Planning (ERP), on-line transaction processing
(OLTP), and data warehousing/decision support (DW/DSS).

Oracle, Sybase, and Informix all have experience of developing and
operating VLDBs, and all provide database engines that can utilize
more than 4 GB of real memory. The discussion that follows
concentrates on Oracle’s product, though the principles discussed
apply equally to products from all vendors.

Oracle’s 64-bit database is called OracleVLM (Oracle Very Large
Memory). It uses two key architectural components:

• Large System Global Areas (SGAs)

• ‘Big Oracle Blocks’.

Oracle data is stored in system memory in the System Global Area.
Increasing the size of the SGA reserves more contiguous shared

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 41

memory. The larger the Oracle buffer cache, the faster the Oracle
RDBMS runs. SGA comprises four areas:

• Fixed size

• Variable size

• Database buffers

• Redo buffers.

OracleVLM has enlarged the database and redo buffers to support up
to 4 GB each, so the database may have more than 8 GB of buffers.

32-bit operating systems are limited to a maximum of 4 GB of system
memory, which means that the size of the SGA the database system
can use is similarly limited. The very large SGAs that are available
with OracleVLM allow many more database blocks to be cached,
improving the cache hit ratio.

Big Oracle Blocks, or BOBs, allow disk blocks on the Oracle file
system to be up to 32 KB in size. This has a number of advantages:
firstly the overall data transfer rate between disk and memory is
improved as a result of fewer seek operations. Secondly, larger blocks
result in reduced fragmentation in the database’s memory, which
means more rows per block and a less complex data layout. It should
be noted that BOBs, which are smaller than 4 GB, do not require 64-
bits.

Databases on their own are not much use – all they do is hold data. To
be of any value, they require a supporting application. In the commercial
world there are three main types of database application:

• On-line transaction processing (OLTP)

• Data warehousing/decision support systems (DW/DSS)

• Enterprise resource planning (ERP).

TRANSACTION PROCESSING

Transaction processing is the system that is generally used for the day-
to-day running of a business. The often-cited example is that of a

42 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

credit card purchase, in which the purchaser’s bank account is debited
by the appropriate sum and the seller’s account credited by the same
amount. In this case, the transaction either fails or succeeds. It cannot
‘partly succeed’, so that, for instance, the vendor’s account is credited
but the buyer’s account isn’t debited. Another everyday example of
transaction processing is ticket and hotel reservation. The transactions
themselves usually involve relatively small amounts of data, typically
4 KB, and access data in the databases in fairly random patterns with
about two-thirds of the accesses being read operations.

DATA WAREHOUSING/DECISION SUPPORT

Data warehousing or decision support systems (DSS) are used to
analyse the historical data collected by an organization, often with the
objective of finding hidden relationships. The results of this analysis
and any relationships found can help the organization’s strategic
planning. Examples of DSS include examining the effect of advertising
or the weather on sales.

The database operations involved in data warehousing are very
different from those of transaction processing. A typical request may
have a simple semantic, such as “How many more red swimming
trunks did I sell in August in the shop in Paris, when it was sunny
outside, and after the price reduction?” To produce the answer, the
data warehouse application generally scans all the databases from
start to finish, then performs an operation called a join to produce a
new database table containing the results. From this, it can be seen that
the amount of data read is huge, and that the accesses are generally
sequential. Further, with this type of application a large percentage of
the data is not re-used – it is just read and thrown away.

ERP

Enterprise resource planning is also an operational system, in that it
is used to manage the day-to-day functioning of an organization. The
best-known packages are SAP R3, Baan IV, Peoplesoft, and Oracle
applications. The size of the databases is generally somewhere
between that of an OLTP database and one used by a DSS. The nature
of the operations performed on the databases is very similar to those

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 43

of OLTP. A key difference between OLTP and ERP is that, with the
latter, there is a great deal of interaction between the different tables
in the database. Very large memory means that these frequently used
tables can be held in RAM as opposed to on disk.

APPLICATION TYPE AND 64-BIT PROCESSING

Despite the very different nature of these three types of database
application, very large memory offers the same type of advantage to
each. 64-bit addressing allows applications to cache large parts of or
even the whole database in memory. However, as OLTP databases are
generally smaller than those used for data warehousing and ERP, a
higher percentage of the data is held in RAM, and the cache-hit ratio
is better. Thus, while large real memories improve all three types of
application, the performance increase for transaction processing is
more marked than that for data warehousing and ERP.

All database engines perform a number of optimizations on transactions
and queries run against the database. Normally, these optimizations
consider memory usage, access time, and I/O load. With VLM
databases, the latter part of the equation can be ignored. This greatly
simplifies the optimization phase, making it quicker and more efficient.

Obviously, all the data must be loaded from disk into system memory
at the outset. As with all cache architectures, if there is no re-use of the
data, there is no benefit. Because of this and the size of datasets
typically used in decision support applications, a relatively poor cache
hit ratio is common, and the performance improvement in using 64-
bit processing is considerably less than for datasets that fit completely
inside database buffers.

64-BIT MYTHS

There are two false ideas that are often associated with 64-bit
computing, these are:

• 64-bit binaries are twice as big as 32-bit ones

• All 64-bit applications run faster than 32-bit ones.

44 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

‘64-bit binaries are twice as big as 32-bit ones.’

While it’s true that 64-bit binaries are larger than 32-bit ones, they are
a long way from being twice as big. A 64-bit application has a 64-bit
XCOFF binary format. This means that addresses and ‘long ints’ are
represented as 64-bits. But as PowerPC instructions are 32-bits long
and the standard convention for the C language type ‘int’ is 32-bits,
and ‘char’ is 8-bits (even on a 64-bit processors) not all objects in the
XCOFF file double in size.

‘All 64-bit applications run faster than 32-bit.’

This derives, I am sure, from the ‘bigger is better’ concept, which
doesn’t always hold true. An application compiled in 64-bit mode
only runs faster than the same code compiled in 32-bit mode if it
makes use of one or more of the features of 64-bit systems, such as
very large memory or native handling of 8-byte data. The reasons for
this are given below.

• A large virtual address space means that larger applications can
be developed and executed, but this has no relation to performance.

• Support for large physical memory doesn’t result in a performance
improvement if the extra physical memory is not present. In
general, the greater the amount of physical memory the less the
operating system will perform paging. This results in better
performance, but it is due more to software than hardware.

• A 64-bit processor can perform 64-bit arithmetic. However, if an
application only uses 32-bit data, arithmetic will not be performed
twice as fast on a 64-bit processor – typically, it takes the same
number of processor cycles irrespective of the PowerPC model.
If, however, an application uses 64-bit data then there is a
performance improvement, as the manipulation of 64-bit data on
a 32-bit processor requires library calls, which is significantly
slower than native 64-bit operations.

• Large file and filesystem support simplifies the manipulation of
large datasets. It’s possible to map these large files into memory,
but again, unless the additional physical memory is available,
little or no performance increase results. Paging, on the other
hand, is a software issue, not a hardware one.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 45

Additionally because 64-bit binaries are slightly larger than their 32-
bit counterparts, they have a poorer cache hit ratio. The cache hit ratio
plays an important part in system performance, so it is possible that a
32-bit binary may run slower when compiled and run in 64-bit mode.
The cache hit ratio can be recovered by increasing the size of the
processor and system caches, but, because of the cost and power
consumption of static RAM, this is an expensive route to take.

Because of the above, it is probable that only database applications
will be re-compiled in 64-bit mode. It will probably not even be
necessary to re-compile the applications that make use of the database,
such as the transaction processing monitor and the decision support
application. So, the golden rule is that, if your application doesn’t need
64-bits, leave it alone. The default mode for development tools is to
create 32-bit objects and applications.

CONCLUSION

For commercial information technology systems the advantages of
64-bit computing are large physical memories and large virtual
address spaces. With 64-bit addressing, applications can cache large
parts or the whole database in main memory: 64-bit computing can
produce dramatic performance improvements and reduced response
times. Applications that have a working set larger than 4 GB, which
is the address limit of 32-bit systems, will experience significant
performance improvements when re-compiled in 64-bit mode and
executed on 64-bit systems that have a large physical memory.
Applications that do not require 64-bit processing should not be
changed.

With the release of AIX v4.3, 64-bit Unix is now available on a 64-bit
hardware architecture. Additionally, AIX v4.3 brings 64-bit support
and offers compatibility with existing 32-bit applications running on
earlier versions. The intention behind support for 32-bit applications
is simple – to provide a smooth transition from 32-bit to 64-bit.

Jez Wain
Bull Information Systems (France) © 1998 Bull SA

46 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Disk management

In AIX 4.1.4 and 4.2.x, it is not necessary to vary on the volume group
– all you have to know is one of the physical hdisk names of the volume
group. If you take over a volume group, and don’t have all the required
logical volume and physical volume information in hardcopy, you can
use the lqueryvg command to gather information about the volume
after physical volumes are connected to the target system without
importing the volume group.

There are many other situations in which this command is also
helpful. For instance, under the section headed ‘Physical’, the physical
volume identifier is displayed.

lqueryvg -p hdisk73 -At

Max LVs: 256

PP Size: 25

Free PPs: 100

LV count: 6

PV count: 4

Total VGDAs: 4

Logical: 000b345d5b164cab.1 oracle 1

 000b345d5b164cab.2 arch 1

 000b345d5b164cab.3 userdump 1

 000b345d5b164cab.4 log 1

 000b345d5b164cab.5 redo 1

 000b345d5b164cab.6 loglv00 1

Physical: 00089f9cd4602141 1 0

 00089f9cd4602700 1 0

 0008823d3e8e478b 1 0

 0008823d3e8e04e4 1 0

Michael Imhotep (Australia) © Xephon 1998

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 47

Getting rid of verbose error messages

Many of the messages returned by Unix commands are available in
different languages. This is controlled by the LANG environment
variable, the default being En_US meaning ‘English native to the US’.
All the default messages have a message number associated with
them, for example:

$ cat no_such_file

cat: 0652-050 Cannot open no_such_file.

If you prefer more terse, Unix-like error messages, set the environment
variable LC_MESSAGES to C, and you will get:

$ cat no_such_file

cat: Cannot open no_such_file.

By default LC_MESSAGES is the same as the LANG environment
variable. Setting the LANG environment does the same trick, but
should be avoided as it also changes application defaults.

AIX Specialist © Xephon 1998

How to fsck the root filesystem

You can run fsck in either maintenance mode or on mounted filesystems.

1 Boot from diskette (AIX 3), CD, or tape (AIX 4).

2 Select maintenance mode.

3 Type /etc/continue hdisk0 exit (replace hdisk0 with the name of
the boot disk, if it’s not hdisk0).

4 Issue the command: fsck /dev/hd4.

AIX Specialist © Xephon 1998

BEA Systems has announced the M3 object
transaction manager along with a gaggle of
related products and partnerships with
hardware, software, and systems integration
firms. M3 is an object-oriented version of
the company’s Tuxedo TP monitor, and
promises Tuxedo’s scalability, load
balancing, performance, and other functions
and management tools.

M3 is out now on AIX, Digital Unix, HP-
UX, NT (Intel and Alpha), and Solaris, and
costs the same as Tuxedo.

For further information contact:
BEA Systems, 385 Moffett Park Drive,
Sunnyvale, CA 94089, USA
Tel: +1 408 743 4000
Fax: +1 408 734 9234
Web: http://www.beasys.com

BEA Systems Ltd, Windsor Court,
Kingsmead Business Park, Frederick Place,
London Road, High Wycombe, Bucks HP11
1JU, UK
Tel: +44 1494 559500
Fax: +44 1494 452202

* * *

Candle has announced the Roma Business
Services Platform (Roma BSP) version 1.1,
which integrates component, message
queuing, and directory technologies. The
company also announced Roma for e-
business, along with a GUI front-end for the
product.

BSP runs on AIX, Solaris, MVS, HP-UX,
NT, and AS/400. BSP 1.1 for AIX, NT, and

Solaris is out now, costing from US$8,500
for a starter kit, with additional copies
costing US$750 per seat.

For further information contact:
Candle, 2425 Olympic Boulevard, Santa
Monica, CA 90404, USA
Tel: +1 310 829 5800
Fax: +1 310 582 4287
Web: http://www.candle.com

Candle Service Ltd, 1 Archipelago, Lyon
Way, Frimley, Camberley, Surrey GU16
5ER, UK
Tel: +44 1276 414700
Fax: +44 1276 414777

* * *

Sybase has announced Warehouse Studio,
an integrated product set for building
departmental or enterprise data warehouse
applications. It includes a set of design,
transformation, database, meta data
management, and administration facilities.

Prices for the AIX version start at
US$76,200.

For further information contact:
Sybase Inc, 6475 Christie Avenue,
Emeryville, CA 94608, USA
Tel: +1 510 922 3500
Fax: +1 510 658 9441
Web: http://www.sybase.com

Sybase (UK) Ltd, Sybase Court, Crown
Lane, Maidenhead, Berks SL6 8QZ, UK
Tel: +44 1628 597100
Fax: +44 1628 597000

AIX news

x xephon

	I/O pacing
	Securing and optimizing AIX’s root user
	Date and time manipulation
	The benefits of 64-bit computing
	Disk management
	Getting rid of verbose error messages
	How to fsck the root filesystem
	AIX news

