
© Xephon Inc 2004

September 2004

143

In this issue

3 Perl script to force users off a
DB2 UDB LUW database

8 SQL scalar functions – part 2
12 A strategy for image copying

large partitioned tablespaces
using Real-Time Statistics

23 Modify column attributes
40 DB2 UDB LUW – High

Performance Unload
46 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 2000 issue, are available separately
to subscribers for $33.75 (£22.50) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Perl script to force users off a DB2 UDB LUW
database

This article describes a Perl script that can be used to force off
all users of a specified DB2 UDB LUW database.

Let’s look at what you would have to do if you didn’t use the
script. I ran all the SQL in this article on a Windows XP
machine running ActiveState ActivePerl 5.8 and DB2 UDB 8.1
FP2 using the db2admin userid.

Say we have a database called HMDB and we want to force
off all users from it. The first thing we have to do is list out all
the applications that are connected to the database. We do
this by using the list applications command:

>db2 list applications

Auth Id Application Appl. Application Id DB # of

 Name Handle Name Agents

-------- ------------- -------- -------------------------- ------- -----

DB2ADMIN db2bp.exe 12 *LOCAL.DB2.ØØ65C2152237 HMDB 1

DB2ADMIN db2bp.exe 11 *LOCAL.DB2.ØØ8F42152212 SAMPLE 1

DB2ADMIN db2dasstm.exe 1Ø *LOCAL.DB2.ØØB282151956 TOOLSDB 1

DB2ADMIN db2dasstm.exe 9 *LOCAL.DB2.ØØB282151955 TOOLSDB 1

DB2ADMIN db2dasstm.exe 8 *LOCAL.DB2.ØØB28215195Ø TOOLSDB 1

You can see that we have three ‘connected to’ databases on
our system – SAMPLE, HMDB, and TOOLSDB. To force off
the user on the HMDB database we would use the force
application command and supply the application handle
(appl handle) as a parameter, which in the above example is
12, as shown below:

>db2 force application(12)

This is fine if we have only one user and our list of connections
is small (as above), but what if we have many databases and
connections? You could use the above method and try to write
down or cut and paste all the application handle numbers, but
a simpler approach would be to use the Perl script shown
below.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

This script can be run in two modes – reporting mode and
action mode. As the names suggests, when run in reporting
mode, the script just reports on the number of connections for
each database. In action mode you could force off all users for
a particular database. The script is called fap01.pl. There is a
short help available with the script, which can be accessed by
typing:

>perl fapØ1.pl -help

Let’s first run it in reporting mode:

>perl fapØ1.pl

No database parameter passed. Will therefore only list out the nos of

connections for each db.

>>> Number of databases is 3

Database HMDB has this many connections 1

Database SAMPLE has this many connections 1

Database TOOLSDB has this many connections 3

>>> These are the application numbers for each database:

The list for HMDB is db2 force application (12)

The list for SAMPLE is db2 force application (11)

The list for TOOLSDB is db2 force application (1Ø,9,8)

We can see there are connections to three databases – the
number of connections to each database is given, together
with the application handle numbers for each connection.

Now let’s run it in action mode and force all the applications for
the HMDB database. You simply pass the database name as
a parameter to the script, as shown below:

>perl fapØ1.pl hmdb

Will force all applications for database: HMDB

>>> Number of databases is 3

Database HMDB has this many connections 1

Database SAMPLE has this many connections 1

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Database TOOLSDB has this many connections 3

>>> Will now execute:

db2 force application (12)

DB2ØØØØI The FORCE APPLICATION command completed successfully.

DB21Ø24I This command is asynchronous and may not be effective

immediately.

And let’s check that the application has indeed been forced:

>db2 list applications

Auth Id Application Appl. Application Id DB # of

 Name Handle Name Agents

-------- ------------- ------- ---------------------------- ------ -----

DB2ADMIN db2bp.exe 11 *LOCAL.DB2.ØØ8F42152212 SAMPLE 1

DB2ADMIN db2dasstm.exe 1Ø *LOCAL.DB2.ØØB282151956 TOOLSDB 1

DB2ADMIN db2dasstm.exe 9 *LOCAL.DB2.ØØB282151955 TOOLSDB 1

DB2ADMIN db2dasstm.exe 8 *LOCAL.DB2.ØØB28215195Ø TOOLSDB 1

We can see that the database HMDB no longer has any
connections to it.

The source for the script is shown below. I have tried to keep
it fairly simple, so that you can modify it to suit your site’s
requirements. I just build a single string containing the force
application command and all the application handles – if you
have hundreds of connections, you may need to change this
(I tried it with 101 connections, and it seemed to work fine).

I hope you find the script useful.

#!/usr/bin/perl -w

#

###$count

= @ARGV;

$dbp = uc $ARGV[Ø];

if ($dbp eq "") {

 $dbp = "XXXX";

}

$help = '-HELP';

if (index($help,$dbp,Ø) >= Ø) {

system 'cls';

 print (('='x1Ø1),"\n");

 print (("="x45)," Help page ",("="x45),"\n");

 print (('='x1Ø1),"\n");

 print "This script can be run in 2 modes: reporting mode and action

mode.\n";

 print " \n";

 print "In reporting mode just enter the command without any parameters

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

>$Ø \n";

 print "What you get back is a list of all databases that have

connections and the number of connections \n";

 print " \n";

 print "In action mode just enter >$Ø <database-alias>\n";

 print "This will force off all applications connected to the

<database-alias> database\n";

 print (('='x1Ø1),"\n");

 exit 99;

}

print (('*'x1Ø1),"\n");

if ($count == Ø) {

 print "No database parameter passed. Will therefore only list out the

nos of connections for each db.\n";

 $path = Ø;

}

else {

 print "Will force all applications for database: $dbp\n";

 $path = 1;

}

print (('*'x1Ø1),"\n");

#

open(FH1,"db2 list applications|");

#

$nos = Ø;

$ndb = Ø;

#

while(<FH1>) {

 $output=$_;

 chomp $output;

 $nos ++;

 $lin[$nos] = $output;

}

close FH1;

#

$lmax = $nos - 1;

for ($sc=5; $lmax >= $sc ; $sc +=1){

print "lin $sc is $lin[$sc]\n";

 $slin = $lin[$sc];

 $x = Ø;

 foreach $char (split ' ',$slin) {

 $x = $x + 1;

 if ($x == 3) {$appl = $char;}

 if ($x == 5) {$db = $char;}

 }

print " $appl and $db\n";

#

We have now got the application number and the database name.

#

Add up the number of connections for each database.

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

#

 $ex = Ø;

 $jk = 1;

 while ($ndb >= $jk) {

 if ($dbnam[$jk] eq $db) {

 $dbnos[$jk] = $dbnos[$jk] + 1;

 $ex = 1;

 $na = $na + 1;

 $tota[$jk][$na] = $appl;

 $tota[$jk][2] = $tota[$jk][2] + 1;

 }

 $jk = $jk + 1;

 }

 if ($ex == Ø) {

 $ndb = $ndb + 1;

 $dbnam[$ndb] = $db;

 $dbnos[$ndb] = 1;

 $tota[$ndb][1] = $db;

 $tota[$ndb][2] = 1;

 $tota[$ndb][3] = $appl;

 $na = 3;

 }

}

#

Now print out the results.

#

print (('*'x1Ø1),"\n");

print ">>> Number of databases is $ndb\n";

foreach $jk (1..$ndb) {

 printf ("Database %8s has this many connections

%4s\n",$dbnam[$jk],$dbnos[$jk]);

}

if ($path ==Ø) {

 print (('*'x1Ø1),"\n");

 print ">>> These are the application numbers for each database:\n";

}

#

$ihf = Ø;

foreach $xa (1..$ndb){

 $str = "db2 force application (";

 foreach $xb (3..(2+$tota[$xa][2])){

 if ($xb == (2+$tota[$xa][2])) {

 $str = $str . $tota[$xa][$xb] . ")";

 }

 else {

 $str = $str . $tota[$xa][$xb] . ",";

 }

 }

 if ($path == Ø) {

 print "The list for $tota[$xa][1] is $str\n";

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

 }

 else {

 if ($tota[$xa][1] eq $dbp) {

 print ">>> Will now execute:\n";

 print "$str\n";

 system"$str";

 $ihf = 1;

 }

 }

}

if (($ihf == Ø) & ($dbp ne "XXXX")) {

 print ">>> The database alias entered: $dbp does not have any

connections\n";

}

if ($path ==Ø) {

 print (('*'x1Ø1),"\n");

}

C Leonard
Freelance Consultant (UK) © Xephon 2004

SQL scalar functions – part 2

This month we conclude the code for an SQL scalar function.

WORD
* PROCESS SYSTEM(MVS);

 WORD: PROC(UDF_PARM1, UDF_PARM2, UDF_RESULT,

 UDF_IND1, UDF_INDR,

 UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,

 UDF_DIAG_MSG, UDF_SCRATCHPAD,

 UDF_CALL_TYPE, UDF_DBINFO)

 OPTIONS(FETCHABLE NOEXECOPS REENTRANT);

 /**/

 /* UDF : WORD */

 /* INPUT : UDF_PARM1 CHAR INPUT STRING */

 /* INPUT : UDF_PARM2 INTEGER NTH WORD */

 /* OUTPUT: UDF_RESULT CHAR NTH BLANK-DELIMITED WORD */

 /**/

 DCL UDF_PARM1 CHAR(2ØØØ) VAR; /* INPUT PARAMETER */

 DCL UDF_PARM2 BIN FIXED(31); /* INPUT PARAMETER */

 DCL UDF_RESULT CHAR(2ØØØ) VAR; /* RESULT PARAMETER */

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */

 DCL UDF_IND2 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */

 DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */

 DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

 3 UDF_SPAD_LEN BIN FIXED(31),

 3 UDF_SPAD_TEXT CHAR(1ØØ);

 %INCLUDE UDFINFO; /* DBINFO */

 DCL (LENGTH,SUBSTR) BUILTIN;

 DCL (I,IS,J,J1,W,ST,EN) BIN FIXED(31);

 UDF_RESULT='';

 ST,EN=Ø;

 W=Ø; IS=1;

 DO I=IS TO LENGTH(UDF_PARM1) WHILE(W < UDF_PARM2);

 IF SUBSTR(UDF_PARM1,I,1)¬=' '

 THEN DO;

 W=W+1;

 IF UDF_PARM2=W THEN ST=I;

 J1=I;

 DO J=J1 TO LENGTH(UDF_PARM1) WHILE(SUBSTR(UDF_PARM1,J,1)¬=' ');

 END;

 IS,I=J;

 END;

 END;

 EN=J;

 IF W < UDF_PARM2

 THEN UDF_RESULT=' ';

 ELSE UDF_RESULT=SUBSTR(UDF_PARM1,ST,EN-ST);

 IF UDF_PARM1=' ' THEN UDF_RESULT=' ';

 END WORD;

WORDINDX
* PROCESS SYSTEM(MVS);

 WORDIN: PROC(UDF_PARM1, UDF_PARM2, UDF_RESULT,

 UDF_IND1, UDF_INDR,

 UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,

 UDF_DIAG_MSG, UDF_SCRATCHPAD,

 UDF_CALL_TYPE, UDF_DBINFO)

 OPTIONS(FETCHABLE NOEXECOPS REENTRANT);

 /**/

 /* UDF : WORDINDEX */

 /* INPUT : UDF_PARM1 CHAR INPUT STRING */

 /* INPUT : UDF_PARM2 INTEGER NTH WORD */

 /* OUTPUT: UDF_RESULT INTEGER POS BLANK-DELIMITED WORD */

 /**/

 DCL UDF_PARM1 CHAR(2ØØØ) VAR; /* INPUT PARAMETER */

 DCL UDF_PARM2 BIN FIXED(31); /* INPUT PARAMETER */

 DCL UDF_RESULT BIN FIXED(31); /* RESULT PARAMETER */

 DCL SSTR CHAR(2ØØØ) VAR; /* SEARCH STRING */

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

 DCL NWORDS BIN FIXED(31); /* NO. OF WORDS */

 DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */

 DCL UDF_IND2 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */

 DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */

 DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

 3 UDF_SPAD_LEN BIN FIXED(31),

 3 UDF_SPAD_TEXT CHAR(1ØØ);

 EXEC SQL INCLUDE SQLCA;

 %INCLUDE UDFINFO; /* DBINFO */

 DCL (LENGTH,SUBSTR,ADDR,NULL) BUILTIN;

 EXEC SQL SET :NWORDS=SYSADM.WORDS(:UDF_PARM1);

 IF UDF_PARM2 > NWORDS | UDF_PARM2 < 1

 THEN UDF_RESULT=Ø;

 ELSE DO;

 EXEC SQL SET :SSTR = SYSADM.WORD(:UDF_PARM1,:UDF_PARM2);

 EXEC SQL SET :UDF_RESULT = POSSTR(:UDF_PARM1,:SSTR);

 IF SQLCODE¬=Ø THEN UDF_RESULT=Ø;

 END;

 END WORDIN;

WORDS
* PROCESS SYSTEM(MVS);

 WORDS: PROC(UDF_PARM1, UDF_RESULT,

 UDF_IND1, UDF_INDR,

 UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,

 UDF_DIAG_MSG, UDF_SCRATCHPAD,

 UDF_CALL_TYPE, UDF_DBINFO)

 OPTIONS(FETCHABLE NOEXECOPS REENTRANT);

 /**/

 /* UDF : WORDS */

 /* INPUT : UDF_PARM1 CHAR INPUT STRING */

 /* OUTPUT: UDF_RESULT INTEGER NUMBER OF BLANK-DELIMITED WORDS */

 /**/

 DCL UDF_PARM1 CHAR(2ØØØ) VAR; /* INPUT PARAMETER */

 DCL UDF_RESULT BIN FIXED(31); /* RESULT PARAMETER */

 DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */

 DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */

 DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

 3 UDF_SPAD_LEN BIN FIXED(31),

 3 UDF_SPAD_TEXT CHAR(1ØØ);

 %INCLUDE UDFINFO; /* DBINFO */

 DCL (LENGTH,SUBSTR) BUILTIN;

 DCL (I,D) BIN FIXED(31);

 UDF_RESULT=1;

 DO I=1 TO LENGTH(UDF_PARM1);

 D=Ø;

 IF SUBSTR(UDF_PARM1,I,1)=' '

 THEN DO;

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 D=1;

 IF I=1 THEN UDF_RESULT=1;

 ELSE DO;

 IF SUBSTR(UDF_PARM1,I-1,1)¬=' '

 THEN UDF_RESULT=UDF_RESULT+1;

 D=1;

 END;

 END;

 END;

 IF D=1 THEN UDF_RESULT=UDF_RESULT-1;

 IF UDF_PARM1=' ' THEN UDF_RESULT=Ø;

 END WORDS;

UDBINFO – include udbinfo declaration from SYSLIB
 DCL UDF_SQLSTATE CHAR(5); /* SQLSTATE RETURNED TO DB2 */

 DCL UDF_NAME CHAR(137) VARYING; /* QUALIFIED FUNCTION NAME */

 DCL UDF_SPEC_NAME CHAR(128) VARYING; /* SPECIFIC FUNCTION NAME */

 DCL UDF_DIAG_MSG CHAR(7Ø) VARYING; /* DIAGNOSTIC STRING */

 DCL UDF_CALL_TYPE BIN FIXED(31); /* CALL TYPE */

 DCL DBINFO PTR;

 /* CONSTANTS FOR DB2_ENCODING_SCHEME */

 DCL SQLUDF_ASCII BIN FIXED(15) INIT(1);

 DCL SQLUDF_EBCDIC BIN FIXED(15) INIT(2);

 DCL SQLUDF_MIXED BIN FIXED(15) INIT(3);

 DCL Ø1 UDF_DBINFO BASED(DBINFO), /* DBINFO */

 Ø3 UDF_DBINFO_LLEN BIN FIXED(15), /* LOCATION LENGTH */

 Ø3 UDF_DBINFO_LOC CHAR(128), /* LOCATION NAME */

 Ø3 UDF_DBINFO_ALEN BIN FIXED(15), /* AUTH ID LENGTH */

 Ø3 UDF_DBINFO_AUTH CHAR(128), /* AUTHORIZATION ID */

 Ø3 UDF_DBINFO_CDPG, /* CCSIDS FOR DB2 FOR OS/39Ø*/

 Ø5 DB2_CCSIDS(3),

 Ø7 R1 BIN FIXED(15), /* RESERVED */

 Ø7 DB2_SBCS BIN FIXED(15), /* SBCS CCSID */

 Ø7 R2 BIN FIXED(15), /* RESERVED */

 Ø7 DB2_DBCS BIN FIXED(15), /* DBCS CCSID */

 Ø7 R3 BIN FIXED(15), /* RESERVED */

 Ø7 DB2_MIXED BIN FIXED(15), /* MIXED CCSID */

 Ø5 DB2_ENCODING_SCHEME BIN FIXED(31),

 Ø5 DB2_CCSID_RESERVED CHAR(8),

 Ø3 UDF_DBINFO_SLEN BIN FIXED(15), /* SCHEMA LENGTH */

 Ø3 UDF_DBINFO_SCHEMA CHAR(128), /* SCHEMA NAME */

 Ø3 UDF_DBINFO_TLEN BIN FIXED(15), /* TABLE LENGTH */

 Ø3 UDF_DBINFO_TABLE CHAR(128), /* TABLE NAME */

 Ø3 UDF_DBINFO_CLEN BIN FIXED(15), /* COLUMN LENGTH */

 Ø3 UDF_DBINFO_COLUMN CHAR(128), /* COLUMN NAME */

 Ø3 UDF_DBINFO_RELVER CHAR(8), /* DB2 RELEASE LEVEL */

 Ø3 UDF_DBINFO_PLATFORM BIN FIXED(31), /* DATABASE PLATFORM*/

 Ø3 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* # OF TF COLS USED*/

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

A strategy for image copying large partitioned
tablespaces using Real-Time Statistics

This article looks at using the information from the Real-Time
Statistics tables to determine the frequency of image copies
for large partitioned tablespaces, although the approach works
equally well for any tablespace. No REXX is required, just
SQL.

THE REQUIREMENTS

Most strategies for image-copying tablespaces are period-
based – copy everything every day, perhaps, or do full image
copies once a week and incremental copies every day. This is
an approach that works well until constraints such as batch
window time and sheer amount of data backed up come into
play. Then, a more tailored approach is required, backing up
frequently-updated objects more than the others. This approach
requires either a large amount of administration or an intelligent
automated process, which this article attempts to provide.

LARGE TABLESPACES

The time and space constraints start to bite as the DB2 objects
get bigger and more numerous.

We have a large number of 32KB tablespaces, which have
been partitioned into 250 parts – with the partitions varying

 Ø3 UDF_DBINFO_RESERV1 CHAR(24), /* RESERVED */

 Ø3 UDF_DBINFO_TFCOLUMN PTR, /* -> TABLE FUN COL LIST*/

 Ø3 UDF_DBINFO_APPLID PTR, /* -> APPLICATION ID */

 Ø3 UDF_DBINFO_RESERV2 CHAR(2Ø); /* RESERVED */

Bernard Zver (bernard.zver@informatika.si)
DBA
Informatica (Slovenia) © Xephon 2004

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

from several thousand tracks to several gigabytes, and growing
all the time. Rebalancing takes place periodically. In this
particular application, one partition in each tablespace on a
particular day is active, taking all inserts and most updates.
Other partitions may have some updates, but these will be
fairly low. The profile of a few partitions on a given day might
look like Figure 1.

Looking at these partitions, we definitely want to do a full
image copy of part 99. We may want to copy parts 97, 98, and
101. If parts 100 and 102 were copied yesterday, copying
them again is a waste of time, because the copies will be
exactly the same as yesterday’s.

PREVIOUS FACILITIES: CHANGELIMIT

Version 5 of DB2 made some attempt at addressing the
problem. The CHANGELIMIT keyword of the COPY utility
decides whether to take a full copy, an incremental copy, or no
copy at all, depending on its input parameters and the
percentage of pages in the tablespace that have changed.

For example, the following statement:

COPY TABLESPACE dbname.tsname CHANGELIMIT(15,35)

will cause a full image copy to be taken if 35% or more of the
pages in the tablespace have changed, an incremental copy
if 15% or more have changed, and no copy at all if less than
15% have changed.

Partition Inserts/updates
97 4
98 58
99 10,022

100 0
101 43
102 0

Figure 1: The profile of a few partitions

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

Unfortunately the implementation of CHANGELIMIT is flawed
to say the least. If no copy is taken, the image copy dataset
has still been allocated in the JCL. After a few such utility runs,
all of your valid copies will have rolled off the end of your GDG
(and this is the same in Version 7 even when the dataset is
dynamically allocated with TEMPLATE – a major
disappointment). Similarly, the utility could decide to take an
incremental copy every day until your last full copy disappears.
CHANGELIMIT is stupid.

To attempt to get round these limitations, COPY CHANGELIMIT
can be run with the REPORTONLY option – no copy is done,
but the return code from the job step shows whether a full,
incremental, or no copy would be taken. The return code can
be used to avoid a later COPY step. This requires a read
through the tablespace even if no copy is to be taken. For our
large tablespaces, this just takes too much time.

REAL-TIME STATISTICS

The Real-Time Statistics (RTS) facility was introduced some
way into DB2 Version 7. You can find some information in later
versions of the DB2 Administration Guide (Appendix G in my
copy). Also see Craig Mullins’ article in the June 2004 edition
of DB2 Update (Using Real-Time Statistics).

In brief, the statistics are held in two tables,
SYSIBM.TABLESPACESTATS and
SYSIBM.INDEXSPACESTATS. A row in TABLESPACESTATS
corresponds to a tablespace or tablespace partition (similar to
SYSIBM.SYSTABLEPART). Most of the statistical columns
relate to the inserts, updates, or deletes since the last REORG,
LOAD, RUNSTATS, or COPY. For the purpose of this article,
we’re interested in the COPY statistics. They are:

• COPYLASTTIME – timestamp of last copy.

• COPYUPDATEDPAGES – number of distinct pages
changed since the last COPY.

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• COPYCHANGES – number of INSERT, UPDATE, and
DELETE operations since the last COPY.

• COPYUPDATELRSN – RBA or LRSN of the first update
after the last COPY.

• COPYUPDATETIME – timestamp of the first update after
the last COPY.

There is also a NACTIVE column, which holds the number of
active pages, and TOTALROWS, which holds the total number
of rows. These can be used in conjunction with
COPYUPDATEDPAGES and COPYCHANGES to give a
percentage view of the amount of change that has taken
place.

When RTS is turned on for a subsystem, rows appear for
objects as they are used. At this point, the NACTIVE and
EXTENTS (giving number of extents for the object) columns
are populated immediately, while most of the other columns
are NULL. TOTALROWS is not populated until a REORG or
LOAD is done (even RUNSTATS does not populate it). The
COPY-related columns above are populated after a COPY
utility is run. Taking all this together, if you want to come up
with an idea of the percentage of changes since the last
COPY, you should use COPYUPDATEDPAGES / NACTIVE *
100 rather than COPYCHANGES / TOTALROWS * 100
because you can’t rely on TOTALROWS being non-null.

Once a column is populated, it is kept up-to-date continuously
by DB2 (the values are externalized to the tables periodically).

LISTDEF AND TEMPLATE

The final components that we need for our automated image
copy process are LISTDEF and TEMPLATE, introduced in
DB2 Version 7.

In previous versions of DB2, the step to copy several partitions
of a tablespace might look like this:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

//UTIL EXEC DSNUPROC,

// SYSTEM=DB2T

//SYSIN DD *

 COPY TABLESPACE DDBIVP.SDBACCT DSNUM 3 COPYDDN(COPØØØ3)

 TABLESPACE DDBIVP.SDBACCT DSNUM 5 COPYDDN(COPØØØ5)

 TABLESPACE DDBIVP.SDBACCT DSNUM 7 COPYDDN(COPØØØ7)

//COPØØØ3 DD DSN=NUDBS.DB2T.DDBIVP.SDBACCT.FØØØ3(+1),

// DISP=(NEW,CATLG),

// SPACE=(TRK,(1ØØ,1Ø),RLSE)

//COPØØØ5 DD DSN=NUDBS.DB2T.DDBIVP.SDBACCT.FØØØ5(+1),

// DISP=(NEW,CATLG),

// SPACE=(TRK,(8Ø,8),RLSE)

//COPØØØ7 DD DSN=NUDBS.DB2T.DDBIVP.SDBACCT.FØØØ7(+1),

// DISP=(NEW,CATLG),

// SPACE=(TRK,(2ØØ,2Ø),RLSE)

Using TEMPLATE and LISTDEF, it looks like this:

//UTIL EXEC DSNUPROC,

// SYSTEM=DB2T

//SYSTEMPL DD *

 TEMPLATE TMPL1 DSN('NUDBS.&SS..&DB..&TS..F&PA(2,4).(+1)')

 GDGLIMIT(9)

//SYSLISTD DD *

 LISTDEF LISTØ1

 INCLUDE TABLESPACES TABLESPACE DDBIVP.SDBACCT PARTLEVEL 3

 INCLUDE TABLESPACES TABLESPACE DDBIVP.SDBACCT PARTLEVEL 5

 INCLUDE TABLESPACES TABLESPACE DDBIVP.SDBACCT PARTLEVEL 7

//SYSIN DD *

 COPY LIST LISTØ1

 COPYDDN(TMPL1) SHRLEVEL CHANGE

The major improvement here is that only the SYSLISTD
SYSIN needs to change from day to day as the partitions
copied and their sizes change – and SYSLISTD can be put
into a dataset. The JCL is static. This means that the same job
can be run every day with different inputs. Previously, the JCL
itself would have had to be regenerated every day because of
the DD statements for the image copy datasets. The other
improvement is that we don’t have to work out the sizes of the
image copy datasets – TEMPLATE does it for us. So under
Version 7, all we need to create for the COPY utility is a list of
partitions to be copied.

OUR IMAGE COPY STRATEGY

For each set of objects to be copied, we will have a pair of jobs

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

– a generating job and a copy job – the latter running the copy
utility based on the output from the former. The generating job
may cover a single database or a number of databases,
depending on the number of objects contained in the databases.

We need to decide what level of changes should trigger a
COPY – an absolute number of changes or percentage
change, for example – also, whether we should always take
full copies, or take incremental copies when the amount of
change is small.

Here, we’re taking a simple approach – if there have been any
changes since the last image copy, take a full image copy.
From the RTS point of view, this means take a copy if the
COPYCHANGES value is greater than zero.

ACCURACY OF REAL-TIME STATISTICS

There is a possibility of statistics not being entirely accurate
– in particular, the possibility of some updates not being
recorded. This can happen because the statistics are only
externalized to the TABLESPACESTATS and
INDEXSPACESTATS tables periodically – by default, every
30 minutes. If DB2 abends, any statistics in memory that have
not yet been written will be lost.

To avoid any risk caused by inaccurate statistics, the image
copy strategy requires a catch-all condition – that a partition
be copied at least every 30 days. Archive logs are kept for 35
days, so if some updates have not been recorded in the
statistics, and a subsequent image copy has not been taken,
the log records still exist for recovery purposes and there is no
risk of loss of data. The only risk is of a slightly extended
recovery.

THE GENERATING JOB

The generating job will produce a list of INCLUDE statements
as input to the COPY job, which will actually run the COPY
utility. Each statement will look something like this:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

INCLUDE TABLESPACES TABLESPACE dbname.tsname PARTLEVEL partno

The generating job will take as input the rows from
SYSIBM.TABLESPACESTATS. All it’s interested in is whether
the partition has been updated at all. This SQL will do it for
database DIGOAM97:

SELECT DBNAME,NAME,PARTITION

 FROM SYSIBM.TABLESPACESTATS

 WHERE DBNAME = 'DIGOAM97'

 AND COPYCHANGES > Ø

 WITH UR

;

--------+--------+--------+--------+--------+---------

DBNAME NAME PARTITION

--------+--------+--------+--------+--------+---------

DIGOAM97 SIGOSMD Ø

DIGOAM97 SIGOSMØ4 Ø

DIGOAM97 SIGOSM32 57

DSNE61ØI NUMBER OF ROWS DISPLAYED IS 3

We also need the ‘INCLUDE…’ and other literals in the output,
and want to concatenate the database name and tablespace
name in the query:

SELECT 'INCLUDE TABLESPACES TABLESPACE',

 STRIP(DBNAME)||'.'||STRIP(NAME),

 'PARTLEVEL',PARTITION

 FROM SYSIBM.TABLESPACESTATS

 WHERE DBNAME = 'DIGOAM97'

 AND COPYCHANGES > Ø

 WITH UR

;

--------+--------+--------+--------+--------+--------+--------+--

 PARTITION

--------+--------+--------+--------+--------+--------+--------+--

INCLUDE TABLESPACES TABLESPACE DIGOAM97.SIGOSMD PARTLEVEL Ø

INCLUDE TABLESPACES TABLESPACE DIGOAM97.SIGOSMØ4 PARTLEVEL Ø

INCLUDE TABLESPACES TABLESPACE DIGOAM97.SIGOSM32 PARTLEVEL 57

DSNE61ØI NUMBER OF ROWS DISPLAYED IS 3

You can see a slight problem – the non-partitioned tablespaces
will have ‘PARTLEVEL 0’ in the include statement, which we
don’t want. A CASE statement will improve things:

SELECT 'INCLUDE TABLESPACES TABLESPACE',

 STRIP(DBNAME)||'.'||STRIP(NAME),

 CASE

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 WHEN PARTITION = Ø THEN

 ''

 ELSE

 'PARTLEVEL '|| CHAR(PARTITION)

 END

 FROM SYSIBM.TABLESPACESTATS

 WHERE DBNAME = 'DIGOAM97'

 AND COPYCHANGES > Ø

 WITH UR

;

--------+--------+--------+--------+--------+--------+----

--------+--------+--------+--------+--------+--------+----

INCLUDE TABLESPACES TABLESPACE DIGOAM97.SIGOSMD

INCLUDE TABLESPACES TABLESPACE DIGOAM97.SIGOSMØ4

INCLUDE TABLESPACES TABLESPACE DIGOAM97.SIGOSM32 PARTLEVEL 57

Note that I had to convert the PARTITION column to a CHAR
to concatenate it with ‘PARTLEVEL’.

As you can see, if you use SPUFI or DSNTEP2 to produce the
query, you get headings and column delimiters. We can get
around this by using DSNTIAUL, but we end up with a lot of
non-printable characters in the output:

******************************** Top of Data****************************

..INCLUDE TABLESPACES

TABLESPACE..DIGOAM97.SIGOSMD.......................

..INCLUDE TABLESPACES

TABLESPACE..DIGOAM97.SIGOSMØ4......................

..INCLUDE TABLESPACES TABLESPACE..DIGOAM97.SIGOSM32..PARTLEVEL

57........

******************************* Bottom of Data**************************

Turning on hex display shows that they are either the length
bytes of VARCHARs, or trailing zero bytes:

******************************** Top of Data ***************************

..INCLUDE TABLESPACES

TABLESPACE..DIGOAM97.SIGOSMD.......................

Ø1CDCDECC4ECCDCEDCCCE4ECCDCEDCCCØ1CCCDCDFF4ECCDEDCØØØØØØØØØØØØØØØØØØØØØØØ

ØE9533445Ø31235271352Ø3123527135ØØ49761497B2976244ØØØØØØØØØØØØØØØØØØØØØØØ

..INCLUDE TABLESPACES

TABLESPACE..DIGOAM97.SIGOSMØ4......................

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

Ø1CDCDECC4ECCDCEDCCCE4ECCDCEDCCCØ1CCCDCDFF4ECCDEDFFØØØØØØØØØØØØØØØØØØØØØØ

ØE9533445Ø31235271352Ø3123527135Ø149761497B297624Ø4ØØØØØØØØØØØØØØØØØØØØØØ

..INCLUDE TABLESPACES TABLESPACE..DIGOAM97.SIGOSM32..PARTLEVEL 57

....

Ø1CDCDECC4ECCDCEDCCCE4ECCDCEDCCCØ1CCCDCDFF4ECCDEDFFØ1DCDEDCECD4FF4444ØØØØ

ØE9533445Ø31235271352Ø3123527135Ø149761497B29762432ØØ719335553Ø57ØØØØØØØØ

******************************* Bottom of Data *************************

This can be solved by concatenating all the fields together,
and applying the CHAR function to the whole lot:

SELECT CHAR('INCLUDE TABLESPACES TABLESPACE '||

 STRIP(DBNAME)||'.'||STRIP(NAME)||

 CASE

 WHEN PARTITION = Ø THEN

 ''

 ELSE

 ' PARTLEVEL '|| CHAR(PARTITION)

 END,8Ø)

 FROM SYSIBM.TABLESPACESTATS

 WHERE DBNAME = 'DIGOAM97'

 AND COPYCHANGES > Ø

 WITH UR

;

The second parameter to the CHAR function, 80, expands
each row to 80 columns.

The simplicity of our query – just checking for a non-zero
COPYCHANGES column – means that there are a number of
objects that we might miss (and therefore will not get copied):

• Partitions that have a zero entry in COPYCHANGES, but
haven’t been copied for over 30 days.

• Partitions that have a null entry in COPYCHANGES
because the partition was last copied before RTS was
turned on.

• Partit ions that have no entry in
SYSIBM.TABLESPACESTATS because they never get
used.

For the first case, we can easily list objects that were copied
over 30 days ago:

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SELECT DBNAME,NAME,PARTITION

 FROM SYSIBM.TABLESPACESTATS

 WHERE COPYLASTTIME < CURRENT TIMESTAMP - 3Ø DAYS

;

We can also test for objects that haven’t been copied since
RTS was turned on:

SELECT DBNAME,NAME,PARTITION

 FROM SYSIBM.TABLESPACESTATS

 WHERE COPYLASTTIME < CURRENT TIMESTAMP - 3Ø DAYS

 OR COPYCHANGES IS NULL

;

For the third case, objects that haven’t been used won’t have
an entry in the RTS table. We can find them by listing objects
that exist in catalog table SYSIBM.SYSTABLEPART, but not
in SYSIBM.SYSTABLESPACESTATS. An efficient way to test
for this is with an outer join:

SELECT B.DBNAME,B.NAME,B.PARTITION

 FROM SYSIBM.SYSTABLEPART A

 LEFT JOIN SYSIBM.TABLESPACESTATS B

 ON A.DBNAME = B.DBNAME

 AND A.TSNAME = B.NAME

 AND A.PARTITION = B.PARTITION

 WHERE COPYLASTTIME < CURRENT TIMESTAMP - 3Ø DAYS

 OR COPYCHANGES IS NULL

;

If there is no row in SYSTABLESPACESTATS,
COPYLASTTIME is returned as NULL. It’s also set to NULL if
there is a row but the object has never been copied. This
means that by testing COPYLASTTIME for NULL, we’re
testing the second and third conditions in one go – we’re not
bothered which condition is satisfied, either will do.

It’s probably best to check for these ‘missed’ objects in a
separate sweep job.

THE COPY JOB

The copy job consists of a utility step that accepts the
INCLUDE statements from the generating job. This is pretty
simple:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

//UTIL EXEC DSNUPROC,

// SYSTEM=DIP1

//SYSTEMPL DD *

 TEMPLATE TMPL1 DSN('NUDBS.&SS..&DB..&TS..F&PA(2,4).(+1)')

 GDGLIMIT(9)

//SYSLISTD DD *

 LISTDEF LISTØ1

// DD DSN=SMITHAC.COPY.INC,DISP=SHR

//SYSIN DD *

 COPY LIST LISTØ1

 COPYDDN(TMPL1) SHRLEVEL CHANGE

The INCLUDE statements are in the dataset that is
concatenated to the SYSLISTD DD statement.

But we’ve forgotten something. What if no objects qualify?
Using a LISTDEF with no INCLUDES causes an error:

 DSNUGUTC - COPY LIST LISTØ1 COPYDDN(TMPL1) SHRLEVEL CHANGE

-DIP1 DSNUILSA - LISTDEF LISTØ1 CONTAINS NO OBJECTS

 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

The best way around this is to add a job step that tests for an
empty file and then avoid the COPY step if the file is empty.
This can be done easily with the IDCAMS REPRO command:

//STEST EXEC PGM=IDCAMS

//INF DD DISP=SHR,DSN=SMITHAC.COPY.INC

//OUT DD DUMMY,DCB=SMITHAC.COPY.INC

//SYSIN DD *

 REPRO INFILE(INF),OUTFILE(OUT) COUNT(1)

//SYSPRINT DD SYSOUT=*

REPRO returns 4 if there is fewer than one line in the file (ie
it is empty). The utility step then needs a COND so that it won’t
run if STEST finishes with RC 4:

//UTIL EXEC DSNUPROC,

// SYSTEM=DIP1,

// COND=((4,LT),(4,EQ,STEST))

SUMMARY

In this article, we’ve looked at using information from the Real-
Time Statistics tables to schedule image copies for tablespaces
and partitions depending on whether they’ve been updated.

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Coupled with the new LISTDEF and TEMPLATE facilities in
DB2 V7, we can create jobs with just a bit of SQL – no REXX
tailoring is required.

This is just the start – soon I’ll be looking at scheduling
RUNSTATS and REORG utilities in the same way.

Alan Smith
Norwich Union (UK) © Xephon 2004

Modify column attributes

Some changes to a table cannot be made with an ALTER
TABLE statement (changes of CHAR(50) to CHAR(15) or
SMALLINT to INTEGER, or changing a column defined with
NOT NULL to allow null values etc). To make such changes,
you need to perform the following steps:

• Unload the table

• Drop the table

• Commit the changes

• Re-create the table

• Reload the table.

The unload and reload steps are not involved in this article
(routines including these steps were published in the
September 2003 issue of DB2 Update in the article ‘Transfer
data utility’). This article processes all the other steps, including
the definitions of all related objects as needed.

The drop table statement deletes a table. The statement
deletes the rows in the catalog tables containing information
about deleted tables, and it also drops any other objects that
depend on the deleted table. As a result:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

• The column names of the table are dropped from
SYSIBM.SYSCOLUMNS.

• If the dropped table has an identity column, all information
regarding the identity column is removed from
SYSIBM.SYSSEQUENCES.

• If triggers are defined on the table, they are dropped, and
the corresponding rows are removed from
SYSIBM.SYSTRIGGERS and SYSIBM.SYSPACKAGES.

• Any views based on the table are dropped.

• Application plans or packages that involve the use of the
table are invalidated.

• Synonyms for the table are dropped from
SYSIBM.SYSSYNONYMS.

• Indexes created on any columns of the table are dropped.

• Referential constraints that involve the table are dropped.

• Authorization information that is kept in the DB2 catalog
authorization tables is updated to reflect the dropping of
the table.

• Access path statistics and space statistics for the table
are deleted from the catalog.

• If the table contains a LOB column, the auxiliary table and
the index on the auxiliary table are dropped. The LOB
table space is dropped if it was created with
SQLRULES(STD).

• If a table has a partitioning index, you must drop the table
space or use LOAD REPLACE when loading the redefined
table.

Taking into account all of these remarks, this article generates
the job for the re-creation of all necessary objects.

Figure 1 shows all catalog tables that this article consults to
drop and re-create objects.

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In this article I use a second REXX EXEC (SQLISPF, which
was published in the July and August 2001 issues of DB2
Update in ‘Simplifying occasional, regular, and periodic tasks
of the DBA’).

Note:

• A change to certain attributes may mean that the old
relations are impossible to sustain unless relevant
attributes in other tables are changed. These relations are
placed under the comments for any subsequent use,
whereas a change to the pertinent attributes may be
accomplished by calling the very same program, in the

Figure 1: Catalog tables involved in the program

SYSTABLESPACE

SYSTABLEPART

SYSTABLES

SYSCHECKS

SYSCHECKDEP

SYSTRIGGERS SYSCOLUMNS SYSSYNONYMS SYSINDEXES SYSTABAUTH SYSRELS

SYSFIELDS SYSINDEXPART SYSKEYS SYSFOREIGNKEYS

SYSPLAN

SYSDBRM SYSPLANDEP SYSPACKLIST

SYSSTMT

SYSPACKAGE

SYSPACKDEP SYSPACKSTMT

SYSVIEWS SYSVIEWDEP SYSAUXRELS

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

process of which these tables are being used as an input
parameter.

• If the job needs to prepare statements for generating a
trigger, before executing the create trigger statement, the
program includes the --#SET TERMINATOR # control
statement to change the SQL terminator to the character
#.

• A template for generating create view statements includes
recursion. Recursion is applied in order to find all the
views dependent on the relevant table.

• Instructions for starting the application. After changing
any data on the first map you must type M in the command
line, and the job will be generated.

MODCOLR0
/* rexx */

address ispexec 'select panel(modcolp1)'

MODCOLP1

)ATTR

% TYPE(TEXT)

[TYPE(TEXT) INTENS(LOW)

< TYPE(INPUT) CAPS(ON)

+ TYPE(TEXT) INTENS(LOW)

! TYPE(OUTPUT) INTENS(LOW) CAPS(OFF)

)BODY DEFAULT(]*;)EXPAND($$)

%-$-$- MODIFY COLUMN(s) -$-$-[

 [

+DB2 subsystem: ===><Z [

[

+Table creator: ===><Z [

[

+Table name: ===><Z [

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

<Z[

)INIT

 .ZVARS = '(DSN8SSID Tbcre Tbname ZCMD)'

 .CURSOR = DSN8SSID

 VGET (DSN8SSID Tbcre Tbname) SHARED

 IF (&DSN8SSID = &Z)

 &DSN8SSID = DSN

)PROC

 VER (&DSN8SSID,NB,LIST,DSN,DBT)

 VER (&Tbcre,NB)

 VER (&Tbname,NB)

 VPUT (DSN8SSID Tbcre Tbname) SHARED

 &ZSEL = TRANS(TRUNC(&ZCMD,'.')

 ' ','CMD(MODCOLR1)'

 '*','?')

)END

MODCOLP2
)ATTR

% TYPE(TEXT)

[TYPE(TEXT) INTENS(LOW)

+ TYPE(TEXT) INTENS(LOW)

* TYPE(INPUT) CAPS(ON) COLOR(WHITE)

< TYPE(INPUT) CAPS(OFF) COLOR(WHITE)

] TYPE(OUTPUT) INTENS(LOW) CAPS(OFF)

)BODY DEFAULT(/,_)EXPAND($$)

%-$-$- MODIFY COLUMN(s) -$-$-[

%Command ===><Z[(M - Job for Modify Table) %Scroll

===><Z [

+DB2 subsystem ==>]Z [

+Creator:]Z [

+Table:]Z [

 +--[

 +COL NAME COL TYPE LENGTH SCALE NULLS

 +--[

)MODEL

 <Z +*Z +<Z + <Z + <Z+

)INIT

 .ZVARS = '(ZCMD ZSCR DSN8SSID Tbcre Tbname +

 COLNAME COLTYPE COLLEN COLSCALE COLNULLS)'

)END

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

MODCOLR1
/* REXX - MODCOLR1 ***/

/* TITLE : MODIFY COLUMN(s) */

/* *** */

/* TRACE I */

 Address ISPEXEC 'CONTROL ERRORS RETURN '

 Address ISPEXEC 'VGET (DSN8SSID Tbcre Tbname) SHARED'

 DB2V = DSN8SSID

 panel = 'MODCOLP2'

 tbnam = 'MODCOLT1'

 tvars = 'COLNAME COLTYPE COLLEN COLSCALE COLNULLS INDMODT OLDCOLN'||,

 ' KEYSEQ'

 msg = ' '

 indmod = Ø

 csrrow = 1

 cursor = 'COLNAME'

 Address ISPEXEC 'TBERASE 'tbnam

 Address ISPEXEC 'TBOPEN 'tbnam' WRITE SHARE '

 if rc > Ø then do

 Address ISPEXEC 'TBCREATE 'tbnam' NAMES('tvars') NOWRITE SHARE '

 If rc ¬= Ø Then say rc

 SQLQUERY = "SELECT NAME, COLTYPE, ",

 "CASE WHEN LENGTH2 > Ø THEN LENGTH2 ",

 "ELSE LENGTH ",

 "END AS LENGTH, ",

 "SCALE, NULLS, COLNO, KEYSEQ ",

 "FROM SYSIBM.SYSCOLUMNS ",

 "WHERE TBCREATOR = '" || Tbcre || "' AND ",

 "TBNAME = '" || Tbname || "' ",

 "ORDER BY COLNO"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 to _nrows

 COLNAME = strip(value(_vn.1"."strip(i,l,'Ø')))

 COLTYPE = strip(value(_vn.2"."strip(i,l,'Ø')))

 COLLEN = strip(value(_vn.3"."strip(i,l,'Ø')))

 COLSCALE = strip(value(_vn.4"."strip(i,l,'Ø')))

 COLNULLS = strip(value(_vn.5"."strip(i,l,'Ø')))

 INDMODT = Ø

 OLDCOLN = strip(value(_vn.6"."strip(i,l,'Ø')))

 KEYSEQ = strip(value(_vn.7"."strip(i,l,'Ø')))

 Address ISPEXEC 'TBADD 'tbnam

 End

 Address ISPEXEC 'TBTOP 'tbnam

 end

 disprc = Ø

 Do While (disprc < 8)

 Address ISPEXEC 'TBQUERY 'tbnam' ROWNUM(rowcnt)'

 If csrrow <= Ø Then csrrow = 1

 Address ISPEXEC 'TBDISPL 'tbnam' PANEL('panel') ,

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 CSRROW('csrrow') MSG('msg') ,

 CURSOR('cursor') AUTOSEL(NO)'

 disprc = rc

 if disprc < 8 Then Do

 Do While (ZTDSELS > Ø)

 indmod = 1

 INDMODT = 1

 Address ISPEXEC 'TBPUT 'tbnam

 Address ISPEXEC 'TBDISPL 'tbnam

 if rc >= 8 Then Do

 Address ISPEXEC 'TBCLOSE 'tbnam

 Exit 2Ø

 End

 End

 If word(strip(ZCMD), 1) = 'M' | word(strip(ZCMD), 1) = 'm' Then

 If indmod = 1 Then call process_s

 Else say "First, you must change some column(s)"

 disprc = Ø

 End

 End

 Address ISPEXEC 'TBCLOSE 'tbnam

Exit

/* *** PROCEDURES ** */

process_s:

 Address ISPEXEC 'TBTOP 'tbnam

 Address ISPEXEC 'TBVCLEAR 'tbnam

 INDMODT = 1

 Address ISPEXEC 'TBSARG 'tbnam' NEXT NAMECOND(INDMODT,EQ)'

 Address ISPEXEC 'TBSCAN 'tbnam' NOREAD POSITION('crpname')'

 RepeatP = Ø

 RepeatT = Ø

 RepeatR = Ø

 RepeatA = Ø

 RepeatI = Ø

 RepeatTg = Ø

 RepeatV = Ø

 RepeatV1 = Ø

 RepeatAu = Ø

 RepeatPP = Ø

 RepeatDR = Ø

 RepeatAR = Ø

 Do While rc = Ø

 Address ISPEXEC 'TBGET ' tbnam

 Call process_rel Tbcre Tbname OLDCOLN KEYSEQ

 csrrow = crpname

 drop crpname

 Address ISPEXEC 'TBSCAN 'tbnam' NOREAD POSITION('crpname')'

 End

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

 drop crpname

 Call process_tab Tbcre Tbname

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "CREATE TABLE "||Tbcre||"."||Tbname||" ("

 pkey = ""

 Address ISPEXEC 'TBTOP 'tbnam

 Do i = 1 To rowcnt

 Address ISPEXEC 'TBSKIP 'tbnam

 Address ISPEXEC 'TBGET ' tbnam

 ss = value(WORD(tvars, 1)) || " " || value(WORD(tvars, 2))

 If value(WORD(tvars, 2)) = "DECIMAL" Then

 ss = ss || "(" || value(WORD(tvars, 3)) || "," ||,

 value(WORD(tvars, 4)) || ")"

 Else Do

 If value(WORD(tvars, 2)) = "CHAR" |,

 value(WORD(tvars, 2)) = "VARCHAR" |,

 value(WORD(tvars, 2)) = "GRAPHIC" |,

 value(WORD(tvars, 2)) = "VARGRAPHIC" |,

 value(WORD(tvars, 2)) = "CLOB" |,

 value(WORD(tvars, 2)) = "BLOB" Then

 ss = ss || "(" || value(WORD(tvars, 3)) || ")"

 End

 If value(WORD(tvars, 5)) = "N" Then ss = ss || " NOT NULL"

 If value(WORD(tvars, 2)) = "ROWID" Then ss=ss||" GENERATED ALWAYS"

 If value(WORD(tvars, 2)) ¬= "ROWID" &,

 value(WORD(tvars, 2)) ¬= "BLOB" &,

 value(WORD(tvars, 2)) ¬= "CLOB"

 Then call process_col Tbcre Tbname value(WORD(tvars, 7)),

 value(WORD(tvars, 1))

 Else If (value(WORD(tvars, 2)) = "BLOB" |,

 value(WORD(tvars, 2)) = "CLOB")

 Then call process_aux Tbcre Tbname value(WORD(tvars, 1)),

 value(WORD(tvars, 7))

 If value(WORD(tvars, 8)) > Ø Then

 pkey = pkey || value(WORD(tvars, 1)) || ","

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 If i = rowcnt Then

 If pkey ¬= "" Then LineForRepeatT.RepeatT = ss || ","

 Else LineForRepeatT.RepeatT = ss || ")"

 Else LineForRepeatT.RepeatT = ss || ","

 End

 If pkey ¬= "" Then Do

 pkey = "PRIMARY KEY (" || Left(pkey, Length(pkey) - 1) || "))"

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = pkey

 End

 Address ISPEXEC 'TBTOP 'tbnam

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 call process_tb Tbcre Tbname

 call process_idx Tbcre Tbname

 call process_trig Tbcre Tbname

 call process_view Tbcre Tbname 1

 If RepeatV > Ø Then Do

 Do k = 1 To RepeatV

 call process_view1 value(WORD(LineForRepeatV.k, 1)),

 value(WORD(LineForRepeatV.k, 2))

 End

 End

 call process_auth Tbcre Tbname

 call process_plpkg Tbcre Tbname

 Address ISPEXEC 'TBTOP 'tbnam

 Do i = 1 To rowcnt

 Address ISPEXEC 'TBSKIP 'tbnam

 Address ISPEXEC 'TBGET ' tbnam

 If value(WORD(tvars, 6)) = 1

 Then Do

 call process_trans Tbcre Tbname value(WORD(tvars, 1)),

 value(WORD(tvars, 7))

 call process_transt Tbcre Tbname value(WORD(tvars, 1)),

 value(WORD(tvars, 7))

 call process_transv Tbcre Tbname value(WORD(tvars, 1)),

 value(WORD(tvars, 7))

 call process_tranrel Tbcre Tbname value(WORD(tvars, 1)),

 value(WORD(tvars, 7))

 End

 End

 Address ISPEXEC 'TBTOP 'tbnam

 call process_crejob

Return

/* SYSRELS */

process_rel: PROCEDURE EXPOSE RepeatP LineForRepeatP. ,

 RepeatDR LineForRepeatDR. ,

 RepeatAR LineForRepeatAR. DB2V

 parse arg Tbc Tbn Coln Keys

 If Keys > Ø Then Do

 SQLQUERY = "SELECT CREATOR, TBNAME, RELNAME ",

 "FROM SYSIBM.SYSRELS ",

 "WHERE REFTBCREATOR = '" || Tbc || "' AND ",

 "REFTBNAME = '" || Tbn || "' ",

 "ORDER BY 1, 2, 3"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 fnd1 = Ø

 Do j = 1 To RepeatP

 If LineForRepeatP.j = CREATOR.i||" "||TBNAME.i||" "||,

 RELNAME.i||" 1"

 Then fnd1 = 1

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

 End

 if fnd1 = Ø Then Do

 RepeatP = RepeatP + 1

 LineForRepeatP.Ø = RepeatP

 LineForRepeatP.RepeatP = CREATOR.i||" "||TBNAME.i||" "||,

 RELNAME.i||" 1"

 End

 End

 End

 SQLQUERY = "SELECT a.CREATOR, a.TBNAME, a.RELNAME ",

 "FROM SYSIBM.SYSRELS a, SYSIBM.SYSFOREIGNKEYS b ",

 "WHERE a.CREATOR = b.CREATOR AND ",

 "a.TBNAME = b.TBNAME AND ",

 "a.RELNAME = b.RELNAME AND ",

 "a.CREATOR = '" || Tbc || "' AND ",

 "a.TBNAME = '" || Tbn || "' AND ",

 "b.COLNO = " || Coln ||,

 " ORDER BY 1, 2, 3"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 fnd1 = Ø

 Do j = 1 To RepeatP

 If LineForRepeatP.j = CREATOR.i||" "||TBNAME.i||" "||,

 RELNAME.i||" 1"

 Then fnd1 = 1

 End

 if fnd1 = Ø Then Do

 RepeatP = RepeatP + 1

 LineForRepeatP.Ø = RepeatP

 LineForRepeatP.RepeatP = CREATOR.i||" "||TBNAME.i||" "||,

 RELNAME.i||" 1"

 End

 End

 SQLQUERY = "SELECT CREATOR, TBNAME, RELNAME ",

 "FROM SYSIBM.SYSRELS ",

 "WHERE (CREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "') OR ",

 "(REFTBCREATOR = '" || Tbc || "' AND ",

 "REFTBNAME = '" || Tbn || "') ",

 "ORDER BY 1, 2, 3"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 fnd1 = Ø

 Do j = 1 To RepeatP

 If Left(LineForRepeatP.j, Length(LineForRepeatP.j) - 2) = ,

 CREATOR.i||" "||TBNAME.i||" "||RELNAME.i

 Then fnd1 = 1

 End

 if fnd1 = Ø Then Do

 RepeatP = RepeatP + 1

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 LineForRepeatP.Ø = RepeatP

 LineForRepeatP.RepeatP = CREATOR.i||" "||TBNAME.i||" "||,

 RELNAME.i||" Ø"

 End

 End

 Do i = 1 To RepeatP

 Tc = WORD(LineForRepeatP.i, 1)

 Tb = WORD(LineForRepeatP.i, 2)

 Tr = WORD(LineForRepeatP.i, 3)

 RepeatDR = RepeatDR + 1

 LineForRepeatDR.Ø = RepeatDR

 LineForRepeatDR.RepeatDR = "ALTER TABLE "||Tc||"."||Tb||,

 " DROP FOREIGN KEY "||Tr||";"

 SQLQUERY = "SELECT A.REFTBCREATOR, A.REFTBNAME, A.DELETERULE, ",

 "B.COLNAME, B.COLNO, B.COLSEQ ",

 "FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B ",

 "WHERE A.CREATOR = B.CREATOR AND ",

 "A.TBNAME = B.TBNAME AND ",

 "A.RELNAME = B.RELNAME AND ",

 "A.CREATOR = '" || Tc || "' AND ",

 "A.TBNAME = '" || Tb || "' AND ",

 "A.RELNAME = '" || Tr || "' ",

 "ORDER BY 1, 2, 6"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 col = "("

 Do r = 1 To _nrows

 If r > 1 Then col = col || ", " || STRIP(COLNAME.r)

 Else Do

 col = col || STRIP(COLNAME.r)

 ref = STRIP(REFTBCREATOR.r)||"."||STRIP(REFTBNAME.r)

 Select

 When DELETERULE.r = "A" Then refr = "NO ACTION"

 When DELETERULE.r = "C" Then refr = "CASCADE"

 When DELETERULE.r = "N" Then refr = "SET NULL"

 When DELETERULE.r = "R" Then refr = "RESTRICT"

 Otherwise

 End

 End

 End

 col = col || ")"

 If WORD(LineForRepeatP.i, 4) = "1" Then comm = "-- "

 Else comm = ""

 RepeatAR = RepeatAR + 1

 LineForRepeatAR.Ø = RepeatAR

 LineForRepeatAR.RepeatAR = comm||"ALTER TABLE "||Tc||"."||Tb||,

 " ADD FOREIGN KEY "||Tr

 RepeatAR = RepeatAR + 1

 LineForRepeatAR.Ø = RepeatAR

 LineForRepeatAR.RepeatAR = comm||" "||col

 RepeatAR = RepeatAR + 1

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

 LineForRepeatAR.Ø = RepeatAR

 LineForRepeatAR.RepeatAR = comm||" REFERENCES "||ref

 RepeatAR = RepeatAR + 1

 LineForRepeatAR.Ø = RepeatAR

 LineForRepeatAR.RepeatAR = comm||" ON DELETE "||refr||";"

 End

Return

/* SYSTABLES/SYSTABLESPACE */

process_tab: PROCEDURE EXPOSE RepeatT LineForRepeatT. DB2V

 parse arg Tbc Tbn

 SQLQUERY = "SELECT a.PARTITION, a.TSNAME, a.DBNAME, a.PQTY, ",

 "a.SQTY, a.STORNAME, a.PCTFREE, a.COMPRESS, ",

 "b.BPOOL, b.PARTITIONS, ",

 "b.LOCKRULE, b.PGSIZE, b.ERASERULE, ",

 "b.CLOSERULE, b.LOCKMAX, ",

 "b.LOCKPART, b.ENCODING_SCHEME ",

 "FROM SYSIBM.SYSTABLEPART a, ",

 "SYSIBM.SYSTABLESPACE b, ",

 "SYSIBM.SYSTABLES c ",

 "WHERE a.PARTITION > Ø AND ",

 "a.DBNAME = b.DBNAME AND ",

 "a.TSNAME = b.NAME AND ",

 "b.DBNAME = c.DBNAME AND ",

 "b.NAME = c.TSNAME AND ",

 "c.CREATOR = '" || Tbc || "' AND ",

 "c.NAME = '" || Tbn || "' ",

 "ORDER BY 3, 2, 1"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = Ø Then Do

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "DROP TABLE "||Tbc||"."||Tbn||";"

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "COMMIT;"

 End

 Else Do

 Do i = 1 To _nrows

 If i = 1 Then Do

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "DROP TABLESPACE "||,

 STRIP(DBNAME.i)||"."||,

 STRIP(TSNAME.i)||";"

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "COMMIT;"

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 LineForRepeatT.RepeatT = "CREATE TABLESPACE "||,

 STRIP(TSNAME.i)||,

 " IN "||STRIP(DBNAME.i)||,

 " NUMPARTS "||PARTITIONS.i||"("

 If LOCKMAX.i = -1 Then LMAX = " LOCKMAX SYSTEM"

 Else LMAX = ""

 If LOCKPART.i = "Y" Then LPAR = "YES"

 Else LPAR = "NO"

 If CLOSERULE.i = "Y" Then CLO = "YES"

 Else CLO = "NO"

 Select

 When LOCKRULE.i = "A" Then LSZ = "ANY"

 When LOCKRULE.i = "L" Then LSZ = "LOB"

 When LOCKRULE.i = "P" Then LSZ = "PAGE"

 When LOCKRULE.i = "R" Then LSZ = "ROW"

 When LOCKRULE.i = "S" Then LSZ = "TABLESPACE"

 When LOCKRULE.i = "T" Then LSZ = "TABLE"

 Otherwise

 End

 Select

 When ENCODING_SCHEME.i = "A" Then CCS = "ASCII"

 When ENCODING_SCHEME.i = "U" Then CCS = "UNICODE"

 Otherwise CCS = "EBCDIC"

 End

 BPL = STRIP(BPOOL.i)

 End

 If COMPRESS.i = "Y" Then COMPR = "YES"

 Else COMPR = "NO"

 If i < _nrows Then COMPR = COMPR || ","

 Else COMPR = COMPR || ")"

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "PART "||STRIP(PARTITION.i)||,

 " USING STOGROUP "||,

 STRIP(STORNAME.i)||,

 " PRIQTY "||(PQTY.i * PGSIZE.i)||,

 " SECQTY "||(SQTY.i * PGSIZE.i)||,

 " PCTFREE "||STRIP(PCTFREE.i)||,

 " COMPRESS "||COMPR

 End

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "BUFFERPOOL "||BPL||,

 " LOCKSIZE "||LSZ||,

 LMAX||,

 " CLOSE "||CLO||,

 " CCSID "||CCS||,

 " LOCKPART "||LPAR||";"

 End

Return

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

/* SYSCOLUMNS/SYSFIELDS/SYSCHECKS */

process_col: PROCEDURE EXPOSE ss RepeatR LineForRepeatR. DB2V

 parse arg Tbc Tbn ColOld ColNew

 SQLQUERY = "SELECT DEFAULT, DEFAULTVALUE, FLDPROC, ",

 "REMARKS, NAME ",

 "FROM SYSIBM.SYSCOLUMNS ",

 "WHERE TBCREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "' AND ",

 "COLNO = " || ColOld

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 If DEFAULT.1 = "1" | DEFAULT.1 = "2" | DEFAULT.1 = "3" |,

 DEFAULT.1 = "4" | DEFAULT.1 = "5" Then Do

 ss = ss || " WITH DEFAULT"

 If DEFAULT.1 = "1" | DEFAULT.1 = "5"

 Then ss = ss||" '"||STRIP(SUBSTR(DEFAULTVALUE.1,1,254))||"'"

 Else If DEFAULT.1 = "2" | DEFAULT.1 = "3" | DEFAULT.1 = "4"

 Then ss = ss||" "||STRIP(SUBSTR(DEFAULTVALUE.1,1,254))

 End

 If FLDPROC.1 = "Y" Then Do

 SQLQUERY = "SELECT FLDPROC, PARMLIST ",

 "FROM SYSIBM.SYSFIELDS ",

 "WHERE TBCREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "' AND ",

 "COLNO = " || ColOld

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 ss = ss || " FIELDPROC " || STRIP(FLDPROC.1)

 If SUBSTR(PARMLIST.1, 1, 1) ¬= " "

 Then ss = ss || "(" || STRIP(PARMLIST.1) || ")"

 End

 End

 If SUBSTR(STRIP(REMARKS.1), 1, 1) ¬= " " Then Do

 RepeatR = RepeatR + 1

 LineForRepeatR.Ø = RepeatR

 LineForRepeatR.RepeatR = "COMMENT ON COLUMN " ||,

 Tbc||"."||Tbn||"."||ColNew||,

 " IS '"||STRIP(REMARKS.1)||"';"

 End

 SQLQUERY = "SELECT A.CHECKNAME, A.CHECKCONDITION ",

 "FROM SYSIBM.SYSCHECKS A, SYSIBM.SYSCHECKDEP B ",

 "WHERE A.TBOWNER = '" || Tbc || "' AND ",

 "A.TBNAME = '" || Tbn || "' AND ",

 "B.COLNAME = '" || STRIP(NAME.1) || "' AND ",

 "A.TBOWNER = B.TBOWNER AND ",

 "A.TBNAME = B.TBNAME AND ",

 "A.CHECKNAME = B.CHECKNAME"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 COND = STRIP(CHECKCONDITION.1)

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 If ColNew ¬= STRIP(NAME.1)

 Then COND = TRANSLATE(COND, ColNew, NAME.1)

 ss = ss||" CONSTRAINT "||STRIP(CHECKNAME.1)||" CHECK("||,

 COND||")"

 End

 End

Return

/* AUX TABLES */

process_aux: PROCEDURE EXPOSE RepeatA LineForRepeatA. DB2V

 parse arg Tbc Tbn ColNew ColOld

 SQLQUERY = "SELECT A.COLNAME, A.AUXTBOWNER, A.AUXTBNAME, ",

 "B.DBNAME, B.TSNAME, C.CREATOR, C.NAME ",

 "FROM SYSIBM.SYSAUXRELS A, ",

 "SYSIBM.SYSTABLES B, ",

 "SYSIBM.SYSINDEXES C, ",

 "SYSIBM.SYSCOLUMNS D ",

 "WHERE A.TBOWNER = '" || Tbc || "' AND ",

 "A.TBNAME = '" || Tbn || "' AND ",

 "A.AUXTBOWNER = B.CREATOR AND ",

 "A.AUXTBNAME = B.NAME AND ",

 "A.AUXTBOWNER = C.TBCREATOR AND ",

 "A.AUXTBNAME = C.TBNAME AND ",

 "A.TBOWNER = D.TBCREATOR AND ",

 "A.TBNAME = D.TBNAME AND ",

 "D.COLNO = " || ColOld || " AND ",

 "A.COLNAME = D.NAME"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "CREATE LOB TABLESPACE "||STRIP(TSNAME.i)

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "IN "||STRIP(DBNAME.i)

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "LOG NO;"

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "CREATE AUX TABLE "||,

 STRIP(AUXTBOWNER.i)||"."||STRIP(AUXTBNAME.i)

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "IN "||STRIP(DBNAME.i)||"."||,

 STRIP(TSNAME.i)

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "STORES "||Tbc||"."||Tbn

 RepeatA = RepeatA + 1

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "COLUMN "||ColNew||";"

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "CREATE UNIQUE INDEX "||,

 STRIP(CREATOR.i)||"."||STRIP(NAME.i)

 RepeatA = RepeatA + 1

 LineForRepeatA.Ø = RepeatA

 LineForRepeatA.RepeatA = "ON "||,

 STRIP(AUXTBOWNER.i)||"."||STRIP(AUXTBNAME.i)||";"

 End

Return

/* SYSTABLES/SYSSYNONYMS */

process_tb: PROCEDURE EXPOSE RepeatT LineForRepeatT. DB2V ,

 RepeatR LineForRepeatR.

 parse arg Tbc Tbn

 SQLQUERY = "SELECT DBNAME, TSNAME, EDPROC, VALPROC, REMARKS, ",

 "CLUSTERTYPE, AUDITING, DATACAPTURE, ",

 "ENCODING_SCHEME ",

 "FROM SYSIBM.SYSTABLES ",

 "WHERE CREATOR = '" || Tbc || "' AND ",

 "NAME = '" || Tbn || "'"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "IN "|| STRIP(DBNAME.1)||"."||,

 STRIP(TSNAME.1)

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 Select

 When ENCODING_SCHEME.1 = "A" Then CCS = "ASCII"

 When ENCODING_SCHEME.1 = "U" Then CCS = "UNICODE"

 Otherwise CCS = "EBCDIC"

 End

 LineForRepeatT.RepeatT = "CCSID " || CCS

 If EDPROC.1 ¬= " " Then Do

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "EDITPROC " || STRIP(EDPROC.1)

 End

 If VALPROC.1 ¬= " " Then Do

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "VALIDPROC " || STRIP(VALPROC.1)

 End

 If CLUSTERTYPE.1 ¬= " " Then Do

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 LineForRepeatT.RepeatT = "WITH RESTRICT ON DROP"

 End

 Select

 When AUDITING.1 = "A" Then AUD = "AUDIT ALL"

 When AUDITING.1 = "C" Then AUD = "AUDIT CHANGE"

 Otherwise AUD = " "

 End

 If AUD ¬= " " Then Do

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = AUD

 End

 If SUBSTR(STRIP(REMARKS.1), 1, 1) ¬= " " Then Do

 RepeatR = RepeatR + 1

 LineForRepeatR.Ø = RepeatR

 LineForRepeatR.RepeatR = "COMMENT ON TABLE "||,

 Tbc||"."||Tbn||" IS '"||,

 STRIP(REMARKS.1)||"';"

 End

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = ";"

 SQLQUERY = "SELECT CREATOR, NAME ",

 "FROM SYSIBM.SYSSYNONYMS ",

 "WHERE TBCREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "'"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 RepeatT = RepeatT + 1

 LineForRepeatT.Ø = RepeatT

 LineForRepeatT.RepeatT = "CREATE SYNONYM " ||,

 STRIP(CREATOR.i)||"."||,

 STRIP(NAME.i)||" FOR "||,

 tbc||"."||Tbn||";"

 End

 End

Return

Editor’s note: this article will be concluded next month.

Nikola Lazovic
DB2 System Administrator
Postal Savings Bank (Serbia and Montenegro) © Xephon 2004

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

DB2 UDB LUW – High Performance Unload

This article looks at the High Performance Unload tool, which
is part of the DB2 toolset for UDB (from the start of 2004, there
are five tools available: Web Query Tool, Table Editor,
Performance Expert, Recovery Expert, and High Performance
Unload).

The High Performance Unload (HPU) tool allows you to
unload DB2 tables faster than by using the DB2 EXPORT
utility. The tool is available for Windows and pSeries platforms
(not iSeries).

How does the tool work? Well, it bypasses the DB2 engine and
directly accesses the underlying files, which hold the DB2
data. This type of accessing imposes some restrictions. The
data that you want to extract is selected by issuing a standard
type of SQL SELECT query. However, the type of SQL that you
can use with HPU must be ‘simple’. And what does that mean?
It’s easier to look at what makes a ‘complex’ query. Well,
examples of a complex SQL query are when you join two
tables, when you try to use an ORDER BY clause, or if you try
to select from a view. I hope you can see the pattern here –
anything that involves manipulating the underlying data will be
complex SQL. This will become more evident in the examples
that we will look at.

Installing the code is relatively easy, and if you install it on a
Windows machine, you need to reboot the box before being
able to use the tool. I installed the HPU tool (V2.1) on a
Windows XP machine running DB2 UDB V8.1 FP2 and used
the db2admin userid throughout.

When you have installed the code (and rebooted on Windows),
you will see another option at the bottom of the list when you
right click on a table name from the control centre. This option
is the Unload Table option, and it is a wizard that will take you
through a series of panels to determine what you want to

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

unload and any SQL that you want to execute, and then
execute the command for you. I will be showing you how to use
the tool by issuing commands (you don’t need to be in a CLP
screen to issue these commands, you can issue them from an
ordinary C:> prompt). Although HPU bypasses the DB2 engine,
the engine must still be active for the tool to work.

At installation time a configuration file is created (C:\Program
Files\IBM\hpu\V2.1\cfg\db2hpu.cfg), which contains the default
database and instance names, as well as parameters affecting
the tool’s performance. Check the manual for these parameters.

You can issue HPU commands from a command line in two
modes – direct command mode and control file mode. The
advantage of using the direct mode is that the command is
simple. The disadvantage is that you cannot specify any SQL
processing. If you want to specify SQL processing, then you
need to use a control file and specify the SQL in that file.

You can see all the options available for the direct mode
simply by issuing the HPU command from the prompt:

C:\>HPU

HPU ensures that the data it unloads is consistent by quiescing
the table before commencing the unload. This action is
controlled by the QUIESCE and LOCK control file parameters.
The default for both parameters is YES, which means that
HPU tells DB2 that it is doing an unload of the table, and DB2
takes a quiesce share lock on the table for the duration of the
unload. If you don’t want to take these types of locks, you
could unload the table from a DB2 back-up. This is discussed
in more detail in the examples.

So let’s look at some examples. I will start by showing some
simple examples and then show some complex SQL query
examples (ie non-simple SQL). I will use the tables in the
SAMPLE database so that you can try the examples as well.

As a first example, let’s just try to extract all the rows from the
EMPLOYEE table and write the rows to a file called

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

e:\temp\out.txt. So, we can issue the direct command as
follows:

C:\>db2hpu -d sample -t db2admin.employee -o e:\temp\out.txt

We have to specify the database that contains the EMPLOYEE
table using the -d parameter (SAMPLE in this case), and the
fully qualified table name we want to unload using the -t
parameter (db2admin.employee in this case). The output file
is specified using the -o parameter. It’s as simple as that!

We could have used a control file instead (by specifying the -
f parameter on the HPU command), and the command would
then have been:

C:\>db2hpu -f hpuØ1.ctl

And the file hpu01.txt would contain:

global connect to sample;

unload tablespace

select * from db2admin.employee;

output ("c:\temp\out.txt" replace) format del ;

We need to specify the database that we want to connect to,
the SQL that we want to execute (in our case select * from
db2admin.employee), and the output file. Here we have also
specified that we want any existing output file overwritten and
the format of the output. We could have specified IXF as the
format.

The above example illustrates a simple SQL query. What
would happen if we had specified select * from
db2admin.employee ORDER by 1? This would be considered
a complex query and if you tried to run the HPU command it
would return:

INZUØ63W Unsupported SELECT, will attempt DB2 processing

SQL31Ø4N The Export utility is beginning to export data to file

"c:\temp\out.txt".

SQL31Ø5N The Export utility has finished exporting "32" rows.

INZU413I HPU successfully ended: Real time -> ØmØ.ØØØØØØs

What has happened here is that HPU has decided that it

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

cannot satisfy our SQL request by going directly to the
underlying data files, and has therefore sent it to DB2 to
handle. DB2 has invoked the EXPORT utility. I think it is also
possible for DB2 to perform just a straight SELECT rather than
use the EXPORT utility. This option of whether to send a
complex query to the DB2 engine or not is controlled by a
control file parameter called DB2 and its default value is YES
(which means do send it to DB2). You can override this value
in your control file as follows:

global connect to sample;

unload tablespace

DB2 NO

select * from db2admin.employee;

output ("c:\temp\out.txt" replace) format del ;

This control file tells HPU that if it cannot handle the SQL
query, the command should abend (this is what the DB2 NO
line does), then you would get the prompt back without any
error messages(!):

C:\>db2hpu -f hpuØ1.ctl

 ----+----1--------+---

ØØØØØ1 global connect

ØØØØØ1 global connect to sample;

ØØØØØ2 unload tablespace

ØØØØØ3 DB2 NO

ØØØØØ4 select * from db2admin.employee order by 1;

ØØØØØ5 output ("c:\temp\out.txt" replace) format del ;

C:>

If you try to syntax check the above control file (using the –n
parameter), you get back just the command prompt . If you
delete the DB2 NO line, you get what I would expect, which is
a message saying, ‘INZU426I Control file systax is correct’.
This is just something to be aware of (and note the spelling of
‘syntax’)!

As mentioned previously, you can also unload data from DB2
back-ups (full on-line and off-line back-ups only, not incremental
or delta ones). This means that you do not need to put a lock
on your production table to extract rows from it. The control file

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

to do this is shown below:

unload tablespace

backup

"c:\db2_backups\SAMPLE.Ø\DB2\NODEØØØØ\CATNØØØØ\yyyymmdd\hhmmss.ØØ1"

select * from db2admin.employee;

output ("e:\temp\out.txt" replace) format del ;

The above assumes that our back-up is in the c:\db2_backups
directory. You obviously need to put in the correct date/
timestamp.

Now let’s look at some other functions that the HPU tool has.
You can also use the tool to sample data in a table. For
example, say we wanted to extract only one row in every 1,000
from the EMPLOYEE table. We would then add an INTERVAL
1,000 line before the SELECT line, as shown below:

interval 1ØØØ

select * from db2admin.employee ;

(The EMPLOYEE table doesn’t have 1,000 rows in it – I have
just shown the control file contents as an illustration.)

We could also skip the first 2,000 rows in the table by using the
SKIP parameter, as shown below:

skip 2ØØØ

select * from db2admin.employee ;

You can also unload LOBs to different files. This is shown in
the control file example sample04.ctl in the C:\Program
Files\IBM\hpu\V2.1\sample directory.

Finally, it is possible to unload data from one table to one or
many output files with just one pass through the data. As
example of such a control file is shown below. We are
extracting data from the EMPLOYEE table in two different
formats, DEL and IXF, with one pass through the data.

global connect to sample;

unload tablespace

select * from db2admin.employee ;

output ("c:\TEMP\OUT_EXØ4.TXT" replace) format del

select * from db2admin.employee ;

output ("c:\TEMP\OUT_EXØ4A.TXT" replace) format ixf;

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Running this control file will generate the following output:

INZU41ØI HPU utility has unloaded 32 rows on xxx host for

DB2ADMIN.EMPLOYEE in c:\TEMP\OUT_EXØ4.TXT.

INZU41ØI HPU utility has unloaded 32 rows on xxx host for

DB2ADMIN.EMPLOYEE in c:\TEMP\OUT_EXØ4A.TXT.

INZU413I HPU successfully ended: Real time -> ØmØ.ØØØØØØs

In the paragraphs below I present some answers to common
questions asked about the tool.

Can I use HPU on a multi-node database? Yes you can, but
you need to install the HPU code on each physical node. If you
haven’t installed the code on each node, you must use the
EXPORT utility.

Are there any HPU manuals? Yes. The manual you want is
IBM DB2 High Performance Unload for Multiplatforms and
Workgroups User’s Guide Version 2 Release 1 (SC27-1623-
03).

Where can I find control file examples? The manual is a good
source of examples, as are the Installation Verification Program
samples located in C:\Program Files\IBM\hpu\V2.1\sample.

I hope I have shown what the High Performance Unload tool
for LUW is and how to use it. It has some powerful features,
especially unloading data from a back-up and sampling the
data in a table, and is a welcome addition to the DBA’s arsenal.

C Leonard
Freelance Consultant (UK) © Xephon 2004

DB2 news

Alpha Software has announced Version 6 of
Alpha 5, its database and application
development tool.

Version 6 brings point-and-click development
to other databases, including DB2, Oracle,
SQL Server and MySQL, or any database that
has an ADO component.

The product can be used to simplify the process
of creating database-driven Web sites.

For further information contact:
Alpha Software, 83 Cambridge St, Burlington,
MA 01803-4483, USA.
Tel: (781) 229 4500.
URL: http://www.alphasoftware.com/
products/a5v5/overview.asp.

* * *

Bus-Tech has announced the next release of
Mainframe Appliance for Storage (MAS) with
EMC Centera Support. This release of Bus-
Tech’s MAS, a tape-on-disk controller, now
includes support for DB2 as a repository for
MAS metadata.

Mainframe Appliance for Storage with EMC
Centera Support provides direct mainframe
connection to EMC’s Centera, allowing
mainframe tape volumes to be stored as objects
on EMC’s content addressable storage. With
this latest version of the MAS, metadata
maintained by MAS is stored directly on the
IBM or compatible mainframe using DB2. This
allows customers to incorporate back-up and
redundancy of the metadata into their existing
mainframe protection policies.

When storing objects on EMC Centera the
MAS maintains metadata, which cross-
references mainframe tape VOLSERs to
Centera objects. The MAS later references this

metadata in order to retrieve tape volumes from
Centera in response to mount requests received
from the mainframe. Using DB2 Connect
software, MAS now stores its metadata directly
on the mainframe. With this latest addition,
protection of the metadata can then easily be
incorporated into normal mainframe back-up
processes of the DB2 database.

For further information contact:
Bus-Tech, 129 Middlesex Turnpike,
Burlington, MA 01803, USA.
Tel: (781) 272 8200.

URL: http://www.bustech.com/products/
mainframe-appliance-storage.asp.

* * *

CipherSoft has announced Version 5.0 of
Exodus, its automated solution for customers
who want to migrate their complex Oracle
business logic into Java source code and DB2-
compliant SQL, ready for deployment with
DB2.

Exodus 5.0 can automatically migrate Oracle
PL/SQL packages, procedures, functions, and
triggers to DB2 Stored Procedure language.

It migrates Oracle SQL code and server side
PL/SQL into Java source code, ready to be
deployed together with DB2. Exodus also
supports dynamic Oracle SQL within the DB2
environment. Exodus has the ability to induce
automatic generation of the entire static interface
components required to deploy Java code
within the DB2 environment.

For further information contact:
CipherSoft, #205, 279 MidPark Way, South
East, Calgary, Alberta, T2X 1M2, Canada.
Tel: (403) 256 5699.
URL: http://www.ciphersoftinc.com.

x xephon

	Perl script to force users off a DB2 UDB LUW database
	SQL scalar functions - part 2
	A strategy for image copying large partitioned tablespaces using Real-Time Statistics
	Modify column attributes
	DB2 UDB LUW - High Performance Unload
	DB2 news

