

© Xephon Inc 2004

April 2004

221

In this issue

CICS

3 Understanding the Open
Transaction Environment

16 Helpful exit for shutdown
assistant users

18 Changes to Java support in
CICS Transaction Server for z/
OS Version 2 Release 3

30 CICS TS V2.2 and V2.3 LDAP
support using JNDI –
configuration tips and examples

50 CICS questions and answers
52 CICS news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

CICS Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to CICS Update,
comprising twelve monthly issues, costs
$270.00 in the USA and Canada; £175.00 in
the UK; £181.00 in Europe; £187.00 in
Australasia and Japan; and £185.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
December 2000 issue, are available
separately to subscribers for $24.00 (£16.00)
each including postage.

CICS Update on-line
Code from CICS Update, and complete
issues in Acrobat PDF format, can be
downloaded from our Web site at http://
www.xephon.com/cics; you will need to
supply a word from the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in CICS Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Understanding the Open Transaction Environment

The Open Transaction Environment (OTE) is being exploited in
several different ways with the latest release of CICS. OTE
provides a rich environment for programming certain types of
CICS application, but this can lead to some confusion about what
is taking place within CICS to support the new functionality, and
how to interpret the system’s behaviour.
This article describes the use of OTE within IBM CICS Transaction
Server 2.2, and gives examples of what activity may be seen
within CICS traces for various OTE-managed operations taking
place in the system.

WHAT IS OTE?
To understand the rationale for OTE support, it is necessary to
look back at the traditional way in which workloads were processed
within CICS. The CICS quasi-reentrant (QR) TCB is the primary
dispatching tool for executing different CICS tasks, and the CICS
dispatcher function makes use of very rapid multitasking
techniques to give the various tasks within the system their own
opportunity to be run under the QR TCB for short periods of time.
This approach is efficient in terms of rapid throughput, but there
are some disadvantages to it. For example, making use of a
single TCB to process the vast majority of the CICS workload
means that CICS is not able to exploit hardware with multiple
central processors in a concurrent manner, since at any one time
the QR TCB may be executed on only one processor by the
operating system.
OTE allows certain types of program environments to execute
under a TCB separate from the QR TCB. Such OTE-managed
TCBs are known as open TCBs. They are dispatched separately
by the MVS dispatcher and can therefore execute at the same
time as the QR TCB, being dispatched under parallel central
processors concurrently by the operating system.

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

WHAT ADVANTAGES DOES OTE PROVIDE?
Parallel processing allows better exploitation of multi-engine
hardware, and can therefore improve throughput of CICS
workloads as a result. Providing dedicated TCBs for programs to
exploit allows specific environments to be constructed for
programs to execute in; these could not be used within the
traditional QR TCB model; for example, support for interpretation
of Java classes under JVMs executing within CICS. Also, use of
those MVS services that would suspend a TCB (‘block’ it) can be
limited to a single application running under its own dedicated
open TCB, and so not have a detrimental effect on the other
programs running within CICS.

WHEN WAS OTE INTRODUCED?
OTE was first introduced with IBM CICS Transaction Server 1.3.
The initial implementation provided OTE support for JVM
environments, to interpret Java class files of bytecodes.
OTE support within CICS Transaction Server 1.3 was later
enhanced via CICS PTF UQ44003 to support Java ‘hot-pooling’,
for compiled Java applications generated using the Enterprise
Toolkit Compiler and Binder. This type of Java program
environment is also referred to as the High-Performance Java
(HPJ) compiler and run-time. (Such HPJ-compiled Java
applications are known as Java program objects, to differentiate
them from interpreted Java class files that run in a JVM
environment.)
Support for OTE has now been extended by CICS Transaction
Server 2.2 to provide open TCBs to support OPENAPI Task-
Related User Exit programs. DB2 can now exploit such an
OPENAPI TRUE, so that OTE-managed TCBs can be used to
process DB2 requests from CICS applications.
CICS support for OTE has therefore been an evolutionary
process, with an increasing variety of programming environments
able to exploit it.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

WHAT OPEN TCB MODES EXIST UNDER OTE?
Three OTE TCB modes are currently supported by CICS. These
are:
• J8 TCBs, used by CICS to provide an environment for JVMs

to execute under and interpret Java applications.
• H8 TCBs, used by CICS to provide an environment for Java

hot-pooling support. Note: CICS Transaction Server 2.2
retains support for Java hot-pooling, for migration purposes.
The strategic platform for Java exploitation within CICS is via
the JVM.

• L8 TCBs, used by CICS to provide an environment for
OPENAPI-capable TRUEs such as DB2 V6 and above.

CICS manages the switching of TCBs between these various
modes itself. Users cannot define their own types of open TCB
for CICS to use. The different programming environments that
exploit the three types of OTE TCB are all very specific, and each
has its own characteristics and functional requirements.
The switching between different OTE TCBs is governed by the
type of program environment being exploited, and the threadsafety
of the programs being executed. To be able to understand what
TCBs will be used by CICS for which types of operation, it is
therefore necessary to understand the concept of threadsafety,
both at an application level and a CICS command level.

WHAT IS THREADSAFETY?
A definition of threadsafety is the ability to ensure that any shared
resource or internal state data is accessed in a serialized
manner. This means that threadsafe programs do not mind what
TCB they are executing under because they are not at risk from
other concurrently executing programs running under different
TCBs.
The CICS Transaction Server 2.2 Application Programming
Guide states the following:

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

In the CICS Open Transaction Environment (OTE), threadsafe
application programs and open task-related user exits, global
user exit programs, and user-replaceable modules cannot rely
on quasi-reentrancy, because they can run concurrently on an
open TCB. Furthermore, even quasi-reentrant programs are at
risk if they access resources that can also be accessed by a user
task running concurrently under an open TCB. This means that
the techniques used by user programs to access shared resources
must take into account the possibility of simultaneous access by
other programs. Programs that use appropriate serialization
techniques when accessing shared resources are described as
threadsafe. (The term fully re-entrant is also used sometimes,
but this can be misunderstood, hence threadsafe is the preferred
term.) For most resources, such as files, transient data queues,
temporary storage queues, and DB2 tables, CICS processing
automatically ensures access in a threadsafe manner. However,
for any other resources, such as shared storage, which are
accessed directly by user programs, it is the responsibility of the
user program to ensure threadsafe processing. Typical examples
of shared storage are the CICS CWA, global user exit global work
areas, and storage acquired explicitly by the application program
with the shared option.
From these definitions, it can be seen that an ability to recognize
and understand threadsafety within CICS applications is vital if
a system is to exploit OTE in an effective and optimal manner.
There are two aspects of threadsafety to be considered – the
threadsafety of CICS applications, and the threadsafety of CICS
functions themselves.

APPLICATION THREADSAFETY
When defining programs to CICS, the CONCURRENCY attribute
is used to inform CICS whether a program is threadsafe or not.
The options are QUASIRENT and THREADSAFE. The default
is QUASIRENT. Quasi-reentrant programs need to execute
under the QR TCB.
Conversely, a threadsafe program does not require the

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

serialization provided by virtue of quasi-reentrant dispatching
under the QR TCB, and so is free to execute upon other TCBs
if moved there by CICS.
The threadsafety of a program is specific to its own internal
function (ie its own business logic). If it exploits commands such
as EXEC CICS ADDRESS CWA, EXEC CICS EXTRACT EXIT,
or EXEC CICS GETMAIN SHARED, then a program may not be
threadsafe because these commands provide access to global
storage areas. To assist in locating instances of these commands,
a sample command table (DFHEIDTH) is provided for use with
the CICS load module scanner utility program DFHEISUP. The
load module scanner is a batch utility program. It scans load
modules within libraries and locates the EXEC CICS commands
present within them. It then applies the appropriate filter that is
provided to it, in order to identify only those commands that the
user is interested in. The load module scanner produces one of
two types of report. This is either a summary report listing the
modules containing the commands specified by the filter together
with the number of specified commands in each module, or a
detailed report with a list for each module showing the specified
commands that it contains and their offsets.
By using DFHEIDTH, DFHEISUP can therefore identify those
programs that issue commands EXEC CICS ADDRESS CWA,
EXEC CICS EXTRACT EXIT, or EXEC CICS GETMAIN
SHARED. To ensure such programs are indeed threadsafe, they
have to include the necessary synchronization logic to guard
against concurrent updates to the shared storage by another
program (or programs) executing at the same time under another
TCB.
Another reason for a program to be non-threadsafe is if it is a non-
reentrant program that modifies its own program storage
dynamically. Such programs are viable when executing in a
serialized manner under the QR TCB, provided that they ensure
their state is consistent once more before issuing another EXEC
CICS command.
Such non-reentrancy is not because of the exploitation of

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

specific EXEC CICS commands that provide access to shared
data, but rather because of the way in which the program has
been written to modify itself dynamically. It is therefore not
detectable by using tools such as the load module scanner.
It is possible that some programs defined as threadsafe may not
in fact be capable of running under an open TCB for some
reason. If problems occur when running programs that were
believed to be threadsafe, it is possible that the CICS system
may need to be temporarily modified to force all applications to
execute under the QR TCB until the problem can be investigated
and resolved. To help achieve this without the overhead of
modifying application program RDO definitions, CICS provides
a SIT parameter FORCEQR. The default is FORCEQR=NO,
meaning CICS will honour the CONCURRENCY attribute in the
program definitions. Setting FORCEQR=YES in the SIT allows
this attribute to be overridden. This is perceived as being useful
when investigating problems in a production CICS environment.

CICS THREADSAFETY
Some CICS commands are capable of being executed under
TCBs other than the QR TCB. An example is the EXEC CICS
ASSIGN command. These are therefore threadsafe CICS
commands. Other CICS commands require the use of the QR
TCB for their own serialization purposes, and so are not
threadsafe. An example of such a non-threadsafe CICS command
is the EXEC CICS WRITE command to File Control. CICS will
automatically switch to the QR TCB when such a non-threadsafe
CICS command is being executed. This is handled by DFHEIP,
the CICS EXEC interface program.
It is possible for an application program to be threadsafe itself,
and yet issue non-threadsafe EXEC CICS commands. Therefore,
a program does not have only to issue threadsafe CICS
commands in order to be threadsafe. It is the threadsafety of the
program itself (not the commands to CICS that it issues) that
determines how its CONCURRENCY attribute should be specified

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

on its program definition. Specifically, does it access shared
storage, or does it modify its own internal state by being non-
reentrant?

EXAMPLES OF OTE TCB ACTIVITY IN CICS TRACES
The following example traces are provided to give some guidance
on what to expect when OTE functions are utilized within CICS.
Note that the traces have been edited for clarity, and that a
considerable number of irrelevant trace events have therefore
been omitted.

A NON-THREADSAFE PROGRAM INVOKING DB2
The following trace shows an example of a CICS Transaction
Server 2.2 application invoking DB2 via an EXEC SQL SELECT
command. The application is not defined to be threadsafe (ie it
is quasi-reentrant, and defined as CONCURRENCY =
QUASIRENT).
CICS switches TCBs from the QR TCB to an OTE-managed L8
TCB (L8000 in this example) because DB2 V6 and above is an
OPENAPI-capable TRUE. When control returns to CICS from
DB2, the CICS External Resource Manager, DFHERM, switches
the TCB mode back to the QR TCB because the application is
not threadsafe and so requires a single-threaded quasi-reentrant
environment. The subsequent EXEC CICS SEND command is
executed under the QR TCB.
ØØØ31 QR AP 252Ø ERM ENTRY COBOL-APPLICATION-CALL-TO-TRUE(DSNCSQL)
ØØØ31 QR DS ØØØ2 DSAT ENTRY CHANGE_MODE L8
ØØØ31 L8ØØØ DS ØØØ3 DSAT EXIT CHANGE_MODE/OK
ØØØ31 L8ØØØ AP 318Ø D2EX1 ENTRY APPLICATION REQUEST EXEC SQL
SELECT
ØØØ31 L8ØØØ AP 3181 D2EX1 EXIT APPLICATION-REQUEST

ØØØ31 L8ØØØ DS ØØØ2 DSAT ENTRY CHANGE_MODE ØØØØØØØ1
ØØØ31 QR DS ØØØ3 DSAT EXIT CHANGE_MODE/OK
ØØØ31 QR AP 2521 ERM EXIT COBOL-APPLICATION-CALL-TO-TRUE(DSNCSQL)
ØØØ31 QR AP ØØE1 EIP ENTRY SEND-TC ØØØ4,151Ø84EØ

ØØØ31 QR AP FDØ1 ZARQ ENTRY APPL_REQ

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

15Ø8227Ø,ERASE,WRITE
ØØØ31 QR AP FD81 ZARQ EXIT APPL_REQ
ØØØ31 QR AP ØØE1 EIP EXIT SEND-TC OK

The application would remain under the QR TCB until it invoked
a service that required a different TCB environment. This could
be another EXEC SQL request to DB2, where CICS would once
again switch TCBs to the L8 TCB for the duration of the request.
Alternatively, it could be an EXEC CICS LINK to a JVM program,
when CICS would switch the thread of execution to run under a
J8 open TCB.

A THREADSAFE PROGRAM INVOKING DB2
The following trace shows an example of another CICS
Transaction Server 2.2 application invoking DB2 V6. This
application is defined to be threadsafe. CICS switches TCBs
from the QR TCB to an OTE-managed L8 TCB (L8001 in this
example). When control returns to CICS from DB2, the thread of
execution remains on this open TCB, since the application is
defined to be threadsafe and is therefore capable of executing its
code in a truly parallel environment to the QR TCB’s execution.
The application performs its own internal logic, then issues an
EXEC CICS WRITEQ command to temporary storage. This
happens to be a threadsafe CICS command, and so it is
processed under the L8 TCB as well.
ØØØ54 QR AP 252Ø ERM ENTRY COBOL-APPLICATION-CALL-TO-TRUE(DSNCSQL)
ØØØ54 QR DS ØØØ2 DSAT ENTRY CHANGE_MODE ØØØØØØØA
ØØØ54 L8ØØ1 DS ØØØ3 DSAT EXIT CHANGE_MODE/OK
ØØØ54 L8ØØ1 AP 318Ø D2EX1 ENTRY APPLICATION REQUEST EXEC SQL
SELECT
ØØØ54 L8ØØ1 AP 3181 D2EX1 EXIT APPLICATION-REQUEST

ØØØ54 L8ØØ1 AP 2521 ERM EXIT COBOL-APPLICATION-CALL-TO-TRUE(DSNCSQL)
ØØØ54 L8ØØ1 AP ØØE1 EIP ENTRY WRITEQ-TS ØØØ4,151Ø84DØ

ØØØ54 L8ØØ1 TS Ø2Ø1 TSQR ENTRY WRITE ANDYTEST,151Ø9978

ØØØ54 L8ØØ1 TS Ø9Ø1 TSAM ENTRY WRITE_AUX_DATA 151Ø9978

ØØØ54 L8ØØ1 TS Ø9Ø2 TSAM EXIT WRITE_AUX_DATA/OK 1,ØØØØØØØ1
ØØØ54 L8ØØ1 TS Ø2Ø2 TSQR EXIT WRITE/OK 1

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

ØØØ54 L8ØØ1 AP ØØE1 EIP EXIT WRITEQ-TS OK

ØØØ54 L8ØØ1 AP ØØE1 EIP ENTRY SEND-TC ØØØ4,151Ø84DØ

ØØØ54 L8ØØ1 DS ØØØ2 DSAT ENTRY CHANGE_MODE QR
ØØØ54 QR DS ØØØ3 DSAT EXIT CHANGE_MODE/OK
ØØØ54 QR AP FDØ1 ZARQ ENTRY APPL_REQ
15Ø8227Ø,ERASE,WRITE
ØØØ54 QR AP FD81 ZARQ EXIT APPL_REQ
ØØØ54 QR AP ØØE1 EIP EXIT SEND-TC OK

There is no switch back to the QR TCB required to honour this
threadsafe CICS command. Once again, control then returns to
the application, and it performs its own internal logic. When it
next issues a CICS command, it is an EXEC CICS SEND. This
is not a threadsafe CICS command, and so CICS switches TCBs
from the L8 TCB to the QR TCB in order to process the request.
On completion, CICS returns control to the application under the
QR TCB. This is since the application has now invoked a non-
threadsafe CICS function, and so there is the possibility that it
may do so again. In order to avoid the processing overhead of
unnecessary TCB switching, it is considered prudent to remain
running under the QR TCB at this stage. If the application issues
a command that does require a TCB switch (another EXEC SQL
call to DB2 for example) then CICS will switch back to the L8 TCB
once more. On completion of this request, control will once again
remain under the L8 TCB until another non-threadsafe CICS
command is issued.
These previous two examples have shown how CICS
automatically switches TCB modes in order to process requests
for specific functions that require them. For OPENAPI-capable
TRUEs, CICS will exploit L8 TCBs to execute the RMI requests.
If such requests are issued from non-threadsafe applications,
CICS will switch back to the QR TCB on completion of the
requests. If they are issued from threadsafe applications, CICS
will return control to the application under the open TCB, and
allow it to remain executing under this TCB until it makes use of
a non-threadsafe function. CICS then reverts to using the QR
TCB.

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

A JVM PROGRAM INVOKING A THREADSAFE CICS FUNCTION
The following trace shows an example of a Java class being
interpreted by a JVM executing within CICS Transaction Server
2.2. The JVM environment requires its own OTE-managed open
TCB, and so CICS allocates such a TCB to the task for the JVM’s
use during program initialization. This means that the task will
execute under a J8 TCB (J8001 in this example), while interpreting
the Java program’s bytecodes. It will also remain on the J8 TCB
when use is made of certain threadsafe CICS functions via the
JCICS API classes. This means that the flow of control will
remain under this open TCB and not be switched back to execute
on the QR TCB. EXEC CICS ASSIGN is an example of such a
threadsafe CICS command.
ØØØ42 J8ØØ1 AP 18Ø2 JRAS ENTRY com.ibm.cics.server.Wrapper
callUserClass

ØØØ42 J8ØØ1 AP 21EØ JCICS ENTRY DTCTask_getCommonData

ØØØ42 J8ØØ1 AP ØØE1 EIP ENTRY ASSIGN

ØØØ42 J8ØØ1 AP ØØE1 EIP EXIT ASSIGN OK

ØØØ42 J8ØØ1 AP 21EØ JCICS ENTRY DTCSupport_MakeJavaString TD

ØØØ42 J8ØØ1 AP 21EØ JCICS EXIT DTCSupport_MakeJavaString

ØØØ42 J8ØØ1 AP ØØE1 EIP ENTRY ASSIGN

ØØØ42 J8ØØ1 AP ØØE1 EIP EXIT ASSIGN OK

ØØØ42 J8ØØ1 AP 21EØ JCICS EXIT DTCTask_getCommonData

Note that CICS is constructing EXEC CICS commands
dynamically as part of the processing of the JCICS method calls.
These appear as EIP ENTRY and EXIT trace points in exactly the
same manner as those commands hard-coded within traditional
CICS application programs.

A JVM PROGRAM INVOKING A NON-THREADSAFE CICS
FUNCTION
The following trace shows an example of a different Java class

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

being interpreted by a JVM executing within CICS Transaction
Server 2.2. As before, the JVM environment requires its own
open TCB, and so CICS allocates one (J8002 in this case). The
application executes under the J8 TCB until it makes use of a
JCICS function that invokes non-threadsafe CICS code (in this
case, an EXEC CICS SEND command). When DFHEIP
encounters this command, it switches the TCB environment
back to the QR TCB in order to execute it. On completion of the
EXEC CICS SEND command, CICS switches TCBs back from
the QR to the J8 TCB, before returning the thread of execution
back to the Java application program. The JVM environment
requires its own open TCB, so CICS has to switch back from the
QR TCB after the non-threadsafe command has completed.
This behaviour is different from a threadsafe application running
under an L8 TCB (after a call to DB2), which has then issued a
non-threadsafe command. Remember that in such a case, CICS
will leave the application running under the QR TCB after the
command has completed (to try to avoid the potential for
unnecessary TCB switches in the future). This approach cannot
be taken with JVMs because an open TCB environment is
mandatory for them.
ØØØ56 J8ØØ2 AP 21EØ JCICS ENTRY Wrapper_GetCommArea 341B457Ø

ØØØ56 J8ØØ2 AP ØØE1 EIP ENTRY ADDRESS

ØØØ56 J8ØØ2 AP ØØE1 EIP EXIT ADDRESS OK

ØØØ56 J8ØØ2 AP 21EØ JCICS EXIT Wrapper_GetCommArea

ØØØ56 J8ØØ2 AP 21EØ JCICS ENTRY DTCTerminal_SEND

ØØØ56 J8ØØ2 AP ØØE1 EIP ENTRY SEND-TC

ØØØ56 J8ØØ2 DS ØØØ2 DSAT ENTRY CHANGE_MODE QR

ØØØ56 QR DS ØØØ3 DSAT EXIT CHANGE_MODE/OK

ØØØ56 QR AP FDØ1 ZARQ ENTRY APPL_REQ 15ØC1B7Ø,WRITE

ØØØ56 QR AP FD81 ZARQ EXIT APPL_REQ

ØØØ56 QR DS ØØØ2 DSAT ENTRY CHANGE_MODE J8

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ØØØ56 J8ØØ2 DS ØØØ3 DSAT EXIT CHANGE_MODE/OK

ØØØ56 J8ØØ2 AP ØØE1 EIP EXIT SEND-TC OK

ØØØ56 J8ØØ2 AP 21EØ JCICS EXIT DTCTerminal_SEND

A MIXTURE OF OTE TCB MODES
Having reviewed how CICS automatically switches open TCB
modes to accommodate requests to OPENAPI TRUEs such as
DB2 or Java classes running under a JVM, it is now appropriate
to see how such TCB switches may be combined within a single
program environment. The following trace shows such an
example. A CICS Transaction Server 2.2 application invokes
DB2 (via an EXEC SQL SELECT command). Being defined as
threadsafe, control is returned to it under an L8 TCB (L8000 in
this example). The application then issues an EXEC CICS LINK
to a Java program (JVMHCW). As before, the JVM environment
requires its own open TCB, and so CICS allocates one (J8000
in this case). Remember that OTE manages its open TCBs in
different ways depending on the programming environment they
are designed to support. An L8 TCB is therefore inappropriate for
use by a JVM.
The application executes under the J8 TCB until it makes use of
a JCICS function that invokes non-threadsafe CICS services (an
EXEC CICS SEND in this example). CICS switches TCBs from
the J8 TCB back to the QR TCB to process this request. When
the command has been completed, CICS automatically switches
TCBs back to the J8 TCB for the JVM environment to continue
executing under (because JVMs require their own dedicated
open TCB environment).
As the task continues invoking Java programs, DB2 calls
threadsafe and non-threadsafe EXEC CICS commands, so this
TCB switching continues automatically, as and when appropriate.
ØØØ53 QR AP 252Ø ERM ENTRY COBOL-APPLICATION-CALL-TO-TRUE(DSNCSQL)
ØØØ53 QR DS ØØØ2 DSAT ENTRY CHANGE_MODE ØØØØØØØA

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

ØØØ53 L8ØØØ DS ØØØ3 DSAT EXIT CHANGE_MODE/OK
ØØØ53 L8ØØØ AP 318Ø D2EX1 ENTRY APPLICATION REQUEST EXEC SQL
SELECT
ØØØ53 L8ØØØ AP 3181 D2EX1 EXIT APPLICATION-REQUEST SQLCODE 1ØØ

ØØØ53 L8ØØØ AP 2521 ERM EXIT COBOL-APPLICATION-CALL-TO-TRUE(DSNCSQL)
ØØØ53 L8ØØØ AP ØØE1 EIP ENTRY LINK ØØØ4,151Ø84DØ ..d}

ØØØ53 L8ØØØ PG 11Ø1 PGLE ENTRY LINK_EXEC JVMHCW,NO,NO
ØØØ53 L8ØØØ AP 196Ø APLJ ENTRY START_PROGRAM JVMHCW,CEDF,FULLAPI

ØØØ53 L8ØØØ SJ Ø2Ø1 SJIN ENTRY INVOKE_JAVA_PROGRAM
JVMHCW,DCOB,AWJVMPR
ØØØ53 L8ØØØ DS ØØØ2 DSAT ENTRY CHANGE_MODE J8,C1E6D1E5

ØØØ53 J8ØØØ DS ØØØ3 DSAT EXIT CHANGE_MODE/OK EXACT_MATCH
ØØØ53 J8ØØØ AP 18Ø2 JRAS ENTRY com.ibm.cics.server.Wrapper
callUserClass
ØØØ53 J8ØØØ AP 21EØ JCICS ENTRY DTCTerminal_SEND
ØØØ53 J8ØØØ AP ØØE1 EIP ENTRY SEND-TC ØØØ4,1BØØ1EØØ

ØØØ53 J8ØØØ DS ØØØ2 DSAT ENTRY CHANGE_MODE QR
ØØØ53 QR DS ØØØ3 DSAT EXIT CHANGE_MODE/OK

ØØØ53 QR DS ØØØ3 DSAT EXIT CHANGE_MODE/OK
ØØØ53 QR AP FDØ1 ZARQ ENTRY APPL_REQ 15Ø8227Ø,WRITE
ØØØ53 QR AP FD81 ZARQ EXIT APPL_REQ
ØØØ53 QR DS ØØØ2 DSAT ENTRY CHANGE_MODE J8
ØØØ53 J8ØØØ DS ØØØ3 DSAT EXIT CHANGE_MODE/OK
ØØØ53 J8ØØØ AP ØØE1 EIP EXIT SEND-TC OK
ØØØ53 J8ØØØ AP 21EØ JCICS EXIT DTCTerminal_SEND
ØØØ53 J8ØØØ AP 18ØF JRAS EXIT com.ibm.cics.server.Wrapper
callUserClass
ØØØ53 J8ØØØ SJ Ø2Ø2 SJIN EXIT INVOKE_JAVA_PROGRAM/OK ..<.
ØØØ53 J8ØØØ AP 1961 APLJ EXIT START_PROGRAM/OK ,NO,JVMHCW
ØØØ53 J8ØØØ PG 11Ø2 PGLE EXIT LINK_EXEC/OK ,,,

A HOT-POOLED JAVA PROGRAM
Hot-pooled Java programs execute under H8 OTE TCBs. Their
environment is analogous to the J8 TCBs provided by CICS for
interpreted Java programs running under JVMs. However, OTE
manages the H8 and J8 open TCBs in different ways, and in the
same manner that J8 open TCBs are required for JVM program
environments, so H8 open TCBs are required for hot-pooled
ones.

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The following trace shows an example of a hot-pooled Java
application, executing under an H8 TCB (H8000 in this example).
As with JVM programs running under J8 TCBs, CICS will switch
to execute under the QR TCB when processing non-threadsafe
EXEC CICS commands.
ØØØ49 H8ØØØ AP 21EØ JCICS ENTRY DTC_Init 1519578Ø
ØØØ49 H8ØØØ AP ØØE1 EIP ENTRY ADDRESS ØØØ4,13FØ43DØ
ØØØ49 H8ØØØ AP ØØE1 EIP EXIT ADDRESS OK
ØØØ49 H8ØØØ AP 21EØ JCICS EXIT DTC_Init 135ØØ638
ØØØ49 H8ØØØ AP 21E6 JCICS ENTRY Wrapper_callUserClass HW
ØØØ49 H8ØØØ AP 21EØ JCICS ENTRY DTCTask_getCommonData
ØØØ49 H8ØØØ AP ØØE1 EIP ENTRY ASSIGN ØØØ4,13FØ45B8

SUMMARY
I hope that this article has helped explain the different aspects of
the Open Transaction Environment within CICS, and the types
of TCB activity that may be seen within CICS traces when
utilizing OTE functions.
Andy Wright (andy_wright@uk.ibm.com)
CICS Change Team
IBM (UK) © IBM 2004

Helpful exit for shutdown assistant users

We are working with a customized version of the IBM shutdown
assistant. You can find the samples (for CICS TS Version 2.2 in
Assembler, COBOL, and PL/I) in your
CICSTS22.CICS.SDFHSAMP library. If this exit is active during
CICS shutdown processing, no user transactions can be started
or running, only the CICS-supplied transactions and the SDAP
transaction (shutdown assistant).
A troublefree shutdown process is ensured by using the shutdown
assistant, which terminates any possibly hanging transactions.
The exit (program CSXXMATT) is activated by the shutdown

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

transaction SHUT and the appropriate CSSHUT program. Of
course CSSHUT performs a number of important tasks during
CICS termination.
The shutdown assistant takes control through a PLT table entry
for CICS shutdown processing (DFHPLT TYPE=ENTRY,
PROGRAM=name).

CSXXMATT
CSXXMATT TITLE ‘XXMATT: CICS USER EXIT DURING TRANSACTION ATTACH’

* Abstract: This CICS Global User Exit is invoked during transaction *
* attach. *
* If this exit is active, during the shutdown processing *
* from CICS only the CICS-supplied transactions and the *
* SDAP transaction but (eg) no user-transactions without a *
* terminal can be running. *
* Change activity: *

 DFHUEXIT TYPE=EP,ID=(XXMATT)
 DFHUEXIT TYPE=XPIENV
 COPY DFHSAIQY
 COPY DFHXMIQY
CSXXMATT CSECT
CSXXMATT AMODE 31
CSXXMATT RMODE ANY
 SAVE (14,12) save registers
 LR R3,R15 R3 = base
 USING CSXXMATT,R3
 LR R4,R1 UEP parameter list address
 USING DFHUEPAR,R4
 L R6,UEPATPTI transaction name
 CLI 0(R6),C’C’ 01-01 CICS-supplied transactions can
 BE RETURN running
 CLC 0(4,R6),=CL4’SDAP’ Shutdown-assistant can running
 BE RETURN
 L R5,UEPXSTOR
 USING DFHSAIQ_ARG,R5
 L R13,UEPSTACK
 DFHSAIQX CALL, *
 CLEAR, *
 IN, *
 FUNCTION(INQUIRE_SYSTEM), *
 OUT, *
 SHUTSTATUS(*), *
 RESPONSE(*), *

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 REASON(*)
 CLI SAIQ_RESPONSE,SAIQ_OK
 BNE RETURN
 CLI SAIQ_SHUTSTATUS,SAIQ_NOTSHUTDOWN
 BE RETURN
SHUTDOWN DS 0H shutting down
 L R6,UEPATTTK transaction token
 MVC TOKEN,0(R6)
 DROP R5
 USING DFHXMIQ_ARG,R5
 L 13,UEPSTACK
 DFHXMIQX CALL, *
 CLEAR, *
 IN, *
 FUNCTION(SET_TRANSACTION), *
 TRANSACTION_TOKEN(TOKEN), *
 TCLASS_NAME(‘NLVTCL00’), *
 OUT, *
 RESPONSE(*), *
 REASON(*)
RETURN DS 0H
 L R13,UEPEPSA
 RETURN (14,12),RC=UERCNORM
TOKEN DS CL8
 LTORG
 END CSXXMATT

The code for CSSHUT will be published next month.
Claus Reis
CICS Systems Programmer
Nuernberger Lebensversicherung AG (Germany) © Xephon 2004

Changes to Java support in CICS Transaction
Server for z/OS Version 2 Release 3

CICS Transaction Server has, over a number of releases,
provided support for application programs written in Java. As
Java has gained in popularity, CICS has extended this functional
area to deliver those features that customers have requested as
well as many IBM believes will be of use to them in the future. A
number of significant enhancements are included in CICS TS
Version 2 Release 3.

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

This article describes the infrastructure used to support a Java-
based workload under the control of CICS, outlining the changes
introduced in CICS TS 2.3. It concentrates on Java applications
rather than Enterprise JavaBeans or distributed IIOP applications,
although some of the information included here applies to them
as well.

CICS AND JAVA
Support for applications written in Java was introduced in CICS
TS 1.3. Since then, the Java specifications have been considerably
refined, and the run-time environments used to build Java Virtual
Machines (JVMs) have undergone many changes. CICS has
added to the function it provides to support extensions to the
Java language, and to exploit enhancements from the run-time
environment, which it uses to host Java based workloads.
In recent years, Java has become the language of choice for
many application programmers throughout the IT industry. CICS
has a history which goes back well beyond that of Java, and has
adapted to many changes in the industry during its lifetime.
Today, a large emphasis is placed on the Java programming
model, and there is a growing number of skilled Java
programmers. As a result, it is natural for CICS to extend the
support it provides to follow these advances in the usage of Java.
Java continues to offer improvements in the form of increased
function, and provides benefits from lower development costs,
and the potential to build more robust and extendable applications.
New applications are generally developed using later versions of
the language. The Java run-time environments continue to be
extended in support of language changes. In addition, newer
versions of these run-times offer performance improvements,
better memory utilization, and enhanced systems management
functions. CICS TS 2.3 uses a later version of the Java run-time
than previous releases and in doing so makes available
infrastructure improvements and language extensions.

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

THE JAVA VIRTUAL MACHINE
The IBM SDK for z/OS, Java 2 Technology Edition, Version 1.4,
with the PTF for APAR PQ79281, is the recommended Java run-
time intended for use with CICS TS 2.3. It contains a number of
advances over earlier versions. Support is provided to allow Java
classes to be cached in a storage area, which can be shared
between different JVMs. This offers the benefit of reduced
memory requirements and fewer class loading operations for the
JVMs sharing the class cache, as well as faster start-up times for
individual JVMs. This and earlier versions of the run-time provide
a component called the Just-In-Time (JIT) compiler, which can
be used to optimize sections of Java classes when they are
referenced, making them more efficient when they are used
again. A small performance overhead is incurred when optimizing
code, and the class cache can spread this between those JVMs
which use its facilities.
Recent versions of the Java run-time support the serial reuse of
classes across successive program invocations. In doing so,
much of the initialization cost, which is incurred when a class is
loaded, is avoided on subsequent reuse. The JVM attempts to
reset its state after each program invocation. If a reset is
successful, the JVM remains available for use by new requests
and the significant overhead of starting up and shutting down a
JVM for each program invocation is avoided. If a reset cannot be
carried out, which is usually the result of the application leaving
state information around which is unresettable, then the JVM is
automatically destroyed. In this way, consecutive Java
applications, which run in the same JVM, are completely isolated
from each other.
SDK 1.3 introduced an optimized garbage-collection mechanism,
which allows a separation of short-lived objects from long-lived
classes and objects. Short-lived objects can be discarded,
whereas long-lived classes and objects are reset when an
application finishes execution, and persist for reuse by other
applications. With SDK 1.4, CICS can choose which storage
heap to load its middleware classes into and, in doing so, makes
use of cacheing for these classes to improve the performance of
the JVMs it manages.

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

JVMS AND CICS
The run-time environment for CICS Java applications has a
number of components that control the execution of its classes.
A Java program executes under the control of CICS in a
particular storage key. CICS supports the use of different types
for JVMs for use with the shared cache facility or to run as stand-
alone JVMs. In addition, JVMs can be configured to control the
way they are reused at the end of program execution. Each of
these components is extended in CICS TS 2.3.
Prior to this release, all Java applications executed in CICS key
storage areas. This has changed to allow customers to run
applications in user key, and if they choose to do so they gain the
benefits from the CICS storage protection mechanism, preventing
application code from overwriting CICS control blocks. The
storage key is defined on the Java program’s resource definition
in the same way as for programs written in any of the other
languages that CICS supports. A new type of TCB is managed
by CICS to allow JVMs to be started in user key storage areas.
The program resource definition also contains the name of a
JVM profile, which is used to define some of the properties of the
JVM needed to run the program, as well as some of the control
options CICS uses to manage this JVM. A JVM profile can be
used to define the type and mode of execution of a JVM.
There are three distinct types of JVM that CICS makes use of.
Stand-alone JVMs work in isolation from each other, and are the
only type supported by earlier releases of CICS. Worker JVMs
are those that make use of the shared class cache for the
execution of their Java applications. Master JVMs maintain the
shared cache, but are not used directly to run Java applications.
The execution mode of a JVM controls the reset processing that
takes place when a Java program finishes execution. In single-
use mode, a JVM is created, used once, and then destroyed.
This mode incurs the overhead of initializing and discarding a
new JVM for each program execution. It provides effective
transitional isolation and is useful when developing new
applications because fresh versions of classes are loaded each
time.

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Resettable mode causes an attempt to be made to restore the
JVM to a known state between transactions. If this reset is
successful then the JVM is available for use by another application,
which then benefits from not having to incur the cost of starting
a JVM or loading these classes into it. If the reset is not
successful then the JVM is destroyed. This mode offers good
transaction isolation without the overhead of restarting the JVM
between program invocations.
Both of these execution modes are available with CICS TS 2.2.
In CICS TS 2.3, support is provided for JVMs running in a new
mode, which is referred to in the CICS documentation as the
Continuous JVM. Such JVMs do not undergo automatic reset
processing once a Java program has finished executing there,
and do not leave around any changes that they may have made
to static data objects or JVM system properties. If they fail to do
so then these changes may adversely affect the running of other
applications in the same JVM at a later point in time. This
execution mode offers significant performance benefits over that
of the Resettable JVM and is recommended for any programs
that fully reset their application state.

THE SHARED CLASS CACHE
In previous releases of CICS, all JVMs worked in isolation from
each other, each maintaining a copy of the classes used by itself
and by the Java applications that ran there. In this release, CICS
takes advantage of the shared class cache facility provided by
the SDK 1.4.
This facility makes use of a single JVM, referred to as the Master
JVM, which CICS launches specifically to manage a shared
storage area where classes are cached. A Master JVM cannot
be used directly to run application workloads. Instead one or
more JVMs, known as Workers, manage individual requests to
run Java programs, and collectively make use of the classes
loaded into the shared class cache. A Master and its Workers are
referred to as a JVMset. Each CICS region can have only one
active JVMset at any time. It may have a JVMset, which is in the

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

process of starting, and it may also have any number of JVMsets
that are in the process of being phased out. The shared class
cache is made up of all of the JVMsets that a CICS region is
managing. However, system programming operations that query,
modify, or manipulate the class cache are carried out against the
active JVMset.
The shared class cache can be started during CICS initialization,
explicitly using a command, or it can be configured to start when
the first request is received to run a Java program requiring the
shared class cache. It can be stopped as part of CICS termination
or by using an SPI command. Once the instruction has been
processed to stop the class cache, then no new requests are
passed to any Workers that belong to the active JVMset. These
Workers can be allowed to complete any work they may be
processing at the time of the closure, or they can be forced to
terminate immediately. Once all the Workers have ended, the
Master JVM associated with them is also destroyed. A reload of
the shared class cache is also possible, primarily to allow new
versions of classes to be introduced. This operation causes a
new JVMset to be started, which, once ready, becomes the
active JVMset, while the previous one is phased out.
The shared class cache is beneficial in regions where multiple
JVMs are needed to support the same workload. In these
circumstances, all Worker JVMs make use of the same classes
and benefit extensively once these are loaded and optimized
within the shared cache facility. It has less of a role to play in
development systems because these are likely to make use of
stand-alone JVMs to test new applications.

JVM PROFILES AND JVM PROPERTIES FILES
CICS is responsible for controlling the operations that cause
JVMs to be created. It does so in a number of steps. Firstly it
assigns a TCB in a specific storage key, to allow the new JVM to
have its own thread of execution. Then it requests a new
Language Environment (LE) enclave to be allocated and uses
this to run a CICS component, containing Java Native Interface

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

(JNI) calls, which creates and then controls the actions of the
JVM.
A text file known as the JVM profile is used to control processing
when a new JVM is created. The file contains a set of options,
which CICS first interprets. Some of these are used by CICS for
its own internal processes, such as the building of the control
blocks it uses to represent the JVM resource or specific tasks
such as adding a Worker to the active JVMset. Other options are
formatted into an argument list, which is used when the Java run-
time creates the JVM in response to a JNI call from the CICS
code.
In this release of CICS, JVM profiles are stored in the Hierarchical
File System (HFS) in a directory defined to a CICS region using
the new SIT parameter JVMPROFILEDIR. In previous releases,
JVM profiles were located in the dataset identified on the
DFHJVM DD card in the region’s JCL. JVM profile names are still
limited to eight characters, but mixed case is now supported in
line with other Unix file naming conventions.
The JVM profile option, JVMPROPS, which must be included in
the profile, is used to locate another text file, known as the JVM
properties file. This file contains the system properties used by
the JVM once it has started. The file name may also include a
directory path to allow the properties files to be stored in a
separate directory from the one used for JVM profiles. CICS
reads the options from the properties file and adds them to the
argument list, which it then passes to the Java run-time on the
JNI call to create the JVM.
CICS provides five sample JVM profiles, each with its own
sample JVM properties file. Four of these are intended as
examples of typical settings for different types of JVMs, which
may be used within a CICS region. DFHJVMCC and DFHJVMPC
could be used for a Master JVM and its Workers, assuming all
the Workers shared the same options. DFHJVMPR and
DFHJVMPS show how a stand-alone Resettable JVM and a
single-use JVM might be configured. All these four sample JVM
profiles and JVM properties files can be extensively customized.

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The fifth sample, DFHJVMCD, is used internally for Java
operations within CICS, such as running a CORBA server or
publishing DJAR files. This profile needs a small amount of
customization, and comments within it indicate where changes
can be made. However, many of the settings need to be left
unchanged because their alteration may adversely affect the
operations carried out by CICS’s internal Java components.

THE JVM POOL
The collection of JVMs to which a CICS region routes work is
referred to as the JVM pool. This may include Stand-alone and
Worker JVMs, and these will either have tasks assigned to them
or be waiting for work. A Master JVM is not included in the JVM
pool and, as a result, cannot be explicitly inquired on.
The size of the JVM pool is limited by the value of the
MAXJVMTCBS SIT option. This may be further constrained by
the amount of storage that is available to the system.
Systems that support mixed Java workloads are likely to make
use of JVMs with different characteristics for specific applications.
The pool could include some JVMs running in CICS key, while
others might be running in user key. Each of these might be either
a Worker or a Stand-alone JVM. Some of these JVMs may be
running in resettable mode while others may be in continuous
mode. Single-use JVMs are also part of the pool but, because
they are relatively short lived, they may not be noticed if the pool
is inquired on.
One restriction on the JVM pool is that all the JVMs making up
the active JVMset for the shared class cache have to run in the
same mode. Workers inherit their execution mode, together with
some other properties, from the profile used to start their Master
JVM. Workers can use different profiles to set options such as
heap sizes, and can run in both CICS and user key storage within
the same JVMset.
When CICS receives a request to run a Java program it will look
for a JVM that is already started but currently not being used,

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

which matches the JVM profile and storage key for the new
request. If found, the new request will be assigned to that JVM.
However, if a match cannot be found and the number of JVMs is
below the maximum allowed by the region, a new JVM will be
created.
Once the maximum number of JVMs is reached, CICS queues
new requests and uses a selection mechanism to decide on how
to proceed, each time one of its JVMs completes work it has been
servicing. When a JVM becomes free, it may not have the same
profile or execution key as the first request in the queue. CICS
uses an internal algorithm to process requests that are queued.
It may choose to allocate some other request in the work queue
to this JVM, or create a new JVM on the same TCB if the storage
key matches, or it may recycle both TCB and JVM if the storage
key is different. The aim of this procedure is to minimize the
number of times JVMs and their TCBs are recycled. This
mechanism is entirely under the control of CICS and cannot be
configured by users.

THE JVM STORAGE MONITOR
JVMs running under CICS pass their storage requests to CICS
via the Language Environment PIPI exits. There MVS GETMAINs
are issued to acquire the storage outside the CICS Dynamic
Storage Areas (DSAs). CICS domain services cannot be used
in these PIPI exits because they can be called by non-CICS
TCBs. No monitoring of this storage was done in earlier releases
of CICS, leading to unpredictable results when the available
MVS storage was exhausted. In this release, CICS provides a
new storage monitor, which tracks the availability of MVS storage
outside the CICS DSAs, reserves a cushion that can be used
when the MVS storage is severely constrained, and notifies
CICS domains so that they can take action to reduce the JVM
storage requirements.
A JVM requests most of the storage area that it requires when
it is created. During the execution of a Java application there are
some circumstances where small amounts of additional storage

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

may be requested. The new storage monitor checks to see
whether MVS storage is below a threshold each time a JVM
storage request is issued through the PIPI exit. It reports on
storage constraints, and notifies CICS so that it can block the
request or terminate JVMs as they complete their current tasks
to alleviate the situation. Once the constraint is relieved, CICS
permits new Java requests to be processed normally.
The storage monitor is internally configured by CICS and cannot
be customized by users. The messages it produces can be used
to diagnose the cause of the problem, so that preventative steps
can be taken to avoid a recurrence. Likely causes are having
MAXJVMTCBS set too high for the system or running with
unnecessarily large JVM heap sizes.
Advice on storage management issues can be found in the CICS
Performance Guide.

REDIRECTING JAVA OUTPUT
Each JVM has a destination where it can write output messages,
and another for error messages. These messages may be
issued from the JVM’s internal function or may come from a Java
application running there. CICS is responsible for creating
default destinations for both of these in the HFS. It makes use of
options in the JVM profile to determine where these files are
placed. The WORK_DIR option can be used to specify the
directory path, and the STDOUT and STDERR options can
specify names for these files. A further option, STDIN, is used to
provide the name for an input file that some JVMs may require.
If the directory path is not found in the JVM profile, CICS
assumes a default of /tmp. Default file names of dfhjvmout,
dfhjvmerr, and dfhjvmin are assumed if options for these are not
found in the profile.
If the default settings are used, all the output messages from all
of the JVMs associated with all the CICS regions that have
access to the same file system will be written to the same file. The
same is true for error messages. This is unlikely to be what many
customers require. Some granularity of separation can be

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

achieved by including these options in JVM profiles, but as JVMs
may share these, further separation may be needed.
If the -generate keyword is added to the STDOUT and STDERR
option, CICS will generate a unique files name for each JVM by
extending the name, provided in the option, with the CICS
region’s applid, task number, process ID, and time stamp. This
allows separation of output and error messages between JVMs
sharing the same profile. However, there may be a need to
separate messages generated by individual Java invocations
within the same JVM, or to direct the messages to somewhere
other than the file system. In this release of CICS, a method of
output redirection has been provided to meet these needs.
A single Java class can be named using the
USEROUTPUTCLASS option in a JVM profile. This class can be
one of two samples that CICS supplies, or it may be one provided
by the user. The class is used to optionally redirect either or both
output and error messages. One sample class, with the name of
SJMergedStream, demonstrates how output and error messages
can be redirected to the CICS TD queues CSJO and CSJE. It
also shows how each message can be extended to include a
time stamp, the Java program names, and other information that
can be used for diagnostic purposes. The other sample is called
SJTaskStream. It illustrates how messages can be directed to
separate files for each invocation of a program within a JVM, the
file name being qualified by task numbers. These samples are
extensively documented in the CICS manuals and contain
comments intended to help programmers customize them or
create their own classes for this purpose.
These mechanisms should be used with care because they will
have an effect on the performance of the systems that make use
of them. As a result, the -generate extension to the STDOUT and
STDERR option, and output redirection classes should be used
only where necessary. They are useful aids for validating new
applications or diagnosing problems with them, in a development
system. In production, these options should be used only when
an essential need exists.

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

CHANGES TO THE JAVA APPLICATION PROGRAMMING MODEL
Complex applications often comprise a number of programs and
make use of the EXEC CICS LINK interface to allow one program
to pass control to another. In this release, Java programs can
issue LINK requests to other Java programs because the
restriction of having only a single JVM associated with a CICS
task has been removed. This brings the Java application
programming model in line with that for the other languages
CICS supports.
CICS provides a set of classes to provide the Java equivalent for
many of the Application Programming Interfaces (APIs) used by
other languages to access CICS resources. These are known as
the JCICS classes and have been extended in this release to
allow applications to directly make use of CICS Web Support.
Classes have been provided for both the CICS Web API and the
Document API, allowing applications to interrogate Web-based
requests and to construct response in the form of HTML
documents.

SUMMARY
CICS TS 2.3 continues to provide extensions to its ability to run
Java applications under its control. Java programs can now run
in either CICS or user key. They can do so within long-lived JVMs,
which may or may not be reset between transactions, or which
are used for single-use processing. The shared class cache
facility allows classes to be shared between JVMs. A number of
sample JVM profiles and JVM properties files are included to
illustrate typical settings for different types of JVM. A selection
mechanism is used to minimize the overhead of recycling JVMs,
and a storage monitor is included to assist with problems when
MVS storage is constrained. A facility is provided to optionally
enhance and redirect output and error messages issued from
JVMs or the applications that are running there.
This article outlines the function that CICS has provided to

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

support workloads written in Java, and focuses on these changes
in the latest release of the product.
Mike Brooks
Senior IT Specialist
CICS Development (UK) © IBM 2004

CICS TS V2.2 and V2.3 LDAP support using JNDI –
configuration tips and examples

CICS TS V2.2 provided CICS EJB support, which requires the
services of the Java Naming and Directory Interface (JNDI).
CICS TS 2.3 further enhanced CICS EJB support, thereby
greatly improving performance, and continues using the JNDI
interface, using JNDI cache to improve the performance of JNDI
look-ups.
So, if you are just starting with CICS EJB server implementation
under CICS TS V2.2 or V2.3, you need to understand what
services LDAP server provides and how it relates to CICS EJB
server set-up. This article is intended to familiarize you with CICS
LDAP support and help you configure the required CICS JNDI
entries, using the LDAP server provided with z/OS.

JAVA NAMING AND DIRECTORY INTERFACE
JNDI enables Enterprise beans, and other Java programs
running under CICS, to look up an external Enterprise bean by
name in order to obtain its home interface, which can then be
used to find or create an instance of the Enterprise bean. A
service provider that provides the underlying repository and
supports the JNDI Version 1.2 is therefore required.
The service provider can be a COSNaming service or an LDAP
server. You can, for example, use the COSNaming service
provided with the WebSphere Application Server or the LDAP
server provided with z/OS.

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

A naming server is the place from which a client requesting EJB
activity determines where the Enterprise bean will run. CICS
supports two types of naming server:
• A COSNaming Server, which will reside on a workstation.
• An LDAP server, which can reside on a workstation or on a

z/OS host.

CICS AND JNDI
CICS TS V2.x may be used with either a COSNaming server or
LDAP server as the JNDI service provider. A CORBA Object
Services (COS) naming server, such as that provided by
WebSphere Application Server V3.5, or later, can be used.
Alternatively an LDAP server with a CORBA object reference
schema can be used. The LDAP server licensed as part of the
base OS/390 or z/OS operating system meets this requirement.
This is the recommended configuration because it simplifies
interoperability between CICS TS and WebSphere Application
Server V4 or later for OS/390 and z/OS when they share the
same LDAP server.
CICS uses the same LDAP structure as WebSphere and CICS
LDAP configuration is not required if the LDAP server is already
set up for CICS. There is an advantage from an application
perspective to publishing your CICS EJBs to the same LDAP
server, and into the same directory structure, as your WebSphere
EJBs. This makes it easier for beans from one system to look up
beans from the other. If, for security or support reasons, you
would like to separate your WebSphere LDAP from your CICS
LDAP CICS, it is possible to use either a separate directory
structure in the same LDAP server as WebSphere or an entirely
separate LDAP server.
In order to understand how JNDI is used with CICS, it is helpful
to get a high-level overview of how an IIOP request is processed.
The Request Receiver analyses the structured IIOP message.
It compares the message with the templates defined in the CICS

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RDO REQUESTMODEL definition, in order to select the
transaction ID used to process the request.
The Request Processor:
• Locates the object identified by the request.
• For Enterprise bean requests, calls the container to process

the bean method.
• For a CORBA stateless object, processes the request itself.
The Request Receiver can be installed into a listener region and
the Request Processor and CICS CorbaServer can be installed
into an Application Owning Region (AOR). Together the listener
region and AOR comprise a logical EJB server. A CICS logical
EJB server consists of one or more CICS regions configured to
behave like a single EJB server.
JNDI provides a JNDI client API for accessing JNDI service
providers.
An LDAP server provides the following services:
• Naming services – provides the means by which names are

associated with objects and objects are found based on their
names. It provides an association known as a binding
between a name and an object.

• Directory services – a naming service can be extended with
a directory service. A directory service associates names
with objects and also allows such objects to have attributes.
Thus, if you look up an object by its name you also get the
object’s attributes and vice versa. An example is the telephone
company’s directory service. It maps a subscriber’s name to
an address and phone number.

• API – the JNDI provides an API that applications can use to
access a naming and directory service. The naming and
directory service could be provided by any of a variety of
servers, such as LDAP or COSNaming service. JNDI provides
a Service Provider API (SPI), enabling access to the particular
underlying directory service. The SPI is written by the vendor

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

of the underlying naming and directory service and is supplied
as a Java class library. This allows arbitrary service providers
to be plugged into the JNDI framework. In the javax.naming
package, the JNDI provides classes that implement a naming
interface for applications that look up only names and
access objects bound to names. In the javax.naming.directory
package, the JNDI provides a directory interface that extends
the naming interface. This package allows applications to
retrieve attributes associated with objects stored in the
directory and to search for objects with specified attributes.

PROS AND CONS FOR USING LDAP SERVER CONFIGURED FOR
WEBSPHERE ON Z/OS
If the name server that you have chosen for use by CICS has
already been configured for WebSphere/390, there is likely to be
very little configuration needed to enable CICS to use it.
Correct operation of the EJB support in CICS requires the
chosen LDAP namespace to be configured with a WebSphere
System Namespace – the publish and retract mechanisms of
CICS both attempt to operate within a System Namespace
structure. However, once inside an EJB method, or if executing
a regular Java transaction in CICS, you can communicate with
any LDAP namespace regardless of whether or not it supports
a System Namespace.
My recommendation is to use LDAP server for z/OS configured
for WebSphere, unless:
1 You need a different security configuration between CICS

and WebSphere.
2 CICS needs to run in a separate domain from WebSphere.

If you are building a new separate domain, WebSphere/390
and CICS will not easily be able to locate each other’s
Enterprise beans. If you do intend to build just a new domain,
CICS needs to run in an entirely different system namespace
structure on the LDAP server, that is, CICS needs to have a

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

containerdn that points to somewhere other than the existing
namespace root location on the server.

LDAP CONCEPTS
LDAP uses contexts and initial context to define resources.

Contexts
A context is an object that contains zero or more bindings. For
example, If the current context is o=MYCOMPANY,c=US, then
the atomic name ou=Chicago refers to the child node in the DIT
with the DN ou=Chicago,o=MyCOMPANY,c=US. A subcontext
is a context within a context. The node
ou=Chicago,o=MyCOMPANY,c=US is called a subcontext of
o=MyCOMPANY,c=US.

InitialContext
An object factory is a class that accepts some information about
how to create an object and returns an instance of that object. A
context factory is a specialization of an object factory. It accepts
information about how to create a context and returns an
instance of the context. JNDI performs all naming and directory
operations relative to a context. There are no absolute roots. To
assist in finding a place to start, the JNDI specification defines an
InitialContext class. This class is instantiated with properties that
define the type of naming service in use. This class also provides
the ID and password to use when connecting for the naming
services that provide security. Once you have an initial context,
you can use it to look up other contexts and objects. An
application must establish an initial context as a starting point
from which to do searches or traverse the name space.

CICS LDIF file
JNDI LDAP building system name space root entry (containerdn)
is defined in the LDIF file located at /usr/lpp/cicsts22/utils/
namespace/dfhsns.ldif.

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

This LDIF file creates the necessary system name space root
entry, called the containerdn. You can choose any name, but
shorter names are easier to type correctly. The containerdn is a
distinguished name that points to an entry of type ‘ibm-
wsnNameTreeContainer’.
You can replace c=US (the root naming context suffix) with a
name of your choice, but be aware that this must exist as a suffix
on your chosen LDAP server.
Here is an example of what an LDIF file might look like:
dn: c=US
changetype: add
c: US
objectclass: country
description: LDAP Name Tree Area for CICS/WebSphere EJBs
entryowner: access-id:cn=clemas
aclpropagate: TRUE
ownerpropagate: TRUE

Add the CICSUser (admin) user with the default password
dn: cn=CICSUser, c=US
changetype: add
objectclass: person
cn: CICSUser
sn: CICS Transaction Server 2.2 admin
userPassword: secret

Add the CICSSystems (run-time) user with the default password
dn: cn=CICSSystems, c=US
changetype: add
objectclass: person
cn: CICSSystems
sn: CICS Transaction Server 2.2 run-time
userPassword: secret

Add ACLS to the c=US entry
dn: c=US
changetype: modify
add: x
aclentry: access-id:cn=CICSUser,c=US:object:ad:normal:rwsc
aclentry: group:CN=ANYBODY:normal:rsc

The following two LDAP userids (principals) are used by CICS:
• The CICS LDAP Administration principal:

cn=CICSUser,c=US is a principal that is given write access

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

to the myCompany-wsnTree node and below, so this principal
can be used when needing to alter the system name space
in some way. It makes a sensible alternative to a global
LDAP administration principal that would have more access
than strictly required.

• The CICS LDAP Run-time principal: cn=CICSSystems,c=US
by default does not give the run-time principal any write
access at all. It would be used if you wanted a very tight
security model where CICS users can alter only their specific
portion of the system name space below the legacyRoot
node.

Here is how you can issue an LDAP modify command to add
CICSUser ID:
Add ACLS to the c=US entry
dn: o=YOUR_PLEX
changetype: modify
add: x
aclentry: access-id:cn=CICSUser,o=YOUR_PLEX:object:ad:normal:rwsc

An example can be found at /usr/lpp/cicsts22/utils/namespace/
dfhsns1.ldif:
$ ldapmodify -v -p 1389 -D “cn=Admin,o=YOUR_PLEX” -w secret -f /tmp/
ldap.aclupdate ldap_init(yoursysid, 1389)
replace aclentry:
 group:CN=ANYBODY:normal:rsc
 access-id:cn=CICSUser,o=YOUR_PLEX:object:ad:normal:rwsc
modifying entry o=YOUR_PLEX

To add the ‘samples’ JNDI prefix entry to LDAP use the following
command:
TEST:Userid:/tmp: $ ldapadd -h 127.Ø.Ø.1 -p 1389 -D
"cn=Admin,o=YOUR_PLEX" -w ******* \
> -f /usr/lpp/cicsts22/utils/namespace/addsamples.ldif

adding new entry myCompany-wsnName=samples,myCompany-
wsnName=legacyRoot,myCompany-wsnName= YOUR_PLEX,myCompany-
wsnName=domainRoots,myCompany-wsnTree=t1,o=YOUR_PLEX

A sample addsamples.ldif file to define ‘samples’ JNDI prefix
should be located in /usr/lpp/cicsts22/utils/namespace and can
look like this:

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

dn: myCompany-wsnName=samples,myCompany-wsnName=legacyRoot,myCompany-
wsnName=YOUR-PLEX,myCompany-wsnName=domainRoots,myCompany-
wsnTree=t1,o=YOUR_PLEX
myCompany-wsnname: samples
myCompany-wsnentrytype: PrimaryContext
myCompany-wsnnametreecontainerdn: myCompany-wsnTree=t1,o=YOUR_PLEX
myCompany-wsnpathfromcontainer:myCompany-wsnName=samples,myCompany-
wsnName=legacyRoot,myCompany-wsnName= YOUR_PLEX,myCompany-
wsnName=domainRoots
javaclassname: com.myCompany.ws.naming.ldap.WsnLdapContextImpl
objectclass: myCompany-wsnEntry
objectclass: myCompany-wsnPrimaryContextLocation
aclentry: access-id:cn=CICSUser,o=YOUR_PLEX:object:ad:normal:rwsc
aclentry: group:CN=ANYBODY:normal:rsc
aclentry: access-id:cn=CICSSystems,o=YOUR_PLEX:object:ad:normal:rwsc
JNDI environment variables

Some of the most common environment variables used are
java.naming.factory.initial and java.naming.provider.url in the
properties file for each EJB client. This provides the EJB client
with the location of our JNDI Naming server and the initial context
class to use. Others such as java.naming.security.authentication
and java.naming.security.
principal are specified in the CICS system properties file
(dfjjvmpr.props), which enabled you to give our CICS region write
access to our JNDI name space when using a secure LDAP
server. This file can be found in the /usr/lpp/cicsts22/props/
directory.
Here is an example of what dfjjvmpr.props may look like (showing
only entries relevant to LDAP):
com.myCompany.cics.ejs.nameserver=ldap://mycompany.com:1389
com.myCompany.ws.naming.ldap.noderootrdn=myCompany-
wsnName=legacyRoot,myCompany-wsnName= YOUR_PLEX ,myCompany-
wsnName=domainRoots
com.myCompany.ws.naming.containerdn= myCompany-wsnTree=t1,o=YOUR_PLEX
java.naming.security.authentication=simple
java.naming.security.principal=cn=CICSUser,c=US
java.naming.security.principal=cn=CICSUser,o=YOUR_PLEX
java.naming.security.credentials=secret

The properties file is loaded from HFS, not from the XDFHENV
PDS. It should be noted that definitions made in the /usr/lpp/
cicsts/cicsts22/props/dfjjvmpr.props file will override values
specified in CICSTS22.CICS.XDFHENV(DFJJVMPR). This is
not applicable to CICS TS 2.3.

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

In CICS TS 2.2 you point to the properties file from the JVM profile
member. You use the JVMPROPS parameter, in the
JVMPROFILE, to specify the full path of the system properties
file that CICS is to use when creating a JVM. CICS provides two
sample system properties files, dfjjvmpr and dfjjvmps, in the
SDFHENV partitioned dataset. These properties files are
designed to support their corresponding JVM profiles (dfjjvmpr
for DFHJVMPR, and dfjjvmps for DFHJVMPS). Both the sample
properties files are defined with the &CICS_DIRECTORY symbol,
which is replaced with your own value when you run the DFHIJVMJ
installation job.
When we deploy servlets and EJBs into WAS with SMEUI, we
register the EJB home instances into a namespace.
Java:comp/env/ejb/home-name is passed on the look-up method
call. Make sure the declared java:comp name returns the EJB’s
home reference wherever it is located.
java:comp/env is a datasource look-up string for J2EE
applications.
To refresh JVM settings issue:
CEMT SET JVM PHASEOUT

RDO DEFINITIONS
Let’s now discuss the following RDO resource definitions that
support Enterprise beans under CICS TS 2.2.
The CORBASERVER resource definition is used to define an
execution environment for Enterprise beans and stateless CORBA
objects.
You can use the CORBASERVER resource definition to define
the attributes of an execution environment for Enterprise beans
and stateless CORBA objects.
A CICS EJB server may contain more than one CORBASERVER.
This feature allows us to deploy Enterprise beans with different
characteristics, such as timeout values and different JNDI

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

locations in the same CICS region. The shelf is in an HFS
directory associated with the CORBASERVER, which holds
copies of the deployed Java Archive (JAR) files. The DJARdir is
an HFS directory containing the deployed JAR files that are to be
automatically installed into the CORBASERVER.
The Server ORB Attributes provide the hostname for the
CORBASERVER.
The following is a brief description of the CORBASERVER
resource definition parameters:
• JNDIPREFIX – the prefix added to a bean name to specify

a fully-qualified JNDI name.
• AUTOPUBLISH – specifies that its Enterprise beans should

be published automatically when a DJAR is installed.
• SESSIONBEANTIME – specifies, in days, hours, and

minutes, the period of inactivity after which a session bean
may be discarded by CICS.

• SHELF – the fully-qualified name of a directory containing
the Shelf. A Shelf is used to store copies of the installed
deployed JAR files. This HFS directory is also used as a work
area for the AORs.

• DJARDIR – the fully-qualified name of a directory that can
contain deployed JAR files. If specified, CICS will, periodically
or on command, scan this ‘pickup’ directory and automatically
install any new or changed deployed JAR files.

• HOST – specifies the TCP/IP host name (domain name) or
IP dotted-decimal address of this Logical EJB/CORBA
server. It must match the IP address defined in the
corresponding TCPIPSERVICE definition. The hostname is
included in the reference to the objects in the
CORBASERVER.

• UNAUTH – the TCP/IP service attributes name the
TCPIPSERVICEs, with the appropriate security attributes,
that are listening for IIOP requests on behalf of the
CORBASERVER.

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• The DJAR resource definition is used to define a deployed
JAR file. The deployed JAR file contains Enterprise beans
and is a Hierarchical File System (HFS) file.

You use the DJAR resource definition to specify a deployed JAR
file. This file contains the Enterprise bean classes and the code
generated by the deployment tool. It is a Hierarchical File System
(HFS) file. A DJAR definition can be created automatically by
using the ‘pickup’ directory mechanism.
The DJAR resource definition parameters are:
• DJAR – name of DJAR resource definition.
• CORBASERVER – name of the server in which this DJAR

is to be installed.
• HFSFILE – specifies the 1-255 character fully-qualified file

name of the deployed JAR file on HFS. The name is case
sensitive and may not contain blanks.

• The TCPIPSERVICE resource definition is used to identify
the port number the listener task will open.

You use the TCPIPSERVICE resource definition to define which
TCP/IP services are to be supported. The services that can be
defined are IIOP and HTTP (for CICS Web support).
TCPIPSERVICE resource definition parameters are:
• TCPIPSERVICE – specifies the eight-character name of

this TCP/IP service.
• URM – specifies the name of the User-Replaceable Module

(URM) to be invoked by this service, to derive the MVS userid
to be assigned to the IIOP service request. DFHXOPUS is
a CICS-supplied sample program that provides a default
mechanism to derive the userid.

• PORTNUMBER – specifies the decimal number of the port
on which CICS is to listen for incoming client requests.

• PROTOCOL – identifies the type of service provided by this
port. IIOP connections support EJB, while HTTP connections
support the CICS Web support.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• TRANSACTION – specifies the CICS transaction attached
to receive and analyse the request. CIRR (Request Receiver
task) is the default for IIOP support.

The REQUESTMODEL resource definition is used to map the
Internet Inter-ORB Protocol (IIOP) inbound request to a CICS
transaction that will execute the method request.
A REQUESTMODEL resource definition specifies the mapping
between an Internet Inter-ORB Protocol (IIOP) inbound request
and the CICS transaction that is to be initiated.
REQUESTMODEL resource definition parameters are:
• REQUESTMODEL – specifies the eight-character name of

this request model definition.
• CORBASERVER – specifies the name of the

CORBASERVER for this REQUESTMODEL.
• TYPE ({GENERIC | CORBA | EJB }) – indicates the type of

REQUESTMODEL. GENERIC for both CORBA and EJB
support.

MANAGING EJB BEANS
Here are the most useful CEMT commands you can use to
manage CICS EJB server:
• The CEDA transaction supports the specification and the

installation of TCPIPSERVICE, CORBASERVER, DJAR,
and REQUESTMODEL definitions.

• CEMT INQUIRE BEAN transaction determines whether a
specified bean is installed in a specified CORBASERVER
and, if so, which DJAR contains the bean.

• CEMT PERFORM DJAR() or CORBASERVER() PUBLISH.
To publish a bean means to install the Enterprise bean’s
home reference into the JNDI namespace.
We can now execute methods on the Enterprise bean.

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 1: CORBASERVER display

Figure 2: CORBASERVER(EJBI) detailed information

IVP TESTING USING HELLOWORLD
Here is an example of an RDO definition for IVP testing using

• CEMT PERFORM DJAR() or CORBASERVER() RETRACT.
To retract a bean means to remove an Enterprise bean’s
home reference from the JNDI namespace.

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 3: JNDI prefix ‘samples’ in front of ‘HelloWorld’

HelloWorld (under CICS TS 2.2):
CORbaserver : EJBI
Group : EJBIVP
DEscription : CORBASERVER for EJB IVP program
Jndiprefix : samples
Autopublish : Yes
SHelf : /usr/lpp/cicsts/cicsts22/shelf
Host : MVSSYSID

Figure 1 is a display of this CORBASERVER using RMEB (CICS
Resource Manager for EJBs).
Figure 2 shows detailed information for CORBASERVER(EJBI).
Please notice JNDI prefix information, which is the key for JNDI
configuration.
Figure 3 shows that JNDI prefix ‘samples’ was attached in front
of bean ‘HelloWorld’ when CORBASERVER was published. So,
Application will reference this bean as ‘samples/HelloWorld’.
When there are multiple beans within the JAR file, they will all
have the same JNDI prefix, defined on the CORBASERVER
definition.

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

IVP SCRIPT – RUNEJBIVP
Here is a sample IVP script that can be used to test your set-up.
It is located in /usr/lpp/cicsts22/samples/ejb/helloworld.
CICS EJB IVP run script

ENVIRONMENT PROPERTIES
======================
#
Modify the following to match your IBM SDK 1.3.1 installation director
(as set in your CICS JVM profile):
JAVA_HOME=/usr/lpp/java/IBM/J1.3/
#
Modify the following to match your CICS TS 2.2 installation directory
(as set in your CICS JVM profile):
CICS_DIRECTORY=/usr/lpp/cicsts/cicsts22/
 # COMMON PROPERTIES
=================
#
Modify the following to match your CICS region's JNDI provider URL. Th
is set in CICS using the 'com.myCompany.cics.ejs.nameserver' property.
For example
CosNaming->JNDI_PROVIDER_URL=iiop://nameserver.location.company.com
LDAP->JNDI_PROVIDER_URL=ldap://nameserver.location.company.com
JNDI_PROVIDER_URL=ldap://your URL : LDAP port
#
Modify the following to match your CORBASERVER's Jndiprefix. The
default value for the CICS samples is already supplied and shouldn't
need to be changed.
CORBASERVER_JNDI_PREFIX=samples
Modify the following to match the Bean Name as defined in the
deployment descriptor of the sample jar file. By default this
should be 'HelloWorld'
BEAN_NAME=HelloWorld
#
LDAP NAMING PROPERTIES
======================
#
If you are using the LDAP naming service, modify the following
properties to match your CICS region's LDAP naming properties. If you
are not using LDAP as your JNDI naming service then these properties
will be ignored. The LDAP properties will normally be set by the LDAP
administrator and can be found in the CICS JVM properties file.
#
#
LDAP_CONTAINERDN=myCompany-wsnTree=t1,o=YOUR_PLEX
(as specified in the JVM properties file using the following name:
'com.myCompany.ws.naming.ldap.containerdn')
#

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LDAP_NODEROOTDN=myCompany-wsnName=legacyRoot,myCompany-
wsnName=YOUR_PLEX, ,myCompany-wsnName=domainRoots
(as specified in the JVM properties file using the following name:
'com.myCompany.ws.naming.ldap.noderootrdn'.
Note, this property is option
#
EXPERT PROPERTIES
=================
#
You may switch from using the default JNDI initial context factory if
wish. If using WebSphere v 4.Ø as your JNDI provider then you should
change this property to
'com.myCompany.websphere.naming.WsnInitialContextFac
otherwise it is usually best to leave this value as 'default'.
#
INTIAL_CONTEXT_FACTORY=default
#
Other example naming factories include:
#
#INTIAL_CONTEXT_FACTORY=
 com.myCompany.websphere.naming.WsnInitialContextFactor

IVP testing from Unix Services:
TEST:Userid:/usr/lpp/cicsts/cicsts22/samples/ejb/helloworld: $./
runEJBIVP
CICS EJB IVP: Querying the Java SDK level
java version "1.3.1"
Java(TM) 2 Run-time Environment, Standard Edition (build 1.3.1)
Classic VM (build 1.3.1, J2RE 1.3.1 MYCOMPANY OS/39Ø Persistent Reusable
VM build hm13
1s-2ØØ2Ø2Ø7 (JIT enabled: jitc))

CICS EJB IVP: Starting the EJB client program
HelloWorld client program started
Performing JNDI lookup using LDAP
Testing the following location: samples/HelloWorld
Located home interface for HelloWorld bean
You said: Hello from CICS EJB IVP client
HelloWorld client program ended
CICS EJB IVP: Completed successfully

Testing CICS IVP from WebSphere - http://.us.yourcompany.com:9Ø91/
cicshello/

CICS TS 2.3 AND WEBSPHERE V5.0 ENHANCEMENTS AND
UPDATES
The COS Naming Directory Server supplied with WebSphere

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Application Server Version 5 differs from that supplied with
WebSphere Application Server Version 4. From Version 5
onwards:
• The default TCP/IP port used by the COS Naming Directory

Server is 2809 (rather than 900, as in WebSphere Version 4).
• Java objects must be published to a specially-architected

location called domain/legacyRoot. (CICS publishes Java
objects to a context defined by the JNDIPREFIX option of the
CORBASERVER definition, where the JNDI prefix is a
relative path.) If you do not specify the /domain/legacyRoot
path from the root node of the name space, CICS tries to
publish Java objects to a JNDI prefix location relative to the
root node itself. This works for the COS Naming Directory
Server supplied with WebSphere Application Server Version
4, but fails with that supplied with later versions of WebSphere
Application Server.

• The recommended way to specify the location of your name
server is on the com.myCompany.cics.ejs.nameserver
property in the JVM system properties file. If you use the
COS Naming Directory Server supplied with WebSphere
Application Server Version 5, you should specify the location
like this:

com.myCompany.cics.ejs.nameserver=iiop://mycsserv.com:28Ø9/domain/
legacyRoot

• CICS objects must be published to a specially-architected
location (in the WebSphere naming structure) called domain/
legacyRoot. CICS publishes objects to a context defined by
the JNDIPREFIX option of the CORBASERVER definition,
where the JNDI prefix is a relative path. If you do not specify
the /domain/legacyRoot path from the root node of the name
space, CICS tries to publish objects to the JNDI prefix
location relative to the root node itself. This works for the
COS Naming Directory Server supplied with WebSphere
Application Server Version 4, but fails with that supplied with
later versions of WebSphere Application Server.

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In CICS TS 2.3 there is a new profile called dfjjvmcd.props,
where you specify the system properties necessary to configure
your JNDI nameserver com.myCompany.cics.ejs.nameserver
system property, including the URL and TCP/IP port number of
the name server that you use for JNDI references.
For example:

com.myCompany.cics.ejs.nameserver=ldap://myLDAPserv.com:389

For a standard COS Naming Directory Server you specify:
com.myCompany.cics.ejs.nameserver=iiop://mycsserv.com:9ØØ

An example of this statement is included in the CICS-supplied
sample JVM properties file, dfjjvmpr.props.
Note: if you are using a COSNaming service, and you have
chosen to specify it in java.naming.provider.url, do not specify it
again here.
You can set up a file called jndi.properties to contain JNDI
nameserver configuration properties that are common across a
set of CICS regions. By default, CICS does not attempt to locate
a jndi.properties file. Include the following system property to
cause CICS to load jndi.properties for this JVM:

com.myCompany.cics.ejs.loadjndiproperties=true

Place the directory containing the jndi.properties file on either the
sharable application class path (in the JVM properties file) or the
trusted middleware class path (in the JVM profile), in all the
relevant JVM profiles or JVM properties files, for all the regions
that you want to share the same nameserver settings.
You can turn the JNDI cache on or off:
com.myCompany.websphere.naming.jndicache.cacheobject={ populated |none}

The JNDI cache stores the results of JNDI look-ups in local
storage, so that, if an application does the same look-up twice
(perhaps in different tasks), the results are already available.
Note that the cache is JVM-specific. That is, there is a separate
cache for each JVM. This only works with an IBM JNDI name
server:

 48 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Populated – the JNDI cache is active.
• None – the JNDI cache is not used.
You can specify, in minutes, the ‘time to live’ of the JNDI cache:
com.myCompany.websphere.naming.jndicache.maxcachelife={2Ø |mins}

If the cache is accessed after this time is exceeded the entire
cache is flushed of its contents.
You can specify the Container Distinguished Name for the LDAP
name server:
com.myCompany.ws.naming.ldap.containerdn=

You can specify the Noderoot Relative Distinguished Name for
the LDAP name server:
com.myCompany.ws.naming.ldap.noderootrdn=

J2EE components use the framework classes to acquire a
connection to an EIS and to send and receive data. First, a J2EE
component obtains a ConnectionFactory object for the particular
EIS that is to be accessed – for example, CICS. (The component
may manufacture the ConnectionFactory programmatically or,
more likely, look it up in a JNDI namespace.) It uses the
ConnectionFactory to get a Connection object. Then it uses the
Connection object to create one or more Interaction objects. It
executes commands on the EIS through these Interaction
objects.
The example below shows the CCI framework classes being
used to connect to an EIS and execute a command.
 ConnectionFactory cf = <Lookup from JNDI namespace>
 Connection conn = cf.getConnection();
 Interaction int = conn.createInteraction();
 int.execute(<Input output data>);
 int.close();
 conn.close();

PERFORMANCE
The performance of Enterprise beans has been improved in

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

CICS TS 2.3. In particular, when a JVM is reset, some objects are
cached for reuse
(com.myCompany.websphere.naming.jndicache.cacheobject=
populated), which greatly improves performance of JNDI look-
ups.
In previous releases of CICS, an EJB deployed JAR file was
considered to contain only application code. In CICS TS V2.3 the
CICS-generated code within the deployed JAR file (the
implementation of the beans’ home and component interfaces)
is treated as middleware. This means that some objects that
were previously held in the application heap and discarded when
the JVM was reset have become long-lived middleware heap
objects. Now, when a JVM is reused to process requests against
the same Enterprise beans, the cached objects are reused,
which greatly improves performance.
It should be noted that after the EJB server has been migrated
to CICS TS 2.3, some clients may have stale, cached, IORs that
point to the old server. This is because some application servers
cache the results of JNDI look-ups locally to increase performance.
You may find that these caches have to be purged before the new
IORs are used.

Z/OS LDAP SERVER START-UP JCL
This example shows a sample start-up JCL that we used for our
LDAP server started task, SCSLDAP1:
//SCSLDAP1 PROC PARMS=''
//GO EXEC PGM=GLDSLAPD,REGION=ØM,TIME=NOLIMIT,
// PARM=('/&PARMS >DD:SLAPDOUT 2>&1')
//STEPLIB DD DSN=GLD.SGLDLNK,DISP=SHR LDAP library
// DD DSN=DB7Q7.SDSNLOAD,DISP=SHR DB2 library
//CONFIG DD PATH='/usr/cicsts22/ldap/slapd.conf' Configuration file
//ENVVAR DD PATH='/usr/cicsts22/ldap/slapd.envvars' Environment vars
//DSNAOINI DD PATH='/usr/cicsts22/ldap/dsnaoini' DB2 CLI parms
//SLAPDOUT DD SYSOUT=* //SYSOUT DD SYSOUT=* stdout/stderr msgs
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=* LE dumps

 50 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

REFERENCES
• IBM Redbook Enterprise JavaBeans for z/OS and OS/390

CICS Transaction Server V2.2 (SG24-6284-01) contains a
good chapter on Configuring the JNDI server. This includes
a detailed description of how to use the scripts provided to
set up an LDAP server, including details of how the process
differs if your LDAP server is already configured for use by
WebSphere.

• APAR PQ61492 outlines PROBLEMS WITH CICS LDAP
CONFIGURATION FILES AND DOCUMENTATION.
PQ61492 was raised to address various problems with the
CICS LDAP configuration files –
WebSphereNamingSchema.ldif and dfhsns.ldif. Also there
are inconsistencies between these files and the
documentation which describes their use.

• IBM Redbook WebSphere Application Server for z/OS Form-
Based Authentication with LDAP, REDP-3664-00.

Elena Nanos
IBM Certified Solution Expert in CICS Web Enablement
Zurich NA (USA) © Xephon 2004

CICS questions and answers

Q Is there a way to browse TSQs in CICS that have hex
characters in the name? CEBR doesn’t allow me to enter hex
as the Qname.

A A great question because it allows me to highlight a little
known, but documented, feature of CEMT. After using
CEMT to display TSQs, it’s possible to put a ‘B’ to the left of
the Qname, then CEMT will start CEBR for you and show you
the contents of the queue.

 51© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Why not share your expertise and earn money at the
same time? Articles for CICS Update can be of any
length and can be sent or e-mailed to Trevor Eddolls
at any of the addresses shown on page 2. A free
copy of our Notes for contributors is available from
our Web site at www.xephon.com/nfc.

Q I seem to be missing some user journal information on
occasion. I’ve heard that I need to FLUSH user journals in
CICS TS if CICSshutdown is not normal; is this true and how
can I achieve this?

A Yes, this is true. During Immediate shutdown CICS does not
flush user journal buffers (DFHLOG and DFHSHUNT don’t
need to be flushed). A common way to fix this is to add a
PLTSD program that flushes user journals (START BROWSE,
NEXT looking for user journals) and add this program to the
PLTSD before the Shutdown Assist program (which is
normally the program that issues the Immediate shutdown).
If your PLTSD program will not be invoked, because for
example, the Immediate Shutdown is requested by the
operator, then the application program needs to issue an
EXEC CICS WAIT JOURNALNAME command just before
returning to CICS, or specify the WAIT option on each
WRITE to the journal.

If you have any CICS-related questions, please send them in and
we will do our best to find answers. Alternatively, e-mail them
directly to cicsq@xephon.net.

© Xephon 2004

CICS news

Seagull Software and InnerAccess
Technologies have entered into a strategic
partnership in which InnerAccess’ z/Services
connector technology for CICS, IMS, and
Advantage CA-IDMS will be embedded into
Seagull’s LegaSuite solution for host
integration.

The host integration module of LegaSuite
supports rapid development of custom
legacy connections to IBM mainframe, ICL,
iSeries, Unix/VT, and other character-based
applications, integrating legacy business
functions with other enterprise applications,
composite applications, and service-oriented
architectures.

LegaSuite provides connectors for 3270
screen-based integration as well as various
methods for CICS, IMS, and IDMS
transaction server integration. The addition
of InnerAccess’ z/Services expands
LegaSuite to include a high-performance
XML-based gateway into CICS, IMS, and
IDMS transactions that bypasses the 3270
data stream, run outside the transaction
monitor for zero impact to production
regions, and require no changes to the host
application.

For further information contact:
Seagull Software, 3340 Peachtree Road NE,
Atlanta, GA 30326, USA.
Tel: (404) 760 1560.
URL: http://www.seagullsoftware.com/
about/media/pressreleases/253.html.

* * *

Compuware has announced Release 4.5 of
Abend-AID for CICS.

The product, formerly CICS Abend-AID/
FX, analyses the causes of application and
region faults, enabling programmers to

resolve critical problems for customers and
users, regardless of the system’s complexity
or technology. Abend-AID for CICS gives
programmers online access to vital
information about a transaction abend,
storage violation, application deadlock, or
system outage.

For further information contact:
Compuware, One Campus Martius, Detroit,
Michigan 48226, USA.
Tel: (313) 227 7300.
URL: http://www.compuware.com/
products/abendaid/cics.htm.

* * *

Attachmate has released myEXTRA! Smart
Connector Mainframe Edition Version 4.0.2,
bringing direct access to mainframe data
sources such as VSAM, IMS/DB, DB2, and
Adabas, plus native transactional access to
CICS and IMS/TM applications.

Based on a Service-Oriented Architecture
(SOA), the product makes legacy assets
reusable as services for new application
development. Smart Connector Mainframe
Edition provides real-time access to
mainframe data sources and uses standard
SQL queries to join data across disparate
systems.

Mainframe-resident connectors provide
transactional access to CICS and IMS
programs. XML-based event generation and
routing enable legacy applications to interact
bi-directionally with other applications.

For further information contact:
Attachmate, 3617 131st Ave SE, Bellevue,
WA 98006, USA.
Tel: (425) 644 4010.
URL: http://www.attachmate.com/
products/profile/0,1016,4176_1,00.html.

x xephon

	Understanding the Open Transaction Environment
	Helpful exit for shutdown assistant users
	Changes to Java support in CICS Transaction Server for z/OS Version 2 Release 3
	CICS TS V2.2 and V2.3 LDAP support using JNDI - configuration tips and examples
	CICS questions and answers
	CICS news

