
January 2001

99

© Xephon plc 2001

3 24x7 DB2 applications – tips for
good design

12 Cloning a DB2 subsystem using
SnapShot

23 DB2 Version 6 stored procedures
migration issues

28 Utility for generating recovery jobs
using the REXX SQL interface –
part 2

40 DB2 REXX Language Support
48 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1997 issue, are available separately
to subscribers for £22.50 ($33.50) each
including postage.

DB2 Update on-line
Code from DB2 Update can be downloaded
from our Web site at http://www.xephon.
com/db2update.html; you will need the user-
id shown on your address label.

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
Articles published in DB2 Update are paid for
at the rate of £170 ($260) per 1000 words and
£100 ($160) per 100 lines of code for the first
200 lines of original material. The remaining
code is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors, or you can
download a copy from www.xephon.com/
contnote.html.

 3© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

24x7 DB2 applications – tips for good design

This article is my way of helping project teams in designing DB2
applications intended to work 24x7. Such applications are very
important, and there are many ways to bring data to the end user, apart
from traditional mainframe terminals. Some of the new technologies,
like the Internet, just speed it up. As well as the Internet, there are also
ATMs, answer machines, POSs, etc.

All of these erase the classical division between day and night jobs in
the life of an application. With these tips and advice, I hope to help
those teams to keep their attention on the key issues, which will ensure
such applications can work 24x7.

The article is based on designing in a DB2 Version 5, CICS, batch,
and PL/I environment.

HOW TO AVOID APPLICATIONS STOPPING BECAUSE THERE IS A
FATAL SQL ERROR

When your application is meant to work 24x7, there is no excuse for
any errors appearing – and there are many errors that can appear
without your knowledge or you expecting them. Such errors are
predicted by DB2 and placed at the end of the SQL error array. Any
hardware errors that may occur are outside the scope of this article.

So what to do to avoid such errors, or, if you can’t, what to do to ensure
your application doesn’t stop?

Although not the only solution, probably the best one and the easiest
one for implementation is redundancy of your critical tables – creating
tables that are reachable 24x7. It means we have to ensure that all our
activities are carried out on both the original and duplicate tables. Of
course, there are no differences between the original and the duplicate
– they are, in fact, the first referenced and second referenced tables.
See the code below for examples of a module for retrieving data from
such tables.

Also, if you have frequent batch inserts of data during the on-line

 4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

period, it is a good idea to think about splitting that table in two – one
only for changes from CICS and another for changes from the batch
environment. Generally errors in batch tables do not occur very often
because you can control them all the time. However, if an error does
occur, you must deal with the recovery of that table and your
application can continue. The data will be basically correct because
you have control over the batch process during the recovery period.
If you wish, you can always alert users about it.

As everyone can see, there is an overhead with tables, eg the space for
them and of course the DBA’s and programmer’s efforts to ensure
redundancy. As a result, when one of the fatal errors appears on a table,
there is no harm done because our programs can ‘identify’ such a
situation and behave as if nothing is happening.

Our end users don’t know anything bad is going on and, most
importantly, our data is correct and secure. But what about ourselves?
When and in what way will we find out about an error? As shown
below, all our modules must have some return code value for this
situation, and, in the calling program, we must find a way to ALERT
the DBA or other relevant authorities about it. Here are some
possibilities for this:

• There are always some users who work for your company. For
these users, we can show them the warning message which will
be passed to the DBA and the others. The real end users, who are
not employed by the company, do not need to know about
anything.

• We can use the ‘WRITE TO OPERATOR’ command, but be
careful about the frequency of warning message appearing on the
console.

• We can write a separate transaction, which will be started on a
specific terminal with the ‘START TRAN’ command.

THE PREREQUISITES FOR QUICK AND ACCURATE DATABASE
RECOVERY

So, we have a duplicate table and all of our modules with a SQL DDL

 5© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

statements are aware of it. What would happen when a fatal error
appears on one of the tables? Of course you have to perform a recovery
as quickly as possible. This means that you will restore data in the
destroyed tables from the most recent copy, and use a DB2 utility to
get as much data as possible from the DB2 log files. Every recovery
process is a time-consuming operation.

So what should you do to be prepared for such an unpleasant situation?
The answer is:

• Make copies of each database at least once a week, or more often
if there are huge changes to tables over a single working day. In
this way, you will cut down the time needed for recovery.

• Always take a control point with the QUIESCE utility to ensure
recovery from an ABEND of a batch job. Some people use full
copy, on tapes usually, but it is a time-consuming process for both
taking and restoring data, while with the QUIESCE utility the
DBA is working from his DB2 log, which is much more secure.

• Put every table in a separate tablespace because, if it is not, when
doing recovery on one, the others are ‘closed’ – which is
unacceptable for 24x7.

The scenario for the recovery process can be something like this (Tn
is a moment in time):

• T0 – everything is OK.

• T1 – a fatal error appears.

• T2 – we become aware of the fatal error.

• T3 – start of recovery process.

• T4 – end of recovery process.

• T5 – full copy of correct data to restored table.

• T6 – end of copy and application continues to work properly on
both tables.

T3 has to be as quick as possible, so the way we ALERT the DBA is
very important. The moment to start T5 has to be chosen carefully. It

 6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

does not have to be just after T4, but when such an operation will cost
the least. If you do not have the time window necessary for T5, then
warn the end users about a temporary break in service.

But what do you do when these suggestions cannot be implemented
because there are fatal errors on both tables? or you can’t recover from
the last copy? or there is an error in the DB2 log so you have lost all
changes since the last copy? My recommendation is to make your own
log file for every change to the tables, using a VSAM ESDS file for
example, where you can write all the changes to the tables. For
recovery purposes you need one batch job with start and end time as
parameters, which would supply all the changes to the tables, no
matter whether the DB2 log file is OK, and a second batch job to
implement these changes on the tables.

ENSURING FULL CONCURRENCY FOR PRODUCTION
APPLICATIONS

Without full concurrency there is really no on-line application, not to
mention a 24x7 application. Concurrency means that many different
processes with fully secure data integrity can process the data, and
every request will be correctly processed.

How do you ensure full concurrency? The most important aspect
about concurrency is record-locking. Every time there is an INSERT,
UPDATE, or DELETE SQL statement in process, your program has
to demand locking on the chosen records so data integrity is ensured.
Here are some tips for locking:

• Besides all programming there is one more thing that DB2
programs demand – binding, or, simply, the way to prepare SQL
statements from a program to execute at run time. There are some
parameters, which are strictly used for locking purposes.
ISOLATION LEVEL (IS) is used to tell DB2 how to lock all
programs that are bound to a particular plan. Values that reserve
concurrency are READ STABILITY (RS) and CURSOR
STABILITY (CS). Values for ACQUIRE and RELEASE
parameters are those that decide when DB2 takes and releases
resources needed for the execution of SQL statements. For
programs that only read DB2 tables, avoid any locking.

 7© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

• Because when a record is locked, no one can retrieve it, logically
locking has to be for a short time. So, you have to avoid time-
consuming SQL statements that:

– use OR and LIKE operators (use IN and relational operators
instead).

– use ORDER BY statements, because sorting is involved, and
we all know what that means.

• To speed up your SELECT statements, try using the OPTIMIZE
parameter to force DB2 to use indexes as the best access path.

• If your application needs massive inserts in the tables, always use
a batch program with INSERTs instead of the LOAD utility,
because LOAD makes tables inaccessible for updating. With the
Internet and offices all over the world, there is no day and night,
so there is no free time during ‘our’ night.

HOW TO ENSURE QUICK RESPONSE TO NEW DEMANDS

Critical moments in the life of a 24x7 application are:

• Discovering the errors (fatal SQL codes) and recovering from
them.

• Including new features in an application as the result of users’
demands.

Both of these operations are time-consuming, so we have to find a way
to eliminate any delay or to cut it down as much as we can.

It must be realized that the test phase is much more important in 24x7
application than any other. There are no excuses for SQL errors less
than –900 in the real production environment. So test for as long as
you can until you are sure that everything is OK. Transactions need to
use the HANDLE ERROR CONDITION command for any other
errors, which cannot be traced with standard handling.

Including new features in a program is a very sensitive issue because
someone out there expects a quick response without any interruptions.
There are three steps for putting a program into production:

 8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Compiling and linking (modules and called programs).

• Binding (plans and packages).

• Taking new versions (only in a CICS environment).

We have to find a way to, maybe, skip some of these steps.

Here are some tips:

• Because demands can come frequently and for random
enhancements, it is a good idea to organize your programs as one
main one with many called modules. As you will see below there
are other reasons for this idea.

• Because there is a difference in using some PL/I features, it is
good to make separate modules for batch and CICS environments,
and when you do, you can:

– Use LINK instead of the CALL command in CICS. In this
way you do not need to compile and link all programs, but
only take a new version of the module program. Also,
trapping the errors is much easier in a separate program than
in a linked module

– Use FETCH and RELEASE commands in batch to make
modules really external. Unfortunately, you cannot use these
commands in a CICS environment.

• The most critical step is binding. To avoid –805 SQL errors, bind
all modules as packages so you do not need to bind plans for any
other program, which also bind that member. DB2 does it for you,
and saves any additional time.

As with recovery, any new features have to be installed in some ‘dead
time’, if there is any such time, and with an announcement to the end
users in advance.

Below is an example of how to use redundant tables, and how to
handle possible errors. CICS LINK program TLINK calculates account
balances. Tables TERD01 and TERD02 are redundant and internal
module SQLERR cares of the error level. Table TERD03 is a batch
table.

 9© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

TLINK: PROC(POINT) OPTIONS(MAIN);

%INCLUDE SQLCA;

/* COMMAREA FOR TRANSACTION TLINK */
DCL POINT PTR;
DCL 1 LINKAREA BASED(POINT),
 2 ACCOUNT BIN FIXED(31), /* INPUT VARIABLE */
 2 SUMACC DEC FIXED(15), /* OUTPUT VARIABLE */
 2 CODE BIN FIXED(15), /* RETURN CODE */
 /* Ø – OK */
 /* 1 – INFO ERROR ON TABLES 1 AND 3*/
 /* -1 – SQL ERROR ABOVE –9ØØ */
 /* -2 – SEVERE ERROR ON TABLE 1 OR 2*/
 2 TEXT CHAR(2Ø); /* TABLE NAME WITH SQLCODE */

/* LOCAL VARIABLES IN PROGRAM */
DCL SUMACC1 DEC FIXED(15);
DCL SUMACC2 DEC FIXED(15);
DCL IND BIN FIXED(15);

/* LET SUM RECORDS FROM THE ONLINE TABLE */
EXEC SQL SELECT SUM(AMMOUNT)
 INTO :SUMACC1 :IND
 FROM TERDP.TBTERDØ1
 WHERE ACCOUNTNO = :ACCOUNT;
/* CHECK IF THE FIRST TABLE IS OK */
CALL SQLERR(SUMACC1, 1, ERRCODE);

/* MAINTAIN RETURN CODE FROM PROGRAM */
CODE=ERRCODE;
/* IF THERE IS AN ERROR BELOW –9ØØ TRY REDUNDANT TABLE */
IF ERRCODE > Ø
THEN DO;
 IND=Ø;
 EXEC SQL SELECT SUM(AMMOUNT)
 INTO :SUMACC1 :IND
 FROM TERDP.TBTERDØ2
 WHERE ACCOUNTNO = :ACCOUNT;
 CALL SQLERR(SUMACC1, 2, ERRCODE);
 /* ALWAYS KEEP LAST ERROR */
 IF CODE=Ø THEN CODE=ERRCODE;

 /* IF ANY ERROR OCCURS ON SECOND TABLE RETURN */
 IF ERRCODE < Ø THEN GOTO ENDPROC;
 END;

/* IF THERE IS ANY OTHER ERROR RETURN */
IF ERRCODE < Ø THEN GOTO ENDPROC;

 10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* NOW SUM RECORDS FROM batch TABLE */
IND=Ø;
EXEC SQL SELECT SUM(AMMOUNT)
 INTO :SUMACC2 :IND
 FROM TERDP.TBTERDØ3
 WHERE ACCOUNTNO = :ACCOUNT;
CALL SQLERR(SUMACC2, 3, ERRCODE);
IF CODE=Ø THEN CODE=ERRCODE;
IF ERRCODE < Ø THEN GOTO ENDPROC;
 ELSE SUMACC2=Ø;
/* CALCULATE REAL SUM ON THE ACCOUNT */
SUMACC = SUMACC1 + SUMACC2;
ENDPROC:

EXEC CICS RETURN;

/* INTERNAL MODULE THAT CHECKS SQLCODE ON TABLES */
SQLERR: PROC(VAR, TABNO, ERRCODE);

DCL VAR DEC FIXED(15); /* FIELD FOR SUMMING */
DCL TABNO DEC FIXED(1); /* TABLE NUMBER */
DCL ERRCODE BIN FIXED(15); /* RETURN CODE FROM MODULE */
DCL PICCODE PIC'----9'; /* SQLCODE IN PIC FORMAT */
DCL NAME(3) CHAR(6) /* ARRAY OF TABLE NAMES */
 INIT('TERDØ1', 'TERDØ2', TERDØ3');

ERRCODE=Ø;
SELECT (SQLCODE);
 WHEN(1ØØ) VAR = Ø;
 WHEN(Ø) IF IND < Ø THEN VAR = Ø;
 OTHERWISE DO;
 PICCODE = SQLCODE;
 /* IF THERE IS AN ERROR BELOW –9ØØ */
 /* IF ON TABLE 1 OR 3 WE CAN CONTINUE WITH ALERT */
 /* IF ON TABLE 2 WE CAN NOT CONTINUE AT ALL */
 /* ELSE THERE IS PROGRAM ERROR, MAYBE –8Ø5 OR –818 */
 IF SQLCODE < -9ØØ
 THEN DO;
 IF TABNO = 1 | TABNO=3
 THEN ERRCODE = 1;
 ELSE ERRCODE = -2;
 END;
 ELSE ERRCODE = -1;
 TEXT = NAME(TABNO) ||', SQLCODE :' || PICCODE;
 END;
END;
END SQLERR;

END TLINK;

 11© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

Below is a CICS transaction program, which calls TLINK. It shows
how to ALERT the authorities about the error. A internal ALERT is
raised whenever an error exists and an external one only when both
tables are corrupted.

...

/* COMMAREA FOR TLINK PROGRAM */
DCL 1 LINKAREA BASED(POINT),
 2 ACCOUNT BIN FIXED(31),
 2 SUMACC DEC FIXED(15),
 2 CODE BIN FIXED(15),
 2 TEXT CHAR(2Ø);
/* VARIABLES FOR DETERMINING WHAT TYPE OF USER IS CURRENT ONE */
DCL TYPEUSER DEC FIXED(1);
DCL EXTUSER DEC FIXED(1) INIT(1); /* OUTSIDE USER */
DCL INTUSER DEC FIXED(1) INIT(2); /* INSIDE USER */

/* YOU CAN KNOW WHICH USERNAME IS FROM THE COMPANY AND WHICH IS NOT */
IF some_condition
 THEN TYPEUSER=EXTUSER;
 ELSE TYPEUSER=INTUSER;
ACC = account_number;
SUM = Ø;
CODE = Ø;
TEXT= ' ';
EXEC CICS LINK PROGRAM('TLINK') COMMAREA(LINKAREA);

/* IF THERE IS FATAL ERROR ON FIRST OR batch TABLE */
/* ALERT INTERNAL USERS AND CONTINUE */
IF CODE = 1 & TYPEUSER = INTUSER
 THEN MESSAGEO = 'CALL nnn , '|| TEXT;

/* IF BOTH TABLES ARE DAMAGED OR THERE IS PROGRAM ERROR */
/* ALERT ALL AND QUIT */
IF CODE < Ø
THEN DO;
 IF TYPEUSER=INTUSER
 THEN MESSAGEO = 'CALL nnn, '|| TEXT;
 ELSE MESSAGEO = 'DATA IS TEMPORARILY INACCESSIBLE';
 EXEC CICS SEND MAP('MAP') MAPSET('MAPSET') DATAONLY FREEKB;
 EXEC CICS RETURN TRANSID('TRAN') COMMAREA(TRANAREA);
 END;

Predrag Jovanovic
Project Developer
Postal Savings Bank (Yugoslavia) © Xephon 2001

 12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Cloning a DB2 subsystem using SnapShot

We developed this process to perform a DB2 subsystem copy in order
to effect a system refresh of a SAP R/3 DB2 system, which contains
thousands of tablespaces. We have a continuing need to refresh our
SAP systems, so we wanted a quicker way to copy all the data from
one DB2 subsystem to another (SAP is the only application running
on the subsystem), because the traditional COPY/RECOVER method
takes several days to complete and requires an extensive outage of the
application.

THE SNAPSHOT FEATURE

This process uses the SnapShot feature of the IBM RAMAC Virtual
Array Storage to clone a DB2 subsystem to an existing subsystem.
The purpose of SnapShot is to make a rapid ‘virtual copy’ of DASD
volumes or individual datasets. (For additional information on
SnapShot, see SC26-7173 IBM RAMAC SnapShot for MVS/ESA:
Using Snapshot.) With SnapShot, the entire process still takes us a
matter of hours (12-15) to complete, but the downtime for the source
DB2 is reduced to only 10 minutes.

(Note that it is supposedly possible under DB2 Version 6 to make a
SnapShot copy without taking DB2 down, by using the ‘-SET LOG
SUSPEND’ command. This command was added to Version 6 by PTF
UQ36695. The application will still be unavailable during the Snap,
however.)

THE PEOPLE

In our shop, performing the process is a team effort involving the
MVS systems programmer, the DB2 systems programmer, and the
SAP DBAs. The MVS systems programmer makes dataset copies
using the SnapShot feature, the DB2 systems programmer causes
DB2 to recognize the system dataset copies as a viable DB2 subsystem,
and the DBAs reset the high-level qualifier in all the stogroups so that
DB2 will recognize the copied application data as viable.

 13© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

THE PROCESS

The process as given here is for data sharing subsystems; that is, it is
set up to copy a two-way data sharing subsystem to another two-way
data sharing subsystem. Using a similar procedure, our team has also
copied from data sharing to non-data sharing (although we end up
with a data sharing target), and from one-way data sharing to two-way
data sharing. (We merely re-run the original install jobs for the second
member, after we finish copying the first member). If your DB2s are
not data sharing, then you will be able to simplify the procedure
somewhat; for instance, step 7 may be omitted.

Note that a similar process could be used to clone an existing DB2 to
a completely new DB2. There would be some additional tasks
involved as with any new DB2 subsystem – define a new ICF catalog,
define new catalog aliases, define new SMF groups, define new SMF
profiles with appropriate authority, create new PROCLIB members,
make definitions in PARMLIB, and so forth.

THE SNAP

To facilitate the Snap, we have defined the DB2 datasets – and this
includes the DB2 system datasets (BSDS, log datasets, catalog,
directory) as well as the application data – to be managed by SMS and
isolated as to SMS storage group (that is, there is a separate SMS
storage group for each DB2 subsystem). In addition, we have defined
a separate ICF catalog for each subsystem.

1 First, we stop the target DB2 subsystem and Snap (copy) its
volumes, as a back-up measure in case we need to restore the
target to its pre-cloned state.

2 The ‘old’ target datasets have to be deleted, and removed from the
ICF catalog. We have a job set up to issue a TSO DELETE for
each entry – this job takes about 2.5 hours’ elapsed time.
Alternatively we can get a list of aliases pointed to by the target
catalog, connect the catalog from the master catalog, re-initialize
all the target volumes, define a new ICF catalog, and redefine the
aliases. This procedure takes about 30 minutes.

 14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3 Stop the source DB2 subsystem MODE=QUIESCE, and do a
SNAP of each volume with COPYVOLID(Y) to back up the
source volumes. The copy volumes will go off-line. After the
Snap of the source system volumes, data volumes, and ICF
catalog, which takes about 10 minutes, we can bring the source
DB2 subsystem back up.

4 Now we have to create new target volumes from the source back-
ups; we do this from another OS/390 image because, on the image
where we began working, there are outstanding ENQs on the
source dataset names because the source DB2 is active. On the
second image we Snap each source-copy volume by dataset,
renaming each dataset to the new (ie the target’s) high-level
qualifier.

AFTER THE TARGET IS DOWN

5 Back up the following run-time target datasets, and then copy
them from the source subsystem: SDSNEXIT, SDSNLOAD,
CLIST, ISPMLIB, ISPPLIB, and ISPSLIB. This is a separate step
because our run-time datasets do not follow the same naming
convention as the rest of the DB2 datasets and hence do not
participate in the Snap copy. Do this for all data sharing members.
Also make a back-up copy of any subsystem-specific vendor load
libraries, such as a BMC load library. You may also want to make
a back-up copy of the target *.NEW.SDSNSAMP dataset since it
will be overlaid later, in the SMP/E cloning.

6 Copy the target ZPARMS member DSNZxxxx from the ‘old’
target SDSNEXIT dataset (which is still unmodified) into the
‘new’ target run-time SDSNEXIT dataset. Do this for all data
sharing members.

7 Clean up the SCA of the target system by issuing the following
console command:

SETXCF FORCE,STRUCTURE,STRNAME=targetDCAT_SCA

(See GC28-1779 OS/390 MVS Setting Up a Sysplex.) This was
not an obvious thing to do, but the first time(s) we performed the
process, we received several messages DSNB232I

 15© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

UNEXPECTED DATA SET LEVEL ID ENCOUNTERED. IBM
Level 2 told us: “When you copy to this new subsystem member
be sure to Force the SCA. The RBA for a dataset is found in the
DBET of each member, the SYSLGRNX, and the group DBET.
The other option is to use DSN1COPY to RESET the RBAs for
each dataset.”

AFTER THE SNAP TO TARGET HAS COMPLETED

8 Rename the target BSDSs and active (LOGCOPYx) datasets to
their correct names. This is necessary because these names have
the data sharing member name embedded in them, but the Snap
copy changes only the high-level qualifier, so we end up with
dataset names of the form ‘targetDCAT.source.BSDSxx’ and
‘targetDCAT.source.LOGCOPYx.DS0y’. Repeat for other data
sharing members.

9 Run a Print Log Map of the new target BSDS and examine the
output to find the RBAs of the Active logs. Then run the
DSNJU003 utility to specify NEWCAT, DELETE all of the old
Active logs, and add (ie NEWLOG) the new Active logs. (There
is an example job below.) Note that the delete step will get RC=4.
The set-up for the utility job could be automated, but we have not
done so, and it remains a somewhat tedious manual process to
locate the required 12-digit RBAs in the Log Map printout and
copy them to the DSNJU003 job input. Repeat for other data
sharing members.

10 Run the DDF command in the DSNTLOG ‘Change Log Inventory’
step of job DSNTIJUZ. (Don’t bother to try to run the GROUP
statement, because it won’t work; see APAR PN75791.) Repeat
for other data sharing members.

11 Edit (using File-AID or some other VSAM editor) the new target
BSDSs to change ‘source_ssid’ to ‘target_ssid’ in the Data
Sharing records at the end of the BSDS. Take care not to change
the archive log names located elsewhere in the BSDS. We
originally planned to run just the Change Log Inventory GROUP
statement at this point but we found that this cannot be done, as

 16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

indicated in step 10. Repeat for other data sharing members.

12 Start the target subsystem ‘-target START DB2’. Repeat for other
data sharing members.

AFTER THE TARGET DB2 IS UP

13 Run the install job (DSNTIJTM) from your target SDSNSAMP,
which deletes and redefines the WRK databases. (These have to
be reallocated because the copied WRK files end up with strange
names just like the BSDSs do.) This job should be modified to
STOP/DROP database ‘WRKsource’ instead of ‘WRKtarget’;
also it should delete the targetDCAT.xxx.WRKsource.xxx
datasets. Repeat for other data sharing members.

14 Rebind the plans for any third-party DB2 utilities you may have,
as required.

15 Re-install any products that may have been ‘lost’; that is, products
which were installed on the target DB2, but were not installed on
the source DB2, and which you wish to continue to use on the
target DB2.

SET NEW HIGH-LEVEL QUALIFIER IN ALL TABLESPACES

Since we have only DB2-managed objects, we use the procedure
given in the DB2 Administration Guide under the subhead Changing
DB2-managed objects to use the new qualifier.

16 Stop all tablespaces ‘-STOP DATABASE(xxxx)
SPACENAM(*)’. This job takes perhaps 1.5 hours to run, on
account of the number of databases – almost 10,000 – and the fact
that it is not possible to say ‘-STOP DATABASE(*)’.

17 Run jobs to set the new qualifier in all the tablespaces. These jobs
do the following:

i Convert to user-managed datasets with the USING VCAT
clause of the ALTER TABLESPACE and ALTER INDEX
statements. (Be sure that DSNDB04 is stopped.)

ii Drop the storage groups ‘DROP STOGROUP xxxxxxxx’.

 17© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

iii Recreate the storage groups using the correct volumes and
the new alias ‘CREATE STOGROUP xxxxxxxx
VOLUMES(*) VCAT zzzzzzzz’.

iv Convert the datasets back to DB2-managed by using the new
storage groups ‘ALTER TABLESPACE ddddd.ttttt USING
STOGROUP xxxxxxxx PRIQTY ppppp SECQTY sssss’
(there is an example job below).

It is not necessary to reset the qualifier for DSNDB01 or
DSNDB06. Be sure that PTF UQ44954 is applied to DB2 V6
before attempting to run step 17(iv).

18 Start all tablespaces ‘-START DATABASE(*) SPACE(*)’. This
is much simpler than step 16 because it is possible to start all of
the databases with one command. The ‘new’ DB2 is now ready
for meaningful work.

CLONING THE SMP/E ENVIRONMENT

Our SMP/E cloning process is independent of the SnapShot process,
because of different naming conventions used for SPM/E datasets,
etc. There is probably a defined SMP/E procedure for doing this, but
we chose to use a dataset copy/edit technique similar to the one we are
using with SnapShot. (Note: the only datasets that we copied in step
5 were DB2 run-time datasets. None of the DB2 install datasets have
been copied yet, up to this point.)

Our SMP/E environment is such that each DB2 data sharing group has
its own CSI dataset and its own set of libraries, although all DB2s are
installed in the same global CSI. We use DFDSS to copy the source
SMP/E datasets (SMPLTS, SMPSTS, etc) and the ‘DLIB’ and ‘Target’
DB2 datasets (source.V61.SDSN* and source.V61.ADSN*). There
are about 30 of these. At the same time we make use of the Rename
function of DFDSS to change the dataset prefix:

 COPY DATASET (INCLUDE(SMPE.DB2.V61.source.**)) -
 RENAMEU ((SMPE.DB2.V61.source.**,SMPE.DB2.V61.target.**))
 COPY DATASET (INCLUDE(source.V61.**)) -
 RENAMEU (target)

The source datasets should be recalled prior to the copy otherwise
DFDSS just ignores them.

 18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

After the copy/rename job is run, we edit the target DLIB CSI and
target CSI datasets to change the zone names and the dataset prefixes
(such as source.V61.xxxxxxxx) to match the target DB2.

We use File-Aid Edit for this. (Note that all the zone names and most
of the dataset names are in record keys, which are protected by File-
Aid. It is necessary to enter U to unprotect before editing, and then P
to protect.)

It is not advisable to postpone the SMP/E cloning just because it is not
a requirement for bringing up and using the target DB2. On one
occasion we delayed this step for a day or two, and inadvertently
applied maintenance to the source DB2 in the meantime. Afterwards
we could still copy the source SMP/E datasets, but they were no longer
in sync with the target DB2’s run-time datasets.

AND WE’RE DONE

There is additional application-specific DBA work to be done in the
target R/3 system at this point before it can be turned over to the user
community, but that is beyond the scope of this discussion.

Note that the target DB2, being a clone of the source DB2, will use the
source DB2’s archive log numbering from this time forward. So far
we have not found this to be a problem.

RESOURCES

We had very little detailed documentation to guide us in developing
this methodology, although there is a general discussion of Cloning
DB2 data using SnapShot in the IBM redbook SG24-5333 Using RVA
and SnapShot for Business Intelligence Applications with OS/390 and
DB2; also there is a section on Cloning DB2 Data in the redbook
SG24-2241 Implementing Snapshot. In addition, we found that after
the data had been copied, we could/should follow the steps given in
the DB2 Administration Guide under Changing the High-Level
Qualifier for DB2 Data Sets starting on page 2-139 (V5) or page 180
(V6).

 19© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

SAMPLE JOBS

//BSDSLOG JOB (11111,222),'BYARS',MSGCLASS=O
//* SSCOPY STEP 9 -- FIX ACTIVE LOG NAMES IN BSDS
//* COPY PRD TO QAS
//LISTBEF EXEC PGM=DSNJUØØ4 LIST BSDS BEFORE CHANGES
//STEPLIB DD DSN=SYS1.QAS1.DSNEXIT,DISP=SHR
// DD DSN=SYS1.QAS1.DSNLOAD,DISP=SHR
//SYSUT1 DD DSN=QASDCAT.QAS1.BSDSØ1,DISP=SHR
//SYSPRINT DD SYSOUT=*
//*
//REPLLOG EXEC PGM=DSNJUØØ3
//STEPLIB DD DISP=SHR,DSN=SYS1.QAS1.DSNEXIT
// DD DISP=SHR,DSN=SYS1.QAS1.DSNLOAD
//SYSUT1 DD DISP=OLD,DSN=QASDCAT.QAS1.BSDSØ1
//SYSUT2 DD DISP=OLD,DSN=QASDCAT.QAS1.BSDSØ2
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
NEWCAT VSAMCAT=QASDCAT
*
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY1.DSØ1
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY1.DSØ2
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY1.DSØ3
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY1.DSØ4
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY2.DSØ1
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY2.DSØ2
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY2.DSØ3
DELETE DSNAME=PRDDCAT.PRD1.LOGCOPY2.DSØ4
*
* REDEFINE COPY1 LOGS:
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY1.DSØ1,
 COPY1,
 STARTRBA=ØØ4Ø63C53ØØØ,
 ENDRBA=ØØ4Ø6AC61FFF
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY1.DSØ2,
 COPY1,
 STARTRBA=ØØ4Ø6AC62ØØØ,
 ENDRBA=ØØ4Ø8ØBF1FFF
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY1.DSØ3,
 COPY1,
 STARTRBA=ØØ4Ø8ØBF2ØØØ,
 ENDRBA=ØØ4Ø96B81FFF
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY1.DSØ4,
 COPY1,
 STARTRBA=ØØ4Ø96B82ØØØ,
 ENDRBA=ØØ4ØACB11FFF
* REDEFINE COPY2 LOGS:
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY2.DSØ1,
 COPY2,

 20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 STARTRBA=ØØ4Ø63C53ØØØ,
 ENDRBA=ØØ4Ø6AC61FFF
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY2.DSØ2,
 COPY2,
 STARTRBA=ØØ4Ø6AC62ØØØ,
 ENDRBA=ØØ4Ø8ØBF1FFF
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY2.DSØ3,
 COPY2,
 STARTRBA=ØØ4Ø8ØBF2ØØØ,
 ENDRBA=ØØ4Ø96B81FFF
NEWLOG DSNAME=QASDCAT.QAS1.LOGCOPY2.DSØ4,
 COPY2,
 STARTRBA=ØØ4Ø96B82ØØØ,
 ENDRBA=ØØ4ØACB11FFF
//* LIST BSDS AFTER CHANGES
//LISTAFT EXEC PGM=DSNJUØØ4
//STEPLIB DD DSN=SYS1.QAS1.DSNEXIT,DISP=SHR
// DD DSN=SYS1.QAS1.DSNLOAD,DISP=SHR
//SYSUT1 DD DSN=QASDCAT.QAS1.BSDSØ1,DISP=SHR
//SYSPRINT DD SYSOUT=*

Note that, in practice, the following job stream consists of several jobs
that are run separately.

//ALTERJ JOB (11111,222),'DBAS',REGION=128M,MSGCLASS=O,CLASS=A
//*---
//* SSCOPY STEP 17 - SET NEW QUALIFIER IN ALL TABLESPACES
//*---
//*---
//*A. ALTER TABLESPACES TO USER MANAGED
//*---
//ALTER EXEC DB2TMP,SYSTEM=QASD
//SYSTSIN DD *
 DSN SYSTEM(QASD)
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) -
 LIB('QASD.V61.RUNLIB.LOAD')
//SYSIN DD *
SET CURRENT SQLID= 'SAPR3';
 ALTER TABLESPACE AØØØ#AAX.VIEAØ2 USING VCAT QASDDB ;
 ALTER TABLESPACE AØØØ#ABN.ZUØØ8 USING VCAT QASDDB ;
 ALTER TABLESPACE AØØØ#AD6.BTXAUTH USING VCAT QASDDB ;

 ALTER TABLESPACE UØ1Ø#QZ8.ZZCONST$ USING VCAT QASDDB ;
 ALTER TABLESPACE UØ1Ø#WLC.Y#PERF# USING VCAT QASDDB ;
 ALTER TABLESPACE UØ1Ø#Z9D.ZZCONSA$ USING VCAT QASDDB ;
 ALTER TABLESPACE BMCACP.BMCTPART USING VCAT QASDCAT ;
 ALTER TABLESPACE BMCACP.BMCTSTAT USING VCAT QASDCAT ;
 ALTER TABLESPACE BMCARM.BMCARMCR USING VCAT QASDCAT ;

 ALTER TABLESPACE BMCUTIL.BMCXCOPY USING VCAT QASDCAT ;

 21© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 ALTER TABLESPACE DB2.STATDBAS USING VCAT QASDCAT ;
 ALTER TABLESPACE DSNDBØ4.DUMMY USING VCAT QASDCAT ;
 ALTER TABLESPACE DSNDBØ4.MAPPING USING VCAT QASDCAT ;
 ALTER TABLESPACE DSNDBØ4.MAPPING1 USING VCAT QASDCAT ;
 ALTER TABLESPACE DSNDBØ4.PLANTABL USING VCAT QASDCAT ;
 ALTER TABLESPACE DSNRGFDB.DSNRGFTS USING VCAT QASDCAT ;
 ALTER TABLESPACE DSNRLST.DSNRLSØ1 USING VCAT QASDCAT ;
//*---
//*B. DROP STOGROUPS
//*---
SET CURRENT SQLID = 'QASDDB';
 DROP STOGROUP GPPROEDT ;
 DROP STOGROUP SAPBTD;
 DROP STOGROUP SAPU1I;
 DROP STOGROUP SAPU1D;

 DROP STOGROUP SAPDOD;
 DROP STOGROUP SAPDII;
 DROP STOGROUP SYSDEFLT ;
//*---
//*C. RECREATE STOGROUPS USING THE NEW CATALOG ALIAS
//*---
SET CURRENT SQLID = 'SAPR3';
 CREATE STOGROUP SAPBTD VOLUMES ('*') VCAT QASDDB ; COMMIT;
 CREATE STOGROUP SAPU1I VOLUMES ('*') VCAT QASDDB ; COMMIT;
 CREATE STOGROUP SAPU1D VOLUMES ('*') VCAT QASDDB ; COMMIT;

 CREATE STOGROUP SAPDOI VOLUMES ('*') VCAT QASDDB ; COMMIT;
 CREATE STOGROUP SAPDOD VOLUMES ('*') VCAT QASDDB ; COMMIT;
 CREATE STOGROUP SAPDII VOLUMES ('*') VCAT QASDDB ; COMMIT;
SET CURRENT SQLID = 'QASDDB';
 CREATE STOGROUP SYSDEFLT VOLUMES ('*') VCAT QASDCAT; COMMIT;
 CREATE STOGROUP GPPROEDT VOLUMES ('*') VCAT QASDDB ; COMMIT;
//*---
//*D. ALTER TABLESPACES BACK TO DB2 MANAGED
//*---
 ALTER TABLESPACE DSNRLST.DSNRLSØ1 USING STOGROUP SYSDEFLT ;
 ALTER TABLESPACE DSNRGFDB.DSNRGFTS USING STOGROUP SYSDEFLT ;
 ALTER TABLESPACE DB2.STATDBAS USING STOGROUP SYSDEFLT ;
 ALTER TABLESPACE BMCUTIL.BMCUTIL USING STOGROUP SYSDEFLT ;
 ALTER TABLESPACE BMCUTIL.BMCLGRNX USING STOGROUP SYSDEFLT ;
 ALTER TABLESPACE BMCACP.BMCTPART USING STOGROUP SYSDEFLT ;
 ALTER TABLESPACE BMCACP.BMCTSTAT USING STOGROUP SYSDEFLT ;
 ALTER TABLESPACE A14Ø#6KO.GLREFTX USING STOGROUP SAPBTD ;
 ALTER TABLESPACE A12Ø#MI5.RBVS USING STOGROUP SAPBTD ;
 ALTER TABLESPACE A14Ø#L6Z.S159X USING STOGROUP SAPBTD ;

 ALTER TABLESPACE AØØØXDQG.STGLTRA USING STOGROUP SAPSTD ;
 ALTER TABLESPACE A11ØXB15.DB2IXBA USING STOGROUP SAPBTD ;

 22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ALTER TABLESPACE AØØØXB15.DB2NORU USING STOGROUP SAPSTD ;
//*---
//*ALTER INDEXES BACK TO DB2 MANAGED
//*---
 ALTER INDEX SYSIBM."DSNARLØ1" USING STOGROUP SYSDEFLT ;
 ALTER INDEX DSNRGCOL."DSN_REGISTER_APPLI" USING STOGROUP SYSDEFLT;
 ALTER INDEX DSNRGCOL."DSN_REGISTER_OBJTI" USING STOGROUP SYSDEFLT;
 ALTER INDEX SAPR3."SYSTBLSP~Ø" USING STOGROUP SYSDEFLT ;
 ALTER INDEX SAPR3."SYSTABLE~Ø" USING STOGROUP SYSDEFLT ;
 ALTER INDEX CANDLE."DSNATX99" USING STOGROUP SYSDEFLT ;
 ALTER INDEX CDB."ALTCTRLX" USING STOGROUP SYSDEFLT ;
 ALTER INDEX CDB."ALTENQUX" USING STOGROUP SYSDEFLT ;
 ALTER INDEX CDB."ALTMESGX" USING STOGROUP SYSDEFLT ;
 ALTER INDEX BMC."BMCDICTX" USING STOGROUP SYSDEFLT ;
 ALTER INDEX BMC."DSNUCHØ1" USING STOGROUP SYSDEFLT ;
 ALTER INDEX BMCACP."DSNDPXØ1" USING STOGROUP SYSDEFLT ;
 ALTER INDEX SAPR3."RBVS~Ø" USING STOGROUP SAPBTI ;
 ALTER INDEX SAPR3."FMIO~Ø" USING STOGROUP SAPBTI ;
 ALTER INDEX SAPR3."MCDX~Ø" USING STOGROUP SAPBTI ;

 ALTER INDEX SAPR3."STGLTRAN~Ø" USING STOGROUP SAPSTI ;
 ALTER INDEX SAPR3."DB2IXBACK~Ø" USING STOGROUP SAPBTI ;
 ALTER INDEX SAPR3."DB2NORUN~Ø" USING STOGROUP SAPSTI ;
//*---
//*RESET PRIQTY/SECQTY FOR ALL TABLESPACES
//*---
 ALTER TABLESPACE BMCACP.BMCTPART PRIQTY ØØØØØ28 SECQTY ØØØØØ2Ø ;
 ALTER TABLESPACE BMCACP.BMCTSTAT PRIQTY ØØØØØ28 SECQTY ØØØØØ2Ø ;

 ALTER TABLESPACE BMCUTIL.BMCUTIL PRIQTY ØØØØØ28 SECQTY ØØØØØ2Ø ;
 ALTER TABLESPACE BMCUTIL.BMCXCOPY PRIQTY ØØØØØ28 SECQTY ØØ15ØØØ ;
 ALTER TABLESPACE DB2.STATDBAS PRIQTY ØØ1152Ø SECQTY ØØØ1152 ;
 ALTER TABLESPACE DSNDBØ4.DUMMY PRIQTY ØØØØØ12 SECQTY ØØØØØ12 ;
 ALTER TABLESPACE DSNDBØ4.MAPPING PRIQTY ØØ72ØØØ SECQTY ØØØ72ØØ ;
 ALTER TABLESPACE DSNDBØ4.MAPPING1 PRIQTY ØØ72ØØØ SECQTY ØØØ72ØØ ;
 ALTER TABLESPACE DSNDBØ4.PLANTABL PRIQTY ØØØØØ12 SECQTY ØØØØØ12 ;
 ALTER TABLESPACE DSNRGFDB.DSNRGFTS PRIQTY ØØØØØ12 SECQTY ØØØØØ12;
 ALTER TABLESPACE DSNRLST.DSNRLSØ1 PRIQTY ØØØØØ12 SECQTY ØØØØØ12 ;
 ALTER TABLESPACE AØØØ#AAX.VIEAØ2 PRIQTY ØØØØ24Ø SECQTY ØØØØ144 ;
 ALTER TABLESPACE AØØØ#ABN.ZUØØ8 PRIQTY ØØØØØ16 SECQTY ØØØØØ4Ø ;
 ALTER TABLESPACE AØØØ#AD6.BTXAUTH PRIQTY ØØØØ576 SECQTY ØØØØ144 ;

 ALTER TABLESPACE UØ1Ø#QZ8.ZZCONST$ PRIQTY ØØ36ØØØ SECQTY ØØØ36ØØ;
 ALTER TABLESPACE UØ1Ø#WLC.Y#PERF# PRIQTY ØØØØØ16 SECQTY ØØØØ16Ø ;
 ALTER TABLESPACE UØ1Ø#Z9D.ZZCONSA$ PRIQTY ØØØØØ52 SECQTY ØØØØ16Ø;

H E Byars
Systems Associate
Eastman Chemical Company (USA) © Eastman Chemical Company 2001

 23© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 Version 6 stored procedures migration
issues

In recent months I had the opportunity to be the technical team leader
on a project for upgrading DB2 OS/390 from Version 5 to Version 6.
In preparing for this project, my team studied many of the DB2 V6
manuals, attended the DB2 Technical Conference in New Orleans,
participated in the ‘DB2 V6 Transition’ course offered by IBM,
consulted many colleagues, and ‘surfed’ the different DB2 mailing
lists looking for information that would help us achieve a smooth
migration.

Although all the above-mentioned information sources described the
changes introduced with DB2 V6 stored procedures, the team did not
find a single clear statement indicating the complexity and magnitude
of the impact caused by these changes.

The purpose of this article is to present a list of issues related to the
implementation of DB2 V6 stored procedures that we found at our
installation. Hopefully, this list will help you at the time you migrate
to DB2 Version 6.

DDL AND PROGRAMMING ISSUES

The transition from DB2 OS/390 Version 5 to Version 6 changes how
DB2 stored procedures are defined. In DB2 Version 5, DB2 stored
procedures were defined by inserting a row into a table named
SYSIBM.SYSPROCEDURES. In DB2 Version 6, DB2 stored
procedures are defined using Data Definition Language SQL
statements.

DB2 V6 stored procedure names can be explicitly or implicitly
qualified by a schema name. The concept of ‘SCHEMA’ represents a
logical manner of grouping stored procedures, mostly for the purpose
of simplifying their administration.

The DDL syntax to explicitly qualify a stored procedure is as follows:

CREATE PROCEDURE Schema_name.Stored_procedure_name .. other parms

 24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

where schema_name is a short SQL identifier (eight characters
maximum), and stored_procedure_name is a long SQL identifier (18
characters maximum).

The DDL syntax to implicitly qualify a stored procedure is as follows:

CREATE PROCEDURE stored_procedure_name … other parms

where the schema_name is derived as follows:

• If the DDL statement is embedded in a program, the schema name
is the authorization ID in the QUALIFIER bind option. If
QUALIFIER is not specified, then the name of the owner of the
plan or package becomes the schema name.

• If the DDL is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register at the
time the DDL is been executed.

Please refer to IBM’s DB2 for OS/390 – SQL Reference, Volume 2, for
additional information regarding the CREATE PROCEDURE DDL
syntax.

CURRENT PATH is an additional concept that specifies an ordered
list of schemas to be searched when resolving unqualified references
to DB2 V6 stored procedures. A new special register supports this
concept. This new special register can store up to 254 characters, so
the number of schema names it can store varies depending on the
length of the schema names themselves. For more information, refer
to the SET CURRENT PATH DDL statement in IBM’s DB2 for
OS/390 – SQL Reference, Volume 2.

At the time of conversion from DB2 Version 5 to DB2 Version 6, all
the existing definitions in SYSIBM.SYSPROCEDURES are migrated
into DB2 Version 6 stored procedure definitions. These definitions are
stored within two new system tables, SYSIBM.SYSROUTINES and
SYSIBM.SYSPARMS. All of the migrated stored procedures are
created under the ‘SYSPROC’ schema name, and the owner for all the
migrated procedures is set to blanks (spaces).

DB2 V6 stored procedures DDL-related issues are listed as follows:

 25© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

• If you deploy DB2 V6 on your test system before your production
system (by the way, a highly recommended approach), you will
now have an environment where your test stored procedures are
defined in a different manner to your production stored procedures.
If you have automated processes to migrate DB2 stored procedures
into production, you will need to update these. If you manually
migrate DB2 stored procedures into production, you will need to
translate the V6 DDL (which can’t execute in a DB2 V5 system)
into an insert statement for the production V5
SYSIBM.SYSPROCEDURES table.

• Once you are under DB2 Version 6 across the board, what
standards are you going to use for these new DB2 objects? For
example, under DB2 V5, in order to execute a stored procedure
all that was needed was EXECUTE authority on the DB2 packages.
Under DB2 V6, an EXECUTE on the PROCEDURE is now
required. (By the way, the manuals indicate that you need execute
authority on the package, but we found that all it provided was a
grant to execute on the stored procedure.) How are you going to
change existing DB2 stored procedure definitions? Are you
going to ALTER them or are you going to DROP and RE-
CREATE them? If you drop and re-create them, you would need
to save the permissions before the DROP, and then re-issue them.
You need to take into consideration that if you need to change one
of the stored procedure parameters, you will be forced to drop and
recreate the procedure.

• Additional questions exist for the concepts of ‘SCHEMA’ and
‘CURRENT PATH’. These two concepts introduce the need for
programming standards. For example, which schemas are going
to be used for the new procedures? SYSPROC or another schema
more easily identified with the application groups. If you use
schemas other than SYSPROC, you will need to change your
application programs to use the ‘SET CURRENT PATH’ statement
to point to the new schemas. At our installation, we migrated
using only the SYSPROC schema, but we are planning to create
separate schemas for different application development groups
in order to provide a more granular control for administration of
stored procedures.

 26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Ownership, administration, and implementation of DB2 stored
procedures raises additional questions. Who is going to be the
owner of the DB2 stored procedures (and the schemas) in the test
and production environments? Who is going to be able to define
new stored procedures – the DBAs, the application developers, or
both groups? Are the DBAs going to be involved in the
development and implementation of these programs executing as
stored procedures, since now these are part of the database itself?
These and many other questions need to be addressed prior to
migration to DB2 V6.

MIGRATION ISSUES

IBM provides a mechanism to convert (migrate) the DB2 V5 stored
procedures into DB2 V6 stored procedures. This mechanism is
supported by the DB2 catalog maintenance utility, CATMAINT,
which creates the new DB2 tablespaces and tables necessary to
support the new DB2 objects (stored procedures, user defined functions,
and triggers). This same utility, in the same step, populates the DB2
V6 stored procedure tables with the V5 information.

This mechanism has several shortcomings, listed as follows:

• During the migration of one of our subsystems, the CATMAINT
utility abnormally ended with a message indicating that it was
trying to create a DB2 table (for SYSOBJECTS) that already
existed. The only way to correct this situation was to restart DB2
using the DB2 V5 load libraries, delete the V6 objects causing the
error, and re-start the migration process. See IBM document
II11442 on IBMLINK for additional information.

• No security is migrated for the stored procedures. You will have
to manually generate and execute the SQL statements to grant
access to the DB2 V6 stored procedures. The following SQL will
generate the required grant statements:

SELECT 'GRANT EXECUTE ON PROCEDURE SYSPROC.' ||
 PROCEDURE || ' TO ' || GRANTEE || ' ;'
FROM
 SYSIBM.SYSPROCEDURES,

 27© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 SYSIBM.SYSPACKAUTH
 WHERE PROCEDURE = NAME
 ORDER BY 1 FOR FETCH ONLY;

• No provision is made to grant access to the default schema,
SYSPROC. You will need to determine who will have access to
this schema. It is very likely that you may have to grant access to
public while you develop your standards and procedures.

• If you have third-party tools to peruse DB2 catalog contents,
make sure that these tools are Version 6-compliant – in other
words, that these tools will be able to manage and display
information related to the new DB2 V6 objects (namely DB2
stored procedures, DB2 user-defined functions, and DB2 V6
user-defined data types). If the tools are not Version 6 compliant,
you may need to create a set of SQL queries to retrieve information
from the DB2 catalog.

DB2 MAINTENANCE ISSUES

It is over a year since DB2 Version 6 has been generally available and
IBM is still finding serious bugs in its code. During our testing phase,
we found several bugs directly related to DB2 stored procedures. As
of 11 September 2000, there are at least two serious outstanding
problems related to stored procedures IBM is working to resolve.

If you must use DB2 V6 stored procedures after you migrate, my
recommendations are that:

• You migrate to V6 using a very current DB2 maintenance level.

• All applications using stored procedures are thoroughly tested.

For more information about a good DB2 maintenance level to migrate
to, please refer to IBM document II12343 on IBMLINK for a
Recommended Maintenance Level (RML).

Some of the PTFs that had an impact on our implementation are as
follows: PTF UQ44647 (APAR PQ38811), PTF UQ44509 (APAR
PQ37582), and PTF UQ44155 (APAR PQ38457).

 28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSION

With DB2 Version 6, IBM delivers a powerful database management
system, full of enhancements and new features. DB2 V6 stored
procedures have significantly matured and have become an important
component of mainframe and client/server applications. Other DB2
V6 enhancements, such as user functions and user data types, make
DB2 V6 DBMS a superb candidate as central DBMS server of choice.

If your installation is currently using DB2 stored procedures on DB2
V5, it is very important that you pay close attention to the migration
issues related to them. Use all possible sources of information
available to learn about existing and emerging issues. Keep a close eye
on the list of highly pervasive (HIPER) fixes published by IBM. More
than ever, ensure that all of your DB2 stored procedures are exercised
at your test installation before migrating DB2 V6 into your production
sites.

Antonio L Salcedo
Lead DB2 System Programmer/DBA (USA) © Xephon 2001

Utility for generating recovery jobs using the
REXX SQL interface – part 2

This month we conclude the utility that uses the REXX SQL interface
to access the information from the catalog tables and to build the JCL.

Call PROCQRY
/* if first fetch is successful, then process all rows */
/* otherwise retrieve next row from flat file for processing */
if ERRFLG = Ø then
 Call PROCRSLT
return
/* Prepare Dynamic SQL using STMT and perform first fetch */
/* Call PROCRSLT if successful to process rows otherwise */
/* write error message and continue to next input row */
/* If severe error, then exit program */
PROCQRY:
ADDRESS DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
/* Say 'Declare SQLCODE = ' SQLCODE */

 29© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

if SQLCODE ¬= Ø then
do
 Call SQLCA
 exit
end
ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :STMT"
/* Say 'Prepare SQLCODE = ' SQLCODE */
if SQLCODE ¬= Ø then
do
 Call SQLCA
 exit
end
/* Say 'opening C1 ' */
ADDRESS DSNREXX "EXECSQL OPEN C1"
/*Say 'Open SQLCODE = ' SQLCODE */
if SQLCODE ¬= Ø then
 Call SQLCA
ADDRESS DSNREXX "EXECSQL FETCH C1 INTO :A1, :A2, :A3, :A4, :A5,",
 ":A6, :A7, :A8 "
/*
IF SQLCODE = Ø Then Do
 Line = ' '
 Line = Line||A1||A2||A3||A4||A5||A6||A7||A8
 say Line
end
*/
if SQLCODE ¬= Ø then
do
 Call ERRPT
 ERRFLG = 1
 return
end
/**/
/****** DEBUG TEXT - UNCOMMENT IF REQUIRED ***********/
/*
IF SQLCODE = Ø Then Do
 Line = ' '
 Line = Line||A1||A2||A3||A4||A5||A6||A7||A8
 say Line
end
*/
/**/
return
/* Process results of query and form output members */
PROCRSLT:
memcnt=Ø; eof=Ø;row_cnt = Ø
prevts = ''
first = 1
k = Ø ; j = Ø ; l = Ø
I_dbname = strip(I_dbname)
I_tsname = strip(I_tsname)

 30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If strip(I_tsname) = '' then
 Memname = I_dbname
else
 Memname = I_tsname
len= length(Memname);
say 'Processing subset 'Memname' ...'
Do until (SQLCODE ¬= Ø)
 db = strip(A1) /* database name */
 ts = strip(A2) /* tablespace name */
 prt = strip(A3) /* partition num or DSNUM */
 fseq = strip(A4) /* fileseq number */
 dsn = strip(A5) /* dataset name of imagecpy */
 rba = strip(A6) /* HEX of START_RBA */
 icd = strip(A7) /* icdate of syscopy rec */
 ict = strip(A8) /* ictime of syscopy rec */
 row_cnt = row_cnt + 1
 if first = 1 then
 do
 prevts = ts
 Call FILLJCL
 Call BILDSTEP
 first = Ø
 end
 else /* first ¬= 1 */
 do
 if prevts = ts then
 do
 Call BILDSTEP
 end
 else /* prevts ¬= ts */
 do
 if P_typ = 'Q' then
 do
 k=k+1
 out.k = prev_rba
 end
 tempts = ts
 ts = prevts
 Call BILDINDX
 ts = tempts
 Call BILDSTEP
 prevts = ts
 end
 end
ADDRESS DSNREXX "EXECSQL FETCH C1 INTO :A1, :A2, :A3, :A4, :A5,",
 ":A6, :A7, :A8"
/**/
/*** DEBUGGING TEXT - UNCOMMENT IF REQUIRED ********/
/*
 IF SQLCODE = Ø Then Do
 Line = ' '

 31© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 Line = Line||A1||A2||A3||A4||A5||A6||A7||A8
 say Line
 end
*/
/**/
end
if P_typ = 'Q' then
do
 k=k+1
 out.k = prev_rba
end
ts = prevts
Call BILDINDX
ADDRESS DSNREXX "EXECSQL CLOSE C1"
Call WRITEMEM
return
CLEANUP:
ods_mem = ods_name||"(REPORT)"
address tso "alloc f(outdd) mod dsname('"ods_mem"')"
hdr.1 = 'ICDATE used ...'I_icdate
hdr.2 = 'ICTIMES between 'I_btime' and 'I_etime
hdr.3 = 'Input dataset 'I_lstdsn
hdr.4 = 'NO DBNAME TSNAME MEMBER STATUS'
hdr.5 = '--------------------------------------'
address tso "execio * DISKW outdd (stem hdr. "
address tso "execio * DISKW outdd (stem rpt. FINIS "
address tso "FREE ddname(outdd)"
return
PERFCONN:
/* Set up STEPLIBs */
/* */
ADDRESS TSO
lib.Ø = 2
/* *** SITESPEC *** */
lib.1 = "ABCD."||sid||".DSNLOAD"
lib.2 = "ABCD."||sid||".DSNEXIT"
L_Dsname = ""
 do i = 1 to lib.Ø
 L_Dsname = L_Dsname||"'"||∂ib.i||"' "
 end
/* address tso "ALLOC F(STEPLIB) DA("L_Dsname") SHR REU " */
 "STEPLIB DA("L_Dsname") SHR "
'SUBCOM DSNREXX' /* Is host command env avlbl ? */
IF RC then /* If not, then add it */
 S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')
ADDRESS DSNREXX /* exec all further cmds in DSNREXX */
ADDRESS DSNREXX "CONNECT" sid
Say 'Connect RC ...' RC
return
/* Disconnect from DB2 */
PERFDISC:

 32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ADDRESS DSNREXX " DISCONNECT"
Say 'Disconnect RC ...' RC
if SQLCODE ¬= Ø then
do
 Call SQLCA
 exit
end
S_RC = RXSUBCOM('DELETE','DSNREXX','DSNREXX')
return
/* Report error in query processing */
ERRPT:
 do while length(I_dbname) < 8
 I_dbname = ' '||I_dbname
 end
 do while length(I_tsname) < 8
 I_tsname = ' '||I_tsname
 end
 k = k+1
 sno=k
 do while length(sno) < 3
 sno = ' '||sno
 end
 rpt.k = sno||' '||I_dbname||' '||I_tsname||' '||Memname
 rpt.k = rpt.k||' - Query did not retrieve any rows'
return
/* Useful in analyzing SQL codes */
SQLCA:
TRACE O
SAY 'SQLCODE ='SQLCODE
SAY 'SQLERRMC ='SQLERRMC
SAY 'SQLERRP ='SQLERRP
SAY 'SQLERRD ='SQLERRD.1',',
|| SQLERRD.2',',
|| SQLERRD.3',',
|| SQLERRD.4',',
|| SQLERRD.5',',
|| SQLERRD.6
SAY 'SQLWARN ='SQLWARN.Ø',',
|| SQLWARN.1',',
|| SQLWARN.2',',
|| SQLWARN.3',',
|| SQLWARN.4',',
|| SQLWARN.5',',
|| SQLWARN.6',',
|| SQLWARN.7',',
|| SQLWARN.8',',
|| SQLWARN.9',',
|| SQLWARN.1Ø
SAY 'SQLSTATE='SQLSTATE
SAY 'SQLCODE ='SQLCODE
say 'SQLERRMC ='SQLERRMC';' ,

 33© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

|| 'SQLERRP ='SQLERRP';' ,
|| 'SQLERRD ='SQLERRD.1',',
 || SQLERRD.2',',
 || SQLERRD.3',',
 || SQLERRD.4',',
 || SQLERRD.5',',
 || SQLERRD.6';' ,
|| 'SQLWARN ='SQLWARN.Ø',',
 || SQLWARN.1',',
 || SQLWARN.2',',
 || SQLWARN.3',',
 || SQLWARN.4',',
 || SQLWARN.5',',
 || SQLWARN.6',',
 || SQLWARN.7',',
 || SQLWARN.8',',
 || SQLWARN.9',',
 || SQLWARN.1Ø';' ,
 || 'SQLSTATE='SQLSTATE';'
return
/* The JCL JOB card, EXEC card and work file definitions */
FILLJCL:
osn = osn+1
ldlst.q = cdsn
do while length(osn) < 4
 osn = 'Ø'||?sn
end
jcl.1 = "//"||substr(Memname,1,8)||" JOB ("||P_act||"),"
jcl.1 = jcl.1||"'"||Memname||" RECOVER',TIME=144Ø,"
/* *** SITESPEC *** */
jcl.2 = "// CLASS=A,MSGCLASS=T,REGION=2ØM,NOTIFY=&SYSUID, "
jcl.3 = "// LINES=9999 "
jcl.4 = "//* "
/* *** SITESPEC *** */
jcl.5 = "/*JOBPARM SYSAFF="||P_sysid
jcl.6 = "//* -- "
jcl.7 = "//* RECOVER JOB "
jcl.8 = "//* "
jcl.9 = "//* GENERATED USING RECVER on "||us_date||" "
jcl.1Ø= "//* using "||I_lstdsn
jcl.11= "//* -- "
jcl.12= "//* "
jcl.13= "//RCVRSTEP EXEC PGM=DSNUTILB,PARM='"||sid||","||Memname||"'"
jcl.14= "//*RCVRSTEP EXEC "
jcl.15= "//*
PGM=DSNUTILB,PARM='"||sid||","||Memname||",RESTART(PHASE)'"
/* *** SITESPEC *** */
jcl.16= "//STEPLIB DD DISP=SHR,DSN=ABCD."||sid||".DSNEXIT"
jcl.17= "// DD DISP=SHR,DSN=ABCD."||sid||".DSNLOAD"
jcl.18= "//SYSPRINT DD SYSOUT=* "
jcl.19= "//SYSUDUMP DD SYSOUT=* "

 34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

jcl.2Ø= "//UTPRINT DD SYSOUT=* "
jcl.21= "//SYSOUT DD SYSOUT=* "
jcl.22= "//SYSUT1 DD SPACE=(CYL,(5ØØ,5ØØ)),UNIT=(SYSDA,5)"
jcl.23= "//SORTWKØ1 DD SPACE=(CYL,(25Ø,5ØØ)),UNIT=(SYSDA,5)"
jcl.24= "//SORTWKØ2 DD SPACE=(CYL,(25Ø,5ØØ)),UNIT=(SYSDA,5)"
jcl.25= "//SORTWKØ3 DD SPACE=(CYL,(25Ø,5ØØ)),UNIT=(SYSDA,5)"
jcl.26= "//SORTWKØ4 DD SPACE=(CYL,(25Ø,5ØØ)),UNIT=(SYSDA,5)"
jcl.27= "//SORTWKØ5 DD SPACE=(CYL,(25Ø,5ØØ)),UNIT=(SYSDA,5)"
jcl.28= "//SORTWKØ6 DD SPACE=(CYL,(25Ø,5ØØ)),UNIT=(SYSDA,5)"
jcl.29= "//* "
return
/** end of FILLJCL **/
/* Build the COPY DD cards and SYSIN cards for RECOVERY */
BILDSTEP:
j = j+1
csno = strip(row_cnt)
do while length(csno) < 5
 csno = 'Ø'||csno
end
cpy.j = "//CPY"||csno||" DD DSN="||dsn||","
j = j+1
cpy.j = "// LABEL=("||fseq||",SL),DISP=(OLD,PASS)"
cpy.j = cpy.j||",VOL=(,RETAIN)"
k = k+1
if P_typ = 'Q' & prt > 1 then
 out.k = " TABLESPACE "||db||"."||ts
else
 out.k = " RECOVER TABLESPACE "||db||"."||ts
if prt > Ø then
 out.k = out.k||" DSNUM "||prt
if P_typ = 'F' then
do
 k=k+1
 out.k = " TOCOPY "dsn
end
else
 prev_rba = " TORBA (X'"rba"')"
return
/* Build the SYSIN cards for rebuilding INDEXES */
BILDINDX:
l = l+1
rbd.l = " REBUILD INDEX (ALL) TABLESPACE "||db||"."||ts
return
/* Allocate a member and write the JCL */
WRITEMEM:
 ods_mem = ods_name||"("||Memname||")"
 address tso "alloc f(outdd) mod dsname('"ods_mem"')"
 address tso "execio * DISKW outdd (stem jcl. "
 address tso "execio * DISKW outdd (stem cpy. "
 address tso "execio * DISKW outdd (stem sys. "
 address tso "execio * DISKW outdd (stem out. "

 35© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 address tso "execio * DISKW outdd (stem rbd. FINIS "
 drop jcl.
 drop cpy.
 drop out.
 drop rbd.
 xx = outtrap("zap.","*")
 address tso "FREE ddname(outdd)"
 xx = outtrap("OFF")
 s = s+1
 sno=s
 do while length(sno) < 3
 sno = ' '||sno
 end
 if I_tsname = '' then
 I_tsname = ' '
 do
 rpt.s = sno||' '||I_dbname||' '||I_tsname||' '||Memname
 rpt.s = rpt.s||' Successfully written'
 end
return

RCVRERR

)ATTR
+ TYPE(TEXT) COLOR(WHITE)
)BODY WINDOW (6Ø,5)
+
+ &ERRMSG :+ &ERRCOL
+
+ Enter to continue ...
+
)INIT
)PROC
)END

RCVRPAN

)ATTR
+ TYPE(TEXT) COLOR(WHITE)
| TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) PAD(' ')
¬ TYPE(TEXT) COLOR(GREEN) INTENS(LOW) HILITE(REVERSE)
)BODY
+ System: &MC +
+ DB2 subsystem ID :_SSID+
+
+ Recover to QUIESCE POINT or FULL COPY?(Q/F) :_Z+
+
+ DBNAME/TSNAME List PDS :_DBLST +
+ Edit this dataset (Y/N):_Z+
+

 36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

+ ICDATE value to recover to :_ICDATE+(yymmdd)
+ ICTIME value AFTER which to recover to :_ICT1 +(hhmmss)
+ ICTIME value BEFORE which to recover to :_ICT2 +(hhmmss)
+
+ Output Dataset :_OUTDS +
+
+
+
 |ERRMSG |ERRCOL
+
+
+
+
¬F3 - End +
+
)INIT
 .ZVARS= '(RECTYP,EDFLG)'
)PROC
 if (.PFKEY = 'PFØ3') &PF3 = EXIT
 VER(&SSID,NB,LIST,DBT3,DBP2,DBT1,DBT2,DBP5,DBP6,DBP1,DBP3)
 VER(&DBLST,NB)
 VER(&RECTYP,NB,LIST,F,Q)
 VER(&EDFLG,NB,LIST,Y,N)
 VER(&ICDATE,NB)
 VER(&ICT1,NB)
 VER(&ICT2,NB)
 VER(&OUTDS,NB)
)END

RECVER

/* rexx */
/**/
/* Panel driven tool for recovery of databases */
/* This is the main REXX which invokes the panel. It collects */
/* necessary inputs and invokes RCVRCAL */
/* Invocation: TSO RECVER */
/**/
trace o
clear
address tso "ispexec vget (zsysid)"
p_sysid=zsysid
if p_sysid = 'PROD' then
 MC = 'PROD'
else
 MC = 'TEST'
pref =strip(sysvar(syspref))
cd = date(U)
us_date = substr(cd,7,2)||substr(cd,1,2)||substr(cd,4,2)
ZWINTTL = 'UTILITY TO GENERATE RECOVERY JOBS'
DBLST = pref||'.'||USERID()||'.INLST'

 37© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

OUTDS = pref||'.'|USERID()||'.RCVRPT.D'||us_date
cur_date = date(S)-1
cur_date = substr(cur_date,3)
ICDATE = cur_date
ICT1 = '19ØØØØ'
ICT2 = '2359ØØ'
EDFLG= 'Y'
RECTYP = 'F'
BEGIN:
/* *** SITESPEC *** */
"ISPEXEC LIBDEF ISPPLIB DATASET ID('HLQ.USERID.PANELS')"
"ISPEXEC ADDPOP ROW(2) COLUMN(1Ø)"
"ISPEXEC DISPLAY PANEL(RCVRPAN)"
"ISPEXEC REMPOP ALL "
clear
Upper DBLST
upper EDFLG
upper ICDATE
upper ICT1; upper ICT2; upper OUTDS
upper SSID
if PF3 = 'EXIT' then
 exit(Ø)
CHK_DSN:
DBLST = strip(DBLST,Leading,"'")
z = outtrap("zlst.","*")
x = SYSDSN("'"DBLST"'")
z = outtrap("OFF")
if x = 'OK' then
 nop
else
do
 ERRMSG = 'Dataset not found ...'
 ERRCOL = DBLST
 "ISPEXEC ADDPOP ROW(4) COLUMN(6)"
 "ISPEXEC DISPLAY PANEL(RCVRERR)"
 "ISPEXEC REMPOP ALL "
 signal BEGIN
end
CHK_ICDATE:
D_yy = substr(ICDATE,1,2)
D_mm = substr(ICDATE,3,2)
D_dd = substr(ICDATE,5,2)
if (D_mm > 13) | (D_dd > 31) then
do
 ERRMSG = 'Invalid date specified '
 ERRCOL = ICDATE
 "ISPEXEC ADDPOP ROW(4) COLUMN(6)"
 "ISPEXEC DISPLAY PANEL(RCVRERR)"
 "ISPEXEC REMPOP ALL "
 signal BEGIN
end
cur_date = date(S)

 38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

cur_date = substr(cur_date,3)
if ICDATE > cur_date then
do
 ERRMSG = 'Date must be < = 'cur_date
 ERRCOL = ICDATE
 "ISPEXEC ADDPOP ROW(4) COLUMN(12)"
 "ISPEXEC DISPLAY PANEL(RCVRERR)"
 "ISPEXEC REMPOP ALL "
 signal BEGIN
end
CHK_ICT1:
T_hh = substr(ICT1,1,2)
T_mm = substr(ICT1,3,2)
T_ss = substr(ICT1,5,2)
if (T_hh > 23) | (T_mm > 59) | (T_ss > 59) then
do
 ERRMSG = 'Invalid time specified '
 ERRCOL = ICT1
 "ISPEXEC ADDPOP ROW(4) COLUMN(6)"
 "ISPEXEC DISPLAY PANEL(RCVRERR)"
 "ISPEXEC REMPOP ALL "
 signal BEGIN
end
CHK_ICT2:
T_hh2 = substr(ICT2,1,2)
T_mm2 = substr(ICT2,3,2)
T_ss2 = substr(ICT2,5,2)
if ((T_hh2 > 23) | (T_mm2 > 59) | (T_ss2 > 59)) then
do
 ERRMSG = 'Invalid time specified '
 ERRCOL = ICT2
 "ISPEXEC ADDPOP ROW(4) COLUMN(6)"
 "ISPEXEC DISPLAY PANEL(RCVRERR)"
 "ISPEXEC REMPOP ALL "
 signal BEGIN
end
CHK_ICTS:
if (T_hh2 < T_hh) | (T_hh2 = T_hh & T_mm2 < T_mm) then
do
 ERRMSG = 'ICTIMES incorrect '
 ERRCOL = ICT1||' < 'ICT2
 "ISPEXEC ADDPOP ROW(4) COLUMN(6)"
 "ISPEXEC DISPLAY PANEL(RCVRERR)"
 "ISPEXEC REMPOP ALL "
 signal BEGIN
end
/* *** SITESPEC *** */
CHKSSID:
sid = SSID
ssid_err = Ø
 if p_sysid = 'PROD' then
 select

 39© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

 when sid = 'PROD'
 then do
 nop
 end
 otherwise
 ssid_err =1
 end
 if p_sysid = 'TEST' then
 select
 when sid = 'DBT1'
 then do
 nop
 end
 when sid = 'DBT2'
 then do
 nop
 end
 when sid = 'DBT3'
 then do
 nop
 end
 when sid = 'DBP1'
 then do
 nop
 end
 otherwise
 ssid_err =1
 end
if ssid_err = 1 then
do
 ERRMSG = 'Invalid SSID specified '
 ERRCOL = SSID
 "ISPEXEC ADDPOP ROW(4) COLUMN(6)"
 "ISPEXEC DISPLAY PANEL(RCVRERR)"
 "ISPEXEC REMPOP ALL "
 signal BEGIN
end
CHKEDT:
if EDFLG = 'Y' then
do
 ADDRESS ISPEXEC "EDIT DATASET('"DBLST"')"
end
cmd = 'address tso "RCVRCAL" SSID DBLST ICDATE ICT1 ICT2 '
cmd = cmd||'OUTDS RECTYP'
interpret cmd
say 'Press Enter to quit...'; pull temp
exit(Ø)

Jaiwant K Jonathan
DB2 DBA
QSS Inc (USA) © Xephon 2001

 40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

DB2 REXX Language Support

INTRODUCTION

This article describes DB2 for OS/390 REXX Language Support,
which is a new separately-orderable feature of DB2.

DB2 REXX Language Support provides the ability to write SQL
application programs in the REXX programming language.

REXX Language support, which is a no-charge feature, is available by
ordering the desired distribution media feature (DB2 610 = 5108 for
a 3480 Cartridge).

This article will first explain programming techniques that are unique
to coding SQL statements in a REXX procedure.

At the end of this article, you will find a complete DB2 REXX
procedure sample.

CODING SQL STATEMENTS IN A REXX APPLICATION

SQL data areas

The SQL Communication Area (SQLCA)

When DB2 prepares a REXX procedure that contains SQL statements,
DB2 automatically includes a SQL communication area (SQLCA) in
the procedure.

The SQLCA is a structure used to provide an application program with
information about the execution of its SQL statements.

The REXX SQLCA consists of a set of separate variables.

The folowing table lists the variables available in a REXX SQLCA:

• SQLCODE – the SQL return code.

• SQLERRMC – one or more tokens, separated by X'FF', that are
substituted for variables in the descriptions of error conditions.

 41© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

• SQLERRP – a product signature and, in the case of an error,
diagnostic information such as the name of the module that
detected the error. For DB2 for OS/390, the product signature is
‘DSN’.

• SQLERRD.1 – an internal error code.

• SQLERRD.2 – an internal error code.

• SQLERRD.3 – the number of rows affected after INSERT,
UPDATE, and DELETE (but not rows deleted as a result of
CASCADE delete). Set to 0 if the SQL statement fails, indicating
that all changes made in executing the statement were cancelled.
Set to -1 for a mass delete from a table in a segmented table space.
For SQLCODE -911 or -913, SQLERRD.3 can also contain the
reason code for a timeout or deadlock.

• SQLERRD.4 – generally contains timerons, a short floating-
point value that indicates a rough relative estimate of resources
required. This value does not reflect an estimate of the time
required to execute the SQL statement. After you prepare an SQL
statement, you can use this field as an indicator of the relative cost
of the prepared SQL statement. For a particular statement, this
number can vary with changes to the statistics in the catalog. This
value is subject to change between releases of DB2 for OS/390.

• SQLERRD.5 – the position or column of a syntax error for a
PREPARE or EXECUTE IMMEDIATE statement.

• SQLERRD.6 – an internal error code.

• SQLWARN.0 – blank if all other indicators are blank; W if at least
one other indicator also contains a W.

• SQLWARN.1 – W if the value of a string column was truncated
when assigned to a host variable.

• SQLWARN.2 – W if null values were eliminated from the
argument of a column function; not necessarily set to W for the
MIN function because its results are not dependent on the
elimination of null values.

• SQLWARN.3 – W if the number of result columns is larger than

 42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the number of host variables. Z if the ASSOCIATE LOCATORS
statement contains fewer locators than the stored procedure
returned.

• SQLWARN.4 – W if a prepared UPDATE or DELETE statement
does not include a WHERE clause.

• SQLWARN.5 – W if the SQL statement was not executed
because it is not a valid SQL statement in DB2 for OS/390.

• SQLWARN.6 – W if the addition of a month or year duration to
a DATE or TIMESTAMP value results in an invalid day (for
example 31 June). Indicates that the value of the day was changed
to the last day of the month to make the result valid.

• SQLWARN.7 – W if one or more non-zero digits were eliminated
from the fractional part of a number that was used as the operand
of a decimal multiply or divide operation.

• SQLWARN.8 – W if a character that could not be converted was
replaced by a substitute character.

• SQLWARN.9 – W if arithmetic exceptions were ignored during
COUNT DISTINCT processing. Z if the stored procedure returned
multiple result sets.

• SQLWARN.10 – W if at least one character field of the SQLCA
is invalid because of a character conversion error.

• SQLSTATE – a return code for the outcome of the most recent
execution of an SQL statement.

DB2 sets the SQLCODE and SQLSTATE values after each SQL
statement execution.

An application should check these variable values to determine
whether the last SQL statement was successful.

The SQL Descriptor Area (SQLDA)

The SQLDA is a structure that describes input/output variables or the
columns of a result table.

The following statements require a SQL descriptor area (SQLDA):

 43© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

• CALL...USING DESCRIPTOR descriptor-name.

• DESCRIBE statement-name INTO descriptor-name.

• DESCRIBE CURSOR host-variable INTO descriptor-name.

• DESCRIBE INPUT statement-name INTO descriptor-name.

• DESCRIBE PROCEDURE host-variable INTO descriptor-name.

• DESCRIBE TABLE host-variable INTO descriptor-name.

• EXECUTE...USING DESCRIPTOR descriptor-name.

• FETCH...USING DESCRIPTOR descriptor-name.

• OPEN...USING DESCRIPTOR descriptor-name.

• PREPARE...INTO descriptor-name.

Unlike the SQLCA, a REXX procedure can contain more than one
SQLDA.

Each SQLDA consists of a set of REXX variables with a common
stem. The stem must be a REXX variable name that contains no
periods (full stops) and is the same as the value of descriptor-name that
you specify when you use the SQLDA in an SQL statement – see
Figure 1.

Each SQLDA contains stem.SQLD with the variables shown in
Figure 2.

Variable name Usage in DESCRIBE Usage in FETCH, OPEN,
and PREPARE INTO EXECUTE, and CALL

stem.SQLD The number of columns that are The number of host
described in the SQLDA. variables that are used by
Contains a 0 if the statement the SQL statement.
string is not a query. For
DESCRIBE PROCEDURE, the
number of result sets returned
by the stored procedure.
Contains a 0 if no result sets are
returned.

Figure 1: SQLDA

 44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Variable name Usage in DESCRIBE and Usage in FETCH, OPEN,
PREPARE INTO EXECUTE, and CALL

stem.n.SQLTYPE Indicates the data type of the Indicates the data type of the
column or parameter and host variable and whether an
whether it can contain null indicator variable is
values. provided. Host variables for

datetime values must be
character string variables.
For FETCH, a datetime type
code means a fixed-length
character string.

stem.n.SQLLEN For a column other than a For a host variable that does
DECIMAL or NUMERIC not have a decimal data
column, the length attribute type, the length attribute of
of the column or parameter. the host variable.
For datetime data,
the length of the string
representation of the value.

stem.n.SQLPRECISION
For a DECIMAL or NUMERIC For a host variable with a
column, the precision of the decimal data type, the
column or parameter. precision of the host

variable.
stem.n.SQLSCALE

For a DECIMAL or NUMERIC For a host variable with a
column, the scale of the column decimal data type, the scale
or parameter. of the host variable.

stem.n.SQLCCSID
For a string column or For a string host variable,
parameter, the CCSID of the the CCSID of the host
column or parameter. variable.

stem.n.SQLLOCATOR
For DESCRIBE PROCEDURE, Not used.
the value of a result set locator.

Figure 2a: Variables in a REXX SQLDA

Therefore, 1<= n<= stem.SQLD. There is one occurrence of each
variable for each column of the result table or host variable that is
described by the SQLDA.

The DB2 REXX programming interface

DB2 REXX Language Support includes the following application
programming interfaces:

 45© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

• CONNECT – connects the REXX procedure to a DB2 subsystem.
You must execute CONNECT before you can execute SQL
statements.

• EXECSQL – executes SQL statements in REXX procedures.

• DISCONNECT – disconnects the REXX procedure from a DB2
subsystem. You should execute DISCONNECT to release
resources that are held by DB2.

CONNECT

The syntax of CONNECT is:

ADDRESS DSNREXX "CONNECT" subsystem-id

Variable name Usage in DESCRIBE and Usage in FETCH, OPEN,
PREPARE INTO EXECUTE, and CALL

stem.n.SQLDATA Not used. Before EXECUTE or OPEN,
contains the value of an
input host variable. The
application must supply this
value. After FETCH,
contains the values of an
output host variable.

stem.n.SQLIND Not used. Before EXECUTE or OPEN,
contains a negative number
to indicate that the input host
variable in stem.n.SQLDATA
is null. The application must
supply this value. After
FETCH, contains a negative
number if the value of the
output host variable in
stem.n.SQLDATA is null.

stem.n.SQLNAME The name of the nth column in Not used.
the result table. For DESCRIBE
PROCEDURE, contains the
cursor name that is used by the
stored procedure to return the
result set. The values for
SQLNAME appear in the order
that the cursors were opened by
the stored procedure.

Figure 2: Variables in a REXX SQLDA

 46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

EXECSQL

The syntax of EXECSQL is:

ADDRESS DSNREXX "EXECSQL" sql-statement

DISCONNECT

The syntax of DISCONNECT is:

ADDRESS DSNREXX "DISCONNECT"

Using SQL statements in a REXX procedure

DB2 REXX Language Support allows all SQL statements that DB2
for OS/390 supports, except the following statements:

• BEGIN DECLARE SECTION

• DECLARE STATEMENT

• END DECLARE SECTION

• INCLUDE

• SELECT INTO

• WHENEVER

Each SQL statement in a REXX procedure must begin with EXECSQL,
in upper, lower, or mixed-case.

One of the following items must follow EXECSQL:

• A SQL statement enclosed in single or double quotation marks.

• A REXX variable that contains a SQL statement. The REXX
variable must not be preceded by a colon.

For example, you can use either of the following methods to execute
the COMMIT statement in a REXX procedure:

EXECSQL "COMMIT"
rexxvar="COMMIT"
EXECSQL rexxvar

 47© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

Variables names

You can use any valid REXX name that does not end with a period (full
stop) as a host variable. However, host variable names should not
begin with ‘SQL’, ‘RDI’, ‘DSN’, ‘RXSQL’, or ‘QRW’. Variable
names can be at the most 64 bytes long.

Cursors and statements names

In REXX SQL applications, you must use a predefined set of names
for cursors or prepared statements. The following names are valid for
cursors and prepared statements in REXX SQL applications:

• c1 to c100 – cursor names for DECLARE CURSOR, OPEN,
CLOSE, and FETCH statements. Use c1 to c50 for cursors that
are defined without the WITH HOLD option. Use c51 to c100 for
cursors that are defined with the WITH HOLD option. All cursors
are defined with the WITH RETURN option, so any cursor name
can be used to return result sets from a REXX stored procedure.

• c101 to c200 – cursor names for ALLOCATE, DESCRIBE,
FETCH, and CLOSE statements that are used to retrieve result
sets in a program that calls a stored procedure.

• s1 to s100 – prepared statement names for DECLARE
STATEMENT, PREPARE, DESCRIBE, and EXECUTE
statements.

Use only the predefined names for cursors and statements. Do not use
any of the predefined names for host variables.

REXX host variables

You do not declare host variables in REXX. When you need a new
variable, you use it in a REXX command.

When you use a REXX variable as a host variable in a SQL statement,
you must precede the variable with a colon.

Editor’s note: this article will be concluded next month.

Patrick Renard
CTRNE (France) © Xephon 2001

Omnis Software has announced Version 3.0
of its Omnis Studio 4GL rapid application
development software. It has many changes
to the Web server and Web client
technologies to speed up Web-based
business applications and it includes a range
of developer productivity enhancements.

The core of the product has apparently been
rewritten to take advantage of multi-
threading when executing methods or
directly accessing databases such as DB2,
Oracle, and Sybase, which should improve
the efficiency with which simultaneous
users can access, use, and modify the same
data.

Also, load-sharing extends this functionality
across a number of servers, dynamically
allocating the least-used server as each new
client accesses the program.

The addition of client-side methods is said to
eliminate the delays associated with
browser-based server access, while the 18
new Web-specific components are said to
create a richer, more responsive user
interface.

A range of additional components include
clocks, sliders, picture faders, and complex
grids.

For further information contact:
Omnis Software, 981 Industrial Road,
Building B, San Carlos, CA 94070, USA.
Tel: (650) 632 7100.
URL: http://www.omnis-software.com/v3/
index.html.

* * *

Computer Associates is to resell SoftBase

DB2 tools, including Database Rely, under
the umbrella of its CA Back-up and
Recovery Solution for DB2 for OS/390
products. Database Attach is designed to
streamline the interaction of DB2 databases
with mainframe processors, while Database
Rely extends the restart and recovery
capabilities of traditional mainframe DB2
databases.

For further information contact:
Computer Associates, 1 CA Plaza,
Hauppauge, NY 11749, USA.
Tel: (516) 342 5224.
URL: http://www.cai.com/products/db2/
factsht/dbrely_fs.htm.

* * *

Palm and IBM have announced plans to
collaborate on mobile e-business software
on a worldwide basis. As part of the
agreement, IBM Global Services will create
a consulting and systems integration
competency group to focus on developing
and deploying business applications for
Palm OS devices, which include the IBM
Workpad and related Palm-based data
services, such as the Palm.Net wireless
service.

The technology to deliver the new
applications is based on IBM’s just-released
WebSphere Everyplace Suite, which allows
mobile devices to connect to the Web. DB2
Everyplace, MQ Series products, VisualAge
Micro Edition Java technology, and Tivoli
Device Manager all support Palm OS.

For further information contact: your local
IBM representative.
URL: http://www-3.ibm.com/pvc/.

* * *

DB2 news

x xephon

	24x7 DB2 applications – tips for good design
	Cloning a DB2 subsystem using SnapShot
	DB2 Version 6 stored procedures migration issues
	Utility for generating recovery jobs using the REXX SQL interface – part 2
	DB2 REXX Language Support
	DB2 news

