

© Xephon plc 2004

January 2004

135 DB2
In this issue
3 UDB V8 LUW – what is infinite

logging?
6 Fixes for ERwin DB2/UDB

trigger templates
14 Accessing DB2 using a Web

browser and DB2/REXX – part 2
24 Impact of dropping a table
46 UDB V8 LUW – different ways

of deleting rows from a table
50 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1999 issue, are available separately
to subscribers for £22.50 ($33.75) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon plc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

UDB V8 LUW – what is infinite logging?

One of the many new features of the DB2 UDB V8 offering is the
ability to specify an ‘infinite’ number of logs. What does this
mean, and what does it offer you? What it means I will cover later,
but what it offers you is a way to get over the problem of long-
running transactions that do not commit, thus causing you a log
full problem (and perhaps a sleepless night!).
So what does it mean? Let’s look back at the situation in V7. You
could specify from 2 to 128 primary logs and from 0 to 126
secondary logs, with the total number of primary logs plus
secondary logs not exceeding 128. With each log having a
maximum size of 65,535 4KB pages, the maximum amount of
log space was limited to 32GB. In V8, the limits are increased to
2 to 256 primary logs and 0 to 254 secondary logs (with the total
number of primary logs plus secondary logs not exceeding 256),
with a minimum size of 4 and a maximum of 262,144 4KB pages,
and with a total log space of 256GB. This is summarized in Figure
1.
The Admin Guide (V7 or V8) gives you the following formulas to
calculate the minimum/maximum space requirements for the
logs:
Minimum size: (logprimary * (logfilsiz + 2) * 4096) + 8192

V7 V8
Number of primary logs you can specify (min/max) 2/128 2/256
Number of secondary logs you can specify (min/max) 0/126 0/254
Maximum number of logs (primary + secondary) 128 256
Maximum log size (4K pages) 65,535 262,144
Total log space 32GB 256GB

Figure 1: Log sizes

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 4

Maximum size:
((logprimary + logsecond) * (logfilsiz + 2) * 4096) + 8192

I ran all the SQL in this article on a Windows 2000 machine
running DB2 UDB 8.1 FP1.
So how can you initiate V8 infinite logging? You initiate it by
setting the DB CFG parameter userexit to ON and the logsecond
parameter to ‘-1’ (you need to invoke the userexit first if you are
going to use infinite logging). The commands are:
>db2 update db cfg for sample using userexit on
>db2 update db cfg for sample using logsecond –1

What this gives you is an active unit of work that can occupy not
only active logs but archive logs as well.
As an example, let’s define our system with the maximum
number of permissible primary and secondary logs and then run
a long transaction, which doesn’t issue any commits, and see
what happens. Then we will enable infinite logging and see what
happens.
We will use a test table called EMP in the SAMPLE database,
which contains about 1 million rows and was created by copying
numerous copies of the EMPLOYEE table into it. How to create
the table is not shown in this article – you can use any table of your
choice.
First reduce the size of the log file to the minimum permissible
and then increase the number of primary logs to the maximum
permissible.
>db2 update db cfg for sample using logfilsiz 4
>db2 update db cfg for sample using logprimary 256

>db2 connect reset
>db2 connect to sample

Check to see that the changes have taken effect:
>db2 get db cfg for sample | find /i "Log"
Log file size (4KB) (LOGFILSIZ) = 4
Number of primary log files (LOGPRIMARY) = 256
Number of secondary log files (LOGSECOND) = Ø

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

User exit for logging enabled (USEREXIT) = OFF

We can see that the settings are what we want in order to perform
our test. If we now try to update every row in our test table we get
the following result:
>db2 update emp set salary = salary + 1.Ø
DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned:
SQLØ964C The transaction log for the database is full. SQLSTATE=57Ø11

Switch back to using just three primary logs:
>db2 update db cfg for sample using logprimary 3

Now invoke infinite logging:
>db2 update db cfg for sample using userexit on
>db2 update db cfg for sample using logsecond -1

This means that you are using archive logging. If your system
uses circular logging, then, before switching on infinite logging,
you need to make sure that you have procedures in place to
handle the archive logs:
>db2 connect reset
>db2 backup db sample to c:\backups

And check that the updates have worked:
>db2 get db cfg for sample | find /i "Log"

Log file size (4KB) (LOGFILSIZ) = 4
Number of primary log files (LOGPRIMARY) = 3
Number of secondary log files (LOGSECOND) = -1
User exit for logging enabled (USEREXIT) = ON

Now if we try to update the test table EMP again:
>db2 connect to sample
>db2 update emp set salary = salary + 1.Ø
DB2ØØØØI The SQL command completed successfully.

You can see that this time the update command has worked.
I hope I have shown how easy it is to switch on infinite logging and
what the benefits are. This doesn’t mean that you do not have to
manage the logs (just as you did in Version 7 and Version 8 prior

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 6

Fixes for ERwin DB2/UDB trigger templates

One of the best ways to enforce referential integrity rules is
through the use of triggers. CA-ERwin supports referential
integrity triggers (RI triggers), which are triggers that maintain the
integrity between two related tables. For example, if a row in a
parent table is inserted, updated, or deleted, an RI trigger tells the
DBMS what to do to rows in other tables that have a foreign key
value matching the primary key in the row being added, updated,
or deleted. ERwin provides a set of default RI trigger templates
that you can attach to tables to tell the target server how to
enforce referential integrity. You can use ERwin macros to
customize the RI trigger templates and override the default code
that is generated by ERwin.
This article explains how to correct some problems in ERwin
DB2/UDB Trigger Templates (ERwin Version 3.5.2 and higher
and DB2/UDB Version 5.0 and higher are prerequisite). The
following problems occur during the generation of triggers:
• The SQLSTATE specified in the RAISE_ERROR function

does not conform to the rules for an application defined
(referential integrity types: CHILD DELETE RESTRICT,
CHILD INSERT RESTRICT, CHILD UPDATE RESTRICT,
PARENT DELETE RESTRICT, PARENT INSERT
RESTRICT, PARENT UPDATE RESTRICT).

• ERwin macro templates do not support transition tables
OLD_TABLE and NEW_TABLE (referential integrity types:
CHILD INSERT CASCADE, CHILD UPDATE CASCADE).

to switching on infinite logging), and you should still monitor your
system for transactions that do not commit frequently, but it does
give you another option to use.
C Leonard
Freelance Consultant (UK) © Xephon 2004

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• In Trigger Update Header there is a missing referencing
clause (UPDATE HEADER).

I have made ERwin macros for correcting these problems, which
can be used to overwrite the installation macros. I will present a
trivial model (see Figure 1) and the whole procedure, which
implements this solution.

ERwin installation default DB2/UDB Schema Generation Preview
produced the following result:
create trigger tD_A after DELETE on A
 REFERENCING OLD AS OLD for each row mode db2sql
 update B
 set B.A1 = NULL
 where B.A1 = old.A1

Figure 1. A trivial model and detail description RI actions for relationships
 A R_2 B and A R_1 C respectively Figure 1: Trivial model and RI actions for relationships

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 8

 !!

create trigger tD_A2 after DELETE on A
 REFERENCING OLD AS OLD for each row mode db2sql
 WHEN ((select count(*) from C where C.A1 = old.A1) > Ø)
 SIGNAL SQLSTATE '42987' ('Cannot DELETE A because C exists.')
 !!

create trigger tU_A after UPDATE on A
 for each row mode db2sql
 WHEN ((select count(*) from A where A.A1 <> old.A1) > Ø)
 update B
 set B.A1 = NULL
 where B.A1 = old.A1
 !!

create trigger tU_A2 after UPDATE on A
 for each row mode db2sql
 WHEN (((select count(*) from A where A.A1 <> old.A1) > Ø) AND
 ((select count(*) from C where C.A1 = old.A1) > Ø))
 SIGNAL SQLSTATE '42987' ('Cannot UPDATE A because C exists.')
 !!

create trigger tI_B after INSERT on B
 REFERENCING NEW AS NEW for each row mode db2sql
 insert into A (A1)
 select A1 from new
 where B.A1 is not null and
 not exists (select * from A
 where new.A1 = A.A1)
 !!

create trigger tU_B after UPDATE on B
 for each row mode db2sql
 update B
 set B.A1 = NULL
 where not exists (select * from A
 where new.A1 = A.A1)
 !!

create trigger tI_C after INSERT on C
 REFERENCING NEW AS NEW for each row mode db2sql
 insert into A (A1)
 select A1
 from new
 where
 and
 not exists (select * from A
 where new.A1 = A.A1)
 !!

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

create trigger tU_C after UPDATE on C
 for each row mode db2sql
 WHEN (((select count(*) from A where new.A1 = A.A1) = Ø))
 SIGNAL SQLSTATE '42987' ('Cannot UPDATE C because A does not
exist.')
 !!

During the generation of the triggers, all the problems I mentioned
earlier occurred:
• RAISE_ERROR problem has the trigger tD_A2. This trigger

will pass the generate phase, but during execution the
system generates sqlcode SQL0435N (an invalid SQLSTATE
‘<sqlstate>’ is specified in the function RAISE_ERROR).

• Unsupported transition tables problems have triggers tI_B
and tI_C. The tI_B trigger produces error SQL0204N –
‘userid.NEW’ is an undefined name, and the tI_C trigger has
a syntax error too (SQL0104N – an unexpected token,
‘exists’, was found following ‘and not’; expected tokens may
include: ‘BETWEEN’).

• Update header problems have the following triggers: tU_A,
tU_A2, tU_B, and tU_C (SQL0206N – ‘OLD.A1’ is not valid
in the context in which it is used).

User override trigger templates to correct errors in the built-in
trigger templates are:
MY CHILD DELETE RESTRICT
 WHEN ((select count(*) from %Parent where %JoinFKPK(%Old,%Parent," =
"," and")) > Ø)
 SIGNAL SQLSTATE '75ØØ3' ('Cannot DELETE %Child because %Parent
exists.')

MY CHILD INSERT RESTRICT
 WHEN (((select count(*) from %Parent where %JoinFKPK(%New,%Parent," =
"," and")) = Ø)
 %If (%NotnullFK(%New," is not null")) { AND %NotnullFK(," is not
null","new."," and") })
 SIGNAL SQLSTATE '75ØØ1' ('Cannot INSERT %Child because %Parent does
not exist.')

MY CHILD UPDATE RESTRICT
 WHEN (((select count(*) from %Parent where %JoinFKPK(%New,%Parent," =
"," and")) = Ø)

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 10

 %If (%NotnullFK(%New," is not null",," and")) { AND %NotnullFK(," is
not null","new."," and")})
 SIGNAL SQLSTATE '75ØØ2' ('Cannot UPDATE %Child because %Parent does
not exist.')

MY PARENT DELETE RESTRICT
 WHEN ((select count(*) from %Child where %JoinFKPK(%Child,%Old," = ","
and")) > Ø)
 SIGNAL SQLSTATE '75ØØ3' ('Cannot DELETE %Parent because %Child
exists.')

MY PARENT INSERT RESTRICT
 WHEN ((select count(*) from %Child where %JoinFKPK(%Child,%New," = ","
and")) = Ø)
 SIGNAL SQLSTATE '75ØØ1' ('Cannot INSERT %Parent because %Child does
not.')
MY PARENT UPDATE RESTRICT
 WHEN (((select count(*) from %Parent where %JoinPKPK(%Old,%New," <> ","
or ")) > Ø) AND
 ((select count(*) from %Child where %JoinFKPK(%Child,%Old," = ","
and")) > Ø))
 SIGNAL SQLSTATE '75ØØ2' ('Cannot UPDATE %Parent because %Child
exists.')

MY UPDATE HEADER
 create trigger t%1Action_%15TableName%TriggerSeq after %Action on
%TableName
 %RefClause REFERENCING OLD AS old NEW AS new for each row mode db2sql

MY CHILD INSERT CASCADE
 %Decl(j,Ø)
 %=(j,%TriggerSeq)
 %If (%>(%:j,Ø)) {
 %=(j,%+(%:j,1))
 }
 SIGNAL SQLSTATE'75ØØØ' ('Temporary trigger.')
 %DBMSTriggerDelim
 drop trigger t%1Action_%15TableName%:j;
 create trigger t%1Action_%15TableName%:j after %Action on %TableName
 REFERENCING NEW_TABLE AS NEW for each row mode db2sql
 insert into %Parent (%ParentPK(",",))
 select %ChildFK(",",) from %New where 1 = 1
 %NotnullFK(new," is not null"," and "," and") and
 not exists (
 select * from %Parent
 where
 %JoinFKPK(%New,%Parent," = "," and"))

Note: in this trigger template, the default insert header template
is changed too.

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

MY CHILD UPDATE CASCADE
 %Decl(j,Ø)
 %=(j,%TriggerSeq)
 %If (%>(%:j,Ø)) {
 %=(j,%+(%:j,1))
 }
 SIGNAL SQLSTATE'75ØØØ' ('Temporary trigger.')
 %DBMSTriggerDelim
 drop trigger t%1Action_%15TableName%:j;
 create trigger t%1Action_%15TableName%:j after %Action on %TableName
 REFERENCING NEW_TABLE AS NEW for each row mode db2sql
 insert into %Parent (%ParentPK(",",))
 select %ChildFK(",",)
 from %New
 where 1 = 1
 %NotnullFK(new," is not null"," and "," and") and
 not exists (
 select * from %Parent
 where
 %JoinFKPK(%New,%Parent," = "," and"))

Note: in this trigger template, the default update header template
is changed too.

Create an RI type override trigger template in ERwin:

Figure 2: Global Trigger Templates

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 12

1 In the physical model, on the Database menu, choose RI
Triggers, and then choose Global Trigger Templates (see
Figure 2).

2 Type a name for the new template in the Template Name box,
and then click Add.

3 Type the text in the Template Code box.
4 Select the RI action you want to attach to the new template

in the Referential Integrity Type list.
5 Click Attach above the User Override list.
6 Click Close.
Repeat steps 2 to 5 for all the templates in Figure 3.
Note: you must select the RI Type Override check box for triggers
during schema generation to generate an RI type override
template in the schema.
The ERwin Schema Generation Preview now produces the
following results:
create trigger tD_A after DELETE on A
 REFERENCING OLD AS OLD for each row mode db2sql
 update B

Referential Integrity Type Attached Trigger Template
CHILD DELETE RESTRICT MY CHILD DELETE RESTRICT
CHILD INSERT CASCADE MY CHILD INSERT CASCADE
CHILD INSERT RESTRICT MY CHILD INSERT RESTRICT
CHILD UPDATE CASCADE MY CHILD UPDATE CASCADE
CHILD UPDATE RESTRICT MY CHILD UPDATE RESTRICT
PARENT DELETE RESTRICT MY PARENT DELETE RESTRICT
PARENT INSERT RESTRICT MY PARENT INSERT RESTRICT
PARENT UPDATE RESTRICT MY PARENT UPDATE RESTRICT
TRIGGER UPDATE HEADER MY UPDATE HEADER

Figure 3: User override trigger templates

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 set B.A1 = NULL
 where B.A1 = old.A1
 !!

create trigger tD_A2 after DELETE on A
 REFERENCING OLD AS OLD for each row mode db2sql
 WHEN ((select count(*) from C where C.A1 = old.A1) > Ø)
 SIGNAL SQLSTATE '75ØØ3' ('Cannot DELETE A because C exists.')
 !!

create trigger tU_A after UPDATE on A
 REFERENCING OLD AS old NEW AS new for each row mode db2sql
 WHEN ((select count(*) from A where A.A1 <> old.A1) > Ø)
 update B
 set B.A1 = NULL
 where B.A1 = old.A1
 !!

create trigger tU_A2 after UPDATE on A
 REFERENCING OLD AS old NEW AS new for each row mode db2sql
 WHEN (((select count(*) from A where A.A1 <> old.A1) > Ø) AND
 ((select count(*) from C where C.A1 = old.A1) > Ø))
 SIGNAL SQLSTATE '75ØØ2' ('Cannot UPDATE A because C exists.')

 !!

create trigger tI_B after INSERT on B
 REFERENCING NEW AS NEW for each row mode db2sql
 SIGNAL SQLSTATE'75ØØØ' ('Temporary trigger.')
 !!

 drop trigger tI_B;
 create trigger tI_B after INSERT on B
 REFERENCING NEW_TABLE AS NEW for each row mode db2sql
 insert into A (A1)
 select A1
 from new
 where 1 = 1 and
 new.A1 is not null and
 not exists (select * from A
 where new.A1 = A.A1)
 !!

create trigger tU_B after UPDATE on B
 REFERENCING OLD AS old NEW AS new for each row mode db2sql
 update B
 set B.A1 = NULL
 where not exists (select *
 from A
 where new.A1 = A.A1)

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 14

 !!

create trigger tI_C after INSERT on C
 REFERENCING NEW AS NEW for each row mode db2sql
 SIGNAL SQLSTATE'75ØØØ' ('Temporary trigger.')
 !!

 drop trigger tI_C;
 create trigger tI_C after INSERT on C
 REFERENCING NEW_TABLE AS NEW for each row mode db2sql
 insert into A (A1)
 select A1
 from new
 where 1 = 1 and
 not exists (select *
 from A
 where new.A1 = A.A1)
 !!

create trigger tU_C after UPDATE on C
 REFERENCING OLD AS old NEW AS new for each row mode db2sql
 WHEN (((select count(*) from A where new.A1 = A.A1) = Ø))
 SIGNAL SQLSTATE '75ØØ2' ('Cannot UPDATE C because A does not
exist.')
 !!

Nikola Lazovic
DB2 System Administrator
Postal Savings Bank (Serbia and Monte Negro) © Xephon 2004

Accessing DB2 using a Web browser and
DB2/REXX – part 2

This month we conclude the article that explores getting to
mainframe DB2 from a PC using a Web browser such as Internet
Explorer and mainframe DB2/REXX.

ADDING SOME INTERACTIVITY
Although this is working dynamically, it’s still pretty static as far
as the user is concerned. We’ll now look at getting some input
from the user.

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In our current version of the REXX, the subsystem is hardcoded
– now we’ll change things so that the subsystem is input by the
user.
The HTML structures that allow this are forms. We have a choice
for this – use a pulldown menu with a fixed list of subsystems, or
use a text field, which allows the user to input anything. The
former method has the advantage of needing no validation, but
requires changing whenever a subsystem is added. Let’s go with
the latter method.
Again, what I’ll do is get a form working without DB2, then add
DB2 afterwards. This is the HTML for the form:
<HTML>
<HEAD>
<TITLE>Just testing</TITLE>
<script>
function checkForm(f)
 {
 if (f.subsys.value == "")
 {

 alert("Subsystem must be filled");
f.subsys.focus();
return false;

 }
 if (f.subsys.value.length != 4)
 {

alert("Subsystem must be four characters long");
f.subsys.focus();
return false;

 }
 return true;
 }
</script>
</HEAD>
<H1>Testing REXX</h1>
<FORM METHOD="GET" ACTION="/nucgi/DB2/test3.sh" onsubmit="return
checkForm(this);">
<p>Enter the subsystem name and press enter: <INPUT TYPE=TEXT
NAME=subsys SIZE=6 VALUE="" >
</FORM>
</BODY>
</HTML>

The bits to take notice of here are code between the <FORM>...
</FORM> tags and between the <script>...</script> tags (case

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 16

is not important for the tags – the differences are because of my
sloppiness).
The <script>..</script> tags contain one javascript routine called
checkForm. This validates the form passed to it – it makes sure
that the field called subsys is filled, and that the string entered is
exactly four characters long. If the conditions are satisfied, it
returns true, otherwise it puts up an alert and returns false.
The form (between the <FORM>...</FORM> tags) has one text
input field called subsys. When the form is submitted (this will
happen when Enter is pressed when focus is in the subsys field),
Javascript routine checkForm is called to validate the form. If the
form is valid (true is returned), the form performs its ACTION.
The action is a URL, and so gives the name either of the next
page of HTML to go to or of the next CGI script to execute. In this
case, the URL is the same script we’ve come from.
Embedding the HTML in a REXX EXEC, I get:
/* REXX */
/* REXX to test REXX/DB2 */
/* Alan Smith September 2ØØ3 */
/***/
call write_html_prologue
call write_html_epilogue
exit
write_html_prologue:
say 'Content-type: text/html'
say
say
say '<HTML>'
say '<HEAD>'
say '<TITLE>Just testing</TITLE>'
say '<script>'
say 'function checkForm(f)'
say ' {'
say ' if (f.subsys.value == "")'
say ' {'
say ' alert("Subsystem must be filled");'
say ' f.subsys.focus();'
say ' return false;'
say ' }'
say ' if (f.subsys.value.length != 4)'
say ' {'
say ' alert("Subsystem must be four characters long");'

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

say ' f.subsys.focus();'
say ' return false;'
say ' }'
say ' return true;'
say ' }'
say '</script>'
say '</HEAD>'
say '<H1>Testing REXX</h1>'
say '<FORM METHOD="GET" ACTION="/nucgi/DB2/test3.sh"'
say 'onsubmit="return checkForm(this);">'
say '<p>Enter the subsystem name and press enter:'
say '<INPUT TYPE=TEXT NAME=subsys SIZE=6 VALUE="">'
say '</FORM>'
say '<pre>'
do i = 1 to __ENVIRONMENT.Ø
 say __ENVIRONMENT.i
end
say '</pre>'
return
write_html_epilogue:
say '</BODY>'
say '</HTML>'
return

I’ve added some lines here to show the environment variables
available to the REXX:
do i = 1 to __ENVIRONMENT.Ø
 say __ENVIRONMENT.i
end

Figure 1: New page

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 18

Key the URL for the program into your browser. In my case it’s
http://nuibm3/nucgi/DB2/test3.sh. The resultant page looks like
Figure 1.
Note the environment variables that are printed out. The one
we’re interested in is QUERY_STRING – this gives us what was
submitted in the form. Because this is the first time into the form,
the query string is blank. Click in the input text box and try a few
things to make sure the validation is working. Then try inputting
a valid string, say DB2T.
You’ll notice two things. The URL in the address field of the
browser becomes http://nuibm3/nucgi/DB2/
test3.sh?subsys=DB2T, and the environment variable holding
the query string becomes QUERY_STRING=subsys=DB2T.
So, when we get into the program, after the subsys field has been
filled in, we want to get the value of the field and do something
with it. We can run down the list of environment variables, find the
one for QUERY_STRING, and then parse the string. Although
this case is fairly simple – we’ve only one field, and we wouldn’t
expect any spaces or other encoded characters – we want a
method which will deal with these situations in the general case
and not require specific processing each time. In particular, there
is no easy way for us to take an encoded character and translate
it into an EBCDIC one.

Cgiparse
USS provides us with a routine to parse the query string –
cgiparse. The routine looks at QUERY_STRING, splits it into
fields, and does the necessary character substitution. Let’s look
at the case where the user keys ‘DB2T’ as the value of the field
subsys. The query string is set to subsys=DB2T. You can run
cgiparse with different parameters:
cgiparse –form
FORM_subsys='DB2T'
cgiparse -value subsys
DB2T

Now look at what happens if the user keys a string containing a

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

special character. Say the user keys ‘d%12’. The per cent sign
is a special character and so the Web browser encodes it when
it inserts it into the URL. The URL is http://nuibm3/nucgi/DB2/
test3.sh?subsys=d%2512.
The query string is:
subsys=d%2512

Running cgiparse gets us back the original value:
cgiparse -value subsys
d%12

The only problem with cgiparse is that it outputs its results to
standard output, whereas we want to bring them into our
program. Under TSO, we would use OUTTRAP, but that doesn’t
work here. The answer is to create a pipe. A pipe is a sort of
communication conduit between two processes – one process
adds things at the tail of the pipe, while the other reads from the
head of the pipe.
This code creates a pipe and stores the file descriptor associated
with the head of the pipe in p.1, and that associated with the tail
of the pipe in p.2:
address syscall 'pipe p.'

We then call cgiparse to write the value of the subsys field to the
tail-end of the pipe:
'cgiparse -value subsys >/dev/fd' || p.2

We then close the end of the pipe:
address syscall 'close' p.2

and read it into a stem:
address mvs 'execio * diskr' p.1 '(stem s.)'

As long as everything went OK, s.1 will contain the value of
subsys.
I put this code into routine get_form_values, which puts the value
from the form field into the variable subsystem. If the subsystem

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 20

is blank, this must be the first time in, and I don’t do the DB2 bits.
Otherwise I use it in the CONNECT statement.
This is the whole thing:
/* REXX */
/* REXX to test REXX/DB2 */
/* Alan Smith September 2ØØ3 */
/**/
call write_html_prologue
call get_form_values
if subsystem ¬= '' then
 do
 say '<h2>Subsystem' subsystem '</h2>'
 say '<table border>'
 call do_DB2_stuff
 say '</table>'
 end
call write_html_epilogue
exit
/***/
/* do_DB2_stuff */
/* Connect to DB2 and get data */
/***/
do_DB2_stuff:
myRC = RXSUBCOM("ADD","DSNREXX","DSNREXX")
ADDRESS DSNREXX
"CONNECT" subsystem
call check_sql_code("connect")
STMT = "SELECT DBNAME,COUNT(*) AS CT FROM SYSIBM.SYSTABLESPACE",
 " GROUP BY DBNAME",
 " ORDER BY DBNAME",
 " WITH UR;"
"EXECSQL DECLARE C1 CURSOR FOR S1"
"EXECSQL PREPARE S1 FROM :STMT"
call check_sql_code("prepare")
"EXECSQL OPEN C1"
call check_sql_code("open cursor")
"EXECSQL FETCH C1 INTO :DBNAME,:DBCOUNT"
do while SQLCODE ¬= 1ØØ
 call check_sql_code("fetch")
 say "<TR><TD>" DBNAME "<TD>" DBCOUNT
 "EXECSQL FETCH C1 INTO :DBNAME,:DBCOUNT"
end
"EXECSQL CLOSE C1"
call check_sql_code("close cursor")
"DISCONNECT"
call check_sql_code("disconnect")
myRC = RXSUBCOM("DELETE","DSNREXX","DSNREXX")

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

return
/***/
/* check_sql_code */
/* check sql code for errors */
/***/
check_sql_code:
if SQLCODE < Ø then
 do
 say '</TABLE>'
 say "<p>sql error " SQLCODE SQLERRMC
 exit 12
 end
return
/***/
/* write_html_prologue */
/* write the html code for the start of the */
/* page */
/***/
write_html_prologue:
say 'Content-type: text/html'
say
say
say '<HTML>'
say '<HEAD>'
say '<TITLE>Just testing</TITLE>'
say '<script>'
say 'function checkForm(f)'
say ' {'
say ' if (f.subsys.value == "")'
say ' {'
say ' alert("Subsystem must be filled");'
say ' f.subsys.focus();'
say ' return false;'
say ' }'
say ' if (f.subsys.value.length != 4)'
say ' {'
say ' alert("Subsystem must be four characters long");'
say ' f.subsys.focus();'
say ' return false;'
say ' }'
say ' return true;'
say ' }'
say '</script>'
say '</HEAD>'
say '<H1>Testing REXX</h1>'
say '<FORM METHOD="GET" ACTION="/nucgi/DB2/test4.sh"'
say 'onsubmit="return checkForm(this);">'
say '<p>Enter the subsystem name and press enter:'
say '<INPUT TYPE=TEXT NAME=subsys SIZE=6 VALUE="">'
say '</FORM>'

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 22

return
/***/
/* write_html_epilogue */
/* write the html code for the end of the */
/* page */
/***/
write_html_epilogue:
say '</BODY>'
say '</HTML>'
return
/***/
/* get_form_values */
/* parse the query string to get the form */
/* field values */
/***/
get_form_values:
address syscall 'pipe p.'
'cgiparse -value subsys >/dev/fd' || p.2
address syscall 'close' p.2
address mvs 'execio * diskr' p.1 '(stem s.)'
if s.Ø = Ø then
 subsystem = ''
else
 parse upper var s.1 subsystem
return

Figure 2 is a screenshot of the result:

Figure 2: Screenshot of result

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SUMMARY
In this article I’ve described a technique of getting to mainframe
DB2 from a Web browser using REXX, DB2, and WebSphere
http server on a mainframe. This requires little in the way of set-
up, and shouldn’t require too much learning for the mainframe
systems programmer or DBA.
The technique is suitable for a low transaction requirement, such
as on a company intranet.

BIBLIOGRAPHY
IBM manuals:
• z/OS Unix System Services User’s Guide SA22-7801-01
• z/OS Unix System Services Command Reference SA22-

7802-01
• Using REXX and z/OS Unix System Services SA22-7806-

01
• DB2 Universal Database for OS/390 and z/OS Application

Programming and SQL Guide SC26-9933-02
Other:
• Guelich, Gundavaram, and Birznieks, CGI Programming

with Perl, O’Reilly and Associates, 2000. How to write CGI
programs with Perl, but the principles are the same.

• Laurie and Laurie, Apache – the Definitive Guide, O’Reilly
and Associates, 1999.

Alan Smith
Norwich Union (UK) © Xephon 2004

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 24

Impact of dropping a table

The DRIM REXX procedure shows you which DB2 objects will be
affected by the drop table statement. The drop table statement
deletes a table and it deletes the row in the SYSIBM.SYSTABLES
catalog table that contains information about the dropped table.
It also drops any other objects that depend on the dropped table.
Before dropping a table, check to see what other objects are
dependent on it. Drop may have the following effects:
• The column names of the table are dropped from

SYSIBM.SYSCOLUMNS.
• If the dropped table has a check constraint, all information in

the check column is removed from SYSIBM.SYSCHECKS
tables.

• If the dropped table has an identity column, all information
about the identity column is removed from
SYSIBM.SYSSEQUENCES.

• Any views based on the table are dropped.
• All indexes based on the table are dropped.
• Synonyms for the table are dropped from

SYSIBM.SYSSYNONYMS.
• Referential constraints that involve the table are dropped.
• Authorization information kept in the DB2 catalog

authorization table is updated to reflect the dropping of the
table. Users who were previously authorized to use the table,
or views on it, no longer have those privileges.

• Access path statistics and space statistics for the table are
deleted from the catalog.

• If the table space containing the table is implicitly created
(using CREATE TABLE without the TABLESPACE clause),
the table space is also dropped.

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Application plans or packages that involve the use of the
table are invalidated.

• The packages of the stored procedures and user-defined
functions that involve the use of the table are invalidated.

• If triggers are defined on the table, they are dropped, and the
corresponding rows are removed from
SYSIBM.SYSTRIGGERS and SYSIBM.SYSPACKAGES.

The tool, DRIM, runs in a TSO environment.
The DRIM procedure shows information about table space,
plans, packages, indexes, views, referential integrity, stored
procedure, user-defined function, triggers, and check constraints.
This table occupied 477 plans, 521 packages, etc.
The drop impact list display looks like:
------------------- Drop Impact List Display ------ Row 1 to 16 of 16
Command ===> Scroll ===> PAGE

SSID DSNN Tbcreator NADI Tbname TLØ57

Show what?: TS - PL - PA - IN - VW - RI Y SP Y UDF Y TG Y
CC Y
Obj.counts: TS 1 PL 477 PA 521 IN 5 VW 1Ø RI 3 SP 7 UDF 2 TG 3
CC 1
Select S Sql D Drop
S Type
- Function SYSADM.NASLOV L=PLI Package NPAR.NPAR
- Function SYSADM.SMMDAV L=PLI Package SMMDAV.SMMDAV
- Procedure KE.WUDAV L=SQL Package KEP.SQL39485
- Procedure KE.WUINS L=SQL Package KEP.SQLØ95ØØ
- Procedure SYSPROC.NASPAR L=PLI Package NASPAR.NASPAR
- Procedure SYSPROC.NASPARX L=PLI Package NASPARX.NASPARX
- Procedure SYSPROC.NASPARZ L=PLI Package NASPARZ.NASPARZ
- Procedure SYSPROC.NASPROC L=PLI Package NASPROC.NASPROC
- Procedure SYSPROC.POSPFPO L=PLI Package POSPFPO.POSPFPO
- RI-Child SYSADM.TL173
- RI-Child SYSADM.TL188
- RI-Child SYSADM.TL181
- Trigger NADI.TØØ1D, AFTER DELETE
- Trigger NADI.TØØ1I, AFTER INSERT
- Trigger NADI.TØØ1U, AFTER UPDATE
- Checkname PRO

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 26

It shows some DB2 objects (option Y in the Show What? fields).
You can also select the S command to see DDL CREATE
statements, or select the D command to generate DROP
statements.
The components of DRIM are as follows:
• DRIM – the driver procedure
• DROPP1 – drop impact menu
• DRIMES – message panel
• SDRIM – ISPF skeleton.

DRIM
/* REXX */
/* DRIM Drop Impact List Display */
/* trace r */
 zpfctl = 'OFF'
 Y=MSG("OFF")
 address ispexec 'vput (zpfctl) profile'
 cur='ttb'
 TOP:
 sel=''; item=''; ccrp=''; ttbp=''
 Title='Drop Impact List Display'
 address ispexec "display panel(DROPP1) cursor("CUR")"
 if rc=8 then Exit
 SUB:
 Call Create_messg
 /* Check input parameters */
 if ccr=' ' & ttb=' 'then do
 cur='ccr'
 zedsmsg = "Enter Catalog fields"
 zedlmsg = "Enter Tbcreator and Tbname"
 address ispexec "setmsg msg(isrzØØ1)"
 signal top
 end
 /* All fields "Y" */
 if zcmd='Y'then do
 ztt='Y';zpl='Y';zpa='Y'; zin='Y';zvw='Y'
 zri='Y';zsp='Y';zudf='Y';ztg='Y';zcc='Y'
 zcmd=''
 Signal top
 end
 /* All fields "N" */
 if zcmd='N'then do

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ztt='';zpl='';zpa=''; zin='';zvw=''
 zri='';zsp='';zudf='';ztg='';zcc=''
 zcmd=''
 Signal top
 end
 /* All fields "?" */
 if zcmd='?'then do
 ztt='?';zpl='?';zpa='?'; zin='?';zvw='?'
 zri='?';zsp='?';zudf='?';ztg='?';zcc='?'
 zcmd=''
 Signal top
 end
 /* Explain input parameters */
 if ztt='?'then do
 cur='ztt'
 ztt=''
 zedsmsg = "TS: Tablespace"
 zedlmsg = "TS: Tablespace"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zpl='?'then do
 cur='zpl'
 zpl=''
 zedsmsg = "PL: Plan"
 zedlmsg = "PL: Plan"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zpa='?'then do
 cur='zpa'
 zpa=''
 zedsmsg = "PA: Package"
 zedlmsg = "PA: Package"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zin='?'then do
 cur='zin'
 zin=''
 zedsmsg = "IN: Index"
 zedlmsg = "IN: Index"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zvw='?'then do
 cur='zvw'
 zvw=''
 zedsmsg = "VW: View"
 zedlmsg = "VW: View"

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 28

 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zri='?'then do
 cur='zri'
 zri=''
 zedsmsg = "Referential Integrity"
 zedlmsg = "RI: Referential Integrity"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zsp='?'then do
 cur='zsp'
 zsp=''
 zedsmsg = "SP: Stored Procedure"
 zedlmsg = "SP: Stored Procedure"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zudf='?'then do
 cur='zudf'
 zudf=''
 zedsmsg = "User Defined Function"
 zedlmsg = "UDF: User Defined Function"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if ztg='?'then do
 cur='ztg'
 ztg=''
 zedsmsg = "TG: Trigger"
 zedlmsg = "TG: Trigger"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 if zcc='?'then do
 cur='zcc'
 zcc=''
 zedsmsg = "CC: Check Constraint"
 zedlmsg = "CC: Check Constraint"
 address ispexec "setmsg msg(isrzØØ1)"
 Signal top
 end
 HVT1=' '; HVC1=' '; HVI1=' '

 /* DSNREXX Language Support */
 Address TSO "SUBCOM DSNREXX"
 IF RC THEN
 S_RC = RXSUBCOM(ADD,DSNREXX,DSNREXX)

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 /* Numbers of DB2 objects */
 SSID = db2
 ADDRESS DSNREXX "CONNECT" SSID

 IF ccr=ccrp & ttb=ttbp then nop
 else do
 messg = "Counter DB2 Catalog information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT TYPE,COUNT(*) ",
 "FROM (",
 "SELECT SUBSTR(Z.TEXT,1,POSSTR(Z.TEXT,' ')) TYPE, ",
 " SUBSTR(Z.TEXT,POSSTR(Z.TEXT,' ')+1) OBJ ",
 "FROM (",
 "SELECT CHAR(CASE ",
 " WHEN ROUTINETYPE IS NULL THEN ",
 " 'PACKAGE '||STRIP(DCOLLID) ",
 " ||'.'||DNAME ",
 " WHEN ROUTINETYPE='P' THEN ",
 " 'PROCEDURE '||STRIP(SCHEMA) ",
 " ||'.'||STRIP(NAME)||' L='|| ",
 " STRIP(LANGUAGE)|| ",
 " ' PACKAGE '||STRIP(COLLID) ",
 " ||'.'||STRIP(EXTERNAL_NAME) ",
 " WHEN ROUTINETYPE='F' THEN ",
 " 'FUNCTION '||STRIP(SCHEMA) ",
 " ||'.'||STRIP(NAME)||' L='|| ",
 " STRIP(LANGUAGE)|| ",
 " ' PACKAGE '||STRIP(COLLID) ",
 " ||'.'||STRIP(EXTERNAL_NAME) ",
 " END, 6Ø) TEXT ",
 "FROM ",
 " (SELECT DCOLLID, DNAME ",
 " FROM SYSIBM.SYSPACKDEP ",
 " WHERE BQUALIFIER='"ccr"' ",
 " AND BNAME='"ttb"') P ",
 "LEFT OUTER JOIN ",
 " (SELECT SCHEMA, NAME, ROUTINETYPE, ",
 " LANGUAGE, COLLID, EXTERNAL_NAME ",
 " FROM SYSIBM.SYSROUTINES) R ",
 " ON DCOLLID=COLLID ",
 "AND DNAME=EXTERNAL_NAME ",
 "UNION ",
 "SELECT CHAR('TRIGGER '||STRIP(SCHEMA)||'.'||STRIP(NAME) || ",
 " CASE TRIGTIME ",
 " WHEN 'A' THEN ', AFTER ' ",
 " WHEN 'B' THEN ', BEFORE ' ",
 " END || ",
 " CASE TRIGEVENT ",
 " WHEN 'I' THEN 'INSERT' ",

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 30

 " WHEN 'U' THEN 'UPDATE' ",
 " WHEN 'D' THEN 'DELETE' ",
 " END,6Ø) TEXT ",
 "FROM SYSIBM.SYSTRIGGERS ",
 "WHERE TBOWNER='"ccr"' ",
 " AND TBNAME='"ttb"' ",
 "UNION ",
 "SELECT CHAR('VIEW '||STRIP(DCREATOR)||'.' ",
 " ||STRIP(DNAME),6Ø) TEXT ",
 "FROM SYSIBM.SYSVIEWDEP ",
 "WHERE BCREATOR ='"ccr"' ",
 " AND BNAME ='"ttb"' ",
 " AND BTYPE = 'T' ",
 "UNION ",
 "SELECT CHAR('VIEW '||STRIP(Y.DCREATOR)||'.' ",
 " ||STRIP(Y.DNAME),6Ø) TEXT ",
 "FROM SYSIBM.SYSVIEWDEP Y, ",
 "(SELECT DCREATOR, DNAME ",
 " FROM SYSIBM.SYSVIEWDEP ",
 " WHERE BCREATOR ='"ccr"' ",
 " AND BNAME ='"ttb"' ",
 " AND BTYPE = 'T') X ",
 " WHERE BCREATOR = X.DCREATOR ",
 " AND BNAME = X.DNAME ",
 "UNION ",
 "SELECT CHAR('INDEX '||STRIP(CREATOR)||'.' ",
 " ||STRIP(NAME)||' UNIQUERULE='||UNIQUERULE,6Ø) TEXT ",
 "FROM SYSIBM.SYSINDEXES ",
 "WHERE TBCREATOR='"ccr"' ",
 " AND TBNAME ='"ttb"' ",
 "UNION ",
 "SELECT CHAR('RI '||STRIP(R.CREATOR) ",
 " ||'.'||STRIP(R.TBNAME),6Ø) TEXT ",
 "FROM SYSIBM.SYSRELS R, ",
 " SYSIBM.SYSFOREIGNKEYS F ",
 "WHERE R.REFTBCREATOR='"ccr"' ",
 " AND R.REFTBNAME='"ttb"' ",
 " AND R.CREATOR=F.CREATOR ",
 " AND R.TBNAME=F.TBNAME ",
 " AND R.RELNAME=F.RELNAME ",
 "UNION ",
 "SELECT CHAR('RI '|| STRIP(R.REFTBNAME) ",
 " ||'.'||STRIP(R.REFTBCREATOR),6Ø) TEXT ",
 "FROM SYSIBM.SYSRELS R, ",
 " SYSIBM.SYSFOREIGNKEYS F ",
 "WHERE R.REFTBCREATOR='"ccr"' ",
 " AND R.TBNAME='"ttb"' ",
 " AND R.CREATOR=F.CREATOR ",
 " AND R.TBNAME=F.TBNAME ",
 " AND R.RELNAME=F.RELNAME ",

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 "UNION ",
 "SELECT CHAR('CHECKNAME '||STRIP(CHECKNAME),6Ø) TEXT ",
 "FROM SYSIBM.SYSCHECKDEP ",
 "WHERE TBOWNER='"ccr"' ",
 " AND TBNAME='"ttb"' ",
 "UNION ",
 "SELECT CHAR('PLAN '||STRIP(DNAME),6Ø) TEXT ",
 "FROM SYSIBM.SYSPLANDEP ",
 "WHERE BCREATOR='"ccr"' ",
 " AND BNAME='"ttb"' ",
 " AND BTYPE='T') Z) Q ",
 "GROUP BY TYPE ",
 "WITH UR ",

 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVT1, :HVC1"
 ctt=1;cpl=Ø;cpa=Ø;cin=Ø;cvw=Ø;cri=Ø;csp=Ø;cudf=Ø;ctg=Ø;ccc=Ø;
 do while(sqlcode=Ø)
 IF hvt1='PACKAGE' then cpa=hvc1
 IF hvt1='PROCEDURE' then csp=hvc1
 IF hvt1='FUNCTION' then cudf=hvc1
 IF hvt1='TRIGGER' then ctg=hvc1
 IF hvt1='VIEW' then cvw=hvc1
 IF hvt1='INDEX' then cin=hvc1
 IF hvt1='CHECKNAME' then ccc=hvc1
 IF hvt1='RI' then cri=hvc1
 IF hvt1='PLAN' then cpl=hvc1
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVT1, :HVC1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end

 address ispexec 'tbcreate "dlist" names(item)'
 if ztt='Y' then do
 messg = "Select SYSTABLESPACE information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT CHAR('Tablespace '||STRIP(DBNAME)||'.' ",
 " ||STRIP(TSNAME),6Ø) ",
 " FROM SYSIBM.SYSTABLES ",
 " WHERE CREATOR='"ccr"' ",
 " AND NAME='"ttb"' ",
 " AND TYPE='T' ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 32

 item=hvi1
 Address DSNREXX "EXECSQL CLOSE C1"
 address ispexec 'tbadd "dlist"'
 end
 if zpl='Y' then do
 messg = "Select SYSPLANDEP information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT CHAR('Plan '||STRIP(DNAME),6Ø) ",
 " FROM SYSIBM.SYSPLANDEP ",
 " WHERE BCREATOR='"ccr"' ",
 " AND BNAME='"ttb"' ",
 " AND BTYPE='T' ",
 " ORDER BY 1 ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)
 item=hvi1
 address ispexec 'tbadd "dlist"'
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end
 if zpa='Y' | zsp='Y' | zudf='Y' then do
 messg = "Select SYSPACKDEP information"
 messg = time() || " " || messg
 Call Send_messg
 messg = "Select SYSROUTINES information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT CHAR(CASE ",
 " WHEN ROUTINETYPE IS NULL THEN ",
 " 'Package '||STRIP(DCOLLID) ",
 " ||'.'||DNAME ",
 " WHEN ROUTINETYPE='P' THEN ",
 " 'Procedure '||STRIP(SCHEMA) ",
 " ||'.'||STRIP(NAME)||' L='|| ",
 " STRIP(LANGUAGE)|| ",
 " ' Package '||STRIP(COLLID) ",
 " ||'.'||STRIP(EXTERNAL_NAME) ",
 " WHEN ROUTINETYPE='F' THEN ",
 " 'Function '||STRIP(SCHEMA) ",
 " ||'.'||STRIP(NAME)||' L='|| ",
 " STRIP(LANGUAGE)|| ",
 " ' Package '||STRIP(COLLID) ",
 " ||'.'||STRIP(EXTERNAL_NAME) ",
 " END, 6Ø) TEXT ",

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 " FROM ",
 " (SELECT DCOLLID, DNAME ",
 " FROM SYSIBM.SYSPACKDEP ",
 " WHERE BQUALIFIER='"ccr"' ",
 " AND BNAME='"ttb"') P ",
 " LEFT OUTER JOIN ",
 " (SELECT SCHEMA, NAME, ROUTINETYPE, ",
 " LANGUAGE, COLLID, EXTERNAL_NAME ",
 " FROM SYSIBM.SYSROUTINES) R ",
 " ON DCOLLID=COLLID ",
 " AND DNAME=EXTERNAL_NAME ",
 " ORDER BY 1 ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)
 if zsp= 'Y' & word(hvi1,1)='Procedure' then do
 item=hvi1
 address ispexec 'tbadd "dlist"'
 end
 if zpa= 'Y' & word(hvi1,1)='Package' then do
 item=hvi1
 address ispexec 'tbadd "dlist"'
 end
 if zudf='Y' & word(hvi1,1)='Function' then do
 item=hvi1
 address ispexec 'tbadd "dlist"'
 end
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end
 if zin='Y' then do
 messg = "Select SYSINDEXES information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT char('Index '||strip(creator)||'.' ",
 " ||strip(NAME)||' Uniquerule='||UNIQUERULE,6Ø) ",
 " FROM SYSIBM.SYSINDEXES ",
 " WHERE TBCREATOR='"ccr"' ",
 " AND TBNAME='"ttb"' ",
 " ORDER BY 1 ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 34

 item=hvi1
 address ispexec 'tbadd "dlist"'
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end
 if zvw='Y' then do
 messg = "Select SYSVIEWDEP information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT char('View '||strip(DCREATOR)||'.' ",
 " ||strip(DNAME),6Ø) ",
 " FROM SYSIBM.SYSVIEWDEP ",
 " WHERE BCREATOR='"ccr"' ",
 " AND BNAME='"ttb"' ",
 " AND BTYPE='T' ",
 " UNION ",
 " SELECT char('View '||strip(Y.DCREATOR)||'.' ",
 " ||strip(Y.DNAME),6Ø) ",
 " FROM SYSIBM.SYSVIEWDEP Y, ",
 " (SELECT DCREATOR, DNAME ",
 " FROM SYSIBM.SYSVIEWDEP ",
 " WHERE BCREATOR ='"ccr"' ",
 " AND BNAME ='"ttb"' ",
 " AND BTYPE = 'T') X ",
 " WHERE BCREATOR = X.DCREATOR ",
 " AND BNAME = X.DNAME ",
 " ORDER BY 1 ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)
 item=hvi1
 address ispexec 'tbadd "dlist"'
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end
 if zri='Y' then do
 messg = "Select SYSRELS information"
 messg = time() || " " || messg
 Call Send_messg
 messg = "Select SYSFOREIGNKEYS information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT char('RI-Child '||strip(r.creator) ",
 " ||'.'||strip(R.TBNAME),6Ø) ",
 " FROM SYSIBM.SYSRELS R, ",

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 " SYSIBM.SYSFOREIGNKEYS F ",
 " WHERE R.REFTBCREATOR='"ccr"' ",
 " AND R.REFTBNAME='"ttb"' ",
 " AND R.CREATOR=F.CREATOR ",
 " AND R.TBNAME=F.TBNAME ",
 " AND R.RELNAME=F.RELNAME ",
 " UNION ",
 " SELECT char('RI-Father '|| strip(r.reftbcreator) ",
 " ||'.'||strip(r.reftbname),6Ø) ",
 " FROM SYSIBM.SYSRELS R, ",
 " SYSIBM.SYSFOREIGNKEYS F ",
 " WHERE R.REFTBCREATOR='"ccr"' ",
 " AND R.TBNAME='"ttb"' ",
 " AND R.CREATOR=F.CREATOR ",
 " AND R.TBNAME=F.TBNAME ",
 " AND R.RELNAME=F.RELNAME ",
 " ORDER BY 1 DESC ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)
 item=hvi1
 address ispexec 'tbadd "dlist"'
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end
 if ztg='Y' then do
 messg = "Select SYSTRIGGERS information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT CHAR('Trigger '||strip(SCHEMA) ",
 " ||'.'||strip(NAME) || ",
 " case TRIGTIME ",
 " when 'A' then ', AFTER ' ",
 " when 'B' then ', BEFORE ' ",
 " end || ",
 " case TRIGEVENT ",
 " when 'I' then 'INSERT' ",
 " when 'U' then 'UPDATE' ",
 " when 'D' then 'DELETE' ",
 " end,6Ø) ",
 " FROM SYSIBM.SYSTRIGGERS ",
 " WHERE TBOWNER = '"ccr"' ",
 " AND TBNAME='"ttb"' ",
 " ORDER BY 1 ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 36

 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)
 item=hvi1
 address ispexec 'tbadd "dlist"'
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end
 if zcc='Y' then do
 messg = "Select SYSCHECKDEP information"
 messg = time() || " " || messg
 Call Send_messg
 SQLSTMT= "SELECT char('Checkname '||strip(checkname),6Ø) ",
 " FROM SYSIBM.SYSCHECKDEP ",
 " WHERE TBOWNER = '"ccr"' ",
 " AND TBNAME='"ttb"' ",
 " ORDER BY 1 ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)
 item=hvi1
 address ispexec 'tbadd "dlist"'
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 end
 address ispexec 'tbtop "dlist"'
 ccrp=ccr
 ttbp=ttb
 JUMP:
 address ispexec 'tbdispl "dlist" panel(DROPP1)'
 if rc=8 then do
 address ispexec 'tbend "dlist"'
 address ispexec "tbend "messdb""
 Exit
 end
 if sel='S' | sel='D' then
 address ispexec 'tbcreate "ilist" names(irow)'
 if sel='S' then do
 if word(item,1)='Checkname' then Call Check_S
 if word(item,1)='View' then Call View_S
 if substr(item,1,2)='RI' then Call RI_S
 if word(item,1)='Index' then Call Index_S
 end
 if sel='D' then do

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 if word(item,1)='Checkname' then Call Check_D
 if word(item,1)='View' then Call View_D
 if substr(item,1,2)='RI' then Call RI_S
 if word(item,1)='Index' then Call Index_D
 end
 if sel='S' | sel='D' then nop
 else do
 address ispexec 'tbend "dlist"'
 address ispexec "tbend "messdb""
 sel=''
 Signal Sub
 end

 messg = 'Building the DB2 Statements'
 messg = time() || " " || messg
 Call Send_messg
 /* DB2 Statement */
 date=date()
 time=time(c)
 user=userid()
 tempfile=userid()||'.SQL.DRIM'
 address tso
 "delete '"tempfile"'"
 "free dsname('"tempfile"')"
 "free ddname(ispfile)"
 "free attrlist(formfile)"
 "attrib formfile blksize(8ØØ) lrecl(8Ø) recfm(f b) dsorg(ps)"
 "alloc ddname(ispfile) dsname('"tempfile"')",
 "new using (formfile) unit(339Ø) space(1 1) cylinders"
 address ispexec
 "ftopen"
 "ftincl SDRIM"
 "ftclose"
 zedsmsg = "SQL shown"
 zedlmsg = "SQL Statement shown"
 "setmsg msg(isrzØØ1)"
 "edit dataset('"tempfile"')"
 address ispexec 'tbend "ilist"'
 ccr=ccrp
 ttb=ttbp
 sel=''
 Signal Jump
 Check_S:
 chn=word(item,2)
 SQLSTMT= "SELECT replace(checkcondition,' ','') ",
 " FROM SYSIBM.SYSCHECKS ",
 " WHERE TBOWNER = '"ccr"' ",
 " AND TBNAME='"ttb"' ",
 " AND CHECKNAME='"chn"' ",
 "WITH UR "

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 38

 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 Address DSNREXX "EXECSQL CLOSE C1"
 irow='ALTER TABLE '||ccr||'.'||ttb
 address ispexec 'tbadd "ilist"'
 irow=' ADD CONSTRAINT '||chn
 address ispexec 'tbadd "ilist"'
 if length(hvi1) > 5Ø
 then do
 irow=''
 irow=' CHECK ('
 do i=1 to length(hvi1)
 irow=irow||substr(hvi1,i,1)
 if length(irow)>5Ø & substr(hvi1,i,1)=' ' then do
 address ispexec 'tbadd "ilist"'
 irow=' '
 end
 end
 end
 else irow=' CHECK ('||hvi1
 address ispexec 'tbadd "ilist"'
 irow=');'
 address ispexec 'tbadd "ilist"'
 address ispexec 'tbtop "ilist"'
 Return
 Check_D:
 chn=word(item,2)
 irow='ALTER TABLE '||ccr||'.'||ttb
 address ispexec 'tbadd "ilist"'
 irow=' DROP CONSTRAINT '||chn||';'
 address ispexec 'tbadd "ilist"'
 address ispexec 'tbtop "ilist"'
 Return
 View_S:
 view=''
 own = word(translate(word(item,2),' ','.'),1)
 tab = word(translate(word(item,2),' ','.'),2)
 SQLSTMT= "SELECT replace(text,' ','') ",
 " FROM SYSIBM.SYSVIEWS ",
 " WHERE CREATOR = '"own"' ",
 " AND NAME = '"tab"' ",
 " ORDER BY SEQNO ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 do while(sqlcode=Ø)

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 view=view||hvi1
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 if length(view) > 5Ø
 then do
 irow=''
 do i=1 to length(view)
 irow=irow||substr(view,i,1)
 if length(irow)>5Ø &,
 (substr(view,i,1)=' ' | substr(view,i,1)=',') then do
 address ispexec 'tbadd "ilist"'
 irow=''
 end
 end
 end
 else irow=view
 address ispexec 'tbadd "ilist"'
 address ispexec 'tbtop "ilist"'
 Return
 View_D:
 own = word(translate(word(item,2),' ','.'),1)
 tab = word(translate(word(item,2),' ','.'),2)
 irow='DROP VIEW '||own||'.'||tab||';'
 address ispexec 'tbadd "ilist"'
 address ispexec 'tbtop "ilist"'
 Return
 RI_S:
 view=''
 own = word(translate(word(item,2),' ','.'),1)
 tab = word(translate(word(item,2),' ','.'),2)
 if word(item,1)='RI-Child' then do
 SQLSTMT= "SELECT 'ALTER TABLE '||STRIP(R.CREATOR)||'.'|| ",
 " STRIP(R.TBNAME)||' FOREIGN KEY '||STRIP(R.RELNAME), ",
 " F.COLNAME, 'REFERENCES '||STRIP(R.REFTBCREATOR) ",
 " ||'.'||STRIP(R.REFTBNAME)|| ",
 " CASE DELETERULE ",
 " WHEN 'C' THEN ' ON DELETE CASCADE' ",
 " WHEN 'R' THEN ' ON DELETE RESTRICT' ",
 " WHEN 'S' THEN ' ON DELETE SET NULL' ",
 " END ",
 " FROM SYSIBM.SYSRELS R, ",
 " SYSIBM.SYSFOREIGNKEYS F ",
 " WHERE R.REFTBCREATOR='"ccr"' ",
 " AND R.REFTBNAME='"ttb"' ",
 " AND R.CREATOR='"own"' ",
 " AND R.TBNAME='"tab"' ",
 " AND R.CREATOR=F.CREATOR ",
 " AND R.TBNAME=F.TBNAME ",
 " AND R.RELNAME=F.RELNAME ",

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 40

 " ORDER BY 1,2,3,F.COLSEQ ",
 "WITH UR "
 end
 if word(item,1)='RI-Father' then do
 SQLSTMT= "SELECT 'ALTER TABLE '||STRIP(R.CREATOR)||'.'|| ",
 " STRIP(R.TBNAME)||' FOREIGN KEY '||STRIP(R.RELNAME), ",
 " F.COLNAME, 'REFERENCES '||STRIP(R.REFTBCREATOR) ",
 " ||'.'||STRIP(R.REFTBNAME)|| ",
 " CASE DELETERULE ",
 " WHEN 'C' THEN ' ON DELETE CASCADE' ",
 " WHEN 'R' THEN ' ON DELETE RESTRICT' ",
 " WHEN 'S' THEN ' ON DELETE SET NULL' ",
 " END ",
 " FROM SYSIBM.SYSRELS R, ",
 " SYSIBM.SYSFOREIGNKEYS F ",
 " WHERE R.REFTBCREATOR='"own"' ",
 " AND R.REFTBNAME='"tab"' ",
 " AND R.CREATOR='"ccr"' ",
 " AND R.TBNAME='"ttb"' ",
 " AND R.CREATOR=F.CREATOR ",
 " AND R.TBNAME=F.TBNAME ",
 " AND R.RELNAME=F.RELNAME ",
 " ORDER BY 1,2,3,F.COLSEQ ",
 "WITH UR "
 end
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1, :HVI2, :HVI3"
 irow=hvi1
 if sel='D' then do
 irow=subword(hvi1,1,3)||' DROP '||subword(hvi1,4)||';'
 address ispexec 'tbadd "ilist"'
 Address DSNREXX "EXECSQL CLOSE C1"
 address ispexec 'tbtop "ilist"'
 Return
 end
 address ispexec 'tbadd "ilist"'
 k=Ø
 do while(sqlcode=Ø)
 if k=Ø
 then irow=' ('||hvi2
 else irow=' ,'||hvi2
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1, :HVI2, :HVI3"
 if sqlcode=1ØØ then irow=irow||')'
 address ispexec 'tbadd "ilist"'
 k=1
 end
 irow=hvi3||';'
 address ispexec 'tbadd "ilist"'

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 Address DSNREXX "EXECSQL CLOSE C1"
 address ispexec 'tbtop "ilist"'
 Return
 Index_S:

 own = word(translate(word(item,2),' ','.'),1)
 inx = word(translate(word(item,2),' ','.'),2)
 SQLSTMT= "SELECT 1,CHAR('CREATE' CONCAT ",
 " CASE UNIQUERULE ",
 " WHEN 'D' THEN '' ELSE ' UNIQUE' ",
 " END CONCAT ' INDEX ' || ",
 " STRIP(CREATOR)||'.'||STRIP(NAME)||' ON '|| ",
 " STRIP(TBCREATOR)||'.'||STRIP(TBNAME),7Ø) ",
 " FROM SYSIBM.SYSINDEXES ",
 " WHERE CREATOR='"own"' ",
 " AND NAME='"inx"' ",
 "UNION ",
 "SELECT 1+COLSEQ, ",
 " CHAR(CASE ",
 " WHEN COLSEQ=1 ",
 " THEN ' ('||COLNAME ",
 " ELSE ' , '||COLNAME ",
 " END CONCAT ",
 " CASE ORDERING ",
 " WHEN 'A' THEN ' ASC' ",
 " WHEN 'D' THEN ' DESC' ",
 " END CONCAT ",
 " CASE ",
 " WHEN COLCOUNT=COLSEQ ",
 " THEN ')' ",
 " ELSE '' ",
 " END CONCAT ",
 " CASE ",
 " WHEN CLUSTERING='Y' ",
 " THEN ' CLUSTER' ",
 " ELSE '' ",
 " END,7Ø) ",
 "FROM SYSIBM.SYSINDEXES X, ",
 " SYSIBM.SYSINDEXPART P, ",
 " SYSIBM.SYSKEYS K ",
 "WHERE X.CREATOR='"own"' ",
 " AND X.NAME='"inx"' ",
 " AND X.CREATOR=P.IXCREATOR ",
 " AND X.NAME=P.IXNAME ",
 " AND X.CREATOR=K.IXCREATOR ",
 " AND X.NAME=K.IXNAME ",
 "UNION ALL ",
 "SELECT 1ØØ+P.PARTITION*1Ø, ",
 " CHAR(CASE ",
 " WHEN P.PARTITION=1 ",

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 42

 " THEN ' (PART 1 VALUES ('|| ",
 " STRIP(T.LIMITKEY)||')' ",
 " ELSE ' , PART '||STRIP(CHAR(P.PARTITION))|| ",
 " ' VALUES ('||STRIP(T.LIMITKEY)||')' ",
 " END,7Ø) ",
 "FROM SYSIBM.SYSINDEXES X, ",
 " SYSIBM.SYSINDEXPART P, ",
 " SYSIBM.SYSTABLEPART T ",
 "WHERE CREATOR='"own"' ",
 " AND X.NAME='"inx"' ",
 " AND X.CREATOR=P.IXCREATOR ",
 " AND X.NAME=P.IXNAME ",
 " AND T.IXCREATOR = X.CREATOR ",
 " AND T.IXNAME = X.NAME ",
 " AND T.PARTITION = P.PARTITION ",
 "UNION ALL ",
 "SELECT 1Ø1+P.PARTITION*1Ø, ",
 " CHAR(' USING STOGROUP ' || ",
 " STORNAME,7Ø) ",
 "FROM SYSIBM.SYSINDEXES X, ",
 " SYSIBM.SYSINDEXPART P ",
 "WHERE CREATOR='"own"' ",
 " AND NAME='"inx"' ",
 " AND X.CREATOR=P.IXCREATOR ",
 " AND X.NAME=P.IXNAME ",
 "UNION ALL ",
 "SELECT 1Ø2+P.PARTITION*1Ø, ",
 " ' PRIQTY ' ||STRIP(CHAR(PQTY*4))|| ",
 " ' SECQTY '||STRIP(CHAR(SECQTYI*4)) ",
 "FROM SYSIBM.SYSINDEXES X, ",
 " SYSIBM.SYSINDEXPART P ",
 "WHERE CREATOR='"own"' ",
 " AND NAME='"inx"' ",
 " AND X.CREATOR=P.IXCREATOR ",
 " AND X.NAME=P.IXNAME ",
 "UNION ",
 "SELECT 1Ø3+P.PARTITION*1Ø, ",
 " ' FREEPAGE ' ||STRIP(CHAR(FREEPAGE))|| ",
 " ' PCTFREE '||STRIP(CHAR(PCTFREE)) ",
 "FROM SYSIBM.SYSINDEXES X, ",
 " SYSIBM.SYSINDEXPART P ",
 "WHERE CREATOR='"own"' ",
 " AND NAME='"inx"' ",
 " AND X.CREATOR=P.IXCREATOR ",
 " AND X.NAME=P.IXNAME ",
 "UNION ALL ",
 "SELECT DISTINCT 1ØØØ, CASE ",
 " WHEN PARTITION>Ø ",
 " THEN ') BUFFERPOOL '||STRIP(BPOOL) ",
 " ELSE ' BUFFERPOOL '||STRIP(BPOOL) ",

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 " END ",
 "FROM SYSIBM.SYSINDEXES X, ",
 " SYSIBM.SYSINDEXPART P ",
 "WHERE CREATOR='"own"' ",
 " AND NAME='"inx"' ",
 " AND X.CREATOR=P.IXCREATOR ",
 " AND X.NAME=P.IXNAME ",
 " ORDER BY 1 ",
 "WITH UR "
 Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
 Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 Address DSNREXX "EXECSQL OPEN C1"
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1, :HVI2"
 do while(sqlcode=Ø)
 irow=hvi2
 address ispexec 'tbadd "ilist"'
 Address DSNREXX "EXECSQL FETCH C1 INTO :HVI1, :HVI2"
 end
 Address DSNREXX "EXECSQL CLOSE C1"
 address ispexec 'tbtop "ilist"'
 Return
 Index_D:
 own = word(translate(word(item,2),' ','.'),1)
 inx = word(translate(word(item,2),' ','.'),2)
 irow='DROP INDEX '||own||'.'||inx||';'
 address ispexec 'tbadd "ilist"'
 address ispexec 'tbtop "ilist"'
 Return
 Create_messg:
 messg = "s"||userid()
 address ispexec "tbcreate "messdb" names(messg) write replace"
 Return
 Send_messg:
 address ispexec "tbadd " messdb
 address ispexec "control display lock "
 address ispexec "addpop row(13) column(6)"
 address ispexec "tbdispl "messdb" panel(drimes)"
 address ispexec rempop
 Return

DROPP1
)Attr Default(%+_)
 | type(text) intens(high) caps(on) color(yellow)
 $ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
 § type(output) intens(high) caps(off) color(white) hilite(reverse)
 # type(text) intens(high) caps(off) hilite(reverse)
 } type(text) intens(high) caps(off) color(white)
 [type(input) intens(high) caps(on) just(left) pad('_')

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 44

 { type(input) intens(high) caps(on) just(left) pad('_')
] type(input) intens(high) caps(on) just(left) pad('-')
 ^ type(output) intens(low) caps(off) just(asis) color(white)
)Body Expand(//)
%-/-/- $title +%-/-/-
%Command ===>_zcmd / /%Scroll
===>_amt +
+
+SSID[db2 + Tbcreator[ccr +Tbname [ttb +
+
+Show what?: TS]z+PL]z+ PA]z+ IN]z+ VW]z+ RI]z+ SP]z+ UDF]z+ TG]z+
CC]z+
+Obj.counts: TS^z+PL^z +PA^z +IN^z +VW^z +RI^z +SP^z +UDF^z +TG^z
+CC^z +
+Select|S+Sql|D+Drop
#S#Type
+
)Model
]z^z
+
)Init
 .ZVARS= '(ztt zpl zpa zin zvw zri zsp zudf ztg zcc +
 ctt cpl cpa cin cvw cri csp cudf ctg ccc sel item)'
 &amt = PAGE
 &cmd = ''
 if (&ccr ¬= ' ')
 .attr (ccr) = 'pad(nulls)'
 if (&ttb ¬= ' ')
 .attr (ttb) = 'pad(nulls)'
)Reinit
)Proc
 VPUT (db2, ccr, ttb) PROFILE
 VPUT (ztt, zpl, zpa, zin, zvw, zri, zsp, zudf, ztg, zcc) PROFILE
)End

DRIMES
)ATTR DEFAULT(%+_)
| TYPE (TEXT) INTENS(LOW) COLOR(WHITE)
@ TYPE (TEXT) INTENS(HIGH) COLOR(RED) CAPS(OFF) HILITE(REVERSE)
| TYPE (INPUT) INTENS(NON) COLOR(GREEN) CAPS(ON) JUST(LEFT)
TYPE (OUTPUT) INTENS(LOW) COLOR(GREEN) CAPS(OFF)
)BODY DEFAULT(%~\) WINDOW(6Ø,8)
!ZCMD + @ Message display !AMT
)MODEL CLEAR(MESSG)
#Z +
)INIT
 .ZVARS = '(MESSG)'

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

)REINIT
)PROC
 IF (.PFKEY = PFØ3) &PF3 = EXIT
 IF (&ZCMD=END)
 &COMMAND = CANCEL
)END

SDRIM
)TBA 72
)CM --
)CM Skeleton - Drop Impacat --
)CM --
)DOT "ILIST"
 &irow
)ENDDOT

Bernard Zver (Bernard.zver@informatika.si)
DBA
Informatika (Slovenia) © Xephon 2004

Why not share your expertise and earn money at
the same time? DB2 Update is looking for technical
articles, REXX EXECs, programs, and hints and
tips that experienced DB2 users have written to
make their life, or the lives of their users, easier.
Articles can be of any length and can be sent or e-
mailed to Trevor Eddolls at any of the addresses
shown on page 2. A copy of our Notes for
Contributors is available on our Web site – point
your browser at www.xephon.com/nfc.

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 46

UDB V8 LUW – different ways of deleting rows from
a table

This article looks at the problem of how you can quickly and
easily delete all the rows in a DB2 UDB table. In the following
sections I will look at four possible ways of doing this and point
out some of the advantages/disadvantages of each method.
I ran all the SQL in this article on a Windows 2000 machine
running DB2 UDB 8.1 FP1.
As a starting point for all three methods, I created a table called
EMP, which is a copy of the SAMPLE database table EMPLOYEE,
and enabled archive logging:
>db2 connect to sample;
>db2 create table EMP like EMPLOYEE;
>db2 insert into EMP select * from EMPLOYEE;
>db2 update db cfg for sample using logretain recovery;
>db2 connect reset;
>db2 backup db sample to c:\backups

The load command detailed below will work only if you have
logretain switched on (as the command uses the copy yes
parameter). I then loaded this table 16 times into itself (using the
commands below), so that I ended up with an EMP table of about
1 million rows:
>db2 EXPORT TO C:\temp\emp.txt OF DEL MESSAGES c:\temp\msgs.txt SELECT *
FROM DB2ADMIN.EMP

>db2 load from c:\temp\emp.txt of del messages c:\temp\msgs.txt insert
into db2admin.emp copy yes to c:\backups

I also switched on infinite logging as follows:
>db2 update db cfg for sample using userexit on;
>db2 update db cfg for sample using logsecond –1

Now let’s look at the different ways of deleting the rows from the
table.

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

THE DELETE COMMAND
Using the DELETE command is the most obvious! You simply
issue:
>db2 delete from emp

The problem with this command is that DB2 logs every row that
is deleted. This is not a problem for small tables, but if you have
a table like ours, with over 1 million rows in it, the command could
take 25 minutes to complete and use a lot of log space (when I
ran this, I switched on infinite logging, as I kept getting ‘SQL0964C
The transaction log for the database is full.’ messages). It took
132 logs (default size 250 x 4KB) to store all the information
about the delete statement.

DROPPING THE TABLE
We could delete the rows by dropping the table. This would save
on logging, but means that all grants, views, etc, on the table
would also be dropped, and any plans that access the table
would be invalidated. You would then have to recreate the table
and put back all the grants, views, etc. This could involve a lot of
work, and I would use it only for very simple tables (where I
already have all the DDL I need!).

THE LOAD COMMAND
One method to delete a large number of rows from a table without
affecting the grants, views, etc, based on the table, is the LOAD
method.
With this method, you load an empty file into the table you want
to empty, which doesn’t involve logging the deleted rows and
allows you to keep all the authorities you have on the table.
First create an empty text file called c:\temp\empty.txt. Then
issue the command:
>db2 load from c:\temp\empty.txt of del messages c:\temp\msg.txt replace
into db2admin.emp copy yes to c:\backups

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 48

Note that I specify the copy yes parameter. If you don’t specify
this, you won’t be able to use the table space without first doing
a back-up.
For me, this command took about two seconds to execute. If you
now select from the table you see:
>db2 select count(*) from emp

1

 Ø

So we have deleted all the rows in the table. Now try and insert
a row into the table (the row is taken from the EMPLOYEE table):
>db2 insert into emp
values('ØØØ1Ø','CHRISTINE','I','HAAS','AØØ','3978','Ø1/Ø1/
1965','PRES',18,'F','24/Ø8/1933'",5275Ø.ØØ,1ØØØ.ØØ,422Ø.ØØ)

Note that the insert command works without having to take a
back-up because we used the copy yes parameter in the load
statement.

THE ALTER TABLE COMMAND
The best method for deleting a large number of rows from a table
without affecting the grants, views, etc, based on the table, is the
ALTER TABLE method. You simply issue the command:
>db2 alter table emp activate not logged initially with empty table

You do not need to have created the table with the not logged
initially option to use the command.
So what is the best way to delete a large number of rows from a
table? If your database uses circular logging, you can’t use the
copy yes parameter of the LOAD command, which means you
will have to take an off-line back-up after the LOAD command.
You might not be able to do this (because it will lock out other
users from using the database/tablespace), so this option won’t
be of any use to you.
If you are using archive logging, the LOAD option is quicker than

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

using the DELETE command. You could always drop and
recreate the table, but that option together with the DELETE
command would always be my last choice!
The best option seems to be the ALTER TABLE command – it
is quick and simple to use.
C Leonard
Freelance Consultant (UK) © Xephon 2004

Quest Software has announced Quest
Central for Databases 4.0, the first database
management solution to combine domain-
specific functionality and performance
management into a single console for
heterogeneous database environments
including DB2 (distributed and mainframe),
Oracle, and SQL Server.

The product provides built-in expertise and
administration capabilities across all three
database platforms. Quest Central for
Databases minimizes database differences
and removes platform barriers, allowing
DBAs to cross train to maximize the
productivity of existing staff.

For further information contact:
Quest Software, 8001 Irvine Center Drive,
Irvine, CA 92618, USA.
Tel: (949) 754 8000.
URL: http://www.quest.com/quest_central/
db2/.

* * *

Embarcadero Technologies has announced
new powerful administration and navigation
enhancements for DB2 z/OS and OS/390 in
Version 7.3 of DBArtisan.

The new features offer z/OS and OS/390
users more administration abilities by
providing an intuitive interface to execute
DB2 utilities. In addition, DB2 z/OS and OS/
390 administrators will find improved
usability enhancements and support for data
sharing in these environments.

DBArtisan 7.3 delivers the industry's
broadest cross-platform support, allowing
DBAs to administer Oracle, Microsoft SQL
Server, IBM DB2 for Windows/Unix/Linux,
DB2 z/OS and OS/390, and Sybase databases
from a single console.

DB2 news

For further information contact:
Embarcadero Technologies, 425 Market
Street, Suite 425, San Francisco, CA 94105,
USA.
Tel: (415) 834 3131.
URL: http://www.embarcadero.com/
products/dbartisan/index.asp.

* * *

IBM has announced the availability of
Migrate Now! for DB2 UDB Version 8.1.
This facilitates migration from Oracle,
Sybase, Microsoft SQL Server, and other
database platforms to DB2 UDB V8.1 at a
special price.

For further information contact your local
IBM representative.
URL: http://ibm.com/db2/migration.

* * *

Embarcadero has announced Change
Manager Version 2.5, its cross-platform
change management product.

Version 2.5 incorporates new change-based
notification features, comprehensive HTML
reporting capabilities designed to facilitate
group workflow, and a new-look visual
differences window with advanced compare
criteria.

Embarcadero Change Manager supports the
following database platforms and versions:
DB2 for Windows/Unix/Linux, Oracle,
Sybase, and Microsoft SQL Server.

For further information contact:
Embarcadero Technologies, 425 Market
Street, Suite 425, San Francisco, CA 94105,
USA.
Tel: (415) 834 3131.
URL: http://www.embarcadero.com/
products/changemanager/index.asp.

x xephon

	UDB V8 LUW - what is infinite logging?
	Fixes for ERwin DB2/UDB trigger templates
	Accessing DB2 using a Web browser and DB2/REXX - part 2
	Impact of dropping a table
	UDB V8 LUW - different ways of deleting rows from a table
	DB2 news

