November 1998

In this issue

3 Cross memory resource inquiry program
17 DL/I database display and control facility – part 2
32 Relating response time to labour cost
38 CICS task storage usage
45 January 1994 – November 1998 index
48 CICS news

© Xephon plc 1998
Contributions
Articles published in CICS Update are paid for at the rate of £170 ($250) per 1000 words and £90 ($140) per 100 lines of code for original material. To find out more about contributing an article, without any obligation, please contact us at any of the addresses above and we will send you a copy of our Notes for Contributors.

CICS Update on-line
Code from CICS Update can be downloaded from our Web site at http://www.xephon.com; you will need the user-id shown on your address label.
Cross memory resource inquiry program

The following COBOL II program was developed to help CICS programmers locate CICS system resources within a group of CICS regions that are connected through MVS cross memory services. Since CICS INQUIRY commands are not shippable to other CICS regions, this program was developed to do a remote link from itself into the other connected CICS regions to collect system resource information requested by the user. The program makes use of the SYSID parameter on the LINK command, available in Release 4.1 of CICS, to communicate with the other CICS regions.

The program code determines whether it needs to play the role of a ‘client’ or a ‘server’. The ‘client’ program links to the available cross memory (XM) CICS regions that are acquired by the CICS region that is executing the original transaction. The originating CICS region also handles the terminal interaction between the user and the program. When a ‘server’ program in another CICS is linked to by the ‘client’ program, the ‘server’ program collects information about the requested resource and returns the information to the ‘client’ program. The ‘client’ program sends the collected information back to the terminal.

The program makes use of a BMS map that is sent to the invoking terminal to allow the user to specify the resource type (transaction,

CICS RESOURCE INQUIRY
**

TRANID :
PROGRAM :
FILE :

PRESS CLEAR OR PF3 TO EXIT

Figure 1: Inquiry screen
program, or file) and the name to use in the inquiry (see Figure 1). After all the ‘server’ programs have returned their information to the ‘client’ program, another BMS screen is used to present the information to the user (Figure 2).

```
CEMT IN TTOR (TESTCICS) EXECUTES PROGRAM DFHEMTP
CEMT IN TARD (TESTCICD) EXECUTES PROGRAM DFHEMTP
CEMT IN TARC (TESTCICC) EXECUTES PROGRAM DFHEMTP
CEMT IN TARB (TESTCICB) EXECUTES PROGRAM DFHEMTP
CEMT IN TARA (TESTCICA) EXECUTES PROGRAM DFHEMTP

* PF5 FOR NEW INQUIRY - PF3 OR CLEAR TO EXIT *
```

Figure 2: Information screen

The design of this program limits the configuration of the CICS complex to a simple two-tier design with up to twenty AOR regions attached to a TOR. A more complex configuration of CICS regions presents the interesting challenge of modifying the program code to allow a ‘server’ program to temporarily become a ‘client’ in order to complete the search for the requested information. (Watch out for recursive program links!)

While this program was developed with the idea of exploiting some of the newer INQUIRY functions available in CICS Version 4.1, a ‘server only’ version was also created to execute in some CICS regions that are at an earlier CICS release (2.1.2). (A remote program LINK to earlier releases of CICS is supported when the earlier release is the target of the program LINK.)

The program source code was copied and then modified to remove all INQUIRY functions not supported at the CICS release. (Running the program code through the 2.1.2 translator flagged all the non-supported code.) The modified source was then linked with the original program name into a library that is available only to the earlier release CICS regions.
IDENTIFICATION DIVISION.
PROGRAM-ID. INQT100.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 WS-LENGTH PIC S9(4) COMP.
77 WS-SUB1 PIC S9(4) COMP.
Ø1 WS-WORK-VALUES.
 Ø2 WS-WORK-ID PIC X(Ø6).
 Ø2 WS-WORK-CONN PIC X(Ø4).
 Ø2 WS-WORK-NET PIC X(Ø8).
 Ø2 WS-WORK-ACC PIC S9(Ø8) COMP.
 Ø2 WS-WORK-SRV PIC S9(Ø8) COMP.
 Ø2 WS-WORK-LANG PIC S9(Ø8) COMP.
 Ø2 WS-WORK-PTYPE PIC S9(Ø8) COMP.
 Ø2 WS-WORK-CTYPE PIC S9(Ø8) COMP.
 Ø2 WS-WORK-OPEN PIC S9(Ø8) COMP.
 Ø2 WS-WORK-READ PIC S9(Ø8) COMP.
 Ø2 WS-WORK-BROWSE PIC S9(Ø8) COMP.
 Ø2 WS-WORK-ADD PIC S9(Ø8) COMP.
 Ø2 WS-WORK-UPDATE PIC S9(Ø8) COMP.
 Ø2 WS-WORK-DELETE PIC S9(Ø8) COMP.
 Ø2 WS-WORK-TRAN PIC X(Ø4).
 Ø2 WS-WORK-PROG PIC X(Ø8).
 Ø2 WS-WORK-FILE PIC X(Ø8).
 Ø2 WS-WORK-RSYS PIC X(Ø8).
 Ø2 WS-WORK-RTRAN PIC X(Ø4).
Ø1 WS-SEARCH-TYPE PIC X(Ø4).
Ø1 WS-NATIVE-ID PIC X(Ø4).
Ø1 WS-NATIVE-NET PIC X(Ø8).
Ø1 WS-CONN-TABLE.
 Ø4 WS-CONN-ENTRY OCCURS 2Ø TIMES.
 Ø4 WS-CONN-ID PIC X(Ø4).
 Ø4 WS-CONN-NET PIC X(Ø8).
Ø1 WS-DETAIL-TRAN.
 Ø2 WS-DT-TRAN PIC X(Ø4).
 Ø2 FILLER PIC X(Ø4) VALUE ' IN '.
 Ø2 WS-DT-SYSID PIC X(Ø4).
 Ø2 FILLER PIC X(Ø2) VALUE '('.
 Ø2 WS-DT-NETNM PIC X(Ø8).
 Ø2 FILLER PIC X(19) VALUE ') EXECUTES PROGRAM '.
 Ø2 WS-DT-PROG PIC X(Ø8).
Ø1 WS-RDETAIL-TRAN.
 Ø2 WS-RDT-TRAN PIC X(Ø4).
 Ø2 FILLER PIC X(Ø4) VALUE ' IN '.
 Ø2 WS-RDT-SYSID PIC X(Ø4).
 Ø2 FILLER PIC X(Ø2) VALUE '('.
Ø2 WS-RDT-NETM PIC X(Ø8).
Ø2 FILLER PIC X(Ø8) VALUE ') SHIPS '.
Ø2 FILLER PIC X(Ø8) VALUE ' TO ==> '.
Ø2 WS-RDT-TARG PIC X(Ø4).
Ø2 FILLER PIC X(Ø2) VALUE SPACE.
Ø2 WS-RDT-MSG PIC X(17) VALUE SPACE.

Ø1 WS-REMTETRAN-MSG.
Ø2 FILLER PIC X(12) VALUE '(REMTENAME:'.
Ø2 WS-RTRAN-NAME PIC X(Ø4) VALUE SPACE.
Ø2 FILLER PIC X(Ø1) VALUE ')'.

Ø1 WS-DETAIL-PROG.
Ø2 WS-DP-PROG PIC X(Ø8).
Ø2 FILLER PIC X(15) VALUE ' IS DEFINED IN '.
Ø2 WS-DP-SYSID PIC X(Ø4).
Ø2 FILLER PIC X(Ø2) VALUE '('.
Ø2 WS-DP-NETNM PIC X(Ø8).
Ø2 FILLER PIC X(Ø5) VALUE ') AS '.
Ø2 WS-DP-LANG PIC X(Ø3).
Ø2 FILLER PIC X(Ø9) VALUE ' PROGRAM '.
Ø2 WS-DP-LTYPE PIC X(14) VALUE SPACE.

Ø1 WS-DETAIL-FILE.
Ø2 WS-DF-FILE PIC X(Ø8).
Ø2 FILLER PIC X(15) VALUE ' IS DEFINED IN '.
Ø2 WS-DF-SYSID PIC X(Ø4).
Ø2 FILLER PIC X(Ø2) VALUE '('.
Ø2 WS-DF-NETNM PIC X(Ø8).
Ø2 FILLER PIC X(Ø5) VALUE ') AS '.
Ø2 WS-DF-FUNC PIC X(Ø3).
Ø2 FILLER PIC X(Ø9) VALUE ' FILE '.
Ø2 WS-DF-MSG PIC X(14) VALUE SPACE.

Ø1 WS-DETAIL-FILE.
Ø2 WS-RDF-FILE PIC X(Ø8).
Ø2 FILLER PIC X(Ø4) VALUE ' IN '.
Ø2 WS-RDF-SYSID PIC X(Ø4).
Ø2 FILLER PIC X(Ø2) VALUE '('.
Ø2 WS-RDF-NETNM PIC X(Ø8).
Ø2 FILLER PIC X(Ø5) VALUE ') SHIPS '.
Ø2 FILLER PIC X(Ø8) VALUE ' TO ==> '.

© 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.
02 WS-RDF-TARG PIC X(04).

01 WS-COMM.
 02 WS-COMM-ID PIC X(06).
 02 WS-COMM-TRAN PIC X(04) VALUE SPACE.
 02 WS-COMM-PROG PIC X(08) VALUE SPACE.
 02 WS-COMM-FILE PIC X(08) VALUE SPACE.
 02 WS-COMM-DLINE PIC X(77) VALUE SPACE.

COPY INQTM01.
COPY INQTM02.
COPY DFHAID.
COPY DFHBMSCA.

LINKAGE SECTION.
01 DFHCOMMAREA PIC X(103).
01 COMM-AREA REDEFINES DFHCOMMAREA.
 02 COMM-ID PIC X(06).
 02 COMM-TRAN PIC X(04).
 02 COMM-PROG PIC X(08).
 02 COMM-FILE PIC X(08).
 02 COMM-DETAIL-LINE PIC X(77).

PROCEDURE DIVISION.
0000-MAIN.

** DETERMINE IF THIS IS THE FIRST TIME INTO THE PROGRAM BY **
** CHECKING THE COMMAREA LENGTH. SEND THE INPUT MAP ON FIRST **
** ENTRY. **

IF EIBCALEN > 0
 GO TO 1000-PROCESS-COMMAREA.

0100-SEND-MAP.
 EXEC CICS SEND MAP('INQTM01')
 ERASE
 END-EXEC.

0200-RETURN.

** SEND A 'CLIENT' ID TO THE NEXT ITERATION OF THIS PROGRAM **
** TO HELP IT DETERMINE WHAT TASKS WILL NEED TO BE DONE. **

 MOVE 'CLIENT' TO WS-COMM-ID.
 MOVE 103 TO WS-LENGTH.
 EXEC CICS RETURN TRANSID('INQT')
 COMMAREA(WS-COMM)
 LENGTH(WS-LENGTH)
 END-EXEC.

1000-PROCESS-COMMAREA.

** IF THE USER HIT THE CLEAR KEY OR PF3 THEN CLEAR THE SCREEN
** AND END THE TRANSACTION. RE-SEND THE INITIAL SCREEN IF THE
** USER HIT PF5.

IF EIBAID = DFHCLEAR
 GO TO 9999-END.

IF EIBAID = DFHPF3
 GO TO 9999-END.

IF EIBAID = DFHPF5
 GO TO $100-SEND-MAP.

** IF THIS PROGRAM IS A 'SERVER' THEN DROP DOWN TO THE SERVER
** CODE.

IF COMM-ID = 'SERVER'
 GO TO 5000-PROCESS-SERVER.

** THE 'CLIENT' EXECUTION OF THIS PROGRAM WILL INTERFACE WITH
** THE ATTACHED TERMINAL BY PULLING IN THE RESOURCE REQUEST
** FROM THE TERMINAL.

EXEC CICS RECEIVE MAP('INQTM01')
 NOHANDLE
 END-EXEC.

* SELECT THE RESOURCE NAME AND TYPE TO BE USED IN THE SEARCH.
* RE-SEND THE INPUT MAP IF ALL THE INPUT FIELDS ARE EMPTY.

IF TRANAMEL > Ø
 MOVE TRANAMEI TO WS-COMM-TRAN
 MOVE 'TRAN' TO WS-SEARCH-TYPE
ELSE
IF PRGNAMEL > Ø
 MOVE PRGNAMEI TO WS-COMM-PROG
 MOVE 'PROG' TO WS-SEARCH-TYPE
ELSE
IF FILNAMEL > Ø
 MOVE FILNAMEI TO WS-COMM-FILE
 MOVE 'FILE' TO WS-SEARCH-TYPE
ELSE
 MOVE '* NO INPUT DETECTED - PLEASE RE-ENTER *' TO MSGO
 MOVE DFHPROTI TO MSGA
 GO TO $100-SEND-MAP.

* DETERMINE WHAT OTHER CICS REGIONS ARE CONNECTED TO THIS CICS

* REGION. LOOK FOR ALL CROSS MEMORY (XM) CONNECTIONS THAT ARE *
* ACQUIRED. *

EXEC CICS INQUIRE CONNECTION
 START
 NOHANDLE
 END-EXEC.
MOVE Ø TO WS-SUB1.

1100-INQ-CONNECTIONS.
EXEC CICS INQUIRE NEXT
 CONNECTION(WS-WORK-CONN)
 NETNAME(WS-WORK-NET)
 ACCESSMETHOD(WS-WORK-ACC)
 CONNSTATUS(WS-WORK-SRV)
 NOHANDLE
 END-EXEC.

 IF EIBRESP > Ø
 GO TO 1110-CONN-END.

* TEST FOR CONNECTIONS THAT ARE CROSS MEMORY (XM) AND ACQUIRED. *
* SAVE THE SYSIDS OF ALL CONNECTIONS THAT QUALIFY AS TARGETS *
* FOR A REMOTE PROGRAM LINK. *

 IF WS-WORK-ACC NOT = 123
 GO TO 1100-INQ-CONNECTIONS.
 IF WS-WORK-SRV NOT = 69
 GO TO 1100-INQ-CONNECTIONS.
 ADD 1 TO WS-SUB1.
 MOVE WS-WORK-CONN TO WS-CONN-ID(WS-SUB1).
 MOVE WS-WORK-NET TO WS-CONN-NET(WS-SUB1).
 GO TO 1100-INQ-CONNECTIONS.

1110-CONN-END.
EXEC CICS INQUIRE CONNECTION
 END
 NOHANDLE
 END-EXEC.

1500-LOCAL-PROCESS.

* DO LOCAL INQUIRIES ABOUT THE REQUESTED RESOURCE. *

EXEC CICS ASSIGN
 APPLID(WS-NATIVE-NET)
SYSID(WS-NATIVE-ID)
END-EXEC.

IF WS-SEARCH-TYPE = 'TRAN'
 PERFORM 1600-TRAN-INQ THRU 1600-EXIT
ELSE
 IF WS-SEARCH-TYPE = 'PROG'
 PERFORM 1700-PROG-INQ THRU 1700-EXIT
 ELSE
 PERFORM 1800-FILE-INQ THRU 1800-EXIT.

GO TO 2000-SERVER-LINK.

1600-TRAN-INQ.

* THE TRANSACTION IS NOT DEFINED TO THE LOCAL REGION IF THE *
* FOLLOWING COMMAND RETURNS WITH A TRANSIDERR. *

EXEC CICS INQUIRE TRANSACTION(TRANAMEO)
 PROGRAM(WS-WORK-PROG)
 REMOTESYSTEM(WS-WORK-RSYS)
 REMOTENAME(WS-WORK-RTRAN)
 NOHANDLE
END-EXEC.

IF EIBRESP = DFHRESP(TRANSIDERR)
 GO TO 1600-EXIT.

IF WS-WORK-PROG NOT = SPACE
 MOVE WS-NATIVE-ID TO WS-DT-SYSID
 MOVE WS-NATIVE-NET TO WS-DT-NETNM
 MOVE TRANAMEO TO WS-DT-TRAN
 MOVE WS-WORK-PROG TO WS-DT-PROG
 MOVE WS-DETAIL-TRAN TO INQTML1O
ELSE
 MOVE WS-NATIVE-ID TO WS-RDT-SYSID
 MOVE WS-NATIVE-NET TO WS-RDT-NETNM
 MOVE TRANAMEO TO WS-RDT-TRAN
 MOVE WS-WORK-RSYS TO WS-RDT-TARG
 IF WS-WORK-RTRAN NOT = TRANAMEO
 MOVE WS-WORK-RTRAN TO WS-RTRAN-NAME
 MOVE WS-REMOTETRAN-MSG TO WS-RDT-MSG
 MOVE WS-RDETAIL-TRAN TO INQTML1O
ELSE
 MOVE WS-RDETAIL-TRAN TO INQTML1O.

IF COMM-ID = 'CLIENT'
 EXEC CICS SEND MAP('INQTML') MAPSET('INQTM02')
 FROM(INQTML0)
 ACCUM
END-EXEC
ELSE
MOVE INQMLIO TO COMM-DETAIL-LINE.

1600-EXIT.
EXIT.

1700-PROG-INO.

* THE PROGRAM IS NOT DEFINED TO THE LOCAL REGION IF THE *
* FOLLOWING COMMAND RETURNS WITH A PGMIDERR. *

EXEC CICS INQUIRE PROGRAM(PRNGNAMEO)
 REMOTESYSTEM(WS-WORK-RSYS)
 REMOTENAME(WS-WORK-PROG)
 LANGUAGE(WS-WORK-LANG)
 PROGTYPE(WS-WORK-PTYPE)
 COBOLTYPE(WS-WORK-CTYPE)
 NOHANDLE
END-EXEC.

IF EIBRESP = DFHRESP(PGMIDERR)
 GO TO 1700-EXIT.

* SET UP LOCAL PROGRAM INFORMATION. *

IF WS-WORK-PTYPE = 155
 MOVE 'ASM' TO WS-DP-LANG
 MOVE '(MAP)' TO WS-DP-LTYPE
ELSE
IF WS-WORK-PTYPE = 156
 MOVE 'ASM' TO WS-DP-LANG
 MOVE '(PARTITIONSET)' TO WS-DP-LTYPE
ELSE
IF WS-WORK-PTYPE = 154
 IF WS-WORK-LANG = 149
 MOVE 'C' TO WS-DP-LANG
 ELSE
 IF WS-WORK-LANG = 152 OR 153
 MOVE 'PL1' TO WS-DP-LANG
 ELSE
 IF WS-WORK-LANG = 151
 MOVE 'COB' TO WS-DP-LANG
 IF WS-WORK-CTYPE = 375
 MOVE '(COBOLII)' TO WS-DP-LTYPE
 ELSE
 IF WS-WORK-CTYPE = 377
 MOVE '(LE370)' TO WS-DP-LTYPE.

* DECIDE WHICH DETAIL LINE TO USE, LOCAL OR REMOTE. *

IF WS-WORK-RSYS = SPACE
 MOVE PRGNAMEO TO WS-DP-PROG
 MOVE WS-NATIVE-ID TO WS-DP-SYSID
 MOVE WS-NATIVE-NET TO WS-DP-NETNM
 MOVE WS-DETAIL-PROG TO INQTML1O
ELSE
 MOVE WS-NATIVE-ID TO WS-RDP-SYSID
 MOVE WS-NATIVE-NET TO WS-RDP-NETNM
 MOVE PRGNAMEO TO WS-RDP-PROG
 MOVE WS-WORK-RSYS TO WS-RDP-TARG
 MOVE WS-RDETAIL-PROG TO INQTML1O.
ENDIF

IF COMM-ID = 'CLIENT'
 EXEC CICS SEND MAP('INQTML') MAPSET('INQTMØ2')
 FROM(INQTMLO)
 ACCUM
 END-EXEC
ELSE
 MOVE INQTML1O TO COMM-DETAIL-LINE.
ENDIF

170Ø-EXIT.
EXIT.

180Ø-FILE-INQ.

* THE FILE IS NOT DEFINED TO THE LOCAL REGION IF THE FOLLOWING *
* COMMAND RETURNS WITH A FILENOTFOUND CONDITION *

EXEC CICS INQUIRE FILE(FILNAMEO)
 REMOTESYSTEM(WS-WORK-RSYS)
 REMOTENAME(WS-WORK-FILE)
 OPENSTATUS(WS-WORK-OPEN)
 ADD(WS-WORK-ADD)
 UPDATE(WS-WORK-UPDATE)
 DELETE(WS-WORK-DELETE)
 READ(WS-WORK-READ)
 BROWSE(WS-WORK-BROWSE)
 NOHANDLE
END-EXEC.

IF EIBRESP = DFHRESP(FILENOTFOUND)
 GO TO 180Ø-EXIT.

* SET UP LOCAL FILE INFORMATION. *

IF WS-WORK-RSYS = SPACE
 MOVE FILNAMEO TO WS-DF-FILE
 MOVE WS-NATIVE-ID TO WS-DF-SYSID
 MOVE WS-NATIVE-NET TO WS-DF-NETNM.
DECIDE IF THE FILE HAS ANY MODIFICATION ATTRIBUTES, OR IF
THE FILE HAS ONLY READ-ONLY ATTRIBUTES.

IF WS-WORK-ADD = 41
MOVE 'A MODIFIABLE' TO WS-DF-FUNC
ELSE
IF WS-WORK-UPDATE = 37
MOVE 'A MODIFIABLE' TO WS-DF-FUNC
ELSE
IF WS-WORK-DELETE = 43
MOVE 'A MODIFIABLE' TO WS-DF-FUNC
ELSE
IF WS-WORK-READ = 35
MOVE 'A READ ONLY' TO WS-DF-FUNC
ELSE
IF WS-WORK-BROWSE = 39
MOVE 'A READ ONLY' TO WS-DF-FUNC.

IF THE FILE IS OPEN, ADD A TRAILER MESSAGE.

IF WS-WORK-OPEN = 18
MOVE '(OPEN)' TO WS-DF-MSG.

DECIDE WHICH DETAIL LINE TO USE, LOCAL OR REMOTE.

IF WS-WORK-RSYS = SPACE
MOVE WS-DETAIL-FILE TO INQTML1O
ELSE
MOVE WS-NATIVE-ID TO WS-RDF-SYSID
MOVE WS-NATIVE-NET TO WS-RDF-NETNM
MOVE FILNAMEO TO WS-RDF-FILE
MOVE WS-WORK-RSYS TO WS-RDF-TARG
MOVE WS-RDETAIL-FILE TO INQTML1O.

IF COMM-ID = 'CLIENT'
EXEC CICS SEND MAP('INQTML') MAPSET('INQTMØ2')
FROM(INQTML0)
ACCUM
END-EXEC
ELSE
MOVE INQTML1O TO COMM-DETAIL-LINE.

18ØØ-EXIT.
EXIT.

2000-SERVER-LINK.
* IF THERE ARE NO ACTIVE CONNECTIONS, GO TO THE DISPLAY SECTION*

IF WS-SUB1 < 1
 GO TO 6000-DISPLAY-INFO.

MOVE WS-CONN-ID(WS-SUB1) TO WS-WORK-ID.
MOVE 'SERVER' TO WS-COMM-ID.
MOVE SPACE TO WS-COMM-DLINE.
MOVE 103 TO WS-LENGTH.

EXEC CICS LINK PROGRAM('INQT100')
 SYSSID(WS-WORK-ID)
 COMMAREA(WS-COMM)
 LENGTH(WS-LENGTH)
 NOHANDLE
END-EXEC.

IF WS-COMM-DLINE NOT = SPACE
 MOVE WS-COMM-DLINE TO INQTML10
 EXEC CICS SEND MAP('INQTML') MAPSET('INQTM02')
 FROM(INQTML10)
 ACCUM
 END-EXEC.

SUBTRACT 1 FROM WS-SUB1.
GO TO 2000-SERVER-LINK.

5000-PROCESS-SERVER.

EXEC CICS ASSIGN
 APPLID(WS-NATIVE-NET)
 SYSSID(WS-NATIVE-ID)
END-EXEC.

IF COMM-TRAN NOT = SPACE
 MOVE COMM-TRAN TO TRANAMEO
 PERFORM 1600-TRAN-INQ THRU 1600-EXIT
ELSE
IF COMM-PROG NOT = SPACE
 MOVE COMM-PROG TO PRGNAMEO
 PERFORM 1700-PROG-INQ THRU 1700-EXIT
ELSE
IF COMM-FILE NOT = SPACE
 MOVE COMM-FILE TO FILNAMEO
 PERFORM 1800-FILE-INQ THRU 1800-EXIT.

GO TO 9999-END.

6000-DISPLAY-INFO.
EXEC CICS SEND MAP('INQTMF') MAPSET('INQTMØ2')
 MAPONLY
 ACCUM
 ERASE
END-EXEC.

EXEC CICS SEND PAGE
END-EXEC.

GO TO Ø2ØØ-RETURN.

9999-END.

** IF THIS PROGRAM IS SERVICING THE USER'S TERMINAL, CLEAR THE *
** SCREEN *

IF COMM-ID = 'CLIENT'
 EXEC CICS SEND CONTROL
 ERASE
 FREEKB
END-EXEC.

EXEC CICS RETURN
END-EXEC.

INQTM01

TITLE 'INQT - MAP FOR RESOURCE INFO INQUIRY'
INQTM01 DFHMDI SIZE=(24,8Ø)
 DFHMDF POS=(2,26),LENGTH=28,
 INITIAL='CICS RESOURCE INQUIRY',
 ATTRB=(PROT,BRT)
 DFHMDF POS=(3,25),LENGTH=3Ø,
 INITIAL='***********************',
 ATTRB=(PROT,BRT)
 DFHMDF POS=(8,27),LENGTH=1Ø,
 INITIAL='TRANID : '
 DFHMDF POS=(8,41),LENGTH=4,
 ATTRB=(UNPROT,IC)
 DFHMDF POS=(8,46),LENGTH=1,
 ATTRB=(PROT,DRK)
 DFHMDF POS=(10,27),LENGTH=10,
 INITIAL='PROGRAM : '
 DFHMDF POS=(10,41),LENGTH=8,
 ATTRB=(UNPROT)
 DFHMDF POS=(10,5Ø),LENGTH=1.

INQTM02

TITLE 'INQD - MAP FOR RESOURCE INFO DISPLAY'
INQTM02 DFHMSD MODE=OUT,
CTRL=(FREEKB,FRSET),
LANG=COBOL,TIOAPFX=YES
INQTML DFHMDI SIZE=(1,80)
INQTML1 DFHMDF POS=(1,2),LENGTH=77
INQTMF DFHMDI SIZE=(2,80)
INQTMF1 DFHMDF POS=(1,2),LENGTH=1
INQTMF1 DFHMDF POS=(2,2),LENGTH=48,
INITIAL='* PF5 FOR NEW INQUIRY - PF3 OR CLEAR TO EXIT *'
DFHMSD TYPE=FINAL
END

INQTRD0

DEFINE MAPSET(INQTM01) GROUP(INQTGRP)
RESIDENT(NO) USAGE(NORMAL) USELPACOPY(NO) STATUS(ENABLED)
DEFINE MAPSET(INQTM02) GROUP(INQTGRP)
RESIDENT(NO) USAGE(NORMAL) USELPACOPY(NO) STATUS(ENABLED)
DEFINE PROGRAM(INQT100) GROUP(INQTGRP)
LANGUAGE(COBOL) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALLOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)
DEFINE TRANSACTION(INQT) GROUP(INQTGRP)
PROGRAM(INQT100) TWASIZE(0) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATATOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(YES) TPURGE(YES) DUMP(YES) TRACE(YES)
CONFDATA(NO) RESSEC(NO) CMDSEC(NO)
This month we complete the code for the easy-to-use facility that enables developers to display the status of their databases and to start and stop them in a similar manner to that with CEMT.

```
CLC SUFFIX_LENGTH,ZERO  ANY SUFFIX PROVIDED
BE WE_WANT_THIS        NO - ACCEPT THIS ONE
*
* REVERSE THE DBNAME IN ORDER TO CHECK THE SUFFIX
*
LA  R2,dbname+7         GET ADDRESS OF END OF DBNAME
LA  R3,8                GET LENGTH OF DNAME
LA  R4,dbname_reversed  GET ADDRESS OF REVERSE DBNAME
MVC dbname_reversed,spaces SPACE OUT REVERSE DBNAME

MOVE_CHAR DS ØH
CLI Ø(R2),C' '          IS THIS CHAR A SPACE
BE DONT.Move            YES - BOUNCE ROUND IT
MVC Ø(1,R4),Ø(R2)      MOVE THE CURRENT CHAR
LA  R4,1(R4)            POINT TO NEXT BYTE

DONT.Move DS ØH
BCTR R2,Ø                POINT TO NEXT DBNAME BYTE
BCT R3,move_char        ANY MORE - GO ROUND AGAIN
LH R1,suffix_length    GET SUFFIX LENGTH
BCTR R1,Ø               -1 FOR EX
EX R1,examine_ending   DO WE WANT THIS ONE
BNE get_next_message   NO - GO TO GET NEXT MESSAGE

WE_WANT_THIS DS ØH
LH R1,ioLEN             GET RETURNED LENGTH
LA R7,4                  SET LENGTH OF RDW
SR R1,R7                 SUBTRACT FROM LENGTH
STH R1,length           SAVE RESULT
EXEC cics writeq ts queue(tsoname) from(iotext) main x
  numitems(items) length(length)
B get_next_message      GO AND LEAVE

MESSAGE_LINE DS ØH
* PROCESS MESSAGE LINE
B get_next_message

* GET_NEXT_MESSAGE DS ØH
MVC aib_command,rcmd    SET AIB COMMAND TO RCMDO
CLI last_segment,C'N'   HAVE WE HAD LAST SEGMENT
BE call_aib_for_display_command
*

TERM_PSB DS ØH
CALL asmtdlis, x
  (TERM), x
  VL, x
```
DO_THE_DISPLAY_END DS ØH
BR R8
*
* ISSUE AN AIB COMMAND AND DECODE THE RETURN/REASON CODE
* *
*
ISSUE_AIB_COMMAND DS ØH
CALL AIBTDLI,
(AIB_CMD,AIBAREA,IOAREA),
VL,
MF=(E,CALLLIST)
*
LA R3,AIBAREA
EXEC CICS ENTER TRACENUM(2) FROM(DFSAIB) FROMLENGTH(AIB_LEN) X
RESOUIRC('SPGDBDSP') RESP(RESPONSE) RESP2(REASON)
EXEC CICS ENTER TRACENUM(3) FROM(IOAREA) FROMLENGTH(IOA_LEN) X
RESOUIRC('SPGDBDSP') RESP(RESPONSE) RESP2(REASON)
*
LA R1,GMSG_RRT_GMSG RR TABLE ADDRESS
LA R15,GMSG_RRT_LEN TABLE ENTRY LENGTH
LA RØ,GMSG_RRT_CNT NUMBER OF ENTRIES
GMSG_RRT_LOOP DS ØH
CLC AIBRETRN(8),Ø(R1) RETURN/REASON MATCH
BE GOT_RET_REAS YES, CONTINUE
BL UNKNOWN_RET_REAS UNEXPECTED RETURN CODES
AR R1,R15 NEXT ENTRY ADDRESS
BCT R0,GMSG_RRT_LOOP CHECK NEXT ENTRY
B UNKNOWN_RET_REAS UNEXPECTED RETURN CODES
SPACE
GOT_RET_REAS DS ØH
L R15,Ø(R1) GET BRANCH ADDRESS
B ISSUE_AIB_COMMAND_END
UNKNOWN_RET_REAS DS ØH
LA R15,12
ISSUE_AIB_COMMAND_END DS ØH
BR R9
*
* CLEAR MAP AREA AND GET DATE, TIME ETC
* *
* CLEAR_MAP DS ØH
LA R2,DDDCMØ10 POINT AT RECEIVING AREA
LA R3,DDDCMØ1L SET ITS LENGTH
XR R4,R4 SET DUMMY FROM ADDRESS
XR R5,R5 SET DUMMY FROM ADDRESS
MVCL R2,R4 BLANK OUT THE AREA
EXEC CICS ASKTIME ABSTIME(ABSTIME)
EXEC CICS FORMATTIME ABSTIME(ABSTIME) DDMMYYYY(DATEO) DATESEP('/') TIME(TIMEO) TIMESEP(':') EXEC CICS ASSIGN APPLID(CICSO) MVC TERMIDO,EIBTRMID BR RIØ

* RETURN CODE / REASON CODE TABLE *
* SEE IMS/ESA V5 APPLICATION PROGRAMMING: DATABASE MANAGER FOR MORE INFORMATION *

GMSG_RRT DS ØF DC XL4'Ø000',XL4'Ø0000',A(Ø) CALL COMPLETED OK
GMSG_RRT_LEN EQU *-GMSG_RRT DC XL4'0004',XL4'0004',A(4) LAST SEGMENT RETURNED
DC XL4'0004',XL4'0014',A(8) NO MORE MESSAGES
DC XL4'0004',XL4'0018',A(8) NO MORE SEGMENTS
GMSG_RRT_CNT EQU ((*-GMSG_RRT)/GMSG_RRT_LEN)

* LINE TYPE TABLE *

LINE_TYPE_TABLE DS ØF DC C'Ø',A(Ø)
LINE_TYPE_LEN EQU *-LINE_TYPE_TABLE DC C'1',A(Ø)
DC C'2',A(Ø)
DC C'3',A(Ø)
DC C'4',A(Ø)
DC C'5',A(4)
DC C'6',A(4)
DC C'7',A(8)
DC C'8',A(8)
DC C'9',A(8)
LINE_TYPE_CNT EQU ((*-LINE_TYPE_TABLE)/LINE_TYPE_LEN)

* LITERALS *

ZERO DC H'Ø'
ALL_DATABASES DC H'-1'
UIB_LEN DC AL2(UIBLLEN)
AIB_LEN DC AL2(AIBLL)
IOA_LEN DC AL2(LIOAREA)
PCB DC CL4'PCB'

ICMD DC CL4'ICMD'
RCMD DC CL4'RCMD'
TERM DC CL4'TERM'
PSBNAME DC CL8'DFHDBMP'
SYSSERVE DC CL8'IOPCB'
SPACES DC CL11' '
STAR DC C'* '
CMDDIS DC CL11'/DIS DB ALL'
NOTSTOP DC CL11'NOT STOPPED'
NOTSTART DC CL11'NOT STARTED'
STOP DC CL11'STOPPED'
START DC CL11'STARTED'
WRONG_KEY DC CL8Ø'THE KEY YOU Pressed HAS NO FUNCTION'
PSB_SCHED_ERROR DC CL8Ø'PROBLEM WITH DBCTL, TRY AGAIN LATER'
CANT_PAGE_FWD DC CL8Ø'NO MORE TO SHOW'
CANT_PAGE_BACK DC CL8Ø'YOU ARE ON THE FIRST PAGE'

** **
* * THAT'S ALL FOLKS
* *
** **

END

SPGDBSP LISTING

** **
* S P G D B S P
* = = = = = =
*
* THIS ROUTINE IMPLEMENTS A REPLACEMENT FOR THE FOLLOWING CEMT
* COMMANDS WHICH ARE NOT AVAILABLE FOR DATABASES ACCESSED VIA DBCTL
*
* CEMT SET DLIDATABASE(.......) START
* CEMT SET DLIDATABASE(.......) STOP
*
** **
DFHREGS
** **
*
* COMMAREA
*
** **
USING COMMAREA,R2
COMMAREA DSECT
FUNCTION DS CL1 S -> START DATABASE, P -> STOP DATABASE
DATABASE DS CL8 NAME OF DATABASE TO BE STARTED OR STOPPED
RESULT DS CL1 OUTCOME - SPACE => ACTION SUCCESSFUL
* F => FUNCTION INVALID
* D => NO DATABASE NAME
P => PSB SCHEDULE FAILED
M => IMS MESSAGE ISSUED
N => UNEXPECTED RETURN CODE

IMS AIB LAYOUT

USING DFSAIB,R3
DFSAIB

DL/I UIB LAYOUT

USING UIB,R4
DLIUUB

HERE WE GO

SPGBKSP DFHEIENT EIBREG=11,CODEREG=12,DATAREG=13

VALIDATE THE COMMAREA PARAMETERS

CLC EIBCALEN,TEN HAVE WE GOT 10 BYTES OF COMMAREA
BNE THE_END NO - LEAVE NOW
L R2,DFHEICAP GET THE COMMAREA ADDRESS
MVI RESULT,C' ' SET RESULT TO OK
CLI FUNCTION,C'S' VALIDATE
BE FUNCTION_OK THE
CLI FUNCTION,C'P' FUNCTION
BE FUNCTION_OK PARAMETER
MVI RESULT,C'F' SET RESULT
B THE_END AND LEAVE

FUNCTION_OK DS ØH

CLC DATABASE,SPACES VALIDATE DATABASE
BNE DATABASE_OK NAME PARAMETER
MVI RESULT,C'D' SET RESULT
B THE_END AND LEAVE

INITIALIZE THE AIB
DATABASE_OK DS ØH

LA R3,AIBAREA
MVC AIBID,=CL8'DFSAIB' INITIALIZE ...
MVC AIBLEN,=A(AIBLL) .. DFSAIB ...
MVC AIBOALEN,=A(LIOAREA) .. CONTROL BLOCK

* ——— *

* DO THE PCB CALL *
* ——— *

CALL ASMTDLI, X
(PCB,PSBNAME,UIBPTR,SYSSERVE), X
VL, X
MF=(E,CALLLIST)
L R4,UIBPTR GET UIB ADDRESS

* EXEC CICS ENTER TRACENUM(1) FROM(UIB) FROMLENGTH(UIB_LEN) X
RESOURCE('SPGDBSP') RESP(RESPONSE) RESP2(REASON)

* CLI UIBFCTR,X'ØØ' CHECK RETURN CODE
BE PSB_SCHEDULED ZERO - WE'RE OK
MVI RESULT,C'P' SET RESULT
B THE_END THEN LEAVE NOW

* ——— *

* SET UP THE IO AREA FOR THE AIB CALL *
* ——— *

PSB_SCHEDULED DS ØH

MVC IOLEN,=Y(L'IOTEXT,Ø) SET COMMAND LENGTH
MVI IOTEXT,C' ' IOTEXT:
MVC IOTEXT+1(L'IOTEXT-1),IOTEXT
CLI FUNCTION,C'P' IF IT'S NOT STOP
BNE NOT_STOP THEN GO TO SET UP START
MVC IOCMD,CMDDBR MOVE IN /DBR COMMAND
MVC IONOFEOV,NOFEOV AND NOFEOV OPTION
B SET_DATABASE_NAME GO AND SET DB NAME

* NOT_STOP DS ØH

MVC IOCMD,CMDSTA SET /STA COMMAND

* ISSUE THE AIB CALL FOR EITHER /STA OR /DBR *

* SET_DATABASE_NAME DS ØH

MVC IODBNAME,DATABASE MOVE IN DATABASE NAME
MVC IOLIT,CMDDLIT AND LITERAL
MVC AIB_CMD,ICMD SET AIB COMMAND TO ICMD
BAL R1Ø,ISSUE_AIB_COMMAND
* * *
* WAIT A BIT FOR IT TO COMPLETE
* *
EXEC CICS DELAY FOR SECONDS(2)
* *
* ISSUE THE AIB CALL FOR /DIS TO SEE IF OUR PREVIOUS CALL WORKED
* *
* FOR A START REQUEST WE ISSUE /DIS DB ALLOCS AND FOR A STOP WE ISSUE /DIS DB STOPPED
* *
* WE THEN SCAN THE RESULTING MESSAGES LOOKING FOR OUR D/B
* *
MVI IOTEXT,C' ' CLEAR THE IO AREA
MVC IOTEXT+1(L' IOTEXT-1),IOTEXT
MVI LAST_SEGMENT,C'N' SET LAST SEGMENT FLAG
MVI RESULT,C'N' SET RESULT
CLI FUNCTION,C'S' START ?
BE SET_DIS_ALLOCS GO AND SET UP COMMAND
MVC IOTEXT(L'DISSTOP),DISSTOP
B CALL_AIB_FOR_DISPLAY_COMMAND
SET_DIS_ALLOCS DS ØH
MVC IOTEXT(L'DISALLOC),DISALLOC
CALL_AIB_FOR_DISPLAY_COMMAND DS ØH
BAL R1Ø,ISSUE_AIB_COMMAND
* * *
* ACT UPON THE RETURN CODE FROM THE AIB CALL
* *
* * *
B CHECK_DISPLAY_RETURN_CODE(R15)
CHECK_DISPLAY_RETURN_CODE DS ØH
B CHECK_MESSAGE_FROM_DISPLAY
B LAST_SEGMENT_RETURNED
B TERM_PSB
B TERM_PSB
LAST_SEGMENT_RETURNED DS ØH
MVI LAST_SEGMENT,C'Y' SET LAST SEGMENT FLAG
CHECK_MESSAGE_FROM_DISPLAY DS ØH
CLI IOTEXT,C'D' IS THIS A DISPLAY SEGMENT?
BNE GET_NEXT_MESSAGE NO - NOT INTERESTED
LA R1,LINETYPE_TABLE
LA R15,LINETYPE_LEN TABLE ENTRY LENGTH
LA R0,LINETYPE_CNT NUMBER OF ENTRIES
LINE_TYPE_LOOP DS ØH
CLC IOTEXT+1(1),Ø(R1) MATCH

BE GOT_LINE_TYPE YES, CONTINUE
AR R1,R15 NEXT ENTRY ADDRESS
BCT R0,LINE_TYPE_LOOP CHECK NEXT ENTRY
LA R15,4(R1) GET BRANCH ADDRESS
B PROCESS_LINE_TYPE(R15) GO TO APPROPRIATE PLACE

DATA_LINE DS ØH
CLC DATABASE,IOTEXT+4
BNE GET_NEXT_MESSAGE
MVI RESULT,C' ' SET AIB COMMAND TO RCMD
B TERM_PSB

MESSAGE_LINE DS ØH
MVI RESULT,C'M' HAVE WE HAD LAST SEGMENT
B TERM_PSB

EXEC CICS ENTER TRACENUM(2) FROM(IOAREA) FROMLENGTH(IOA_LEN) RESOURCE('SPGDBSP') RESP(RESPONSE) RESP2(REASON)
EXEC CICS ENTER TRACENUM(3) FROM(IOAREA) FROMLENGTH(IOA_LEN)
RESOURCE('SPGDBSP') RESP(RESPONSE) RESP2(REASON)

* LA R1,GMSG_RRT GMSG RR TABLE ADDRESS
LA R15,GMSG_RRT_LEN TABLE ENTRY LENGTH
LA R0,GMSG_RRT_CNT NUMBER OF ENTRIES

GMSG_RRT_LOOP DS 0H
CLC AIBRETRN(8),Ø(R1) RETURN/REASON MATCH
BE GOT_RET_REAS YES, CONTINUE
BL UNKNOWN_RET_REAS UNEXPECTED RETURN CODES
AR R1,R15 NEXT ENTRY ADDRESS
BCT R0,GMSG_RRT_LOOP CHECK NEXT ENTRY
B UNKNOWN_RET_REAS UNEXPECTED RETURN CODES

SPACE
GOT_RET_REAS DS 0H
L R15,8(R1) GET BRANCH ADDRESS
B ISSUE_AIB_COMMAND_END
UNKNOWN_RET_REAS DS 0H
LA R15,12

ISSUE_AIB_COMMAND_END DS 0H
BR R10

--

* RETURN CODE / REASON CODE TABLE

--

GMSG_RRT DS 0F
DC XL4'0000',XL4'0000',A(0)

GMSG_RRT_LEN EQU *-GMSG_RRT
DC XL4'0004',XL4'0004',A(4)
DC XL4'0004',XL4'0014',A(8)
DC XL4'0004',XL4'0018',A(8)

GMSG_RRT_CNT EQU ((*-GMSG_RRT)/GMSG_RRT_LEN)

--

* LINE TYPE TABLE

--

LINE_TYPE_TABLE DS 0F
DC C'0',A(0)

LINE_TYPE_LEN EQU *-LINE_TYPE_TABLE
DC C'1',A(0)
DC C'2',A(0)
DC C'3',A(0)
DC C'4',A(0)
DC C'5',A(4)
DC C'6',A(4)
DC C'7',A(8)
DC C'8',A(8)
DC C'9',A(8)

LINE_TYPE_CNT EQU ((*-LINE_TYPE_TABLE)/LINE_TYPE_LEN)
*—— *
* *
* LITERALS *
* *
*—— *

TEN DC AL2(1Ω)
ZERO DC A(Ø),A(Ø)
UIB_LEN DC AL2(UIBLEN)
AIB_LEN DC AL2(AIBLL)
IOA_LEN DC AL2(LIOAREA)

PCB DC CL4'PCB'
ICMD DC CL4'ICMD'
RCMD DC CL4'RCMD'
TERM DC CL4'TERM'
PSBNAME DC CL8'DFHDBMP'
SYSSERVE DC CL8'IOPCB'
SPACES DC CL8' '
CMDSTA DC CL4'/STA'
CMDDBR DC CL4'/DBR'
CMDLIT DC CL8'DATABASE '
NOFEOV DC CL6'NOFEOV'
D5 DC C'D5'

DISSTOP DC C'/DIS DB STOPPED'
DISALLOC DC C'/DIS DB ALLOCS'

*—— *
* *
* WORKING STORAGE *
* *
*—— *

DFHEISTG

CALLLIST CALL ,(,,,,,),MF=L

UIBPTR DS F UIB POINTER
RESPONSE DS F RESP
REASON DS F RESP2

AIB_CMD DS CL4 COMMAND FOR AIB CALL

IOAREA DS CL136 IO AREA FOR AIB CALL
LIOAREA EQU *-IOAREA
IOLEN DS CL4
IOTEXT DS CL132
IOCMD DS CL4
DS CL1
IOLIT DS CL8
DS CL1
IODBNAME DS CL8
DS CL1
IONOFEOV DS CL6
ORG

* AIBAREA DC (AIBLL)X'ØØ' RESERVE SPACE FOR AIB
*
LAST_SEGMENT DS CL1
*
* THAT'S ALL FOLKS
*
*

END

DDDCM01 LISTING

PRINT ON,Nogen
DDDCM01 DFHMSD TYPE=MAP,Lang=ASM,Mode=INOUT,Storage=AUTO,Suffix=
DDDCM01 DFHMDI Size=(24,80),Ctrl=(FREEKB,FRSET),Mapatts=(COLOR), X DSatts=(COLOR),Column=1,Line=1,Data=FIELD,TIOAPFX=YES, X Cursloc=YES,Obfmt=NO
DFHMDF Pos=(1,1),Length=6,Initial='Date :',Attrb=(Prot,Norm), X Color=TURQUOISE

DATE DFHMDF Pos=(1,8),Length=10,Attrb=(Prot,Norm),Color=GREEN
DFHMDF Pos=(1,19),Length=1,Attrb=(Prot,Norm)
DFHMDF Pos=(1,24),Length=32, X Initial='DLI Database Display and
Control',Attrb=(Prot,B*00000120 RT),Color=yellow
DFHMDF Pos=(1,65),Length=6,Initial='CICS :
',Attrb=(Prot,Norm),*00000140
Color=TURQUOISE

CICS DFHMDF Pos=(1,72),Length=8,Attrb=(Prot,Norm),Color=Green
DFHMDF Pos=(2,1),Length=6,Initial='Time :',Attrb=(Prot,Norm), X Color=TURQUOISE

TIME DFHMDF Pos=(2,8),Length=8,Attrb=(Prot,Norm),Color=Green
DFHMDF Pos=(2,17),Length=1,Attrb=(Prot,Norm)
DFHMDF Pos=(2,63),Length=8,Initial='Termid :
',Attrb=(Prot,Norm,00000230
) ,Color=TURQUOISE

TERMID DFHMDF Pos=(2,72),Length=4,Attrb=(Prot,Norm),Color=Green
* CMD3
 CMD3 DFHMDF POS=(11,1), LENGTH=1, ATTRB=(UNPROT,NORM), COLOR=RED
 DFHMDF POS=(11,5), LENGTH=1, ATTRB=(PROT,NORM)
* NAME3
 NAME3 DFHMDF POS=(11,5), LENGTH=8, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(11,14), LENGTH=1, ATTRB=(PROT,NORM)
* STATUS3
 STATUS3 DFHMDF POS=(11,16), LENGTH=49, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(11,66), LENGTH=Ø, ATTRB=(PROT,NORM)
* RESULT3
 RESULT3 DFHMDF POS=(11,67), LENGTH=11, ATTRB=(PROT,NORM), COLOR=GREEN
 DFHMDF POS=(11,79), LENGTH=1, ATTRB=(PROT,NORM)
* CMD4
 CMD4 DFHMDF POS=(12,1), LENGTH=1, ATTRB=(UNPROT,NORM), COLOR=RED
 DFHMDF POS=(12,3), LENGTH=1, ATTRB=(PROT,NORM)
* NAME4
 NAME4 DFHMDF POS=(12,5), LENGTH=8, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(12,14), LENGTH=1, ATTRB=(PROT,NORM)
* STATUS4
 STATUS4 DFHMDF POS=(12,16), LENGTH=49, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(12,66), LENGTH=Ø, ATTRB=(PROT,NORM)
* RESULT4
 RESULT4 DFHMDF POS=(12,67), LENGTH=11, ATTRB=(PROT,NORM), COLOR=GREEN
 DFHMDF POS=(12,79), LENGTH=1, ATTRB=(PROT,NORM)
* CMD5
 CMD5 DFHMDF POS=(13,1), LENGTH=1, ATTRB=(UNPROT,NORM), COLOR=RED
 DFHMDF POS=(13,3), LENGTH=1, ATTRB=(PROT,NORM)
* NAME5
 NAME5 DFHMDF POS=(13,5), LENGTH=8, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(13,14), LENGTH=1, ATTRB=(PROT,NORM)
* STATUS5
 STATUS5 DFHMDF POS=(13,16), LENGTH=49, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(13,66), LENGTH=Ø, ATTRB=(PROT,NORM)
* RESULT5
 RESULT5 DFHMDF POS=(13,67), LENGTH=11, ATTRB=(PROT,NORM), COLOR=GREEN
 DFHMDF POS=(13,79), LENGTH=1, ATTRB=(PROT,NORM)
* CMD6
 CMD6 DFHMDF POS=(14,1), LENGTH=1, ATTRB=(UNPROT,NORM), COLOR=RED
 DFHMDF POS=(14,3), LENGTH=1, ATTRB=(PROT,NORM)
* NAME6
 NAME6 DFHMDF POS=(14,5), LENGTH=8, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(14,14), LENGTH=1, ATTRB=(PROT,NORM)
* STATUS6
 STATUS6 DFHMDF POS=(14,16), LENGTH=49, ATTRB=(ASKIP,NORM), COLOR=GREEN
 DFHMDF POS=(14,66), LENGTH=Ø, ATTRB=(PROT,NORM)
* RESULT6
 RESULT6 DFHMDF POS=(14,67), LENGTH=11, ATTRB=(PROT,NORM), COLOR=GREEN
 DFHMDF POS=(14,79), LENGTH=1, ATTRB=(PROT,NORM)
* CMD7
 CMD7 DFHMDF POS=(15,1), LENGTH=1, ATTRB=(UNPROT,NORM), COLOR=RED
Relating response time to labour cost

On some days when our daily-average response-time numbers look quite good, users have been reporting that the CICS response time is quite slow. Because of this, I have been trying to analyse response time to evaluate whether response is ‘good’, ‘bad’, or ‘medium’. This is a challenging task for three reasons:

- Response time is highly variable.
- Both objective numerical issues and subjective psychological issues need to be considered.
- It’s hard to assign a good/bad value judgment to a plain number.

As I puzzled over these questions, a new way to analyse response time occurred to me.

This article addresses the issue of CICS response time degradation caused by competition for resources – from within the same CICS and from other tasks in the MVS system. It does not address the issue of degradation caused by factors within the transaction itself, such as inefficient program logic or inadequate file buffering.

EMPIRICAL OBSERVATIONS

Response time during any one minute, hour, or day can be vastly different from that during another similar time period, and the difference may be with or without apparent meaning.

I have analysed the range of response times during one day of CICSPDSS. When a graph relating time of day and response time was plotted, the result looked like noise. Although the highest points in each column form something of a trend across the page, the fact that each column (representing 15 minutes of the day) was filled with points going right down to the X-axis (ie zero response time) reflects the great variability in transaction response time, even within a 15-minute interval.

For the day in question, the mean response time was 0.469 seconds.
and the standard deviation was 0.891 seconds. With the standard deviation being larger than the mean, this shows how poorly the mean alone can represent the day’s events.

Because of this variability, any analytical presentation of the day’s response must involve some type of averaging. The simplest approach, as mentioned above, is to report the mean for the day. However, saying that ‘the response time for this day was 0.469 seconds’ fails to convey the customer frustration and labour cost during the peaks of up to 17.6 seconds per transaction.

Further analysis of the same day was performed, with each point on the graph representing the response time averaged over ‘n’ consecutive transactions, with ‘n’ increasing from 10, to 20, to 40. Comparing the graphs obtained revealed two trends:

- They conceal more noise, thus revealing more of the underlying pattern across the page.
- The peak response-time numbers get smaller (from 4.54 to 2.75 to 1.71 seconds), thus concealing more of the trouble represented by sharp peaks.

The first trend helps our understanding of the day, but the second tends to hinder it. An ideal measure of response time would combine the benefits of each.

Instead of averaging over a fixed number of consecutive transactions, it’s possible to average over fixed-length time intervals during a day. With further analysis of this effect, again using the same day as before, each point gives the average over a time interval, with the intervals increased from approximately 7.5, to 15, to 30 minutes.

This technique reduces much of the noise of the raw data, but a clear trend during the day is still elusive. Also, the day’s peak decreased from 1.27 seconds, to 0.773, to 0.663, obscuring the trouble at the peaks that reach 17.6 seconds.

THEORETICAL CONCERNS

Averaging over longer intervals yields smaller numbers, because the
great majority of transactions are very fast. In experiential terms, averaging takes the 1,000 transactions during a day that ran for 30 seconds each and combines them with the 99,000 transactions that ran for 0.4 seconds each, giving an ‘average’ response time of 0.696 seconds. This average number totally hides the fact that, 1,000 times during the day, a person sat staring at a screen for 30 seconds, unable to do any productive work and growing frustrated at an accelerating rate.

Because of the effect of the rule of large numbers, quoting an average response time of ‘x’ seconds is meaningless without also quoting the length of time over which that average was taken.

Another major inadequacy of average response time is that it ignores the fact that some transactions do far more computing than others. If some transactions do 5 seconds of CPU work and 2,000 file accesses, while others do 0.1 seconds of CPU and 4 file accesses, it makes no sense to average their elapsed times together.

When deciding what is a ‘good’ response time, many people say that anything under half a second is great, or that people don’t notice a change in response time of less than a factor of two, either longer or shorter. Certainly few humans would notice, much less complain, about the difference between 0.2 and 0.5 seconds. On the other hand, if contention for resources were to cause 10,000 transactions in a day to run for 0.5 seconds instead of 0.2 seconds, that contention would cause 50 person-minutes of wasted labour time that day. An ideal measure of response time would recognize this labour time, even if the human users are never aware of this delay.

THE PROPOSED APPROACH
Instead of reporting a transaction’s elapsed time, I propose reporting the amount of labour time during that transaction caused by resource contention. This equals ‘the elapsed time of the transaction’ minus ‘what its elapsed time would have been in an unloaded system’. This recognizes the distinction between transactions that do little computation and those that do much.

I use the term ‘response latency’ for ‘the amount of time a transaction
takes beyond what it would have taken in an unloaded system’. Because CPU usage and file I/O are the two kinds of work a transaction does, I estimate the time in an unloaded system by:

\[\text{unloaded} = (\text{CPU time}) + \text{factor} \times (\text{number of file accesses}) \]

where ‘factor’ is the relative cost of one file access. Therefore I estimate the response latency by:

\[\text{latency} = (\text{elapsed time}) - ((\text{CPU time}) + \text{factor} \times (\text{file accesses})) \]

In practical terms, I estimate the file ‘factor’ by examining response times on a weekend, when I assume the system is very lightly loaded. Adding up the elapsed times, CPU times, and file accesses of all transactions during a weekend, the file-factor can be estimated by:

\[\text{factor} = \frac{(\text{total elapsed time}) - (\text{total CPU time})}{\text{total file accesses}} \]

In my measurements, I’ve found this file-factor to be about 0.001 for CICSPLAW (CICSPDSS has too few transactions on weekends to be statistically significant). Whether or not this finding can be generalized to other CICSs remains a topic for future research, as is the possible refinement of using a separate file-factor for each file.

In some installations, it might be difficult to obtain both CPU usage and the number of file accesses per transaction. At our installation, we use Omegamon II for CICS, which gives both measurements easily.

After computing the response latencies of each transaction, instead of averaging them over an interval of time, I propose summing them over the same interval of time. This gives the total amount of human labour that was wasted during that interval because of resource contention. Adding 5,000 numbers and dividing by 5,000 has the effect of shrinking the contributions of the peaks, whereas summing 5,000 numbers tends to give each number equal representation to the whole.

It is useful, however, to divide the sum of transactions’ response latencies during an interval by the length of that interval. This yields the ‘percent inflation’ of labour time caused by resource contention, as compared to an unloaded system. For example, if the transactions running during a 5-minute interval sum to an aggregate response
latency of 1 minute, the percent inflation would be \((1/5)*100% = 20\%\) during that interval. This means that the users’ aggregate labour time during that interval was inflated by 20% when compared to that on an unloaded system.

With this method I have used interval lengths of approximately 7.5, 15, and 45 minutes. These give graphs with less noise, which show the traditional measure of response time averaged over the same length intervals. Incidentally, this method shows the lunch break very clearly – values near zero mean that users can work almost as fast as they could on an unloaded system.

CONCLUSION AND FUTURE RESEARCH
The percent inflation of labour time measures the system’s response to its group of users during a chosen time interval. This measure has the advantages sought at the beginning of this paper:

- It filters out much random noise while retaining the impact of instantaneous spikes.
- It takes into account that some transactions do more computing than others.
- It represents the real cost of response delays regardless of whether human users notice those delays.

This method also yields a number that has an intuitive meaning that response time lacks – a percent inflation of zero means that users can work as fast as they could on an unloaded system. Inflation of 50% during an interval means that, effectively, 50% of a person (or 25% of two people, etc) was unproductive during that interval, because of contention for resources. In this way, it’s easier to assign a good/bad value judgment to percent labour inflation than to simple response time.

One disadvantage of this approach can arise if one transaction gets stuck in the system, for example waiting for I/O from a broken terminal. Such a transaction might show an ‘elapsed time’ of several hours, but probably does not lead to much labour loss, because the user probably abandoned waiting for its completion within a few minutes.
The average response time approach would reflect this singularity accurately, by averaging its response time together with thousands of other transactions. However, the response latency approach of this article would be fooled into thinking that the user stared at the blank screen for the entire elapsed time of the anomalous transaction, and would therefore report several person-hours of labour cost. Perhaps a solution to this drawback can be found.

Future research could seek to correlate an interval’s percent inflation to the end-users’ subjective perception of productivity/frustration during that interval. Designing such a psychological experiment would be challenging, because people’s expectations tend to influence their perceptions, and because of the difficulty people have assigning a numeric value to their subjective perceptions.

Another future topic would be to sum the response latencies (in person-minutes) over an entire day, to yield the number of person-hours of labour wasted because of resource contention during that day. This number summarizes the CICS’s responsiveness over the day – with the advantages described above. It also has the potential to assign a monetary figure to the cost of resource contention, which could then be compared against the monetary cost of upgrading the computer hardware to reduce that contention. This would take much more research, however, because labour costs include emotional factors such as frustration, and frustration increases non-linearly with increasing response time.

Mark Krilanovich
Systems Programmer III
County of Santa Barbara (USA)
© M Krilanovich 1998

CICS Update is looking for JCL, macros, program code, etc, that experienced CICS users have written to make their life, or the lives of their users, easier. Articles can be of any length and can be sent or e-mailed to Robert Burgess at any of the addresses shown on page 2. Why not call now for a free copy of our Notes for contributors?
CICS task storage usage

The transaction TMAP creates a list of CICS tasks and their allocated storage elements. To do this it uses the program LCIMAPST to gather a list of active tasks, then individually interrogates their storage allocations.

Here’s a brief outline of what LCIMAPST does:

• Inquire on all active tasks.
• Save task list to program’s GETMAINed area.
• Inquire on each task to retrieve associated transaction, task key, and task location.
• Inquire on each transaction to retrieve a list of storage elements.
• Write output to transient data queue (CSML), which is associated with ddname MSGUSR.
• FREEMAIN storage.
• EXEC CICS return.

I’ve defined TMAP to run in CICS key and above the line.

The program has been tested using storage protection but I haven’t tried it out under transaction isolation – although it should still work because it runs in CICS key.

A sample output from the program is shown in Figure 1.

LCIMAPST

LCIMAPST DFHEIENT CODEREG=(12),DATAREG=(13),EIBREG=(11)
*
GET_TASKS EQU *
EXEC CICS INQUIRE TASK LIST LISTSIZE(NUMBER_ENTRIES) X
SET(2)
ICM 5,15,NUMBER_ENTRIES
BZ EXIT_POINT
LA 9,4
MR 8,5
<table>
<thead>
<tr>
<th>TRAN</th>
<th>TASK#</th>
<th>KEY</th>
<th>LOC</th>
<th>WHERE</th>
<th>STORADDR</th>
<th>STORLEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAON</td>
<td>ØØØØ030</td>
<td>CICS</td>
<td>ANY</td>
<td>CICS24</td>
<td>0005E008</td>
<td>0000130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1386E448</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>138A7008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>1386E008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER24</td>
<td>00140008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>CICS1</td>
<td></td>
<td>00001780</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS24</td>
<td></td>
<td>00000130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER31</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER24</td>
<td></td>
<td>00000010</td>
<td></td>
</tr>
<tr>
<td>DSNC</td>
<td>ØØØØ031</td>
<td>CICS</td>
<td>ANY</td>
<td>CICS31</td>
<td>1388A7F8</td>
<td>00000160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>388A508</td>
<td>00000260</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>138A9008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>1388A008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER24</td>
<td>00141008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>CICS1</td>
<td></td>
<td>00017F0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS24</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER31</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER24</td>
<td></td>
<td>00000010</td>
<td></td>
</tr>
<tr>
<td>JNL2</td>
<td>ØØØØ034</td>
<td>CICS</td>
<td>BELOW</td>
<td>CICS24</td>
<td>0005B448</td>
<td>000002D0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0005B008</td>
<td>00000430</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>138A3008</td>
<td></td>
<td>0001000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>CICS1</td>
<td></td>
<td>0001000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS24</td>
<td></td>
<td>00000700</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER31</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER24</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>TMAP</td>
<td>ØØØØ577</td>
<td>CICS</td>
<td>ANY</td>
<td>CICS31</td>
<td>138D2818</td>
<td>000000D0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138D27F8</td>
<td>00000010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>138D2698</td>
<td></td>
<td>00000B0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>138D2448</td>
<td></td>
<td>0000240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>138DA008</td>
<td></td>
<td>0001000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS1</td>
<td>138D2008</td>
<td></td>
<td>0000430</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>CICS1</td>
<td></td>
<td>0001800</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CICS24</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER31</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USER24</td>
<td></td>
<td>00000000</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Sample output

ST 9,GETMAIN_LENGTH
LR 3,9
EXEC CICS GETMAIN FLENGTH(GETMAIN_LENGTH) SET(8)
ST 8,GETMAIN_ADDRESS
MVCL 8,2
L 8,GETMAIN_ADDRESS
L 1,=A(L'RETURN_MESSAGE)
STH 1,RETURN_LENGTH

* EXEC CICS ASSIGN USERID(CALL_USER)
MVC RETURN_MESSAGE,HEADER
MVC RETURN_MESSAGE+70,CALL_USER
EXEC CICS WRITEQ TD FROM(RETURN_MESSAGE)
 LENGTH(RETURN_LENGTH) QUEUE('CSML') NOHANDLE

* INQUIRE_TASK_START EQU *
MVC TASK_ID,Ø(8)
MVI RETURN_MESSAGE,C'
MVC RETURN_MESSAGE+1(L'RETURN_MESSAGE-1),RETURN_MESSAGE

* EXEC CICS INQUIRE TASK(TASK_ID)
 TRANSACTION(ELEMENT_TRANSID)
 TASKDATAKEY(TASK_KEY) TASKDATALOC(TASK_LOC) NOHANDLE
*
CLC EIBRESP,DFHRESP(TASKIDERR)
BE EXIT_POINT
*
MVC WORKS,TASK_ID
LA 15,CONVERT1
BALR 14,15
MVC ELEMENT_ID,WORK_VAR
*
CHECK_KEY EQU *
MVC ELEMENT_KEY,=CL4'CICS'
CLC TASK_KEY,DFHVALUE(CICSDATAKEY)
BE CHECK_LOC
MVC ELEMENT_KEY,=CL4'USER'
*
CHECK_LOC EQU *
MVC ELEMENT_LOC,=CL5'BELOW'
CLC TASK_LOC,DFHVALUE(BELOW)
BE INQUIRE_TASK_STORAGE
MVC ELEMENT_LOC,=CL5'ANY'
*
INQUIRE_TASK_STORAGE EQU *
EXEC CICS INQUIRE STORAGE TASK(TASK_ID)
 ELEMENTLIST(4)
 NUMELEMENTS(NUMBER_STORAGE_ELEMENTS)
 LENGTHLIST(6)
*
CLC EIBRESP,DFHRESP(TASKIDERR)
BE EXIT_POINT
*
L 3,NUMBER_STORAGE_ELEMENTS
*
CHECK_WHERE_INIT EQU *
XC CICS31,CICS31
```
WRITE_RESULTS  EQU     *
    ICM  1,15,Ø(4)
    S    1,=F'8'
*
CHECK_C24  EQU     *
    CLI  Ø(1),C'M'
    BNE  CHECK_C31
    MVC  ELEMENT_NAME,=CL6'CICS24'
    L    1,Ø(.6)
    L    2,CICS24
    AR   2,1
    ST   2,CICS24
    B    CHECK_WHERE_END
*
CHECK_C31  EQU     *
    CLI  Ø(1),C'C'
    BNE  CHECK_U24
    MVC  ELEMENT_NAME,=CL6'CICS31'
    L    1,Ø(.6)
    L    2,CICS31
    AR   2,1
    ST   2,CICS31
    B    CHECK_WHERE_END
*
CHECK_U24  EQU     *
    CLI  Ø(1),C'B'
    BNE  CHECK_U31
    MVC  ELEMENT_NAME,=CL6'USER24'
    L    1,Ø(.6)
    L    2,USER24
    AR   2,1
    ST   2,USER24
    B    CHECK_WHERE_END
*
CHECK_U31  EQU     *
    CLI  Ø(1),C'U'
    BNE  CHECK_WHERE_END
    MVC  ELEMENT_NAME,=CL6'USER31'
    L    1,Ø(.6)
    L    2,USER31
    AR   2,1
    ST   2,USER31
    B    CHECK_WHERE_END
*
CHECK_WHERE_END  EQU     *
```
MVC WORKS,Ø(4)
LA 15,CONVERT1
BALR 14,15
MVC ELEMENT_START,WORK_VAR
MVC WORKS,Ø(6)
LA 15,CONVERT1
BALR 14,15
MVC ELEMENT_SIZE,WORK_VAR
EXEC CICS WRITEQ TD FROM(RETURN_MESSAGE) LENGTH(RETURN_LENGTH) QUEUE('CSML') NOHANDLE
LA 4,4(,4)
LA 6,4(,6)
MVC ELEMENT_TRANSID,BLANKS
MVC ELEMENT_ID,BLANKS
MVC ELEMENT_KEY,BLANKS
MVC ELEMENT_LOC,BLANKS
BCT 3,WRITE_RESULTS
* MVI RETURN_MESSAGE,C'
MVC RETURN_MESSAGE+1(L'RETURN_MESSAGE-1),RETURN_MESSAGE
MVC ELEMENT_LOC,=CL6'TOTALS'
LA 4,4
*
WRITE_TOTALS EQU *
*
TOTAL_C31 EQU *
 C 4,=F'4'
 BL TOTAL_C24
 MVC ELEMENT_NAME,=CL6'CICS31'
 MVC WORKS,CICS31
 LA 15,CONVERT1
 BALR 14,15
 MVC ELEMENT_SIZE,WORK_VAR
 B TOTAL_CHECK_END
*
TOTAL_C24 EQU *
 C 4,=F'3'
 BL TOTAL_U31
 MVC ELEMENT_NAME,=CL6'CICS24'
 MVC WORKS,CICS24
 LA 15,CONVERT1
 BALR 14,15
 MVC ELEMENT_SIZE,WORK_VAR
 B TOTAL_CHECK_END
*
TOTAL_U31 EQU *
 C 4,=F'2'
 BL TOTAL_U24
 MVC ELEMENT_NAME,=CL6'USER31'
 MVC WORKS,USER31
LA 15,CONVERT1
BALR 14,15
MVC ELEMENT_SIZE,WORK_VAR
B TOTAL_CHECK_END

* TOTAL_U24 EQU *
 MVC ELEMENT_NAME,=CL6'USER24'
 MVC WORKS,USER24
 LA 15,CONVERT1
 BALR 14,15
 MVC ELEMENT_SIZE,WORK_VAR

* TOTAL_CHECK_END EQU *
 EXEC CICS WRITEQ TD FROM(RETURN_MESSAGE) LENGTH(RETURN_LENGTH) QUEUE('CSML') NOHANDLE
 MVC ELEMENT_LOC,BLANKS
 BCT 4,WRITE_TOTALS

* LA 8,4((,8)
 BCT 5,INQUIRE_TASK_START

* L 8,GETMAIN_ADDRESS
 EXEC CICS FREEMAIN DATAPointER(8) NOHANDLE

* MVI RETURN_MESSAGE,C'
 MVC RETURN_MESSAGE+1(RETURN_MESSAGE-1),RETURN_MESSAGE
 MVC RETURN_MESSAGE(L'MESSAGE),MESSAGE
 EXEC CICS send CONTROL ERASE
 EXEC CICS send FROM(RETURN_MESSAGE)

* EXIT_POINT DS ØH
 EXEC CICS RETURN

* *

CONVERT1 EQU *
 UNPK WORK_VAR(9),WORKS(5)
 MVZ WORK_VAR,=XL8'ØØ'
 TR WORK_VAR,TABLE
 XC WORKS,WORKS
 BR 14

* TABLE DC C'Ø123456789ABCDEF'
BLANKS DC CL2Ø' '
MESSAGE DC C'TMAP COMPLETED - CHECK MSGUSR FILE'
HEADER DC CL(RETURN_MESSAGE)' '
 ORG HEADER+1
 DC CL4'TRAN',C'
 DC CL7'TASK#',C'
 DC CL4'KEY',C'

DC CL5'LOC',C' ' DC CL6'WHERE',C' ' DC CL8'STORADDR',C' ' DC CL8'STORLEN',C' ' ORG HEADER+6Ø DC CL8'USERID -' ORG , *
 LTORG , *
 DFHEISTG GETMAIN_LENGTH DS F GETMAIN_ADDRESS DS F RETURN_LENGTH DS H RETURN_MESSAGE DS CL8Ø ORG RETURN_MESSAGE+1 ELEMENT_TRANSID DS CL4,C ELEMENT_ID DS CL7,C ELEMENT_KEY DS CL4,C ELEMENT_LOC DS CL5,C ELEMENT_NAME DS CL6,C ELEMENT_START DS CL8,C ELEMENT_SIZE DS CL8,C ORG , RESULT DS F WORKS DS CL4,C WORK_VAR DS CL8,C NUMBER_ENTRIES DS F ADDR_TASK_LIST_PTR DS F TASK_ID DS F ELEMENTLIST_PTR DS F LENGTHLIST_PTR DS F TASK_LOC DS F TASK_KEY DS F CALL_USER DS CL8 NUMBER_STORAGE_ELEMENTS DS F CICS31 DS F CICS24 DS F USER31 DS F USER24 DS F *
END

Calum Reid
Senior Systems Technician (UK) © Xephon 1998
January 1994 – November 1998 index

Items below are references to articles that have appeared in CICS Update since Issue 98, January 1994. References show the issue number followed by the page number(s). Back-issues of CICS Update are available back to issue 98 (January 1994). See page 2 for details.

<table>
<thead>
<tr>
<th>Category</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abend codes</td>
<td>123.40-47, 127.32-38, 130.3-10, 137.5-26, 137.46-47, 122.3-5, 128.19-42, 129.38-47, 130.33-47, 136.11-33, 137.26-46</td>
</tr>
<tr>
<td>AID chain</td>
<td>128.8-18</td>
</tr>
<tr>
<td>ALERT/CICS</td>
<td>103.23-30</td>
</tr>
<tr>
<td>AMXT</td>
<td>118.9-10</td>
</tr>
<tr>
<td>API</td>
<td>147.3-8</td>
</tr>
<tr>
<td>APPC</td>
<td>117.26-44, 138.10-21, 155.3-8</td>
</tr>
<tr>
<td>Application programming techniques</td>
<td>114.25-32, 115.4-14, 116.33-4, 119.41-47, 127.8-14</td>
</tr>
<tr>
<td>ASREXIT</td>
<td>117.44-47</td>
</tr>
<tr>
<td>AT option</td>
<td>147.9-15</td>
</tr>
<tr>
<td>Auto-install</td>
<td>145.33-45, 146.35-46, 150.38-47, 155.3-8, 101.34.46, 102.3, 139.38-51, 140.6-22, 141.3-10</td>
</tr>
<tr>
<td>Automatic screen refresh</td>
<td>150.3-11</td>
</tr>
<tr>
<td>Automation</td>
<td>100.37-38, 108.36, 118.3-9, 120.43, 125.20-30, 142.13-26</td>
</tr>
<tr>
<td>Auxiliary trace</td>
<td>99.15-20</td>
</tr>
<tr>
<td>Availability</td>
<td>126.43-47</td>
</tr>
<tr>
<td>Basic Mapping Support (BMS)</td>
<td>102.16-26, 125.31-40, 126.26-43, 127.14-32</td>
</tr>
<tr>
<td>Batch processing</td>
<td>99.6-15, 100.4-12, 106.23.30, 117.26-44, 130.26-31</td>
</tr>
<tr>
<td>BCF</td>
<td>133.8</td>
</tr>
<tr>
<td>CA-ACF2</td>
<td>99.31-33, 115.22-28</td>
</tr>
<tr>
<td>CA-IDEAL</td>
<td>133.29-35</td>
</tr>
<tr>
<td>CA-IDMS</td>
<td>132.12-16, 149.18-20</td>
</tr>
<tr>
<td>CA-TOP SECRET</td>
<td>110.42-47</td>
</tr>
<tr>
<td>CEDA</td>
<td>104.18-21, 105.23-36, 106.31-34, 139.3-29, 140.22-23</td>
</tr>
<tr>
<td>CEMT</td>
<td>98.32-36, 102.13-16, 105.23-36, 133.9</td>
</tr>
<tr>
<td>CEMT log</td>
<td>155.9-23</td>
</tr>
<tr>
<td>CESN</td>
<td>155.37-39</td>
</tr>
<tr>
<td>CICS OS/2</td>
<td>120.26-43, 138.3-10</td>
</tr>
<tr>
<td>CICS Statement tool</td>
<td>149.21-30, 150.12-24</td>
</tr>
<tr>
<td>CICS System Definition Dataset (CSD)</td>
<td>104.41-47, 105.38-46, 107.6-19, 109.34, 114.32-47</td>
</tr>
<tr>
<td>CICS Transaction Affinities Utility</td>
<td>100.36, 105.9-20, 114.21-22</td>
</tr>
<tr>
<td>CICS Web interface</td>
<td>141.10-21, 142.35-47</td>
</tr>
<tr>
<td>CICS/BRF</td>
<td>105.37-38</td>
</tr>
<tr>
<td>CICS/ESA 4.1</td>
<td>100.34-35</td>
</tr>
<tr>
<td>CICS/VR</td>
<td>107.45-47</td>
</tr>
<tr>
<td>CICSplex System Manager</td>
<td>100.35-36</td>
</tr>
<tr>
<td>CMS</td>
<td>125.31-40, 126.26-43, 127.14-32</td>
</tr>
<tr>
<td>COBOL</td>
<td>110.32-42, 114.12-20, 114.25-32, 115.4-14, 116.33-40, 132.3-12, 133.29-35, 134.41-47</td>
</tr>
<tr>
<td>Cold start</td>
<td>98.3-7, 108.36</td>
</tr>
<tr>
<td>COMMAREA</td>
<td>102.16-26</td>
</tr>
<tr>
<td>Common System Area (CSA)</td>
<td>108.22-26, 112.29-30, 140.46-47</td>
</tr>
<tr>
<td>Cross memory resource inquiry</td>
<td>156.3-10</td>
</tr>
<tr>
<td>CSFE</td>
<td>137.3-5</td>
</tr>
<tr>
<td>CSP</td>
<td>130.32</td>
</tr>
<tr>
<td>Data transfer</td>
<td>106.11-23</td>
</tr>
<tr>
<td>Date simulator</td>
<td>148.3-14, 149.38-47</td>
</tr>
<tr>
<td>Date testing</td>
<td>150.25-36, 151.7-23, 152.3-8</td>
</tr>
<tr>
<td>DB2</td>
<td>124.22-44, 124.44-46, 128.46-47, 144.23-25</td>
</tr>
<tr>
<td>DB2 attachment switch</td>
<td>151.31-47</td>
</tr>
<tr>
<td>DBCTL</td>
<td>99.3-6, 133.7-28</td>
</tr>
<tr>
<td>Deadlocks</td>
<td>100.20-22</td>
</tr>
<tr>
<td>Debugging</td>
<td>98.21-31, 99.15-20, 99.43-47, 125.16-20, 125.40-44</td>
</tr>
<tr>
<td>Define statements</td>
<td>147.29-45, 148.39-47, 154.22-41, 155.39-47</td>
</tr>
<tr>
<td>DFHCNV</td>
<td>144.3-6</td>
</tr>
<tr>
<td>DFHPEP</td>
<td>108.22-23, 133.13</td>
</tr>
<tr>
<td>DFHRPL</td>
<td>126.3-10</td>
</tr>
<tr>
<td>DFHSMDS</td>
<td>134.36-41</td>
</tr>
<tr>
<td>Disk I/O</td>
<td>110.31</td>
</tr>
<tr>
<td>Dispatcher</td>
<td>98.21-31, 134.36-41</td>
</tr>
<tr>
<td>DL/I</td>
<td>133.7-28, 155.24-36, 156.17-31</td>
</tr>
<tr>
<td>DPL</td>
<td>154.42-47</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>DSNAMES</td>
<td>134.13-18, 135.3-16</td>
</tr>
<tr>
<td>Dumps</td>
<td>100.12-19, 101.16-19, 109.3-9, 110.3-10, 113.18-19, 114.10-11, 118.47, 119.40-41, 121.7-26, 122.5-22, 123.7-23, 129.22-27, 143.33-35</td>
</tr>
<tr>
<td>Dynamic allocation</td>
<td>106.34-47, 138.21-38</td>
</tr>
<tr>
<td>Dynamic Progressive Program Compression (DPPC)</td>
<td>98.17-21</td>
</tr>
<tr>
<td>Dynamic routing</td>
<td>130.10-26, 134.18-36</td>
</tr>
<tr>
<td>Dynamic Storage Area (DSA)</td>
<td>102.7-13</td>
</tr>
<tr>
<td>EDF</td>
<td>145.32-33</td>
</tr>
<tr>
<td>EIBFN codes</td>
<td>115.19-22, 152.8-9</td>
</tr>
<tr>
<td>Emergency restart</td>
<td>100.22-34</td>
</tr>
<tr>
<td>EXCI</td>
<td>142.13-26, 145.3-20</td>
</tr>
<tr>
<td>EXEC CICS LINK</td>
<td>146.31-34</td>
</tr>
<tr>
<td>External CICS interface</td>
<td>146.31-34</td>
</tr>
<tr>
<td>FAXGATE</td>
<td>106.11-23</td>
</tr>
<tr>
<td>File characteristics</td>
<td>139.29-36</td>
</tr>
<tr>
<td>File control</td>
<td>111.7-17</td>
</tr>
<tr>
<td>File transfer</td>
<td>113.10-15, 122.23-25</td>
</tr>
<tr>
<td>Forward recovery</td>
<td>99.21-31, 100.38-47, 107.45-47</td>
</tr>
<tr>
<td>Free Area Queue Element (FAQE)</td>
<td>99.33-43</td>
</tr>
<tr>
<td>Global User-Exits (GLUEs)</td>
<td>104.8-18</td>
</tr>
<tr>
<td>IBM announcements</td>
<td>100.34-36, 132.41-44</td>
</tr>
<tr>
<td>IMS/DB</td>
<td>99.3-6</td>
</tr>
<tr>
<td>INDSFILE</td>
<td>122.23-25</td>
</tr>
<tr>
<td>INQUIRE START</td>
<td>147.9-15</td>
</tr>
<tr>
<td>Inter-System Communication (ISC)</td>
<td>111.38-47, 114.3-10, 125.16-20</td>
</tr>
<tr>
<td>IPCS</td>
<td>129.22-27</td>
</tr>
<tr>
<td>ISPF</td>
<td>134.3-13</td>
</tr>
<tr>
<td>Journalling</td>
<td>98.8-17, 99.21-31, 100.38-47, 103.9-19, 103.33-46, 107.19-25, 108.3-11, 117.7-18</td>
</tr>
<tr>
<td>Labour cost</td>
<td>156.32-37</td>
</tr>
<tr>
<td>Library compression</td>
<td>141.22-43</td>
</tr>
<tr>
<td>Library determination</td>
<td>152.26-33</td>
</tr>
<tr>
<td>LINK/XCTL</td>
<td>148.23-28</td>
</tr>
<tr>
<td>Local Shared Resources (LSR)</td>
<td>109.12-27, 110.11-31, 115.29-47, 144.15-25</td>
</tr>
<tr>
<td>Log manager</td>
<td>151.24-36</td>
</tr>
<tr>
<td>Loops</td>
<td>99.43-47, 115.14-19</td>
</tr>
<tr>
<td>MANTIS</td>
<td>111.17-20</td>
</tr>
<tr>
<td>Menus</td>
<td>119.4-13</td>
</tr>
<tr>
<td>Message log browser</td>
<td>151.3-7</td>
</tr>
<tr>
<td>Messages</td>
<td>102.26-29, 123.3-7, 123.40-47</td>
</tr>
<tr>
<td>Migration</td>
<td>114.12-22, 118.10-34, 125.45-47, 129.28-38</td>
</tr>
<tr>
<td>Monitoring resources</td>
<td>101.3-6, 101.6-16, 102.29-32, 103.3-8, 103.20-22, 103.30-33, 104.28-40, 106.4-11, 106.23-30, 116.3-9, 116.9-24, 131.3-16</td>
</tr>
<tr>
<td>MQSeries</td>
<td>153.15-28, 154.10-21</td>
</tr>
<tr>
<td>Multiregion Operation (MRO)</td>
<td>114.3-10, 117.18-21, 121.28-47, 122.25-47, 130.10-26</td>
</tr>
<tr>
<td>NATURAL</td>
<td>98.31-32, 101.32-33, 104.21-28, 125.3-16</td>
</tr>
<tr>
<td>NetMaster</td>
<td>101.3-6</td>
</tr>
<tr>
<td>NEWCOPY</td>
<td>117.21-25, 118.46-47, 128.3-8, 131.16-22, 142.27-34</td>
</tr>
<tr>
<td>Non-CICS resources</td>
<td>154.7-9</td>
</tr>
<tr>
<td>ODM</td>
<td>121.3-6</td>
</tr>
<tr>
<td>OMEGAMON</td>
<td>135.24</td>
</tr>
<tr>
<td>Operating system services</td>
<td>132.3-12</td>
</tr>
<tr>
<td>Operator commands</td>
<td>112.3-17</td>
</tr>
<tr>
<td>OSCOR</td>
<td>99.31-33</td>
</tr>
<tr>
<td>Parsing</td>
<td>119.41-47</td>
</tr>
<tr>
<td>Password Expiration Management (PEM)</td>
<td>138.10-21</td>
</tr>
<tr>
<td>Performance</td>
<td>102.29-32, 103.20-22, 110.31, 118.9-10, 124.22-44, 125.16-20, 130.32</td>
</tr>
<tr>
<td>PINQPGM</td>
<td>152.26-33</td>
</tr>
<tr>
<td>Printer management</td>
<td>127.3-8, 128.8-18, 152.10-25, 153.35-47</td>
</tr>
<tr>
<td>Printing</td>
<td>107.3-6, 119.13-40, 128.42-46</td>
</tr>
<tr>
<td>PRINTTO</td>
<td>150.38-47</td>
</tr>
<tr>
<td>Processing Program Table (PPT)</td>
<td>126.3-10</td>
</tr>
<tr>
<td>Program compression</td>
<td>98.17-21</td>
</tr>
<tr>
<td>Program Function (PF) keys</td>
<td>113.7-10</td>
</tr>
<tr>
<td>Program load address</td>
<td>105.21-22</td>
</tr>
<tr>
<td>Program Load Table (PLT)</td>
<td>101.19-31, 136.33-38</td>
</tr>
<tr>
<td>Program management</td>
<td>129.6-22</td>
</tr>
<tr>
<td>Program Specification Block (PSB)</td>
<td>99.3-6, 133.13</td>
</tr>
<tr>
<td>Publications</td>
<td>101.47, 103.47, 120.25-26</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Purging tasks</td>
<td>102.13-16, 116.40-45</td>
</tr>
<tr>
<td>QMF</td>
<td>107.3-6, 119.13-14</td>
</tr>
<tr>
<td>RACF</td>
<td>98.36-47, 108.26-35, 118.35, 119.4-13, 124.20-22, 129.28-38, 134.4, 139.38-51, 140.6-22</td>
</tr>
<tr>
<td>Resource Control Table (RCT)</td>
<td>124.44-46, 128.46-47, 145.45-47</td>
</tr>
<tr>
<td>Resource Definition On-line (RDO)</td>
<td>109.35-47</td>
</tr>
<tr>
<td>Response time</td>
<td>156.32-37</td>
</tr>
<tr>
<td>Restarts</td>
<td>117.3-7, 118.3-9, 119.3-9, 120.43</td>
</tr>
<tr>
<td>SAP</td>
<td>106.4-11</td>
</tr>
<tr>
<td>Screen viewing</td>
<td>147.46-47, 153.29-34</td>
</tr>
<tr>
<td>Session status display</td>
<td>133.35-47</td>
</tr>
<tr>
<td>Short On Storage (SOS)</td>
<td>114.10-11, 118.47</td>
</tr>
<tr>
<td>Shut-down</td>
<td>102.13-16, 107.28-45, 109.10-11, 112.30-47, 113.16-17, 117.3-7, 140.3-6, 144.25-44, 145.20-31</td>
</tr>
<tr>
<td>Sign-on</td>
<td>118.35-42, 125.20-30, 135.25-37</td>
</tr>
<tr>
<td>Sign-on Table (SNT)</td>
<td>109.27-33, 129.28-38</td>
</tr>
<tr>
<td>SLIP trap</td>
<td>125.40-44</td>
</tr>
<tr>
<td>SMF</td>
<td>124.22-44</td>
</tr>
<tr>
<td>SPI</td>
<td>147.3-8</td>
</tr>
<tr>
<td>Start up</td>
<td>98.3-7, 100.22-34</td>
</tr>
<tr>
<td>START, non-disruptive</td>
<td>149.3-17</td>
</tr>
<tr>
<td>Statistics</td>
<td>111.20-36, 111.38-47, 112.30-47, 116.9-24, 126.10-25, 129.3-5, 129.6-22, 145.20-31, 154.7-9</td>
</tr>
<tr>
<td>STGPROT</td>
<td>149.31-38</td>
</tr>
<tr>
<td>Storage protection</td>
<td>102.7-13, 110.11</td>
</tr>
<tr>
<td>Storage statistics</td>
<td>142.3-12, 143.8-32</td>
</tr>
<tr>
<td>Storage violation</td>
<td>104.3-8, 105.47</td>
</tr>
<tr>
<td>SVCs</td>
<td>106.34-35, 143.33-35</td>
</tr>
<tr>
<td>Swapping</td>
<td>143.3-7</td>
</tr>
<tr>
<td>Sympathy sickness</td>
<td>121.26-28</td>
</tr>
<tr>
<td>SYMREC</td>
<td>117.44-47</td>
</tr>
<tr>
<td>System Initialization Table (SIT)</td>
<td>109.10-11, 127.38-47, 132.16-40</td>
</tr>
<tr>
<td>Table maintenance</td>
<td>117.18-21</td>
</tr>
<tr>
<td>Task management</td>
<td>120.8-25, 121.26-28, 127.32-38, 130.3-10</td>
</tr>
<tr>
<td>Task storage</td>
<td>156.38-44</td>
</tr>
<tr>
<td>Terminal status</td>
<td>111.3-12, 112.21-29, 113.19-47, 123.23-40</td>
</tr>
<tr>
<td>THE MONITOR FOR CICS</td>
<td>98.31-32, 133.20, 135.24, 139.36-38</td>
</tr>
<tr>
<td>TOD clocks</td>
<td>113.3, 131.22-24, 133.29-35</td>
</tr>
<tr>
<td>Trace entries</td>
<td>141.44-47</td>
</tr>
<tr>
<td>TRANCLASS</td>
<td>138.38-44</td>
</tr>
<tr>
<td>Transaction server V1.2</td>
<td>148.15-22</td>
</tr>
<tr>
<td>Transferring code</td>
<td>150.37</td>
</tr>
<tr>
<td>Transient data</td>
<td>146.47</td>
</tr>
<tr>
<td>Transient data output</td>
<td>143.36-37</td>
</tr>
<tr>
<td>TSO</td>
<td>101.6-16, 123.23-40, 134.3-13</td>
</tr>
<tr>
<td>Upper-case translation</td>
<td>106.3-4</td>
</tr>
<tr>
<td>User exits</td>
<td>104.8-18</td>
</tr>
<tr>
<td>VSAM</td>
<td>99.21-31, 109.12-27, 110.11-31, 136.11-33, 137.26-46</td>
</tr>
<tr>
<td>VSE</td>
<td>98.32-36</td>
</tr>
<tr>
<td>VSE/POWER</td>
<td>128.42-46</td>
</tr>
<tr>
<td>Warm keypoint</td>
<td>146.3-8</td>
</tr>
<tr>
<td>Workload manager</td>
<td>152.34-47</td>
</tr>
<tr>
<td>XFREQ</td>
<td>118.42-45</td>
</tr>
<tr>
<td>XFSREQC</td>
<td>100.20-22</td>
</tr>
<tr>
<td>XMEOUT</td>
<td>104.3-8</td>
</tr>
<tr>
<td>XSTOUT</td>
<td>129.3-5</td>
</tr>
<tr>
<td>XTSEREQ</td>
<td>114.22-25</td>
</tr>
<tr>
<td>XZCATT</td>
<td>104.9-11, 112.3-17</td>
</tr>
<tr>
<td>XZCIN</td>
<td>108.11-19</td>
</tr>
<tr>
<td>XZCOUT</td>
<td>116.4-9</td>
</tr>
<tr>
<td>Year 2000</td>
<td>148.3-14, 149.38-47, 150.25-36, 151.7-23</td>
</tr>
</tbody>
</table>

Trax Softworks has announced MailServer/390, a System/390 CICS-based SMTP Internet e-mail gateway and POP3 server that allows mainframes to use TCP/IP e-mail systems. Inbound and outbound messages reside in VSAM files delivered to mainframe users via 3270 interfaces.

The integrated system supports PC and 3270 clients and links with LAN-based systems and PC-based POP3 compliant clients. Remote users can send and receive mail by connecting to their home mailbox through any ISP. This provides a single unified method of sharing mail between diverse computing platforms, including company intranets and the Internet.

For further information contact:
Trax Softworks, 5840 Uplander Way, Culver City, CA 90230-6620, USA.
Tel: (310) 649 5800.

** * * **

IBM has announced Release 3 of CICS Transaction Server for OS/390, incorporating CICS server, client, Transaction Gateway, and management function in the one package. The new Transaction Gateway (Version 3.0) supports OS/2, NT, AIX, and Solaris, and provides access to CICS servers from Web browsers and network computers. It also takes advantage of System/390 parallel sysplex.

New functions include Java application support, an object interface to CICS services for C++, CICS business transaction services, and long temporary storage queue names. For e-business, there’s new CORBA client support, CICS Web interface enhancements, EXCI enhancements for resource recovery, a better 3270 bridge interface, and CICS Universal Clients.

Scalability features include dynamic routing and load balancing of Distributed Program Link (DPL) and EXEC CICS START requests, plus support for Coupling Facility data tables, Sysplex Wide Enqueue (ENQ) and Dequeue (DEQ), and named counter server.

Management improvements include CICSPlex System Manager enhancements, Resource Definition On-line (RDO) for CICS temporary storage, Auto-install for MVS consoles, and enhancements to CICS monitoring and statistics.

For further information contact your local IBM representative.

** * * **

CICS users can now benefit from the joining of Insession and Destiny Software to deliver financial services applications. Insession’s TransFuse legacy integration products and Destiny’s various on-line products will be integrated to enable the applications to link to TP monitors and messaging systems such as CICS, IMS, and MQSeries.

For further information contact:
Insession, 100 Arapahoe Avenue, Boulder, CO 80302, USA.
Tel: (303) 440 3300

** * * **