
© Xephon plc 1999

3 Assorted shell programming
techniques

33 fixdist – keeping your system up-to-
date

37 sysdoc – Web-based system
documentation

47 A utility to implement a ‘highlighted
calendar’

50 Freeware for AIX
56 AIX news

July 1999

45

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 550955
From USA: 01144 1635 33823
E-mail: HarryLewis@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
AIX, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you actively be helping the free
exchange of information, which benefits all
AIX users, but you will also gain professional
recognition for your expertise and that of
your colleagues, as well as being paid a
publication fee – Xephon pays at the rate of
£170 ($250) per 1000 words for original
material published in AIX Update.

To find out more about contributing an
article, see Notes for contributors on
Xephon’s Web site, where you can download
Notes for contributors in either text form or as
an Adobe Acrobat file.

Editor
Harold Lewis

Disclaimer
Readers are cautioned that, although the in-
formation in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any repre-
sentations as to the accuracy of the material it
contains. Neither Xephon nor the contribut-
ing organizations or individuals accept any
liability of any kind howsoever arising out of
the use of such material. Readers should
satisfy themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, scripts, and other
contents of this journal before making any
use of it.

Subscriptions and back-issues
A year’s subscription to AIX Update, com-
prising twelve monthly issues, costs £180.00
in the UK; $275.00 in the USA and Canada;
£186.00 in Europe; £192.00 in Australasia
and Japan; and £190.50 elsewhere. In all
cases the price includes postage. Individual
issues, starting with the November 1995 is-
sue, are available separately to subscribers
for £16.00 ($23.00) each including postage.

AIX Update on-line
Code from AIX Update is available from
Xephon’s Web page at www.xephon.com/
aixupdate (you’ll need the user-id shown on
your address label to access it).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

Assorted shell programming techniques

INTRODUCTION

The Unix shells (Korn, Bourne, or C shell) provide a powerful
programming environment. The Korn shell, with its support for
arrays, is particularly powerful. While shell programming is not
usually considered to be mainstream programming, I find that good
programming practice can be extended to it. This article describes
what is considered good programming practice in traditional
programming and extends it to shell programming.

VARIABLES AND DATATYPES

Defining variables

1 Double quotes are required if there are spaces between words

2 VAR1 below is defined as ‘null’

3 VAR2 below is assigned whatever is returned by command
‘Function’.

Example:

NUM=2
NAME=ARIF
FULL_NAME="Arif Zaman"
VAR1=
VAR2=`Function`

Data types
All variables are treated as ‘char’.

Variable assignment
Variables can be assigned directly or using the command ‘echo’
enclosed in back quotes (‘`’).

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Example:

NUM1=10
NUM2=
NUM2=$NUM1 or NUM2=`echo $NUM1`

Using and assigning default values variables

The construct ${variable:-word} is interpreted as ‘if variable is
undefined, use word’. This assigns word to variable if variable is
undefined or null, otherwise leaving it unchanged.

Example:

FULLNAME="${FIRST_NAME:-Mr} ${LAST_NAME:-XXXX}"

If FIRST_NAME and LAST_NAME are not defined, FULLNAME has
the value ‘Mr XXXX’.

Providing a message for a missing variable value

This can be achieved using the construct ‘${variable:?message}’:

${NAME:?"Not defined"}

If NAME is not defined, the following is output:

filename: NAME: Not defined

Finding string length
You can find a string length using the construct below.

STRING="ABCDEGFH"
STRLEN=`echo ${STRING}\c | wc -c`

Testing for the NULL string
The segment of code below shows you how to test for ‘NULL’ strings.

STRING1=

if [-z "${STRING1}"]
 then
 echo "STRING1 is NULL"
fi

if ["${STRING1}" = ""]
 then

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

 echo "Variable is not set"
fi

Extracting substrings from variables

1 cut is the command most commonly used for this purpose.

2 The first example below uses cut with the ‘column option’.

3 The second example uses cut with the ‘delimiter option’.

Example:

NAME="Arif Zaman"
FNAME=`echo $NAME | cut -c 1-4`
LNAME=`echo $NAME | cut -d' ' -f2`

Appending strings

1 One or more variables or words can be joined together using
double quotes.

2 Self-referencing is allowed as long as the reference is to an
existing variable, as shown in the second part of the code
fragment below.

Example:

FIRST_NAME = "Arif"
LAST_NAME = "Zaman"
FULL_NAME = "${FIRST_NAME} ${LAST_NAME}"

FULL_NAME = "Arif"
FULL_NAME = "$FULL_NAME Zaman"

Korn shell arrays
The Korn shell supports only one dimensional arrays, such as:

NAME[]
ADDRESS[]

You define array variables as follows:

NAME[0]="ARIF ZAMAN"
NAME[1]="HARVEY JONES"

You can manipulate array variables using literal indexes:

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

echo ${NAME[0]}
echo ${NAME[2]}

(the first line outputs ‘ARIF ZAMAN’, while the second outputs
‘HARVEY JONES’), or using a variable index (the code below
outputs all names from ‘NAME’):

INDEX=0
while ["${NAME[$INDEX]}" != ""]
 do
 echo ${NAME[$INDEX]}
 INDEX=`expr $INDEX + 1`
 done

CONTROL STRUCTURES

‘if ... then ... else’

1 The following operators can be used:

– Greater than
Either ‘>’ or ‘-gt’

– Less than
Either ‘<’ or ‘-lt’

– Equal to
Either ‘=’ or ‘-eq’.

2 The keyword ‘then’ must be on a separate line unless used along
with a semicolon(‘;’), as shown below.

NAME="ARIF"

if ["${NAME}" = "ARIF"]
 then
 echo "Name is $NAME"
 else
 echo "Name is not $NAME"
fi

NAME="Arif Zaman"

if ["${NAME}" -eq "Arif Zaman"] ; then echo "Name is $NAME"
 else
 echo "Name is not $NAME"
fi

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

Testing for the existence of files and directories

There are many options available for carrying out this check, including
the ones shown below.

Testing for the existence of files:

FILE=file

if [-f ${FILE}]
 then
 echo "$FILE exists"
 else
 echo "$FILE does not exist"
fi

Testing for the existence of directories:

DIR=dir

if [-d $DIR]
 then
 echo "$DIR exists"
 else
 echo "$DIR does not exist"
fi

Error handling

In the code fragment below, if the word ‘ERROR’ is found in the file
/users/afz/err/xx.err, the grep command returns ‘true’. As we’re not
interested in any form of output, we redirect standard error and
standard output to the null device (‘/dev/null 2>&1’).

if
 grep "ERROR" /users/afz/err/xx.err > /dev/null 2<&1
 then
 echo "Error in the file"
fi

while [condition]

Below is an example of using a ‘while’ construct.

COUNTER=0
while [$COUNTER -lt 10]
 do
 echo $COUNTER
 COUNTER=`expr $COUNTER + 1`
 done

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Another form of ‘while’ is ‘while true’:

COUNTER=0
while true
 do
 echo $COUNTER
 COUNTER=`expr $COUNTER + 1`
 if [$COUNTER -gt 10]
 then break
 fi
 done

Note that the condition ‘true’ remains true forever. This means that
‘break’ must be used to break out of the loop.

‘for’ loops

‘for’ loops behave much as they do in other programming languages,
however:

1 ‘continue’ can be used to abandon the current loop and start
processing the next value of the control variable.

2 The loop below is automatically terminated when the last value
of the variable ‘NAMES’ is read and processed.

NAMES="ARIF DEV MADHU SATISH ANDY PANDY"

for NAME in $NAMES
 do
 if ["${NAME}" = "ARIF"]
 then
 continue
 fi
 echo "Name is $NAME"
 done

FUNCTIONS

In shell programming it is possible to define functions using a method
similar to that used in C programs. One exception is that the function
must be defined in the shell script before it is called.

display () # define a function that accepts one argument
{
 echo $1
}

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

main () # define a main function
{
 display "Welcome" # call display
 VAR1=10
}

main # call the main function

When a function is called, the argument count is held in the variable
‘#’:

function ()
{
 if [$# != 2]
 then
 echo "Wrong number of arguments."
 fi
 ...
}

Assigning arguments to variables

Use the dollar symbol (‘$’) when assigning arguments to variables:

function1()
{
 VAR1=$1 # assigning first argument
 VAR2=$2 # assigning second argument
}

Scope and visibility of function variables

Consider the two programs below.

First program (p1.sh):

VAR1=10
VAR2=12

Second program (p2.sh):

FNAME=Arif
LNAME=Zaman
echo $VAR1

The script below illustrates the scope of the programs’ function
variables.

p2.sh # p2.sh is executed in a child shell. This
 # means it won't see variable VAR1 as it's

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 # defined in the parent shell and has not
 # been exported to child shells

echo $FNAME # This statement won't echo anything as p1.sh
 # is executed in the parent shell and FNAME
 # is defined in the child shell

Now consider the alternative example below.

First program (p1.sh):
VAR1=10; export VAR1
VAR2=12; export VAR2

Second program (p2.sh):

FNAME=Arif
LNAME=Zaman
echo $VAR1

The effect of running the same shell script on these two programs is
somewhat different:

p2.sh # Even though p2.sh is executed in child, it
 # can see the variable VAR1, which is exported.

echo $FNAME # p1.sh is still unable to see variable FNAME,
 # which is not defined in the current shell.

However, consider the script below, which uses the same versions of
p1.sh and p2.sh as the previous example.

. p2.sh # p2.sh is executed in the current shell, which
 # means that it is able to see the variable
 # VAR1, even if it is not exported. Note that
 # the dot ('.') makes p2.sh execute in the
 # current shell, and that there must be a
 # space after dot.

echo $FNAME # p1.sh can now see the variable FNAME as it
 # is defined in the current shell.

Returning values from a function call

In shell programming, functions can return values using the keyword
return, though, in contrast with the C language, ‘TRUE’ is defined as
‘0’ and ‘FALSE’ as ‘1’.

define TRUE and FALSE
TRUE=0

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

FALSE=1

define a function
StringSearch ()
{
 STRING="$1"
 FILE="$2"

 if grep "${STRING}" ${FILE} > /dev/null 2>&1
 then
 # string exists in the file
 return $TRUE
 else
 return $FALSE
 fi
}

define main function
main ()
{
 WORD="ORA-1403"
 ERROR_FILE="/tmp/oracle.err"

 # call function
 if StringSearch ${STRING} ${ERROR_FILE}
 then
 echo "Error found"
 else
 echo "No error found"
 fi
}

invoke main
main

Below is an illustration of a method of returning a value.

define a function
AddNumbers ()
{
 NUM1="$1"
 NUM2="$2"

 TOTAL=`expr $NUM1 + $NUM2`
 echo ${TOTAL}
}

define main function
main ()
{

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 NUMBER1=10
 NUMBER2=100
 SUM=
 # call function
 SUM=`AddNumbers $NUMBER1 $NUMBER2`
}

invoke main
main

Include and macro files

If a program has many variable definitions, then it makes sense to have
a separate definition file that can be included in the shell in which the
main program runs. Similarly, if a program has many macros, it also
makes sense to have a separate macro definition file. An example is
shown below.

Variable definition file (x.def):
PROG="x.def"
DIR="/users/afz/sh"
VAR1=10
VAR2=12

Macro file (x.mac):

display ()
 {
 echo $1
 }

Main program (main.sh):

execute definition file in the current shell
. var.def

execute macro file in the current shell
. mac.def

call macro display to display the message
display " Welcome to the utility program"

ESCAPE SEQUENCES

When programming shell scripts, embedded escape sequences can be
useful, especially if the script communicates with a terminal. In this

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

section, a library of these escape sequences is included for you to try
out and embed in your own scripts.

To enter an escape sequence, use the following procedure:

• Press Ctrl-V

• Press Esc key (to display the escape character)

• Enter the remaining characters.

To capture an escape sequence for function key, use the method
outlined below.

• Launch vi

• Enter ‘insert mode’

• Press Ctrl-V

• Press the required function key.

In a future article I’ll present a function library that should take much
of the hard work out of coding output for VT420 (and compliant)
terminals.

USING COMMON UNIX UTILITIES

Below are a few examples of the use of Unix utilities in shell scripts.
These are intended to show how common utilities are used and not as
a tutorial on the Unix toolkit.

The grep command

Below is an example of using grep to search a string.

ERROR_FILE=/tmp/file.arr

if grep ORA- ${ERROR_FILE}
then
 # if string ORA- is found in the file ...
 echo "Error found"
fi

grep uses regular expressions. While this subject has been discussed

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

before in AIX Update (see Issues 30 and 31), some of the commands
most commonly used are summarized below.

• . (period)
Match any single character.

• * (asterisk)
Match zero or more repetitions of the preceding characters.

• [] (square brackets)
Match any of the characters enclosed in the brackets.

• ^ (caret)
The beginning of the line.

• $ (dollar)
The end of the line.

Example:

grep '^\.D[SE]$' file1

Note:

1 The symbols ̂ and $ indicate that the search string must span the
entire line.

2 The backslash (‘\’) ‘escapes’ the dot, preventing it from being
interpreted as part of a regular expression, and allowing the
formation of such search patterns as ‘.DS’ and ‘.DE’.

The cut command

The use of the cut utility is best demonstrated by example. Consider
an instance where a string comprises a number of items delimited by
colons (‘:’):

VAR="AAAA:BBBB:CCCC:DDDD"

The cut command can be used to parse the string:

echo "${VAR}" | cut -d':' -f1

returns ‘AAAA’, and:

echo "${VAR}" | cut -d':' -f2

returns ‘BBBB’, etc.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

Cut can also be used to extract a substring from a string of characters:

VAR="ABCDEFGHIJKLM"

echo "${VAR}" | cut -c 1-5

Returns ‘ABCDE’.

The tr command

This command ‘translates’ instances of a character in a string to
another character. For example:

define variable
FULL_NAME=
echo "${FULL_NAME}" | tr ":" " "

This short script translates each of the strings on the left below to the
ones on the right.

Arif:Zaman Arif Zaman
John:Barnes John Barnes
Addul:Hakim Addul Hakim

The sed command

One use of sed is to implement global changes for every occurrence
of a string in a file. For example:

FILE1=/tmp/file1.dat # contains instances of $OLD_STRING
FILE2=/tmp/file2.dat # where to put processed output
OLD_STRING="PATH"
NEW="PATH_NAME"

This sends the output to the terminal
sed s/${OLD_STRING}/${NEW_STRING}/g ${FILE1}

This sends the output to $FILE2
sed s/${OLD_STRING}/${NEW_STRING}/g ${FILE1} ${FILE2}

A detailed discussion of sed can be found in AIX Update Issue 18.

The awk command
A use of awk is to process record items that are delimited by white
space. For example:

FULL_NAME="ARIF ZAMAN"
FULL_NAME="ANDREW JONES"

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

assign first name
FIRST_NAME=`echo "${FULL_NAME}" | awk {'print $1'}`

assign last name
LAST_NAME =`echo "${FULL_NAME}" | awk {'print $2'}`

OPERATORS

There are a number of operators that can be used in shell scripts.

The dot operator (‘.’)

This operator was encountered briefly earlier in this article. It is used
to indicate the program being invoked is to be executed in the current
shell, making its variables accessible to the executing program.

The redirection operator (‘>’)

This operator is fairly well known – it redirects the output of a
program.

The concatenation operator (‘>>’)

This operator concatenates the output of a program to the specified
device.

The ‘<< !’ operator

This operator is used to supply the string between the ‘<< !’ and ‘!’
symbols as input to a command being executed. This can be used for
the execution of SQL statements and other Unix commands, such as
ed and sed.

The best way to clarify the use of this operator is by example, the one
below being for an SQL command.

DEPT_EXISTS=
DEPT_EXISTS=`sqlplus -s / << !
 set heading off
 set feedback off
 SELECT 'Y'
 FROM dept
 WHERE deptno = 10;
!`

Note that the closing ‘!’ must be in the first column.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 17

The ‘tee’ operator

This operator is used to send output both to terminals and files. For
example:

cat names.dat | tee -a file.dat

The contents of the file names.dat are sent to the terminal and
appended to the file file.dat.

Back quotes (‘`’)

Back quotes are used to execute a command ‘in silence’. For example:

NAME=`echo $FIRST_NAME`

The variable $FIRST_NAME is echoed internally and the value is
assigned to variable $NAME.

The colon operator (‘:’)

The colon operator is used as a null statement in an ‘if-then-else’
construct. For example:

if ["$NAME" = "ARIF"]
 then
 : # do nothing
 else
 echo "Name is $NAME"
fi

LIBRARY FUNCTIONS

ulib , listed below, is both an example of how to write a shell library
and a practical library in its own right. Feel free to use it in your
programs.

Note the use of the continuation character, ‘➤’, in the code below to
indicate that one line of code maps to several lines of print.

ULIB
#! /bin/ksh
###
#
Author : Arif Zaman
Name : ulib (utility library)

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Description : Defines all global variables and functions
#
Notes 1 Displayed error messages have the following parts:
#
<Calling Script>:<Calling Function>:S-ulib:F-
<Called Library Function>
<Calling Script>:S-ulib:F-<Called Library Function>
#
2 When calling library functions, the following global
variables must be set:
#
- CALLING_SCRIPT=S-xxx where S is the script
- CALLING_FUNCTION=F-xxx where F is the function
#
3 Every library function returns either TRUE or FALSE
and can also assign a return value (converted to
uppercase, if appropriate) to RETURNED_VALUE.
#
4 To incorporate this library in another script, add
the following line as the first executable command
in the script:
#
. ulib
#
5 The Library contains following functions:
- IsDigit
- IsAlpha
- Strlen
- AgeFile
- PrintSpoolFile
- GetYNConfirmation
- MoveCursor
- DisplayMessage
- StripCR
#
###

###
Define global variables
###
DefineGlobalVariables ()
{
PRINTER=LASER; export PRINTER

TRUE=0 ; export TRUE
FALSE=1; export FALSE

SUCCESS=0; export SUCCESS
FAILURE=1; export FAILURE

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 19

DATE=`date +%d/%m/%y`; export DATE
TIME=`date +%H:%M:%S`; export TIME
EXIT_CODE=${FAILURE} ; export EXIT_CODE

FUNCTION_NAME=
Export FUNCTION_NAME

EM=":ERROR: "
IM=":INFO: "
ESC="\0033["

OPTION= # Selected menu option

MENU_NAME=
MSG_TYPE=
MESSAGE=

SLEEP_DURATION=5

ESC="\0033[["
RVON=" [7m"
RVOFF=" [m"
BON=5m
BOFF=25m

Used in the display of error messages
CALLING_SCRIPT= ; export CALLING_SCRIPT
CALLED_SCRIPT="S-ulib" ; export CALLED_SCRIPT
CALLING_FUNCTION= ; export CALLING_FUNCTION
CALLED_FUNCTION= ; export CALLED_FUNCTION

Values are returned through this value, except for TRUE and FALSE
RETURNED_VALUE= ; export RETURNED_VALUE
}

###
Defines global messages
###
DefineGlobalMessages ()
{
FILE_NAME_MISSING="Must provide a file name to be printed${RVOFF}"
STRING_MISSING="Must provide a string as a parameter${RVOFF}"
EMPTY_STRING="Parameter string is empty${RVOFF}"
AGE_USAGE="Usage:age \<file name\> \<file generation\>${RVOFF}"
INVALID_GENERATION="\${KEEP_GENERATION}, is an invalid generation
➤ parameter${RVOFF}"
NO_FILE_TO_AGE="cannot age a non existent file, \${FILE}${RVOFF}"
GENERATION_MISSING="\${GENERATION_TO_MOVE} generation of file\
➤ (\${FILE}.\${GENERATION_TO_MOVE}\) is missing${RVOFF}"
}

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

###
#
GetYNConfirmation
#
This function gets a Y/N confirmation to a message.
#
Notes 1 The function returns FALSE if:
- No message is passed
- The message string is empty.
#
2 The function returns TRUE if:
- The user has entered either 'Y' or 'N'.
#
3 The following return values are passed back:
- 'Y' or 'N'.
#
###
GetYNConfirmation ()
{
CALLED_FUNCTION="F-GetYNConfirmation"

Has a string been passed?
if [$# -eq 0]
then
 # No parameter was passed
 DisplayMessage E "$STRING_MISSING"
 return ${FALSE}
fi

MESSAGE=$1

if [-z ${MESSAGE}]
then
 # String is empty
 DisplayMessage E "$EMPTY_STRING"
 return ${FALSE}
fi

Get confirmation
while true
do
 clear
 echo "$MESSAGE\c"
 read REPLY
 case $REPLY in
 y|Y) RETURNED_VALUE="Y";
 return ${TRUE};;

 n|Y) RETURNED_VALUE="N";
 return ${TRUE};;

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 21

 *) :;;
 esac
done
}

###
#
IsDigit
#
This function checks whether a string contains only digits.
#
Input : A string
#
Returns : TRUE or FALSE
#
Notes 1 The function returns FALSE if:
- The string contains one or more letters
- The string is empty
- No string passed.
#
2 The function returns TRUE if:
- The string contains only digits.
#
###
IsDigit ()
{
CALLED_FUNCTION="F-IsDigit"

Has a string been passed?
if [$# -eq 0]
then
 # No parameter was passed
 DisplayMessage E "$STRING_MISSING"
 return ${FALSE}
fi

STRING=$1
if [-z ${STRING}]
then
 # String is empty
 DisplayMessage E "$EMPTY_STRING"
 return ${FALSE}
fi

Get the string length
if Strlen ${STRING}
then
 LEN=$RETURNED_VALUE
else
 return ${FALSE}
fi

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

STARTPOS=1
ENDPOS=1

while true
do
 if [$STARTPOS -gt $LEN]
 then
 break
 fi
 DIGIT=`echo $STRING | cut -c $STARTPOS-$ENDPOS`
 if ["$DIGIT" != "0" -a "$DIGIT" != "1" -a "$DIGIT" != "2" -a \
 "$DIGIT" != "3" -a "$DIGIT" != "4" -a "$DIGIT" != "5" -a \
 "$DIGIT" != "6" -a "$DIGIT" != "7" -a "$DIGIT" != "8" -a \
 "$DIGIT" != "9"]
 then
 return $FALSE
 fi
 STARTPOS=`expr $STARTPOS + 1`
 ENDPOS=${STARTPOS}
done
return $TRUE
}

###
#
IsAlpha
#
This function checks whether a string contains only alphabetic
characters.
#
Input : A string
#
Returns : TRUE or FALSE
#
Notes 1 The function returns FALSE if:
- The string contains any digits
- The string is empty
- No string passed.
#
2 The function returns TRUE if:
- The string contains only alphabetic characters.
#
###
IsAlpha ()
{
CALLED_FUNCTION="F-IsAlpha"

Has a string been passed?
if [$# -eq 0]
then

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 23

 # No parameter has been passed
 DisplayMessage E "$STRING_MISSING"
 return ${FALSE}
fi

STRING=$1
if [-z ${STRING}]
then
 # String is empty
 DisplayMessage E "$EMPTY_STRING"
 return ${FALSE}
fi

Get the string length
if Strlen ${STRING}
then
 LEN=$RETURNED_VALUE
else
 return ${FALSE}
fi

STARTPOS=1
ENDPOS=1

while true
do
 if [$STARTPOS -gt $LEN]
 then
 break
 fi
 DIGIT=`echo $STRING | cut -c $STARTPOS-$ENDPOS`
 if ["$DIGIT" = "0" -o "$DIGIT" = "1" -o "$DIGIT" = "2" -o \
 "$DIGIT" = "3" -o "$DIGIT" = "4" -o "$DIGIT" = "5" -o \
 "$DIGIT" = "6" -o "$DIGIT" = "7" -o "$DIGIT" = "8" -o \
 "$DIGIT" = "9"]
 then
 return $FALSE
 fi
 STARTPOS=`expr $STARTPOS + 1`
 ENDPOS=${STARTPOS}
done
return $TRUE
}

###
#
MoveCursor
#
This function moves the cursor to a specified position.
#

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Input : y coordinate
x coordinate
#
###
MoveCursor ()
{
CALLED_FUNCTION="F-MoveCursor"
YCOR=$1
XCOR=$2
print -n " [${YCOR};${XCOR}H"
}

###
#
DisplayMessage
#
This function displays a message.
#
Input : Message type
Message
#
###
DisplayMessage()
{
CALLED_FUNCTION="F-DisplayMessage"

MSG_TYPE=$1
MESSAGE=$2

Prepare function name to be displayed with error message
if ["${CALLING_SCRIPT}" = "" -a "${CALLING_FUNCTION}" = ""]
then
 FUNCTION_NAME="${CALLED_SCRIPT}:${CALLED_FUNCTION}"
elif ["${CALLING_SCRIPT}" != "" -a "${CALLING_FUNCTION}" = ""]
then
 FUNCTION_NAME="${CALLING_SCRIPT}:${CALLED_SCRIPT}:
 ➤ ${CALLED_FUNCTION}"
else
 FUNCTION_NAME="${CALLING_SCRIPT}:${CALLING_FUNCTION}:
 ➤ ${CALLED_SCRIPT}:${CALLED_FUNCTION}"
fi

EVALUATED_MESSAGE="`eval echo ${MESSAGE}`"

if ["${MSG_TYPE}" = "E"]
then
 # clear
 MoveCursor 23 1
 EM="${FUNCTION_NAME}${EM}"
 echo "${RVON}${EM}${EVALUATED_MESSAGE}${RVOFF}\c"

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

 sleep ${SLEEP_DURATION}
 echo "\n"
else
 clear
 MoveCursor 23 1
 IM="${FUNCTION_NAME}${IM}"
 echo "${RVON}${IM}${EVALUATED_MESSAGE}${RVOFF}\c"
 sleep ${SLEEP_DURATION}
 echo "\n"
fi

Reset variables
CALLING_SCRIPT=
CALLED_SCRIPT=
CALLING_FUNCTION=
CALLED_FUNCTION=
}

###
#
PrintSpoolFile
#
This function prints the named file.
#
Input : File name to be printed
#
Note This function suppresses the banner page.
#
###
PrintSpoolFile ()
{
CALLED_FUNCTION="F-PrintSpoolFile"

Was a string passed?
if [$# -eq 0]
then
 # no parameter was passed
 DisplayMessage E "$FILE_NAME_MISSING"
 return ${FALSE}
fi

FILE_TO_BE_PRINTED=$1
Check parameter
if [-z "${FILE_TO_BE_PRINTED}"]
then
 DisplayMessage E "$EMPTY_STRING"
 return ${FALSE}
fi

while true

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

do
 clear
 echo "Do you wish to print the output(Y/N):\c"
 read REPLY
 case $REPLY in
 Y|y) lp -o nb -d$PRINTER ${FILE_TO_BE_PRINTED};
 break;;

 N|n) break;;

 *) :;;
 esac
done
}

###
#
AgeFile
#
This function "ages" the specified file and keeps the specified
number of generations of it.
#
Input : File name
Number of generations to keep
#
Notes 1 The file name is in the following format:
file.extension
#
2 The "aged" file name is in the following format:
file.extension.generation
#
3 The function returns an error if it doesn't find all
files between the first generation and the one
specified.
#
###
AgeFile()
{
CALLED_SCRIPT="F-AgeFile”

Set globals
CALLED_SCRIPT="S-ulib"
CALLED_FUNCTION="F-AgeFile"

Check the parameters
if [$# -eq 2]
then
 :
else
 # Display error message

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 27

 DisplayMessage E "${AGE_USAGE}"
 return ${FALSE}
fi

FILE=$1
KEEP_GENERATION=$2
GENERATION_TO_REMOVE=
GENERATION_TO_MOVE=
LOOP=${KEEP_GENERATION}

Check that the file exists
if [! -f $FILE]
then
 # Display error message
 DisplayMessage E "${NO_FILE_TO_AGE}"
 return ${FALSE}
fi

Check the generation parameter
if IsDigit ${KEEP_GENERATION}
then
 if [! ${KEEP_GENERATION} -gt 0]
 then
 # Display error message
 DisplayMessage E "${INVALID_GENERATION}"
 return ${FALSE}
 fi
else
 # Display error message
 DisplayMessage E "${INVALID_GENERATION}"
 return ${FALSE}
fi

Remove the last generation to make room for new file
GENERATION_TO_REMOVE=${KEEP_GENERATION}
(rm -f ${FILE}.${GENERATION_TO_REMOVE}) 2> /dev/null

Special treatment if only one generation to be kept
if ["${KEEP_GENERATION}" -eq 1]
then
 mv -f ${FILE} ${FILE}.${KEEP_GENERATION}
else
 while [${LOOP} -gt 1]
 do
 # Age all generations of files
 GENERATION_TO_MOVE=`expr ${LOOP} - 1`
 if [! -f ${FILE}.${GENERATION_TO_MOVE}]
 then
 # Display error message
 DisplayMessage E "${GENERATION_MISSING}"

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 return ${FALSE}
 fi
 mv -f ${FILE}.${GENERATION_TO_MOVE} ${FILE}.${LOOP}
 LOOP=`expr ${LOOP} - 1`
 done

 # Age the new file to generation 1
 mv -f ${FILE} ${FILE}.1
fi

Now deal with generations above $KEEP_GENERATION
GENERATION_ABOVE=`expr ${KEEP_GENERATION} + 1`
while [-f ${FILE}.${GENERATION_ABOVE}]
do
 rm -rf ${FILE}.${GENERATION_ABOVE}
 GENERATION_ABOVE=`expr ${GENERATION_ABOVE} + 1`
done
}

###
#
Strlen
#
This function returns the length of a variable.
#
Input : Name of a variable
#
Notes 1 If the parameter is missing, the function returns:
${FALSE}
#
2 The syntax for calling this function is:
#
if Strlen ${STRING}
then
LEN=${RETURNED_VALUE}
fi
#
###
Strlen ()
{
CALLED_FUNCTION="F-Strlen"

Was a string passed?
if [$# -eq 0]
then
 # No parameter was passed
 DisplayMessage E "$STRING_MISSING"
 return ${FALSE}
fi

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 29

STRING=$1
Check parameter
if [-z "${STRING}"]
then
 # DisplayMessage E "$STRING_MISSING"
 ➤ "$SCRIPT:$FUNCTION:ulib:Strlen"
 return ${FALSE}
fi

STRLEN=`echo "$STRING\c" | wc -c`

RETURNED_VALUE="${STRLEN}"
return ${TRUE}
}

###
#
Array
#
This function demonstrates the use of arrays
#
Input : Array elements (NAME1, NAME2, NAME3, etc)
#
###
Array ()
{
CALLED_FUNCTION="F-Array"

ARRAY_LEN=$#

Store the arguments
ELEMENT=0
while true
do
 ARRAY[$ELEMENT]="`eval echo \\$$ELEMENT`"

 ELEMENT=`expr $ELEMENT + 1`
 if [$ELEMENT -gt $ARRAY_LEN]
 then
 break
 fi
done

Display the arguments
ELEMENT=0
while true
do
 echo ${ARRAY[$ELEMENT]}

 ELEMENT=`expr $ELEMENT + 1`

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 if [$ELEMENT -gt $ARRAY_LEN]
 then
 break
 fi
done
}

Invoke functions
DefineGlobalMessages
DefineGlobalVariables
Array 1 2 3 4

###
#
StripCR
#
This function strips trailing carriage returns from a file.
#
###
StripCR ()
{
CALLED_FUNCTION="F-StripCR"

if [$# -eq 0]
then
 echo "Usage: strip_CR <Input File> <Output File>"
 echo "Where trailing ^Ms in <Input File> are striped"
 echo "and the results placed in <Output File>"
 exit 1
fi
sed 's/$//' ${1} > ${2}
}

SCRIPT LAYOUT

Most shell scripts I see, even complex ones, are not written in a
structured way. A long and complex script can be just as difficult to
follow as any other program in other programming languages. By
using functions in shell scripts it is possible to make the scripts
modular and structured and hence easier to read and maintain. The
example below is a skeleton of a shell script that illustrates this point.

EXAMPLE OF SCRIPT LAYOUT
#! /bin/ksh
###
#

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 31

sample() script.sh
#
This script illustrates the structure of a shell script.
#
Input : None
#
Notes 1 The script contains following functions:
- main
- InitializeVariables
- ProcessBody
- ProcessExit
#
History

Date Author Description

01/01/99 A Zaman Initial build
#
###

###
#
InitializeVariables
#
This function initializes all variables.
#
Input :
#
Returns :
#
Notes
#
###
InitializeVariables ()
{
TRUE=0
FALSE=1

SEC=0 # success exit code
FEC=1 # failure exit code
}

###
#
ProcessBody
#
This function carries out the bulk of the processing.
#
Input :
#

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Returns : TRUE or FALSE
#
Notes
#
###
ProcessBody ()
{
echo ""
}

###
#
ProcessExit
#
This function removes any temporary files and ensures a
"graceful" exit, including an exit code.
#
Input : Exit code
#
Returns :
#
Notes
#
###
ProcessExit ()
{
EXIT_CODE=”$1”

remove temporary files
rm -r $TEMP_FILE

exit $EXIT_CODE
}

###
#
main
#
This is the function that invokes all other functions.
#
Input :
#
Returns :
#
Notes
#
###
main ()
{
InitializeVariables

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

ProcessBody
ProcessExit $SEC
}

invoke main function with all command line options
main

Arif Zaman
DBA/System Administrator
High-Tech Software Ltd (UK) © Xephon 1999

fixdist – keeping your system up-to-date

AIX Update Issue 26 (December 1997) briefly mentioned the existence
of a freely available IBM tool called fixdist . This tool enables the user
to download AIX patches from IBM’s Internet service sites. With just
a small amount of setting up (pointing at the relevant IBM Internet
server and stating what type of firewall you have), fixdist provides a
self-contained program for checking and downloading patches.

However, fixdist has its drawbacks. The database of fixes is in binary
format and is, therefore, hard to read without the front-end provided
(its format is not in the public domain either, so that, for instance, no
.h file is available). Also missing is a command line interface, so that
you must use either the ASCII version or the X-Window version.

To address these issues, I’ve written a small script that users of fixdist
who wish to make further use of the information it provides may find
useful. The script uses the database downloaded by fixdist (via the
strings command) to check the latest version of fixes available from
IBM. It then compares the list with information on software and fixes
installed on the host system. This means that the fixdist database file
must be on the same machine on which the script is run. The report
produced displays only file sets that are not up-to-date with fixes
available from IBM. You can then download the relevant fixes, if and
when required.

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

If your installation has multiple systems and allows the remote
execution of commands from the system that hosts fixdist , simply
change the lslpp –qcL… line to rsh <target_host> lslpp –qcL… to
get reports for other systems.

I have written the script to handle both AIX version 3 and 4. Despite
the fact that AIX version 3 is now ‘functionally stabilized’, IBM still
supports the distribution of patches for version 3 through fixdist . In
the sample output and code below, note the use of the continuation
character, ‘➤’, to indicate that one line of code maps to more than one
line of print.

SAMPLE OUTPUT

AIX Version 3
U423564 for object bos.obj is not installed on your system
U423569 for object bos.obj is not installed on your system
U423650 for object bos.obj is not installed on your system
U423651 for object bos.obj is not installed on your system
U423654 for object bos.obj is not installed on your system

AIX Version 4
For fileset bos.acct you have version 4.2.1.0
 ➤ fixdist knows about 4.2.1.6
For fileset bos.adt.base you have version 4.2.1.0
 ➤ fixdist knows about 4.2.1.7
For fileset bos.adt.debug you have version 4.2.1.0
 ➤ fixdist knows about 4.2.1.9
For fileset bos.adt.graphics you have version 4.2.1.0
 ➤ fixdist knows about 4.2.1.3
For fileset bos.adt.include you have version 4.2.1.0
 ➤ fixdist knows about 4.2.1.19
For fileset bos.adt.lib you have version 4.2.1.0
 ➤ fixdist knows about 4.2.1.2
For fileset bos.adt.libm you have version 4.2.1.0
 ➤ fixdist knows about 4.2.1.1

FIXDIST1.KSH
#!/bin/ksh
#set -x
#
Shell script to check the installed version of file sets against

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

information collected by fixdist.
#
The script relies on two files from the fixdist database:
#
- f32db.d01 for AIX version 3
- f41db.d01 for AIX version 4
#
Both files are in binary format.
#
ARGUMENTS:
#
The script takes an optional argument. If a file set name is
supplied on the command line, then the script reports only
on that file set. If no arguments are supplied, then it
reports on all file sets.
#
LPPS=$1
AIX_TEST=`lslpp -ql | grep "bos.rte " | egrep "APPL|COMM" | wc -l`
if [[$AIX_TEST -gt 1]]
 then
 AIX_VER=4
 else
 AIX_VER=3
 fi
#
This portion deals with AIX version 4
#
if [[$AIX_VER -eq 4]]
 then
 find / -name f41db.d01 -print | read DBLOC
 if [[$DBLOC = ""]]
 then
 echo "ERROR - no AIX version 4 fixdist database file found ...
 ➤ cannot continue"
 exit 1
 fi
 strings $DBLOC | awk -F"." '
 NF > 2 {
 print $0
 }' | sort -u > /tmp/$$.fixdist.lst
 lslpp -qcL $LPPS | awk -F":" '{ print $2 " " $3 }' | sort -u |
 ➤ while read a b
 do
 c=${b%.*}
 grep $a /tmp/$$.fixdist.lst| grep $a.[0-9] | grep $c
 ➤ > /tmp/$$.tmp
 WC=`wc -l /tmp/$$.tmp | awk '{ print $1 }'`
 if [[$WC -gt 0]]
 then
 NOF=`head -1 /tmp/$$.tmp | awk -F"." '{ print NF }'`

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 VER=`cat /tmp/$$.tmp | sort -t"." -krn$NOF | head -1 |
 ➤ awk -F"." '{
 X=NF - 3
 Y=NF - 2
 Z=NF - 1
 print $X"."$Y"."$Z"."$NF }'`
 if [[$b != $VER]]
 then
 echo "For file set " $a " you have version " $b "
 ➤ fixdist knows about " $VER
 fi
 fi
 done
 else
 #
 # This portion deals with AIX version 3
 #
 find / -name f32db.d01 -print 2> /dev/null | read DBLOC
 if [[$DBLOC = ""]]
 then
 echo "ERROR - no AIX version 3 fixdist database file
 ➤ found...cannot continue"
 exit 1
 fi
 strings $DBLOC | grep U[0-9] | grep obj > /tmp/$$.fixdist.lst
 mkdir /tmp/$$.dir
 chmod 777 /tmp/$$.dir
 if [[$LPPS = ""]]
 then
 lslpp -lqc | awk -F":" '{ print $2 }' | sort -u | awk '{
 ➤ print $1 }' | while read fname
 do
 lslpp -lacq $fname | grep -v AVAILABLE | awk -F":" '{
 ➤ print $2":"$3":"$4}' | sort -u -o /tmp/$$.dir/$fname
 done
 else
 lslpp -lacq $LPPS | grep -v AVAILABLE | awk -F":" '{
 ➤ print $2":"$3":"$4}' | sort -u -o /tmp/$$.dir/$LPPS
 fi
 for i in `ls /tmp/$$.dir`
 do
 grep $i /tmp/$$.fixdist.lst | awk -F"." '{ print $NF }' |
 ➤ while read PTFNO
 do
 INSTALLED=`grep $PTFNO /tmp/$$.dir/$i | wc -l`
 if [[$INSTALLED -eq 0]]
 then
 echo "$PTFNO for object $i is not installed on your
 ➤ system"
 fi

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

 done
 done
 rm -rf /tmp/$$.dir
 fi
rm -f /tmp/$$.tmp /tmp/$$.fixdist.lst > /dev/null 2>&1

Phil Pollard
Unix Systems Administrator (UK) © Xephon 1999

sysdoc – Web-based system documentation

INTRODUCTION

System documentation scripts are useful at various stages during the
development and maintenance of complex computer installations. To
this end I have implemented a documentation system that is based on
the Web. It consists of two parts: a CGI script, written for the Korn
shell, and an HTML file that invokes the script. The system gathers a
large amount of system configuration data, which is intended to be
printed and kept off line or saved as text in order to allow comparisons
of different configurations using standard Unix utilities, such as diff .
The HTML file displays a form that allows the user to select particular
types of system information for display.

I have tested the system using AIX 4.1, AIX 4.2, and AIX 4.3. The CGI
script is easily extensible to include additional data, such as information
on additional installed software (ADSM, HACMP) and hardware
(tape libraries, SSA disks).

I used Lotus’s Go Web server, which is supplied as a part of standard
AIX distribution, to host the Web page. The CGI script is called
sysdoc and should be installed in the cgi-bin subdirectory of the Web
server that runs on your computer (in my case, the directory is /usr/
lpp/internet/server_root/cgi-bin). sysdoc.html may be located in any
directory to which access is provided via your Web server (in my case
/usr/lpp/internet/server_root/pub). You should set sysdoc’s
permissions to ‘755’ and sysdoc.html’s to 555.

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Figure 1 shows sysdoc.html viewed using Internet Explorer.

Note the use of the continuation character, ‘➤’, in the listings below
to indicate that one line of code maps to more than one line of print.

SYSDOC.CGI
#!/usr/bin/ksh
#
Print system documentation for RS/6000 running AIX 4
#
#
function printtitle
{
echo "<P><TITLE>"

Figure 1: sysdoc.html viewed using Internet Explorer

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

echo $*
echo "</TITLE>"
}

function printhead
{
echo "<P><H1>"
echo $*
echo "</H1>"
}

function printhead2
{
echo "<P><H2>"
echo $*
echo "</H2>"
}

function printhead3
{
echo "<P><H3>"
echo $*
echo "</H3>"
}

function printtext
{
echo "<P><PRE>"
echo $* | awk '{print "
" $0}'
echo "</PRE>"
}

function printcom
{
if [["$VERBOSE" = "TRUE"]]
then
 echo ""
 echo "Following output has been produced by command: "
 echo "<I>"
 echo $*
 echo "</I>"
fi
 echo "<P><PRE>"
 $* | awk '{print "
" $0}'
 echo "</PRE>"
}

function printcom2
{
if [["$VERBOSE" = "TRUE"]]

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

then
 echo ""
 echo "The following output has been produced by command: "
 echo "<I>"
 echo $1 '|' $2
 echo "</I>"
fi
 echo "<P><PRE>"
 $1 | $2 | awk '{print "
" $0}'
 echo "</PRE>"
}

function printcom_trim
{
if [["$VERBOSE" = "TRUE"]]
then
 echo ""
 echo "The following output has been produced by command: "
 echo "<I>"
 echo $*
 echo "</I>"
fi
 echo "<P><PRE>"
 $* | sed '/^#.*/d' | tr ':' '\011' | awk '{print "
" $0}'
 echo "</PRE>"
}

function printfile
{
if [["$VERBOSE" = "TRUE"]]
then
 echo ""
 echo "The following output has been produced by command: "
 echo "<I>"
 echo "cat $1 | sed '/^[#:*].*/d'"
 echo "</I>"
fi
 echo "<P><PRE>"
 cat $1| sed '/^[#:*].*/d' | awk '{print "
" $0}'
 echo "</PRE>"
}

#
Print 2 lines of mandatory output from CGI script
#
echo 'Content-type: text/html'
echo
#
Start of the main program
#

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

###
HOSTNAME=$(hostname)
DATE=$(date)

IT="<I>"
E_IT="</I>"
PDISKS=`lspv| awk '{print $1}'`
VGS=`lsvg -o` # List VG infor for available VG's only !
#
Options Setting
#
cc=`echo $QUERY_STRING|grep VERBOSE|wc -c`
if [$cc -gt 0]
then
 VERBOSE="TRUE"
fi

cc=`echo $QUERY_STRING|grep SOFTWARE|wc -c`
if [$cc -gt 0]
then
 SOFTWARE="TRUE"
fi

cc=`echo $QUERY_STRING|grep HARDWARE|wc -c`
if [$cc -gt 0]
then
 HARDWARE="TRUE"
fi

cc=`echo $QUERY_STRING|grep STORAGE|wc -c`
if [$cc -gt 0]
then
 STORAGE="TRUE"
fi

cc=`echo $QUERY_STRING|grep USERS|wc -c`
if [$cc -gt 0]
then
 USERS="TRUE"
fi

cc=`echo $QUERY_STRING|grep COMMS|wc -c`
if [$cc -gt 0]
then
 COMMS="TRUE"
fi

cc=`echo $QUERY_STRING|grep SYSENV|wc -c`
if [$cc -gt 0]
then

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SYSENV="TRUE"
fi

if [["$SOFTWARE" = "TRUE" || "$HARDWARE" = "TRUE" || "$STORAGE" =
➤ "TRUE" || "$USERS" = "TRUE" || "$COMMS" = "TRUE" || "$SYSENV" =
➤ "TRUE"]]
then
 printtitle Configuration information for host $HOSTNAME on $DATE
 printhead Configuration information for host ITHOSTNAME$E_IT on
 ➤ ITDATE$E_IT
else
 printhead2 "No Sections Selected"
fi

if [["$SOFTWARE" = "TRUE"]]
then
 printhead2 Software

 printhead3 Level of AIX Operating System
 printcom oslevel

 printhead3 Installed Software
 printcom lslpp -l
fi

if [["$HARDWARE" = "TRUE"]]
then
 printhead2 Hardware

 printhead3 System Parameters
 printcom lsattr -E -H -l sys0

 printhead3 Detailed Hardware Configuration
 printcom lscfg -v

 printhead3 Installed Adapters
 printcom lsdev -C
fi

if [["$STORAGE" = "TRUE"]]
then
 printhead2 Storage

 printhead3 Installed Physical Disks
 printcom lspv

 printhead3 Logical Volumes Distribution per Physical Disk
 for i in $PDISKS
 do
 printcom lspv -l $i

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

 done

 printhead3 Physical Partitions Distribution per Physical Disk
 for i in $PDISKS
 do
 printcom lspv -p $i
 done

 printhead3 Physical Partitions Distribution per Logical Volume
 for i in $PDISKS
 do
 printcom lspv -M $i
 done

 printhead3 Volume Groups
 printcom lsvg

 printhead3 Online Volume Groups
 printcom lsvg -o

 printhead3 Volume Groups Characteristics
 for i in $VGS
 do
 printcom lsvg $i
 done

 printhead3 Physical Disks Distribution per Volume Group
 for i in $VGS
 do
 printcom lsvg -p $i
 done

 printhead3 Logical Volumes Distribution per Volume Group
 for i in $VGS
 do
 printcom lsvg -l $i
 done

 printhead3 Logical Volumes Characteristics
 for j in $VGS
 do
 LVS=`lsvg -l $j|grep '/'|awk '{print $1}'`
 for i in $LVS
 do
 printcom lslv $i
 done
 done

 printhead3 Logical Volumes Distribution on Physical Disk
 for j in $VGS

44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 do
 LVS=`lsvg -l $j|grep '/'|awk '{print $1}'`
 for i in $LVS
 do
 printcom lslv -l $i
 done
 done

 printhead3 Logical Volumes Allocation Map

 for j in $VGS
 do
 LVS=`lsvg -l $j|grep '/'|awk '{print $1}'`
 for i in $LVS
 do
 printcom lslv -m $i
 done
 done

 printhead3 Paging Space Layout and Utilization
 printcom lsps -a

 printhead3 File Systems
 printcom lsfs -a -q

 printhead3 Mounted File Systems
 printcom mount

 printhead3 /etc/filesystems
 printfile /etc/filesystems
fi

if [["$USERS" = "TRUE"]]
then
 printhead2 Users Information

 printhead3 Users
 printtext "Name Id Group(s) Home Directory Shell"
 printcom_trim lsuser -c ALL

 printhead3 Groups
 printtext "Name Id Admin Members"
 printcom_trim lsgroup -c ALL
fi

if [["$COMMS" = "TRUE"]]
then
 printhead2 Communications

 printhead3 TCP/IP

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 45

 printhead3 Hostname
 printcom hostname

 printhead3 Arp Table
 printcom arp -a

 printhead3 Routing Table
 printcom netstat -rn

 printhead3 Network Interfaces
 printcom lsdev -C -c if

 printhead3 Name Resolution /etc/hosts
 printfile /etc/hosts

 if [[-f /etc/resolv.conf]]
 then
 printhead3 Name Resolution /etc/resolv.conf
 printfile /etc/resolv.conf
 fi

 printhead3 Client Network Services
 printhead3 /etc/services
 printfile /etc/services

 printhead3 /etc/protocols
 printfile /etc/protocols

 printhead3 /etc/syslog.conf
 printfile /etc/syslog.conf

 printhead3 Server Network Services
 if [[-f /etc/hosts.equiv]]
 then
 printhead3 Remote Host Access Control /etc/hosts.equiv
 printfile /etc/hosts.equiv
 fi

 if [[-f /etc/ftpusers]]
 then
 printhead3 Local User Names NOT To Be Used by Remote FTP clients
 ➤ /etc/ftpusers
 printfile /etc/ftpusers
 fi

 if [`mount|grep nfs|wc -l` -gt 0]
 then
 printhead3 Directories Mounted thru NFS
 printcom mount|grep nfs
 fi

46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 if [[-f /etc/exports]]
 then
 printhead3 Local Directories Exported by NFS
 printfile /etc/exports
 fi
fi

if [["$SOFTWARE" = "SYSENV"]]
then
 printhead2 System Environments

 printhead3 /etc/inittab
 printfile /etc/inittab

 printhead3 Subsystems
 printcom lssrc -a

 printhead3 TimeZone
 printtext $TZ
fi

SYSDOC.HTML
<html>
 <head>
 <title>System Documentation Report Generation</title>
 </head>

 <body>
 <H1>System Documentation Report Generation</H1>
 <H3><BLINK>Takes Long Time to Complete !</BLINK></H3>

<FORM action="cgi-bin/sysdoc" method="GET">

<PRE>
Select Which Sections of Report to Generate

Software <INPUT TYPE="radio" NAME="SOFTWARE">

Hardware <INPUT TYPE="radio" NAME="HARDWARE">

Storage <INPUT TYPE="radio" NAME="STORAGE">

Users <INPUT TYPE="radio" NAME="USERS">

Communications <INPUT TYPE="radio" NAME="COMMS">

System Environments<INPUT TYPE="radio" NAME="SYSENV">
</PRE>

Select if printing of commands is needed
<INPUT TYPE="radio" NAME="VERBOSE">
<HR>

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 47

<INPUT TYPE="submit" VALUE="Generate Report">
<INPUT TYPE="reset" VALUE="Reset Options">
</FORM>
<HR>
<!-- Created: Thu Mar 18 10:44:44 WET 1999 -->
Return to Home Page

<!-- hhmts start -->
Last modified: Thu Mar 18 14:18:29 WET 1999
<!-- hhmts end -->
</body>
</html>

A Polak
System Engineer
APS (Israel) © Xephon 1999

A utility to implement a ‘highlighted calendar’

today.sh is a shell script that displays the calendar for the current
month with highlighted blinking focus on today’s date.

TODAY.SH
###
#
Name : today.sh
#
Overview : The script displays the calendar for the current
month, highlighting the current day.
#
History :
Date Name Description
--
02/02/99 A Zaman Initial Build
#
###

###
#
Name : InitializeVariables

48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

#
Overview : The function initialises all variables.
#
###
InitializeVariables ()
{
BON=[[5m
BOFF=[[25m
RVON=[[7m # reverse video on
RVOFF=[[27m # reverse video off
TODAY=`date +%d`
}

###
#
Name : ChangeDayFormat
#
Overview : The function changes the format of two-digit days
(with leading zeros).
#
###
ChangeDayFormat ()
{
if ["${TODAY}" = "01" -o "${TODAY}" = "02" -o "${TODAY}" = "03" -o \
 "${TODAY}" = "04" -o "${TODAY}" = "05" -o "${TODAY}" = "06" -o \
 "${TODAY}" = "07" -o "${TODAY}" = "08" -o "${TODAY}" = "09"]
then
 TODAY=`echo $TODAY | cut -c2-2`
fi
}

###
#
Name : DisplayCalendar
#
Overview : This function displays the calendar formatted using the
sed command.
#
###
DisplayCalendar ()
{
if ["${TODAY}" = "1" -o "${TODAY}" = "2" -o "${TODAY}" = "3" -o \
 "${TODAY}" = "4" -o "${TODAY}" = "5" -o "${TODAY}" = "6" -o \
 "${TODAY}" = "7" -o "${TODAY}" = "8" -o "${TODAY}" = "9"]
then
 #
 # format sed command for one-digit day
 #

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 49

 cal | sed s/^/' '/ | \
 sed s/" $TODAY "/" $RVON$BON$TODAY$RVOFF$BOFF "/
else
 #
 # format sed command for two-digit day
 #
 cal | sed s/^/' '/ | \
 sed s/$TODAY/$RVONBONTODAY$RVOFF$BOFF/
fi
}

###
#
Name : main
#
Overview : The function main invokes all other functions.
#
###
main ()
{
InitializeVariables
ChangeDayFormat
DisplayCalendar
}

#
invoke main
#
main

SAMPLE OUTPUT

February 1999
Sun Mon Tue Wed Thu Fri Sat
 1 2 3 4 5 6
 7 8 9 10 11 12 13
 14 15 16 17 18 19 20
 21 22 23 24 25 26 27
 28

Arif Zaman
High-Tech Software Ltd (UK) © Xephon 1999

50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Freeware for AIX

Many programmers and system administrators are aware that high-
quality open source software can be downloaded for a wide variety of
applications. Some applications, such as compilers, word processors,
and database management systems, are dominated by commercial
products. Others, such as Web servers, scripting languages, and e-
mail packages, tend to be dominated by open source software.

So how do you learn about useful free software? Mostly in the same
way as you would learn about any other useful software or information:
talk to co-workers, ask experts, read magazines, search and participate
in FAQs and the USENET, attend conferences, and surf the Web. To
make things easier, several Web sites have organized collections of
free software of potential interest.

One of these sites is http://www.bull.de/pub/. Their freeware and
shareware archive proudly announces itself as the world’s first archive
of smit-installable freeware for AIX 4. The packages available are
self-extracting, which basically means that you download them,
execute the downloadable to allow it to extract itself, and then install
the extracted package using AIX’s infamous smit.

Below is a list of the utilities that I think are most useful and the sort
of user that would be most likely to use them.

WORKGROUP SERVER PACKAGES

This category includes software packages that would typically be
used to provide services to a group of users or to implement a small
(departmental) application.

• Samba v2.0.0 SMB client and server for Unix
Samba is a freeware utility that allows PC users to access Unix
disk and printer resources without having to install NFS on the
PC.

• Apache v1.3.4 HTTP server
Apache is a freeware Web server that’s well supported in the

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 51

freeware world. It can integrate closely with Perl to create stable,
high-performance applications.

• MySQL v3.22.14 SQL database server
MySQL is a multi-thread SQL database engine. It can be accessed
directly from Perl using the Perl database interface driver.

• Perl v5.5.2 scripting language
The Perl scripting language is widely used for writing CGI
programs for Web servers. It’s also used as a regular scripting
language for automating administrative tasks. Perl is rapidly
becoming the preferred scripting language for all applications, as
it’s available on a wide range of platforms (including Unix, Mac,
and Windows).

• Squid v1.1.20 Web proxy server
Squid is a high-performance caching Web proxy server.

• FTPWeblog v1.0.2 Web and FTP server statistics package
FTPWeblog generates graphical statistics of Web server usage.
It’s easy to use and provides good, intelligent analysis of who’s
accessing which resources on your Web server.

• Wget v1.5.3 Web file retrieval
Wget is a powerful tool for downloading individual Web pages or
entire Web sites. It’s typically used to ‘mirror’ a server or part of
a server. Wget understands both HTTP and FTP URLs, and can
work through Web or Socks proxy servers.

• Weblint v1.20 ‘Lint’ program for HTML
Weblint can be used to check HTML documents for syntax errors.
It should be used when HTML documents are modified manually.

ADMINISTRATIVE TOOLS

This category comprises tools that are of specific use to system
administrators.

• Lsof v4.38 list open files
Lsof is an essential utility on any modern Unix system. It is
particularly useful in answering two difficult questions:

52 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

– Which users are using a filesystem? To unmount a filesystem
under Unix, all users must first stop using it. However, it’s
often difficult to identify which users have left processes
running in a particular filesystem. Lsof allows processes that
are still using a disk resource to be identified easily.

– Which processes are using the TCP/IP stack? When debugging
a network problem, it’s often vital to be able to analyse which
processes are actively using the TCP/IP stack. Lsof can
identify them quickly and easily.

• Monitor v2.1.5 performance monitor
Monitor is another ‘life-saving’ utility. It allows all the major
performance indicators to be displayed simultaneously on a
simple ASCII screen (or xterm). Monitor combines the information
available from many standard tools (vmstat, iostat, netstat, and
others) to provide an immediate view of system performance.
Monitor also benefits from the fact that it can be executed by non-
root users.

• Tidysys v2.2.1 system maintenance tool
On a normal Unix system, there are files that accumulate under
/tmp, including log files that must occasionally be reduced in size,
etc. Tidysys allows all the standard AIX files that need to be
maintained in this way to be kept to a reasonable size. In addition,
log files from add-on products can also be maintained using
Tidysys.

• AIX Tools v1.5.1 command-line tools
The LPP freeware.aix.tools.rte contains a range of small utilities
from different sources. Among the tools available, whichlpp
shows which LPP delivered a file, pstree displays processes in
tree format, ll is equivalent to ls -l, ldd lists the shared library
dependencies of a program better than dump -H, xd is a
hexadecimal dump utility that’s better than od -x, and chpass is
a batch password modification program.

• Satan v2.0.1 security analyst
Satan (Security Administrator Tool for Analysing Networks)
allows Unix systems on a network or subnet to be probed for

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 53

externally visible security problems. It’s a powerful and easy-to-
use tool, recently updated to conform with ITCS201
recommendations. All externally-visible Unix systems should be
tested with Satan several times a year.

• COPS v1.0.4 security checker
COPS looks for security configuration problems on the machine
where it is installed and executed. This allows an administrator to
verify that no errors have been made that could allow a local user
to become the superuser. All externally-visible Unix machines
should be tested with COPS once a month.

• Tiger v2.2.3.0 security checker
Tiger performs essentially the same job as COPS. Both can be
installed and used to double-check results.

• Crack v5.0 and Jonn v1.5 password cracking tools
Crack verifies that passwords for user logins (including root) are
difficult to guess. Crack is mostly used on machines that host
many user accounts to verify that users choose passwords that
don’t contain their name, commonly used passwords (such as
password), etc.

END-USER TOOLS

These are tools that would be directly useful to real live users with
access to the system from a shell.

• Gzip v1.2.4 file compression tool
Gzip is the default compression tool on the Internet.

• Screen v3.7.4 ASCII multi-screen utility
Screen is a great tool if you use dumb ASCII terminals. It allows
you to have several applications running on the same terminal,
each of which thinks it controls a real terminal of its own. Users
can switch from one application to another, allowing them, for
instance, to use vi on one screen, perform a back-up on another,
‘telnet’ to another machine on a third, etc.

• Mtools v3.9.1 utilities to access DOS disks from Unix
Mtools is an absolute necessity if you exchange diskettes with PC

54 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

users. Mtools provides commands with the same name and
syntax as standard DOS commands, bar the fact that the names of
Mtools commands are prefixed with an ‘m’ (mcopy instead of
copy, mdir instead of dir , etc).

• Xpdf v0.8 PDF viewer for X11
Xpdf is a smaller and faster version of the Acrobat Reader.

• Pine v4.05 e-mail utility
Pine is a powerful yet easy-to-use e-mail client. While Pine is an
ASCII application, it’s very quick and uses its own easy-to-use
custom text editor to prepare mail messages. Pine is fully MIME-
compliant, and allows text attachments to be displayed directly.

• Unzip v5.32 and Zip v2.2.0 file compression and packing tools
Zip and Unzip allow ‘zip files’ (widely used on PCs) to be created
(‘zipped’) and unzipped under Unix. The zip files created are
compatible with the PKZIP utility on a PC.

• Xpaint v2.5.5 image editing tool
Xpaint is a good tool for generating and editing images, though
it’s not up to the standard of something like PaintShop Pro on a
PC. Xpaint also allows images to be converted from one format
to another.

• xv v3.10.1 XV image viewer
XView is a shareware utility that provides powerful image
viewing tools. XView can be used to capture screen images,
which can then be edited and saved to disk in a number of formats.

DEVELOPMENT TOOLS

Packages in this category include all those used for software
development.

• EGCS v1.1.1 GNU C compiler
GCC, the GNU C and C++ freeware compilers, are probably the
most widely used compilers in the world, and set the standard
when it comes to portability. The GNU C compiler is a fully
ANSI-C compliant compiler. It’s customary for every Unix
machine to have a C compiler, but not everybody needs a

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 55

commercial product. The GNU C compiler provides basic
functionality for users who are not developing commercial
software applications.

Note that a commercial equivalent to GCC, such as IBM’s XLC
compiler, typically produces smaller, faster binaries and is also
more likely to stay current with the operating system and hardware.

• TCL/TK v8.0 scripting language tools
This is an implementation of the TCL scripting language.

• Mklpp v1.2.3 LPP generation tool
Mklpp is the tool used to generate freeware LPPs found on CD-
ROMs. Mklpp can be used to quickly and easily generate
professional installation images for any AIX 4 machine. It can be
used for in-house deployment of applications or to package a
commercial application for easy installation by your customers.

INTERNET COLLECTION CD-ROM

Bull is to make available an ‘Internet Collection CD-ROM’ that
contains almost all the utilities from the AIX 4.1.5 and later sections
of their freeware and shareware archive. This will provide over 350
MBs of free software that is installable with smit. The large majority
of it will also work on AIX 4.2 and AIX 4.3 thanks to AIX’s strong
cross-version compatibility. Source code will be included, where
possible.

Werner Klauser
Klauser Informatik (Switzerland) © Xephon 1999

AIX news

IBM has announced Licence Use
Management, a toolkit that gives software
vendors and end-users the ability to manage
the use of their applications. It supports
various software licensing models,
providing run-time monitoring of software
assets, a mechanism to control compliance
with software contracts, an ability to migrate
software assets to alternative pricing models,
and protection of software assets available
on CD-ROM or via electronic distribution
for a trial period.

Available now, the product costs US$6,000
for the AIX version, US$1000 for OS/2 and
Windows NT, and US$12,500 for HP-UX,
Solaris, and SGI IRIX.

For further information contact your local
IBM representative.

* * *

Software AG has announced a new version
of its DCOM-based EntireX middleware,
which now has a security system that allows
co-operation between NT and mainframe
security. The authentication procedure uses
Microsoft security standards, while the
authorization procedure for remote services
uses the host system’s standards. Also new is
cross-platform interoperability between
different security systems without the need
to use proprietary APIs.

It’s out now, with versions for AIX, OS/390,
HP-UX, Digital Unix, OpenVMS, Solaris,
NT, and Windows 95. No prices were
announced.

For further information contact:
Software AG, 11,190 Sunrise Valley Drive,

Reston, VA 22091, USA
Tel: +1 703 860 5050
Fax: +1 703 391 6975
Web: http://www.softwareag.com

Software AG (UK) Ltd, Charter Court, 74-
78 Victoria Street, St Albans, AL1 3XH, UK
Tel: +44 1727 844455
Fax: +44 1727 840092

* * *

Innosoft has announced the Innosoft
Distributed Directory Server (IDDS)
Version 5.0 and the Innosoft LDAP Proxy
Server (ILPS) Version 2.0. IDDS V5
provides high availability for LDAP 3
servers by keeping primary and secondary
servers in sync, resynchronizing them
should one fail then be brought back on-line.
ILSP provides such features as load
balancing and failover for high availability
LDAP servers. Both products are expected
shortly and will run on AIX 4.3 (PowerPC),
NT (Intel only), HP-UX, and Digital Unix.
UK prices for IDDS V5 range from £1,475
for 1000 entries to £78,000 for one million,
and prices for the ILPS range from £4,000 for
15 concurrent connections to £10,000 for an
unlimited number.

For further information contact:
Innosoft International, 1050 Lakes Drive,
West Covina, CA 91790, USA
Tel: +1 626 919 3600
Fax: +1 626 919 3614
Web: http://www.innosoft.com

Essential Computing Limited, PO Box 49,
Clevedon, Bristol BS21 7NB, UK
Tel: +44 1275 343199
Fax: +44 1275 340974

x xephon

	Assorted shell programming techniques
	fixdist – keeping your system up-to-date
	sysdoc – Web-based system documentation
	A utility to implement a ‘highlighted calendar’
	Freeware for AIX
	AIX news

