
July 2000

93

© Xephon plc 2000

3 Optimizing Dynamic SQL
7 Reorganizing the DB2 catalog and

directory
18 Distributing index pieces to

different volumes
32 Index advisor model
48 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1997 issue, are available separately
to subscribers for £22.50 ($33.50) each
including postage.

DB2 Update on-line
Code from DB2 Update can be downloaded
from our Web site at http://www.xephon.
com/db2update.html; you will need the user-
id shown on your address label.

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
Articles published in DB2 Update are paid for
at the rate of £170 ($260) per 1000 words and
£100 ($160) per 100 lines of code for the first
200 lines of original material. The remaining
code is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors, or you can
download a copy from www.xephon.com/
contnote.html.

 3© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Optimizing Dynamic SQL

My article Dynamic SQL for fuzzy SELECT, DB2 Update, Issue 89,
March 2000, recommended using Dynamic SQL for processing user
fuzzy SELECT queries. Its recommendations included using
EXPLAIN and RUNSTATS. This article expands on those suggestions
and provides additional ideas.

DYNAMIC SQL

A varying-list SELECT statement was recommended because the
columns needed by user fuzzy queries are unknown. A user could ask
for best students or worse instructors or most generous alumni. Best
student is defined by GPA (Grade Point Average) and attendance;
instructor by individual course ratings, average course ratings, and
attendance; alumni by total contribution and contributions to specific
appeals. Simplified logical tables are:

STUDENT(STUDENT_ID, surname, gpa, total_absence_days)

STUDENT_COURSE(STUDENT_ID, COURSE_ID, grade, absence_days)

INSTRUCTOR(INSTRUCTOR_ID), surname, avg_rating, total_absence_days)

 INSTRUCTOR_COURSE(INSTRUCTOR_ID, COURSE_ID, rating, absence_days)

ALUMNUS(ALUMNUS_ID, surname, total_contribution)

ALUMNUS_APPEAL(ALUMNUS_ID, APPEAL_ID, contribution)

Best, worse, and most generous require different column names
(identical column names require table qualification when used in
single SELECT) and a different quantity of columns, making varying-
list SELECT mandatory.

Users must define all fuzzy predicate parameters before they can be
used. Best student requires a GPA > 91.69 and total_absence_days
<8.88 (see Fuzzy SELECT, DB2 Update, Issue 87, January 2000 for
an explanation of how 91.69 and 8.88 were calculated). The SELECT
statement is:

 4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SELECT student_id, surname, gpa, total_absence_days
FROM student
WHERE gpa > 91.69
AND total_absence_days < 8.88

A good student is defined as GPA > 86.33 and < 91.69 with
total_absence_days > 8.88 and < 13.13. This SELECT needs a
BETWEEN which is normal for fuzzy SELECT statements:

SELECT student_id, surname, gpa, total_absence_days
FROM student
WHERE gpa BETWEEN 86.34 AND 91.68
AND total_absence_days BETWEEN 8.89 AND 13.12

INDEXES AND DESCRIBE

Fuzzy predicate columns such as student.gpa,
student.total_absence_days, instructor.avg_rating, instructor.total_
absence_days, instructor_course.rating, alumnus.total_contribution,
and alumnus_appeal.contribution should be indexed for efficiency.
DESCRIBE provides an easy way to identify table indexes.

DESCRIBE
INDEXES FOR TABLE student --must be fully qualified name or alias
 --in form of schema.table.name; schema
 --is user name under which table or view
 --was created
SHOW DETAIL --includes column name in output

CREATE INDEX for any column involved with a fuzzy predicate and
then run RUNSTATS.

RUNSTATS

RUNSTATS should be run on all tables containing columns required
by the translated fuzzy predicate, ie best student needs student.gpa
and student.total_absence_days. The recommended statement is:

RUNSTATS ON TABLE student --must be fully-qualified name or alias
WITH DISTRIBUTION --number of most frequent values
 --collected is defined by num_freqvalues
 --number of quantiles collected is
 --defined by num_quantiles; both should
 --be set with user assistance
AND INDEXES ALL --updates stats on table and all indexes

 5© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

DETAILED --calculates extended index stats
SHRLEVEL REFERENCE --restricts other users to read only

COMMIT should be issued after the execution of release locks.

(You may want to create new static access paths after RUNSTATS by
rebinding the packages using BIND.)

DB2LOOK

Prudence dictates that newly-translated fuzzy predicates be tested for
correctness and efficiency on a test database before running against
the production database. Use db2look to match the test database
catalog statistics to the production so that the optimizer uses the same
catalog statistics while evaluating test SQL. The recommended basic
statement is:

db2look --has many parameters that must be evaluated and set
 --by the DBA.
-d DBname --alias name of production database
-a --ignores -u Creator parameter; generates stats for all
 --database users

RANDOM

You can use the random nested table expression to populate the test
database. SQL template (this requires customization based on your
specific environment to provide a proper population).

INSERT INTO student_test
SELECT *
FROM (SELECT INTEGER(RAND()* "n") --n is row quantity
 FROM student)

You now have a test database with the current statistics from the
production database and sample SQL statements such as:

SELECT student_id, surname, gpa, total_absence_days
FROM student
WHERE gpa BETWEEN 86.34 AND 91.68
AND total_absence_days BETWEEN 8.89 AND 13.12

The SELECT above is very simple. Many fuzzy SELECT statements
require complex objects such as CASE, compound SQL,
CORRELATION, COVARIANCE, GROUPING operands of
grouping-sets or super-groups including CUBE and ROLLUP, join

 6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and joined-table operands of left outer join or right outer join or full
outer join, REGRESSION, STDDEV (standard deviation), subselects
including correlated, UNION, and many more. The sequence of
objects or operations can drastically affect efficiency. It is essential to
EXPLAIN each fuzzy SELECT.

EXPLAIN

The author recommends using DB2 Visual Explain (DB2VE) as your
SQL performance tool, if it is available. The main reasons include:

• DB2VE offers suggestions for improving performance of your
SQL queries or statements.

• You can change the SQL to fit the suggestions and then dynamically
EXPLAIN again to see if the access path is improved by the
change.

• DB2VE uses graphs to show access paths, eliminating the need
to look up the values in the plan table, which most people find
difficult and time-consuming. Comparing graphs of the same
SQL statement in different formats quickly reveals which is best.
Version 6 graphs can provide statement costs in milliseconds and
service units.

• You can browse the current subsystem parameters’ values and get
their meaning.

In any case, use EXPLAIN to get the optimum performance for any
SQL statement but particularly for dynamic SQL.

SUMMARY

The following points summarize the best way to proceed:

• Translate user fuzzy predicates into column names.

• Determine whether there is an index for each column name
(DESCRIBE is recommended). If not, CREATE INDEX.
EXPLAIN will show whether the index is useful and, if it is not
needed, it can be DROPped without affecting the database.

• CREATE a test database:

 7© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

– Use db2look to provide production database catalog statistics.

– Populate the test database with production rows. Random is
a possible population tool.

• Write a fuzzy SELECT statement:

– Use EXPLAIN (DB2 Visual Explain is recommended) for
optimization.

• Implement the optimized fuzzy SELECT on the production
database.

WHY

Implementing fuzzy SELECT provides users with more relevant
answers, allowing them to make better decisions that can dramatically
and positively affect the bottom line.

It allows DBAs to become organizational heroes since they are
satisfying important user needs that have been neglected for decades.

Fuzzy logic and fuzzy SELECT should be in every enterprise toolbox!

Eric Garrigue Vesely
Principal
Analyst Workbench Consulting (Malaysia) © Xephon 2000

Reorganizing the DB2 catalog and directory

Since Version 4 of DB2 it has been possible for DBAs to expediently
reorganize the DB2 catalog and DB2 directory in a systematic manner
using the native IBM REORG utility. This article will describe how
to reorganize the DB2 catalog and provide implementation tips and
advice.

WHAT ARE THE DB2 CATALOG AND DB2 DIRECTORY?

The DB2 catalog is the central repository for DB2 object and user
meta data. DB2 is constantly referring to that meta data as it processes

 8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

applications and queries. The physical condition of the tablespaces
and indexes that comprise the DB2 catalog is therefore a major
component in overall DB2 subsystem performance.

Likewise, the DB2 directory contains internal control structures such
as DBDs, skeleton cursor tables, and skeleton package tables that can
be accessed only by DB2 itself. The information in the DB2 directory
is critical for database access, utility processing, plan and package
execution, and logging. It is quite obvious that efficient access to this
critical information should be of paramount importance.

Prior to DB2 Version 4, reorganization of the DB2 catalog and DB2
directory was not possible using the REORG utility. The only option
for any type of ‘reorganization’ activity was to run the RECOVER
INDEX utility on DB2 catalog indexes. This rebuilt the indexes, but
had no impact on the underlying data housed in actual physical
tablespaces.

As of DB2 Version 4 it is permitted to execute the REORG utility on
tablespaces and indexes in the DB2 catalog database (DSNDB06) and
on specific tablespaces (SCT02, SPT01, and DBD01) in the DB2
directory database (DSNDB01).

WHEN SHOULD THE DB2 CATALOG AND DIRECTORY BE
REORGANIZED?

To determine when to reorganize the system catalog, DBAs can use
the same basic indicators used to determine whether application
tablespaces should be reorganized. Although it always has been a wise
course of action to execute RUNSTATS on the DB2 catalog tablespaces,
it becomes even more important now that these tablespaces can be
reorganized. The RUNSTATS utility collects statistical information
that is used by the optimizer to generate access paths. Additionally,
these statistics can be analysed to determine when a REORG should
be run. When RUNSTATS is run for a catalog tablespace, the statistics
about that system catalog tablespace are gathered and then stored in
the DB2 catalog tables themselves! The table contained in Figure 1
should serve as a basic guide to help in determining when to reorganize
system catalog tablespaces and indexes.

 9© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Note that the data in Figure 1 can be used for data contained in
application tablespaces and indexes as well as DB2 catalog tablespaces
and indexes. For application tablespaces, though, you may also wish
to use the PERCDROP column in SYSIBM.SYSTABLEPART to
determine when to reorganize application tablespaces. PERCDROP
does not apply to DB2 catalog tablespaces because tables cannot be
dropped from the DB2 catalog.

Column Catalog table Object Impact

NEAROFFPOS SYSIBM.SYSINDEXPART TABLESPACE +
FAROFFPOS SYSIBM.SYSINDEXPART TABLESPACE ++++
CLUSTERRATIO SYSIBM.SYSINDEXES INDEX - - - - -
NEARINDREF SYSIBM.SYSTABLEPART INDEX +
FARINDREF SYSIBM.SYSTABLEPART INDEX ++++
LEAFDIST SYSIBM.SYSINDEXPART INDEX +++

Figure 1: Reorganization indicators

The column and table name where the statistic can be found is given
in the first two columns of the chart. The third column indicates
whether the statistic is applicable for a tablespace or an index. The
fourth column gives an indication of the impact of the statistic. A plus
(+) sign indicates that you should REORG more frequently as the
value in that column gets larger. A minus (-) sign indicates that you
should REORG more frequently as the value gets smaller. As the
number of ‘+’ or ‘-’ signs increases, the need to REORG becomes
more urgent. For example, as FAROFFPOS gets larger, the need to
REORG is more urgent, as indicated by the five plus (+) signs.

For the SYSDBASE, SYSVIEWS, and SYSPLAN catalog tablespaces,
the value for the FAROFFPOS and NEAROFFPOS columns of
SYSINDEXPART can be higher than for other tablespaces before
they need to be reorganized.

In addition to the guidelines in Figure 1, consider DB2 catalog and
DB2 directory reorganization in the following situations:

• To reclaim space and size tablespaces appropriately when DB2

 10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

catalog and directory datasets are not using a significant portion
of their allocated disk space (PRIQTY).

• When it is necessary to move the DB2 catalog and directory to a
different storage device.

• When the DB2 catalog and directory datasets contain a large
number of secondary extents.

The bottom line, however, with regard to catalog reorganization is not
to go overboard. Let’s face it, we could not REORG the DB2 catalog
at all for over a decade, and we somehow managed to get by. Although
reorganizing the DB2 catalog and directory can bring performance
gains to a DB2 environment, you do not need to schedule a weekly or
monthly catalog reorganization job. Instead, monitor the key statistics
and REORG only as needed.

SYNCHRONIZING SYSTEM CATALOG REORGANIZATION

It is a more difficult prospect to determine when the DB2 directory
tablespaces should be reorganized. The RUNSTATS utility does not
maintain statistics for these ‘tablespaces’ like it does for the DB2
catalog.

However, it is possible to base the reorganization of the DB2 directory
tablespaces on the reorganization schedule of the DB2 catalog
tablespaces. In fact, in certain situations, it is imperative that specific
DB2 directory tablespaces are reorganized when a ‘companion’ DB2
catalog tablespace is reorganized. The chart contained in Figure 2
provides information on keeping the DB2 catalog and DB2 directory
tablespaces ‘in sync’.

When you REORG: Be sure to also REORG:

DSNDB06.SYSDBASE DSNDB01.DBD01
DSNDB06.SYSPLAN DSNDB01.SCT02
DSNDB06.SYSPKAGE DSNDB01.SPT01

Figure 2: Reorganization indicators

 11© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

These tablespaces are logically related and DB2 requires that you
reorganize them at the same time to keep them synchronized.

DB2 CATALOG AND DIRECTORY REORGANIZATION DETAILS

The DB2 catalog is composed of 13 tablespaces and 63 tables all in a
single database, DSNDB06 (refer to Figure 3). There are six DB2

directory tablespaces in a separate database, DSNDB01 (refer to
Figure 4). DB2 has different rules for different sets of these tablespaces.
There are three groupings of tablespaces, those that:

• Cannot be reorganized at all.

• Can be reorganized using normal REORG procedures.

• Can be reorganized using special REORG procedures.

There are only two tablespaces in the first grouping of tablespaces that
cannot be reorganized at all – DSNDB01.SYSUTILX and
DSNDB01.SYSLGRNX. Do not attempt to reorganize these
tablespaces because DB2 will not permit it.

The second grouping of tablespaces are those that the REORG utility

Database name: DSNDB06
Tablespaces:
SYSCOPY Contains image copy information
SYSDBASE Contains database object information
SYSDBAUT Contains database and database authority information
SYSDDF Contains data distribution details
SYSGPAUT Contains resource authority information
SYSGROUP Contains storage group information
SYSOBJ Contains object/relational information
SYSPLAN Contains plan information
SYSPKAGE Contains package information
SYSSTATS Contains optimization statistics
SYSSTR Contains translation and check constraint information
SYSUSER Contains user authority information
SYSVIEWS Contains view information

Figure 3: DB2 catalog tablespaces

 12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

processes as it would any other tablespace:

• DSNSB06.SYSCOPY

• DSNDB06.SYSDDF

• DSNSB06.SYSGPAUT

• DSNDB06.SYSOBJ

• DSNSB06.SYSPKAGE

• DSNSB06.SYSSTATS

• DSNSB06.SYSSTR

• DSNSB06.SYSUSER

• DSNSB01.SCT02

• DSNSB01.SPT01.

The third, and final, grouping of tablespaces must be processed
differently from other tablespaces:

• DSNDB06.SYSDBASE

• DSNDB06.SYSDBAUT

• DSNDB06.SYSGROUP

• DSNDB06.SYSPLAN

• DSNDB06.SYSVIEWS

• DSNDB01.DBD01.

Database name: DSNDB01
Tablespaces:
DBD01 Contains database descriptor information
SCT01 Contains skeleton cursor table information
SPT02 Contains skeleton package table information
SYSLGRNX Contains recovery log range information
SYSUTILX Contains utility processing information

Figure 4: DB2 directory tablespaces

 13© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

These six tablespaces require special ‘handling and care’. Because
they have a different internal configuration from most other tablespaces,
a different calculation is required for the size of the unload dataset
(SYSREC) used during the REORG utility. These tablespaces contain
internal links. Links are internal pointers that tie the information in
their tables together hierarchically. A link can be thought of as a type
of parent-child relationship. Because of these links, the BUILD and
SORT phases of the REORG utility are not executed.

The WORKDDN, SORTDATA, SORTDEVT, and SORTNUM options
are ignored when reorganizing these tablespaces.

Also, the REORG utility cannot be restarted from the last checkpoint
when used against these six tablespaces. Instead, it must be restarted
from the beginning of the PHASE.

Also, as mentioned before, a different set of steps must be executed
during reorganization for these tablespaces.

STEPS TO REORG THE SIX ‘SPECIAL’ TABLESPACES

There are special requirements for reorganizing the six ‘different’
tablespaces, namely:

• DSNDB06.SYSDBASE

• DSNDB06.SYSDBAUT

• DSNDB06.SYSGROUP

• DSNDB06.SYSPLAN

• DSNDB06.SYSVIEWS

• DSNDB01.DBD01.

For these tablespaces, REORG will reload the indexes in addition to
the tablespace during the reload phase. Therefore, REORG does not
need to store the index keys in a work dataset for sorting. The
following steps should be used when reorganizing these six ‘different’
tablespaces:

1 Calculate the size of the unload dataset (SYSREC).

 14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The SYSREC dataset for the ‘special’ tablespaces has a different
format from the other tablespaces. This causes a special calculation
to be required to determine its size. The equation to use is:

DATASET SIZE IN BYTES = (28 + LONGROW) * NUMROWS

NUMROWS is the number of rows to be contained in the dataset
and LONGROW is the length of the longest row in the tablespace.
The value for LONGROW can be determined by running the
following SQL statement:

SELECT MAX(RECLENGTH)
FROM SYSIBM.SYSTABLES
WHERE DBNAME = 'DSNDBØ6'
AND TSNAME = 'name of tablespace to REORG'
AND CREATOR = 'SYSIBM';

2 Ensure incompatible operations are not executing.

3 Start database DSNDB01 and DSNDB06 for read-only access.

4 Run QUIESCE and DSN1CHKR utilities.

5 Take a full image copy of the entire DB2 catalog and directory
tablespaces.

6 Start DSNDB01 and DSNDB06 for utility access.

7 Execute the REORG utility.

8 Take a full image copy of the entire DB2 catalog and directory
tablespaces.

9 Start tablespace and associated indexes for read/write access.

Additionally, keep in mind that the WORKDDN, SORTDATA,
SORTDEVT, SORTNUM, SORTKEYS, COPYDDN, and
RECOVERYDDN options are ignored for these six ‘special’ DB2
catalog and directory tablespaces.

STEPS TO REORG REGULAR TABLESPACES

The following steps should be used when reorganizing the remaining
‘regular’ system catalog and directory tablespaces:

 15© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

• Calculate the size of the unload dataset (SYSREC) using the
normal calculation:

DATASET SIZE IN BYTES = LONGROW * NUMROWS

In this case it is unnecessary to add the additional 28 bytes to the
length of the longest row. This is because these system catalog
tablespaces do not utilize links.

• Ensure that incompatible operations are not concurrently executing
(see the next section for an explanation of incompatible operations).

• Start the tablespace and its associated indexes for read-only
access.

• Run CHECK INDEX on all indexes associated with the tablespace
that is being reorganized.

• Take a full image copy of the entire DB2 catalog and directory
tablespaces.

• Start the tablespace and its associated indexes for utility access.

• Execute the REORG utility.

• Take a full image copy of the entire DB2 catalog and directory
tablespaces.

• Start the tablespace and any associated indexes for read/write
access.

These steps should be familiar to you because they closely follow the
steps executed during the reorganization of an application data
tablespace. There are several additional steps required as an added
precaution because of the critical nature of the DB2 catalog and
directory.

CATALOG REORGANIZATION RESTRICTIONS

In addition to the procedures outlined previously, there are several
restrictions on the manner in which the REORG TABLESPACE
utility can be used with system catalog tablespaces. Firstly, recall that
the SYSLGRNX and SYSUTILX tablespaces in the DB2 directory
cannot be reorganized at all.

 16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Furthermore, when reorganizing the DB2 catalog (DSNDB06) and
DB2 directory (DSNDB01) tablespaces, the following options cannot
be used:

• The UNLOAD ONLY option is not permitted.

• The LOG YES option is not permitted because image copies are
explicitly required following a DB2 catalog and/or DB2 directory
reorganization.

Also, DB2 tracks the reorganization of two specific tablespaces
differently from any other. Generally, DB2 will record the
reorganization of any tablespace in the SYSIBM.SYSCOPY system
catalog table. However, DB2 records the reorganization of the
DSNSB06.SYSCOPY and DSNDB01.DBD01 tablespaces in the log
instead. Therefore, the REORG utility will scan logs to verify that an
image copy is available. If an image copy is not found, the REORG
will request archive logs.

Finally, in many 24 x 7 environments, it may be necessary to
reorganize the system catalog and dictionary while it is being accessed.
However, because of the central nature of the system catalog and
directory to the operation of DB2, there are restrictions on concurrent
activity during catalog reorganization. These restrictions on concurrent
activity are listed below:

• ALTER, DROP, and CREATE statements cannot be executed
during the reorganization of any DB2 catalog or DB2 directory
tablespace with the exception of SYSIBM.SYSSTR and
SYSIBM.SYSCOPY.

• The BIND and FREE commands cannot be issued when the
following tablespaces are being reorganized:
SYSIBM.SYSDBAUT, SYSIBM.SYSDBASE, SYSIBM.
SYSGPAUT, SYSIBM.SYSPKAGE, SYSIBM.SYSPLAN,
SYSIBM.SYSSTATS, SYSIBM.SYSUSER, and SYSIBM.
SYSVIEWS.

• No DB2 utility can be running while SYSIBM.SYSCOPY,
SYSIBM.SYSDBASE, SYSIBM.SYSDBAUT, SYSIBM.
SYSSTATS, and/or SYSIBM.SYSUSER are being reorganized.

 17© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

• No plan or package may be executed during the reorganization of
SYSIBM.SYSPLAN and SYSIBM.SYSPKAGE.

• The GRANT and REVOKE statements cannot be issued when
REORG is being run on SYSIBM.SYSDBASE,
SYSIBM.SYSDBAUT, SYSIBM.SYSGPAUT, SYSIBM.
SYSPKAGE, SYSIBM.SYSPLAN, and/or SYSIBM.SYSUSER.

SYNOPSIS

The ability to reorganize the DB2 catalog and directory tablespaces
provides the DBA with a potent tool for system tuning. If you have not
yet started to run RUNSTATS on the system catalog tablespaces,
begin to do so immediately. This will enable you to determine when
your DB2 catalog and directory will need to be reorganized. Good
luck and happy tuning.

Craig S Mullins
Director, DB2 Technology Planning
BMC Software (USA) © Craig S Mullins 2000

Call for papers
Why not share your expertise and earn money at the same time?
DB2 Update is looking to swell the number of contributors who
send in technical articles, hints and tips, and utility programs,
etc. We would also be interested in articles about performance
and tuning, and information and tips for DB2 DBAs. If you
have an idea for an article, or you would like a copy of our Notes
for Contributors, contact the editor, Trevor Eddolls, at any of
the addresses shown on page 2.

 18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Distributing index pieces to different volumes

You can decrease I/O contention on tablespaces by defining them as
partitioned and spreading the partitions across various I/O paths. Also
you can do the same thing for partitioned indexes, but you could have
contention on non-partitioned indexes (NPI).

In Version 5, IBM announced the keyword PIECESIZE. By using this
keyword you can divide a huge index into small pieces.

With partitioned indexes, you can assign different storage groups to
different partitions. With this definition, you can split them up on
different volumes. But you can’t do this for NPIs. For NPIs you can
assign only one storage group to the index.

You can solve this problem by moving the pieces of your index onto
different volumes manually. But when you REORG or recover this
index, all the pieces go to the same volume and you have to move
index pieces again.

To circumvent this problem, I developed three REXX programs. The
first program, NPICHECK, works every day and checks for the
volumes used that have a PIECE of the index and which are still in the
storage group. If it finds a volume like this, it creates a DDL to remove
it from the storage group. The second program, NPISTART, works
before a REORG or recover of the index. It creates DDL to add
volumes that are physically used by the index but not in the storage
group of the NPI. The last program, NPIMOVE, does the main
process. It QUIESCEs necessary tablespaces to write the pages that
are in the bufferpool. Then it stops related DB2 objects to prevent
update activity. Thirdly, it finds the necessary PIECES, which have to
be moved, and moves them. It removes physically-used volumes from
the storage group to prevent usage of the same volume again. And
finally it starts stopped objects. The program does not do the process
internally. It just creates the necessary statements.

NPICHECK

The program NPICHECK executes a query on the catalog tables and

 19© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

it finds all NPIs with VCAT, storage group, and volumes. Then, for all
NPIs, it finds cluster names by executing the LISTC LEVEL command;
it then finds the physical volume names of the clusters by executing
the LISTC ENT VOLUMES command. If the storage group volume
is used physically, the program creates a DDL to REMOVE it using
the command ALTER STOGROUP REMOVE VOLUMES. The
program writes all REMOVE DDLs to DDLOUT DD. If the program
doesn’t find any volumes to remove from the storage group, DDLOUT
will include just a COMMIT command.

/***REXX**/
/* */
/* NPICHECK: Used to REMOVE physically-used volumes */
/* ========= from a stogroup of a non-partitioned index */
/* with a PIECESIZE. */
/* */
/* Description: S1 - Get the names of indexspaces that have a */
/* ============ PIECESIZE value. */
/* S2 - For all Indexspaces */
/* S2 - i. Get the physical volume names that are*/
/* used by the indexspace PIECE. */
/* S2 - ii. If the volume name is EXIST in STOGRP */
/* and the name of the volume is not */
/* DB2EX1 (default volume for all */
/* storage groups). */
/* S3 - Write all DDL into DD called DDLOUT. */
/* */
/***/
ADDRESS TSO /* PGM will work in TSO environment, */
"PROFILE NOPREFIX" /* without TSO prefix. */

SYSINCnt = Ø /* DDL line counter */

OldIXClust = '' /* Old index cluster name */
 /* Get the necessary info about the non-*/
 /* partitioned indexes with a PIECESIZE */
 /* value */
SQLQUERY = ,
 "SELECT C.VCATNAME, A.DBNAME, A.INDEXSPACE, B.SGNAME, B.VOLID" ||,
 " FROM SYSIBM.SYSINDEXES A, SYSIBM.SYSVOLUMES B, " ||,
 " SYSIBM.SYSINDEXPART C " ||,
 " WHERE " ||,
 " C.PARTITION = Ø AND A.NAME = C.IXNAME " ||,
 " AND A.CREATOR = C.IXCREATOR " ||,
 " AND C.STORNAME = B.SGNAME " ||,
 " AND A.PIECESIZE > Ø AND A.PIECESIZE < 2Ø97152 " ||,
 "ORDER BY 1 ASC, 2 ASC, 3 ASC "

 20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ADDRESS LINK "REXXSQL"
If RC = Ø & SQLSTATE = Ø & _NROWS > Ø Then
 Do /* SQL executed successfully */
 Do RowCnt = 1 to _NROWS
 IxClust = Strip(VCATNAME.RowCnt) || ".DSNDBC." ||,
 Strip(DBNAME.RowCnt) || '.' ||,
 Strip(INDEXSPACE.RowCnt) /* The cluster name of NPI */
 If IxClust ¬= OldIXClust Then /* Is it new cluster */
 Do
 VolStr = '' /* To keep physical volume */
 /* names of the Cluster */
 OldIXClust = IXClust
 Call GetVolumes /* Get the volume names */
 End
 If Pos(VolID.RowCnt,VolStr) ¬= Ø Then /* Is Stogroup Volume */
 /* used physically */
 Do
 SYSINCnt = SYSINCnt + 1 /* Yes, prepare a DDL */
 SYSINLine.SYSINCnt = " " /* to REMOVE it from the */
 SYSINCnt = SYSINCnt + 1 /* Stogroup */
 SYSINLine.SYSINCnt = " ALTER STOGROUP " ||,
 Strip(SGNAME.RowCnt) || " REMOVE VOLUMES(" ||,
 Strip(VOLID.RowCnt) || ") ;"
 SYSINCnt = SYSINCnt + 1
 SYSINLine.SYSINCnt = " "
 End
 End
 End

SYSINCnt = SYSINCnt + 1 /* To COMMIT the unit of */
SYSINLine.SYSINCnt = " " /* work */
SYSINCnt = SYSINCnt + 1
SYSINLine.SYSINCnt = " COMMIT ; "
SYSINCnt = SYSINCnt + 1
SYSINLine.SYSINCnt = " "

"EXECIO * DISKW DDLOUT (FINIS STEM SYSINLine." /* Write down the */
 /* prepared DDL into a DD called DDLOUT */
Exit(ØØ) /* Leave the program */

/*****************-----------------------------------*****************/
/* GETVolumes: Get the volume names of the NPI that are physically */
/* used. */
/*****************-----------------------------------*****************/
GetVolumes: Procedure,
 EXPOSE VolStr IXClust

ReturnCode = OutTrap('Mesaj.') /* Execute LISTC LVL to get the PIECE*/
"LISTC LVL(" || IXClust || ")" /* names of the NPI */
Dummy = OutTrap('OFF')

 21© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Do I = 1 to Mesaj.Ø
 If SubStr(Mesaj.I,1,7) = "CLUSTER" Then /* For each PIECE get the */
 Do /* volume name */
 IndexDSet = Strip(SubStr(Mesaj.I,17,44)) /* PIECE name */

 ReturnCode = OutTrap('ListCOut.')
 "LISTC ENT(" || IndexDSet || ") VOLUME"
 Dummy = OutTrap('OFF')

 Do J = 1 to ListCOut.Ø
 If SubStr(ListCOut.J,8,6) = "VOLSER" Then
 Do
 /* DB2EX1 is the default */
 /* volume for all stogroups */
 Volume = SubStr(ListCOut.J,26,6)
 If Pos(Volume,VolStr) = Ø & Volume ¬= "DB2EX1" Then
 VolStr = VolStr || Volume || ' '
 End
 End
 End
End
Return /* Go back to caller */

JCL FOR NPICHECK

//JNPICHCK JOB ,NPICHECK,CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//NPICHECK EXEC PGM=IKJEFTØ1,PARM='%NPICHECK'
//SYSEXEC DD DISP=SHR,DSN=SØØØ.COMM.REXX
//DDLOUT DD DISP=(NEW,PASS),SPACE=(TRK,(1,1)),UNIT=SYSALLDA,
// DCB=(LRECL=8Ø,RECFM=FB,DSORG=PS,BLKSIZE=272ØØ)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//REMOVE EXEC DYNSQL
//SYSIN DD DISP=(OLD,DELETE),DSN=*.NPICHECK.DDLOUT
/*

NPISTART

The program NPISTART reads the DD called INDEX. In this DD
there are NPI cluster names (four qualifiers; the format is
high_level_qualifier.DSNDBC.database_name.indexspace_name; at
each row there is only one name). Then it finds the storage group of
the NPI. By executing another query, it finds the volumes of the
storage group. By executing the LISTC LVL command, the program
finds the cluster names of the NPI; and by executing the LISTC ENT
VOLUMES command on each cluster, it finds the physical volume

 22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

names. Then it compares the physical volume names with the storage
group volume names. If a volume does not exist in a storage group, the
program creates DDL to ADD this volume to the storage group. The
created DDL will be written to a DD called SQLOUT.

/***REXX**/
/* */
/* NPISTART: Used to add the physical volume names of non-part. */
/* ========= index with PIECESIZE to the stogroup. */
/* */
/* Description: S1 - Read DD called INDEX to get the names of NPIs. */
/* ============ Format of the input is cluster name of the NPI */
/* till INDEXSPACE name. */
/* S2 - Get the physical volume names of the different */
/* datasets (PIECE) of the same NPI. */
/* S3 - Prepare necessary DDL to add the volumes into */
/* Stogroup of the NPI. */
/* S4 - If there is another NPI go to S1. */
/* S5 - Write prepared DDL into DD called SQLOUT. */
/* */
/* Return Codes: */
/* ============= */
/* RC Description */
/* -- -- */
/* ØØ Normal completion. */
/* Ø8 No STOGROUP name found for NPI. */
/* 12 No NPI name supplied. */
/***/
ADDRESS TSO
"PROFILE NOPREF"

"EXECIO * DISKR INDEX (FINIS STEM IndexLine." /* Get the names of NPI*/
If RC ¬= Ø | IndexLine.Ø = Ø Then
 Do /* No NPI name found */
 Say "ERROR 1: At least one NPI should be supplied"
 Exit(12) /* Leave the program RC = 12 */
 End

OutCnt = Ø /* Output line counter (DDL) */

Do LineCnt = 1 to IndexLine.Ø /* Continue for all NPIs */

 Obje = Strip(SubStr(Strip(IndexLine.LineCnt),1,44)) /* Name of NPI */
 ObjeII = Translate(Obje,' ','.') /* To get DBName & Indexspace */

 SQLQUERY = "SELECT STORNAME " ||,
 " FROM SYSIBM.SYSINDEXPART, SYSIBM.SYSINDEXES " ||,
 " WHERE NAME = IXNAME AND CREATOR = IXCREATOR AND " ||,

 23© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 " DBNAME = '" || Word(ObjeII,3) || "' AND " ||,
 " INDEXSPACE = '" || Word(ObjeII,4) || "'"
 ADDRESS LINK "REXXSQL"
 If RC = Ø & SQLSTATE = Ø & _NROWS > Ø Then
 Stogroup = Strip(STORNAME.1) /* Get the STOGROUP of NPI */
 Else
 Do
 Say "ERROR 2: Couldn't get the STOGROUP for " || Obje
 Say " SQLSTATE = " || SQLSTATE
 Exit(Ø8)
 End
 /* Get the volumes of Stogroup */
 SQLQUERY = "SELECT VOLID " ||,
 " FROM SYSIBM.SYSVOLUMES " ||,
 " WHERE SGNAME = '" || Stogroup || "'"
 ADDRESS LINK "REXXSQL"
 STGStr = ''
 Do Cnt = 1 to _NROWS /* Create volume string for STOGROUP */
 STGStr = STGStr || VolID.Cnt || ' '
 End

 ReturnCode = OutTrap('LVLMsg.') /* Execute LISTC LVL for NPI */
 "LISTC LVL(" || Obje || ")"
 Dummy = OutTrap('OFF')

 VolStr = '' /* To keep physical Volsers */

 Do I = 1 to LVLMsg.Ø
 If SubStr(LVLMsg.I,1,7) = "CLUSTER" Then
 Do
 IndexDSet = Strip(SubStr(LVLMsg.I,17,44)) /* Index Dset name */

 /* Execute LISTC ENT to get*/
 ReturnCode = OutTrap('ListCOut.') /* names of volsers */
 "LISTC ENT(" || IndexDSet || ") VOLUME"
 Dummy = OutTrap('OFF')

 Do J = 1 to ListCOut.Ø /* Trap volsers */
 If SubStr(ListCOut.J,8,6) = "VOLSER" Then
 Do
 Volume = SubStr(ListCOut.J,26,6)

 /* If volume is not added to physical volume list or*/
 /* not added to STOGROUP volume list then add */

 If Pos(Volume,VolStr) = Ø &,
 Pos(Volume,STGStr) = Ø Then
 VolStr = VolStr || Volume || ' '
 End
 End /* EOF ListCOut trap */

 24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 End
 End /* EOF LVLMsg trap */

 /* Add new volumes to DDL */
 OutCnt = OutCnt + 1
 OutLine.OutCnt = ' '
 OutCnt = OutCnt + 1
 OutLine.OutCnt = " ALTER STOGROUP " || Stogroup
 OutCnt = OutCnt + 1
 OutLine.OutCnt = " ADD VOLUMES(" || SubStr(VolStr,1,6) || ","
 VolStr = DelStr(VolStr,1,7)
 NumOfVol = Length(VolStr) % 7

 Do Cnt = 1 to NumOfVol
 Volume = SubStr(VolStr,1,6)
 VolStr = DelStr(VolStr,1,7)
 OutCnt = OutCnt + 1
 OutLine.OutCnt = " " || Volume || ","
 End
 Str = OutLine.OutCnt
 OutLine.OutCnt = DelStr(Str,Length(Str),1) || ") ;"
 OutCnt = OutCnt + 1
 OutLine.OutCnt = ' '
 OutCnt = OutCnt + 1
 OutLine.OutCnt = " COMMIT ;"
End /* Continue with the next NPI */

"EXECIO * DISKW SQLOUT (FINIS STEM OutLine." /* Write DDL */
Exit(ØØ) /* EOF program execution */

JCL FOR NPISTART

//PBSANP1R JOB ,PBSANP1R,CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//BSANPIØ1 EXEC PGM=IKJEFTØ1,PARM='%NPISTART'
//SYSEXEC DD DISP=SHR,DSN=SØØØ.COMM.REXX
//SYSTSIN DD DUMMY
//SYSTSPRT DD SYSOUT=*
//***
//* Prepared ALTER STOGROUP Statements will be written to DD **
//* called SQLOUT **
//***
//SQLOUT DD DISP=(NEW,PASS),DCB=(LRECL=8Ø,BLKSIZE=312Ø,RECFM=FB),
// UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//***
//* First 4 qualifiers of the NPI cluster **
//***
//INDEX DD *
PBSA.DSNDBC.DPBSAØ1.XBSA1KVK
/*

 25© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

//ALTSTGRP EXEC DYNSQL,COND=(Ø,NE)
//SYSIN DD DISP=(OLD,DELETE),DSN=*.BSANPIØ1.SQLOUT
/*
//RECINDEX EXEC DSNUPROC,SYSTEM=DB1P,UID='PBSANP1R',COND=(Ø,NE)
//SYSPRINT DD SYSOUT=*
//DSNUPROC.SYSIN DD *
 RECOVER INDEX (PBSA.XBSA_THAREKETØ3)
/*

NPIMOVE

The program NPIMOVE reads the DD called INDEX. At this DD
there are NPI cluster names (four qualifiers; the format is
high_level_qualifier.DSNDBC.database_name.indexspace_name; at
each row there is only one name). Then it finds the storage group and
the tablespace name of the NPI and creates QUIESCE and STOP
commands. It writes QUIESCE commands to QUIESCE DD, and
STOP commands to STOP DD. Then it finds the volumes of the
storage group and physical volumes of the NPI. It compares these
volumes and find PIECEs that should be moved. It writes the necessary
MOVE commands to DMS DD. At our site we use DMS, from
Sterling Software (now CA), for data management. Then the program
creates the necessary DDL to remove physically-used volumes from
the storage group. It writes these statements to SQL DD. Finally it
sends START control statements to the START DD.

/***REXX**/
/* */
/* NPIMOVE : Used for distribution of non-partitioned indexes with */
/* --------- PIECESIZE onto different volumes. */
/* */
/* Description: - Start execution */
/* ============ - Reads DD called INDEX to get the names of NPIs. */
/* Format of the input is cluster name of the NPI */
/* till INDEXSPACE name. */
/* - Get the Storage Group name and TS name of the */
/* NPI (Step 1). */
/* - Create QUIESCE and STOP commands. */
/* - Get the volumes of the storage group. */
/* - Get the physical volume names of the NPI. */
/* - Find used volumes of the storage group. */
/* - Create MOVE control statements. */
/* - Remove physically used volumes from STOGROUP. */
/* - Go to Step 1 (Continue with the next NPI). */
/* */

 26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* Return Codes: */
/* ============= */
/* RC Description */
/* -- --- */
/* ØØ Normal completion */
/* Ø8 No STOGROUP name found for NPI. */
/* 1Ø There is not enough volume for Stogroup. */
/* 12 No NPI name supplied. */
/***/
ADDRESS TSO /* PGM will work in TSO environment */
"PROFILE NOPREFIX" /* without TSO prefix. */

"EXECIO * DISKR INDEX (FINIS STEM IndexLine." /* Get the names of NPI*/
If RC ¬= Ø | IndexLine.Ø = Ø Then
 Do
 Say "ERROR 1: At least one NPI should be supplied"
 Exit(12) /* Leave the program RC = 12 */
 End

STOSTACnt = Ø /* STOP-START command line counter */

QUICnt = Ø /* QUIESCE line counter */
QUIStr = '' /* DB2 Object names for QUIESCE */

DMSCnt = Ø /* DMS line counter */

SQLCnt = Ø /* SQL line counter */

Do LineCnt = 1 to IndexLine.Ø /* Continue for all NPIs */

 Obje = Strip(SubStr(Strip(IndexLine.LineCnt),1,44)) /* Index name */
 ObjeII = Translate(Obje,' ','.')

 SQLQUERY = ,
 "SELECT A.STORNAME, C.DBNAME, C.TSNAME " ||,
 " FROM SYSIBM.SYSINDEXPART A, " ||,
 " SYSIBM.SYSINDEXES B, " ||,
 " SYSIBM.SYSTABLES C " ||,
 "WHERE B.NAME = A.IXNAME AND B.CREATOR = A.IXCREATOR AND" ||,
 " B.DBNAME = '" || Word(ObjeII,3) || "' AND " ||,
 " B.INDEXSPACE = '" || Word(ObjeII,4) || "' AND " ||,
 " C.NAME = B.TBNAME AND C.CREATOR = B.TBCREATOR "
 ADDRESS LINK "REXXSQL"
 If RC = Ø & SQLSTATE = Ø & _NROWS > Ø Then
 Do
 Stogroup = Strip(STORNAME.1) /* STOGROUP of INDEXSPACE */
 Call BeforeProcess /* Create QUIESCE and STOP */
 End
 Else

 27© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 Do /* Couldn't get STOGROUP */
 Say "ERROR 2: Wrong SQL = " || SQLQUERY
 Say " SQLSTATE = " || SQLSTATE
 Exit(Ø8)
 End

 Call GetStgVolumes /* Get the volumes of STOGROUP */

 Call GetDSetVolumes /* Get physical volumes of INDEXSPAC*/

 Call FindUsedVolumes /* Find Used volumes of STOGROUP */

 Call MoveProcess /* Create MOVE process (DMS) */

 Call RemoveVolumes /* Remove physically used volumes */

End /* The same process for next NPI */

If DMSCnt = Ø Then /* Is there any dataset to move */
 Do /* There is no dataset to move, leave RC=Ø4 */
 Say "WARNING: "
 Exit(Ø4)
 End

"EXECIO * DISKW DMS (FINIS STEM DMSLine." /* Write down DMS stmnts. */

"EXECIO * DISKW SQL (FINIS STEM SQLLine." /* Write down SQL stmnts. */

"EXECIO * DISKW STOP (FINIS STEM STOSTALine." /* Write down STOP cmds*/

"EXECIO * DISKW QUIESCE (FINIS STEM QUILine." /* QUIESCE statements */

Do Cnt = 1 to STOSTACnt
 If Pos(" -STOP ",STOSTALine.Cnt) ¬= Ø Then
 STOSTALine.Cnt = " -START " || DelStr(STOSTALine.Cnt,1,7)
End
"EXECIO * DISKW START (FINIS STEM STOSTALine." /* START commands */

Exit(ØØ) /* Leave the program */

/*****************-----------------------------------*****************/
/* BeforeProcess: Create QUIESCE and STOP statements for the objects */
/*****************-----------------------------------*****************/
BeforeProcess: Procedure,
 EXPOSE STOSTACnt STOSTALine. ObjeII DBNAME. TSNAME.,
 QUIStr QUICnt QUILine.

STOSTACnt = STOSTACnt + 1 /* STOP line counter */
STOSTALine.STOSTACnt = " DSN SYSTEM(DB1P)"
STOSTACnt = STOSTACnt + 1

 28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

STOSTALine.STOSTACnt = " -STOP DATABASE(" ||,
 Word(ObjeII,3) || ") SPACENAM(" || Word(ObjeII,4) ||,
 ")" /* STOP command for NPI */

TSSpec = Strip(DBNAME.1) || '.' || Strip(TSNAME.1)
If Pos(TSSpec,QUIStr) = Ø Then
 Do
 QUIStr = QUIStr || Left(TSSpec,17)
 QUICnt = QUICnt + 1 /* QUIESCE line counter */
 QUILine.QUICnt = " QUIESCE TABLESPACE " || TSSpec ||,
 " WRITE YES" /* QUIESCE command for TS */

 STOSTACnt = STOSTACnt + 1
 STOSTALine.STOSTACnt = " -STOP DATABASE(" ||,
 Strip(DBNAME.1) || ") SPACENAM(" || Strip(TSNAME.1) ||,
 ")" /* STOP command for TS */
 End
Return /* Go back to caller */

/*****************-----------------------------------*****************/
/* GetStgVolumes: Get volume names of the storage group. DB2EX1 is */
/* the default volume name for all storage group. */
/*****************-----------------------------------*****************/
GetStgVolumes: Procedure,
 EXPOSE StoGroup StoVol. VolUsed.

VolCnt = Ø /* Volume counter for STOGROUP */

SQLQUERY = "SELECT VOLID " ||,
 " FROM SYSIBM.SYSVOLUMES " ||,
 " WHERE SGNAME = '" || Stogroup || "' AND VOLID ¬= '" ||,
 "DB2EX1'"
ADDRESS LINK "REXXSQL"
If RC = Ø & SQLSTATE = Ø & _NROWS > Ø Then /* Volume names */
 Do
 Do Cnt = 1 to _NROWS /* Continue for all volumes */
 VolCnt = VolCnt + 1
 StoVol.VolCnt = VOLID.Cnt
 VolUsed.VolCnt = Ø /* Assume that volume not used */
 End
 StoVol.Ø = VolCnt /* Total number of volumes */
 End
Return /* Call back to caller */

/*****************-----------------------------------*****************/
/* GetDSetVolumes: Get physical volume names of PIECEs. */
/*****************-----------------------------------*****************/
GetDSetVolumes: Procedure,
 EXPOSE Obje DSList. DSMove. DSVolume.

 29© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

ReturnCode = OutTrap('Mesaj.') /* Execute command LISTC LVL */
"LISTC LVL(" || Obje || ")"
Dummy = OutTrap('OFF')

DSCnt = Ø /* PIECE counter for NPI */

Do I = 1 to Mesaj.Ø /* Process command output */
 If SubStr(Mesaj.I,1,7) = "CLUSTER" Then /* Get the name of clustr*/
 Do
 IndexDSet = Strip(SubStr(Mesaj.I,17,44)) /* Name of Cluster */

 ReturnCode = OutTrap('ListCOut.') /* Get physical volume name*/
 "LISTC ENT(" || IndexDSet || ") VOLUME"
 Dummy = OutTrap('OFF')

 Do J = 1 to ListCOut.Ø /* Process LISTC ENT command output */
 If SubStr(ListCOut.J,8,6) = "VOLSER" Then /* Get volume */
 Do
 DsCnt = DSCnt + 1
 DSList.DSCnt = IndexDSet
 DSVolume.DSCnt = SubStr(ListCOut.J,26,6)
 DSMove.DSCnt = Ø /* Assume that No move process */
 End
 End
 DSList.Ø = DSCnt
 End
End
Return /* Call back to caller */

/*****************-----------------------------------*****************/
/* FindUsedVolumes: Find volumes that are physically used and exist */
/* in STOGROUP */
/*****************-----------------------------------*****************/
FindUsedVolumes: Procedure,
 EXPOSE DSList. StoVol. DSVolume. VolUsed. DSMove.

Do DSCnt = 1 to DSList.Ø /* Find used volumes */
 VolFound = Ø /* Assume that volume not found */
 Do VolCnt = 1 to StoVol.Ø /* For all stogroup volumes */
 If DSVolume.DSCnt = StoVol.VolCnt Then /* Volume found ? */
 Do
 If ¬VolUsed.VolCnt Then
 VolUsed.VolCnt = 1 /* Volume Used by the NPI */
 Else If VolUsed.VolCnt Then /* Is it Used before ? */
 DSMove.DsCnt = 1 /* Yes, Dataset should be moved */
 VolFound = 1 /* Volume found */
 End
 End
 If ¬VolFound Then /* Volume not exist in STOGROUP, */
 DSMove.DSCnt = 1 /* Dataset should be moved */

 30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

End
Return /* Go back to caller */

/*****************-----------------------------------*****************/
/* MoveProcess: Create DMS move statements for datasets that should */
/* be moved. */
/*****************-----------------------------------*****************/
MoveProcess: Procedure,
 EXPOSE DSList. DSMove. StoVol. VolUsed. DMSCnt DMSLine. Stogroup
Do DSCnt = 1 to DSList.Ø /* Continue for all PIECEs */
 If DSMove.DSCnt Then /* The dataset should be moved ? */
 Do
 VolOK = Ø /* Check for Volume counter */
 Do VolCnt = 1 to StoVol.Ø /* Continue for all STOGROUP volumes */
 If ¬VolUsed.VolCnt Then /* If the volume not Used ? */
 Do
 VolUsed.VolCnt = 1 /* Volume is used by the PIECE */
 DMSCnt = DMSCnt + 1 /* Create DMS control statements */
 DMSLine.DMSCnt = " FIND DSN=" || DSList.DSCnt
 DMSCnt = DMSCnt + 1
 DMSLine.DMSCnt = " MOVE TOVOL=(" || StoVol.VolCnt || ")"
 DMSCnt = DMSCnt + 1
 DMSLine.DMSCnt = " "
 VolOK = 1 /* Number of volumes is enough */
 VolCnt = StoVol.Ø /* Do not continue for the Stogroup */
 End
 End
 If ¬VolOK Then /* Number of volumes, not enough */
 Do
 Say "ERROR 3: " || Stogroup || ", not enough volume "
 Say " Add volumes to STOGROUP, then reexecute"
 Exit(1Ø)
 End
 End
End
Return /* Go back to caller */
/*****************-----------------------------------*****************/
/* RemoveVolumes: Remove volumes from the STOGROUP */
/*****************-----------------------------------*****************/
RemoveVolumes: Procedure,
 EXPOSE Stogroup StoVol. VolUsed. SQLCnt SQLLine.

SQLCnt = SQLCnt + 1 /* SQL line counter */
SQLLine.SQLCnt = " ALTER STOGROUP " || Stogroup || ,
 " REMOVE VOLUMES("
Do VolCnt = 1 to StoVol.Ø /* Continue for all STOGROUP volumes */
 If VolUsed.VolCnt Then
 Do
 SQLCnt = SQLCnt + 1
 SQLLine.SQLCnt = " " || StoVol.VolCnt || ','

 31© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 End
End
SQLLine.SQLCnt = DelStr(SQLLine.SQLCnt,Length(SQLLine.SQLCnt),1)||") ; "
SQLCnt = SQLCnt + 1
SQLLine.SQLCnt = " "
Return /* Go back to caller */

JCL FOR NPIMOVE

//PBSANPMV JOB ,PBSANPMV,CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//NPIMOVE EXEC PGM=IKJEFTØ1,PARM='%NPIMOVE'
//SYSEXEC DD DISP=SHR,DSN=SØØØ.COMM.REXX
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//QUIESCE DD DISP=(NEW,PASS),DCB=(LRECL=8Ø,BLKSIZE=312Ø,RECFM=FB),
// UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//STOP DD DISP=(NEW,PASS),DCB=(LRECL=8Ø,BLKSIZE=312Ø,RECFM=FB),
// UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//DMS DD DISP=(NEW,PASS),DCB=(LRECL=8Ø,BLKSIZE=312Ø,RECFM=FB),
// UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SQL DD DISP=(NEW,PASS),DCB=(LRECL=8Ø,BLKSIZE=312Ø,RECFM=FB),
// UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//START DD DISP=(NEW,PASS),DCB=(LRECL=8Ø,BLKSIZE=312Ø,RECFM=FB),
// UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//INDEX DD *
PBSA.DSNDBC.DPBSAØ1.XBSA1KVK
PBSA.DSNDBC.DPBSAØ1.XBSA17YH
/*
//QUIESCE EXEC DSNUPROC,SYSTEM=DB1P,SIZE=4M,UID='PBSANPMV',COND=(Ø,NE)
//SYSPRINT DD SYSOUT=*
//DSNUPROC.SYSIN DD DISP=(OLD,DELETE),DSN=*.NPIMOVE.QUIESCE
/*
//STOP EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø,COND=(Ø,NE)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DISP=(OLD,DELETE),DSN=*.NPIMOVE.STOP
/*
//DMSMOVE EXEC DMS,T=L,COND=(Ø,NE)
//SYSIN DD DISP=(OLD,DELETE),DSN=*.NPIMOVE.DMS
/*
//REMOVE EXEC DYNSQL,COND=(Ø,NE)
//SYSIN DD DISP=(OLD,DELETE),DSN=*.NPIMOVE.SQL
/*
//START EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø,COND=(Ø,NE)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DISP=(OLD,DELETE),DSN=*.NPIMOVE.START
/*

Ergun Ozel
Systems Programmer
Aknet A S (Turkey) © Xephon 2000

 32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Index advisor model

INTRODUCTION

Choosing index columns for a table requires all programs that use the
table to be scanned. This process takes a lot of a DBA’s time. This
model analyses all static SQL written in a DB2 subsystem, and
determines the best indexes that should be defined for the tables. It
also lists which SQL statements are most likely to use which indexes,
with its matching column and possible number of qualified row
values. Since all SQL in the system is parsed, this model can also be
used to recommend some SQL enhancements.

PARSING SQL

All static SQL that is written on the subsystem is kept in two tables –
SYSIBM.SYSSTMT and SYSIBM.SYSPACKSTMT. One piece of
SQL code may be obtained from more than one row in the table,
depending on the length of the SQL. Some SQL code consists of two
or more SQL statements combined using the UNION keyword. And
some SQL may have subselects, using the IN, EXISTS, =, >,<, >=,and
<= operators (with or without quantified predicates), or nested table
expressions. Subselects are processed as a different SQL, and replaced
with the text ‘SUBSELECT’ in the original SQL. All simple SQL
statements are extracted from the main SQL and are loaded into the
TFND.SQL_STMTS table. If the SQL joins more than one table, it is
inserted for each table that is involved in the join.

For the INDEX adviser model, we do not have to parse the SQL
exactly. So, we do not keep records of arithmetic operations,
concatenations, and all the functions that are applied to a column or
a hostvar. We have to know only that there are such events, which
make a column non-indexable, in the predicates. We will keep only the
first function that is applied to a column or a host variable.

In the WHERE clause, there may be many parentheses, some of them

 33© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

necessary and some not. In this model, every open bracket creates a
new level. And every close bracket make the current level the previous
level. Level relations are stored in the table TFND.LEVEL_RL.
Within a level, there can be many predicates and they are stored in the
table TFND.STATEMENTS. If the parenthesis is unnecessary, it
causes unnecessary levels. These unnecessary levels must be removed
so that level 0 will always be the Boolean term predicate. The
removing process should reorganize the tables TFND.LEVEL_RL,
TFND.STATEMENTS and TFND.STATEMENT_RL.

Let us examine the following example:

Statements: 1,Ø 2,Ø 2,1 2,2 3,Ø 3,1 3,2
 WHERE ((col1 = :H and col2 = :H) and (col3 = :H or col4 = :H))
Levels: Ø 1 2 1 3 1 Ø

This statement can be simplified as follows:

Statements: Ø,1 Ø,2 1,Ø 1,1 1,2
 WHERE col1 = :H and col2 = :H and (col3 = :H or col4 = :H)
Levels : Ø 1

Every predicate is specified with a level ID and sequence pair.
Predicates can be connected to each other with AND or OR. A
predicate can be connected to an entire level, which is shown as a level
ID and 0 pair. The TFND.STATEMENT_RL table shows these
relationships. In the above example there is an AND relation between
0,1 and 0,2. Likewise, there is an AND relation between 0,2 and 1,0.
Finally there is an OR relation between 1,1 and 1,2.

A state diagram for the parsing process is shown in Figure 1. In this
process, there are four states – WAIT_FOR_OPERAND1,
WAIT_FOR_OPERATOR, WAIT_FOR_OPERAND2, and
WAIT_FOR_LOGICAL_OP. The process starts from the
WAIT_FOR_OPERAND1 state when a ‘WHERE’ or ‘ON’ keyword
is encountered. The WHERE condition of the SQL is read word by
word and, according to the word read and current state, the new state
is determined. The process continues until one of ‘WITH’,
‘OPTIMIZE’, ‘GROUP’, ‘ORDER’, or ‘FOR’ is read or the last word
of the line is encountered. Further explanation of the state diagram is
given below:

 34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: State diagram of parsing process

Operator
between

SPECIAL REGS,
CONSTANT

CASE
HOSTVAR,COLUMN

NOT,(,
-,+,any function

Logical
operator EXISTS IN

HOSTVAR,COLUMN

SUBSELECT,SPECIAL
REGS CONSTANT

WHERE

-,+,/,*,)
HOSTVAR
CONCAT
||,COLUMN
CONSTANT
SPECIAL REG

WITH,OPTIMIZE,HAVING
GROUP,ORDER,FOR

+,-,/,*,),NOT,
CONCAT,||
HOSTVAR,COLUMN,
CONSTANT,SPECIAL REG

NOT,(,
-,+,
any function

 35© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

WAIT_FOR_OPERAND1 and WAIT_FOR_OPERAND2

If there is a function in front of the operand, the next word will be ‘(’.
Move the pointer one word ahead and stay in the current state. Only
the first function of the operand will be kept in table
TFND.STATEMENTS.

If any function is applied to the operand, after reading the operand,
there will be ‘)’ words. Move the pointer until the number of functions
of ‘)’ is read.

If the function is ‘SUBSTR’, read the second parameter of the
function.

If ‘NOT’ comes, set the not flag of the operand to 1. Stay in the current
state.

If ‘-’ comes, stay in the current state and set the status of the operand
to ‘ARITHMETIC’.

If ‘+’ comes, stay in the current state.

WAIT_FOR_OPERAND1

If EXISTS comes, the next word will be ‘SUBSELECT’. Move the
pointer one word ahead and go to WAIT_FOR_LOGICAL_OP state.

If ‘(’ comes, move the pointer one word ahead and stay in the current
state. Create a new level and set the current level to that.

If ‘CURRENT’ comes, it is a special register. Move the pointer one
word ahead and go to WAIT_FOR_OPERATOR state.

If ‘USER’ comes, it is a special register. Go to
WAIT_FOR_OPERATOR state.

If a host variable, a column, or a constant comes, go to
WAIT_FOR_OPERATOR state.

If ‘CASE’ comes, move the pointer until the ‘END’ word comes. Set
the status of the operand to ‘CASE’ and go to WAIT_FOR_OPERATOR
state.

 36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

WAIT_FOR_OPERAND2

If ‘(’ comes, it is an unnecessary parenthesis. Stay in the current state.

If ‘CURRENT’ comes, it is a special register. Move the pointer one
word ahead and go to WAIT_FOR_LOGICAL_OP state.

If ‘USER’ comes, it is a special register. Go to
WAIT_FOR_LOGICAL_OP state.

If a host variable, a column, ‘SUBSELECT’, or a constant comes, go
to WAIT_FOR_LOGICAL_OP state.

WAIT_FOR_OPERATOR and WAIT_FOR_LOGICAL_OP

If any of ‘*’, ‘/’, ‘+’, ‘-’, ‘CONCAT’, ‘||’ comes, stay in the current
state. If the word is ‘CONCAT’ or ‘||’, the state of the operand will be
‘CONCAT’, otherwise it is ‘ARITHMETIC’.

Host variable, column name, constant or special register can only
come after one of the operators ‘-’, ‘+’, ‘/’, ‘*’, ‘||’, ‘CONCAT’ comes.
Stay in the current state.

If one of ‘YEARS’, ‘DAYS’, ‘MONTHS’, ‘YEAR’,’DAY’,
’MONTH’,’HOURS’,’HOUR’ comes, this word comes after an
arithmetic operation of the operand. For example col1 + 2 HOURS.
Stay in the current state.

WAIT_FOR_OPERATOR

Any operator may be ‘=’, ‘<>’, ‘>’, ‘<’, ‘>=’, ‘<=’, ‘¬=’, ‘¬>’, ‘¬<’,
‘LIKE’ or ‘IS’ . If one of them comes, go to WAIT_FOR_OPERAND2
state.

If ‘BETWEEN’ comes, read the first parameter (it may be a hostvar,
a column, or function of them). Move the pointer after the word
‘AND’ and go to ‘WAIT_FOR_OPERAND2’ state.

If ‘IN’ comes, read the next word. It can be ‘SUBSELECT’ or a set of
values. Count the number of values and move the pointer after the
word ‘)’ or ‘SUBSELECT’. Go to ‘WAIT_FOR_LOGICAL_OP’
state.

 37© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

If ‘)’ comes, an unnecessary open parenthesis exists in front of the
operand1. Remove this level and stay in the current state.

If ‘NOT’ comes, set the not flag of the operator to 1. Stay in the current
state.

WAIT_FOR_LOGICAL_OP

If ‘)’ comes, stay in the current state. The current level is set to the
previous level.

If a logical operator (‘AND’ or ‘OR’) comes, insert the statement into
the table TFND.STATEMENTS. Go to ‘WAIT_FOR_OPERAND1’
state.

If one of ‘WITH’, ‘OPTIMIZE’, ‘GROUP’, ‘ORDER’, or ‘FOR’
comes, finish the process.

If ‘WHERE’ comes, it is an SQL with a join. Suppose that an open
parenthesis exists, create a new level and set a flag so that it would
make close parenthesis processes at the end of the SQL.

The table definitions used in the parsing process are described below.

TABLE TFND.SQL_STMTS

All SQL written in the subsystem is inserted into the
TFND.SQL_STMTS table:

PROGNAME CHAR(8), PK
TABLENAME VARCHAR(18), PK
STMTNO SMALLINT, PK
STMTSEQ SMALLINT, PK
 # For subselects and unions, this column can be more than Ø.
TABLEALIAS VARCHAR(18),
IS_STMT_SUBS CHAR(1),
IS_STMT_UNION CHAR(1),
IS_STMT_JOIN CHAR(1),
STMT VARCHAR(1ØØØØ)

TABLE TFND.LEVEL_RL

Level relationships are kept in the TFND.LEVEL_RL table:

 38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

LEVEL_ID SMALLINT, PK
PREV_LEVEL_ID SMALLINT,
LEVEL_NOT_FLAG CHAR(1)

TABLE TFND.STATEMENTS

Every predicate has a row in the TFND.STATEMENTS table:

STMT_LEVEL_ID SMALLINT, PK
STMT_SEQNO SMALLINT, PK
STMT_ROW_SEQ SMALLINT,
STMT_OP_NOT_FLG CHAR(1),
STMT_OP1_TBNAM VARCHAR(18),
 # If operand is a column name, the table name of the column.
STMT_OP1 VARCHAR(2Ø),
 # First operand.
STMT_OP1_FUN VARCHAR(15),
 # First function of the operand
STMT_OP1_PARM1 SMALLINT,
 # If the function is SUBSTR, the second parameter of the function
STMT_OP1_ST VARCHAR(1Ø)
 # May be 'CONCAT' , 'ARITHMETIC' or 'CASE'
STMT_OP1_IS_COLUMN CHAR(1),
 # 1 if the operand1 is the column of this table.
STMT_OPRTR VARCHAR(1Ø),
 # may be one of '=', '<>', '>', '<', '>=', '<=', '¬=', '¬>', '¬<',
'LIKE', 'IS' or 'BETWEEN'
STMT_OPRTR_NOT_FLG CHAR(1),
 # 1 if there is NOT in front of the operator.
STMT_OP2_TBNAM VARCHAR(18),
STMT_OP2 VARCHAR(2Ø),
STMT_OP2_FUN VARCHAR(15),
STMT_OP2_PARM1 SMALLINT,
STMT_OP2_ST VARCHAR(1Ø)
STMT_OP2_IS_COLUMN CHAR(1),
STMT_OP3_TBNAM VARCHAR(18),
STMT_OP3 VARCHAR(2Ø),
 # If operator is BETWEEN, second operand of the BETWEEN.
STMT_OP3_FUN VARCHAR(15),
STMT_OP3_PARM1 SMALLINT,
STMT_OP3_IS_COLUMN CHAR(1),
STMT_VAL_CNT SMALLINT,
 # If operator is IN, keeps the count of the values.
STMT_FREQ_PRTY DEC(7)
 # Frequency priority of the statement.

 39© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

TABLE TFND.STATEMENT_RL

Table TFND.STATEMENT_RLshows the relationships between the
predicates:

LEVEL_ID1 SMALLINT, PK
SEQ_NO1 SMALLINT, PK
LEVEL_ID2 SMALLINT, PK
SEQ _NO2 SMALLINT, PK
LEVEL_ROW_SEQ SMALLINT,
LOGICAL_OP CHAR(3)
 # May be AND or OR.

Using this model, let us examine the following SQL:

FROM DHST . CST_PSTG_ENT WHERE ISL_BRM_KOD IN (1Ø3 , 117 , 85Ø) AND
KYNK_KOD = ''AAA'' AND BRM_KOD NOT IN (SELECT BRM_KOD FROM DHST . OU
WHERE NOT BRM_TIP_KOD = : H) AND (SUBSTR (TXN_EV_TIP_K OD , 2 , 3)
= ''KYT'' OR ON_OFF_FLAG = ''1'' OR IPTAL_FLAG = ''H'' OR MHSB_SIRA _NO
= 1) AND VLR - 1 DAYS > CURRENT DATE AND SIS_TAR_ZMN BETWEEN : H AND :
H

After extracting subselects, the SQL will look like the following:

FROM DHST . CST_PSTG_ENT WHERE ISL_BRM_KOD IN (1Ø3 , 117 , 85Ø) AND
KYNK_KOD = 'AAA' AND BRM_KOD NOT IN SUBSELECT AND (SUBSTR (
TXN_EV_TIP_KOD , 2 , 3) = 'KYT' OR ON_OFF_FLAG = '1' OR IPTAL_FLAG =
'H' OR MHSB_SIRA_NO = 1) AND VLR - 1 DAYS > CURRENT DATE AND
SIS_TAR_ZMN BETWEEN : H AND : H

Subselect will be inserted into TFND.SQL_STMTS for table name
OU.

After parsing this SQL, the rows shown in Figure 2 are inserted into
the tables.

STATEMENT_RL TABLE

The STATEMENT_RL table is shown below:

 Ø 1 Ø 2 AND
 Ø 2 Ø 3 AND
 Ø 3 1 Ø AND
 1 1 1 2 OR
 1 2 1 3 OR
 1 3 1 4 OR
 1 Ø Ø 4 AND
 Ø 4 Ø 5 AND

 40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

LE
VE
L_
RL
 T
AB
LE

 1

 Ø

 Ø

ST
AT
EM
EN
TS
 T
AB
LE

Ø
1
1
Ø
''
 I
SL
_B
RM
_K
OD

Ø
 '
'

1
 I
N

Ø
''
 H
OS
TV
AR

''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
3
 1

Ø
 2
 2
 Ø
 '
'
KY
NK
_K
OD

Ø
 '
'

1
=

Ø
''
 '
AA
A'

''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
Ø
 1

Ø
3
3
Ø
''
 B
RM
_K
OD

Ø
 '
'

1
 I
N

1
''
 S
UB
SE
LE
CT

''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
Ø
 1

1
1
4
Ø
''
 T
XN
_E
V_
TI
P_
KO
D
SU
BS
TR

2
 '
'

1
 =

Ø
''
 '
KY
T'

''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
Ø
 1

1
2
5
Ø
''
 O
N_
OF
F_
FL
AG

Ø
 '
'

1
 =

Ø
''
 '
1'

''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
Ø
 1

1
3
6
Ø
''
 I
PT
AL
_F
LA
G

Ø
 '
'

1
 =

Ø
''
 '
H'

''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
Ø
 1

1
4
7
Ø
''
 M
HS
B_
SI
RA
_N
O

Ø
 '
'

1
 =

Ø
''
 1

''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
Ø
 1

Ø
4
8
Ø
''
 V
LR

Ø
AR
IT
HM
ET
IC

1
 >

Ø
''
 C
UR
RE
NT
 D
AT
E
''
 Ø

''
 Ø
 '
'
''

 '
'

Ø
Ø
Ø
 1

Ø
5
9
Ø
''
 S
IS
_T
AR
_Z
MN

Ø
 '
'

1
BE
TW
EE
N
Ø
''
 H
OS
TV
AR

''
 Ø

''
 Ø
 '
'
HO
ST
VA
R
 '
'

Ø
Ø
Ø
 1

F
ig

ur
e

2:
 R

ow
s

to
 b

e
in

se
rt

ed
 in

to
 th

e
ta

bl
es

 41© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

CRITERIA USED FOR CHOOSING INDEX COLUMNS

All SQL statements in the TFND.SQL_STMTS table are read in table
name order. So, all SQL statements using a table are parsed, indexable
columns are determined, and the best indexes are chosen. Tables used
for the index choosing process are listed below. All tables except
TFND.FREQ_PRTY are deleted before each table is processed.

TABLE TFND.ST_INDEX_COLS

The TFND.ST_INDEX_COLS table keeps all the indexable predicates
of an SQL statement:

STIX_PKG_NAME CHAR(8),
STIX_STMT_NO SMALLINT,
STIX_STMT_SEQ SMALLINT,
STIX_STMT_PART SMALLINT,
 # Used for multiple index access.
STIX_COL_NAME VARCHAR(18),
STIX_PRTY DEC(8,1),
 # Frequency priority is multiplexed by Ø.1 or 1 depending on the
predicate type.
STIX_PRED_FF DEC(4,3),
 # Predicate's filter factor.
STIX_TYPE CHAR(1)

TABLE TFND.INDEXES

The TFND.INDEXES table keeps the suggested indexes for a table:

IX_NO SMALLINT,
IX_COL_NAME VARCHAR(18),
IX_SEQ SMALLINT,
IX_PRTY DEC(15,1),
 # Calculated priority of this index column.
IX_COUNT SMALLINT,
 # How many SQL would probably use this index with a matching column of
IX_SEQ.
IX_UNIQUE CHAR(1),
IX_COLCARD INTEGER

TABLE TFND.ST_IX_RL

The TFND.ST_IX_RL table shows the relationships between statement
and index:

 42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

STIX_PKG_NAME CHAR(8),
STIX_STMT_NO SMALLINT,
STIX_STMT_SEQ SMALLINT,
IX_NO SMALLINT,
MATCH_COLS SMALLINT,
MATCH_COLS_EQUAL SMALLINT,
 # Matching column count that all of the columns are used in equal
predicates.
STIX_ROWS_QLFYD DEC(15,5)

TABLE TFND.COLUMNS

The TFND.COLUMNS table keeps the column priorities:

COLNAME VARCHAR(18),
PRTY DEC(15,2)
 # Calculated by using COLCARD and CARD.

TABLE TFND.FREQ_PRTY

The TFND.FREQ_PRTY table keeps the run-time frequencies of
statements:

PROG_NAME VARCHAR(18),
STMT_NO SMALLINT,
FREQ_PRTY INTEGER

SELECTING COLUMNS

All Boolean term predicates are checked in the WHERE clause. If any
of them are connected with an OR, the statement needs multiple index
access. All predicates, which are one of the type of equal, in-list,
LIKE, BETWEEN, LESS THAN, and GREATER THAN, are selected
as indexable predicates. Indexable columns can be selected by running
the following SQL:

SELECT STMT_OP1,STMT_OP2,STMT_OPRTR,STMT_VAL_CNT
 FROM TFND.STATEMENTS
 WHERE STMT_OP_NOT_FLG = 'Ø' AND
 STMT_LEVEL_ID = Ø AND
 STMT_OP1_FUN = '' AND
 STMT_OP2_FUN = '' AND
 NOT STMT_OP2 = 'SUBSELECT' AND
 STMT_OP1_ST = '' AND
 STMT_OP2_ST = '' AND
 STMT_OPRTR_NOT_FLG = 'Ø' AND

 43© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 (STMT_OP1_IS_COLUMN = '1' AND
 STMT_OP2_IS_COLUMN = 'Ø' OR
 STMT_OP1_IS_COLUMN = 'Ø' AND
 STMT_OP2_IS_COLUMN = '1') AND
 (STMT_OPRTR IN ('=','<','<=','>','>=') OR

 STMT_OPRTR = 'BETWEEN' AND
 STMT_OP2_IS_COLUMN = 'Ø' AND
 STMT_OP3_IS_COLUMN = 'Ø' OR

 STMT_OPRTR = 'LIKE' AND
 SUBSTR(STMT_OP2,1,1) NOT IN ('_','%') OR

 STMT_OPRTR = 'IN' AND
 STMT_OP2 <> 'SUBSELECT') ;

A priority is defined for frequency. One SQL may be run 1,000 times
in a day while another SQL is run once a month. The
TFND.FREQ_PRTY table is defined for this priority.

For example, priority 1 is given for SQL that is run once a month, and
other SQL will have the priority that is the value of the number of runs
in a month. If a priority with a program name and statement number
is inserted into this table, this value is taken as its SQL priority. If a
statement number is entered as 0, all SQL in this program will have
that priority.

In the table TFND.STATEMENTS, a priority for the predicates is
kept. This priority depends on the predicate type and frequency
priority. If the predicate is an equal predicate, the priority factor is 1,
otherwise it is 0.1. This means that each equal predicate is ten times
as valuable as the other predicate types. The frequency priority of the
SQL is multiplied by this factor and the result is kept in table
TFND.STATEMENTS.

Equal predicates are marked as type 1 indexable predicates. Others are
type 2 indexable predicates. Type 1 indexable predicates enable the
next column of the index to be used as a member of matching columns.
For example, if the column is used in a range predicate and that
column is used as the first column of a multi-column index, other
columns of the index in the statement cannot be used as a member of
matching columns.

SQL statements and their index usage are stored in table ST_IX_RL.

 44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Each row represents an SQL and an index that the SQL uses. It also
contains the possible number of rows qualified and the number of
matching columns. There are two types of matching column. The first,
MATC_COLS, is the number of index columns that are used by the
SQL. The second, MATCH_COLS_EQUAL, is the number of index
columns that are used in the equal predicate in the SQL.
MATCH_COLS is either equal to or greater by 1 than
MATCH_COLS_EQUAL. Each row contains the number of qualified
rows. The number of qualified rows is calculated as follows:

ROWS_QLFYD = CARD / (COLCARD1 * COLCARD2 * …… * COLCARDn)

If the nth column is a type 2 indexable predicate, ROWS_QLFYD is
multiplied by a filter factor which is listed in the predicate types shown
in Figure 3.

Operator Filter factor

= 1
IN 1/IN-List Count
BETWEEN 0.4
LIKE if the second character is not _ or % then 1/2

 Else 1/30
If the operand is HOSTVAR then 0.4

<,>,<=,>= 0.2

Figure 3: Predicate types

Another priority is given to each column. This priority is calculated
as a function of COLCARD/CARD and is between 1 and 2. If
COLCARD/CARD equals 0, then the priority will be 1. If the
proportion is 1, the priority will be 2. The function is not linear. It is
formulated as the upper left quarter of a circle. The formula is as
follows:

COL_PRTY=SQRT (1- (COLCARD/CARD –1) * (COLCARD/CARD – 1)) + 1

In this formula, COLCARD is the column cardinality and CARD is
the table cardinality.

For example, let there be two columns. Let the first column have a
distinct value of 1, and let another column’s cardinality be equal to the

 45© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

table’s cardinality. The second column is twice as valuable as the first
one from the point of indexibility.

In TFND.ST_IX_RL table, if IX_NO column is equal to 0, it means
no index has yet been found for the statement. The first column of the
index is selected by looking at type 1 indexable predicates to which
an index has not been assigned. Some SQL which has an index
assigned is re-evaluated if the number of qualified rows is not
satisfied. If all indexable columns are used in the index and the
number of qualified rows is not small enough, those statements are not
re-evaluated. The column, which has the maximum value of the
summary of the multiplication of column priority and predicate
priority, is chosen as the first column of the index.

The first column of the index can be selected by using the following
SQL:

SELECT STIX_COL_NAME,SUM,CNT FROM
 (SELECT STIX_COL_NAME,
 SUM(DECIMAL(STIX_PRTY,15,1)*DECIMAL(PRTY,15,1))
 AS SUM,
 COUNT(*) AS CNT
 FROM TFND.ST_INDEX_COLS A,TFND.ST_IX_RL B,
 TFND.COLUMNS C
 WHERE (B.IX_NO=Ø OR
 B.IX_NO<>Ø AND
 B.STIX_ROWS_QLFYD>:MAX_QLFYD_ROWS AND
 B.MATCH_COLS_EQUAL <>
 (SELECT COUNT(DISTINCT(STIX_COL_NAME))
 FROM TFND.ST_INDEX_COLS
 WHERE A.STIX_PKG_NAME=STIX_PKG_NAME AND
 A.STIX_STMT_NO=STIX_STMT_NO AND
 A.STIX_STMT_SEQ=STIX_STMT_SEQ AND
 STIX_TYPE='1') OR
 B.IX_NO<>Ø AND
 B.STIX_ROWS_QLFYD>:MAX_QLFYD_ROWS AND
 B.MATCH_COLS_EQUAL = B.MATCH_COLS AND
 EXISTS (SELECT 1
 FROM TFND.ST_INDEX_COLS
 WHERE A.STIX_PKG_NAME=STIX_PKG_NAME AND
 A.STIX_STMT_NO=STIX_STMT_NO AND
 A.STIX_STMT_SEQ=STIX_STMT_SEQ AND
 STIX_TYPE='2' AND
 STIX_COL_NAME NOT IN
 (SELECT IX_COL_NAME FROM
 TFND.INDEXES

 46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 WHERE IX_NO=B.IX_NO))) AND
 A.STIX_PKG_NAME=B.STIX_PKG_NAME AND
 A.STIX_STMT_NO =B.STIX_STMT_NO AND
 A.STIX_STMT_SEQ=B.STIX_STMT_SEQ AND
 A.STIX_COL_NAME=C.COLNAME AND
 A.STIX_TYPE='1'
 GROUP BY STIX_COL_NAME) AS QRY1
 ORDER BY 2 DESC;

The first row of the result set gives the column. The IX_NO of the
related rows of the TFND.ST_IX_RL table must be updated.

If the number of qualified rows is small enough, the index will have
only one column. Otherwise other columns of the index will be
included. This process is repeated until no indexable columns are
found or the number of qualified rows is less than a predetermined
value.

Other columns of the index can be both type 1 and type 2 indexable
predicates. The SQL for these columns is as follows:

SELECT STIX_COL_NAME,SUM,CNT FROM
 (SELECT STIX_COL_NAME,
 SUM(DECIMAL(STIX_PRTY,15)*DECIMAL(PRTY,15))
 AS SUM,
 COUNT(*) AS CNT
 FROM TFND.ST_INDEX_COLS A,TFND.ST_IX_RL B,
 TFND.COLUMNS C
 WHERE B.IX_NO=:IXNO AND
 B.MATCH_COLS_EQUAL=:IXSEQ-1 AND
 A.STIX_COL_NAME NOT IN
 (SELECT IX_COL_NAME
 FROM TFND.INDEXES
 WHERE IX_NO=:IXNO) AND
 A.STIX_PKG_NAME=B.STIX_PKG_NAME AND
 A.STIX_STMT_NO =B.STIX_STMT_NO AND
 A.STIX_STMT_SEQ=B.STIX_STMT_SEQ AND
 A.STIX_COL_NAME=C.COLNAME
 GROUP BY STIX_COL_NAME) AS QRY1
 ORDER BY 2 DESC;

The first row of the result set gives the column. The IX_NO of the
related rows of the TFND.ST_IX_RL table must be updated.

Finding the first and then other columns of the index is repeated until
all statements have an index assigned.

Unique indexes that are already defined on tables must remain with

 47© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

the same columns, since they are used for both indexed access and
uniqueness. Therefore, they are kept with the same columns. But the
column order can be changed according to the need of indexed access.
All of the unique indexes are tried to see if they conform to any of the
suggested indexes. The index, which has the most columns of the
unique index, is choosen. If none of the suggested indexes has any
columns of the unique index, a new index is created.

SQL OPTIMIZATION

Having parsed all the SQLstatements, some suggestions on how they
can be optimized can be made. Some examples are listed below:

• If the SUBSTR function is used on a column which is the first of
n columns, using LIKE will make it possible to use an index on
that column.

• If there are any column-to-column operations, the index on one
of the columns will not be usable.

• If any conversion function is used against a hostvar, a suggestion
would be made to convert the hostvar in the host language.

• If all the predicates in the WHERE clause are the BETWEEN
type, or the cardinality of the EQUAL predicate is too small to
eliminate most of the rows, the REOPTS(VAR) option of the bind
process is recommended.

Abdullah Ongul
DBA
Disbank (Turkey) © Xephon 2000

As a free service to subscribers and to avoid the need to re-
key the scripts, code from individual articles of DB2 Update
can be accessed on our Web site.

You will need the user-id printed on the envelope containing
your Update issue and a copy of the printed issue. Once you
have registered, any code requested will be e-mailed to you.

Compuware has new releases of File-AID/
Express and File-AID/Express for MVS,
two EAI tools for integrating and migrating
large-scale production without, it’s claimed,
writing custom programs.

Complex conversions between multiple data
formats will be possible across an enterprise,
with support for DB2, VSAM, IMS,
sequential, Oracle, SQL Server, DB2 UDB,
Sybase, XML, and flat files.

Conversion engines of the Express products
will help convert data for one-time
migrations and for both temporary and
permanent data interfaces between
applications in production. Users can
execute the engine on OS/390, Unix, or NT
servers.

Developers will be able to convert subsets of
data required for testing the application or
the interface.

Specific features of the two tools include
performing extracts, transforms and loads of
complex structures, creating and
interpreting XML formatted documents,
validation and data cleansing capabilities,
and a scalable architecture for high-speed
and high-volume migrations.

For further information contact:
Compuware, 31440 Northwestern Highway,
Farmington Hills, MI 48334-2564, USA.
Tel: (248) 737 7300.
Compuware, 163 Bath Road, Slough, SL1
4AA, UK.
Tel: (01753) 774000.
URL: http://www.compuware.com/
products/file.

* * *

IBM has updated Version 6 of its DB2 UDB
for OS/390, integrating and packaging the
accumulated service packs into Version 6.

DB2 Performance Monitor has been
enhanced for usability, provides support for
new DB2 function, and has a new API to the
On-line Monitor Data Collector, for
retrieving performance information about
the subsystem being monitored. Users can
get raw data and derived performance
information including snapshot information
and recent history collected to a dataset,
including exception alerts based on DB2
events.

Also included is DB2 Forms for OS/390,
which is now available as an optional feature
of DB2.

For further information contact your local
IBM representative.
URL: http://www.software.ibm.com/
data.db2.

* * *

NEON Systems has announced an OEM
licence agreement allowing Landmark
Systems to develop a new Internet-based
system to manage IT and business operations
on System/390 mainframes using NEON’s
Shadow Web Server for OS/390.

It will let sites monitor information remotely
via the Web and provide integration to DB2,
IMS, CICS, or VSAM data and transactions.

For further information contact:
NEON Systems, 14100 Southwest Fwy,
Suite 500, Sugar Land, TX 77478, USA.
Tel: (800) 505-6366.
URL: http://www.neonsys.com.

DB2 news

x xephon

	Optimizing Dynamic SQL
	Reorganizing the DB2 catalog and directory
	Distributing index pieces to different volumes
	Index advisor model
	DB2 news

