In this issue

3 Programs to incorporate in your CICS PROC
10 CICS and HIS 2004
14 External CICS Interface (EXCI) client interface to DFHEDAP
41 .NET for CICS users
45 CICS news
Programs to incorporate in your CICS PROC

Here are two REXX programs you can incorporate in your CICS PROC to manage start-ups more effectively. The first one will establish a known return code based on the start-up type; the second one will recreate VSAM files from a model. The first program is called PRECICS. It will accept the &START value from your CICS PROC and establish a return code to make decisions to execute optional steps and also print a nice easy-to-find WTO stating the CICS start type. The second is called PREVSAM. It can be used to do IDCAMS deletes, defines, and inits for common VSAM files (like the GCD and LCD). Here is an example of a CSPM CMAS PROC that uses both PRECICS and PREVSAM:

```cics
//CMASPROD PROC CICLVL=CTS22Ø
*** I N I T I A L S T A R T ? *******
//PRECICS EXEC PGM=IKJEFTØ1,PARM='PRECICS &START'
//SYSEXEC DD DSN=your.exec.pds,DISP=SHR
//SYSTSIN DD DUMMY
// IF (PRECICS.RC = 4Ø) THEN
//PREVSAM EXEC PGM=IKJEFTØ1,DYNAMNBR=99,
// PARM='PREVSAM PROD &RGA 5'
//SYSEXEC DD DSN=your.exec.pds,DISP=SHR
//VSAMØØ1 DD DSN=CICS.PROD.IDCAMS.CTLLIB(GCDMODXX),DISP=SHR
//VSAMØØ2 DD DSN=CICS.PROD.IDCAMS.CTLLIB(LCDMODXX),DISP=SHR
//SYSTSIN DD DUMMY
// /* INITIALIZE DFHGCD FILE */
//INITGCD EXEC PGM=DFHRMUTL,REGION=1M
//STEPLIB DD DSN=CICS.PROD.&CICLVL..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSPRINT=*
//SYSSIN DD DUMMY
//DFHGCD DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHGCD
//SYSSIN DD DISP=SHR,DSN=CICS.PROD.IDCAMS.CTLLIB(INITGCD)
/* INITIALIZE DFHLCD FILE */
//INITLCD EXEC PGM=DFHCCUTL
//STEPLIB DD DSN=CICS.PROD.&CICLVL..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSPRINT=*
//SYSSIN DD DUMMY
```

//DFHLCD DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHLCD

//**
//* CREATE NEW GDG BACK-UP OF EYUDREP
//**
//DREPBACK EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//INDD DD DISP=SHR,DSN=CICS.PROD.&RGA..EYUDREP
//OUDD DD DSN=CICS.PROD.&RGA..EYUDREP.BKUP(+1),
// DISP=(,CATLG),UNIT=SYSDA,SPACE=(CYL,(100,100),RLSE),
// RECFM=VB,LRECL=8192,BLKSIZE=0
//SYSIN DD DISP=SHR,DSN=CICS.PROD.IDCAMS.CTLLIB(REPDREP)

//**
//* DELETE/DEFINE AND RESTORE ONLY OCCUR IF BACK-UP WAS GOOD
//**
// IF (DREPBACK.RC = 0) THEN
//**
//* DELETE AND DEFINE THE NEW DREP IF BACK-UP WAS GOOD
//**
//DREPDEL EXEC PGM=IKJEFT01,DYNAMNBR=99,PARM='PREVSAM PROD &RGA'
//SYSEXEC DD DISP=SHR,DSN=CICS.PROD.EXEC
//VSAM001 DD DISP=SHR,DSN=CICS.PROD.IDCAMS.CTLLIB(DREPDEF)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD DUMMY

//**
//* RESTORE THE BACK-UP OF THE DREP TO THE NEWLY-DEFINED CLUSTER
//**
//DREPREST EXEC PGM=IDCAMS
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//INDD DD DISP=SHR,DSN=CICS.PROD.&RGA..EYUDREP.BKUP(+1)
//OUDD DD DISP=SHR,DSN=CICS.PROD.&RGA..EYUDREP
//SYSIN DD DISP=SHR,DSN=CICS.PROD.IDCAMS.CTLLIB(REPDREP)

//**
//* END OF DREP REORG
//**
//ENDIF

//**
//* END OF INITIAL PROCESSING
//**
//ENDIF

//**
//* CMAS JCL
//**
//CMASSTRT EXEC PGM=EYU9XECS,
// TIME=1440,
// REGION=5K,
// PARM=('SI,START=&START')
//STEPLIB DD DISP=SHR,DSN=CICS.PROD.&CICLVL..SEYUAUTH
// DD DISP=SHR,DSN=CICS.PROD.&CICLVL..SDFHAUTH
// DD DISP=SHR,DSN=CICS.PROD.&CICLVL..TABLIB
/* CICS Datasets */
//DFHRPL DD DISP=SHR,DSN=CICS.PROD.&CICLVL..SEYULOAD
// DD DISP=SHR,DSN=CICS.PROD.&CICLVL..SDFHLOAD
// DD DISP=SHR,DSN=CICS.PROD.&CICLVL..TABLIB
/* CICS PARAMETERS */
//SYSIN DD DISP=SHR,DSN=CICS.PROD.&CICLVL..CTLLIB(&SIN)
/* CICS DATASETS */
//DFHINTRA DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHINTRA
//DFHLCD DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHLCD
//DFHGCD DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHGCD
//DFHTEMP DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHTEMP
//DFHDMPA DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHDMPA
//DFHDAEXT DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHDAEXT
//DFHBUXT DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHBUXT
//DFHLRQ DD DISP=SHR,DSN=CICS.PROD.&RGA..DFHLRQ
//DFHCRF DD SYSOUT=*
/* EXTRAPARTITION DATASETS */
//LOGUSR DD SYSOUT=*
//MSGUSR DD SYSOUT=*
//EYULOG DD SYSOUT=*
//PLIMSG DD SYSOUT=*
//COUT DD SYSOUT=*
//MSGCSML DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)
/* CPSM Datasets */
//EYUDREP DD DISP=SHR,DSN=CICS.PROD.&RGA..EYUDREP
//EYUPARM DD DISP=SHR,DSN=CICS.PROD.&CICLVL..SEYUPARM(&RGA)
//BBIPARM DD DISP=SHR,DSN=CICS.PROD.&CICLVL..EYUIPRM
//BBACTDEF DD DISP=SHR,DSN=CICS.PROD.&CICLVL..SEYUADEF
//BBVDEF DD DISP=SHR,DSN=CICS.PROD.&CICLVL..SEYUVDEF
/* USE IEBGENER TO COPY DFHAUXT DATASET TO GDG, EVEN DURING ABEND */
//COPYAUX EXEC PGM=IEBGENER,COND=EVEN
//SYSUT1 DD DSN=CICS.PROD.&RGA..DFHAUXT,DISP=SHR
//SYSUT2 DD DSN=CICS.PROD.&RGA..AUXTRAA(+1),DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(100,100),RLSE),REFDD=*.SYSUT1
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
/* USE IEBGENER TO COPY DFHBUXT DATASET TO GDG, EVEN DURING ABEND */
//COPYBUX EXEC PGM=IEBGENER,COND=EVEN
PRECICS

WillDisappear in the JCL to run in batch:

SETRC EXEC PGM=IKJEFT01,PARM='PRECICS &START'

SYSEXEC DD DSN=your.exec.pds,DISP=SHR

SYSTSIN DD DUMMY

Change Log

Accept and uppercase the input

arg parm

Parse out anything after the start type (looks for a comma)

if pos(',',parm) <> Ø then
 parse var parm start_type ','.
else
 start_type = parm

Save the start time and get the current jobname

start_time = date() time()
cics = mvsvar('SYMDEF','JOBNAME')

Build a message

msg = cics 'Start Type: "start_type" Parm received: "parm"'

Use select to provide multiple mutually exclusive alternatives

select
when start_type = 'AUTO' then EXITRC = 10
when start_type = 'EMERGENCY' then EXITRC = 20
when start_type = 'COLD' then EXITRC = 30
when start_type = 'INITIAL' then EXITRC = 40
otherwise EXITRC = 0
end

/***/
/* Use TSO SEND to make an easy to find eyecatcher in the JOBLOG */
/***/
say start_time msg', RC='EXITRC
"SEND "msg"
/***/
/* Shutdown */
/***/
shutdown: exit(EXITRC)

PREVSAM

/***/
/* REXX */
/***/
/* Purpose: Simple EXEC to modify and execute IDCAMS statements */
/***/
/* Syntax: PREVSAM parms */
/***/
/* Parms: parms - Any number of parms */
/* */
/* If <PARM1> is found in the VSAMxxxx input, it will be replaced */
/* with the first positional parm */
/* If <PARM2> is found in the VSAMxxxx input, it will be replaced */
/* with the second positional parm */
/* If <PARM3> is found in the VSAMxxxx input, it will be replaced */
/* with the third positional parm */
/* and so on */
/* */
/* Notes: Sample JCL to run in batch */
/* //IDCAMS EXEC PGM=IKJEFT01,PARM='PREVSAM P1A7 CTS130 20' */
/* //SYSEXEC DD DSN=your.exec.pds,DISP=SHR */
/* //SYSTSPRT DD SYSOUT=*, * PREVSAM output */
/* //SYSPRINT DD SYSOUT=*, * IDCAMS output */
/* //VSAMxxxx DD DSN=your.ctllib.pds(model1),DISP=SHR */
/* //VSAMyyyy DD DSN=your.ctllib.pds(model2),DISP=SHR */
/* //SYSTSIN DD DUMMY */
/* */
/* Any number of unique VSAMxxxx DDs are supported */
/* PREVSAM will stop if any non-zero return code is encountered */
/* */
/* model member sample: */
/* /* COMMENTS */ */
/* DELETE 'your.<PARM2>.<PARM1>.cluster' */
/* IF LASTCC > Ø THEN SET MAXCC = Ø */
/* */
/* DEFINE CLUSTER(NAME('your.<PARM2>.<PARM1>.cluster') - */
/* INDEXED - */
/* CYLINDERS(<PARM3> 5) - */
/* SHR(2) - */
/* FREESPACE(1Ø 1Ø) - */
/* REUSE - */
/* CISZ(8192) - */
/* KEYS(28 Ø) - */
/* */

}***/

/* Change Log */

/* Accept and uppercase the input */

arg parms

/* Determine the number of parms and set into unique variables */

pcount = words(parms)

say pcount 'Parms received:' parms

say
do i=1 to pcount
 parse var parms parm.i parms
 string.i = '<PARM'i'>'
 say string.i 'will be replaced with' parm.i
end

}***/

/* Trap the output from the LISTA STATUS command */

x = outtrap('lines.(')

"LISTALC STATUS"

EXITRC = RC

}***/

/* Parse out the DDNAMEs and concatenate into a list */

ddlist = ''
do i=1 to lines.Ø
 if words(lines.i) = 2 then
 do
 parse upper var lines.i ddname .
 ddlist = ddlist ddname
 end
 else
 do
 iterate
 end
end
do v=1 to words(ddlist)
 if substr(word(ddlist,v),1,4) = 'VSAM' then
 do
 vsamdd = word(ddlist,v)
 say 'VSAM DD' vsamdd 'found'
 say
 end
 end

/* Read the contents of the VSAMDD */
"EXECIO * DISKR" vsamdd "(STEM VSAMDD. FINIS"
EXITRC = RC
if EXITRC <> Ø then signal shutdown

/* Loop through all the lines in the VSAMDD */
do m=1 to vsamdd.Ø
 line = substr(vsamdd.m,1,72)
/* Determine whether any substitution needs to occur */
 do s=1 to pcount
 loc = pos(string.s,line)
 len = length(string.s)
 end
/* If any <PARMx> found, replace it with input parm0 */
 if loc <> Ø then
 do
 line = insert(parm.s,delstr(line,loc,len),loc-1)
 end
 end
 sysin.m = line
end

/* Allocate SYSIN */
"ALLOC F(SYSIN) UNIT(VIO) SPACE(1) LRECL(8Ø) BLKSIZE(Ø)"
EXITRC = RC
if EXITRC <> Ø then signal shutdown

/* Write the lines to SYSIN */
"EXECIO * DISKW SYSIN (STEM SYSIN. FINIS"
EXITRC = RC
if EXITRC <> Ø then signal shutdown
CICS and HIS 2004

With one bound, Microsoft saves CICS users!

Microsoft has realized that mainframes might be here to stay and that the best way to get part of that huge market is to offer some kind of integration product. Since 1 September 2004, Microsoft has made available Host Integration Server (HIS) 2004 for companies with mainframes that want closer integration with Windows-based servers, software, and SOA (Service-Oriented Architectures – this year’s must-have acronym).

Basically, the product links IBM mainframes with Windows-based servers and software. It means that mainframe applications can be associated with Web services and made
available over the Internet at the touch of a URL (so to speak). The Microsoft HIS 2004 Enterprise Edition includes Transaction Integrator tools to liberate (in the way that liberation armies do with things that belonged to the previous regime) the mainframe data via XML or .NET.

“Hang on,” I hear you say, “why do I want rescuing?” Microsoft claims that in addition to the Web services bit, it’s cheaper and more efficient to develop CICS applications on a PC than on a mainframe!

HIS started life as an SNA (System Network Architecture) server in 1992. For most of its life it has been a gateway product, acting as a pass-through for SNA. Microsoft has added links to mainframe-based transaction programs with COM TI (Component Object Model Transaction Integrator) and developed links to DB2.

What Microsoft hadn’t done was offer any kind of integration between its developments tools and the server. So being able to initiate processes on Windows from the mainframe or on the mainframe from Windows is a big leap forward.

HIS 2004 focuses on integrating mainframe transaction-based applications into the Windows infrastructure, such as links to its BizTalk orchestration engine and Visual Studio development tool environment.

Host-Initiated Processing (HIP) lets the host system make calls into the Windows environment, allowing, for example, the mainframe to populate a form on the Windows platform and kick off a print process. HIP makes the mainframe environment think it is making calls locally. There is now two-directional transactional activity. Previously the Windows environment would pull data; now the host CICS application, for example, can push data to the Windows environment.

HIS 2004 includes tighter integration with Visual Studio. The Transaction Integrator design tool, which runs within the project designer in Visual Studio, lets developers expose
CICS and IMS transactions to Windows as COM+ components, .Net packages, or XML-based Web services. Microsoft has added a feature for tunnelling SNA traffic into the mainframe over IP. The new IP-DLC Link Service lets PCs connect to z900 mainframes via IP networks.

Also new is a managed provider for DB2, which allows DB2 data to be published as Web services or integrated into Windows forms, such as those produced by Microsoft’s InfoPath application.

With HIP it’s now possible to have a large CICS-based system and take a subset of it and move it to Windows without having to change anything on the mainframe.

To be fair, Microsoft has gone to great lengths to ensure interoperability between mainframe technology and Windows Server and MS SQL. For example:

- TI (Transaction Integrator) enables Windows developers to publish and extend business rules in CICS, IMS (and AS/400 applications) as XML Web services.

- Managed provider for DB2 enables data stored in DB2 to be published as XML Web services and integrate DB2 data with applications based on Windows Forms, Web Forms, Web services, or Microsoft Office System productivity applications such as Excel and InfoPath.

- TI HIP (Transaction Integrator Host-Initiated Processing) allows a Windows Server to function as a peer to an IBM mainframe (and AS/400 computer). This allows users to build distributed peer-to-peer applications and to move parts of their host application logic and data to a Windows Server and SQL Server. This they describe as ‘a more cost-effective infrastructure’!

- ESSO (Enterprise Single Sign-On) provides a way to authenticate security credentials between Windows Active Directory and non-Windows systems. This means that users need to sign on only once in order to access HIS
2004, BizTalk Server 2004, mainframes, mid-range systems, and mainframe applications such as CICS, IMS, DB2, and MQSeries.

- Internet Protocol-Data Link Control (IP-DLC) Link Service supports SNA over IP routing so that HIS 2004 computers can connect directly to z900 mainframes via high-speed IP networks. This removes the need to remotely administer branch cluster controllers, utilize DLSw-capable (Data Link Switching) routers, or maintain FEPs.

You probably want to know how much this ‘rescue’ by the superheroes from Redmond is going to cost you. HIS 2004 Standard Edition, with core host access services, is quoted at $2,499. The fully-featured (and come to think of it you’ll probably need all of them and more) Enterprise Edition, which includes Transaction Integrator, is priced at $9,999.

“But”, I hear you ask, “is Microsoft the only choice for off-mainframe application development?” You’ll be pleased to know that the answer is “no” – IBM has its Host Access Transformation Services. This involves WebSphere and Java 2 Platform Enterprise Edition.

There’s also a host of third-party vendors (including ClientSoft, Farabi Technology, NetMange, Proginet, and Seagull Holding) that offer tools to include your mainframe as part of a distributed architecture. Companies including Jacada, Neon Systems, and WRQ are selling programmatic integration products.

The basic assumption behind HIS 2004 and the other products is that running everything on the mainframe is costly and complex. So, the solution is to run applications in a distributed environment. That way, the mainframe needs to run only the core system, and logical subsystems can be moved to what they describe as ‘lower-cost platforms’. Of course, many would argue that there’s more to the cost of a platform than the initial purchase price! For the time being, CICS developers should be aware of these alternatives, but they are unlikely to see any compelling reason to use them.
External CICS Interface (EXCI) client interface to DFHEDAP

INTRODUCTION
The EXCI batch client control program (CM420) was covered in the November and December 2004 issues of CICS Update (issues 228 and 229). The EXCI client interface to DFHEDAP is an example of how easy it is to write an EXCI client program that is controlled by CM420.

Although the DFHCSDUP utility is most definitely the recommended method for bulk batch CSD updates, the programmable interface to resource definition on-line (DFHEDAP) does have some distinct advantages. The INSTALL command is supported, so you can immediately install an updated resource in the CICS region from batch. Also, all the CEDA commands are logged directly in the CICS region in which they are processed, providing an audit trail. This audit trail contains the userid and terminal (or session) used to process the CEDA command.

THE PROGRAMS
All programs are written in Assembler. However, an EXCI client program could be written in any of the languages supported (C, COBOL, or PL/I).

CM412 is the EXCI client interface to DFHEDAP.
CM411 is the CICS server interface to DFHEDAP. CM411A01 is the Assembler copybook COMMAREA CM411COM.

CM412
CM412 is linked to by the EXCI batch client control program (CM420), which has established the EXCI environment so that DPL requests can now be processed. CM420 also loads an I/O subprogram, CM419.

Here is an example of the JCL required to link to CM412 from CM420:

```jcl
//* ================================================================= *
//*  EXECUTE AN EXTERNAL CICS INTERFACE (EXCI) CLIENT PROGRAM          *
//* ================================================================= *
//STEP1    EXEC PGM=CM42Ø,
       //       PARM='CM412,TESTCICS'
//STEPLIB  DD   DISP=SHR,DSN=CWM.CICSTS.TEST.LOAD
//         DD   DISP=SHR,DSN=CWM.CICSTS.TEST.SDFHEXCI
//SYSPRINT DD   SYSOUT=*  
//SYSPRINT DD   SYSOUT=*  
//SYSPRINT DD   *    
//SYSDUMP DD   SYSOUT=*  
//SYSDUMP DD   SYSOUT=*  
***DELETE ALL(*) GROUP(CWMTEST)***
*COMMAND +CONTINUATION***
*DEFINE TRANCLASS(CWM1) GROUP(CWMTEST)
   MAXACTIVE(10)
/*

CM412 uses the I/O subprogram to read any number of CEDA commands from SYSIN. The CEDA commands are processed sequentially and each command results in a single DPL request. Before the DPL request is processed the CEDA command is written to SYSPRINT, which makes it easier to relate any error messages to the command processed. CM412 does not perform any validation of the CEDA command, it simply provides a 1022-byte buffer for the CEDA command. This has the advantage that any and all future CEDA commands can be supported without having to change CM412. Also,
DFHEDAP always validates the CEDA commands itself before attempting to process them.

CM412 processes a DPL request to the CICS server interface to DFHEDAP (CM411). When control is returned from CM411, CM412 checks the EXCI response, the DPL response and the CEDA diagnostic (command validation), and CEDA execution return codes. If a command is invalid, it will not be processed by DFHEDAP. Appropriate messages are written to SYSPRINT before processing the next CEDA command (if there is one) or returning control to CM420 for EXCI clean-up processing.

Here is an example of the messages written to SYSPRINT:

CM420000I *CM420 -CWM00001 01/30/04 09.54*

CM420001I Program CM420 loaded at address X'80007138'.
CM420001I WORKING storage address X'00006BF8' length 00000056 bytes.
CM420001I CM420COM storage address X'00006EA8' length 00000160 bytes.

CM420002I Program CM419 loaded at address X'80008D10'.
CM420003I CM419COM storage address X'00006C80' length 00000548 bytes.

CM420101I PARM Field - Program=CM412 Region=TESTCICS.
CM420201I INITIALIZE_USER processing....
CM420202I INITIALIZE_USER successful.

CM420301I ALLOCATE_PIPE processing....
CM420302I ALLOCATE_PIPE successful.

CM420401I OPEN_PIPE processing....
CM420402I OPEN_PIPE successful.

CM420501I Loading program CM412....
CM420502I Program CM412 loaded at address X'800080C8'.
CM420503I LINKing to sub-program CM412 ...

************************************************************************
CM412000I *CM412 -CWM00001 02/05/04 12.22*

CM412001I Program CM412 loaded at address X'800080C8'.
CM412003I WORKING storage address X'0000F758' length 00002212 bytes.
CM412003I CM411COM storage address X'0000F7C0' length 00002100 bytes.

************************************************************************
*COMMAND +CONTINUATION*
DELETE ALL(*) GROUP(CWMTEST)

CM412501I DPL_CALL to CM411 processing....
CM412503I CEDA Diagnostics Code . : 00000000
CM412504I CEDA Execution Code . : 00000000
CM412502I DPL_CALL to CM411 complete. Return Code 00000000

DEFINE TRANCLASS(CWM1) GROUP(CWMTEST)
  MAXACTIVE(10)

CM412501I DPL_CALL to CM411 processing....
CM412503I CEDA Diagnostics Code . : 00000000
CM412504I CEDA Execution Code . : 00000000
CM412502I DPL_CALL to CM411 complete. Return Code 00000000

DEFINE FILE(TEST01) GROUP(CWMTEST)
  DESCRIPTION(EXCI TEST01 VSAM FILE)
  DSNAME(CWM.TEST.EXCI.TEST01)
  LSRPOOLID(1) DSNSHARING(ALLREQS)
  STRINGS(1) KEYLENGTH(9) STATUS(ENABLED) OPENTIME(FIRSTREF)
  DISPOSITION(SHARE) DATABUFFERS(2) INDEXBUFFERS(1)
  TABLE(NO)
  RECORDFORMAT(V) ADD(NO) BROWSE(NO) DELETE(NO) READ(YES)
  UPDATENO) JOURNAL(NO) JNLREAD(NONE) JNLSYNCREAD(NO)
  JNLUPDATA(NO) JNLDADD(NONE) JNLSYNCWRITE(NO) RECOVERY(NONE)
  FWDRECOVLOG(NO) BACKUPTYPE(STATIC)

CM412501I DPL_CALL to CM411 processing....
CM412503I CEDA Diagnostics Code . : 00000000
CM412504I CEDA Execution Code . : 00000000
CM412502I DPL_CALL to CM411 complete. Return Code 00000000

CM412902I Number of commands processed 00000003
CM412901I Program Terminated. Highest Return Code 00000000

CM420502I Control returned from sub-program CM412    RC=00000000

CM420601I CLOSE_PIPE processing....
CM420602I CLOSE_PIPE successful.

CM420701I DEALLOCATE_PIPE processing....
CM420702I DEALLOCATE_PIPE successful.

CM420901I Program Terminated. Highest Return Code 00000000

If any EXCI or DPL errors occur, appropriate messages would be written to SYSPRINT and subsequent CEDA commands would not be processed.
CM412 and all EXCI client programs must include the CICS-supplied EXCI program stub DFHXCSTB. You can use the CICS-supplied procedure DFHEXTAL to assemble and link-edit CM412 and all EXCI client programs written in Assembler. Procedures are also supplied for EXCI client programs written in other languages.

```
*ASM XOPTS(EXCI)
CM412 TITLE 'CM412 : EXCI CEDA BATCH CLIENT'
**
* C A R L W A D E M C B U R N I E *
* - I T C O N S U L T A N T - *
* *
* *
* www.cwmit.com *
**
* MODULE NAME = CM412 *
* MODULE TYPE = CSECT (Sub-Program) *
* DESCRIPTION = CICS/ESA EXCI CEDA Batch Client Program *
* *
* This program must be passed a parameter list *
* in Register 1 :- *
* *
* Address 1 : CM419COM *
* Address 2 : CM42ØCOM *
* *
* This program reads CEDA commands from the *
* SYSIN dataset and issues a DPL call to the *
* CICS EXCI CEDA Server Program (CM411) for *
* each command. *
**
EJECT
**
* *
* CHANGE HISTORY: *
* -------------- *
**
EJECT
**
* *
* REGISTER EQUATES USAGE *
* -------- -------- --- *
* REG Ø RØ Work Register *
* REG 1 R1 Work Register *
* REG 2 R2 DSECT - CM411COM *
* REG 3 BASE Base Register for CSECT CM412 *
* REG 4 R4 Work Register *
* REG 5 R5 Work Register *
```
* REG 6  R6  Work Register  *
* REG 7  R7  Work Register  *
* REG 8  R8  DSECT - CM419COM  *
* REG 9  R9  DSECT - CM420COM  *
* REG 10 R10  DSECT - EXCI_RETURN_CODE  *
* REG 11 R11  DSECT - EXCI_DPL_RETAREA  *
* REG 12 R12  *
* REG 13 DYNREG  DSECT - DFHEISTG  *
* REG 14 R14  Linkage - return address  *
* REG 15 R15  Linkage - branch to address  *
  * Return Codes  *
******************************************************************************
EJECT
*---------------------------------------------------------------------*

* Copybooks  
*---------------------------------------------------------------------*
EJECT

COPY  DFHXCRCD   EXCI DSECTS AND RETURN CODES
COPY  DFHXCPLD   EXCI PARAMETER LIST EQUATES
COPY  CM411AØ1   DSECT - CM411COM (COMMAREA)
COPY  CM419AØ1   DSECT - CM419COM (COMMAREA)
COPY  CM420AØ1   DSECT - CM420COM (COMMAREA)
EJECT

* Addressability to DFHEISTG will be established by CICS EXCI.  
*---------------------------------------------------------------------*
DFHEISTG   CICS EXCI DYNAMIC STORAGE
EJECT

* CM412 Dynamic Storage - Start  
*---------------------------------------------------------------------*
DYNSTOR DS ØH   CM412 DYNAMIC STORAGE
  *
 PLISTPTR DS F   --> PARM LIST
CM419ST DS F   --> CM419COM STORAGE
CM420ST DS F   --> CM420COM STORAGE
  *
 COMD_CNTR DS F   COMMAND COUNTER
 COMD_FLAG DS X   COMMAND FLAG
 FLAG_ON EQU X'FF'   FLAG ON
 FLAG_OFF EQU X'ØØ'   FLAG OFF
  *
 HIGH_RC DS F   HIGHEST RETURN CODE
 CURR_RC DS F   CURRENT RETURN CODE
  *
 WORKØ5 DS CL5   WORK AREA 5 BYTES
 WORKØ9 DS CL9   WORK AREA 9 BYTES
 WORKDW_1 DS D   WORK AREA DOUBLE WORD
 WORKDW_2 DS D   WORK AREA DOUBLE WORD
  *
DS ØD                      ALIGN STORAGE
CM411ST DS CL(CM411COM_LENGTH) STORAGE FOR CM411COM

* DS ØD                      ALIGN STORAGE

LINK_PL CALL ,
(CM419ST,
CM42ØST),
VL,
MF=L

* DYNSTORL EQU   *-DYNSTOR               LENGTH OF DYNAMIC STORAGE
*---------------------------------------------------------------------*
* CM412 Dynamic Storage - End                                       *
*---------------------------------------------------------------------*
* EJECT

*---------------------------------------------------------------------*
* Register Equates                                                    *
*---------------------------------------------------------------------*
DFHREGS                       CICS STANDARD EQUATES
BASE     EQU   3                       BASE CODE REGISTER
DYNREG   EQU   13                      DYNAMIC STORAGE REGISTER
EJECT

***********************************************************************
*=====================================================================*
*ENTRY POINT                                                             *
*=====================================================================*

CM412    DFHEIENT CODEREG=(BASE),DATAREG=(DYNREG)
CM412    AMODE 31
CM412    RMODE 24

*---------------------------------------------------------------------*
* Program Identification "Eye-Catchers"                                *
*---------------------------------------------------------------------*
B     AØØØ_MAINLINE           BRANCH OVER EYE-CATCHERS
ASMEYE   DC    C'*'                    ASTERISK
ASMPROG  DC    C'CM412   '             PROGRAM NAME
DC    C'-'                    HYPHEN
ASMLVL   DC    C'CWMØØØØ1'             PROGRAM LEVEL
DC    C' '                    BLANK
ASMDATE  DC    C'&SYSDATE'             DATE OF ASSEMBLY
DC    C' '                    BLANK
*** ASMTIME  DC  C'&SYSTIME'  TIME OF ASSEMBLY ***
DC  C'**'  ASTERISK
ASMEYEL EQU  *-ASMEYE  LENGTH OF EYE-CATCHER

EJECT
******************************************************************************
* - A Ø Ø Ø _ M A I N L I N E : Controls the flow of the program - *
******************************************************************************
*R3  BASE CSECT CM412  -*
*R13 DYNREG DSECT DFHEISTG  -*
*R14 Linkage  -*
*R15 Return Code  -*
******************************************************************************
AØØØ_MAINLINE  DS  ØH
BAL  R14,A1ØØ_INITIALIZE  PERFORM INITIALIZATION
CLC  HIGH_RC,=F'4'  IF RC > 4
BH  AØØØTERM  THEN TERMINATE
BAL  R14,A5ØØ_SUB_PROG  EXCI CEDA SUB PROGRAM
AØØØTERM  BAL  R14,A9ØØ_TERMINATION  PERFORM TERMINATION
******************************************************************************
* - A Ø Ø Ø _ R E T U R N : Return Control - *
******************************************************************************
AØØØ_RETURN  DS  ØH
*
L  R15,HIGH_RC  LOAD HIGHEST RETURN CODE
RETURN  DFHEIRET  RCREG=(15)
******************************************************************************
*===========================================================================*
*  E X I T             P O I N T                        =*
*===========================================================================*
******************************************************************************
EJECT
******************************************************************************
* - A 1 Ø Ø _ I N I T I A L I Z E : Perform Initialization - *
******************************************************************************
*R1  Parameter List  -*
*R2  DSECT CM411COM  -*
*R3  BASE CSECT CM412  -*
*R4  Work Register  -*
*R5  Work Register  -*
*R6  Work Register  -*
*R7  Work Register  -*
*R8  DSECT CM419COM  -*
*R9  DSECT CM42ØCOM  -*
* R10 DSECT EXCI_RETURN_CODE
* R11 DSECT EXCI_DPL_RETAREA
* R13 DYNREG DSECT DFHEISTG
* R14 Linkage

******************************************************************************
A100_INITIALIZE DS 0H
******************************************************************************
* Clear DYNSTOR.

LA R4, DYNSTOR     ADDRESS DYNSTOR
LA R5, DYNSTORL    LENGTH OF DYNSTOR
XR R6, R6          FROM ADDRESS NOT REQUIRED
XR R7, R7          SET LENGTH TO Ø
ICM R7, 8, =C’ ’   SET PADDING TO BLANKS
MVCL R4, R6        CLEAR STORAGE TO BLANKS
*
ST R1, PLISTPTR    SAVE PARMLIST PTR FOR LATER
ST R14, A100SR14   SAVE REGISTER 14
XC HIGH_RC, HIGH_RC SET HIGHEST RC TO Ø
XC CURR_RC, CURR_RC SET CURRENT RC TO Ø

******************************************************************************
* Establish addressability and map CM411COM.

---------------------------------------------------------------------
* Process PARMLIST and establish addressability to
* CM419COM and CM420COM.
---------------------------------------------------------------------
LM R8, R9, Ø(R1)     --> CM419COM & CM420COM
ST R8, CM419ST       SAVE --> CM419COM
USING CM419COM, R8   MAP CM419COM
ST R9, CM420ST       SAVE --> CM420COM
USING CM420COM, R9   MAP CM420COM
*
LA R10, CM420COM_RETURN_AREA   --> RETURN_AREA STORAGE
USING EXCI_RETURN_CODE, R10   MAP RETURN_AREA
*
LA R11, CM420COM_DPL_RETAREA  --> DPL_RETAREA STORAGE
USING EXCI_DPL_RETAREA, R11   MAP DPL_RETAREA

******************************************************************************
* Write start message using programs eyecatcher as text.

---------------------------------------------------------------------
A100MSG DS 0H
BAL R14, Z200_WRITE_SYSPRINT BLANK LINE
MVC CM419COM_SYSPRINT_MSG, =C’ CM412000I’   MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(ASMeyer), ASMeyer MOVE EYECATCHER
BAL R14, Z200_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
BAL R14, Z200_WRITE_SYSPRINT BLANK LINE
*---------------------------------------------------------------------*
*- Issue CM412 loaded message. Convert the EP address to             *
*- displayable characters.                                           *
*---------------------------------------------------------------------*
A10412P DS 0H  ISSUE MESSAGE
MVC CM419COM_SYSPRINT_MSG,=C'CM412002I'  MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'CM412002I),CM412002I  & TEXT
MVC CM419COM_SYSPRINT_DATA+8(8),=C'CM412 '  & PGM
ST BASE,WORK05  EPA IN WORK FIELD
UNPK WORK09,WORK05  UNPACK ADDRESS
MVC WORKDW_1(L'WORKDW_1),WORK09  MOVE REQ. BYTES (8)
TR WORKDW_1,TRANTAB0-240  TRANSLATE REQ. BYTES
MVC CM419COM_SYSPRINT_DATA+37(L'WORKDW_1),WORKDW_1  MOVE
BAL R14,Z200_WRITE_SYSPRINT  WRITE MSG TO SYSPRINT

*---------------------------------------------------------------------*
*- Issue WORKING storage message. Convert the address and length to  *
*- displayable characters.                                           *
*---------------------------------------------------------------------*
A10WORK DS 0H  ISSUE MESSAGE
MVC CM419COM_SYSPRINT_MSG,=C'CM412003I'  MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'CM412003I),CM412003I  & TEXT
MVC CM419COM_SYSPRINT_DATA(8),=C'WORKING '  & TEXT
LA R4,DYNSTOR  --> DYNSTOR
ST R4,WORK05  SAVE IN WORK FIELD
UNPK WORK09,WORK05  UNPACK ADDRESS
MVC WORKDW_1(L'WORKDW_1),WORK09  MOVE REQ. BYTES (8)
TR WORKDW_1,TRANTAB0-240  TRANSLATE REQ. BYTES
MVC CM419COM_SYSPRINT_DATA+27(L'WORKDW_1),WORKDW_1  MOVE
LA R4,DYNSTORL  LOAD LENGTH OF DYNSTOR
CVD R4,WORKDW_1  CONVERT TO DECIMAL
UNPK WORKDW_2,WORKDW_1  CONVERT TO ...
OI WORKDW_2+7,X'F0'  ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_DATA+44(L'WORKDW_2),WORKDW_2  MOVE
BAL R14,Z200_WRITE_SYSPRINT  WRITE MSG TO SYSPRINT

*---------------------------------------------------------------------*
*- Issue CM411COM storage message. Convert the address and length to *
*- displayable characters.                                           *
*---------------------------------------------------------------------*
A10411S DS 0H  ISSUE MESSAGE
MVC CM419COM_SYSPRINT_MSG,=C'CM412003I'  MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'CM412003I),CM412003I  & TEXT
MVC CM419COM_SYSPRINT_DATA(8),=C'CM411COM'  & TEXT
LA R4,CM411ST  --> CM411COM STORAGE
ST R4,WORK05  SAVE IN WORK FIELD
UNPK WORK09,WORK05  UNPACK ADDRESS
MVC WORKDW_1(L'WORKDW_1),WORK09  MOVE REQ. BYTES (8)
TR WORKDW_1,TRANTAB0-240  TRANSLATE REQ. BYTES
MVC CM419COM_SYSPRINT_DATA+27(L'WORKDW_1),WORKDW_1  MOVE
LA R4,CM411COM_LENGTH  LOAD LENGTH OF CM411COM
CVD R4,WORKDW_1  CONVERT TO DECIMAL

UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
OI WORKDW_2+7,X'F0' ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_DATA+44(L'WORKDW_2),WORKDW_2 MOVE
BAL R14,Z200_WRITE_SYSPRINT WRITE MSG TO SYSPRINT

*---------------------------------------------------------------------*
* Return to caller
*---------------------------------------------------------------------*
A100RET BAL R14,Z400_CHECK_RC CHECK HIGHEST RC
L R14,A100SR14 RESTORE REGISTER 14
BR R14 RETURN TO CALLER
EJECT

******************************************************************************
* A 5 0 0 _ S U B _ P R O G : Sub-Program for DPL CEDA call *
******************************************************************************

A500_SUB_PROG DS 0H

*---------------------------------------------------------------------*
* Read SYSIN records and perform validation in the following order, the validation of the command content is performed by DFHEDAP in the CICS region:
*---------------------------------------------------------------------*
* 1. Check for End-Of-File
*   If there is a command in the command buffer submit it for processing before terminating.
* 2. Check for comment line, ie an asterisk '*' in column 1.
*   If there is a command in the command buffer submit it for processing before writing the comment line to SYSPRINT.
* 3. Check for blank line, ie columns 1 - 72 contain blanks.
*   If there is a command in the command buffer submit it for processing before writing a blank line to SYSPRINT.
* 4. Check for a new command, ie columns 1 - 10 contain non-blank characters.
*   If there is already a command in the command buffer submit it for processing before writing the new command to the command buffer and SYSPRINT.
* 5. Check for a command continuation (assumed), ie none of the other conditions are met and there is a current command in the command buffer (if there is no command
* in the command buffer a RC=Ø8 will be set). -*
* Write the command continuation to the command buffer. -*
* Any return code greater than 4 will cause all SYSIN records -*
* to be written to SYSPRINT without any further processing of -*
* commands. -*

```
ST R14,A500SR14 SAVE REGISTER 14
XC CURR_RC,CURR_RC CLEAR CURRENT RC
BAL R14,Z200_WRITE_SYSPRINT BLANK LINE
LA R12,Ø SET COMMAND COUNTER TO ZERO

* Loop through the SYSIN records. -*

A500LOOP BAL R14,Z500_READ_SYSPIN READ INPUT RECORD
CLI CM419COM_SYSPIN_EOF_F,CM419COM_SYSPIN_EOF IF EOF
BE A500EOF THEN LEAVE

* Check for a comment line. -*

A500CMNT CLC CM419COM_SYSPIN_DATA(L'COMMENT),COMMENT COMMENT LINE ?
BNE A500BLNK NO - NEXT CHECK
* YES - OUTPUT
CLI COMD_FLAG,FLAG_ON COMMAND WAITING ?
BNE A500OUTC NO - OUTPUT COMMENT LINE
BAL R14,Z600_LINK_CEDA YES - PROCESS COMMAND FIRST
CLC HIGH_RC,F'4' IF RC > 4
BH A500ERRO THEN PROCESS ERROR
A500OUTC MVC CM419COM_SYSPIN_DATA(L'CM419COM_SYSPIN_DATA),CM419COM_SX
YSIN_DATA MOVE COMMENT LINE
BAL R14,Z200_WRITE_SYSPRINT WRITE COMMENT TO SYSPRINT
B A500LOOP LOOP BACK FOR NEXT RECORD

* Check for a blank line. -*

A500BLNK CLC CM419COM_SYSPIN_DATA(L'BLANKS),BLANKS BLANK LINE ?
BNE A500COMD NO - NEXT CHECK
* YES - OUTPUT
CLI COMD_FLAG,FLAG_ON COMMAND WAITING ?
BNE A500OUTB NO - OUTPUT BLANK LINE
BAL R14,Z600_LINK_CEDA YES - PROCESS COMMAND FIRST
CLC HIGH_RC,F'4' IF RC > 4
BH A500ERRO THEN PROCESS ERROR
A500OUTB BAL R14,Z200_WRITE_SYSPRINT WRITE BLANK LINT TO SYSPRINT
B A500LOOP LOOP BACK FOR NEXT RECORD

* Check for a new command. -*

A500COMD CLC CM419COM_SYSPIN_DATA(10),BLANKS NEW COMMAND ?
BE A500CONT NO - NEXT CHECK
```
* YES - OUTPUT

CLI COMD_FLAG,FLAG_ON COMMAND WAITING ?
BNE A500COUT NO - OUTPUT COMMAND LINE
BAL R14,Z6ØØ_LINK_CEDA YES - PROCESS COMMAND FIRST
CLC HIGH_RC,=F'4' IF RC > 4
BH A500ERR NO THEN PROCESS ERROR
A500COUT MVI COMD_FLAG,FLAG_ON SET COMMAND FLAG ON
A R12,=F'1' INCREMENT COMMAND COUNTER
LA R5,CM411COM_COMMAND --> COMMAND FIELD
LA R6,Ø SET COMMAND LENGTH TO ZERO
* MOVE COMMAND
MVC Ø(L'CM419COM_SYSIN_DATA(R5)),CM419COM_SYSIN_DATA
LA R5,L'CM419COM_SYSIN_DATA(R5) INCREMENT COMMAND POINTER
LA R6,L'CM419COM_SYSIN_DATA(R6) INCREMENT COMMAND LENGTH
MVC CM419COM_SYSPRINT_DATA(L'CM419COM_SYSIN_DATA),CM419COM_SX
YSIN_DATA MOVE COMMAND LINE
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE COMMAND TO SYSPRINT
B A500LOOP LOOP BACK FOR NEXT RECORD
*---------------------------------------------------------------------*
* - Check for a command continuation.                                *
*---------------------------------------------------------------------*
A500CONT CLI COMD_FLAG,FLAG_ON COMMAND CONTINUATION ?
BNE A500INER NO - INPUT ERROR
* YES - OUTPUT
* MOVE COMMAND CONTINUATION
MVC Ø(L'CM419COM_SYSIN_DATA(R5)),CM419COM_SYSIN_DATA
LA R5,L'CM419COM_SYSIN_DATA(R5) INCREMENT COMMAND POINTER
LA R6,L'CM419COM_SYSIN_DATA(R6) INCREMENT COMMAND LENGTH
MVC CM419COM_SYSPRINT_DATA(L'CM419COM_SYSIN_DATA),CM419COM_SX
YSIN_DATA MOVE COMMAND CONTINUATION
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE COMMAND TO SYSPRINT
B A500LOOP LOOP BACK FOR NEXT RECORD
*---------------------------------------------------------------------*
* - Error record - all checks failed.                                 *
*---------------------------------------------------------------------*
A500INER MVC CURR_RC,=F'8' RETURN CODE 8
BAL R14,Z2ØØ_WRITE_SYSPRINT BLANK LINE
MVC CM419COM_SYSPRINT_MSG,=C'CM4125Ø6E' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'CM4125Ø6E),CM4125Ø6E & TEXT
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
BAL R14,Z2ØØ_WRITE_SYSPRINT BLANK LINE
*---------------------------------------------------------------------*
* - Return code greater than 4 encountered. Write any remaining       *
* - SYSIN records to SYSPRINT.                                        *
*---------------------------------------------------------------------*
A500ERR CLI CM419COM_SYSIN_EOF_F,CM419COM_SYSIN_EOF ALREADY EOF ?
BE A500EOF YES - END
* NO - OUTPUT ALL
A500READ MVC CM419COM_SYSPRINT_DATA(L'CM419COM_SYSIN_DATA),CM419COM_SX
YSIN_DATA MOVE RECORD

*---------------------------------------------------------------------*
BAL R14,Z2ØØ_WRITE_SYSPRINT  WRITE RECORD TO SYSPRINT
BAL R14,Z5ØØ_READ_SYSIN   READ INPUT RECORD
CLI CM419COM_SYSIN_EOF_F,CM419COM_SYSIN_EOF  IF EOF
BE A5ØØEOF                   THEN LEAVE
B A5ØØREAD                  LOOP BACK FOR NEXT RECORD
A5ØØEOF CLI COMD_FLAG,FLAG_ON COMMAND WAITING ?
BNE A5ØØEOF2                NO - CONTINUE EOF PROCESS
BAL R14,Z6ØØ_LINK_CEDA      YES - PROCESS COMMAND FIRST
A5ØØEOF2 ST R12,COMD_CNTR    STORE COMMAND COUNTER
C R12,=F'Ø'                 IF COMMAND COUNTER > ZERO
BH A5ØØRET                   THEN RETURN
MVC CURR_RC,=F'Ø'            ELSE SET RC = Ø8
*---------------------------------------------------------------------*
* Return to caller                                                   *
*---------------------------------------------------------------------*
A5ØØRET BAL R14,Z4ØØ_CHECK_RC CHECK HIGHEST RC
L R14,A5ØØSR14            RESTORE REGISTER 14
BR R14                     RETURN TO CALLER
EJECT
***********************************************************************
*---------------------------------------------------------------------*
* A 9 Ø Ø _ T E R M I N A T I O N : Perform Termination            *
*---------------------------------------------------------------------*
A9ØØ_TERMINATION DS ØH
ST R14,A9ØØSR14            SAVE REGISTER 14
XC CURR_RC,CURR_RC         CLEAR CURRENT RC
BAL R14,Z2ØØ_WRITE_SYSPRINT BLANK LINE
*---------------------------------------------------------------------*
* Convert number of commands processed to displayable decimal        *
* characters and issue message.                                      *
*---------------------------------------------------------------------*
L R4,COMD_CNTR          LOAD COMMAND COUNTER
CVD R4,WORKDW_1        CONVERT TO DECIMAL
UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
OI WORKDW_2+7,X'FØ'    ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_MSG,=C'CM4129Ø2I' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'CM4129Ø2I),CM4129Ø2I & TEXT
MVC CM419COM_SYSPRINT_DATA+29(L'WORKDW_2),WORKDW_2 & RC
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
*---------------------------------------------------------------------*
* Convert RC to displayable decimal characters and issue message.    *
*---------------------------------------------------------------------*
L R4,HIGH_RC            LOAD RC
CVD R4,WORKDW_1 CONVERT TO DECIMAL
UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
OI WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_MSG,=C'M4129Ø1I' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'C'M4129Ø1I),CM4129Ø1I & TEXT
MVC CM419COM_SYSPRINT_DATA+4Ø(L'WORKDW_2),WORKDW_2 & RC
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
*
BAL R14,Z2ØØ_WRITE_SYSPRINT BLANK LINE
*---------------------------------------------------------------------*
* Return to caller                                                   *
*---------------------------------------------------------------------*
A9ØØRET BAL R14,Z4ØØ_CHECK_RC CHECK HIGHEST RC
L R14,A9ØØSR14 RESTORE REGISTER 14
BR R14 RETURN TO CALLER
EJECT
**********************************************************************
*---------------------------------------------------------------------*
* Z 2 Ø Ø _ W R I T E _ S Y S P R I N T : Write message        *
*---------------------------------------------------------------------*
**********************************************************************
* R3 BASE CSECT CM412 -*
* R8 DSECT CM419COM -*
* R13 DYNREG DSECT DFHEISTG -*
* R14 Linkage -*
**********************************************************************
Z2ØØ_WRITE_SYSPRINT DS ØH
*
ST R14,Z2ØØSR14 SAVE REGISTER 14
*
MVI CM419COM_FUNCTION,CM419COM_PUT SET FUNCTION
*---------------------------------------------------------------------*
* LINK to CM419 passing CM419COM. If the LINK doesn't work the -*
* program will abend. -*
*---------------------------------------------------------------------*
Z2ØØLINK LINK EP=CM419,PARAM=((R8)),MF=(E,LINK_PL)
*---------------------------------------------------------------------*
* The return code from CM419 is not saved as a current return -*
* code because this would have a negative affect on the current -*
* and high return codes logic. Any I/O errors will be covered by -*
* system abends. -*
*---------------------------------------------------------------------*
* ST R15,CURR_RC SAVE RETURN CODE
*---------------------------------------------------------------------*
* Return to caller -*
*---------------------------------------------------------------------*
Z2ØØRET L R14,Z2ØØSR14 RESTORE REGISTER 14
BR R14 RETURN TO CALLER
EJECT
**********************************************************************
Z₃Ø₀_EXCI_DIAGNOSTICS  DS ØH

ST   R14,Z3ØØSR14            SAVE REGISTER 14

MVC   CM419COM_SYSPRINT_MSG,=C'CM412Ø1ØE'     MOVE MSG. NO.
MVC   CM419COM_SYSPRINT_DATA(L'CM412Ø1ØE),CM412Ø1ØE  & TEXT
BAL   R14,Z2ØØ_WRITE_SYSPRINT  WRITE MSG TO SYSPRINT

L     R4,EXCI_RESPONSE        LOAD RESPONSE
CVD   R4,WORKDW_1             CONVERT TO DECIMAL
UNPK  WORKDW_2,WORKDW_1       CONVERT TO ...
OI    WORKDW_2+7,X'FØ'        ... DISPLAYABLE DECIMAL
MVC   CM419COM_SYSPRINT_MSG,=C'CM412Ø1ØE'     MOVE MSG. NO.
MVC   CM419COM_SYSPRINT_DATA+6(L'CM412Ø1ØA),CM412Ø1ØA  & TEXT
MVC   CM419COM_SYSPRINT_DATA+28(L'WORKDW_2),WORKDW_2   & CODE
BAL   R14,Z2ØØ_WRITE_SYSPRINT  WRITE MSG TO SYSPRINT

L     R4,EXCI_REASON          LOAD REASON
CVD   R4,WORKDW_1             CONVERT TO DECIMAL
UNPK  WORKDW_2,WORKDW_1       CONVERT TO ...
OI    WORKDW_2+7,X'FØ'        ... DISPLAYABLE DECIMAL
MVC   CM419COM_SYSPRINT_MSG,=C'CM412Ø1ØE'     MOVE MSG. NO.
MVC   CM419COM_SYSPRINT_DATA+6(L'CM412Ø1ØB),CM412Ø1ØB  & TEXT
MVC   CM419COM_SYSPRINT_DATA+28(L'WORKDW_2),WORKDW_2   & CODE
BAL   R14,Z2ØØ_WRITE_SYSPRINT  WRITE MSG TO SYSPRINT

L     R4,EXCI_SUB_REASON1     LOAD SUB-REASON 1
CVD   R4,WORKDW_1             CONVERT TO DECIMAL

UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
OI WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_MSG,=C'M412010E' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA+6(L'CM412010C),CM412010C & TEXT
MVC CM419COM_SYSPRINT_DATA+28(L'WORKDW_2),WORKDW_2 & CODE
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT

*---------------------------------------------------------------------*
*- Convert EXCI_SUB_REASON2 to displayable decimal characters  *
*- and issue message.                                              *
*---------------------------------------------------------------------*
L R4,EXCI_SUB_REASON2 LOAD SUB-REASON 2
CVD R4,WORKDW_1 CONVERT TO DECIMAL
UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
OI WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_MSG,=C'M412Ø1ØE' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA+6(L'CM412Ø1ØD),CM412Ø1ØD & TEXT
MVC CM419COM_SYSPRINT_DATA+28(L'WORKDW_2),WORKDW_2 CODE
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT

*---------------------------------------------------------------------*
*- Return to caller                                                  *
*---------------------------------------------------------------------*
Z3ØØRET L R14,Z3ØØSR14 RESTORE REGISTER 14
BR R14 RETURN TO CALLER
EJECT

***********************************************************************
*- Z 4 Ø Ø _ C H E C K _ R C : Check Return Codes                *
***********************************************************************
Z4ØØ_CHECK_RC DS ØH
* ST R14,Z4ØØSR14 SAVE REGISTER 14
* CLC CURR_RC,HIGH_RC IF CURRENT RC > HIGHEST RC
BH Z4ØØHIGH THEN RESET HIGHEST RC
B Z4ØØRET ELSE RETURN
Z4ØØHIGH MVC HIGH_RC,CURR_RC MOVE CURRENT RC TO HIGHEST RC

*---------------------------------------------------------------------*
*- Return to caller                                                  *
*---------------------------------------------------------------------*
Z4ØØRET L R14,Z4ØØSR14 RESTORE REGISTER 14
BR R14 RETURN TO CALLER
EJECT

***********************************************************************
*- Z 5 Ø Ø _ R E A D _ S Y S I N : Read SYSIN                      *
***********************************************************************
Z5ØØ_READ_SYSIN DS ØH
*
ST R14,Z5ØØSR14 SAVE REGISTER 14
*
MVI CM419COM_FUNCTION,CM419COM_GET SET FUNCTION
*
- LINK to CM419 passing CM419COM. If the LINK doesn't work the
- program will abend.
*
Z5ØØLINK LINK EP=CM419,PARAM=((R8)),MF=(E,LINK_PL)
*
- The return code from CM419 is not saved as a current return
- code because this would have a negative effect on the current
- and high return codes logic. Any I/O errors will be covered by
- system abends.
*
ST R15,CURR_RC SAVE RETURN CODE
*
- Return to caller
*
Z5ØØRET L R14,Z5ØØSR14 RESTORE REGISTER 14
BR R14 RETURN TO CALLER
EJECT

Z6ØØ_LINK_CEDA : DPL to CEDA Interface
*
Z6ØØ_LINK_CEDA DS ØH
ST R14,Z600SR14  SAVE REGISTER 14
*---------------------------------------------------------------------*
* Set the output from DFHEDAP to be written to a storage area.      *
*---------------------------------------------------------------------*
STH R6,CM411COM_COM_LNG  STORE COMMAND LENGTH
MVI CM411COM_FLAG,CM411COM_FLAG_STOR  OUTPUT TO STORAGE
LA R4,L'CM411COM_STORAGE  LENGTH OF OUTPUT STORAGE
STH R4,CM411COM_STG_LEN  STORE LENGTH OF OUTPUT STORAGE
BAL R14,Z200_WRITE_SYSPRINT  WRITE BLANK LINE
*---------------------------------------------------------------------*
* Issue LINKing Message.                                             *
*---------------------------------------------------------------------*
MVC CM419COM_SYSPRINT_MSG,=C'CM4125Ø1I'  MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'CM4125Ø1I),CM4125Ø1I  & TEXT
BAL R14,Z200_WRITE_SYSPRINT  WRITE MSG TO SYSPRINT
*---------------------------------------------------------------------*
* DPL_CALL                                                            *
*---------------------------------------------------------------------*
MVC CM420COM_CALL_TYPE,=AL4(DPL_REQUEST)  CALL TYPE
MVC CM420COM_PGMNAME,=CL8'CM411'  PGMNAME
MVC CM420COM_COMMAREA_LEN,=AL4(CM411COM_LENGTH)  LENGTH
MVC CM420COM_DATA_LEN,=AL4(CM411COM_LENGTH)  LENGTH#
MVC CM420COM_TRANSID,=C'M42Ø'  TRAN ID
MVC CM420COM_OPTIONS,=AL1(SYNCONRETURN)  OPTIONS
Z600CALL CALL DFHXCIS,  X
  (CM420COM_VERSION_NUM,  X
   CM420COM_RETURN_AREA,  X
   CM420COM_USER_TOKEN,   X
   CM420COM_CALL_TYPE,   X
   CM420COM_PIPE_TOKEN,  X
   CM420COM_PGMNAME, X
   CM411COM,           X
   CM420COM_COMMAREA_LEN,  X
   CM420COM_DATA_LEN,  X
   CM420COM_TRANSID, X
   Ø,                  X
   Ø,                  X
   CM420COM_DPL_RETAREA,  X
   CM420COM_OPTIONS), X
   VL,                        X
   MF=(E,CM420COM_PL)

MVI COMD_FLAG,FLAG_OFF  SET COMMAND FLAG OFF
*---------------------------------------------------------------------*
* Check the EXCI response and produce diagnostics if required.       *
*---------------------------------------------------------------------*
Z600CHEX CLC EXCI_RESPONSE,=AL4(EXCI_NORMAL)  IF EXCI NORMAL
BE Z600CHDP  THEN CHECK DPL
BAL R14,Z3ØØ_EXCI_DIAGNOSTICS ELSE DIAGNOSTICS
MVC CURR_RC,EXCI_RESPONSE SET RC
*---------------------------------------------------------------------*
* Check the DPL response and produce diagnostics if required. *
*---------------------------------------------------------------------*
Z6ØØCHDP CLC EXCI_DPL_RESP,=AL4(EXEC_NORMAL) IF DPL NORMAL
  BE Z6ØØCHRC THEN CHECK CM411
BAL R14,Z7ØØ_DPL_DIAGNOSTICS ELSE DIAGNOSTICS
CLC CURR_RC,EXCI_DPL_RESP IF RESP < CURR_RC
BH Z6ØØCHRC THEN CHECK CM411
MVC CURR_RC,EXCI_DPL_RESP ELSE RESET RC
*---------------------------------------------------------------------*
* Check the CEDA Diagnostics return code and issue message with *
* the return code.                                              *
*---------------------------------------------------------------------*
Z6ØØCHRC L R4,CM411COM_DIAG_RC LOAD DIAGNOSTICS CODE
  CVD R4,WORKDW_1 CONVERT TO DECIMAL
  UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
  OI WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
  MVC CM419COM_SYSPRINT_MSG,=C'CM4125Ø3I' MOVE MSG. NO.
  MVC CM419COM_SYSPRINT_DATA(L'CM4125Ø3I),CM4125Ø3I & TEXT
  MVC CM419COM_SYSPRINT_DATA+26(L'WORKDW_2),WORKDW_2 & CODE
  BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
CLC CM411COM_DIAG_RC,=F'Ø' IF DIAG RC = ZERO
  BE Z6ØØCHR2 THEN CHECK EXEC RC
  CLC CURR_RC,CM411COM_DIAG_RC IF DIAG RC < CURR_RC
  BH Z6ØØCHR2 THEN CHECK EXEC RC
  MVC CURR_RC,CM411COM_DIAG_RC ELSE RESET RC
*---------------------------------------------------------------------*
* Check the CEDA Execution return code and issue message with *
* the return code.                                              *
*---------------------------------------------------------------------*
Z6ØØCHR2 L R4,CM411COM_EXEC_RC LOAD EXECUTION CODE
  CVD R4,WORKDW_1 CONVERT TO DECIMAL
  UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
  OI WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
  MVC CM419COM_SYSPRINT_MSG,=C'CM4125Ø4I' MOVE MSG. NO.
  MVC CM419COM_SYSPRINT_DATA(L'CM4125Ø4I),CM4125Ø4I & TEXT
  MVC CM419COM_SYSPRINT_DATA+26(L'WORKDW_2),WORKDW_2 & CODE
  BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
CLC CM411COM_EXEC_RC,=F'Ø' IF EXEC RC = ZERO
  BE Z6ØØCHSY THEN CHECK CM411 RC
  CLC CURR_RC,CM411COM_EXEC_RC IF EXEC RC < CURR_RC
  BH Z6ØØCHSY THEN CHECK CM411 RC
  MVC CURR_RC,CM411COM_EXEC_RC ELSE RESET RC
*---------------------------------------------------------------------*
* Check the CM411 return code.                                   *
*---------------------------------------------------------------------*
Z6ØØCHSY CLC CM411COM_CM411_RC,=F'Ø' IF CM411 RC = ZERO
  BE Z6ØØCHCU THEN CHECK CURRENT


33
CLC  CURR_RC,CM411COM_CM411_RC IF CM411 RC < CURR_RC
BH  Z6ØØCHCU               THEN CHECK CURRENT
MVC  CURR_RC,CM411COM_CM411_RC ELSE RESET RC

* Write message to SYSPRINT containing the highest return code encountered during the processing of CM411 (and DFHEDAP).

Z6ØØCHCU  L R4,CURR_RC LOAD CURRENT RC
CVD  R4,WORKDW_1 CONVERT TO DECIMAL
UNPK  WORKDW_2,WORKDW_1 CONVERT TO ...
OI  WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
MVC  CM419COM_SYSPRINT_MSG=C'CM4125Ø2I' MOVE MSG. NO.
MVC  CM419COM_SYSPRINT_DATA(L'CM4125Ø2I),CM4125Ø2I & TEXT
MVC  CM419COM_SYSPRINT_DATA+4Ø(L'WORKDW_2),WORKDW_2 & CODE
BAL  R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
BAL  R14,Z2ØØ_WRITE_SYSPRINT BLANK LINE

* If a return code greater than 4 has been encountered, write a message to SYSPRINT stating that all subsequent commands will be ignored.

Z6ØØCHST  CLC  CURR_RC,=F'4' IF RC > 4
BH  Z6ØØIGNO THEN "IGNORING" MSG
B  Z6ØØCLBU ELSE CLEAR COMMAND BUFFER
Z6ØØIGNO  MVC  CM419COM_SYSPRINT_MSG=C'CM4125Ø5I' MOVE MSG. NO.
MVC  CM419COM_SYSPRINT_DATA(L'CM4125Ø5I),CM4125Ø5I & TEXT
BAL  R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
BAL  R14,Z2ØØ_WRITE_SYSPRINT BLANK LINE

* Clear command buffer for next command

Z6ØØCLBU  LA  R4,CM411COM_COMMAND ADDRESS COMMAND BUFFER
LA  R5,L'CM411COM_COMMAND LENGTH OF COMMAND BUFFER
XR  R6,R6 FROM ADDRESS NOT REQUIRED
XR  R7,R7 SET LENGTH TO Ø
ICM  R7,8,=C' ' SET PADDING TO BLANKS
MVCL  R4,R6 CLEAR STORAGE TO BLANKS

* Return to caller

Z6ØØRET  BAL  R14,Z4ØØ_CHECK_RC CHECK HIGHEST RC
L  R14,Z6ØØSR14 RESTORE REGISTER 14
BR  R14 RETURN TO CALLER
EJECT

***********************************************************************
* Z 7 Ø Ø _ D P L _ D I A G N O S T I C S :  Diagnostics *
***********************************************************************
*- R3  BASE CSECT CM412
* R4 Work Register
* R8 DSECT CM419COM
* R11 DSECT EXCI_DPL_RETAREA
* R13 DYNREG DSECT DFHEISTG
* R14 Linkage

***********************************************************************
Z7ØØ_DPL_DIAGNOSTICS DS ØH
*
ST R14,Z7ØØSR14 SAVE REGISTER 14

* Write DPL diagnostics follow message.
*---------------------------------------------------------------------*
MVC CM419COM_SYSPRINT_MSG,=C'CM412Ø2ØE' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA(L'CM412Ø2ØE),CM412Ø2ØE & TEXT
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
*---------------------------------------------------------------------*

* Convert EXCI_DPL_RESP to displayable decimal characters
* and issue message.
*---------------------------------------------------------------------*
L R4,EXCI_DPL_RESP LOAD RESPONSE
CVD R4,WORKDW_1 CONVERT TO DECIMAL
UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
OI WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_MSG,=C'CM412Ø2ØE' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA+6(L'CM412Ø2ØA),CM412Ø2ØA & TEXT
MVC CM419COM_SYSPRINT_DATA+28(L'WORKDW_2),WORKDW_2 & CODE
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
*---------------------------------------------------------------------*

* Convert EXCI_DPL_RESP2 to displayable decimal characters
* and issue message.
*---------------------------------------------------------------------*
L R4,EXCI_DPL_RESP2 LOAD REASON 2
CVD R4,WORKDW_1 CONVERT TO DECIMAL
UNPK WORKDW_2,WORKDW_1 CONVERT TO ...
OI WORKDW_2+7,X'FØ' ... DISPLAYABLE DECIMAL
MVC CM419COM_SYSPRINT_MSG,=C'CM412Ø2ØE' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA+6(L'CM412Ø2ØB),CM412Ø2ØB & TEXT
MVC CM419COM_SYSPRINT_DATA+28(L'WORKDW_2),WORKDW_2 & CODE
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
*---------------------------------------------------------------------*

*---------------------------------------------------------------------*
MVC CM419COM_SYSPRINT_MSG,=C'CM412Ø2ØE' MOVE MSG. NO.
MVC CM419COM_SYSPRINT_DATA+6(L'CM412Ø2ØC),CM412Ø2ØC & TEXT
MVC CM419COM_SYSPRINT_DATA+28(L'EXCI_DPL_ABCODE),EXCI_DPL_ABX CODE
BAL R14,Z2ØØ_WRITE_SYSPRINT WRITE MSG TO SYSPRINT
*---------------------------------------------------------------------*

* Return to caller
*---------------------------------------------------------------------*
Z700RET L R14,Z700SR14
RESTORE REGISTER 14
BR R14
RETURN TO CALLER
EJECT

***********************************************************************
* MODIFIABLE INSTRUCTIONS -*
***********************************************************************
* None !!
EJECT

***********************************************************************
* CONSTANTS
***********************************************************************

BLANKS DC CL(L'CM419COM_SYSIN_DATA)' ' BLANK LINE
COMMENT DC C'*' COMMENT INDICATOR

***********************************************************************
* TABLES
***********************************************************************

TRANTABØ DC C'Ø123456789ABCDEF' TRANSLATE HALF BYTES
EJECT

***********************************************************************
* MESSAGES
***********************************************************************

CM4120Ø1I DC C'Loading program ....'
CM4120Ø2I DC C'Program loaded at address X'12345678'.'
CM4120Ø3I DC C' storage address X' ' length X bytes.'
CM4120Ø1ØE DC C'Error processing EXCI call, diagnostics follow:-'
CM4120Ø1ØA DC C'EXCI Response . . : '
CM4120Ø1ØB DC C'EXCI Reason . . : '
CM4120Ø1ØC DC C'EXCI Subreason-1 . : '
CM4120Ø1ØD DC C'EXCI Subreason-2 . : '
*
CM4120Ø2ØE DC C'Error processing DPL call, diagnostics follow:-'
CM4120Ø2ØA DC C'EXEC Response 1 . . : '
CM4120Ø2ØB DC C'EXEC Response 2 . . : '
CM4120Ø2ØC DC C'EXEC Abend Code . . : '
*
CM4125Ø1I DC C'DPL_CALL to CM411 processing....'
CM4125Ø2I DC C'DPL_CALL to CM411 complete. Return Code '
CM4125Ø3I DC C'CEDA Diagnostics Code . : '
CM4125Ø4I DC C'CEDA Execution Code . : '

36
CM411

The EXCI client interface to DFHEDAP (CM412) cannot link directly to DFHEDAP. DFHEDAP must be linked to, passing a COMMAREA containing five 31-bit addresses, each contained in a fullword. That was the problem; DFHEDAP expected not data values to be passed, but addresses where data values could be found. When a DPL request passing a COMMAREA is processed, the COMMAREA is effectively copied into a storage area in the target CICS region and the server program is passed the address of that storage area. There was obviously no way of knowing the address where the storage would be copied and therefore the addresses required by DFHEDAP.

CM411 provides the solution to this problem by receiving the CM411COM COMMAREA and then setting the five 31-bit addresses within the CICS server region. It links to DFHEDAP, passing the addresses required by DFHEDAP in a COMMAREA.

DFHEDAP does provide detailed CEDA diagnostic (command validation) and execution messages. However, the format of the message fields is not guaranteed and could be changed by a PTF or in a new release or version of CICS. To avoid maintenance overhead, CM411 does not attempt to process the messages from DFHEDAP. CM411 processes only the return codes from DFHEDAP. If a return code other than zero is returned, CM411 writes a quick transaction dump, in which the messages could easily be read. This may appear somewhat
lazy, but I wanted CM411 to be as maintenance independent as possible.

It is important to note at this point that CM411 is a ‘normal’ CICS program and could be used (linked to) by any other CICS program wishing to process CEDA commands using the CM411COM COMMAREA. It is not specific to CM412 or EXCI.

CM411 should be assembled and link-edited using the same procedure you would use for any CICS program written in Assembler.

CM411 uses the subprograms CM401, CM402, and CM403, which can be obtained from the Xephon Web site.

*ASM XOPTS(CICS)
CM411 TITLE 'CM411 : CEDA INTERFACE'
***********************************************************************
*               CARL WADE MCBURNIE
*               - IT CONSULTANT -
*               www.cwmit.com
***********************************************************************
* MODULE NAME = CM411
* MODULE TYPE = CSECT (Sub-Program)
* DESCRIPTION = CICS/ESA CEDA Interface
*
* EXCI Server Program for the Programmable Interface to CEDARDO.
* The program receives a communications area CM411COM from the Batch Client Program CM412,
* sets the required pointers, LINKs to DFHEDAP, and returns the communications area to CM412,
* including return codes and messages from DFHEDAP.
***********************************************************************
EJECT
***********************************************************************
* CHANGE HISTORY:
* " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " 

* REG Ø RØ
* REG 1 R1
* REG 2 R2 DSECT - CM411COM
* REG 3 BASE Base Register for CSECT CM411
* REG 4 R4 Work Register
* REG 5 R5 Work Register
* REG 6 R6 Work Register
* REG 7 R7 Work Register
* REG 8 R8 DSECT - CM4Ø1COM
* REG 9 R9 DSECT - CM4Ø2COM
* REG 10 R10 DSECT - CM4Ø3COM
* REG 11 EIBREG DSECT - DFHEIBLK
* REG 12 R12 DSECT - CM411COM_STG_HEADER
* REG 13 DYNREG DSECT - DFHEISTG
* REG 14 R14 Linkage
* REG 15 R15 Linkage

******************************************************************************

EJECT

*---------------------------------------------------------------------*
* Copybooks
*---------------------------------------------------------------------*

EJECT
COPY CM4Ø1AØ1 DSECT - CM4Ø1COM (TDQ MSG)
EJECT
COPY CM4Ø2AØ1 DSECT - CM4Ø2COM (EXEC DIAGS)
EJECT
COPY CM4Ø3AØ1 DSECT - CM4Ø3COM (WTO MSG)
EJECT
COPY CM411AØ1 DSECT - CM411COM (CEDA INTER.)
EJECT

*---------------------------------------------------------------------*
* Addressability to DFHEISTG will be established by CICS.            *
*---------------------------------------------------------------------*

DFHEISTG CICS DYNAMIC STORAGE
EJECT

*---------------------------------------------------------------------*
* CM411 Dynamic Storage - Start                                      *
*---------------------------------------------------------------------*

DYNSTOR DS ØH CM411 DYNAMIC STORAGE
*
TRAN_ID DS CL4 TRANSACTION IDENTIFIER
TERM_ID DS CL4 TERMINAL IDENTIFIER
USER_ID DS CL8 USER IDENTIFIER
*
ABNDCODE DS CL4 ABEND CODE
*
DUMP_REQD DS X DUMP REQUIRED FLAG
*
Z1ØØ_RESP1 DS F RESP1 CODE
Z100_RESP2 DS F RESP2 CODE
Z100_FUNC DS CL2 FUNCTION CODE
*
A100SR14 DS F SAVE REGISTER 14
A500SR14 DS F SAVE REGISTER 14
A900SR14 DS F SAVE REGISTER 14
Z100SR14 DS F SAVE REGISTER 14
Z200SR14 DS F SAVE REGISTER 14
Z300SR14 DS F SAVE REGISTER 14
*
DS ØD ALIGN STORAGE
CM401ST DS CL(CM401COM_LENGTH) STORAGE FOR CM401COM
*
DS ØD ALIGN STORAGE
CM402ST DS CL(CM402COM_LENGTH) STORAGE FOR CM402COM
*
DS ØD ALIGN STORAGE
CM403ST DS CL(CM403COM_LENGTH) STORAGE FOR CM403COM
*
DYNSTORL EQU *-DYNSTOR LENGTH OF DYNAMIC STORAGE
*---------------------------------------------------------------------*
* CM411 Dynamic Storage - End -*
*---------------------------------------------------------------------*
EJECT
*---------------------------------------------------------------------*
* Register Equates
*---------------------------------------------------------------------*
DFHREGS CICS STANDARD EQUATES
BASE EQU 3 BASE CODE REGISTER
EIBREG EQU 11 EXEC INTERFACE BLOCK REGISTER
DYNREG EQU 13 DYNAMIC STORAGE REGISTER
EJECT
***********************************************************************
=====================================================================
*= ENTRY POINT =*
=====================================================================
CM411 DFHEIENT CODEREG=(BASE),DATAREG=(DYNREG),EIBREG=(EIBREG)
CM411 AMODE 31
CM411 RMODE ANY
*---------------------------------------------------------------------*
* Program Identification "Eye-Catchers"
*---------------------------------------------------------------------*
B A000_MAINLINE BRANCH OVER EYE-CATCHERS
ASMEYE DC C'**' ASTERISK
ASMPROG DC C'CM411 ' PROGRAM NAME
DC C'-' HYPHEN
ASMLVL DC C'CWM00001' PROGRAM LEVEL
DC C' ' BLANK
ASMDATE DC C'&SYSDATE' DATE OF ASSEMBLY
It all started when Micro Focus and Microsoft announced an alliance to enable the migration of critical proprietary mainframe systems onto Windows using Microsoft’s .NET technology. The Micro Focus Enterprise Server with its Mainframe Transaction Option was designed to enable the migration and
deployment of CICS/COBOL mainframe applications onto the Windows platform. Why would anyone want to do that? The companies claimed that once an application had been re-hosted, it could be extended through the use of the .NET Framework, SQL Server 2000, XML, and Web services. The company also claimed that it helped customers reduce the cost of maintaining and modernizing their mainframe environments, suggesting that cheaper platforms saved time and money.

Shortly after that, Micro Focus announced Mainframe Express Enterprise Edition, a Windows-based environment for mainframe application development. The product combined a mainframe emulation and development environment with application analysis and automated program and component generation. Again, there was a promise of existing CICS legacy services being extended to Web services, .NET, or J2EE.

Fujitsu Software came out with Version 1.0 of NeoKicks. This provided a way for CICS applications to move to Microsoft .NET with ASP.NET pages, Windows Forms, and Visual Studio .NET using wizards. Fujitsu claimed that it lowered platform maintenance costs, gave interfaces new life as ASP.NET Web applications or Windows Forms client applications, and integrated with Visual Studio .NET for higher developer productivity.

So if we are thinking (even remotely) that we might do some CICS development in a .NET environment, what are we talking about?

It seems that .NET is a set of standards that define how software talks to other software, including Windows. The programming languages to use are Visual Basic .NET, C#, and J#. Visual Basic .NET is only slightly similar to its predecessor Visual Basic. It’s different in that it’s an object-oriented language and harder to learn. C# is similar to VB .NET. It has elements of C++ and Java in it. It’s probably easier
to learn than VB .NET. J# is designed for Java programmers who want to convert existing Java applications to run under .NET.

Key to .NET is a component called the Common Language Run-time (CLR). It provides the same service to all the .NET programming languages in that it is a single system to execute all .NET applications. An application that is run under the supervision of the CLR is called managed code.

The .NET programs – ie written in VB .NET, C#, or J# – are taken by the .NET compiler and converted to what’s called Microsoft Intermediate Language (MSIL) Assembler. This MSIL is converted into machine code at the last minute by the CLR before execution. This is Just-In-Time (JIT) compiling. It is used to allow the CLR to check that a program won’t do anything dangerous or illegal. The performance level is still OK. This is meant to ensure that .NET applications are reliable and secure.

There is also what’s called the .NET Framework, which is a large software library that allows programs to access the Windows operating system. This is still under development.

If you’ve heard of COM (Common Object Model) and ActiveX and, Automation Interfaces, forget them – they are all being replaced by .NET classes. If you thought you’d need to build a COM object library, and possibly add an ActiveX control or an Automation Interface, you don’t. You write your program (using a .NET) language, and make your classes available as extensions to the .NET Framework. Although, if you migrate today, you will still get tied up with this older technology.

If you’re thinking that the .NET strategy sounds similar to Java, you’re not wrong. ActiveX components on Web pages are like Java applets, and desktop applications do the same job as Java beans. C# is a programming language similar to Java, and the CLR is similar to the Java Virtual Machine (JVM). The .NET Framework looks like Java class libraries. So how are they different? Well, .NET runs only on Windows
and Java runs on everything else (almost – it’s platform independent).

Microsoft is quite keen that developing for the Web should be the same as developing for the desktop. This involves using Windows Web servers rather than Apache (or whatever). Their plan for server domination involves the use of ASP .NET. This is still some way in the future and requires a Microsoft SQL database as well. ASP .NET compiles Web pages into HTML – which everyone can read.

Microsoft is quite keen on Web services, and this is important for CICS sites because it allows a program on one computer to call an application running on another (ie an established CICS application). .NET Web services are quite easy to create. An application on a desktop computer calls a program over the Internet and the results appear back on the desktop machine. Web protocols that allow Web services include SOAP, WDSL, and XML. SOAP (Simple Object Access Protocol) is an XML-based protocol to implement Web services. WDSL (Web Services Description Language) is an XML format for describing Web services. XML (eXtensible Mark-up Language) is a mark-up language format to describe data. Visual Studio .NET can be used to create Web applications.

Nick Nourse
Independent Consultant (UK)  © Xephon 2005

Why not share your expertise and earn money at the same time? Articles can be of any length and should be e-mailed to the editor, Trevor Eddolls, at trevore@xephon.com.

A free copy of our Notes for Contributors, which includes information about payment rates, is available from our Web site at www.xephon.com/nfc.
Compuware has announced new releases in its XPEDITER product line, including Program Analyzer, a new analysis tool to help developers understand enterprise applications.

Compuware also has new versions of XPEDITER/CICS and XPEDITER/Code Coverage, which are meant to enable organizations to deploy enterprise applications as they evolve toward Service-Oriented Architectures (SOA).

XPEDITER/CICS delivers intercept capabilities that target any function initiated in CICS, regardless of where it is initiated. This simplifies CICS test set-up and execution for middleware and/or SOA-enabled environments, including WebSphere MQ.

For further information contact:
Compuware, 1 Campus Martius, Detroit, MI 48226, USA.
Tel: (313) 227 7300.

***

NEON Systems and Defywire have announced an alliance to co-market and co-sell their Shadow technology with the Defywire Mobility Suite. The joint solution will allow customers to extend mainframe data and applications to a variety of hand-held mobile devices.

NEON’s Shadow product offers the ability to create mainframe-based Web services and capture real-time mainframe events. Shadow z/Services enables J2EE or .NET developers to use Web services to service-enable mainframe CICS, IMS, and Advantage CA-IDMS applications. Shadow z/Events allows developers to utilize real-time mainframe-based business events, occurring within DB2, Adabas, IMS/DB, VSAM, and CICS/TS environments, with distributed applications such as Defywire Mobility Suite.

Defywire’s wireless middleware connects mobile workers with front and back office systems in real-time. With the Defywire Mobility Suite, application developers can build one design and then deliver it to mobile phones, PDAs, tablets, and laptops.

For further information contact:
NEON, 14100 Southwest Freeway, Suite 500, Sugar Land, TX 77478, USA.
Tel: (281) 491 4200.

***

IBM has announced Version 3.1 of CICS Transaction Server for z/OS, which provides an enhanced Web Services solution. IBM also announced Version 6 of CICS Transaction Gateway, which provides J2EE standards-based connectivity.

Traditional workloads are now able to participate in Service-Oriented Architectures (SOA) through CICS Transaction Server V3. This helps customers address specific business problems, such as extending current CICS applications, says IBM.

For further information contact your local IBM representative.