
© Xephon plc 1999

January 1999

39

3 File archives and compression
10 A function to validate users on AIX
12 Understanding the sort command
24 From heavy processes to light

threads
32 New RS/6000 hardware
41 Performance reports
56 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: HarryLewis@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £175.00
in the UK; $265.00 in the USA and Canada;
£181.00 in Europe; £187.00 in Australasia
and Japan; and £185.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £15.00 ($22.50) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com
(you’ll need the user-id shown on your ad-
dress label to access it).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

File archives and compression

This article discusses why small files may be just as large as large files,
why one file may be better than two, and how to squeeze more space
out of your disk. It delves into some of the technical aspects of disk
storage, but I have tried to cover them in a non-technical way.

To the technocrat, I apologize for anything that may appear as an over-
simplification of the process, but I am not trying to teach disk
operating system design theory here. This article is designed to
provide a simple overview of disk space usage.

HOW BIG IS A FILE?

You would think that the answer to this question is simple: just type
ls -l and the fifth column of the directory listing tells you how many
bytes are in each file in a directory. In the example listing below
meeting.txt is three bytes long (a very short meeting) and note.txt is
1201 bytes long.

$ ls -l
total 6
-rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
-rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt

While these are the file sizes, they don’t reflect the amount of space
used by each file on the disk. To see the space used by each file, use
the -s switch. Type ls -ls. This adds a new column at the front of each
directory entry that contains the number of blocks used by the file. A
block is a unit of 512 bytes. The first file, meeting.txt, uses 2 blocks,
or 1024 bytes, (maybe it wasn’t such a short meeting after all!) and
note.txt uses 4 blocks, or 2048 bytes.

$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt

It would be nice if a three-byte file used exactly three bytes plus some
bytes for the file name and other information in the directory.
Unfortunately that has never been a practical way to organize a disk.

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The overhead in keeping track of the directory would become a load
on the system. As a file expands or contracts as a result of editing or
data entry, the file would become heavily fragmented. The first three
bytes of the original file would be down on track 12, then the next
fourteen bytes of data you added would be over on track 25, and so on.
The more you add to the file, the more it gets fragmented. The
directory would become a jumble of pointers, pointing to little bits of
file all over the drive. Loading a file into the editor would involve the
disk read heads scrambling over all the disk to pick up directory
information and all the little pieces of the file for assembly into one
large stream of bytes.

To handle this scattering, disk organization is a compromise. The
method used by all major operating systems in one form or another is
to select a convenient number of bytes as the minimum storage that
can be allocated to a file. This amount could be called an ‘allocation
unit’ – some operating systems do call it an allocation unit, but the
terminology varies. When a file is first created and new data is added
to it, it is allocated a sufficient number of allocation units to hold all
its data. Most operating systems attempt to allocate this space as a
series of contiguous sectors on the disk. If the file does not use all the
space in an allocation unit, the end of the file is stored at the beginning
of the last allocation unit and the remainder of the allocation unit is set
aside for further expansion of the file. When a file expands, the new
information is added to the end of the free space at the end of the last
allocation unit that is allocated to the file. If the size of the information
does not exceed the number of bytes in an allocation unit, all the new
information is stored in the empty reserved space. Once additional
data exceeds the free space in the allocation unit, another allocation
unit is grabbed and reserved. The spill over from the allocation unit
that overflowed is tucked at the start of the new allocation unit, and so
on.

This leaves directory and file location logic with two simpler problems:

1 Given a file name in a directory, how do you locate the first
allocation unit of the file?

2 Given the first allocation unit for a file (or any allocation unit),
what method is used to chain the allocation units together?

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

A discussion of chaining methods is beyond the scope of this article,
but they basically use pointers, stored somewhere in the allocation
unit or the directory structure, to point to the next allocation unit. A
disk file is read by reading the directory, picking up the first allocation
unit, reading through that section of the disk, and locating the pointer
to the next allocation unit and proceeding to that portion of the disk to
retrieve the next chunk of file.

Earlier Unix systems used an allocation unit of 512 bytes. This came
to be known as a ‘block’. As disk capacity grew, the basic allocation
unit was increased to 1,024 bytes on most systems (larger on some),
but many utilities, such as ls, report file sizes and disk use in 512-byte
blocks. This block size has remained the standard for many utilities,
even though the size of an allocation unit may have increased to two
or four blocks.

The allocation unit and the physical sectors on a disk are related. An
allocation unit always comprises one or more physical disk sectors.
Disk sectoring is yet another subject, and it relates to the physical
layout of the disk. Blocks and allocation units are logical ways of
grouping one or more sectors together.

Let’s look at the ls -ls listing again. A three-byte file, like meeting.txt,
will occupy three bytes of a 512-byte block, but (more importantly)
it will occupy three bytes of one allocation unit. On the system in the
example below, the allocation unit is two blocks or 1,024 bytes. The
ls -ls listing correctly indicates that two blocks are used on the disk.
Similarly, note.txt is 1,201 long and should occupy two full blocks and
part of a third (1,024 bytes plus an additional 177 bytes in a third
block). Hence note.txt uses two allocation units, or four blocks, as
indicated in the listing.

$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt

This seems wasteful. In fact 99.7% of the space allocated to meeting.txt
is unused, as is 41.4% of that allocated to note.txt. Multiply this by the
number of files on the system and it’s easy to imagine vast black holes
of disk space that cannot be filled except by forcing all users to create
and use only files that occupy multiples of 1,024 bytes.

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Before you throw a fit, remember that high percentage waste occurs
only with very small files – larger files use their storage allocation
much more efficiently. Your system is probably working fairly well,
which is testimony to the fact that the allocation unit method is a good
compromise between disk allocation and speed of disk access.

One useful task is to establish what is the allocation unit size of your
system. You could find this in a manual (if you have a couple of hours
to search for and through them), though a simpler method is to read
the man page for ls. Establish the block size used by the -s option
(usually 512 bytes), then use vi to create a file with only few a bytes
in it and close the file. Use ls -ls and look at the number of blocks used
to store that small file, multiply it by the block size, and you now know
your basic allocation unit size.

Another useful fact: the ls -l and ls -s commands (and other similar
variations) display a ‘total’ line as the first record in a directory
display. The ‘total 6’ in the listing below is in fact the sum of the blocks
displayed by the ls -ls command.

$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 minutes.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt

Now that you’ve identified some files that are consuming an
unnecessary amount of disk space, what can you do about it? You may
have tried using one or more of the various file compression utilities
(pack, compress, and the GNU Software utility gzip) on them. These
utilities work well on large files, but perform poorly on small files. In
the sample listing below, compress is applied to each of the files and
the results are displayed. compress correctly recognizes that it can’t
do any good to meeting.txt, and leaves it uncompressed, so it just
compresses note.txt to 188 bytes. Note that compress appends .Z to
a file name after it compresses the file. The effects of compress are
reversed by using uncompress, or compress -d file.ext. You do not
need to include the .Z in the file name.

In this case we have eliminated two blocks, as note.txt compressed
down to two blocks from four. If you consider it, you’ll see that a small
file can never be compressed below two blocks (or the default
allocation unit of your system).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt
$ compress minutes.txt
$ compress note.txt
ls -ls
total 4
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 2 -rw-r--r-- 1 mjb group 188 Aug 02 23:25 note.txt.Z
$

If you have a directory of small files that are little used, but need to
remain on the system, one way to handle them is to combine them into
one file, then remove the originals. If the files can be ‘strung together’
then all the little files could be packed into one larger file. The tar (tape
archive) utility is one obvious candidate for this, so we’ll try it.

The tar command uses letters to indicate the actions to be performed.
These are a bit like command-line switches, but are not preceded by
a ‘-’. In the example listed later on, the tar arguments used are:

c Create a new archive

v Provide verbose information on what you are doing

f The next argument is the name of the archive to create

txt.tar The archive being created

*.txt The list of files to include in the archive

Immediately after you issue the tar command, tar informs you that it
has appended meeting.txt, which would take one tape block.

a meeting.txt 1 tape block

It also informs you that it has appended note.txt, which takes 3 tape
blocks.

a note.txt 3 tape blocks

So tar reports its results in 512-byte blocks rather than 1,024-byte
double blocks.

However, there’s a bit of a shock in store when you issue the ls -ls
command after tar is complete. The new archive, txt.tar, is eight

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

blocks long. That’s longer than the original six blocks used by the two
files. The tar utility is a bit mindless. It doesn’t actually string files
end-to-end, but strings blocks end-to-end. It also has to add directory
information into txt.tar, so it is not unusual (in fact common) for tar
archives to be larger than the sum of their contents!

$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 minutes.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt
$ tar cvf txt.tar *.txt
a minutes.txt 1 tape block
a note.txt 3 tape blocks
$ ls -ls
total 14
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 minutes.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt
 8 -rw-r--r-- 1 mjb group 4096 Feb 05 01:40 txt.tar
$

This makes things look a little desperate. According to the manual
entry on tar, the unused space at the end of each block is filled with
garbage. In fact this garbage is usually a lot of hexadecimal zeroes or
NULs, which makes a tar archive an excellent candidate for
compression.

Proceeding to the next logical step, the following listing compresses
the tar archive. The resulting file txt.tar.Z is 404 bytes long (one
allocation unit or two blocks). By removing the original text files, the
directory contents are reduced to only two blocks, a saving of 66% of
the space previously used.

$ ls -ls
total 14
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt
 8 -rw-r--r-- 1 mjb group 4096 Aug 02 01:40 txt.tar
$ compress txt.tar
$ ls -ls
total 8
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt
 2 -rw-r--r-- 1 mjb group 404 Aug 02 01:40 txt.tar.Z
$ rm *.txt
$ ls -ls
total 2

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

 2 -rw-r--r-- 1 mjb group 404 Aug 02 01:40 txt.tar.Z
$

The following listing shows you all the steps necessary to reverse the
tar and compress process. The tar argument for extracting from an
archive is x. The other arguments are the same as the earlier tar
command.

$ ls -ls
total 2
 2 -rw-r--r-- 1 mjb group 404 Aug 02 01:40 txt.tar.Z
$ uncompress txt.tar
$ ls -ls
total 8
 8 -rw-r--r-- 1 mjb group 4096 Aug 02 01:40 txt.tar
tar xvf txt.tar
x minutes.txt, 3 bytes, 1 tape block
x note.txt, 1201 bytes, 3 tape blocks
$ ls -ls
total 14
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt
 8 -rw-r--r-- 1 mjb group 4096 Aug 02 01:40 txt.tar
$ rm txt.tar
$ ls -ls
total 6
 2 -rw-r--r-- 1 mjb group 3 Aug 02 23:31 meeting.txt
 4 -rw-r--r-- 1 mjb group 1201 Aug 02 23:25 note.txt

You can use tar and compress to save lots of disk space on files that
are rarely used. The GNU Software gzip utility is more efficient than
compress, especially on large files, and has some other options that
make it more efficient than compress.

Once you’ve located a stash of files that are rarely used but need to be
available, you should archive and compress them. For directories with
many small files, use tar and compress or gzip. For directories with
a few large files, compress or gzip them, you may tar them if you like,
but it probably makes little difference to the amount of space used. It
might be easier to administer to keep the process the same for any
directory.

Mo Budlong (mobudlong@aol.com)
President
King Computer Services (USA) © Xephon 1999

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

A function to validate users on AIX

The ready-to-compile function ValidUser() is useful when you need
to validate a userid/password pair on AIX. It has been tested on AIX
4.2. The process that uses the ValidUser() function must be running
with root permissions. The function also works in conjunction with an
NIS server.

VALIDUSER()
/*
** valuser.h
**
** UserID Authentication
**
*/

#define USER_OK 0
#define USER_KO 1

int ValidUser (char *szUserid, char *szClearPasswd, struct passwd
*pPasswdStruct);

/*
** valuser.c
**
** UserID Authentication
**
*/

/*
 *---
 * include section
 *---
 */
#include <pwd.h>
#include <stdlib.h>
#include <stddef.h>

#include "valuser.h"

/*
 *---
 * ValidUser - Execute [userid,password] validation
 *
 * Arguments

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

 * szUserid - Userid
 * szClearPasswd - Password (not encrypted) to be validated
 * pPasswdStruct - Pointer to passwd structure corresponding
 * to szUserid (NULL if there is none or if
 * szUserid does not match a valid user)
 * Return
 * USER_OK if [szUserid, szClearPasswd] is a valid couple
 * USER_KO if [szUserid, szClearPasswd] is not a valid couple
 *---
 */
int
ValidUser (char *szUserid,
 char *szClearPasswd,
 struct passwd *pPasswdStruct)
{
 int nReenter;
 char *sMsg;
 struct passwd *pw_buf;

 /*
 ** Authentication via 'authenticate' routine
 */
 if (authenticate(szUserid,szClearPasswd,&nReenter,&sMsg))
 {
 /*
 ** Zero the pPasswdStruct structure and exit
 */
 memset(pPasswdStruct,0x0,sizeof(struct passwd));
 return (USER_KO);
 }
 else
 {
 /*
 ** Read struct passwd record from /etc/passwd for szUserid
 */
 setpwent();
 pw_buf = getpwnam(szUserid);
 memcpy(pPasswdStruct,pw_buf,sizeof(struct passwd));
 endpwent();
 return (USER_OK);
 }
}

Marco Pirini
System Administrator (Italy) © Marco Pirini 1999

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Understanding the sort command

AIX users may need to display text in a format different from the way
it’s stored in a file. For example, they may want to display a table
alphabetically, or they may need to display numbers in a database in
numerical order. The sort command can accomplish this.

SORT COMMAND BASICS

Figure 1 shows the basic syntax of the sort command. sort takes as its
input a specified file (or, in certain cases, an input device), transforms
the input, and writes the results to the screen, output file, or another
device. The result of the sort command is typically all the lines in the
file sorted in the order specified on the command.

For example, suppose you have a file called this.text that contains the
following lines:

cards
balloons
apples
dogs

If you were to enter the command sort this.text, the results would be:

apples
balloons
cards
dogs

In this case, the command simply performs an alphabetic sort on the
file. If multiple files are specified, sort concatenates the files and then
sorts the resulting file.

SYNTAX OF THE SORT COMMAND
 sort options filespec

 options an optional flag or flags used to enhance the sort
 operation

 filespec the file upon which the sort operation is to perform

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

The sort command is frequently used to display data found in tables
and databases. Flat files and raw databases are often difficult to read
as text may appear in random or otherwise non-sequential order.
Alternatively the data may be in one order and you may want to
display it in another.

A simple sort such as the one in the example above sorts all lines
beginning with the first ‘token’ or blank-delimited string found. On
occasion, you may want to sort a table on a column other than the first.
sort handles this with what is known as a sort ‘key’ that tells sort
which column to use. Another common use of sort is to display results
in reverse order, such as displaying greater quantities first.

One of the first problems users encounter when using sort is that
results may differ from what was expected. Frequently, lines that
should appear in a certain order are displayed out of order. Closer
examination usually reveals that the errant lines contain discrepancies
– there may be leading blanks or variations in case that affect the order
of the sort. The sort command has options (flags) for handling these
situations that enable you to get the desired results.

FLAGS FOR THE SORT COMMAND

The following flags modify the behaviour of the sort command.

Disregarding leading blank spaces (-b flag)

The -b flag tells sort to disregard leading blanks. For example,
suppose your input file, this.text, contains the following lines:

buffalo
 antelope
 dog
 camel

Some entries are preceded with one or more blank spaces; if you were
just to sort this.text, the results would be:

 camel
 dog
 antelope
buffalo

This is because blanks are interpreted as any other ASCII character

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

when sorted using the default sort order. To disregard the blanks, enter
sort -b this.text, which results in:

 antelope
buffalo
 camel
 dog

All leading blanks are ignored and the remaining text is sorted
alphabetically.

Sorting in dictionary order (-d flag)

The -d flag sorts in dictionary order using letters, numbers, and blank
spaces. This is useful if you have character strings containing
punctuation symbols, such as quotation marks, parentheses, etc, that
you wish to ignore.

For example, suppose your input file this.text is as follows:

Cooper
 (Adams)
'Davis'
"Baker"

sort this.text would result in the following:

"Baker"
'Davis'
 (Adams)
Cooper

To disregard punctuation characters, enter sort -d this.text which
results in:

 (Adams)
"Baker"
Cooper
'Davis'

In this case, the symbols are ignored and the remaining text is sorted
alphabetically.

Sorting using uppercase only (-f flag)

The -f flag converts text to uppercase before sorting. For example, if
this.text contains the following lines:

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

chess
Bowling
Darts
archery

sort this.text would result in the following:

Bowling
Darts
archery
chess

This is because uppercase letters precede lowercase ones in an ASCII
sort. To sort the lines ignoring case, enter sort -f this.text which
displays:

archery
Bowling
chess
Darts

In this case, the text is sorted alphabetically without regard to the case
of the input strings. Note that the conversion to uppercase is for
comparison purposes only – the resulting text is in its original case
when displayed.

Performing a numeric sort (-n flag)

The -n flag performs a numeric sort. In ASCII, numbers are (sensibly)
in numeric order. However, depending on how many blanks precede
or follow the digits in the text, numbers can fall out of order if a simple
sort is used. Also, an ASCII sort is a byte-by-byte operation, and
doesn’t take into account place-values, so that ‘20’ is considered
greater than ‘100’ as ‘2’ is greater than ‘1’.

Suppose your input file, this.text, contains the following lines:

5 Tables
1 Desk
50 Pencils
100 Books
40 Note Pads
10 Lamps

sort this.text would result in the following:

1 Desk
10 Lamps

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

100 Books
40 Note Pads
5 Tables
50 Pencils

The ASCII sort starts by comparing the first digit in each column
without regard to its decimal position. To sort the file in numerical
sequence, use sort -n this.text, which results in:

1 Desk
5 Tables
10 Lamps
40 Note Pads
50 Pencils
100 Books

In this case, all blanks are disregarded and the first ‘token’ found in
each line is considered a numeral.

When the -n flag is used, the minus sign and decimal point have their
usual mathematical meanings, as illustrated in the following example.
Suppose this.text contains the following lines:

1000
100
10
1
0.1
.01
0.001
.0001
-1
-10
-100
-1000

Note that the file is currently sorted numerically from the largest
positive to the smallest negative number. If you simply entered sort
this.text, the results would be as follows:

-1
-10
-100
-1000
.0001
.01
0.001
0.1
1

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 17

10
100
1000

The ASCII sort order position the entries first with those that begin
with the minus, followed by those that begin with the period, then the
numerals. To sort the file into the proper numerical sequence, enter
sort -n this.text which would display:

-1000
-100
-10
-1
.0001
0.001
.01
0.1
1
10
100
1000

The numbers now appear in their proper sequence, taking into account
negative numbers and decimals.

Reversing the sort order results (-r flag)

The -r flag reverses the order of the sort results. For example, suppose
your input file, this.text, contains the following lines:

 1 airplane
 1 jet
 55 motorcycles
 3 bicycles
120 trucks
 5 boats
230 automobiles
 75 vans

sort this.text would result in the following:

 1 airplane
 1 jet
 3 bicycles
 5 boats
 55 motorcycles
 75 vans
120 trucks
230 automobiles

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The default ASCII sort order also happens to be the numeric order as
the columns of numbers line up properly. Suppose you wanted to sort
this list with the most common vehicles first and the rest in descending
order. To do this, use sort -r this.text, which displays:

230 automobiles
120 trucks
 75 vans
 55 motorcycles
 5 boats
 3 bicycles
 1 jet
 1 airplane

In this case, the command performs the sort operation on the file, then
reverses the order prior to display.

Checking the results (-c flag)

The -c flag checks a file to ensure it is sorted correctly according to the
other flags specified on the command line, returning a code with the
result of the check. When this flag is used, the command doesn’t
display the text of a sorted file, as with other flags. Rather, it displays
one of two things: either the first line that’s out of order or just the
command prompt, if the file is sorted correctly.

Suppose your input file this.text contains the following lines:

avocado
butter
Cheese
doughnut

Note that ‘Cheese’ begins with an uppercase ‘C’. If you were to enter
sort -c this.text, the result would be:

sort: disorder: Cheese

as an ordinary ASCII sort puts an uppercase ‘C’ before all lowercase
letters.

By contrast, sort -cf this.text just returns the command prompt,
indicating that the file is correctly sorted (the -f flag tells sort to ignore
case). As this.text satisfies this requirement, sort -cf returns ‘RC=0’.

A -c flag is normally associated with sort being called from a script,

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 19

which then acts according to the return code (a non-zero value
indicates that the file is not sorted correctly). An example of its use is
a script that checks files prior to a merge operation.

Ignoring non-printable characters (-i flag)

The -i flag ignores non-printable characters when sorting. For instance,
some text editors insert control characters, such as Control+M (‘End-
Of-Line’) and Control+Z (‘End-Of-File’), in the file, while FTP also
inserts non-printable characters if it wrongly makes a binary transfer
of an ASCII file from an operating system other than Unix. Your file
would then contain the non-printable characters listed above.

Sort -i disregards these characters when sorting.

Specifying a sort key (-k flag)

The -k flag specifies a sort key. The key definition is specified as a
character string following the flag, as in:

sort -k KeyDef filename

Sort keys are discussed in detail later in the second part of this article,
which appears in next month’s issue.

Merging multiple input files (-m flag)

The -m flag merges multiple input files. For the merge to be useful,
the input files must already be sorted. For example, suppose you had
the following three files:

REFGUIDE.WRITERS
Mark Baker
Jim Smith
Bill Williams

ADMGUIDE.WRITERS
Wilma Daniels
Mark Mathers
Sandy Southland

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

USRGUIDE.WRITERS
Doug Danford, Jr
Cindy Danwood
William Davis

Note that each file has already been sorted alphabetically on the
second field. To merge the three files using the sort command, enter:

sort -m +1 *.writers > all.writers

When completed, the file all.writers contains:

Mark Baker
Doug Danford, Jr
Wilma Daniels
Cindy Danwood
William Davis
Mark Mathers
Jim Smith
Sandy Southland
Bill Williams

Note that all lines in the file are sorted on the second field. The -m flag
tells sort to merge the already sorted input files into one sorted output
file. The +1 key tells sort to skip the first field and sort on the second
and any remaining fields. This spares sort some processing, which
can be an efficient way to merge large sorted files.

Note that you can use the -c flag to determine whether input files are
sorted before using the -m flag.

Specifying an output file (-o flag)

The -o flag specifies an output file for results of the sort. If you enter:

sort -o that.text this.text

sort sorts the contents of this.text and store the results in that.text.

A common use of this flag is to redirect the output of the sort back into
the file being sorted. This replaces the input file with the data sorted
according to the flags on the sort command. The -o flag allows the
output filename to be the same as the input filename, unlike the
standard redirection ‘greater than’ sign (>), which requires you to
specify different files.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 21

If you enter:

sort -o this.text this.text

sort sorts the contents of this.text and stores them back in this.text,
overwriting the previous text.

Specifying a field separator (-t flag)

The -t flag specifies a field separator character, which is a string
following the flag, as in:

sort -t Char filename

For example, suppose your input file this.text contains the following
lines:

0001:maxwell:032998
0004:martin:043098
0005:cooper:051598
0002:smith:052298
0006:jones:110898
0003:bakerfeld:120998

Note that the colon (:) separates the various fields on each line – in this
case, a sequence number, a name, and a date field. The file is currently
sorted on the date field. If you were to simply enter sort this.text, the
results would be:

0001:maxwell:032998
0002:smith:052298
0003:bakerfeld:120998
0004:martin:043098
0005:cooper:051598
0006:jones:110898

In this case sort just arranges lines alphabetically, starting with the
first character. Suppose you want to sort on the second field (the name
field). To do this, enter sort -t: +1 this.text which results in the
following:

0003:bakerfeld:120998
0005:cooper:051598
0006:jones:110898
0004:martin:043098
0001:maxwell:032998
0002:smith:052298

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The -t: tells sort that the colon is the field separator, and +1 tells it to
skip one field (the sequence number) to get to the first field on which
to sort. The remainder of the text (the name and date fields) is then
sorted alphabetically. The -t flag is useful for database entries that use
separator characters other than blanks, which is often the case with
AIX system databases.

Disregarding all but one duplicate entry (-u Flag)

The -u (‘unique’) flag disregards all but one of any duplicate entries.
If the data you want to sort contains duplicate entries, and you’re not
interested in duplicates, use the -u flag. For example, suppose this.text
contains the following:

drum
accordion
drum
drum
cello
bass
accordion
cello
drum

If you were to enter sort this.text, the results would be:

accordion
accordion
bass
cello
cello
drum
drum
drum
drum

By contrast, sort -u this.text would display:

accordion
bass
cello
drum

Specifying a directory to use for temporary files (-T flag)

The -T flag specifies the directory to use for temporary files, as in:

sort -T DirName filename

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 23

The sort command normally uses the first available directory from the
following list to store temporary files during processing:

/var/tmp, /usr/tmp, /tmp.

Use the -T flag if you want to use a directory other than one of the
defaults or you want to use a specific default directory. This could be
a benefit if large files are being sorted and space is limited in the
default filesystems.

Sorting in ASCII order (-A)

The -A flag sorts text in ASCII order. This is the default sort order for
the English language and C. If you are working in a locale that uses
a different sort order, use the -A flag will sort in ASCII order instead.
Figure 1 shows the flags for the sort command.

David Chakmakian (USA)  Xephon 1999

Figure 1: Flags for the sort command

Flag Description
-A Sorts in ASCII order
-b Disregards leading blank spaces

-c Perform a check on the sort results
and sets a return code

-d Sorts in dictionary order
-f Folds letters to uppercase

-i Ignores non printing characters
-k Key Def Specifies a sort key
-m Merges multiple input files
-n Performs a numeric sort
-o OutFile Specifies an output file
-r Reverses the order of the sort results
-t Char Specifies a field separator character
-u Disregards all but one of duplicate entries
-T Dir Specifies a directory for temporary files

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

From heavy processes to light threads

A program is often required to react to external events that arise in an
unregulated way. Such events usually cannot be handled sequentially
– only parallel operation allows the program to react appropriately to
them.

PROCESSES AND FORK()

Processes are started and directly controlled by the operating system.
Processes are kernel-level entities that include such attributes as a
virtual memory map, file descriptors, system variables (such as a user-
ID), and much more. Each process has its own collection of these
attributes. The only way a process can access, query, or change the
state of data in this structure is by means of a system call. All parts of
the process structure are in kernel space. A user program cannot
directly touch any of this data. By contrast, all user code (functions,
procedures, etc) and user data (constants, variables, etc) can be
accessed directly.

A process can fork itself using the fork() subroutine, which creates a
copy of the process. It can still detect external influences and react
appropriately to them. The new process created by fork() is called a
‘child process’. Both the child and parent continue execution, starting
with the instruction that follows the call to fork(). The child is a copy
of the parent, so it gets a copy of the parent’s data space, heap, and
stack. Consider the following example and notice what happens to the
data stored in the integer variable i. (Note that the continuation
character, ‘➤’, is used to indicate that a single line of code maps to
several lines of print.)

EXAMPLE OF FORK()
#define _ALL_SOURCE

#include <stdio.h>
#include <sys/types.h>

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

int
main (void)
{
 int i;
 pid_t pid;

 i = 123;
 (void) printf("before fork() : getpid() = %5d, i = %d\n",
 getpid(), i);

 if ((pid = fork()) < 0) {
 (void) fprintf(stderr, "Error while forking\n");
 exit(1);
 }

 if (pid == 0) { /* child process */
 (void) printf("child : pid = %5d, getpid() = %d,
 ➤ i = %d\n", pid, getpid(), i);
 } else { /* parent process */
 (void) printf("parent : pid = %5d, getpid() = %d,
 ➤ i = %d\n", pid, getpid(), i);
 }

 (void) sleep(1);
 (void) printf("Who am I? getpid() = %5d\n", getpid());

 return(0);
}

The output of this code is shown below:

before fork() : getpid() = 22628, i = 123
child : pid = 0, getpid() = 19814, i = 123
parent : pid = 19814, getpid() = 22628, i = 123
Who am I? getpid() = 19814
Who am I? getpid() = 22628

Notice that the parent receives the child’s process ID and also that the
child inherits the parent’s variables.

THREADS

A thread is a user-level entity. The thread structure exists in user space
and can be accessed directly via a thread library call, which is a
normal, user-level function. Each thread has its own set of registers
(stack pointer, program counter, etc) as well as its own stack. However,
the code that the thread is executing is not a part of the thread. The

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

actual code (functions, routines, etc) is global and can be executed by
any thread.

The essential point about threads is that they are user-level entities.
Virtually everything that you do to a thread happens at the user level
and no system calls are involved. As no system calls are involved,
threads are fast. No kernel structure is affected by the existence of
threads and no kernel resources are consumed. Threads are cheap. The
kernel doesn’t even know about the existence of threads.

REENTRANT FUNCTIONS AND THREAD-SAFE LIBRARIES

All threads belonging to a process share the process’s state. They all
reside in the same memory space and have access to the same
functions and data. When a thread alters one of a process’s variables,
all other threads see this change when they next access the variable.
For example, if one thread opens a file to read it, all the other threads
can also read the file.

While this provides some very useful benefits, it can also lead to
problems. To avoid possible data corruption when two or more
threads call the same function at the same time, functions must be ‘re-
entrant’. And to avoid data corruption when two or more functions
access the same resource at the same time, functions must be ‘thread-
safe’. That means that shared resources must be protected by a locking
mechanism.

A library is thread-safe when multiple threads can run a library
function without data corruption. For this to be the case, all functions
in the library must be both re-entrant and thread-safe. In the existing
C library, most standard functions are re-entrant, but some are not. Re-
entrant functions and thread-safe libraries are characterized by the
suffix _r.

WHY USE THREADS?

The main benefits of writing multithreaded programs are:

• Performance gains from multiprocessing (parallelism)
Computers with more than one processor provide multiple

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 27

simultaneous paths of execution. Multiple threads provide an
efficient method for application developers to use the parallelism
of the hardware. Different threads can run on different processors
simultaneously with no additional effort on the part of the
programmer.

• Increased application throughput
When a process requests a service from the operating system, it
must wait for that service to complete, often leaving the CPU idle.
Even on a uniprocessor, multithreading allows a process to
overlap computation despite the presence of one or more blocked
system calls. While the requesting thread must wait, other threads
in the process can continue execution.

• Increased application responsiveness
Blocking one part of a process need not block the whole process.
While single-threaded processes are unresponsive when
performing intensive processing or system work, multithreaded
applications remain responsive. Intensive operations can be
carried out by independent threads allowing the application to
remain active and allow user input. Single-threaded applications
are more prone to being swapped out of real memory. This
additional work, with its accompanying context switching, results
in slow, unresponsive applications.

• Enhanced process-to-process communication
While a multi-processes application uses traditional IPC (Inter
Process Communication), a multithreaded application can simply
use the process’s shared memory.

• Efficient use of system resources
The operating system must allocate a complete set of resources
for process structure. By contrast, an application can create
hundreds or even thousands of threads with only a minor impact
on the system’s resources. Threads use a fraction of the resources
used by a process.

• Ability to use the inherent ‘threadedness’ of distributed objects
Distributed objects and request brokers are inherently
multithreaded, even when used by a single-threaded application.

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• One binary for uniprocessors and multiprocessors
In most older parallel processing schemes, it was necessary to
tailor a program for the individual hardware configuration. With
threads this customization is not required as the multithreaded
paradigm works well irrespective of the number of CPUs. A
program can be compiled once, and it will run acceptably on
either a uniprocessor or a multiprocessor (on which) it will run
faster.

• Ability to create well-structured programs
A traditional program that tries to do too many things at once is
quickly swamped with lots of complex code required to coordinate
these tasks. A threaded program can do the same tasks with much
less, and far simpler, code.

• There can be a single source for multiple platforms
Many programs must run on numerous platforms. With the
POSIX threads standard, it is possible to write a single source and
recompile it for different platforms.

POSIX THREADS

In June 1995 the IEEE ratified the POSIX.1c standard for threads.
These threads, often called ‘pthreads’, are defined in a thread library
containing over sixty functions. The standard does not define whether
these threads are implemented at the user-level or kernel-level. This
results in differences in scheduling, and depends on how the operating
system handles threads.

AIX Version 4, which itself has a multithreaded kernel, supports the
draft 7 version of the POSIX specification. The POSIX.1c draft 10 is
to be the final standard, and it’s IBM’s intention to comply with it in
due course. The programs that follow were tested using AIX 4.2.1.

CREATING POSIX THREADS

A thread is created using the function pthread_create(). The first
parameter is the return value of the new thread’s identifier. The second
attribute is a pointer to an attribute object describing the thread and
containing values such as stack size, stack address, detach status,

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 29

scheduling policies, priority, and the like. A null pointer means that
default values are to be used. The third parameter is a pointer to the
function that is to be executed as the thread’s starting function. The
fourth and last parameter points to the starting function’s parameters.

EXAMPLE OF CREATING THREADS
#define _ALL_SOURCE

#define NUMBER_OF_THREADS 10

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

void *
handle_client(void *parameters)
{
 (void) fprintf(stderr, "Thread %s is doing its work...\n",
 ➤ parameters);
 sleep(atoi(parameters)); /* simulate work */
 (void) fprintf(stderr, "Thread %s is finished!\n", parameters);

 return NULL;
}

int main(void)
{
 int i, ierror;
 char sbuffer[NUMBER_OF_THREADS][4];
 pthread_t Thread[NUMBER_OF_THREADS];

 for (i = 0; i < NUMBER_OF_THREADS; i++) {
 (void) sprintf(sbuffer[i], "%d", i);
 if ((ierror = pthread_create(&Thread[i], NULL, handle_client,
 (void *) sbuffer[i])) != 0) {
 (void) fprintf(stderr, "pthread_create() error %d\n",
 ierror);
 exit(1);
 }
 pthread_detach(Thread[i]);
 }

 /* wait until all threads are surely finished */
 sleep((NUMBER_OF_THREADS * (NUMBER_OF_THREADS / 2)) + 5);

 return(0);
}

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Compile the above example using the following command:

xlc_r -o example1 example1.c -lpthreads

In case you don’t have the xlc_r compiler, there’s no need to worry –
make it yourself by linking the existing xlc C compiler to it:

ln /usr/bin/xlc /usr/bin/xlc_r

If you take a look at the /etc/xlc.cfg configuration file you’ll see that
xlc_r has similar, yet slightly different, entries when compared with
xlc. This is because it uses thread-safe, re-entrant libraries.

A thread terminates when it returns from its starting function. This can
occur with a return() statement or by using the thread library’s
pthread_exit() function. The thread’s exit value is either its return
value or pthread_exit()’s argument value, depending on how it
terminates. The thread also terminates when its creator dies. A word
of warning: do not terminate threads using exit(), as this terminates not
only the thread but also the entire process. The call to
sleep(NUMBER_OF_THREADS + 5) in the program provides enough
time for the threads to be created and exit by themselves.

pthread_join() is used by a thread to wait for another thread to exit,
while pthread_detach() indicates that you have no interest in the
thread’s return value.

SYNCHRONIZING POSIX THREADS

As multithreading brings with it the risk that a resource may be over-
used, POSIX threads support ‘mutex’ locks (‘mutually exclusive’).
Notice the use of the functions pthread_mutex_init(),
pthread_mutex_lock(), and pthread_mutex_unlock() in the modified
version of the previous example shown below.

EXAMPLE OF SYNCHRONIZING THREADS
#define _ALL_SOURCE

#define NUMBER_OF_THREADS 10

#include <pthread.h>
#include <stdio.h>

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 31

#include <unistd.h>

pthread_mutex_t db_mutex;

void *
handle_client(void *parameters)
{
 pthread_mutex_lock(&db_mutex);
 (void) fprintf(stderr, "Thread %s is doing its work...\n",
 parameters);
 sleep(atoi(parameters)); /* simulate work */
 (void) fprintf(stderr, "Thread %s is finished!\n", parameters);
 pthread_mutex_unlock(&db_mutex);

 return NULL;
}

int main(void)
{
 int i, ierror;
 char sbuffer[NUMBER_OF_THREADS][4];
 pthread_t Thread[NUMBER_OF_THREADS];

 pthread_mutex_init(&db_mutex, NULL);

 for (i = 0; i < NUMBER_OF_THREADS; i++) {
 (void) sprintf(sbuffer[i], "%d", i);
 if ((ierror = pthread_create(&Thread[i], NULL, handle_client,
 (void *) sbuffer[i])) != 0) {
 (void) fprintf(stderr, "pthread_create() error %d\n",
 ierror);
 exit(1);
 }
 pthread_detach(Thread[i]);
 }

 /* wait until all threads are surely finished */
 sleep(NUMBER_OF_THREADS + 5);

 return(0);
}

ADDITIONAL PTHREAD FUNCTIONS

pthread_cond_init() initializes a condition variable. A thread then
waits with pthread_cond_wait() until the condition variable is triggered
by the right value. It can then set a mutex lock to use an unshareable
system resource. If more than one thread is waiting for the condition

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

variable, the operating system’s scheduling policies determine which
thread is scheduled.

Some of the sixty other pthread library functions deal with the
scheduling of threads, their signal handling, thread specific data, and
so on.

SUMMARY

While the example in this article may seem rather trivial, it nevertheless
demonstrates the capabilities of a multithreaded program compared to
traditional, process-generating programs. Thread programming in the
AIX environment is still relatively new and is often not specifically
supported. Nevertheless, its power and flexibility mean that it warrants
a developer’s attention.

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 1999

New RS/6000 hardware

Traditionally autumn is the time of IBM’s RS/6000 and AIX
announcements. This season’s crop is particularly varied: it contains
announcements of low and high-end RS/6000 systems and of major
enhancements to the AIX operating system.

RS/6000 ENTERPRISE SERVER S70 ADVANCED

The new RS/6000 S70 Advanced (S7A) is based on the existing
Model S70, with enhancements in the areas of performance, capacity,
and RAS (‘Reliability, Availability, and Serviceability’). The Model
S70 can be upgraded with all the new features of S7A, which is very
important to protect investments made by existing users.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

The system can be configured with up to three four-way CPU boards
equipped with 262 MHz RS64-IIs. Each processor comes with 1 GB
of L1 cache and 8 GB of L2 cache. The cache size is double that of the
previous generation of 125 MHz RS64 CPUs available with the
Model S70. The system comes with a 9.1 GB UltraSCSI hard disk and
1 GB of RAM. (The S70 comes with a 4.5 GB SCSI-2 F/W hard disk
and 512 MB of RAM.) The basic S7A comes with two UltraSCSI
adapters, compared with 2 SCSI-2 F/W adapters in the S70. The new
system supports up to 32 GB of RAM when 2 GB memory cards are
used.

System reliability has been enhanced by the introduction of the new
‘Advanced I/O’ drawer. This drawer, which is three EIA units higher
than an S70 I/O drawer (which is seven EIA units tall) has dual AC
power supplies and N+1 cooling fans. The drawer has additional
benefits, such as SSA disk support in secondary I/O drawers, ultra
SCSI support, separate cabling for dual six-packs for improved
reliability and performance, and support for the installation of PCI
cards without the need to remove drawers.

SP SYSTEM ATTACHMENT ADAPTER

The SP System Attachment Adapter allows the integration of models
S70 and S7A in the framework of an RS/6000 SP system. The adapter
allows the an S7X SMP server to be connected to the switch of an SP
system. The S7x system effectively becomes an SP node, and is
managed from the SP’s Control Workstation under the IBM Parallel
Systems Support Program for AIX. This integration enables the
utilization of the S7X’s extended memory and OLTP performance for
complex data processing applications, such as ERP and data mining.

The adapter must be installed in slot 9 of the primary I/O drawer of the
S7x server. Additionally the machine must have at least one 10 Mbps
Ethernet adapter. The adapter is supported only under AIX 4.3.2 and
above.

ADVANCED POWER3 MICROPROCESSOR

The POWER3 processor, along with its integration in the RS/6000

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

43P Model 260 workstation/server, is perhaps the most significant
feature of the whole announcement. This 64-bit microprocessor,
based on the PowerPC architecture, provides the floating point
performance needed to support demanding scientific and engineering
applications. Being the first of the new generation of chips (which are
to be the basis of future computationally-intensive SMP servers), the
chip runs at only 200 MHz. In spite of this, it has clocked 13.2
SPECint95 and 30.1 SPECfp95 and is the most powerful floating
point chip available on the market today.

The microprocessor has eight execution units and is able to perform
many operations concurrently. Up to four instructions can be dispatched
at a time and executed out of order, while still assuring program
integrity. The chip has a 32 KB instruction cache and 64 KB data
cache. To ensure a sufficiently high memory transfer rate the chip
provides 6.4 GB/s bandwidth to cache (load/store L1 from/to L2) and
1.6 GB/s to memory (load/store L1 from/to memory).

THE IBM RS/6000 43P MODEL 260

The POWER3 microprocessor is the engine behind the new 43P
Model 260. This 64-bit Symmetric Multi-Processing (SMP) system is
designed to provide extended floating-point capabilities. The Model
260 can be configured with up to two 200 MHz processors with 4 MB
of Level 2 (L2) cache per processor. The system memory can be
expanded up to 4 GB. You should note, however, that 4 GB of RAM
requires AIX version 4.3.2 – version 4.2.1 supports only up to 3 GB.

A Fast Ethernet adapter, UltraSCSI adapter, and service processor are
integrated within the machine. Other connectors available as standard
are: tablet, keyboard, mouse, two serial, one parallel, and stereo audio.
The system provides two disk drive bays, one of which is used by the
disk supplied with the system (either 4.5 GB or 9.1 GB). Additional
disks can be installed in the available bay. The system is expandable
with up to 27.3 GB of internal disk storage when three 9.1 GB disks
are installed. Two of the media bays are occupied by a 1.44 MB 3.5"
diskette drive and a 32x max CD-ROM. Five PCI slots are available
(two 64-bit, 50 MHz slots and three 32-bit, 33 MHz slots). All are long
slots. The system’s performance looks particularly impressive when

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

compared with the previous generation of SMP workstations Model
240, as shown in Figure 1.

Benchmark Model 240 Model 260 Improvement

SPECint_base95 7.8 12.5 60%

SPECfp_base95 5.6 27.6 393%

SPECint95 8.71 13.2 52%

SPECfp95 5.87 30.1 413%

SPECint_base_rate95

70 111 58%

SPECfp_base_rate95

50.1 243 385%

Relative OLTP (1/2 procs)

3.7 11 184%

132 222 68%

1 processor

2 processors

89.5 468 423%

1 processor

2 processors

1 processor

2 processors 5.2 21 304%

Figure 1: Comparing new models with the Model 240

THE IBM RS/6000 43P MODEL 150

The 43P Model 150 is the successor to the 43P Model 140 workstation,
and is designed as an entry-level workstation or workgroup server. It
uses a 375 MHz PowerPC 604e processor with improved memory
controller and SDRAM memory, and has a memory bus speed of 83
MHz (compared with 66 MHz for the Model 140). System memory
can be expanded up to 1 GB. A Fast Ethernet adapter and UltraSCSI
adapter are integrated within the machine. It comes with the same
standard connectors as the Model 260, and, like the Model 260,
provides two disk drive bays, one of which is occupied by the system
disk (either 4.5 GB or 9.1 GB). Additional disk can be installed in the
available bay. The system is expandable with up to 27.3 GB of internal
disk storage when three 9.1 GB disks are installed. Two of the media
bays are taken up by a 1.44 MB 3.5" diskette drive and a 32x max CD-
ROM. Five 32-bit PCI slots are available (two short and three long).

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

With the exception of floating point performance, the performance of
the system shows an improvement proportional to the increase in
processor speed relative to fastest Model 140 running at 332 MHz.

POWER GXT3000P GRAPHICS ACCELERATOR

The POWER GXT3000P graphics accelerator is IBM’s top-of-the-
range graphic card. Based on industry standard benchmarks, its
performance is as much as five times better than that produced so far
by IBM’s workstations (Figure 3).

Figure 2: Model 150 compared with the Model 140

Benchmark Model 140 Model 150 Improvement

SPECint_base95 12.5 14.5 16%

SPECfp_base95 5.99 9.85 64%

SPECint95 12.9 15.1 17%

SPECfp95 6.21 10.1 63%

Relative OLTP 5.3 6.0 13%

Figure 3: GXT3000 compared with fastest previous model

43P Model
260

43P Model
150Model

43P Model140
(332 MHz)

uni/multi-
processor

uni/multi-
processor

unipro-
cessor

unipro-
cessor

Graphical card GXT3000P GXT3000P GXT800P(T)

PLBwire93 436.9/627.4 257.3 157.4

PLBsurf 93 610.8/866.2 468.9 264.9

CDRS-03 218.17 94.76 40.97

GLperf line 7.05 M 4.9 M 1.5 M

GLperf triangle 5.19 M 3.7 M 924 K

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

The card, which is supported only on the 43P Model 150 and 43P
Model 260, fits both 32 and 64-bit PCI slots, taking up two slots. The
list of characteristics of the accelerator is very impressive:

• 1280 by 1024 maximum resolution at up to 85 Hz refresh rate
(1024 by 768 resolution at 120 Hz)

• 8-bit and 24-bit double-buffered colour buffers

• 24-bit Z-buffer

• 8-bit overlay buffer

• 8-bit window ID buffer

• 8-bit stencil buffer

• 8-bit double-buffered alpha buffer

• Eight 256-entry hardware colour tables

• Separate gamma correction table

• Hardware accelerated lighting

• Increased sub-pixel addressing (compared with previously
available adapters)

• Support for ‘face culling’

• Support for OpenGL polygon offset

• Support for OpenGL polygon mode

• Hardware support for OpenGL specular lighting

• 32 MB texture memory

• Trilinear texture and 3D texture mapping

• Video Support

• Point sampling and bilinear scaling

• Colour space conversion

• Stereo sound

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• 12-bit RGB on a per-window basis

• Preserved aspect ratio.

STEALTH BLACK MONITORS

IBM has introduced a new line of monitors to match its new advanced
workstations: Models P72, P92, and P202. These monitors are
compliant with the latest environmental and power consumption
regulations. Models P202 and P92 have two separate video inputs that
can be connected to AIX workstations and PCs simultaneously (the
active input is selected by means of buttons located on the front panel).
Models P202 and P92 support resolution of up to 1600 by 1200, while
Model P72 supports a maximum resolution of 1280 by 1024 pixels.

GIGABIT FIBRE CHANNEL ADAPTER

This adapter is the first implementation of the Fibre Channel Arbitrated
Loop (FC-AL) storage interconnect architecture on the RS/6000. FC-
AL provides a high-speed interconnect running at 100 MB/s for a
single loop of storage devices connected to a card. The technology is
based on an arbitrated loop that allows only one at a time device to
perform I/O on a bus. The card supports the following two types of
cable:

• Multimode 550/125 micron fibre with a minimum length of two
metres and a maximum of 500, using SC connectors and providing
a throughput of 1,062.5 Mbps.

• Multimode 62.5/125 micron fibre with a minimum length of two
metres and a maximum of 175, using SC connectors and providing
a throughput of 1,062.5 Mbps.

Only one initiator (card) is supported on the loop. The card has been
announced for Models S70/S7A under AIX 4.3 (or later). Support for
the F50, H50, and SP is expected to be announced in 1999.

GIGABIT ETHERNET ADAPTER

Gigabit Ethernet is an extension to the 10/100 Mbps IEEE 803.2
Ethernet standard, offering a higher bandwidth of 1,000 Mbps. The

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

card provides one full-duplex 100Base-SX connection. The adapter
has the following characteristics:

• Full duplex performance

• Support for ‘Jumbo Frame Rates’ (9 KB) under AIX 4.3.2 or later

• Hardware support for TCP, UDP, and IP checksums (needs AIX
4.3.2 or later)

• PCI Rev 2.0 and 2.1 compliant

• PCI bus mastering and 64-bit data and address buses running at
33 MHz or 66 MHz (requires 64-bit slot)

• Supported on Models 260, F50, H50, S70, and S7A

• Supported under AIX 4.2.1 and AIX 4.3.2

• Requires 850 nm multimode 62.5 or 50 micron fibre cables of up
to 500 m.

ARTIC960RXD DIGITAL TRUNK PCI ADAPTER

This intelligent communication adapter provides voice processing for
up to four T1 or E1 digital trunks lines, providing connectivity for up
to 96 T1 or 120 E1 voice channels in a single PCI slot. The card is used
by IBM’s DirectTalk Software. It’s supported on models 140, F50,
and H50 under AIX 4.2.1 and AIX 4.3.2.

ARTIC960HX 4-PORT PCI ADAPTER

This card has been announced previously as a replacement for the
four-port ISA multiprotocol communications controller adapter, which
is now withdrawn. The card provides four ports, which can be RS-449,
X.21, X.25, or X.35 running at up to 2.0 Mbps. The hardware provides
support for X.25, SNA, and BiSync WAN protocols. The card is
supported under AIX 4.2.1 and AIX 4.3.2.

4 GB EXTERNAL SLR5 QIC TAPE DRIVE

This external drive supports quarter-inch tape cartridges. It features
the improved IC-4GB format, while retaining compatibility with the

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

QIC-120/150, QIC-525, QIC-1000, and QIC-2GB formats. Up to 4
GB of data can be stored on a single cartridge (8 GB with compression),
which is a 300% improvement over the previous model. Sustained
data transfer rate is 380 Kbps without compression or 760 Kbps with.

32X SCSI CD-ROM DRIVE

The main feature of this internal CD-ROM drive, which is to be
installed in all new RS/6000 models, is an improved transfer rate of
4,800 Kbps. It is to be supported under all versions of AIX.

REFERENCES

1 RS/6000 Scientific and Technical Computing: POWER3
Introduction and Tuning Guide, SG24-5155, IBM Corporation

2 POWER3: Next Generation of 64-bit PowerPC Processor Design,
IBM white paper, 1998

3 The GXT3000P Graphics Accelerator, IBM white paper, 1998

4 The IBM RS/60000 43P Model 260, IBM white paper, 1998

5 RS/6000 Model S70 Family – Technology and Architecture, IBM
white paper, 1998

6 RS/6000 Model S70 RAS, IBM white paper, 1998.

System Engineer (Israel) © Xephon 1999

If you’d like to submit an article to AIX Update, please send
it to the editor, Harold Lewis, at harryl@xephon.com. Articles
may be submitted in ASCII text or in one of a number of
wordprocessor formats – for guidelines on creating and
submitting articles to AIX Update, please refer to our Notes
for contributors, which may be downloaded from Xephon’s
Web site (http://www.xephon.com).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

Performance reports

This month’s instalment concludes this article on performance reports,
the first part of which appeared in last month’s issue.

THE EXCEL SET-UP

In order to run the application successfully, it’s essential to set up
Excel as follows:

1 Maximize Excel’s window.

2 Ensure the ‘Full screen’ option in the View menu is off.

3 Set the screen resolution to 800 by 600 pixels (this is set in the
Display Control Panel’s Settings tab).

4 Excel should be set up to display the Formula Bar and Status Bar
(both these options are on the View menu).

There should be three rows of toolbars below the Excel menus. The
reason why the display needs to be set up this carefully is that the
application uses screen position when creating charts.

Your screen in Excel should look similar to the one in Figure 1. Note
that it doesn’t matter exactly which toolbars are used as long as there
are three below the menu bar.

Figure 1: The application’s interface in Excel

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

WINDOWS EXPLORER SETTINGS

Windows Explorer needs the following settings to allow the application
to open files correctly.

1 Start Windows Explorer.

2 Go to the View menu.

3 Select the Option menu item.

4 Click the View tab.

5 Ensure that Display the full MS-DOS path in the title bar is not
selected.

6 Select the option Hide MS-DOS file extension for file types that
are registered.

COLLECTION INFORMATION

Before setting up the application, it’s worth collecting the following
four important pieces of information about your set-up:

1 The path of the directory where you intend to keep report
workbooks. The application will save all reports produced in this
directory.

2 The full name of the RS/6000 server on which you wish to report.
This is used, where necessary, to distinguish the various systems,
and appear on reports.

3 The path of the directory where data files from the collection
scripts are to be kept (they must be accessible from the PC
running the application). This is the directory to which data files
are transferred using FTP or another suitable file transfer method
from RS/6000s.

4 The value of the MACHINE_ID variable from the control_load
collection script. This is used as the file name when the relevant
data file is built from within the application. You’ll encounter
problems if this value is not consistent between scripts.

Note that the value of the MACHINE_ID variable from the

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

format_command_output script is required later when you set up
the reports from the text data files. The MACHINE_ID from the
control_load script is used to set up a default report that can be used
as the basis of your own reports.

Once the Graph System Data workbook is created and saved with the
code that appears in the first part of this article (see Performance
reports, AIX Update Issue 38), two macros can then be run to set up
the collection procedure.

To run macros from Excel, open the Tools menu and select the Macro
option followed by the Macro sub-option. Select the required macro
from the list and click Run. This is also where to edit macros, if
necessary – just click Edit instead of Run and Excel will go straight to
the macro code.

THE GSD_RUNSETUP MACRO

The gsd_runsetup macro should be the first one run after the Excel
workbook is created and saved as ‘Graph System Data’. This macro
sets up all the worksheets needed by the application. It should be run
after you collect the information described in the previous section, as
the macro requests the directory where the reports are kept. When
specifying directories, it’s important to include the final backslash
(‘\’) of the path name (eg: ‘c:\data\’), otherwise problems occur. Note
that the information is requested by a plain input box, and no error
checking is done either on the existence or the accessibility of the
directory. This is the only piece of information required by this macro.
When the macro completes execution, the necessary building blocks
for the application are complete. What remains is to build the report
profiles. To help in setting up reports, a default report set up macro is
included.

THE DEFAULT_REPORT_SETUP MACRO

The default_report_setup macro is used to set up a report based on
sar information (using the -u option) obtained via the control_load
and format scripts. This sar file contains data on the RS/6000’s CPU
performance, and is used to set up a default report to which other

44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

information can be added. Three more items of information are
required by the macro and are prompted for:

1 The full name of the RS/6000 server you are reporting on.

2 The directory where data files from the collection scripts are kept.

3 The value of the MACHINE_ID variable from the control_load
collection script.

This data is used to generate the worksheets necessary for the three
reports available from the application. When the macro completes, the
basic information for the first run is complete. The Excel workbook
is saved at the end of the macro. If the workbook is closed and then re-
opened, the first run will take place. The Auto_Open name is used to
run a macro called builder , which controls report generations. Before
a run is attempted, make sure the data text files are transferred to the
relevant directories.

When the macro completes, three new worksheets are created. They
are as follows, where BOX is the full name of the RS/6000:

• BOX

• BOX ave

• BOX indy.

In addition, two empty Excel workbooks are created in the reports
directory. They are as follows (BOX is the full name of the RS/6000):

• BOX summary (for daily reports)

• BOX monthly summary (for monthly reports).

Before continuing, ensure that these worksheets have indeed been
created. If there are any problems, refer to the entries given during the
set-up macro procedures.

APPLICATION WORKSHEETS

The application, when set up, will have created several worksheets
and dialogue sheets. The following worksheets are vital to the proper
running of the application:

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 45

• Control

• Control ME

• Data

• Calculations

• Sheet5

Depending on how many reports are set up, extra worksheets will be
created for each additional report.

CONTROL WORKSHEET

This worksheet is used by the daily or weekly reports. It is the key
sheet that generates all the daily reports and sets out the scope of these
reports. Reports are run every day in the same order as they are set up,
the exception being the first day of the month (this enables the Control
ME sheet to be activated for month-end reports).

The row containing ‘END’ in each of the specified columns should be
left alone, as it is used to determine the last row of the reports.

Sheet machine ID column

This entry refers to the worksheet in the workbook that contains the
charts needed to generate reports for the specified RS/6000. The
worksheet must exist and it must have exactly the same name as
appears here. This enables you to set up different reports that may be
needed by specific groups. For example, an overview may be produced
for managers, while a more detailed report is produced for
administrators. These can be set up using the same data, though
different summary reports are used (see the summary file for further
explanation). As a worksheet is created using only this input, it must
contain only characters that are valid for a worksheet name (refer to
Excel documentation for a list of these characters).

Data directory

This entry points to the directory that contains the text data files
created by the collection scripts. The directory must be accessible

46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

from the PC and the path must end with a backslash (for example
‘c:\data\’ not ‘c:\data’) – this is required as only the file name is
appended to the path.

Full box name

This is the name of the RS/6000 that’s being reported on. The name
entered here appears in all reports generated.

Summary File

This is the workbook created to hold the summary reports. It must be
in place before the program is run, as the program tries to open it
before processing takes place.

Report date from

This is the number of days subtracted from the current date to yield the
date on which the report should commence. For example, if the value
is ‘2’ and the program is run on June 3, 1998, then the report starts from
June 1, 1998. It’s important that this figure does not pre-date the start
of collections, as it is used to generate the data file names. Only
numeric data should ever be entered in this field or unpredictable
results may result.

Report date to

This is a number that is subtracted from the current date to yield the
date to which the report should extend. For example, if the value ‘1’
is entered in this field and the program is run on June 3, 1998, then the
report extends to June 2, 1998. Note that, if the start and end dates of
a report are not in the same month, two data files are used in the
reporting process. This somewhat slows down the generation of
reports. Only numeric data should ever be entered in this field or
unpredictable results may result.

‘Report time from’ and ‘Report time to’

Time values in this field should be in the format HH:MM; any other
format may yield unpredictable results. Specifying this value
determines the time at which reports start (‘Report time from’) or end
(‘Report time to’).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 47

Load File Extension

This can be either .TXT or A.TXT.

• .TXT refers to daily data from the collection routines

• A.TXT refers to averaged data from the collection routines (sar
data).

Any other entry in this field will not generate a successful report.

Data file type

This will be either DAT or AVE

• DAT refers to the daily data from the collection routines

• AVE refers to the averaged data from the collection routines (sar
data).

Any other entry in this field will not generate a successful report.

CONTROL ME WORKSHEET

This worksheet is used for monthly reports. It controls the reports and
is generated the first time the program is run each month. The set up
and format of data in each of its columns is exactly the same as that
of the Control worksheet unless specified below.

The row containing END in each of the specified columns should not
be altered as it’s used to establish the last row of reports.

Summary file

If individual reports are specified, then the entry here should be
‘None’ (it has to be exactly ‘None’, without the single quotes, or the
program will not run properly).

Report date from

If monthly averaged reports are specified, then the entry in this field
(which must be a number) must match the entry in Report date to. As
the Control ME sheet is activated the first time the program is run each
month, the value entered here should be large enough to take the report
into the previous month. For example, if you run the application only

48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

on Monday to Friday, then the figure in this field must be at least ‘4’
to ensure the previous month’s data is processed.

Report date to

If individual reports are specified, then the entry in this field should
be ‘ALL’. This is the only accepted entry for this type of report. For
monthly averaged reports, the figure entered here must match that in
the Report date from field.

‘Report time from’ and ‘Report time to’

No value needs to be entered in either of these fields for monthly
averaged reports.

Load file extension

For monthly averaged reports, the file extension should be ‘A.TXT’;
for individual reports, it should be ‘.TXT’.

Data file type

For monthly averaged reports, the file extension should be ‘AVE’; for
individual reports it should be ‘DAT’.

SHEET5 WORKSHEET

This sheet is used to create reports for the specified RS/6000s. It must
match an entry in the Sheet Machine ID column of either the Control
or Control ME worksheets. This is where reports are created. Do not
delete this worksheet as it is used to create new worksheets.

File

This specifies the start of the file name to use. For example, if BOXA
appears here, then the MACHINE_ID variable is ‘BOX’ and the
specified data file is ‘A’.

Number of charts

This is the number of charts that are created from data in the specified
file. As more charts are added, the size of the report increases. This can

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 49

be a problem on systems that are short on memory. If you find that your
system runs out of memory, then reduce the number of charts
produced for each report.

Reduce column scale

This contains references to columns that are to be rescaled when the
data file is opened. If graphs are based on data that differs greatly in
size, this option can be used to reduce columns by orders of magnitude.
Hence, if data in column D is in the tens, in column E in thousands,
and in column F in ten thousands, the resulting entry to rescale the sets
of data is:

E100,F1000

The entries in this column may contain only a column letter followed
by a one and a number of noughts, and entries should be separated by
a comma; any other character may produce unpredictable results. It is
possible only to reduce columns – there is no option for increasing
them.

Add to save name

This option is used to add an extension to individual reports’ file
names. This is useful when many reports are derived from one data
file, as the same name is always used to save the report workbook. For
example, disk reports could be grouped by the disks’ volume groups,
and this could be used as the extension. All reports derived from the
J file would be saved with the extension VG. The entry rootvg would
yield the filename ‘BOXJrootvg’ for the workbook.

Name of chart

This name is used as the title of the chart and the worksheet containing
the graphs. As it’s used as the name of the worksheet, only valid
worksheet name characters may be used.

Columns to chart

This entry specifies the columns in the data file that are used to create
charts. It’s in the form of a character string that contains the relevant
column letters. (The first part of this article, see AIX Update Issue 38,

50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

contains two tables with details of the data in each column.) For
example, to chart sar information on CPU from the U daily data file,
the entry would be ‘CDEFG’, where:

• C charts the time column

• D charts %sys CPU column

• E charts %usr CPU column

• F charts %wio CPU column

• G charts %idle CPU column from the data file.

If the data file runs to more than 26 columns, then the format of column
27 on is as follows: ‘CDA+A’, where ‘A+A’ is column 27. There is a
limit of 256 columns for the data file, which is a result of Excel’s limit
of 256 columns per worksheet.

‘X axis title’ and ‘Y axis title’

These are the titles of the x- and y-axes of the chart respectively.

Type of chart

Five types of chart are supported; they are:

1 xlLine

2 xlLineMarkers

3 xlLineStacked

4 xlColumnStacked100

5 xlColumnStacked.

Refer to Excel’s documentation for an explanation of these charts.

Design type

Two different layouts are available for charts on report pages. The first
is six-to-a-page in a 2 by 3 format and the second is three-to-a-page
in a 1 by 3 format (only on a landscape page).

Correspondingly, the two possible entries for Design type are:

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 51

1 ‘2 by 3’ format

2 ‘1 by 3’ format.

This setting is ignored if you are producing monthly reports, in which
each chart appears on its own worksheet. Therefore the only reports
affected are Daily and Individual reports.

The format and positioning of charts was developed for a LaserJet 4si
printer; changing margin settings in the page layout may be necessary
to allow charts to fit your printer’s page output. There is a macro to
automate this called page_setup_margins – to run it you need to
uncomment some statements in the main builder macro.

Footer text

Text in this entry appears in each report chart sheet’s footer.

Standard scale

The two options available are ‘Y’ and ‘N’, which control the use of a
standard scale. ‘Y’ tells the application to use the same scale on all
charts. This requires it to detect the largest number in the data file for
use in the standard scale. ‘N’ tells the application that each chart is to
have its own scale.

Round up max scale

If a standard scale is used, then this field should conform to one of two
options:

• A positive number is used as the MAXIMUM value on all charts.

• A negative number tells the application to round up the maximum
value in the data file by the number of decimal places specified.
For example, if ‘–3’ is entered, and the maximum value in the data
file is 950, then the maximum of the scale should be 1,000.

DATA WORKSHEET

Do not delete this worksheet as it is vital to the application. It holds
information used for building reports. The information comprises

52 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

named ranges used by dialogue sheets to build worksheets. The
worksheet also contains the directory where report workbooks are
saved (if you need to change this for any reason, do so manually by
entering the new value in row 1 column 7). This worksheet also
determines which control worksheet is processed (that is, whether
Control or Control ME is used when the Excel workbook opens),
which depends on the name of the month in row 1 column 8. All other
information on this worksheet is controlled and modified by macros
used to run the dialogue sheets, so don’t change it manually.

CALCULATIONS WORKSHEET

Do not delete this worksheet as it is vital to the application – it is used
to perform the column reduction procedure selected in the report set-
up options (this was discussed earlier under the heading Sheet5
Worksheet). It holds processed performance data and is used to ‘align’
heterogeneous data, enabling the data to be presented on one chart.
This is used in preference to a secondary scale in the Excel charts.

CHART SETUP

The main function of this application is to generate charts based on
RS/6000 performance data, so the design and presentation of these
charts is an important feature of the reports. The application produces
default charts that meet our reporting requirements. Chart set-ups can
be altered by changing the VBA code used to produce them. The two
macros that control this are format_chart and graph_data. The
application uses the same standard chart format for all reports. This is
done for consistency and results in clearer presentation of the data.
These charts are based on default Excel charts to which modifications
are made. The only formatting option controlled from worksheets
themselves is the Type of chart column in Worksheet5. If the presentation
of the charts does not meet your requirements, then you’ll have to alter
the VBA code to modify them. Another method is to set up a custom
type chart in Excel based on your formatting requirements.

A brief explanation of the format_chart and graph_data macros
mentioned above follows.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 53

FORMAT_CHART MACRO

This macro formats charts to a standard design. You can alter it either
directly by modifying the code itself or indirectly by recording your
changes in a macro and then attaching the resulting code to the end of
the macro. For example, you could click on a chart, then click on the
‘record macro’ button in the Visual Basic toolbar, and make changes
to the chart using the various options available. Then cut the resulting
code from the new macro and paste it on the end of the format_chart
macro. The code you take must lie between the Sub Macro1() and End
Sub lines, otherwise you’ll get errors. Remember that this just controls
the appearance of the chart – titles are controlled by worksheet entries
and can be changed on the relevant worksheet column.

GRAPH_DATA MACRO

This macro sets up the five default charts. To add another default chart,
the code needs to be changed. Look for the following code in the
macro:

If CHART_TYPE = “xlColumnStacked100” Then
ActiveChart.ChartType = xlColumnStacked100
End If

New chart types can be added by changing the value of the
CHART_TYPE variable, which is set by the Type of chart entry, in
which case VBA code needs to be added so that the active chart is set
to the new type. This macro also positions charts on worksheets and
formats pages for printing.

USING THE EXCEL APPLICATION

The application has been designed to be flexible and, as such, can take
a while to get used to. Using default report creation is a good place to
start, as all report types are created. From this base all other reports can
be added by following the procedures described here. There is little
error checking on the values in worksheets, so it is important to ensure
that the entries are correct.

The application is geared towards daily, weekly, or monthly reports.
The month flag on the Data worksheet controls which report is

54 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

generated. Depending on this setting, the different runs take place. For
example, if the flag does not match the current date when the
application runs, the Control ME report is generated. On the other
hand, if the date matches the current date, the Control report is
generated. This doesn’t mean you have to have this split – you can add
the daily reports to the Control ME worksheet, if this is what you
require. Similarly, if you need to generate individual or monthly
reports daily, these can be added to the Control worksheet.

Our set-up uses a 100 MHz Pentium PC with 40 MB of memory
running Windows 95 and Office 97, which is adequate for this
application in our environment. We currently report on three systems
and have no problems producing the three types of report. Excel 97
can be memory-intensive, so, if your system is short on memory, you
should build the reports gradually. We use System Agent to run the
application overnight, which means that any PC can be used. System
Agent is an application that comes with Windows 95’s Plus! pack;
however, any other scheduling program for Windows could be used.
As the Auto_Open name is used, a shortcut to the Excel workbook can
also be used to run the application. Note, however, that the application
should be the only one running on the PC, otherwise it will not
complete properly.

POTENTIAL PROBLEMS

Extremely slow run times

There is a problem in Office 97: if Outlook 97 is used to journal files
that greatly increases the time it takes to close Excel workbooks. This
problem was resolved with the service pack for Office 97. If you do
not want to install this service pack or don’t have access to it, turn off
the journalling in Outlook 97. Start Outlook 97 and select the Tools
menu option followed by Options then deselect Excel from the
Journal tab.

Application fails to run when workbook is first opened

Check that the Auto_Open name exists and refers to the builder
macro.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 55

Application runs more than once and ends with an error

Check all worksheets to ensure that the Auto_Open name does not
have a reference to the worksheet. This can happen if Sheet5 is copied,
as an Auto_Open reference is copied with the new sheet name.

Report charts overlap or are too far apart

Check the following:

• That Excel is run in a maximized window.

• That the Full screen option in the View menu is not selected.

• That the screen resolution is set to 800 by 600.

• That the Formula Bar and Status Bar are displayed.

• That three rows of toolbars exist below the menu bar.

• That the Taskbar is at the bottom of the screen and is only as tall
as the Start button.

“No data selected please check range of dates”

The Report Date From entry corresponds to a date for which
performance collection data text files do not exist.

Application does not open the summary file correctly
Ensure the Windows Explorer settings are correct (described earlier
under the heading Windows Explorer Settings).

Robert Russell (UK) © Xephon 1999

Bull has integrated WRQ’s Reflection
Signature Single Sign-On (SSO) software
into its AccessMaster security management
suite. AccessMaster’s SSO lets users enter a
password once and be authenticated to all
authorized systems and applications.

Bull has also announced a new release of the
SecurWare Internet security software suite.
New features include encryption for
building VPNs, data compression, and the
NetWall V4 firewall. It runs on AIX and NT,
with a Solaris version to follow soon. Out
now, NetWall starts at US$1,850 for up 25 IP
addresses, and SecurWare VPN starts at
$5,000 per VPN device and $160 per user.

For further information contact:
Bull Information Systems, 2 Wall Street,
Technology Park, Billerica, MA 01821,
USA
Tel: +1 978 294 6000
Fax: +1 978 294 6440
Web: http://www.bull.co.uk

Bull Information Systems, Windsor House,
3-7 Albert Street, Slough SL1 2BH, UK
Tel: +44 1753 551554
Fax: +44 1753 705678

* * *

Lincoln Software has released a new version
of its repository-based application
development tool, Engineer for CICS, which
now supports Java development. Users can
now choose between HTML or Java front-
ends, using CICS Gateway for Java or CICS

Web Interface respectively. The product has
facilities for application modelling and Java/
HTML code generation. In addition to
supporting CICS on AIX it supports
development on System/390 mainframes
and NT servers. It’s out now, but no details
on prices.

For further information contact:
Lincoln Software, 85 Liberty Ship Way,
Suite 110B, Sausalito, CA 94965, USA
Tel: +1 415 339 1947
Fax: +1 415 339 1946

Lincoln Software Limited, Marlborough
Court, Pickford Street, Macclesfield,
Cheshire SK11 6JD, UK
Tel: +44 1625 616722
Fax: +44 1625 616780
Web: http://www.lincolnsoftware.com

* * *

IBM has announced that it’s working with
SCO and Sequent to develop a high-volume
Unix for Intel’s IA-64 chip. The new
operating system is to be based on AIX and
will also draw on technology from SCO’s
UnixWare and Sequent’s PTX. In future the
three companies are to de-emphasize their
own brands of Unix in favour of the one
unified brand. IBM also intends to transfer
AIX technology to SCO’s UnixWare to
promote Unix in the IA-32 market.

For further information contact your local
IBM representative.

x xephon

AIX news

	File archives and compression
	A function to validate users on AIX
	Understanding the sort command
	From heavy processes to light threads
	New RS/6000 hardware
	Performance reports
	AIX news

