

© Xephon plc 2002

December 2002

122 DB2
u

p
d

ate

In this issue
3 Script for creating insert statements

for all records in a table
7 Utilities to extract and update

access path statistics
22 DB2 Everyplace: a mobile DB2
31 Automatic placement of user-

managed datasets
51 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1999 issue, are available separately
to subscribers for £22.50 ($33.75) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Script for creating insert statements for all records
in a table

The procedure usp_CreateInserts in the file
usp_CreateInserts_DB2.sql is used to generate insert scripts for
all the records in a table. Very often we are required to attach
demo data/system table scripts in the ER diagram. Using this
stored procedure, we can fetch data from the development
server and attach it in the ER diagram for further distribution or
load it onto the demo server/production server.
This stored procedure expects three parameters – schema
name, table name, and p_called_from. (This parameter should
be ‘T’ to return a result set. If this parameter is ‘D’ it will insert the
INSERT statements in a global temporary table temp_inserts.
This is used by another procedure to generate inserts for all
tables in a database.)
The procedure internally calls another procedure,
usp_GenerateInserts, that generates a string containing a select
query, which, when executed, will produce insert statements
containing data for the table.

USP_CREATEINSERTS_DB2.SQL
CREATE PROCEDURE usp_CreateInserts (IN p_schema_name VARCHAR(128),

IN p_table_name VARCHAR(4Ø),
IN p_called_from CHAR(1)
)

RESULT SETS 1
LANGUAGE SQL
/***

NAME: usp_CreateInserts.sql
DESCRIPTION: This script internally calls usp_GenerateInserts

 stored procedure which
 creates a SELECT statement. This Select query when

 executed generates INSERT
 statements for the existing data in the given table.

 The parameter p_called_from
 should be 'D' when called from an SP which expects

 output in temp table. It
 should be any other value, such as 'T', when called

 individually or when the expected

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 4

 output is a resultset in a cursor.

CALLS: usp_GenerateInserts
***/

P1: BEGIN
DECLARE strSelect varchar(8ØØØ);

 DECLARE v_str VARCHAR(12ØØØ);
DECLARE c1 CURSOR WITH RETURN TO CALLER FOR s1;

IF (1 = Ø) THEN
DECLARE GLOBAL TEMPORARY TABLE temp_inserts
(
 col_id INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY(START

WITH 1, INCREMENT BY 1),
 schema_name VARCHAR(128),
 table_name VARCHAR(128),
 strInsert VARCHAR(8ØØØ)
) WITH REPLACE NOT LOGGED;

END IF;

/* Call the proc which generates the Select stmt. */
CALL usp_GenerateInserts (p_schema_name, p_table_name, strSelect);

/* If called from the proc which generates scripts for all
 tables then p_called_from is D.

 Hence we insert into the temp table. Otherwise if it is
 called from anywhere else we

 return a resultset. */
IF (p_called_from = 'D') THEN

— SET v_str = 'INSERT INTO SESSION.temp_inserts (schema_name,
table_name, strInsert) SELECT ' || '''' || p_schema_name || '''' || ','
|| '''' || p_table_name || '''' || ',' || strSelect ;
 SET v_str = 'INSERT INTO SESSION.temp_inserts
(strInsert) ' || strSelect ;

PREPARE s1 FROM v_str;
EXECUTE s1;

 UPDATE SESSION.temp_inserts
 SET schema_name = p_schema_name,
 table_name = p_table_name
 WHERE schema_name IS NULL;

/* SET v_str = 'SELECT * FROM SESSION.temp_inserts';
PREPARE s1 FROM v_str;
OPEN c1;

*/
ELSE

PREPARE s1 FROM strSelect;
OPEN c1;

END IF;

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

END P1

/*
drop table p1

create table p1
(col1 INTEGER NOT NULL,
col2 VARCHAR(15),
col3 INTEGER)

describe table p1

insert into p1 values (1, 'ones story', null)
insert into p1 values (2, null , null)
insert into p1 values (3, 'one more story', null)

SELECT * FROM P1

DELETE FROM P1
*/

USP_GENERATEINSERTS_DB2.SQL
CREATE PROCEDURE usp_GenerateInserts
(IN p_schema_name VARCHAR(128),

IN p_table_name VARCHAR(128),
OUT str VARCHAR(8ØØØ)

)
LANGUAGE SQL
/**

NAME: usp_GenerateInserts.sql
DESCRIPTION: This script creates a SELECT statement for the

 calling proc. This Select stmt when executed by
 the calling proc generates INSERT statements
 for the existing data in the given table.

CALLS: None
***/
P1: BEGIN

DECLARE columnname VARCHAR(4Ø);
DECLARE columntype INT;
DECLARE fetchsts INT;

— DECLARE str VARCHAR(8ØØØ);
DECLARE strValuePart VARCHAR(8ØØØ);

 DECLARE strInsertPart VARCHAR(4ØØØ);
DECLARE not_found CONDITION FOR SQLSTATE 'Ø2ØØØ';

 DECLARE cur_t1 CURSOR FOR

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 6

 SELECT A.colname, B.typeid
 FROM syscat.columns A, syscat.datatypes B
 WHERE A.tabname = UCASE(p_table_name)
 AND A.tabschema = UCASE(p_schema_name)
 AND B.typeschema = A.typeschema
 AND B.typename = A.typename;

 DECLARE CONTINUE HANDLER FOR not_found SET fetchsts = 1;

SET fetchsts = Ø;

— SET NOCOUNT ON

SET strInsertPart = '''INSERT INTO ' || p_schema_name || '.' ||
p_table_name || '(';
 SET strValuePart = '';

OPEN cur_t1;
FETCH cur_t1 INTO columnname, columntype;

WHILE fetchsts = Ø
 DO

/* If the datatype is of type char, Varchar, Long Varchar */
 SET strInsertPart = strInsertPart || columnname;

IF columntype in (52, 56, 6Ø) THEN
SET strValuePart = strValuePart || ''' || case when '

||columnname || ' is null then '|| '''NULL''' || ' else ' || '''' ||
'''' || '''' || '''' || ' || ' || columnname || ' || ' || '''' || ''''
|| '''' || '''' || ' end || ' || '''';

/* If datatype is of type Date, Time or TimeStamp */
ELSEIF columntype in (1ØØ, 1Ø4, 1Ø8) THEN

SET strValuePart = strValuePart || ''' || case when '
||columnname || ' is null then '|| '''NULL''' || ' else ' || '''' ||
'''' || '''' || '''' || ' || CAST(' || columnname || ' AS VARCHAR(2Ø))
|| ' || '''' || '''' || '''' || '''' || ' end || ' || '''';

/* If datatype is of type Double */
ELSEIF columntype in (8) THEN

SET strValuePart = strValuePart || ''' || case when ' ||
columnname || ' is null then ''NULL'' else CHAR(' || columnname || ')
end || ' || '''';

/* If datatype is of any other type than the above mentioned
types */

ELSE
SET strValuePart = strValuePart || ''' || case when ' ||

columnname || ' is null then ''NULL'' else CHAR(' || columnname || ')
end || ' || '''';

END IF;

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

FETCH cur_t1 INTO columnname, columntype;

IF fetchsts = Ø THEN
SET strValuePart = strValuePart || ', ';

 SET strInsertPart = strInsertPart || ',';
END IF;

END WHILE;

CLOSE cur_t1;

SET strValuePart = strValuePart || ')'' ';
 SET strInsertPart = strInsertPart || ') VALUES (';
 SET str = strInsertPart || strValuePart;

SET str = 'SELECT ' || str || ' FROM ' || p_schema_name || '.' ||
p_table_name;

END P1

/*
to run this alone, comment the output parameter line and uncomment print
@str
and DECLARE @str statements
exec usp_GenerateInserts 'P1'
*/

Ramanath N Shanbhag (India) © Xephon 2002

Utilities to extract and update access path
statistics

REQUIREMENT
There was a requirement at our site to analyse the effect of
running RUNSTATS on about 50% of the tables for which
RUNSTATS had not been run for over a year. The constraint was
that the catalog statistics should not be updated by running
RUNSTATS. Since the number of tables and programs was
significant, special techniques were required to achieve this in an
efficient manner.
The approach to the problem and the utilities used to resolve it
will be presented here.

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 8

APPROACH
The approach was to utilize a test database system identical to
the production database and populate that with two sets of
statistics, bind the programs with each set, and populate the
PLAN_TABLE. The first set should reflect the statistics as
present in the production system (and is similar to migrating
existing statistics). The second set would have to reflect the
statistics that would be generated by running RUNSTATS (and
is similar to generating future statistics). The RUNSTATS
dbname.tsname TABLE(ALL) INDEX(ALL) SHRLEVEL
CHANGE UPDATE NONE REPORT ONLY options can be
utilized for this purpose.

ASSUMPTIONS
The test system resembles production in terms of DDL structure,
and RUNSTATS has been run at least once at the table level for
all the tables.

TABLES AND COLUMNS THAT ARE USED FOR ACCESS PATHS
In every table updated by RUNSTATS, the STATSTIME is not
used for access path analysis. However, we update that in our
utilities in order to establish a baseline and for verification.
According to the Version 5.1 Administration Guide the following
are the tables and the columns that are used for access path
analysis.

SYSCOLDIST
Columns: COLVALUE, FREQUENCYF, TYPE, CARDF,
COLGROUPCOLNO, NUMCOLUMNS.
We generate DELETE and INSERT statements to change the
catalog statistics for this table alone, whereas we generate
UPDATE statements for the rest of the tables.
Further, the FREQUENCYF and COLVALUE are the only values
that we are really concerned with because all other values will
take defaults as indicated in the Administration Guide.

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

SYSCOLUMNS
Columns: COLCARDF, HIGH2KEY, LOW2KEY

SYSINDEXES
Columns: CLUSTERING, CLUSTERRATIO, FIRSTKEYCARDF,
FULLKEYCARDF, NLEAF, NLEVELS
Of these, CLUSTERING is not updated because it indicates
whether the index is defined as a clustering index or not. Since
the production and test systems are expected to be identical, we
expect this to be identically defined.

SYSINDEXPART
Column: LIMITKEY
The same reasoning holds for this column as for CLUSTERING
under SYSINDEXES above.
(If the definitions are not identical, the objects may be recreated
with the same production definition and a RUNSTATS must be
run at the complete tablespace level before the statistics are
updated.)

SYSTABLES
Columns: CARDF, EDPROC, NPAGES, PCTROWCOMP
We are not concerned about EDPROC because it is expected to
be the same as test.

SYSTABLESPACE
Column: NACTIVE

SYSTABSTATS
Columns: CARD, NPAGES.

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 10

TOOLS AND UTILITIES

Migrating existing statistics
The easiest option would be to use a product like RC-Migrator in
CA-DB2 (formerly Platinum) and migrate the statistics to the test
system from the production catalog. If such tools were not
available, we could use the following SQLs and extract the
production system catalog statistics and generate update
statements for the test system catalog.
The SQLs are to be used as input to a DSNTIAUL or an UNLOAD
job to generate the UPDATE statements. The generated
statements are parsed to issue appropriate break points so as to
get an easily readable SQL. Only one parser will be shown here
and that will be for parsing the SYSTABLES UPDATE statements.
Other parsers may be built easily as appropriate.
A sample DSNTIAUL JCL is shown in OUTPUT1.
The parser is shown in OUTPUT3. The input to the parser is the
output from the unload job for SYSTABLES. Before running the
parser against the output file, it is necessary to edit the file and
remove any unprintable characters. Since each unload step will
produce a different output structure, we need to have different
parsers for each of them.
The SQL to be used is shown in OUTPUT2.

Generating future statistics
This utilizes the REPORT feature of the RUNSTATS utility. The
sample JCL shown in OUTPUT4 has two job steps. The first step
is a regular RUNSTATS for two tablespace objects with the
control cards as shown below:

RUNSTATS TABLESPACE dbname.tsname
 TABLE(ALL INDEX(ALL) SHRLEVEL CHANGE
 UPDATE NONE REPORT ONLY.

The output of the RUNSTATS utility is fed into a REXX utility,
which parses the same and generates the necessary UPDATE
statements for the statistics update. The statements for

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

SYSCOLDIST are a combination of DELETE and INSERT
statements.

CONCLUSION
Once the UPDATE statements have been generated, it is a
matter of executing them and re-binding the necessary package
collections. After binding them, the differences in access path
may be identified using any suitable approach.
The utilities shown here were developed for Version 5.1. In
Version 7.0, there is one more table, SYSLOBSTATS, which has
columns that are used for access path determination. If you do
not have LOBs then it is not required. Also, the SYSTABLE
column NPAGES has a sibling in NPAGESF; the
SYSTABLESPACE column NACTIVE has been replaced by
NACTIVEF; the SYSINDEXES column CLUSTERRATIO is
replaced by CLUSTERRATIOF.
The utilities shown here may also be used in situations where we
need to populate test databases with production database
statistics to study performance. Also, after refreshing a test
database with production data, it may be preferable just to
update the test database system catalog with production database
catalog statistics.

OUTPUT1 – SAMPLE UNLOAD JOB
//ACCPUNLD JOB (Account info),'ACCESSPATH UNLD',
//* rest of job card
//* rest of job card
//*
//***
//* ACCPUNLD - UNLOAD AND CREATE SPUFI FOR UPDATING ACCESS
//* PATHS. JOB HAS 7 STEPS.
//* QUERIES THE DB2 CATALOG TABLESPACES AND UNLOADS DATA
//* AS SQL STATEMENTS
//***
//*
//***********************************
//** UNLOAD FOR SYSTABLES **
//***********************************
//S2ØUL EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø,COND=(4,LT),REGION=4ØM

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 12

//STEPLIB DD DISP=SHR,DSN=XXXX.DBP5.DSNEXIT
// DD DISP=SHR,DSN=XXXX.DBP5.DSNLOAD
//DSNTRACE DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSRECØØ DD STORCLAS=SCSTD,SPACE=(CYL,(5,5),RLSE),DISP=(NEW,CATLG),
// DSN=PREFIX.ACCPTHU2.DATA
//SYSPUNCH DD UNIT=SYSDA,SPACE=(8ØØ,(15,15),RLSE),DISP=(NEW,CATLG),
// DSN=PREFIX.ACCPTHU2.CNTL
//SYSTSIN DD * z
 DSN SYSTEM(DBP5)
 RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB41) PARM('SQL')
 END
/*
//SYSIN DD *
 SELECT 'UPDATE SYSIBM.SYSTABLES SET CARDF='
 CONCAT DIGITS(DECIMAL(CARDF,31,Ø))
 CONCAT',NPAGES='CONCAT DIGITS(NPAGES)
 CONCAT',PCTROWCOMP='CONCAT DIGITS(PCTROWCOMP)
 CONCAT',STATSTIME=''' CONCAT CHAR(STATSTIME)
 CONCAT ' WHERE NAME='''CONCAT NAME
 CONCAT ''' AND CREATOR ='''CONCAT CREATOR CONCAT''';'
 FROM SYSIBM.SYSTABLES
 WHERE DBNAME LIKE 'ABC%'
 ;
/*
//

OUTPUT2 – SQL TO GENERATE UPDATE STATEMENTS
The punctuation is very critical and must be followed precisely.
Note that there are only single quotes and no double quotes;
what appears to be a double quote is really two single quotation
marks. Three successive single quotes are valid and are correct
usage.
SYSTABLESPACE:
SELECT DISTINCT 'UPDATE SYSIBM.SYSTABLESPACE SET NACTIVE='
 CONCAT DIGITS(NACTIVE)
 CONCAT', STATSTIME ='''CONCAT CHAR(TS.STATSTIME)
 CONCAT ''' WHERE NAME= '''CONCAT TS.NAME
 CONCAT ''' AND DBNAME = '''CONCAT TS.DBNAME
 CONCAT ''' AND CREATOR = '''CONCAT TS.CREATOR CONCAT''';'
 FROM SYSIBM.SYSTABLESPACE TS, SYSIBM.SYSTABLES TBL
 WHERE TS.NAME = TSNAME
 AND TBL.NAME LIKE '%'
 AND TS.NAME LIKE 'TS%'

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 AND TS.DBNAME LIKE 'ABC%' ;

SYSTABLES:
SELECT 'UPDATE SYSIBM.SYSTABLES SET CARDF='
 CONCAT DIGITS(DECIMAL(CARDF,31,Ø))
 CONCAT',NPAGES='CONCAT DIGITS(NPAGES)
 CONCAT',PCTROWCOMP='CONCAT DIGITS(PCTROWCOMP)
 CONCAT',STATSTIME=''' CONCAT CHAR(STATSTIME)
 CONCAT ''' WHERE NAME='''CONCAT NAME
 CONCAT ''' AND CREATOR ='''CONCAT CREATOR CONCAT''';'
 FROM SYSIBM.SYSTABLES
 WHERE DBNAME LIKE 'ABC%' ;

SYSINDEXES:
SELECT 'UPDATE SYSIBM.SYSINDEXES SET FIRSTKEYCARDF='
 CONCAT DIGITS(DECIMAL(FIRSTKEYCARDF,31,Ø))
 CONCAT ',FULLKEYCARDF='CONCAT DIGITS(DECIMAL(FULLKEYCARDF,31,Ø))
 CONCAT',NLEAF='CONCAT DIGITS(NLEAF)
 CONCAT',NLEVELS='CONCAT DIGITS(NLEVELS)
 CONCAT',CLUSTERRATIO='CONCAT DIGITS(CLUSTERRATIO)
 CONCAT' WHERE NAME='''CONCAT NAME
 CONCAT ''' AND CREATOR ='''CONCAT CREATOR CONCAT''';'
 FROM SYSIBM.SYSINDEXES
 WHERE DBNAME LIKE 'ABC%'
 AND CREATOR LIKE 'IJK%' ;

SYSCOLUMNS:
SELECT 'UPDATE SYSIBM.SYSCOLUMNS SET COLCARDF='
 CONCAT DIGITS(DECIMAL(COLCARDF,31,Ø))
 CONCAT',HIGH2KEY=X''' CONCAT HEX(HIGH2KEY)
 CONCAT''',LOW2KEY=X''' CONCAT HEX(LOW2KEY)
 CONCAT''',STATSTIME=''' CONCAT CHAR(STATSTIME)
 CONCAT''' WHERE TBNAME='''CONCAT TBNAME
 CONCAT ''' AND COLNO=' CONCAT DIGITS(COLNO)
 CONCAT ' AND NAME ='''CONCAT NAME
 CONCAT ''' AND TBCREATOR ='''CONCAT TBCREATOR CONCAT''';'
 FROM SYSIBM.SYSCOLUMNS
 WHERE TBNAME LIKE '%'
 AND TBCREATOR LIKE 'IJK%';

SYSCOLDIST: (Generating Deletes followed by Inserts)
SELECT 'DELETE FROM SYSIBM.SYSCOLDIST '
 CONCAT 'WHERE TBOWNER = '''CONCAT TBOWNER
 CONCAT ''' AND TBNAME = '''CONCAT TBNAME
 CONCAT ''' AND NAME = '''CONCAT NAME CONCAT ''';'
 FROM SYSIBM.SYSCOLDIST
 WHERE TBNAME LIKE '%'
 AND TBOWNER LIKE 'IJK%' ;

SELECT 'INSERT INTO SYSIBM.SYSCOLDIST '

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 14

 CONCAT '(FREQUENCY, STATSTIME, IBMREQD, TBOWNER, '
 CONCAT 'TBNAME, NAME, COLVALUE'
 CONCAT ', TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS, FREQUENCYF)'
 CONCAT ' VALUES(Ø,'''CONCAT CHAR(STATSTIME)
 CONCAT ''',''N'',''' CONCAT TBOWNER
 CONCAT ''',''' CONCAT TBNAME
 CONCAT ''',''' CONCAT NAME
 CONCAT ''',X''' CONCAT HEX(COLVALUE)
 CONCAT ''',''F'','
 CONCAT '-Ø.1E+Ø1'
 CONCAT ','' '''
 CONCAT ',1,'
 CONCAT DIGITS(DECIMAL(FREQUENCYF,31,Ø))
 CONCAT ');'
 FROM SYSIBM.SYSCOLDIST
 WHERE TBNAME LIKE '%'
 AND TBOWNER LIKE 'ABC%' ;

SYSTABSTATS:
SELECT 'UPDATE SYSIBM.SYSTABSTATS SET CARD='
 CONCAT DIGITS(CARD)
 CONCAT ',NPAGES='CONCAT DIGITS(NPAGES)
 CONCAT' WHERE DBNAME='''CONCAT DBNAME
 CONCAT''' AND TSNAME='''CONCAT TSNAME
 CONCAT''' AND PARTITION='CONCAT DIGITS(PARTITION)
 CONCAT' AND NAME ='''CONCAT NAME CONCAT''';'
 FROM SYSIBM.SYSTABSTATS
 WHERE DBNAME LIKE 'ABC%'
 AND TSNAME LIKE 'TS%'
 AND NAME LIKE '%' ;

OUTPUT3 – A PARSER FOR THE SYSTABLES STATEMENTS
/**/
/* rexx */
/* Split a file into several small files while parsing each line */
/* into several small lines. Each line is split based on the */
/* positions of some keyword into several lines. */
/* Variable maxlin is used to split the output into smaller */
/* members. Setting a high value for this will put all output in */
/* one member. */
/* Author: Jaiwant Jonathan */
/**/
trace o
clear
pref =strip(sysvar(syspref))
PARSE UPPER ARG P_dsname
if strip(P_dsname)='' then
do

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 Call GETDBLST
end
else
do
 I_lstdsn = strip(P_dsname)
 I_lstdsn = strip(P_dsname,B,"'")
end

cts= time()
octs= substr(cts,1,2)||substr(cts,4,2)
cd = date(U)
us_date = substr(cd,7,2)||substr(cd,1,2)||substr(cd,4,2)
ts_date = substr(us_date,2)

Call ALLOCDSN
Call ALLOCODS
MAINØØØ:
maxlin = 8ØØØ
filcnt = 1
lincnt = 1
Call NEWFIL

do forever
 "execio 1 DISKR INDD1 "
 if rc=2 then leave
 pull inrec1
 inrec1 = strip(inrec1)
 acpos = pos('UPDATE',inrec1,1)
 inrec1 = substr(inrec1,acpos)
 loc1 = pos(' SET ',inrec1,1)
 if loc1=Ø then
 iterate
 loc2 = pos(',NPAGES',inrec1,1)
 if loc2=Ø then
 iterate
 len2 = loc2-(loc1)
 loc3 = pos('AND CREATOR',inrec1,1)
 if loc3=Ø then
 iterate
 len3 = loc3-(loc2)
 lin.1 = substr(inrec1,1,(loc1-1))
 lin.2 = substr(inrec1,loc1,len2)
 lin.3 = substr(inrec1,loc2,len3)
 lin.4 = substr(inrec1,loc3)
 if lincnt <= maxlin then
 do
 "execio * diskw mpds (stem lin. "
 lincnt = lincnt+1
 drop lin
 end

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 16

 else
 do
 say 'Closing file 'memnam
 "execio Ø diskw mpds (FINIS "
 address tso "free f(mpds)"
 filcnt=filcnt+1
 Call NEWFIL
 "execio * diskw mpds (stem lin. "
 lincnt = 2
 drop lin.
 end
end
say 'completed processing...' memnam
"execio Ø diskw mpds (FINIS "
"execio Ø diskr INDD1 (FINIS "
address tso "free f(mpds)"
say 'Results generated into 'ods_name
address tso "free f(opds)"
address tso "free f(INDD1)"
exit

GETDBLST:
Say 'Give the input dataset ...'
Say '(It must be a PS)'
pull I_lstdsn
I_lstdsn = strip(I_lstdsn)
I_lstdsn = strip(I_lstdsn,Both,"'")

x = SYSDSN("'"I_lstdsn"'")
if x ¬= 'OK' then
do
 say; say '*** ERROR ' x ; say
 SIGNAL GETDBLST
end
return

ALLOCDSN:
"ALLOCATE DD(INDD1) DSN('"I_lstdsn"') REUSE SHR"
if rc > Ø then
do
 say 'Failed during allocation of 'I_lstdsn
 exit(8)
end
return

ALLOCODS:
ods_name = pref||"."||USERID()||".PARSFIL2.D"||us_date
xx = outtrap("zap.","*")
address tso "delete '"ods_name"'"
xx = outtrap("OFF")

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

address tso "alloc f(opds) new unit(sysda) space(1,1)",
 "cyl reuse dsname('"ods_name"')",
 "dsorg(po) dir(2) blksize(312Ø) lrecl(8Ø) recfm(f b)"
say 'Allocated output file 'ods_name
return

NEWFIL:
filnam = filcnt
do while length(filnam) < 4
 filnam = 'Ø'||filnam
end
trace o
memnam = 'M'||filnam
memnam = strip(memnam)
I_mdsname = ods_name||"("||memnam||")"
I_mdsname = strip(I_mdsname)
address tso "alloc f(mpds) mod dsname('"I_mdsname"')"
return

OUTPUT4 – SAMPLE JCL FOR RUNNING THE UTILITY
/* JOBCARD
//* --
//UTILØØØ1 EXEC PGM=DSNUTILB,REGION=2ØM,COND=(4,LT),
// PARM='DBT2,RUNSTATSDBØ1'
//STEPLIB DD DSN=XXXX.DBT2.DSNLOAD,DISP=SHR
// DD DSN=XXXX.DBT2.DSNEXIT,DISP=SHR
//*SYSPRINT DD SYSOUT=*
//SYSPRINT DD DSN=&&TEMPFILE,DISP=(MOD,PASS),
// UNIT=SYSDA,SPACE=(TRK,(15,5)),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=133Ø)
//UTPRINT DD SYSOUT=*
//SYSIN DD *
 RUNSTATS TABLESPACE XXXXDBØ1.YYYYTSØ1
 TABLE(ALL) INDEX(ALL) SHRLEVEL CHANGE UPDATE NONE REPORT YES
 RUNSTATS TABLESPACE XXXXDBØ1.YYYYTSØ1
 TABLE(ALL) INDEX(ALL) SHRLEVEL CHANGE UPDATE NONE REPORT YES
//*
//STATSGEN EXEC PGM=IKJEFTØ1,COND=(4,LT),
// PARM=STATS2
//SYSEXEC DD DISP=SHR,DSN=PREFIX.USERID.REXX
//OUTDD DD DISP=(NEW,KEEP),DSN=PREFIX.USERID.STATS.DØ2Ø8Ø2.A,
// UNIT=SYSDA,SPACE=(TRK,(15,5)),
// DCB=(RECFM=FB,LRECL=8Ø,BLKSIZE=312Ø)
//INDD DD DISP=(OLD,PASS),DSN=&&TEMPFILE
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 18

//SYSUDUMP DD SYSOUT=*
//*

STATS2 – THE REXX EXEC
/* rexx */
MAINØØ:
do forever
"execio 1 diskr INDD "
if rc = 2 then
do
 leave
end
pull inrec
parse var inrec w1 dummy
 SELECT
 When pos('DSNUØ1ØI',w1) > Ø then iterate
 When pos('DSNUØØØI',w1) > Ø then iterate
 When pos('DSNUØ5ØI',w1) > Ø then
 do
 parse var inrec w1 w2 w3 w4 w5 w6 w7 rest
 out.1 = '-- STATISTICS UPDATE FOR '||strip(w6)
 "execio * DISKW OUTDD (STEM out. "
 drop out.
 iterate
 end
 When w1 = 'DSNU613I' then curproc = 'TABPART'
 When w1 = 'DSNU614I' then
 do
 curproc = 'TABLES'
 parse var inrec w1 w2 w3 w4 w5 w6 w7 w8 w9 w1Ø w11 rest
 parse var w9 creator '.' tbn
 creator = strip(creator)
 tbn = strip(tbn)
 end

 When w1 = 'DSNU615I' then
 do
 curproc = 'COLUMNS'
 parse var inrec w1 w2 w3 w4 w5 w6 w7 w8 w9 w1Ø w11 rest
 colname = strip(w9)
 end

 When w1 = 'DSNU612I' then
 do
 curproc = 'TS'
 parse var inrec w1 w2 w3 w4 w5 w6 w7 w8 w9 w1Ø w11 rest
 parse var w9 dbn '.' tsn
 dbn = strip(dbn)

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 tsn = strip(tsn)
 end

 When w1 = 'DSNU618I' then curproc = 'IXPART'

 When w1 = 'DSNU617I' then
 do
 curproc = 'IX'
 parse var inrec w1 w2 w3 w4 w5 w6 w7 w8 w9 w1Ø w11 rest
 parse var w9 creator '.' ixn
 creator = strip(creator)
 tbn = strip(tbn)
 end

 When w1 = 'DSNU624I' then
 do
 curproc = 'TABSTATS'
 parse var inrec w1 w2 w3 w4 w5 w6 w7 w8 w9 w1Ø w11 rest
 parse var w9 cre '.' tbn
 creator = strip(cre)
 tbn = strip(tbn)
 prt = strip(w11)
 end

 When w1 = 'DSNU625I' then curproc = 'COLSTATS'
 When w1 = 'DSNU626I' then curproc = 'COLDISTSTATS'
 When w1 = 'DSNU627I' then curproc = 'IXSTAT'
 When w1 = 'DSNU616I' then
 do
 curproc = 'COLDIST'
 parse var inrec w1 w2 w3 w4 w5 w6 w7 w8 w9 w1Ø w11 rest
 colname = strip(w9)
 end
 Otherwise Call BRANCH
 END /* SELECT */
 oldrec = inrec
end /* do forever */
exit

BRANCH:
Select
 When curproc = 'TABSTATS' then Call TABSTATUPD
 When curproc = 'TABLES' then Call TABLESUPD
 When curproc = 'TABPART' then return
 When curproc = 'COLUMNS' then Call COLUMNSUPD
 When curproc = 'TS' then Call TSUPD
 When curproc = 'IXPART' then return
 When curproc = 'IXSTAT' then return
 When curproc = 'IX' then Call IXUPD
 When curproc = 'COLSTATS' then return

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 20

 When curproc = 'COLDIST' then Call COLDISTUPD
 When curproc = 'COLDISTSTATS' then return
 Otherwise return
end
return

TABSTATUPD:
 parse var inrec w1 w2 w3 rest
 if strip(w1) = 'CARD' then
 out.2 = ' SET CARD = '||strip(w3)

 if strip(w1) = 'NPAGES' then
 do
 out.2 = out.2||', NPAGES = '||strip(w3)
 out.1 = "UPDATE SYSIBM.SYSTABSTATS "
 out.3 = " WHERE NAME = '"||tbn||"' AND OWNER = '"||creator||"'"
 out.4 = " AND PARTITION = "||prt||" ; "
 address tso "execio * DISKW OUTDD (STEM out. "
 drop out.
 end
return

TABLESUPD:
 parse var inrec w1 w2 w3 rest
 if strip(w1) = 'CARDF' then
 out.2 = ' SET CARDF = '||strip(w3)
 if strip(w1) = 'NPAGES' then
 out.2 = out.2||' ,NPAGES = '||strip(w3)
 if strip(w1) = 'PCTROWCOMP' then
 do
 out.2 = out.2||',PCTROWCOMP = '||strip(w3)
 out.1 = 'UPDATE SYSIBM.SYSTABLES'
 out.3 = " WHERE CREATOR ='"||creator||"' AND NAME = '"||tbn||"' ;"
 "execio * DISKW OUTDD (STEM out. "
 drop out.
 end
return

COLUMNSUPD:
 parse var inrec w1 w2 w3 rest
 if strip(w1) = 'COLCARDF' then
 do
 out.2 = ' SET COLCARDF = '||strip(w3)
 coldist_cardf = strip(w3) /* save this for updating COLDIST */
 end
 if strip(w1) = 'HIGH2KEY' then
 out.3 = " , HIGH2KEY = "||strip(w3)
 if strip(w1) = 'LOW2KEY' then
 do
 out.4 = " , LOW2KEY = "||strip(w3)

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 out.1 = "UPDATE SYSIBM.SYSCOLUMNS"
 out.5 = " WHERE TBCREATOR ='"||creator||"'"
 out.6 = " AND TBNAME = '"||tbn||"'"
 out.7 = " AND NAME = '"||colname||"' ;"
 "execio * DISKW OUTDD (STEM out. "
 drop out.
 end
return

TSUPD:
 parse var inrec w1 w2 w3 rest
 if strip(w1) = 'NACTIVE' then
 do
 out.2 = " SET NACTIVE = "||strip(w3)
 out.1 = "UPDATE SYSIBM.SYSTABLESPACE "
 out.3 = " WHERE DBNAME ='"||dbn||"'"
 out.4 = " AND NAME = '"||tsn||"' ;"
 "execio * DISKW OUTDD (STEM out. "
 drop out.
 end
return

IXUPD:
 parse var inrec w1 w2 w3 rest
 if strip(w1) = 'CLUSTERRATIO' then
 out.2 = ' SET CLUSTERRATIO = '||strip(w3)
 if strip(w1) = 'FIRSTKEYCARDF=' then
 out.3 = ' ,FIRSTKEYCARDF = '||strip(w2)
 if strip(w1) = 'FULLKEYCARDF' then
 out.3 = out.3||' , FULLKEYCARDF = '||strip(w3)
 if strip(w1) = 'NLEAF' then
 out.4 = ' ,NLEAF = '||strip(w3)
 if strip(w1) = 'NLEVELS' then
 do
 out.4 = out.4||',NLEVELS = '||strip(w3)||' '
 out.1 = 'UPDATE SYSIBM.SYSINDEXES'
 out.5 = " WHERE CREATOR ='"||creator||"'"
 out.6 = " AND NAME = '"||ixn||"' ;"
 "execio * DISKW OUTDD (STEM out. "
 drop out.
 end
return

COLDISTUPD:
 parse var inrec w1 w2 rest
 if strip(w1) = 'FREQUENCY' then
 do
 out.1 = 'DELETE FROM SYSIBM.SYSCOLDIST '
 out.2 = " WHERE TBOWNER ='"||creator||"' AND TBNAME = '"||tbn||"'"
 out.3 = " AND NAME = '"||colname||"' ;"

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 22

 "execio * DISKW OUTDD (STEM out. "
 drop out.
 return
 end
 if strip(w1) = '--------' then
 return
 out.1 = "INSERT INTO SYSIBM.SYSCOLDIST"
 out.2 = " VALUES (Ø,CURRENT_TIMESTAMP,'N'"
 out.3 = " ,'"||creator||"','"||tbn||"'"
 out.4 = " ,'"||colname||"',"||strip(w2)
 out.5 = " ,'F',-Ø.1E+Ø1, ' ', 1,"||strip(w1)||");"
 "execio * DISKW OUTDD (STEM out. "
 drop out.
return

Jaiwant K Jonathan
DB2 DBA
QSS Inc (USA) © Xephon 2002

DB2 Everyplace: a mobile DB2

It was a rare day off for Jill, a DBA for one of the local banks. But
she was not at home or on vacation. No, she was in the hospital
for some out- patient surgery. The lab technician took the blood
pressure cuff from around her arm and placed it back into the
receptacle on the wall. Then he grabbed what looked like a Palm
PDA and started fiddling around with it. Jill loves gadgets and her
curiosity got the better of her, causing her to ask “What are you
doing with that?”
“I’m entering your blood pressure readings into this gadget,
here,” replied the technician. “We’ve had to do this for the past
few weeks or so. It’s all about some new procedure for storing
patients’ vital statistics.”
“But isn’t it only useful for you? I mean, if you’re just entering it
into your gadget, then no-one else can use the data, can they?”
“No, it doesn’t work like that. When I’m through entering your
temperature, height, and weight, I can send your information to

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

the doctor’s gadget. I carry this with me all day, recording patient
information. But before I go home for the day I have to put this
gadget in a little gizmo and press a button. The next day doctors,
nurses, and I can pull your information up on our central
computer system.”
“Sounds cool to me,” Jill said. “Do you have any idea how it
works?”
“Nope. But it makes life easier for me. I don’t have to worry about
using clumsy PCs, reading poor handwriting, or losing files any
more. I love it.”
“Does everyone use them?”
“We all use them now. Even the nursing staff use them when they
make home visits to the elderly and disabled. And we have
outfitted the emergency crew in our ambulances with the devices
too.”

MANAGING DATA ON MOBILE INFORMATION SYSTEMS
The medical scenario I just described is just one of the ways
organizations across many different industries are implementing
mobile information systems. A plethora of different names are
used to describe this type of system – pervasive computing,
wireless computing, handheld systems, and palmtop applications.
The hallmark of the system is portability, because a device can
be carried wherever a user needs to use it. Data is input into a
small, occasionally connected, handheld device. (An occasionally
connected device doesn’t have to be part of a network, plugged
into a wall, or otherwise attached to anything to run.) Then, the
device is synchronized to a central data store. The most common
application that spawned this new computing paradigm is PDA
software that stores appointment calendars, contacts, and notes.
The PalmPilot from Palm was the first truly popular PDA device.
However, there are many more applications that are viable for
handheld computers – if you have the right tools.
One of the tools is a system to store, retrieve, organize, and
manage handheld data, as well as synchronize the data with a

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 24

traditional server-based RDBMS. IBM’s DB2 Everyplace V7.1 is
one such system. The product was introduced in May 1999 as
DB2 Everywhere. It was first available from IBM as a download
from their Web site in August 1999. The initial version supported
only Windows CE and PalmOS. With this latest version, IBM has
changed the name to DB2 Everyplace and the version number
to 7.1 to align it with the DB2 version number on other platforms.
DB2 Everyplace is designed for low-cost, low-power, small form-
factor devices such as PDAs, handheld personal computers
(HPCs) or Pocket PCs, and embedded devices (more information
below).
One characteristic of handheld database systems is their small
size. Instead of a footprint, IBM refers to DB2 Everyplace’s
fingerprint because its size is too small to be labelled a footprint.
DB2 Everyplace is a relational database system with a tiny
fingerprint of about 100KB to 150KB specifically designed for
small handheld devices. The general idea is to store a small
amount of critical data on the handheld device that is later
synchronized to other, more complete, and long-term data
stores. DB2 Everyplace provides a local data store on the
handheld device. There is also a mechanism for synchronizing
the relational data on the handheld device to and from other DB2
data sources such as DB2 UDB running on Unix, Windows 2000,
OS/390, or z/OS platforms.
DB2 Everyplace runs on PalmOS, Windows CE, EPOC, QNX
Neutrino, and embedded Linux:
• Palm Inc’s (http://www.palm.com) PalmOS operating system

is designed for the Palm series of devices made by Palm Inc,
including the Palm II, V, and VII. Other devices, such as the
Handspring Visor, also use the PalmOS.

• Microsoft’s Windows CE operating system powers the
PocketPC. Numerous companies supply handheld devices
that run Windows CE, including Hewlett Packard and Casio.

• Symbian’s (http://www.symbian.com) EPOC platform is
designed for optimal flexibility, giving consumer electronics

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

manufacturers a broad scope for differentiation and innovation
in user interfaces, hardware designs, and connectivity. EPOC
is divided into two types of device family – communicators
and smartphones. Companies such as Ericsson, Psion,
Sony, and Texas Instruments manufacture and market
devices that use the EPOC operating system.

• QNX Software Systems Ltd’s (http://www.qnx.com) QNX
Neutrino is a real-time, extensible, POSIX-certified operating
system. Many partner vendors supply embedded systems
using the QNX Neutrino operating system.

DB2 EVERYPLACE COMPONENTS
There are three basic DB2 Everyplace components – the
handheld database engine, the Synchronization Server, and the
Personal Application Builder (PAB).

Handheld database engine
The first component of DB2 Everyplace is its handheld database
engine. The engine is a true relational database engine delivering
persistent storage for sets of records and the ability to modify and
retrieve records. It also provides the integrity mechanism to
guarantee that data is not lost or corrupted if a handheld device
is powered off or dropped during processing. Note that DB2
Everyplace’s database engine is not nearly as complex as the
DB2 engine that runs on OS/390, Unix, or Windows NT. DB2
Everyplace is scaled to fit into about 100 to 150KB of memory.
DB2 Everyplace is sharable by multiple applications, meaning
each new application does not require a new instance of the DB2
Everyplace database engine.
Data in a DB2 Everyplace database can be accessed using
several different methods. One simple way that doesn’t require
you to know SQL is to use the Query By Example (QBE) interface
to issue queries. QBE is provided with the base DB2 Everyplace
product. If you are a little more sophisticated, a second way to
access data is to use the QBE Command Line Processor (CLP)

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 26

to issue SQL statements. The CLP is a window accessed using
QBE. You simply type a SQL statement in the query field, tap the
Run SQL button, the SQL is executed, and the results returned.
A third method is to write your own applications using ODBC call-
level interface functions.
DB2 Everyplace uses SQL to modify and access data. SQL is the
API through which applications access relational data. The SQL
version supported by DB2 Everyplace is a subset of the SQL
supported by DB2 on other platforms. A full SQL implementation
is not required on handheld devices because most data accesses
are simple data entry and retrieval requests. All basic SQL DML
statements (INSERT, UPDATE, DELETE, SELECT) are
supported, as well as many other common features including
DBCS support, joins, and cursors. DB2 Everyplace V7.1 even
delivers scrollable cursors. However, UNION, a standard relational
feature, is not supported by DB2 Everyplace.
An intriguing new feature in DB2 Everyplace is indexing support.
One of the most important factors for DB2 performance is proper
index design, creation, and management. However, DB2
Everyplace databases are very small, so indexing was not IBM’s
first priority in earlier versions. In DB2 Everyplace V7.1, indexes
provide a welcome performance boost for medium and large
DB2 Everyplace tables. Keep in mind that a medium-sized table
for DB2 Everyplace is smaller than traditional DB2 tables residing
on mid-range and mainframe servers. However, DB2 Everyplace
has been used to manage databases of up to 120MB.
There are some additional limitations to DB2 Everyplace. For
example, it doesn’t support subqueries and you can’t create
views. Also, some object/relational features are not available,
such as triggers, stored procedures, LOBs, and user-defined
functions. DB2 Everyplace is designed to access data from small
databases, so currently there are no compelling reasons for such
advanced features. Additionally, keep in mind that locking is not
required for DB2 Everyplace because a handheld device is
intrinsically designed for a single user. There’s no reason to lock
the data from other users.

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Synchronization Server
The second component of DB2 Everyplace is the Synchronization
Server, or Sync Server, which is new to DB2 Everyplace V7.1.
Sync Server takes the place of IBM Mobile Connect, an additional
product that used to be required to synchronize handheld device
data with a central server.
Sync Server is a client/server program that manages the data
synchronization process from the handheld DB2 Everyplace
database to the source DB2 database. The source DB2 database
can be any DB2 UDB server platform. Sync Server requires a
client to be installed on the handheld device and a server
component to be installed on the platform to which data is to be
synchronized. The Sync Server engine requires a mid-tier DB2
UDB for Windows NT server, regardless of the host server to
which the data is to be synchronized.
Sync Server enables two-way data synchronization from the
handheld database to a DB2 UDB database, as well as from the
DB2 UDB database to the handheld database. To synchronize
data, Sync Server initiates a synchronization session. This
session is a two-way process during which:
• Mobile users submit changes that have been made to local

copies of source data.
• Mobile users receive changes to source data residing on the

enterprise server that have been made since the last time
the data was synchronized.

Personal Application Builder
The third component of DB2 Everyplace is the Personal
Application Builder (PAB). PAB is an integrated toolkit for
developing DB2 Everyplace applications running on handheld
devices. It supports building applications for small handheld
devices that access DB2. PAB makes it easy to write robust
applications on a more powerful development platform (such as
a Windows PC) for deployment to handheld devices. It supports
visual forms construction for different devices, and it provides

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 28

scripting capabilities for user-defined logic. PAB also integrates
with other tools for application testing and debugging.
IBM will support the creation of PalmOS applications with the
initial release of the PAB for DB2 Everyplace. Support for other
handheld platforms will be added later.
To begin developing applications using PAB for PalmOS, you
need to download the supporting GNU Palm tools from IBM. PAB
generates GNU-compatible C code. GNU is a self-referencing
acronym that stands for GNU’s Not Unix. The GNU Project was
started in 1983 with the philosophy of producing non-proprietary
software. Many systems, most notably Linux, rely heavily on
GNU software. In the past, GNU systems used the Linux kernel.
For more information, check out
http://www.gnu.org.
Another useful tool for testing Palm applications is the Palm OS
Emulator (POSE). POSE is not a part of PAB; it can be downloaded
from the Palm Web site. POSE emulates the Palm handheld
device hardware. Using POSE, you can create a virtual handheld
device running on Windows, Mac OS, or Unix machines. To run
the emulator, you will need to download the appropriate Palm
ROM for the device for which you are developing applications.
Palm provides debug ROMs through licensing, or you can
download a ROM from your Palm computing device. Details are
available on the Palm Web site.
PAB lets you develop applications and test them using POSE
without ever having to move the application to the handheld
device. Only when the development and testing process is
complete will you need to move the code to the Palm device. DB2
Everyplace includes a sample project for the PalmOS that
features sample code. You can use the sample project as a
template for applications and to learn coding techniques using
PAB.

PRODUCTION APPLICATION
There are a myriad of potential DB2 Everyplace applications,

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

such as eScholar, developed by eScholar LLC (http://
www.escholar.com/), a wholly owned subsidiary of IBM Business
Partner Vision Associates. The eScholar application uses DB2
Everyplace to make student performance, class attendance,
and other educational profile data accessible on handheld
devices for teachers, administrators, and counsellors. The
application is innovative because most teachers lack the time to
sit at a computer and access data while they are teaching
students. Teachers can use eScholar and a Palm device to
quickly obtain important student information without having to
disrupt student interaction.

DATABASE ADMINISTRATION CHALLENGES
So far, so good, but how will DB2 Everyplace impact your IT
organization when it’s implemented on handheld devices?
Although DB2 Everyplace doesn’t require the extensive tuning
and administration necessary for enterprise databases, it is still
relational. Databases should be developed using sound logical
and physical design techniques, including data modelling and
normalization.
The biggest impact of DB2 Everyplace is planning for and
managing data synchronization from hundreds or thousands of
handheld devices. When should synchronization be scheduled?
How will it impact applications that use large production databases
that are involved in the synchronization? How can you ensure
that a mobile user will synchronize data reliably and on schedule?
Potential problems that could arise from failing to synchronize
include:
• Outdated information on the centralized database.
• Outdated information on the handheld device.
• Large files on the handheld device that could cause slower

synchronization when the files are eventually synched.
• Slow handheld application performance.

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 30

These are not minor issues. Make sure your DBA staff are
prepared for the impact before implementing a large battalion of
handheld database users who must synchronize their data. It is
important to use forethought to determine which existing
application systems in your organization will be the first ported to
handheld devices. Possible targets include sales or delivery
tracking systems used by remote workers. Consider how system
infrastructure will be affected by a large influx of remote
connections.

KEEPING UP-TO-DATE WITH DB2 EVERYPLACE
To keep up-to-date on DB2 Everyplace and to share information
and experiences with other DB2 Everyplace users, be sure to
regularly visit the DB2 Everyplace Forum, which can be accessed
via the DB2 Everyplace home page at http://www.ibm.com/
software/data/db2/everyplace/.

CONCLUSION
Jill arrived back at her desk the day after her medical appointment
only to find a project request for a new application requiring DB2
Everyplace running on handheld Palm devices. The bank’s ATM
division issued a mandate calling for all bank technicians who
care for ATMs to carry Palm computing devices. The project will
require a new application for entering details about the
maintenance, stocking, and status of each ATM. The information
will be collected each day and then synchronized with the
enterprise ATM application running on the mainframe under
CICS and DB2 for OS/390. Jill was glad she had asked questions
at the hospital. She considered telling her boss that she’d been
conducting research for the new project so that she wouldn’t
have to use up a sick day after all. At least Jill knew her project
would be in good hands with DB2 Everyplace!
Craig S Mullins
Director, Technology Planning
BMC Software (USA) © Craig S Mullins 2002

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Automatic placement of user-managed datasets

For large databases that have several partitioned tablespaces,
proper placement of the underlying DB2 VSAM linear datasets
in a production environment is one of the most critical activities
for disk I/O performance.
Large tables are generally designed with partitioned tablespaces,
each having one partitioning index and supported by one or more
secondary indexes (for performance reasons). These secondary
indexes may have a single underlying dataset or multiple pieces
(using the PIECESIZE option).
For user-managed datasets, placing them manually over different
volumes, ensuring that they are evenly distributed across the
volumes, is a very tedious and iterative task.
The job involves:
• Distributing datasets of all tablespace partitions across

volumes and minimizing any possibility of two or more
datasets getting placed on the same volume.

• Distributing datasets of all index partitions across volumes
and minimizing any possibility of two or more datasets
getting placed on the same volume.

• Minimizing any possibility of a tablespace partition dataset
and its corresponding index partition dataset being placed
on the same volume.

• Minimizing any possibility of, for a partitioned tablespace,
any tablespace datasets or their corresponding partitioned
index datasets overlapping any of their corresponding
secondary index datasets.

• Ensuring that the sum of the sizes for all the datasets placed
on a volume does not exceed the maximum allowable space
limit assigned for each volume.

This REXX EXEC has been developed to automate the process

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 32

of assigning individual datasets to different volumes and, as a
first cut, it creates a reasonably good distribution of datasets.
This tool is very useful when the number of tablespaces is very
large and each tablespace has more than 32 partitions with one
or more secondary indexes having multiple pieces.
This REXX EXEC works equally well for non-partitioned
tablespaces and indexes as well as for a combination of partitioned
and non-partitioned tablespaces/indexes.

HOW DOES THIS WORK?
This utility has a panel, PDSDTL, which allows a user to enter
specific storage-related details (primary and secondary allocation
quantities) for a partition or a group of partitions of a tablespace/
index and temporarily store them in an ISPF table.
The details entered are:
• Database name – database name for which these entries

are made.
• Tablespace/index name – tablespace or index for which

VSAM datasets are to be created.
• Group number – a number, starting from 1 (to a maximum of

254), assigned to a group of consecutive partitions of a
tablespace / index having the same allocation sizes.

• Tablespace/index – type of object. Possible values are TS
for tablespace, PI for partitioned index, and SI for secondary
index.

• Reference tablespace – tablespace name containing the
table for this index object. For an index entry, the value is the
name of the tablespace containing the table corresponding
to this index. For a tablespace entry, this value is blank.

• Partitions in the group – the number of contiguous partitions
of tablespace/index for that group. Possible values are 1 to
254.

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Primary quantity – primary allocation size for tablespace/
index partition.

• Secondary quantity – secondary allocation size for
tablespace/index partition.

• Cylinders/tracks – unit of allocation size. Possible values are
C for cylinders and T for tracks.

An example
The following is an example of a tablespace TS1 having 150
partitions with partitioning index I1 and secondary index I2 with
40 pieces (using PIECESIZE option) with sizes as follows:
TS1 partitions 1- 5Ø , Primary qty = 1ØØØ, secondary qty = 5Ø
TS1 partitions 51- 1ØØ , Primary qty = 6ØØ, secondary qty = 1Ø
TS1 partitions 1Ø1- 15Ø , Primary qty = 1ØØ, secondary qty = 5

I1 partitions 1- 5Ø , Primary qty = 1ØØ, secondary qty = 2Ø
I1 partitions 51- 1ØØ, Primary qty = 8Ø, secondary qty = 15
I1 partitions 1Ø1- 15Ø , Primary qty = 6Ø, secondary qty = 1Ø

I2 pieces 1- 4Ø , Primary qty = 15ØØ, secondary qty = 15Ø

All these quantities are in cylinders.
Panel entries are as follows:
Tablespace TS1, Group 1, partitions = 5Ø, primary qty = 1ØØØ,
 secondary qty = 5Ø
Tablespace TS1, Group 2, partitions = 5Ø, primary qty = 6ØØ,
 secondary qty = 1Ø
Tablespace TS1, Group 3, partitions = 5Ø, primary qty = 1ØØ,
 secondary qty = 5
Index I1, Group 1, reference tablespace =TS1, partitions = 5Ø,
 primary qty = 1ØØ, secondary qty = 2Ø
Index I1, Group 2, reference tablespace =TS1, partitions = 5Ø,
 primary qty = 8Ø, secondary qty = 15
Index I1, Group 3, reference tablespace =TS1, partitions = 5Ø,
 primary qty = 6Ø, secondary qty = 1Ø
Index I2, Group 1, reference tablespace =S1, partitions = 4Ø,
 primary qty = 15ØØ secondary qty = 15Ø

Once all entries are done and finalized, action GEN allocates the
volumes for each dataset and generates an output dataset with
VSAM dataset definitions. If there is an insufficient number of

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 34

volumes or individual datasets for a partitioned tablespace/
index, they cannot be distributed across the volumes, and the
utility stops with a message, ‘ALL VOLUMES FULL’ and the
tablespace/index name for which the allocation failed.
In such a case, the required action is either to increase the
number of volumes or to handle placement for that object
manually.
The different actions available on the panel are:
• ADD – creates new entries and stores them in an ISPF table.

Please note that all contiguous partitions of the same size for
a tablespace/index are assigned to one group and the
minimum number of groups is one, where all partitions are
the same size.

• DIS – displays an existing entry for a given database name,
tablespace/index name, and group number.

• MOD – modifies an existing entry on keys (database name,
tablespace/index name, group number). Fields which can
be changed with this action are: type of object (tablespace,
partitioning index, or secondary index); reference tablespace
name (for index entry – the name of the tablespace containing
table corresponding to this index: for a tablespace entry it is
blank); number of contiguous partitions in that group; primary
and secondary quantities (allocation sizes) for the object;
and unit of allocation (C for cylinders and T for tracks).

• DEL – deletes an existing entry on keys (database name,
tablespace/index name, group number).

• NXT and PRV – browse through existing entries in forward
and backward direction.

• SAV – saves all existing entries in a dataset under the
DDname fields. These entries can again be retrieved and
populated in the ISPF table using GET action.

• GET – retrieves entries saved in a dataset, populates the
ISPF table, and displays the entries on the panel.

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• GEN – once all the entries are made and finalized on the
panel, this action reads each entry, assigns datasets to
volumes as per the entry definitions, and generates VSAM
linear dataset definitions in a dataset.

• END – ends the utility.

OPTIONS USED
This REXX uses the following parameters as inputs controlling
different options under which this tool can run:
• vol_name_pfx – this is the prefix for all volumes’ names that

this REXX uses. For example, if the prefix value is VOL, then
the volume names assigned will be VOL0001, VOL0002,
and so on. These names can later be substituted with the
actual volume names available at the installation.

• empty_vol – this parameter is used to determine whether all
volumes available are empty and they do not have some
space already allocated to other datasets. Normally, the
value for this is YES, which indicates that all volumes
assigned are empty and this is the first run. The ‘YES’ value
works with vol_name_pfx value.
A value of ‘NO’ indicates that some or all volumes already
have some spaces allocated to other datasets. This option
requires another dataset in input mode (DDname fvolin).
This dataset provides information on space available on
each volume to start with. This dataset has entries for each
volume on a separate line. Each line will have the volume
name and the space available in cylinders on that volume for
further dataset allocation. For example for three volumes,
VOL1, VOL2, and VOL3, if the available number of cylinders
for allocation are 200, 300, and 500 respectively, this dataset
will have the following three entries, each on a different line:
VOL1 2ØØ
VOL2 3ØØ
VOL3 5ØØ

The REXX EXEC reads this dataset and stores this

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 36

information at the beginning. Later on it uses this data at the
time of allocation of datasets.
This option is used for allocating datasets in subsequent
runs.

• max_vol – this parameter determines the maximum number
of empty volumes available in the first run and it is valid for
the empty_vol = ‘YES’ option. As with the ‘NO’ option, all
volume details are available in a dataset.

• vol_cyl_limit – this parameter defines the total number of
cylinders that can be allocated on each volume. For example
for a 3390 device, if 3300 cylinders is the capacity, then a
value of 2600 cylinders for this parameter is good enough to
take care of future growth of datasets. Once this limit is
reached for any volume, the REXX EXEC does not use that
volume for any further allocation.

• si_ind – this indicator tells whether the secondary index
datasets can be placed along with the corresponding
tablespace partitions datasets or corresponding partitioning
index partition datasets on the same volume.
A value of ‘Y’ indicates that secondary index datasets cannot
be placed with any of the corresponding tablespace datasets
(partitioned/non-partitioned) or corresponding partitioned/
other secondary datasets (partitioned /non-partitioned) for
that tablespace. This option yields a better dataset distribution,
but it may require more volumes for allocation.
A value of ‘N’ indicates that secondary index datasets can be
placed on the same volumes that have the corresponding
tablespace datasets or other datasets for other indexes that
correspond to that tablespace

• vcat – this parameter is the vcat name and is used as the
HLQ for generated VSAM datasets.

DATASETS USED
The datasets used have DDnames of fds, fileo, fvolin, and

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

fvolout. All these four datasets need to be pre-allocated before
this EXEC is run.

fds
Dataset fds (DDname) is used to save all ISPF table entries
made through the panel. The action SAV on the panel, stores all
entries in this dataset. Action GET on the panel restores these
entries back to an ISPF table which can then be browsed,
modified, or deleted on the panel. Please note that, if these
entries have to be retrieved from the dataset, the GET action
should be the first action on the panel, followed by any subsequent
ADD, MOD, or DEL actions.

fileo
Dataset fileo (DDname) is the output dataset and it contains the
required VSAM dataset definitions that can used by IDCAMS to
create VSAM datasets.

fvolin
Dataset fvolin (DDname) is used in input mode with the empty_vol
parameter value equal to ‘NO’. This dataset is used when
volumes are not empty and are already pre-allocated with some
other data. In this dataset, each row contains information specific
to a volume where the first field contains the volume name and
the second field contains the number of cylinders available on
that volume for subsequent allocation of datasets during the next
run. The REXX EXEC reads this dataset at the start, stores the
information in memory, and uses the information during dataset
allocation. If there is an entry for a volume which has 0 cylinders
available, that volume will not be allocated to any new dataset.
This dataset may be empty where empty_vol = ‘YES’.

fvolout
Dataset fvolout (DDname) is the output dataset for each run. This
contains volume information for each volume after the allocation
is done. Each row contains the volume name and number of

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 38

cylinders available on that volume at the end of the run. At the
end, it also gives certain audit messages regarding the total
number of cylinders available before run and after run, and how
many cylinders were allocated in that run. Each run is identified
by a running Run number. After the first run, this dataset can be
used as fvolin (DDname) for the next run.
/*REXX*/

/**************** Datasets allocated for EXEC **********/
fileo='TEST.VSAMD.OUTPUT' /* for generated VSAM datasets definitions*/
fvolin = ‘TEST.VOLINF.INPUT’ /* for Volume information input */
fvolout = ‘TEST.VOLINF.OUTPUT’ /* for Volume information output */
fds = ‘TEST.SAVEINF.ENTRIES’ /* for saving all screen entries */
/*************** Parameters used **********************/
vol_name_pfx = 'VOL' /* Prefix for Volume names generated */
start_vol = 1 /* Starting position for volumes, normally 1 */
empty_vol = 'YES' /* Indication for space available on volumes */
 /* YES - all volumes have space available as */
 /* per maximum cylinders available */
 /* NO - volumes are partially filled up */
max_vol = 1ØØØ /* Maximum numbers of volumes available */
vol_cyl_limit = 26ØØ /* Maximum number of Cylinders Limit on */
 /* each volume */
si_ind = 'Y' /* indicator for placement of Sec. Index datasets(Y/N) */
vcat = 'vcatname' /* vcat name for Linear datasets generated */
/***/

if sysdsn("'"fds"'") ¬= "OK" then
do
 say 'OUTPUT FILE ' fds ' DOES NOT EXIST.'
 say
 exit
end
"ALLOC DA('"||fds||"') F(DATADS) shr"

tot_ptns = Ø
eof = 'NO'
nxt_ind = Ø
prv_ind = Ø
tbl_entries = Ø
tot_tbl_entries = Ø
dbarr.Ø = Ø
dbarr. = ''
tsarr.Ø = Ø
tsarr. = ''
dbtsidx = Ø
get_first_ind = ''

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

ADDRESS "ISPEXEC"
"LIBDEF ISPPLIB DATASET ID ('TEST.ISPPLIB')"
"LIBDEF ISPTLIB DATASET ID ('TEST.ISPTLIB')"
ADDRESS "ISPEXEC" "TBCREATE TBGRPS"||,
 " KEYS (TDBNAME TTSNAME TGRP)"||,
 " NAMES (TTSREF TTIX TNUMPRTS TSIZPRTS TSECQ TCYLS)"||,
 " NOWRITE REPLACE"
ADDRESS "ISPEXEC" "TBCREATE TBGRPA"||,
 " KEYS (TGRPTXT1)"||,
 " NOWRITE REPLACE"
ADDRESS "ISPEXEC" "TBCREATE TBGRPB"||,
 " KEYS (TGRPTXT2)"||,
 " NOWRITE REPLACE"

call first_phase
if acn = 'GEN' then
 do
 call second_phase
 call third_phase
 call fourth_phase
 end

ADDRESS "ISPEXEC"
"LIBDEF ISPPLIB "
"LIBDEF ISPTLIB "
ADDRESS TSO
"FREE F(DATADS)"
exit

 first_phase:
/***********/
do while eof = 'NO'
 "DISPLAY PANEL (PDSDTL)"
 msg = ''
 if acn = 'END' then
 do
 eof = 'YES'
 leave
 end
 if acn = 'GEN' then
 if tbl_entries = Ø then
 do
 msg = 'No Entries are made'
 iterate
 end
 else
 do
 eof = 'YES'
 leave

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 40

 end
 if acn = 'SAV' then
 do
 call process_put
 iterate
 end
 if acn = 'GET' then
 if get_first_ind = '' then
 do
 call process_get
 acn = 'NXT'
 call process_rtn
 iterate
 end
 else
 do
 msg = "GET should be done only at the beginning "
 iterate
 end
 if (acn = 'ADD' | acn = 'MOD' | acn = 'DEL') then
 do
 if dbname = ' ' then
 do
 msg = "Database name Invalid"
 iterate
 end
 if tsname = ' ' then
 do
 msg = "Tablespace name Invalid"
 iterate
 end
 if tix = 'TS' | tix = 'PI' | tix = 'SI' then
 nop
 else
 do
 msg = "Tablespace /Index Indication Invalid"
 iterate
 end
 if tix = 'PI' | tix = 'SI' then
 if (acn = 'ADD' | acn = 'MOD') then
 if tsref = ' ' then
 do
 msg = "Reference Tablespace must be entered"
 iterate
 end
 if tix = 'PI' | tix = 'SI' then
 if (acn = 'ADD' | acn = 'MOD') then
 do
 call fnd_dbtsarr
 if fnd_dbts_ind = 'N' then

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 do
 msg = "Reference Tablespace not Entered"
 iterate
 end
 end
 if tix = 'TS' then
 if (acn = 'ADD' | acn = 'MOD') then
 if tsref <> ' ' then
 do
 msg = "Reference Tablespace must be blanks"
 iterate
 end
 if grp < '1' | grp > '254' then
 do
 msg = "Group Number Invalid"
 iterate
 end
 if numparts < '1' | numparts > '254' then
 do
 msg = "Number of Partitions Invalid"
 iterate
 end
 end
 call process_rtn
end /* do while */
return

 process_rtn:
/***********/
 get_first_ind = 'N'
 if acn <> 'NXT' then
 nxt_ind = Ø
 if acn <> 'PRV' then
 prv_ind = Ø
 select
 when acn = 'DIS' then call grp_dis
 when acn = 'ADD' then call grp_add
 when acn = 'MOD' then call grp_mod
 when acn = 'DEL' then call grp_del
 when acn = 'NXT' then call grp_nxt
 when acn = 'PRV' then call grp_prv
 otherwise msg = "Wrong Action Code"
 end
return

 grp_add:
/********/
 TDBNAME = dbname
 TTSNAME = tsname
 TTIX = tix

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 42

 if tix = 'PI' | tix = 'SI' then
 TTSREF = tsref
 else
 TTSREF = tsname
 TGRP = grp
 TNUMPRTS = numparts
 TSIZPRTS = szparts
 TSECQ = secprts
 TCYLS = cyls
 ADDRESS "ISPEXEC" "TBADD TBGRPS"
 if rc > 4 then
 msg = 'Duplicate Entry'
 else
 do
 tbl_entries = tbl_entries + 1
 tot_tbl_entries = tot_tbl_entries + 1
 dbarr.tot_tbl_entries = dbname
 tsarr.tot_tbl_entries = tsname
 end
return

 grp_dis:
/********/
 ADDRESS "ISPEXEC" "TBSORT TBGRPS "||,
 "FIELDS(TDBNAME,C,A,TTSNAME,C,A,TGRP,C,A)"
 ADDRESS "ISPEXEC" "TBTOP TBGRPS"
 TDBNAME = dbname
 TTSNAME = tsname
 TGRP = grp
 ADDRESS "ISPEXEC" "TBGET TBGRPS"
 if rc <> Ø then
 do
 msg = 'Entry Not Found'
 return
 end
 tix = TTIX
 if tix = 'TS' then
 tsref = ''
 else
 tsref = TTSREF
 numparts = TNUMPRTS
 szparts = TSIZPRTS
 secprts = TSECQ
 cyls = TCYLS
return

 grp_del:
/********/
 ADDRESS "ISPEXEC" "TBSORT TBGRPS "||,
 "FIELDS(TDBNAME,C,A,TTSNAME,C,A,TGRP,C,A)"

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 ADDRESS "ISPEXEC" "TBTOP TBGRPS"
 TDBNAME = dbname
 TTSNAME = tsname
 TGRP = grp
 ADDRESS "ISPEXEC" "TBGET TBGRPS"
 if rc <> Ø then
 do
 msg = 'Entry Not Found'
 return
 end
 tix = TTIX
 if tix = 'TS' then
 tsref = ''
 else
 tsref = TTSREF
 numparts = TNUMPRTS
 szparts = TSIZPRTS
 secprts = TSECQ
 cyls = TCYLS
 ADDRESS "ISPEXEC" "TBDELETE TBGRPS"
 if rc > 4 then
 msg = 'Entry Not Deleted'
 else
 do
 tbl_entries = tbl_entries - 1
 call del_dbtsarr
 end
return

 grp_mod:
/********/
 ADDRESS "ISPEXEC" "TBSORT TBGRPS "||,
 "FIELDS(TDBNAME,C,A,TTSNAME,C,A,TGRP,C,A)"
 ADDRESS "ISPEXEC" "TBTOP TBGRPS"
 TDBNAME = dbname
 TTSNAME = tsname
 TGRP = grp
 ADDRESS "ISPEXEC" "TBGET TBGRPS"
 if rc <> Ø then
 do
 msg = 'Entry Not Found'
 return
 end
 TTIX = tix
 if tix = 'PI' | tix = 'SI' then
 TTSREF = tsref
 else
 TTSREF = tsname
 TNUMPRTS = numparts
 TSIZPRTS = szparts

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 44

 TSECQ = secprts
 TCYLS = cyls
 ADDRESS "ISPEXEC" "TBMOD TBGRPS"
 if rc > 4 then
 msg = 'Entry Not Changed'
return

 grp_nxt:
/********/
 if nxt_ind = Ø then
 do
 ADDRESS "ISPEXEC" "TBSORT TBGRPS "||,
 "FIELDS(TDBNAME,C,A,TTSNAME,C,A,TGRP,C,A)"
 ADDRESS "ISPEXEC" "TBTOP TBGRPS"
 ADDRESS "ISPEXEC" "TBSKIP TBGRPS"
 if rc > 4 then
 do
 msg = "First Entry Not Found"
 return
 end
 nxt_ind = 1
 dbname = TDBNAME
 tsname = TTSNAME
 grp = TGRP
 tix = TTIX
 if tix = 'TS' then
 tsref = ''
 else
 tsref = TTSREF
 numparts = TNUMPRTS
 szparts = TSIZPRTS
 secprts = TSECQ
 cyls = TCYLS
 end
 else
 do
 ADDRESS "ISPEXEC" "TBSKIP TBGRPS"
 if rc > 4 then
 do
 msg = "No More Entries Found"
 return
 end
 dbname = TDBNAME
 tsname = TTSNAME
 tix = TTIX
 if tix = 'TS' then
 tsref = ''
 else
 tsref = TTSREF
 grp = TGRP

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 numparts = TNUMPRTS
 szparts = TSIZPRTS
 secprts = TSECQ
 cyls = TCYLS
 return
 end
return

 grp_prv:
/********/
 if prv_ind = Ø then
 do
 ADDRESS "ISPEXEC" "TBSORT TBGRPS "||,
 "FIELDS(TDBNAME,C,D,TTSNAME,C,D,TGRP,C,D)"
 ADDRESS "ISPEXEC" "TBTOP TBGRPS"
 ADDRESS "ISPEXEC" "TBSKIP TBGRPS"
 if rc > 4 then
 do
 msg = "Last Entry Not Found"
 return
 end
 prv_ind = 1
 dbname = TDBNAME
 tsname = TTSNAME
 tix = TTIX
 if tix = 'TS' then
 tsref = ''
 else
 tsref = TTSREF
 grp = TGRP
 numparts = TNUMPRTS
 szparts = TSIZPRTS
 end
 else
 do
 ADDRESS "ISPEXEC" "TBSKIP TBGRPS"
 if rc > 4 then
 do
 msg = "No More Entries Found"
 return
 end
 dbname = TDBNAME
 tsname = TTSNAME
 tix = TTIX
 if tix = 'TS' then
 tsref = ''
 else
 tsref = TTSREF
 grp = TGRP

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 46

 numparts = TNUMPRTS
 szparts = TSIZPRTS
 return
 end
return

 del_dbtsarr:
/************/
fnd_dbts_ind = 'N'
do dbtsidx = 1 to tot_tbl_entries
 if (dbname = dbarr.dbtsidx & tsname = tsarr.dbtsidx) then
 do
 fnd_dbts_ind = 'Y'
 dbarr.dbtsidx = ''
 tsarr.dbtsidx = ''
 leave
 end
end
return

 fnd_dbtsarr:
/************/
fnd_dbts_ind = 'N'
do dbtsidx = 1 to tot_tbl_entries
 if (dbname = dbarr.dbtsidx & tsref = tsarr.dbtsidx) then
 do
 fnd_dbts_ind = 'Y'
 leave
 end
end
return

 second_phase:
/*************/
 ADDRESS "ISPEXEC" "TBSORT TBGRPS "||,
 "FIELDS(TDBNAME,C,A,TTSREF,C,A,TTSNAME,C,A,TGRP,C,A)"
 ADDRESS "ISPEXEC" "TBTOP TBGRPS"
 ADDRESS TSO
 dbname = ''
 w_dbname = ''
 w_tsref = ''
 w_sp_name = ''
 w_tsp_name = ''
 sp_name = ''
 tsp_name = ''
 tix_ctr = Ø
 rec1 = ''
 rec2 = ''
 ptns = Ø
 max_ptns = Ø

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 inp_rows = Ø
 oup_rows = Ø
 tot_cyls = Ø
 i = Ø
 j = Ø
 k = Ø
 call sec_rtn
 rec2 = w_dbname||' '||w_tsref||' '||substr(max_cyl,1,6)||' '||rec2
 oup_rows = oup_rows + 1
 if ptns > max_ptns then
 max_ptns = ptns
 call write_tbgrpa
 say 'Total number of input rows processed = '||inp_rows
 say 'Total number of Cylinders = '||tot_cyls
 say 'Maximum number of Partitions = '||max_ptns
return

 sec_rtn:
/********/
 eof = 'NO'
 rec1 = ' '
 rec2 = ' '
 max_cyl = Ø
 first_rec = Ø
 j = Ø
 k = Ø
 INLIST. = ""
 INLIST.Ø = Ø
 OUTLIST. = ""
 OUTLIST.Ø = Ø
 do while eof = 'NO'
 ADDRESS "ISPEXEC" "TBSKIP TBGRPS"
 if rc > 4 then
 do
 ADDRESS TSO
 eof = 'YES'
 end
 else
 do
 count_ptn = value(TNUMPRTS)
 dbname = TDBNAME
 tsname = TTSNAME
 szparts = TSIZPRTS
 secprts = TSECQ
 cyl = TCYLS
 tix = TTIX
 tsref = TTSREF
 do ptn_ctr = 1 to count_ptn
 call process_rtn_sec
 end

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 48

 end
 end
 ADDRESS "ISPEXEC" "TBCLOSE TBGRPS"
return

 process_rtn_sec:
/****************/
 ADDRESS TSO
 pqty = value(szparts)
 sqty = value(secprts)
 if cyl = 'T' then
 do
 tot_cyls = tot_cyls + (trunc(pqty/15) + 1)
 pqtyc = trunc(pqty/15) + 1
 end
 else
 do
 tot_cyls = tot_cyls + pqty
 pqtyc = pqty
 end
 inp_rows = inp_rows + 1
 sp_name = substr(tsname,1,8)
 if first_rec = Ø then
 do
 first_rec = 1
 rec2 = ''
 rec2 = rec2||' '||sp_name||' '||cyl||' '||tix||' '
 rec2 = rec2||' '||substr((pqty||'.'||secprts||'.'||cyl),1,11)
 tix_ctr = 1
 w_dbname = dbname
 w_sp_name = sp_name
 w_tsref = tsref
 max_cyl = pqtyc
 ptns = 1
 end
 else if (sp_name = w_sp_name & dbname = w_dbname) then
 do
 rec2 = rec2||' '||substr((pqty||'.'||secprts||'.'||cyl),1,11)
 ptns = ptns + 1
 if pqtyc > max_cyl then
 max_cyl = pqtyc
 end
 if (sp_name <> w_sp_name | dbname <> w_dbname) then
 do
 rec2 = w_dbname||' '||w_tsref||' '||substr(max_cyl,1,6)||' '||rec2
 oup_rows = oup_rows + 1
 if ptns > max_ptns then
 max_ptns = ptns
 call write_tbgrpa
 rec2 = ''

 49© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 rec2 = rec2||' '||sp_name||' '||cyl||' '||tix||' '
 rec2 = rec2||' '||substr((pqty||'.'||secprts||'.'||cyl),1,11)
 w_dbname = dbname
 w_tsref = tsref
 w_sp_name = sp_name
 max_cyl = pqtyc
 ptns = 1
 end
return Ø

 write_tbgrpa:
/*************/

 TGRPTXT1 = rec2
 ADDRESS "ISPEXEC" "TBADD TBGRPA"
 if rc > 4 then
 say 'Write Error in Table TBGRPA'
 ADDRESS TSO
return

Editor’s note: this article will be concluded in next month’s issue.
Sharad K Pande
Senior DBA (USA) © Xephon 2002

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 50

Embarcadero Technologies has announced
DBArtisan Version 7.0 for building,
managing, and trouble-shooting enterprise
database infrastructures. DBArtisan 7.0
includes support enhancements for DB2
UDB. With the addition of Embarcadero
SQL Debugger for UDB, DBAs and
developers can now diagnose and fix
problematic server-side code and ad hoc
SQL.

With more than 30 enhancements,
DBArtisan 7.0 allows for the administration
of more complex database environments by
delivering the most up-to-date support for
the current release of DB2. It also provides
cross-platform functionality.

New features include DB2 system-level
navigation and DB2 UDB debugging.

For further information contact:
Embarcadero Technologies, 425 Market
Street, Suite 425, San Francisco, CA 94105,
USA.
Tel: (415) 834 3131.
URL: http://www.embarcadero.com/
products/dbartisan/index.asp.

* * *

IBM has announced 11 new data
management tools targeting administration
and utilities, performance management,
recovery, and replication and application
management.

The name of the DB2 Recovery Manager for
z/OS program has been changed to IBM
Application Recovery Tool for IMS and DB2
Databases V1.2, which is out now. There are
also two IMS and one DB2 new programs,

DB2 news

and six new program releases: four IMS, one
DB2, and one supporting IMS and DB2.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software/data.

* * *

IBM has released Tivoli System Automation
for OS/390 (SA OS/390) under the Tivoli
Environment-Managed Licensing Model,
which means pricing and licensing are based
on what is managed rather than how the
software is implemented.

The software is designed to automate I/O,
processor, and system operations and
includes canned automation for IMS, CICS,
IBM Tivoli Workload Scheduler, and DB2.
Key functions include Parallel Sysplex
application automation, policy-based self-
healing, integration, processor operations
(ProcOps) and I/O operations, and SAP R/3
high-availability automation.

Other features include cluster-wide policy to
help reduce complexity, implementation
time, coding, and support plus Parallel
Sysplex management and automation
functions, including single system image,
single point of control, and Parallel Sysplex
application automation.

It also provides policy-based e-business
automation that can start, stop, monitor, and
recover z/OS Unix applications and
resources.

For further information contact your local
IBM representative.
URL: http://www.tivoli.com/products.

x xephon

	Script for creating insert statements for all records in a table
	Utilities to extract and update access path statistics
	DB2 Everyplace: a mobile DB2
	Automatic placement of user-managed datasets
	DB2 news

