
© Xephon plc 1999

February 1999

40

3 The syslog subsystem on AIX
8 Improving a DNS configuration

15 IPv6 – an overview
27 Understanding the sort command

(2)
36 Process groups
38 Implementing a taskbar widget
50 Memory size display
51 Contributing to AIX Update
52 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: HarryLewis@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £175.00
in the UK; $265.00 in the USA and Canada;
£181.00 in Europe; £187.00 in Australasia
and Japan; and £185.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £15.00 ($22.50) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com
(you’ll need the user-id shown on your ad-
dress label to access it).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

The syslog subsystem on AIX

INTRODUCTION

The AIX syslog subsystem is a client/server tool that makes it possible
to handle all messages created by running processes in a homogeneous
way.

Syslog comprises a server component, which actually manages
incoming messages, and a library of functions that make it possible to
send messages to the server from your own applications using the
UDP protocol.

It’s worth noting that most software available for AIX uses syslog to
log its activity.

THE SERVER SIDE

The server component of the syslog subsystem is the syslogd executable
file. This implements a daemon process that listens for incoming
messages on a well-known UDP port. The configuration file for this
daemon is /etc/syslog.conf.

The commands to start and stop this subsystem are respectively:

startsrc –s syslogd [–a "[-d] [-s] [-f Confile] [-m MarkInt]"]

and:

stopsrc –s syslogd

Let’s look at the two most important parameters to start the server:

[-s] This optional parameter specifies that messages
forwarded to other systems are in a ‘shot’ form.

[-f Confile] This parameter is also optional, and specifies the
configuration file to be used. The default value is /etc/
syslog.conf.

Other parameters are explained in the AIX documentation (the default
values of these parameters are acceptable in normal systems).

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

You may also start and stop the syslog subsystem using either smit or
smitty. If you want to know the subsystem’s status, use the following
shell command:

lssrc –l –s syslogd

The syslog subsystem classifies all messages received into a number
of categories, and the system administrator can handle each of these
categories differently. Each category is identified by two values,
known as ‘facility’ and ‘priority’. The facility value identifies the
category of the process that created the message, the priority value
identifies the category of the message itself inside the specified
facility. Here are the allowed values:

/*
** Facilities
*/
LOG_KERN /* kernel messages */
LOG_USER /* random user-level messages */
LOG_MAIL /* mail system */
LOG_DAEMON /* system daemons */
LOG_AUTH /* security/authorization messages */
LOG_SYSLOG /* messages generated internally by syslogd */
LOG_LPR /* line printer subsystem */
LOG_NEWS /* news subsystem */
LOG_UUCP /* uucp subsystem */
LOG_CRON /* clock daemon */
 /* other codes through 15 reserved for system use */
LOG_LOCAL0 /* reserved for local use */
LOG_LOCAL1 /* reserved for local use */
LOG_LOCAL2 /* reserved for local use */
LOG_LOCAL3 /* reserved for local use */
LOG_LOCAL4 /* reserved for local use */
LOG_LOCAL5 /* reserved for local use */
LOG_LOCAL6 /* reserved for local use */
LOG_LOCAL7 /* reserved for local use */

/*
** Priorities
*/
LOG_EMERG /* system is unusable */
LOG_ALERT /* action must be taken immediately */
LOG_CRIT /* critical conditions */
LOG_ERR /* error conditions */
LOG_WARNING /* warning conditions */
LOG_NOTICE /* normal but signification condition */
LOG_INFO /* informational */
LOG_DE BUG /* debug-level messages */

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

It’s possible to customize the server by editing the configuration file
/etc/syslog.conf and other files specified with the –f option. Each line
of this file comprises two parts: a selector, which determines the
message class, and an action, which determines how you want the
class to be managed. These two parts must be divided by one or more
blanks or tabs. Here is the syntax of this configuration file taken from
the on-line documentation:

Each line must consist of two parts:-

1) A selector to determine the message priorities to which the
 line applies
2) An action.

The two fields must be separated by one or more tabs or spaces.
Format:

<msg_src_list> <destination>

where <msg_src_list> is a semicolon separated list of
<facility>.<priority>
where:

<facility> is:
 * - all (except mark)
 mark - time marks
 kern,user,mail,daemon, auth,... (see syslogd(AIX Commands
 Reference))

<priority> is one of (from high to low):
 emerg/panic,alert,crit,err(or),warn(ing),notice,info,debug
 (meaning all messages of this priority or higher)

<destination> is:
 /filename - log to this file
 username[,username2...] - write to user(s)
 @hostname - send to syslogd on this machine
 * - send to all logged in users.

It’s important to note that you may redirect a message class to another
system that’s running the syslog subsystem. This may be useful if you
want all messages to be collected on one machine.

When you’ve finished editing the configuration file for the server
component, you have to create any files you plan to use that don’t
already exist and then refresh the server to apply any changes you have

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

made. You can refresh the server by sending it a HANGUP signal
using the kill command, or by stopping and restarting it.

If you want to communicate with the server from inside your own C/
C++ software, you should examine the syslog.h file. This file contains
declarations for all functions that allow your software to send messages
to the syslog server process. The most important functions are:
openlog(), syslog(), closelog(), and setlogmask(). Let’s examine these
functions in more detail.

• openlog()
This function initializes communication between the user process
and the server-side component of syslog. Note that you can omit
it from your software. The syntax of this function is:

void openlog(const char ID, int LogOption, int Facility)

Where:

– ID is a string that contains the header for generated messages

– LogOption takes one of the following values:

 /*
 * Option flags for openlog.
 *
 * LOG_ODELAY no longer does anything; LOG_NDELAY is the
 * inverse of what it used to be.
 */
 LOG_PID /* log the pid with each message */
 LOG_CONS /* log on the console if errors in sending */
 LOG_ODELAY /* delay open until syslog() is called */
 LOG_NDELAY /* don't delay open */
 LOG_NOWAIT /* if forking to log on console, don't wait() */

– Facility is the ‘facility’ or process type. The value must be a
member of the list of facilities presented earlier in this article.

• syslog()
This function sends a message to the syslog’s server-side
component. Its syntax is:

void syslog(int Priority, const char* Value, …)

– Priority is the priority of the generated message. The value
must be included in the list shown earlier in this article.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

– Value is a string that specifies the message format. Its syntax
is similar to that used in the printf() function, the only
difference being that you can use the identifier %m in the
string to specify that the error message associated with errno
is to be shown in the message.

• closelog()
This function closes the communication channel to the server-
side component of syslog. Its syntax is:

void closelog()

• setlogmask()
This function lets you set and modify the priority mask. By
default, each message, along with its priority, is also a member of
classes with a lower priority but the same facility.

void setlogmask(int MaskPriority)

– MaskPriority can take one of the following two values:
LOG_MASK(priority), LOG_UPTO(priority). The first value
indicates that each message belongs only to its priority
category. The second value, which is the default, indicates
that each message belongs to its priority category and also to
a category with lower priority values.

In a multithreaded environment, the following functions are available:
openlog_r(), syslog_r(), closelog_r(), and setlogmask_r().

Communication between a shell script and the server side component
of syslog is possible using the logger command. The syntax of this is:

logger [-f File] [-i] [-p Priority] [-t Tag] [Message]

File is the name of a file containing a list of messages you want to be
logged by syslog, Tag is a string used as the header of the message you
are sending, Message is the message you want to be sent to the server.
If you specify the -i option, the PID of the sending process is added to
the message.

Marco Pirini
System Administrator (Italy) © Xephon 1999

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Improving a DNS configuration

INTRODUCTION

Not that long ago, my company’s TCP/IP network comprised only
around forty clients and one server (which ran Oracle Database Server
and Application Services). Since then, the network and network
services have grown rapidly, and now comprise 700 local and remote
clients and fifteen servers. This prompted us to switch from HOSTS
file-oriented IP address resolution to DNS.

To this end, we set up one primary and one secondary DNS server,
each located in its own physical network. Both DNS servers are
multihomed (have more than one network interface), which allows
clients to connect directly to the DNS server.

SAMPLE CONFIGURATION

The two subnets are 191.9.243.xxx and 191.9.244.xxx. We have
primary DNS server ‘Ramses’ and secondary DNS server ‘Osiris’.
‘Anubis’ is an application server and ‘papyrus’ is a network printer.
Ramses is responsible for domain Kairo. Their IP addresses are:

191.9.243.1 ramses
191.9.243.60 papyrus
191.9.243.2 anubis
191.9.244.1 osiris

CONFIGURATION FILES ON PRIMARY DNS SERVER RAMSES

/ETC/NAMED.BOOT
directory /etc
domain kairo
primary kairo named.data
primary 243.9.191.in-addr.arpa named.191.9.243.rev
primary 244.9.191.in-addr.arpa named.191.9.244.rev
primary 0.0.127.in-addr.arpa named.local

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

/ETC/NAMED.DATA
@ 9999999 IN SOA ramses.kairo. root.ramses.kairo. (
 1.207 ; Serial
 300 ; Refresh
 300 ; Retry
 3600000 ; Expire
 86400) ; Minimum
 9999999 IN NS ramses
loopback 9999999 IN A 127.0.0.1 ; loopback (lo0)
localhost 9999999 IN CNAME loopback
anubis 9999999 IN A 191.9.243.2
kerberos 9999999 IN CNAME anubis
papyrus 9999999 IN A 191.9.243.60
osiris 9999999 IN A 191.9.244.1

/ETC/NAMED.191.9.243.REV
@ 9999999 IN SOA ramses.kairo. root.ramses.kairo. (
 1.207 ; Serial
 300 ; Refresh
 300 ; Retry
 3600000 ; Expire
 86400) ; Minimum
 9999999 IN NS ramses.kairo.
1 IN PTR ramses.kairo.
60 IN PTR papyrus.kairo.
2 IN PTR anubis.kairo.

/ETC/NAMED.191.9.244.REV
@ 9999999 IN SOA ramses.kairo. root.ramses.kairo. (
 1.207 ; Serial
 300 ; Refresh
 300 ; Retry
 3600000 ; Expire
 86400) ; Minimum
 9999999 IN NS ramses.kairo.
1 IN PTR osiris.kairo.

/ETC/NAMED.LOCAL
@ IN SOA ramses.kairo. root.ramses.kairo.
 (
 1.1 ;serial
 3600 ;refresh

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 600 ;retry
 4320000 ;expire after 50 days
 86400 ;minimum TTL of 1 day
)
 IN NS ramses.kairo.
1 IN PTR localhost.

/ETC/RESOLV.CONF
domain kairo
nameserver 127.0.0.1
nameserver 191.9.243.1

CONFIGURATION FILES ON SECONDARY DNS SERVER OSIRIS

/ETC/NAMED.BOOT
directory /etc
secondary kairo 191.9.243.1 named.data
secondary 243.9.191.in-addr.arpa 191.9.243.1 named.191.9.243.rev
secondary 244.9.191.in-addr.arpa 191.9.243.1 named.191.9.244.rev
primary 0.0.127.in-addr.arpa named.local

/ETC/NAMED.191.9.243.REV
; zone '243.9.191.in-addr.arpa' last serial 1000206
; from 191.9.243.1 at Fri Aug 10 16:14:25 1998

$ORIGIN 9.191.in-addr.arpa.
243 9999999 IN SOA ramses.kairo. root.ramses.kairo. (
 1000207 300 300 3600000 86400)
 9999999 IN NS ramses.kairo.
$ORIGIN 243.9.9.191.in-addr.arpa.
1 IN PTR ramses.kairo.
2 IN PTR anubis.kairo.
60 IN PTR papyrus.kairo.

SAMPLE CLIENT CONFIGURATION FROM ANUBIS

/ETC/RESOLV.CONF
domain kairo
nameserver 191.9.243.1
nameserver 191.9.244.1

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

CONFIGURING THE RESOLVER

/etc/netsvc versus NSORDER
AIX uses several services for resolving host names. A default setting
is used to determine the order in which these services are tried for
resolving host names and IP addresses. The default order can be
overwritten using the configuration file /etc/netsvc.conf (if the file
doesn’t already exist, create it). Specify the desired order using the
entry:

hosts = value [, value]

where value can be {bind|local}.

• bind uses BIND/DNS services for resolving names.

• local searches the local /etc/hosts file for resolving names.

Notice that the NSORDER environment variable overrides the settings
in the /etc/netsvc.conf file.

SAMPLE /ETC/NETSVC.CONF
hosts = bind

NSLOOKUP TEST ON ANUBIS

Below are the contents of nslookup on host Papyrus.

NSLOOKUP
Server: ramses.kairo
Address: 191.9.244.1

Name: papyrus.kairo
Address: 191.9.243.60

After our company established a connection to the Internet (protected
through a firewall system), we adjusted clients’ resolv.conf files to
include the IP address of our ISP’s DNS server.

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/ETC/RESOLV.CONF
domain kairo
nameserver 191.9.243.1
nameserver 191.9.244.1
nameserver 194.196.47.2

At that time we did not wish to modify our DNS server set-up, as this
was running without any problems. However, the set-up has the
following drawbacks:

• If the primary DNS server is down for maintenance, clients that
access the server by means of their /etc/resolv.conf files experience
poor login, telnet, and ftp performance as a result of the long
timeout that occurs before the resolver contacts the secondary
DNS server, which then takes over name resolution.

• If our ISP’s DNS server is not available, none of our clients can
access the Internet as none of the other DNS servers can resolve
Internet names.

The solution for improving performance and availability is:

• Extend the DNS file named.boot so that the DNS server asks for
Internet address resolution from the ISP’s DNS server. The
internal DNS server is then set to cache this information.

This requires the following additional lines in the file /etc/
named.boot on Ramses:

cache . named.ca
forwarders 194.196.47.2 194.196.47.4

Contents of the /etc/named.ca file on RAMSES

. 3600000 IN NS ns1.ibm.co.at.
ns1.ibm.co.at. 3600000 A 194.196.47.2
. 3600000 IN NS ns2.ibm.co.at.
ns2.ibm.co.at. 3600000 A 194.196.47.4

This adjustment to our internal DNS server means that addresses
that have already been resolved are not sent for resolution to the
ISP’s DNS server until their Time To Live (TTL) is exceeded.
This reduces traffic on the leased line to the ISP and makes us less
dependent on the ISP’s DNS server.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

• Install a caching only DNS server on the heavily used application
server Anubis. This requires changes to the following files:

/ETC/RESOLV.CONF
domain kairo
nameserver 127.0.0.1
nameserver 191.9.243.1
nameserver 191.9.244.1

/ETC/NAMED.BOOT

directory /etc
primary 0.0.127.in-addr.arpa named.local
cache . named.ca
forwarders 191.9.243.1 191.9.244.1 194.196.47.2

/ETC/NAMED.CA
. 3600000 IN NS ramses.kairo.
ramses.kairo. 3600000 A 191.9.243.1
. 3600000 IN NS osiris.kairo.
osiris.kairo. 3600000 A 191.9.244.1
. 3600000 IN NS ns1.ibm.co.at.
ns1.ibm.co.at. 3600000 A 194.196.47.2

/ETC/NAMED.LOCAL
@ IN SOA anubis.kairo. root.anubis.kairo.
 (
 1.1 ;serial
 3600 ;refresh
 600 ;retry
 4320000 ;expire after 50 days
 86400 ;minimum TTL of 1 day
)
 IN NS anubis.kairo.
1 IN PTR localhost.

Modify the /etc/rc.tcpip run command script to start the named server
process automatically after a reboot. Uncomment the line #start /usr/
sbin/named "$src_running", or use the smit interface to perform this
task.

With just this improvement, the application server loses its dependence
on the availability of the ISP’s DNS server as, after just three hours of
execution in a production environment, all required TCP/IP aliases

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

are already resolved and available locally at the caching DNS server.

You can check the DNS caching-only server by sending an ‘INT’
signal to its named process. This produces a dump of the current
address table to /var/tmp/named_dump.db.

While these modifications solved our previous problems, they also
introduced some new ones.

1 Networks already defined in the named.data file (which resolves
TCP/IP aliases to IP addresses) suffer very poor login performance
when they start telnet or ftp .

2 If the Internet connection fails, the problem increases dramatically.

WHAT’S HAPPENING?

After a lot of debugging and investigation we found the answer to this
problem. We failed to adjust the name server’s address-to-name
mappings files and named.boot file.

Every request from a client on a network that is not mentioned in the
named.boot file to an application server configured using DNS results
in a request to the DNS server to find the client’s identity. The DNS
server is unable to service this request, as it is not configured correctly.
Instead it just forwards the request to DNS servers on the Internet –
when the Internet is available – and eventually the internal DNS server
gets a reply to say that there is nobody available to resolve the address
to a name. The internal DNS server then forwards this information to
the application server, which then completes the telnet or ftp login
process.

When either the Internet or just the Internet DNS server is not
available, the reply to the reverse name resolution query takes even
longer but is essentially the same – no server is available to resolve the
query.

THE SOLUTION

For each network in the named.data file, you have to add a line for the
reverse address resolution to the named.boot file. Thus, for instance,

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

network 191.9.242.xxx requires a file with reverse address resolution
information such as named.191.9.242.rev.

primary 242.9.191.in-addr.arpa named.191.9.242.rev

CONCLUSION

DNS administration is not as simple as it seems. If you can nslookup
an alias successfully, it doesn’t mean that the address can be resolved
to the name also. For a detailed discussion of DNS and BIND, consult
Help for Unix System Administrators by Paul Albitz and Cricket Liu.

Michael Imhotep (Australia) © Xephon 1999

IPv6 – an overview

INTRODUCTION

The recent and rapid growth in the number of devices connected to the
Internet has highlighted a significant problem with the current Internet
Protocol, IPv4. IPv4 uses 32-bit addresses, providing a little over four
billion discrete addresses. At first sight this would seem sufficient for
current demand, as it is several orders of magnitude greater than the
current number of systems connected to the Internet. The problem is
related to the manner in which IPv4 addresses are structured.

An IPv4 address comprises two parts: a network identifier and an
identifier of the host system on this network. The effect of this
structure is that, once a network identifier has been allocated, all the
host addresses in that network are taken from the IPv4 address space,
even if there are in fact only one or two nodes connected to the
network. The result is a large number of ‘lost’ addresses. The problem
is compounded by the requirement that IPv4 addresses must be
globally unique, even if the network to which the nodes are attached
is not connected to the outside world, the Internet. Further, the

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

generalization of the Internet into domestic and large-scale, multi-
client applications is generating new applications and devices that
will use the Internet as their means of communication. These include
television set-top boxes (for cable or satellite TV), automatic teller
machines (ATMs), cash registers, and other forms of ‘electronic point
of sale’ (EPOS) device. These new devices and applications will only
accelerate the demand for new IP addresses.

The end result is that the current IPv4 address space will run out some
time between the years 2000 and 2010, depending on whose projection
you choose to use. It is therefore essential that a new addressing
scheme be decided upon and implemented in the very near future.
IPv6, previously known as ‘IPng’ (IP next generation), provides this
addressing scheme. It is the outcome of numerous meetings and
experiments used to agree upon the optimum IP address structure for
the future.

While the address space exhaustion problem was the driving force
behind the development of IPv6, a number of other shortcomings of
the IPv4 specification were identified and addressed in the new
standard. These include:

• Improved efficiency. A number of performance optimizations and
packet handling improvements have been made to reduce the
number of calculations as IP packets make their way through the
various networks between the sender and receiver.

• Service classes. These are used to identify the transmission
requirements for a data exchange. These can be compared to the
Quality of Service (QoS) parameter of link-layer protocols, such
as ATM.

• Multicasting. Multicasting involves simultaneously sending a
message to a number of different nodes. The IPv4 implementation,
known as ‘broadcast’, has been the source of a number of
administration and performance difficulties. IPv6 provides a
multicast mechanism which is fully integrated with the other
addressing schemes, and which should offer a much more flexible
and easier to use solution.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 17

• Security. The adoption of the Internet by commercial, financial,
and medical institutions has highlighted the need for a means of
ensuring the confidentiality of the data that is sent across public
networks. IPv6 introduces two new security services:
authentication and encryption. Authentication is used to ensure
that the person with whom you are communicating is who they
claim to be, and is also used to prove that you are who you say you
are. Encryption ‘scrambles’ the transmitted data so that, if a third
party were to intercept the message, they would not be able to
read it. Only those parties that hold the ‘keys’ necessary to
decrypt the message are able to read it.

In addition to the above improvements, the Internet Engineering Task
Force (IETF), which controls the Internet specifications and standards,
placed a number of other requirements on the new IP standard.
Perhaps the most important of these is the ability to coexist and
interoperate with IPv4 nodes and networks, and to offer a transition
path from the old to the new protocol suite.

The implementation of IPv6 for AIX 4.3 was performed by Groupe
Bull in conjunction with the INRIA.

BACKGROUND

This section introduces some of the networking ideas necessary to
understand the following discussions.

What is the Internet Protocol (IP)?

IP, the Internet Protocol, as its name suggests, is a communications
protocol suitable for both connecting nodes on a network and providing
a link between different networks. In communications jargon, it is
described as being an ‘unreliable’, ‘connectionless’ delivery system.
It is unreliable in that the protocol is allowed to lose or ‘drop’ packets
of data (datagrams) in the event of congestion or other problems. The
fact that it is unreliable means that the responsibility for ensuring
reliable data transfer is placed on the transport protocol or other
higher-level protocols, such as TCP (Transmission Control Protocol),
which runs on top of IP.

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Although IP is classed as an unreliable delivery mechanism, within
the confines of (say) an Ethernet-based Local Area Network (LAN)
very few data packets are lost. It is only when the communicating
systems are separated by large distances and/or very busy networks
that data loss becomes a significant problem.

IP is connectionless in that each packet of data sent on the network
contains the address of the destination system, in the same way that
letters in the postal system are all contained in addressed envelopes.
A connection-oriented system, in contrast, is like the telephone
system where the caller addresses the receiver only once, at the outset
of the communication, and a communication channel is opened – the
telephone rings, and the receiver picks up the handset. This
communication channel remains open for the duration of the
conversation, and is closed when communication terminates.

Terminology

We have already seen a number of networking terms, such as node and
datagram, in the preceding text without them being precisely defined.
In the rest of this article I shall take the terminology from the IPv6
specifications. These are:

• Node. A device on a network. In the IPv6 specification this is a
device that implements IPv6, but I shall use it for both IPv4 and
IPv6 devices.

• Router. A router is a node that forwards packets not addressed to
itself. In IPv4, this device was referred to as a ‘gateway’.

• Host. A node that is not a router, that is, a node that does not
forward packets not addressed to itself. This is usually an end-
user system or application server.

• Link. The medium over which nodes communicate. This includes
the physical medium (cable, radio, infra red, etc) and the base or
link-level protocol, such as Ethernet or ATM.

• Interface. The connection between a node and a link. A node may
have more than one interface – a router, for example, must have
at least two.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 19

• Neighbour. Nodes connected to the same link are said to be
neighbours.

• Packet. The elementary unit of data sent between two
communicating nodes. This is known more generally as the
Protocol Data Unit (PDU). An IPv6 PDU comprises a header and
a payload. This is the same as an IPv4 datagram.

The IP packet

As described in the above definitions, the IP packet, or PDU, comprises
two parts: the header and the payload (the top part of Figure 1).

The header contains all the information required by the protocol to
deliver the payload to the destination. Continuing the postal-service
analogy, the envelope, with the address and stamp, are the header and
the letter contained in the envelope is the payload. In general, it is not
necessary (indeed it’s often illegal) to examine the contents of the
envelope/payload to determine where the letter or packet should be
delivered.

All IP packet headers start with a four-bit version number (not
surprisingly, ‘4’ for IPv4 and ‘6’ for IPv6). This version number also
defines the structure and content in the remainder of the header. The
other header information includes things such as source and destination
addresses and packet size.

The content of the payload is not defined by IP, except that it may
contain optional header information. In general, higher-level protocol
headers follow any optional IP headers, along with the application
data. This is shown in the bottom part of Figure 1.

Figure 1: An IPv6 datagram (top) and payload (bottom)

Optional
IP headers

High level
protocol headers

Application
data

Header part Payload part

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

IPV6 COMPARED WITH IPV4

The two most striking differences between IPv4 and IPv6 are the
extended 128-bit address fields and the greatly simplified packet
header format. IPv4’s variable-length header format, which is
responsible for a number of performance problems in protocol handling,
has been replaced by a fixed size header in IPv6. The IPv6 header is
shown in Figure 2 below. As can be seen, it is made up of ten four-byte
words, giving a total header length of 40 bytes.

Version Flow label

Payload length Next header Hop limit

Source address
(16 bytes)

Destination address
(16 bytes)

0

1

2

3

4

5

6

7

8

9

0 31
Bits

The meaning of the different fields is given below:

• Version. The IP version number – ‘4’ for IPv4 and ‘6’ for IPv6.

• Prio. Packet delivery priority.

• Flow label. Used for Quality of Service and caching. Routers
may maintain a context associated with a Flow Label in order to
optimize performance.

• Payload length. Length of the payload section. This is a 16-bit
field. If the payload is longer than 64 KB (216), then this field

Figure 2: IPv6 packet structure

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 21

contains zero and the payload length is given in an extension
header (see below).

• Next header. Identifies the type of the optional extension header
(see below) that follows this fixed header. A value of ‘59’
indicates that there is no extension header.

• Hop limit. A hop is the transit of a packet between two routers
(which have interfaces on the same link). The hop-limit stipulates
the maximum number of hops that a packet may take before being
discarded. It is a mechanism used to prevent the networks
becoming clogged by packets in infinite routing loops. The hop
limit is set by the sending node and decremented at each router.
If the value reaches zero, the packet is discarded. IPv4 headers
contain a ‘Time-To-Live’ (TTL) field that is essentially the same,
as the value in this field is also decremented at each hop, and not
at each second as the name suggests.

• Source address. 128-bit address of the node (more precisely, the
128-bit address of the interface, as the node may be connected to
more than one network, for instance, if it acts as a router) from
which the packet originated.

• Destination address. The address of the interface or interfaces to
which the packet is destined.

It’s worth noting that checksums have been completely eliminated
from IPv6. It’s now the responsibility of higher-level protocols
(principally TCP and UDP) to ensure data integrity.

Packet sizes

As a message transits various networks between the source and
destination nodes, the different underlying network technologies may
impose different maximum packet lengths, or maximum transmission
units (MTUs). In IPv4, each time a packet reaches a network that has
a smaller MTU size than the current packet size, the packet is split, or
fragmented, into two or more smaller packets that fit inside the MTU
of the next network. IPv6 handles the problem differently by
determining the smallest maximum transmission unit size of all the
networks along the route between the source and destination nodes. In

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

this way fragmentation is the sender’s responsibility. This eliminates
the considerable overhead of fragmentation handling in intermediate
routers. In IPv6 fragmentation information is carried in an extension
header, and this information is used only at the destination host and not
by intermediary nodes.

Extension headers

When the standard header is too small to accommodate all the
necessary header information associated with the packet, IPv6 uses
additional extension headers that make up the first part of the payload.
We have already seen a couple of instances where extension headers
are necessary – to handle payloads greater than 64 KB and to carry
fragmentation information. Other examples are for IP control data,
routing and security information, and data pertaining to a higher-level
protocol, such as TCP, UDP, or FTP.

It can be seen from Figure 3 that the type of the extension header is not
given in the header itself, but rather in the Next Header field of the
preceding header. In this way, extension headers can be chained one
after the other. If more than one extension header is used, then the
extension headers must be sent in a pre-defined order.

IPV6 ADDRESSING

IPv6 addressing uses 128-bit (16 byte) addresses. As discussed in an
earlier AIX Update article on 64-bit computing, 264 is a huge number,
an order of magnitude greater than the number of seconds since the
beginning of the universe. 2128 is the square of 264 and it is difficult to
find a number in the physical world that comes close to this figure. The
number of individual molecules in the solar system is the sort of
number that we’re talking about. With such a large number of possible
addresses, it’s difficult to imagine the day when we will run out again,
but I guess that’s what the original designers thought when they chose
32-bit addresses.

The lifetime of IPv6 addresses

IPv6 addresses are allocated for a fixed period of time. The default
value is 60 hours, but this may be extended to ‘forever’. When

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 23

specifying the lifetime of an address two values are given:

1 The duration for which the address is ‘preferred’

2 The duration for which the address is ‘valid’.

When an address is in the preferred state, applications may use it to
establish communication with other nodes. When the preferred state
time has elapsed, the address becomes ‘depreciated’. In this state it is
not possible to establish new communications using this address,
though applications already using it can continue to do so. After the
‘valid’ time has elapsed, the address becomes ‘invalid’ and is unusable
by all applications.

This mechanism provides a technique for gracefully renumbering
interfaces and shutting down services.

IPv6 address notation

While IPv4 addresses are written as a series of four decimal numbers
separated by a dot (‘.’), for example ‘192.90.72.2’, IPv6 uses eight
groups of four hexadecimal characters separated by a colon (‘:’), for
example:

5EA1:2AB0:F397:11A6:9876:5432:1FED:CBA9

Leading zeros may be omitted:

5EA1:2AB:39:6:0:0:0:CBA9

A double colon (‘::’) may be used to represent a consecutive sequence
of zeros – many IPv6 addresses will contain long strings of zeros as
a result of the way in which addresses are allocated. For example, the
above address may be written as:

5EA1:2AB:39:6::CBA9

To avoid ambiguity, the double colon may appear only once in an
address.

While it may be useful to be able to recognize and understand IPv6
addresses, it’s unlikely that you’ll have to work with them directly
unless you are a system or network administrator – you’ll continue to
use the symbolic names, such as www.frec.bull.com, as you do today.

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

As an aside, the use of the colon as an address separator in IPv6
conflicts with its use in separating the IP port number from the address
in a World Wide Web (WWW) Universal Resource Locator (URL).
Overloading this character results in ambiguity. The proposed solution
is that numeric IPv6 addresses will not be allowed in URLs.

IPv6 address space partitioning

With such a large number of available addresses (2128 is approximately
1039), it is possible to subdivide the IPv6 address space in a way that
is more flexible and efficient than is possible with IPv4. Some of the
more important address types are discussed in the following sections.

An important characteristic of IPv6 addresses is that the 32-bit IPv4
addresses are a subset of this space. This means that it is not necessary
for IPv4 nodes and networks to be assigned new addresses to work
with IPv6. This ensures that the transition to IPv6 produces as little
disruption as possible to existing networks.

Unicast or Point-to-Point addresses

This is the most common of all addressing modes, in which an
application on one host communicates with an application or user on
another host, in a direct one-to-one relationship.

There are a number of special unicast addresses, including:

• Unspecified address. This address is used by a node during its
initialization phase, prior to obtaining its proper address. Its value
is ‘0:0:0:0:0:0:0:0’, which can be abbreviated to ‘::’.

• Loopback address. This address is equivalent to IPv4’s ‘127.0.0.1’
loopback address. It is used by a node to address a packet to itself.
As it is a loopback address, no packet transiting a network will
ever have this address. Its value is ‘::1’.

• Link local address. A link local address limits the scope of the
address to the link to which it is attached. This limits
communication to the node’s neighbours (see definitions above).

• Site local address. A site local address limits the validity of an

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

address to the group of networks contained in a single geographical
site. Although this is an interesting idea, it presents a number of
technical difficulties, and as such it is unlikely to be used or
implemented at many sites.

• IPv4 mapped addresses. These are IPv4 addresses mapped to the
IPv6 address space. This allows IPv4 applications to communicate
using IPv6 addresses. The mapping is performed by the sending
and receiving hosts, and as such these addresses never transit on
the network. These addresses have the form ‘::FFFF:a.b.c.d’,
where ‘a.b.c.d’ is an IPv4 address.

• IPv4 compatible addresses. These addresses are used to send
IPv6 packets over an IPv4 network. This technique is known as
‘tunnelling’, and will be described later. These addresses have the
form ‘::a.b.c.d’.

Multicast addresses

Multicast addresses replace the IPv4 ‘broadcast’. They allow a host to
send a packet to several other hosts simultaneously in an efficient
manner. All the nodes that are involved in a multicast operation join
a ‘multicast group’. In doing so, they are assigned a multicast address
that contains a ‘multicast group identifier’ – different groups get
different identifiers. When a node sends a message (packet) to this
address it is received by all nodes in the group. Some group identifiers
are predefined in the IPv6 standard, for example for Network Time
Protocol (NTP) and Dynamic Host Configuration Protocol (DHCP)
servers.

Anycast addresses

Anycast addresses introduce a new concept to IP: they are a mixture
of unicast and multicast. The idea is that a node can send a packet to
a group of other nodes but only one of them will actually receive it.
The frequently cited example for this type of address is that of a name
server, where a node can send a request for name resolution to a
generic group of name servers, but only the nearest (in a network
sense), will receive, treat and reply to the request.

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SECURITY

As discussed in the introduction, IPv6 introduces two new security
services: authentication and data confidentiality. Authentication
enables nodes to prove that they are who they say they are. This issue
is one of the security problems that have not been resolved in IPv4.

Data confidentiality involves encrypting the contents of the payload
such that it is indecipherable by any third party that might intercept the
packet.

Since authentication does not involve issues of confidentiality, it
should not be difficult to obtain general acceptance. However, data
confidentiality and encryption are words that induce nervous twitches
in some parts of the world, where governments want to be able to read
the e-mail of anyone thought to be involved in subversive activities.
Because of this, a universal and interoperable mechanism for sending
confidential data may still be some time away.

Today’s security systems operate using ‘keys’ that are used for both
authentication and encryption. It is not sufficient just to send encrypted
data across the network to another person – if the recipient is to be able
to read the message, they also need the right key to decipher it. The
distribution of keys among communicating parties is outside the
scope of IPv6, but the specification is based on accepted practices and
new research. Security information, such as the encryption algorithms
used, can be carried by the security related extension headers.

CONCLUSION

In a future article I will describe some practical issues associated with
IPv6, such as interoperability with and migration from IPv4. I will
also discuss the network applications and configuration tools for IPv6
in AIX 4.3.

Jez Wain
System Architect
Groupe Bull SA (France) © Xephon 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 27

Understanding the sort command (2)

This month’s instalment concludes this article on the sort command.

SORT KEYS

Databases with numerous rows and columns are the regular stuff of
sort operations, so there’s a need to be able to specify the range of
columns to use in sorting. A sort key is used to specify the fields and
(optionally) the column numbers the sort command uses when
making comparisons.

The default field separator for ASCII sorts is the ‘blank character’,
which can be a series of spaces and tabs. One of the benefits of being
able to sort on fields rather than character by character across the line
is that columns don’t have to ‘line up’.

Multiple sort keys can be specified in a single sort operation, and they
are processed serially. In other words, a sort is performed using the
first key, then results with equal values using the first key are passed
through another sort operation using the second key, etc.

The two methods of specifying sort keys are the ‘skip’ method and the
-k flag method.

The ‘skip’ method
The list below summarizes the syntax of the skip method.

+FSkip.CSkip[Modifier] -FSkip.CSkip[Modifier]

+FSkip Fields that are skipped to reach the first field of the sort key
(the default is the beginning of the line).

.CSkip Characters within +FSkip skipped to reach the sort key
(the default is none).

Modifier An optional modifier for +FSkip.CSkip.

-FSkip Fields skipped to reach the first field after the sort key (the
default is the end of the line).

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

.CSkip Characters within -FSkip that are skipped to reach the first
character after the sort key (the default is none).

Modifier An optional modifier for -FSkip.CSkip.

The skip method specifies the fields and columns to skip to reach the
beginning and (optionally) end of the sort key. First, let’s examine
skipping fields.

SKIPPING FIELDS

Suppose the first three entries in a database called names.database are
as follows:

Jackson, Fredrick Age=30 Department=B90 Occupation=Developer
Johnson, Albert Age=30 Department=B10 Occupation=Manager
Abramson, Joseph Age=29 Department=J90 Occupation=Designer

Using the sort key +1 tells sort that the first field (‘Jackson’, in the first
record) is to be skipped. The remainder of the line (‘Fredrick’
onwards) is the text that sort is to use for comparisons.

Entering sort +1 names.database results in the following:

Johnson, Albert Age=30 Department=B10 Occupation=Manager
Jackson, Fredrick Age=30 Department=B90 Occupation=Developer
Abramson, Joseph Age=29 Department=J90 Occupation=Designer

This output represents text sorted alphabetically beginning with the
data following the first field on each line.

If +2 were specified as the sort key, everything from ‘Age’ on would
be considered, as the first two fields are skipped.

Entering sort +2 names.database would result in the following
output:

Abramson, Joseph Age=29 Department=J90 Occupation=Designer
Johnson, Albert Age=30 Department=B10 Occupation=Manager
Jackson, Fredrick Age=30 Department=B90 Occupation=Developer

The output is the text sorted alphabetically starting with the third field
on each line (the Age field). Note that the entries for ‘Johnson’ and
‘Jackson’ have the same data for Age (‘30’). In this case, sort looks at
the data in the next field (Department) to determine the order. As

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 29

‘B10’ comes before ‘B90’ alphabetically, ‘Johnson’ precedes ‘Jackson’.

You can specify the end field for the sort key if you don’t want the rest
of the line to be used for sorting. Suppose you want to sort using only
Age and Department in the above example. The sort key for this would
be +2 -4. The +2 tells sort to skip the first two fields and start sorting
on the third, and -4 tells it to stop sorting after the fourth field.

SKIPPING COLUMNS WITHIN FIELDS

The sort key can be further qualified. Suppose database
budget.database contains the following text:

tax file = data.94tax
tax file = data.84tax
tax file = data.93tax
insurance file = data.94insur
insurance file = data.84insur
insurance file = data.93insur
receipt file = data.94rcpt
receipt file = data.84rcpt
receipt file = data.93rcpt

If you want to sort starting with the first two digits after the period (‘.’)
in the file name, use the sort key ‘+3.6’, as in:

sort +3.6 budget.database

This returns the following:

insurance file = data.84insur
receipt file = data.84rcpt
tax file = data.84tax
insurance file = data.93insur
receipt file = data.93rcpt
tax file = data.93tax
insurance file = data.94insur
receipt file = data.94rcpt
tax file = data.94tax

The +3.6 tells sort to skip three fields, and then six columns. For
example, in the line:

tax file = data.94tax

The first field is ‘tax’, the second is ‘file’, and the third is the equals
sign (‘=’). ‘data.94tax’ is the first field to sort on.

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Column numbering counts leading spaces as part of the field for all but
the first field in a string. This can easily cause confusion – although
sort considers leading blanks in the first field as ASCII characters for
comparisons, you do not number the leading blanks if you specify the
first field as part of the sort key. Therefore, even though the period is
the fifth character in the field data.94tax, the .6 tells sort to skip the
leading blank, the four characters ‘data’, and the period to get to the
first character of the sort key, the ‘9’.

You can specify an ending column for a sort key as well. This is the
.CSkip postfix to the -FSkip parameter.

ADDING MODIFIER INFORMATION TO THE SKIP METHOD

The skip method can be enhanced even further by supplying a
modifier to the skip parameters. The modifiers are letters that mimic
the behaviour of their flag counterparts. One or more of the following
letters can be used as modifiers: b, d, f, i, n, and r . The list below
summarizes the letters’ effect as modifiers.

b Disregard leading blanks

d Sort in dictionary order

f ‘Fold’ letters to upper case (ignore case)

i Ignores non-printing characters

n Perform a numeric sort

r Reverse the order of the sort results.

For example, entering sort +3.6r budget.database results in the
following:

tax file = data.94tax
receipt file = data.94rcpt
insurance file = data.94insur
tax file = data.93tax
receipt file = data.93rcpt
insurance file = data.93insur
tax file = data.84tax
receipt file = data.84rcpt
insurance file = data.84insur

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 31

The r in this example indicates that the data in the sort key is to be
displayed in reverse order. AIX’s sort command is very powerful,
and, consequently, sort keys can be quite complex.

THE -K FLAG METHOD

The -k flag method is more intuitive and, as a result, more commonly
used than the skip method. Where the skip method tells the sort
command how many fields and columns to skip, the -k flag method
indicates the sort keys explicitly.

The list below summarizes the syntax of the -k flag method of defining
a sort key. Note that the same modifiers apply to the -k flag method
as to the skip method.

-k FStart.CStart[Modifier],FEnd.CEnd[Modifier]

-k The sort key flag.

FStart The first field of the sort key (the default is the beginning
of the line).

.CStart The column within FStart for the beginning of the sort key
(the default is the first column in the field).

Modifier An optional modifier for the starting field.

FEnd End field of the sort key (the default is the end of the line).

.CEnd The column within FEnd for the ending of the sort key (the
default is the last column of the field).

Modifier An optional modifier for the end field.

SPECIFYING FIELDS

You can use the -k flag to indicate specific fields to use as a sort key.
Suppose a database called dates.database contains the following:

 30 January 1929 data
 26 February 1938 data
 22 March 1947 data
 18 April 1956 data
 14 May 1965 data
 10 June 1974 data

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 06 July 1983 data
 02 August 1992 data

The database is currently arranged in calendar order by month without
regard to day or year. If you were to enter:

 sort -k 2 dates.database

the results would be as follows:

 18 April 1956 data
 02 August 1992 data
 26 February 1938 data
 30 January 1929 data
 06 July 1983 data
 10 June 1974 data
 22 March 1947 data
 14 May 1965 data

SPECIFYING COLUMNS WITHIN FIELDS

The way to specify a column for a sort key is similar to that of the skip
method in that the column number follows a period after the field
number. Remember that leading blanks in all but the first field are
considered part of the field, unless you use the b modifier in the sort
key. For example, if you enter:

sort -k 3.4b dates.database

the results are:

 02 August 1992 data
 06 July 1983 data
 10 June 1974 data
 14 May 1965 data
 18 April 1956 data
 22 March 1947 data
 26 February 1938 data
 30 January 1929 data

The sort key 3.4b tells the sort command to consider everything from
the fourth non-blank character of the third field to the end of the line
as the sorting criterion.

SPECIFYING START AND END COLUMNS

As with the skip method, you can specify start and end columns with

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

the -k flag. For example, suppose joblog.database contains the
following:

010798-SMI-0001 Roger Smith, general inspection.
020698-JON-0002 Jones. Repaired valve, inspect.
030898-WIL-0003 Paul Williams, G.I.
040598-MAR-0004 Bill Martin inspected drive train, adj.
050798-JON-0005 Jones. General Inspection.
060698-WIL-0006 Paul Williams, drive train adjust.
070398-SMI-0007 Roger Smith, replace master gear.

Each entry starts with a fifteen character string containing a date, the
first three characters of the name, and a sequence number. The
remaining information is a log of activity by service personnel. The
list is sorted by sequence number and, coincidentally, by date.
Suppose you want the list sorted alphabetically by the three characters
between the date and the sequence number in the first field of each
line. To do this, enter:

sort -k 1.8,1.10 joblog.database

which results in the following:

020698-JON-0002 Jones. Repaired valve, inspect.
050798-JON-0005 Jones. General Inspection.
040598-MAR-0004 Bill Martin inspected drive train, adj.
010798-SMI-0001 Roger Smith, general inspection.
070398-SMI-0007 Roger Smith, replace master gear.
030898-WIL-0003 Paul Williams, G.I.
060698-WIL-0006 Paul Williams, drive train adjust.

In this case, 1.8,1.10 represents a sort key from the eighth to the tenth
character of the first field.

SOME EXERCISES

Here are three examples of the sort command in practice.

EXAMPLE 1

A database called access.log contains names of department staff. The
log is written by an automated program that tracks access into a secure
environment based on the user’s account name. The database contains
mixed case entries, some that have titles in front of the names and
some entries that have a last name followed by a first name. Some

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

entries contain preceding spaces before the data. The raw data, if
displayed, would appear as follows:

 administrator Martin
 coordinator Williams
 Smith, Edwin
 Smith, Edwin
 Baker, Mark
 administrator Jones
 coordinator Williams
 Baker, Mark

If you were to simply enter sort access.log, the result would be:

 Baker, Mark
 Baker, Mark
 Smith, Edwin
 Smith, Edwin
 administrator Jones
 administrator Martin
 coordinator Williams
 coordinator Williams

Note that the command sorts each line alphabetically on the first word,
considering blank spaces as alphabetic characters. Suppose you want
to sort the database alphabetically on the first word, ignoring leading
blanks and the case of the entries, and that you also want to ignore
duplicate entries. How could you accomplish this?

The way to do this is to use the -f flag to ‘fold’ all entries to uppercase
prior to the sort operation, the -b flag to ignore leading blanks, and the
-u flag to disregard all but one of each duplicate entry. The command:

sort -f -b -u access.log

yields the following results:

 administrator Jones
 administrator Martin
 Baker, Mark
 coordinator Williams
 Smith, Edwin

EXAMPLE 2

A database called account.log contains entries with fields separated
by colons (:). Each entry has the following format:

inv:name:date:cust

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

inv is the invoice number, name is the employee name, date is the
service date, and cust is the name of the customer. The database
contains the following records, which are sorted alphabetically by
employee name:

 0055A:adams:052298:ABC Company
 0030B:baumont:032998:XYZ Corp.
 0095D:daniels:100597:XYZ Corp.
 0050J:jones:051798:DATACON
 0090M:martin:102597:ABC Company
 0033R:robertson:030398:MATTERLY Co.
 0075S:smith:081698:XYZ Corp.

If the database needs to be sorted on the date field, what sort command
would accomplish this? The answer is first to use the -t flag to specify
the colon as the field separator. Then use sort keys to indicate the field
on which to sort. In this case, the database should be sorted on the third
colon-delimited field (date).

One might assume that it’s sufficient to specify the third field as the
sort key. However, a default sort of the date fields above would put
some dates in 1998 before others in 1997. Therefore, multiple sort
keys need to be used. To sort using a six-digit date field, start with the
last two digits (the year), then the first two (the month), and finally the
middle two (the day).

The following sort command:

sort -t: -k 3.5,3.6 -k 3.1,3.2 -k 3.3,3.4 account.log

result in the following:

 0095D:daniels:100597:XYZ Corp.
 0090M:martin:102597:ABC Company
 0033R:robertson:030398:MATTERLY Co.
 0030B:baumont:032998:XYZ Corp.
 0050J:jones:051798:DATACON
 0055A:adams:052298:ABC Company
 0075S:smith:081698:XYZ Corp.

Note that all entries are now sorted in order by date. It’s important to
note that, unlike the default blank separator, a field separator specified
using the -t flag is not counted as part of the field.

David Chakmakian (USA)  Xephon 1999

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Process groups

If you have an application that uses SNA to communicate to a remote
host, then the following article may prove invaluable to you. In my
environment, we use IBM’s DirectTalk/6000 for customer queries via
a telephony interface. Within the DirectTalk/6000 application, it is
possible to write custom applications that can communicate with
remote nodes. I wrote one such application that communicates, via an
SNA connection, to a remote OS/390 host. Each weekend, the OS/390
host is taken through an IPL. It was during this IPL on the OS/390 host
that some problems arose. My application was written to continue to
poll the SNA connection until connectivity is re-established, so I
thought I had addressed the issue of the SNA outage during the IPL.

However, shortly after the loss of SNA connectivity, my applications
would terminate. Not only did they terminate, but various other
applications under the DirectTalk/6000 umbrella failed as well. A
little diagnosis uncovered the problem – and the problem (or feature,
depending on your view) is not isolated to processes called from
within the DirectTalk/6000 application – it affects all processes that
use the SNA subsystem to communicate with a remote host.

When a process in AIX uses SNA for any form of communication, the
process group to which the process belongs is sent a SIGUSR1 (signal
number 30) by the SNA subsystem when SNA is unable to carry out
the request.

To understand the complications of this scenario, let’s take a look at
the process group concept. Each process in the system is a member of
a process group. Each process group is identified by a process group
ID (or PGID). By grouping processes in process groups, the system is
able to send signals to all processes in the process groups. Ideally,
processes in the same process group are related in some way or
another.

A new process joins the process group of its parent. Because my
process was called from the DirectTalk/6000 application, when the
process attempts to connect to the remote host via SNA, the SNA
subsystem sends a signal 30 (SIGUSR1) not only to my process but to

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

all members of the process group, including some of the core DirectTalk/
6000 processes. The quick fix from my application’s point of view is
to capture the SIGUSR1 being sent from the SNA subsystem. This
protects my process, but does nothing about other processes in the
process group, which still have to be coded to trap the signal as well.

If you are writing an application that uses SNA connectivity to a
remote host, it’s recommended that processes that make up your
application and communicate with the SNA subsystem be contained
in their own process group.

Below are a few sample lines of code written to help you understand
how PGIDs are inherited, and how they are assigned. (Note the use of
the continuation character, ‘➤’, which indicates that one line of code
maps to more than one line of print.)

PGID.C

#include <stdio.h>
#include <signal.h>

main()
{
 int a;
 printf("Original parent starting...\t(%d) (%d)\n", getpid(),
 ➤ getpgrp());
 if (fork() > 0) exit(0);

 printf("I am the new parent...\t\t(%d) (%d)\n", getpid(), getpgrp());
 sleep(60);
 exit(1);

 sigignore(SIGUSR1);
 a=fork();
 if (a==0)
 {
 printf("I am the first child...\t\t(%d) (%d)\n", getpid(),
 ➤ getpgrp());
 sleep(60);
 exit(1);
 }

 a=fork();
 if (a==0)
 {
 setpgid();

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 printf("I am the second child...\t(%d) (%d)\n", getpid(),
 ➤ getpgrp());
 sleep(60);
 exit(1);
 }
}

SAMPLE OUTPUT
 Original parent starting... (46706) (46706)
 I am the new parent... (49084) (46706)
 I am the first child... (48760) (46706)
 I am the second child... (47478) (47478)

In the above sample output, the first column contains the PIDs of the
original process and the children they spawned. The second column
contains the process group ID of each process. The PID and PGID of
the ‘Original parent’ process are the same. Each child spawned by the
parent process is then allocated to the same process group as the
parent.

In this example, if the ‘first child’ is used to communicate via SNA
with a remote host, the SNA subsystem sends a SIGUSR1 to the
‘Original parent’, ‘new parent’, and the ‘first child’ (all processes
within the ‘46706’ process group); however, if the ‘second child’ is
used for SNA communication, the SIGUSR1 is sent only to processes
within the process group ‘47478’, in this case affecting only the
‘second child’.

Jarrod Brown
AIX Systems Programmer/Administrator (USA) © Xephon 1999

Implementing a taskbar widget

Figure 1 shows a taskbar widget that displays the progress of a task
from start to completion. The implementation is achieved via a
program called taskbar.c, and may be called by any other program to
show the progress of a task.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

INTERFACE FUNCTIONS IN TASKBAR.C

The following four functions comprise taskbar.c’s interface:

• short MakeTaskbarWidget(void)

• short UpdateTaskBar(short percentage)

• short DisplayMessage(char *message)

• short EndTaskbarWidget(void).

STEPS TO MAKING IT WORK

1 Decide on the task whose progress is to be shown.

2 Work out the percentage completion points (the points at which
the program should display 50% done, etc) for the given task.

3 Call MakeTaskbarWidget() once at the start of the main program.

4 Call UpdateTaskbar() and DisplayMessage() as required.

Figure 1: The widget’s UI

Started at 10:10:10 Completed at 11:10:10

Processing Report 1

50% done

Message window Percentage progress of task

Starting time Completion time

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

5 Compile and link taskbar.c to the main program as follows:

cc -o task task.c taskbar.c /usr/lib/libcurses.a

where task.c is the program that is to show the progress of a task.

NOTES

1 Each cursor position on the taskbar represents 2% of a task, and
the taskbar, therefore, has fifty cursor positions.

2 When calling UpdateTaskbar(), the percentage completed must
be a multiple of two.

TASKBAR.C
/**
*
* Name : taskbar.c
*
* Overview : The program creates a taskbar widget on the screen to
* show the progress of any task from start to completion.
*
* Notes : 1. The following interface functions are provided by
* the program:
* - MakeTaskbarWidget ()
* - UpdateTaskbar ()
* - DisplayMessage ()
* - RemoveTaskbarWidget ()
*
* History :
* Date Author Description
* --
* 18/09/98 A Zaman Initial Build
**/

/**
* INCLUDE FILES
**/
#include <stdio.h>
#include <curses.h>
#include <unistd.h>
#include <time.h>
#include <fcntl.h>

/**
* FUNCTION PROTOTYPES
**/

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

short MakeTaskbarWidget (void);
short UpdateTaskbar (short percent);
short DisplayMessage (char *msg);
short RemoveTaskbarWidget (void);
short GetTime (char *time);
void DisplayCompletionTime (void);

/**
* MODULE CONSTANT
**/
#define TRUE 1
#define FALSE 0
#define DONE 3

#define SUCCESS 1
#define FAILURE 0
#define UNIX_SUCCESS 0
#define UNIX_FAILURE 1

#define WINXCOR 10 /* details of primary window */
#define WINYCOR 5 /* in absolute coordinates */
#define WINHEIGHT 15
#define WINWIDTH 50

#define TBXCOR 10 /* details of subwindow for */
#define TBYCOR 11 /* displaying the taskbar */
#define TBHEIGHT 3
#define TBWIDTH 50

#define MWXCOR 10 /* details of subwindow for */
#define MWYCOR 18 /* displaying a message */
#define MWHEIGHT 1
#define MWWIDTH 50

#define CW1XCOR 11 /* details of subwindow for */
#define CW1YCOR 7 /* displaying the start time */
#define CW1HEIGHT 1
#define CW1WIDTH 19

#define CW2XCOR 38 /* details of subwindow for */
#define CW2YCOR 7 /* displaying the completion time */
#define CW2HEIGHT 1
#define CW2WIDTH 21

#define HWXCOR 26 /* details of subwindow for */
#define HWYCOR 5 /* displaying the heading */
#define HWHEIGHT 1
#define HWWIDTH 15

/**

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* GLOBAL VARIABLES
**/

WINDOW *wptr; /* pointer to the main window structure */
WINDOW *tbptr; /* pointer to taskbar window structure */
WINDOW *mwptr; /* pointer to message window structure */
WINDOW *cw1ptr; /* pointer to staring clock window structure */
WINDOW *cw2ptr; /* pointer to ending clock window structure */
WINDOW *hwptr; /* pointer to heading window structure */

/**
*
* Name : MakeTaskbarWidget
*
* Overview : The function creates the taskbar widget and its
* associated components.
*
* Returns : SUCCESS, FAILURE
*
* Notes : 1. All window coordinates are held in symbolic
* constants.
*
* 2. The following components are also created by
* this function:
* - heading window
* - start time display window
* - message display window
*
**/
short MakeTaskbarWidget ()
{
 int i;
 char msg[40];
 char time_now[10];

 /* initialize the screen */
 initscr ();

 /* create the main window */
 wptr = newwin (WINHEIGHT, WINWIDTH, WINYCOR, WINXCOR);

 if (wptr == (WINDOW *) NULL)
 {
 printf ("%s:%d:ERROR:Failed to create the window\n", __FILE__,
 ➤ __LINE__);
 return FAILURE;
 }

 /* reverse the video for the whole window */
 wattron wptr, A_REVERSE);

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

 for (i = 0; i < (WINHEIGHT * WINWIDTH); i ++)
 waddstr (wptr, " ");
 wrefresh (wptr);

 /* make the subwindow and display heading */
 wattroff (wptr, A_REVERSE);

 hwptr = subwin (wptr, HWHEIGHT,HWWIDTH,HWYCOR,HWXCOR);
 for (i = 0; i < (HWHEIGHT * HWWIDTH); i++)
 waddstr (hwptr, " ");

 wmove (hwptr, 0, 0);
 waddstr (hwptr, "Task Bar Widget");
 wrefresh (hwptr);

 /* make the subwindow for taskbar */
 wattroff (wptr, A_REVERSE);

 tbptr = subwin (wptr, TBHEIGHT, TBWIDTH, TBYCOR, TBXCOR);
 for (i = 0; i < (TBHEIGHT * TBWIDTH); i++)
 waddstr (tbptr, " ");

 wrefresh (tbptr);

 /* make the subwindow for message */
 wattroff (wptr, A_REVERSE);

 mwptr = subwin (wptr, MWHEIGHT, MWWIDTH, MWYCOR, MWXCOR);
 for (i = 0; i < (MWHEIGHT * MWWIDTH); i++)
 waddstr (mwptr, " ");

 wrefresh (mwptr);

 /* make the subwindow for displaying starting time */
 wattroff (wptr, A_REVERSE);

 cw1ptr = subwin (wptr, CW1HEIGHT, CW1WIDTH, CW1YCOR, CW1XCOR);
 for (i = 0; i < (CW1HEIGHT * CW1WIDTH); i++)
 waddstr (cw1ptr, " ");

 wrefresh (cw1ptr);

 /* display start time */
 strcpy (msg, "Started at ");
 GetTime (time_now);
 strcat (msg, time_now);
 wmove (cw1ptr, 0, 0);
 wattroff (cw1ptr, A_REVERSE);
 waddstr (cw1ptr, msg);

44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 /* update the screen */
 wrefresh (cw1ptr);
}

/**
*
* Name : UpdateTaskbar
*
* Input : Percentage (short)
*
* Returns : SUCCESS
*
* Description : The function updates the taskbar to reflect the
* percentange of the task that's completed.
*
* Notes : 1. For percentages less than 2% or greater than
* 100%, the function does nothing.
*
* 2. For 100%, it displays the completion time in
* addition to updating the taskbar.
*
**/
short UpdateTaskbar (short percent)
{

 static short cur_xcorval ;
 static short i;
 static char msg[30];
 static task_completed = FALSE;

 /*
 * determine the x-coordinate of the percentage provided, assuming
 * the width of the bar is 50 spaces (representing 100%).
 */
 cur_xcorval = percent / 2 ;
 if (cur_xcorval < 1 || cur_xcorval > 50)
 return SUCCESS;

 if (task_completed == TRUE)
 return SUCCESS;

 /* highlight the percentage completed */
 wmove (tbptr, 1, 0);
 wattron (tbptr, A_REVERSE);
 for (i = 0; i < cur_xcorval; i ++)
 waddstr (tbptr, " ");

 /* write percentage done message */
 memset (msg, '\0', 30);
 sprintf (msg, "%d", percent);

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 45

 strcat (msg, "% done");
 wmove (tbptr, 1, 20);
 waddstr (tbptr, msg);

 /* update the screen */
 wrefresh (tbptr);

 /* display completion time */
 if (cur_xcorval == 50)
 {
 task_completed = TRUE;
 DisplayCompletionTime ();
 }
 return SUCCESS;
}

/**
*
* Name : DisplayMessage
*
* Input : Print message
*
* Returns : SUCCESS
*
* Description : The function displays a given message.
*
* Notes : 1. The message must have fifty characters or less,
* otherwise it's truncated to fifty.
*
**/
short DisplayMessage (char *msg)
{
 static char message[51];
 static short len, i;

 /* copy first fifty characters of the message */
 memset (message, '\0', 51);
 strncpy (message, msg, 50);

 /* 'rightpad' the message */
 len = strlen (message);
 for (i = len; i < 50; i++)
 message[i] = ' ';

 message[i] = '\0';

 /* move the ponter to the begining of message window */
 wmove (mwptr, 0, 0);
 wattroff (mwptr, A_REVERSE);
 waddstr (mwptr, message);

46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 /* update the screen */
 wrefresh (mwptr);

 return SUCCESS;
}

/**
*
* Name : EndTaskbarWidget
*
* Returns : SUCCESS
*
* Description : The function removes the window structure from
* memory.
*
**/
short EndTaskbarWidget (void)
{
 /* remove the window structure */
 endwin ();

 return SUCCESS;
}

/**
*
* Name : DisplayCompletionTime
*
* Returns : SUCCESS
*
* Description : The function removes the window structure from
* memory.
*
**/
void DisplayCompletionTime (void)
{

 char time_now[10];
 char msg[40];
 short i;

 /* make window for the clock */
 wattroff (wptr, A_REVERSE);

 cw2ptr = subwin (wptr, CW2HEIGHT, CW2WIDTH, CW2YCOR, CW2XCOR);
 for (i = 0; i < (CW2HEIGHT * CW2WIDTH); i++)
 waddstr (cw2ptr, " ");

 wrefresh (cw2ptr);

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 47

 GetTime (time_now);
 strcpy (msg, "Completed at ");
 strcat (msg, time_now);
 wmove (cw2ptr, 0, 0);
 wattroff (cw2ptr, A_REVERSE);
 waddstr (cw2ptr, msg);

 /* update the screen */
 wrefresh (cw2ptr);
}

/**
*
* Name : GetTime
*
* Input : Address of an character array
*
* Returns : SUCCESS
*
* Description : The function retrieves the current time and writes
* it to the address given.
*
**/
short GetTime (char *l_time)
{
 struct tm *ptm; /* pointer to time structure tm */
 long int_time ; /* current time in seconds returned by time() */

 time (&int_time);
 ptm = localtime (&int_time);

 sprintf (l_time, "%02d:%02d:%02d", ptm->tm_hour, ptm->tm_min,
 ➤ ptm->tm_sec);

 return SUCCESS;
}

TASK.C (THIS PROGRAM USES TASKBAR.C)

/**
*
* Name : task.c
*
* Overview : The program demonstrates the use of taskbar.c.
*
* Notes : 1. The following of taskbar.c's interface functions
* are called by this program:
* - MakeTaskbarWidget ()
* - UpdateTaskbar ()

48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* - DisplayMessage ()
* - EndTaskbarWidget ()
*
* 2. You must call EndTaskbarWidget () to re-enstate
* the terminal.
* History :
* Date Author Description
* --
* 18/09/98 A Zaman Initial Build
**/

/**
* INCLUDE FILES
**/
#include <stdio.h>

/**
* FUNCTION PROTOTYPES
**/
void main (void);

/**
* MODULE CONSTANT
**/
#define TRUE 1
#define FALSE 0

#define SUCCESS 1
#define FAILURE 0
#define UNIX_SUCCESS 0
#define UNIX_FAILURE 1

/**
* GLOBAL VARIABLES
**/
/**
*
* Name : main
*
* Returns : SUCCESS
*
* Description : The function displays the progress from start to
* completion of a specific task using taskbar widget.
*
**/
void main (void)
{

 /* create taskbar widget */
 MakeTaskbarWidget ();

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 49

 /* simulate part of task with system command */
 DisplayMessage ("Starting Report 1");
 system ("sleep 5");

 /* display 1% completed on taskbar */
 UpdateTaskbar (2);
 DisplayMessage ("Report 2 completed");

 /* simulate part of task with system command */
 DisplayMessage ("Starting Report 2");
 system ("sleep 5");

 /* display 10% completed on taskbar */
 UpdateTaskbar (10);
 DisplayMessage ("Report 2 completed");

 /* simulate part of task with system command */
 DisplayMessage ("Starting Report 3");
 system ("sleep 5");

 /* display 50% completed on taskbar */
 DisplayMessage ("Report 3 completed");
 UpdateTaskbar (50);

 /* simulate part of task with system command */
 DisplayMessage ("Starting Report 4");
 system ("sleep 5");

 /* display 80% completed on taskbar */
 DisplayMessage ("Report 4 completed");
 UpdateTaskbar (80);

 /* simulate part of task with system command */
 DisplayMessage ("Starting Report 5");
 system ("sleep 5");

 /* display 100% completed on taskbar */
 DisplayMessage ("Report 5 completed");
 UpdateTaskbar (100);

 /* completed the task; remove the taskbar widget */
 EndTaskbarWidget ();
}

Arif Zaman
DBA/Developer
High-Tech Software Ltd (UK) © Xephon 1999

50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Memory size display

The output of lscfg on MCA machines tells the user how much
memory the queried machine has installed. However, when run on
newer PCI machines, lscfg (even with the -v option) doesn’t report the
amount of memory.

To overcome this shortcoming, I’ve produced a script that queries the
relevant commands/parts of the ODM database. The reader may
choose either method of establishing the installed memory, as both
work on both PCI and MCA machines. I have also checked it on
Version 3.2.5 and 4 of AIX.

THE SCRIPT

#!/bin/ksh
#
Script to determine how much memory (installed and usable) a
machine has. It is usable on both MCA and PCI machines, with PCI
machines also showing "good" memory as well as installed.
#
The script calculates installed memory 2 different ways, one via
normal commands (lsattr etc), the other by querying the ODM.
#

Calculate the installed memory using "normal" commands

total_mem=0
lscfg | grep mem | while read a b c d
do
lsattr -El $b | grep size | read z y rest
total_mem=`expr $total_mem + $y`
done
echo "Total installed memory is "$total_mem" Mbytes"

Calculate installed memory using the ODM database values

totalmem=0
lscfg | grep mem | while read a b rest
do
 odmget -q "name=$b AND attribute=size" CuAt
done | grep value | awk -F\" '{ print $2 }' | while read memory
do
 totalmem=`expr $totalmem + $memory`
done

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 51

echo "Total installed memory is "$totalmem" Mbytes"

#
For a PCI machine we should also check "goodsize"
indicating the current "good" or usable memory
#
For an ODM version of calculating "good" memory, substitute
attribute=goodsize (for attribute=size) in the script above
#

is_pci=`lscfg | grep -ci "PCI bus"`
if [[is_pci -ge 1]]
then
 total_mem=0
 lscfg | grep mem | while read a b c d
 do
 lsattr -El $b | grep goodsize | read z y rest
 total_mem=`expr $total_mem + $y`
 done
 echo "Total usable memory is "$total_mem" Mbytes"
fi

Phil Pollard
AIX System Administrator (UK) © Xephon 1999

Contributing to AIX Update

AIX Update is primarily written by practising AIX specialists
in user organizations – not journalists, consultants, or marketing
people. In our view, such information is far more valuable to
AIX professionals than that from other sources.

If you’re interested in contributing to AIX Update, please
download a copy of Notes for contributors from Xephon’s Web
site at www.xephon.com. Articles to be considered for publication
can be sent the editor at HarryLewis@compuserve.com.

Sterling Commerce has announced
Connect:Remote Version 3.3, the
company’s remote management software.
The software manages AIX workstations
and servers, providing tools for managing
software distribution and inventory,
filesystems, and back-ups, and also provides
a set of virus detection tools. It integrates
with Tivoli TME/10 and is out now (no
details on prices were received).

For further details contact:
Sterling Commerce Inc, PO Box 8000, 4600
Lakehurst Court, Dublin, OH 43017, USA
Tel: +1 614 793 7000
Fax: +1 614 793 7092
Web: http://www.stercomm.com

Sterling Software (UK) Ltd, 1 Longwalk
Road, Stockley Park, Uxbridge, Middlesex
UB11 1DB, UK
Tel: +44 181 867 8000
Fax: +44 181 867 8001

* * *

Hyperion has launched Integration Server, a
suite of tools for building, deploying, and
managing OLAP applications for data
warehouses and marts, TP applications, and
ERP systems. The product includes a shared
OLAP metadata catalogue and supports
OLAP servers from (among others) IBM and
Arbor (DB2 OLAP Server and Essbase
respectively); it runs on AIX, HP-UX,
Solaris, OS/400, and Windows 9x/NT.
Back-end databases supported include DB2,
Oracle, and Sybase. It’s available now and
costs US$20,000 per OLAP server.

For further information contact:
Hyperion Software Corp, 900 Long Ridge
Road, Stamford, CT 06902, USA
Tel: +1 203 703 3000
Fax: +1 203 595 8500
Web: http://www.hyperion.com

Hyperion Software, Toft Hall, Knutsford,
Cheshire WA16 9PD, UK
Tel: +44 1565 633744
Fax: +44 1565 634154

* * *

IBM has announced the first of its Enterprise
Storage Resource Management (ESRM)
products, first previewed in June. StorWatch
Reporter is for storage asset and capacity
management and looks out over an IP
network to discover servers attached to the
network and determine how much disk
filesystem capacity each server has. It runs
on AIX, OS/390 Unix System Services,
Solaris, HP-UX, IRIX, Windows NT,
IntranetWare, and OS/2. Out now, the AIX
and NT version costs US$8,000.

The company also announced Tivoli
Manager for Network Connectivity, which
collects alarm signals from network
management applications, determines the
cause of the alarm, and forwards the
information to the Tivoli Enterprise
Console, suppressing further alarms. It runs
on AIX 4.2.1, HP-UX 10.2, Solaris 2.5 or
2.5.1, and NT 4.0 (no details on prices).

For further information contact your local
IBM representative.

AIX news

x xephon

	The syslog subsystem on AIX
	Improving a DNS configuration
	IPv6 – an overview
	Understanding the sort command (2)
	Process groups
	Implementing a taskbar widget
	Memory size display
	Contributing to AIX Update
	AIX news

