
© Xephon Inc 2004

October 2004

144

In this issue

3 Materialized query tables and
how to use them

6 Modify column attributes –
part 2

18 Business rules as code objects
30 Using dynamic SQL for

maximum flexibility
45 November 2001 – October 2004

index
47 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 2000 issue, are available separately
to subscribers for $33.75 (£22.50) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Materialized query tables and how to use them

This article discusses what Materialized Query Tables (MQTs)
are, and how you can use them. They were introduced in DB2
UDB V8.1. In V7 we had the concept of summary tables, which
were created using a GROUP BY statement (they were actually
introduced in V6).

I won’t discuss summary tables in great detail, but I will show
how to create a summary table so that we can compare that
process with how to create MQTs. Say we wanted to create a
REFRESH DEFERRED summary table (ie user maintained)
called sum14, based on the EMPLOYEE table in the SAMPLE
database, and grouped on the workdept column. We would
issue:

create summary table sum14

as

(select distinct(workdept) as dept, sum(bonus) as bon

from employee

group by workdept)

data initially deferred

refresh deferred

Note: I ran all the SQL in this article on a Windows 2000
machine running DB2 UDB 8.1 FP2 using the DB2ADMIN userid
and the SAMPLE database.

Because we created the summary table with refresh deferred
specified, we need to populate it using the command below:

>db2 refresh table sum14

We can now select from the table:

>db2 select * from sum14

DEPT BON

---- ---------------------------------

AØØ 25ØØ.ØØ

BØ1 8ØØ.ØØ

CØ1 19ØØ.ØØ

D11 44ØØ.ØØ

D21 29ØØ.ØØ

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

EØ1 8ØØ.ØØ

E11 21ØØ.ØØ

E21 15ØØ.ØØ

 8 record(s) selected.

You can see the use of the GROUP BY clause. Obviously you
wouldn’t create a summary table on a 32-row table – I only used
that table to show the principle.

So let’s move on to MQTs. What is the difference between a
summary table and an MQT? Well, with an MQT you do not need
to specify a GROUP BY clause (although you could do if you
wanted to!). Just like summary tables, MQTs can be defined as
system maintained or user maintained.

The SQL reference manual states “A materialized query table
whose fullselect contains a GROUP BY clause is summarizing
data from the tables referenced in the fullselect. Such a
materialized query table is also known as a summary table. A
summary table is a specialized type of materialized query
table”.

Let’s use the above summary table and create the
‘corresponding’ MQT. The SQL would look like:

create table mqt14a

as

(select distinct(workdept) as dept, sum(bonus) as bon

from employee

group by workdept)

data initially deferred

refresh deferred

To populate and select from the mqt14a table you would use:

>db2 refresh table mqt14a

>db2 select * from mqt14a

As you can see, we do not have to supply the SUMMARY
keyword. I think this just allows backward compatibility with V7
summary tables.

One of the real benefits of MQTs is that you don’t need a
GROUP BY clause, as shown below:

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

create table mqt14b

as

(select * from employee)

data initially deferred

refresh deferred

To populate and select from the table you would use:

>db2 refresh table mqt14b

>db2 select * from mqt14b

So why would I want to do this – aren’t I just copying one table
into another? Yes I am! There are two advantages to this.
Firstly you can make the second table a read-only table, which
you might only want to refresh overnight. Secondly, if you are
using the Information Integrator functionality (introduced with
UDB DB2 V8.1) you could set up an MQT based on a non-DB2
remote source.

Let’s look at this in more detail. Say we have defined an Excel
spreadsheet as a data source using Information Integrator
V8.1 and created a nickname for this data source called
restnum$. We could create an MQT based on this nickname as
follows:

create table restmqt

as

(select * from restnum$)

data initially deferred

refresh deferred

The table restmqt will be in ‘check pending’ state. To take it out
of this state we would issue:

>db2 SET INTEGRITY FOR DB2ADMIN.restmqt IMMEDIATE CHECKED

Now we can select from the MQT:

>db2 select * from restmqt

What I have shown here is that you can create an MQT over a
nickname, which is itself a reference to an Excel spreadsheet.

You can create an index on the MQTs and sample their contents
from the Control Center etc.

As with the V7 summary tables, you would generally not access

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

MQTs directly from a query – you would still include the base
table name in your query and the DB2 optimizer would decide
if it was appropriate to use the MQT.

The introduction of materialized query tables in V8.1 has
expanded the functionality of the V7 summary tables by allowing
you to create them without using a GROUP BY parameter. You
can also create an MQT over a federated nickname, which
enhances your ability to access non-DB2 source data from a
DB2 query.

C Leonard
Freelance Consultant (UK) © Xephon 2004

Modify column attributes – part 2

This month we conclude the code to modify column attributes.

/* SYSINDEXES/SYSINDEXPART/SYSKEYS */

process_idx: PROCEDURE EXPOSE RepeatI LineForRepeatI. DB2V

 parse arg Tbc Tbn

 i = 1

 SQLQUERY = "SELECT A.PARTITION, A.IXNAME, A.IXCREATOR, ",

 "A.PQTY, A.SQTY, A.STORNAME, ",

 "STRIP(A.LIMITKEY) AS LK, A.FREEPAGE, ",

 "A.PCTFREE, A.SPACE, ",

 "B.UNIQUERULE, B.CLUSTERING, B.BPOOL, B.PGSIZE, ",

 "B.ERASERULE, B.CLOSERULE, B.INDEXTYPE, ",

 "C.COLNAME, C.COLNO, C.ORDERING, B.PIECESIZE, ",

 "D.COLTYPE ",

 "FROM SYSIBM.SYSINDEXPART A, ",

 "SYSIBM.SYSINDEXES B, ",

 "SYSIBM.SYSKEYS C, ",

 "SYSIBM.SYSCOLUMNS D ",

 "WHERE B.TBCREATOR = '" || Tbc || "' AND ",

 "B.TBNAME = '" || Tbn || "' AND ",

 "B.CREATOR = A.IXCREATOR AND ",

 "B.NAME = A.IXNAME AND ",

 "A.IXCREATOR = C.IXCREATOR AND ",

 "A.IXNAME = C.IXNAME AND ",

 "B.TBCREATOR = D.TBCREATOR AND ",

 "B.TBNAME = D.TBNAME AND ",

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 "C.COLNAME = D.NAME ",

 "ORDER BY 3, 2, 1, 19"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do While (i <= _nrows)

 If UNIQUERULE.i = "D" Then uniq = " "

 Else uniq = " UNIQUE "

 RepeatI = RepeatI + 1

 LineForRepeatI.Ø = RepeatI

 LineForRepeatI.RepeatI = "CREATE TYPE "||INDEXTYPE.i||uniq||,

 "INDEX "||STRIP(IXCREATOR.i)||"."||,

 IXNAME.i||" ON "||Tbc||"."||Tbn

 pomcre = IXCREATOR.i

 pomname = IXNAME.i

 collist = ""

 partN = Ø

 j = 1

 pompart = Ø

 If PARTITION.i = Ø Then Do

 sg = "USING STOGROUP " || STRIP(STORNAME.i)

 pq = " PRIQTY "||PQTY.i * PGSIZE.i / 1Ø24

 sq = " SECQTY "||SQTY.i * PGSIZE.i / 1Ø24

 fr = "PCTFREE "||PCTFREE.i

 bp = "BUFFERPOOL "||BPOOL.i

 If CLOSERULE.i = "N" Then clo = "CLOSE NO"

 Else clo = "CLOSE YES"

 If ERASERULE.i = "N" Then def = "DEFER NO"

 Else def = "DEFER YES"

 piec = "PIECESIZE " || STRIP(PIECESIZE.i) || "K;"

 End

 Do While (i <= _nrows & IXCREATOR.i = pomcre & IXNAME.i = pomname)

 If PARTITION.i < 2 Then Do

 If j = 1 Then Do

 collist = "(" || COLNAME.i || " "

 If ORDERING.i = "A"

 Then collist = collist || "ASC"

 Else collist = collist || "DESC"

 End

 Else Do

 collist = collist || ", " || COLNAME.i || " "

 If ORDERING.i = "A"

 Then collist = collist || "ASC"

 Else collist = collist || "DESC"

 End

 End

 If PARTITION.i > Ø & pompart ¬= PARTITION.i Then Do

 pompart = PARTITION.i

 If C2X(Left(LK.i, 1)) = "8Ø"

 Then Do

 a = C2X(LK.i)

 If Index(a, "FF") > Ø

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

 Then a = Left(a, Index(a, "FF") - 1)

 a = x2b(a)

 b = \ substr(a, 1, 1) || substr(a, 2, length(a) - 1)

 c = b2x(b)

 c = x2d(c,8)

 End

 Else c = LK.i

 If COLTYPE.i = "CHAR" |,

 COLTYPE.i = "VARCHAR" |,

 COLTYPE.i = "LONGVAR" |,

 COLTYPE.i = "DATE" |,

 COLTYPE.i = "TIME" |,

 COLTYPE.i = "TIMESTMP" Then c = "'" || c || "'"

 If CLOSERULE.i = "N" Then clo = "NO"

 Else clo = "YES"

 If ERASERULE.i = "N" Then def = "NO"

 Else def = "YES"

 partN = partN + 1

 LineForpartN.Ø = partN

 LineForpartN.partN = "PART "||PARTITION.i||" VALUES("||,

 c||") USING STOGROUP "||,

 STRIP(STORNAME.i)||,

 " PRIQTY "||PQTY.i * PGSIZE.i / 1Ø24||,

 " SECQTY "||SQTY.i * PGSIZE.i / 1Ø24||,

 " PCTFREE "||PCTFREE.i||,

 " BUFFERPOOL "||BPOOL.i||,

 " CLOSE "||clo||,

 " DEFER "||def

 End

 i = i + 1

 j = j + 1

 End

 collist = collist || ")"

 RepeatI = RepeatI + 1

 LineForRepeatI.Ø = RepeatI

 LineForRepeatI.RepeatI = collist

 If partN > Ø Then Do

 Do j = 1 To partN

 If j = 1 Then Do

 RepeatI = RepeatI + 1

 LineForRepeatI.Ø = RepeatI

 LineForRepeatI.RepeatI = "CLUSTER"

 End

 RepeatI = RepeatI + 1

 LineForRepeatI.Ø = RepeatI

 If j = 1 Then LineForRepeatI.RepeatI = "("||LineForpartN.j

 Else LineForRepeatI.RepeatI = LineForpartN.j

 If j = partN

 Then LineForRepeatI.RepeatI = LineForRepeatI.RepeatI || ");"

 Else LineForRepeatI.RepeatI = LineForRepeatI.RepeatI || ","

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 End

 End

 Else Do

 k = RepeatI

 RepeatI = RepeatI + 8

 LineForRepeatI.Ø = RepeatI

 Do jid = k + 1 To k + 8

 Select

 When jid = k + 1 Then LineForRepeatI.jid = sg

 When jid = k + 2 Then LineForRepeatI.jid = pq

 When jid = k + 3 Then LineForRepeatI.jid = sq

 When jid = k + 4 Then LineForRepeatI.jid = fr

 When jid = k + 5 Then LineForRepeatI.jid = bp

 When jid = k + 6 Then LineForRepeatI.jid = clo

 When jid = k + 7 Then LineForRepeatI.jid = def

 When jid = k + 8 Then LineForRepeatI.jid = piec

 Otherwise

 End

 End

 End

 End

Return

/* SYSTRIGGERS */

process_trig: PROCEDURE EXPOSE RepeatTg LineForRepeatTg. DB2V

 parse arg Tbc Tbn

 SQLQUERY = "SELECT SCHEMA, NAME, SEQNO, TEXT ",

 "FROM SYSIBM.SYSTRIGGERS ",

 "WHERE TBOWNER = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "' ",

 "ORDER BY 1, 2, 3"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 RepeatTg = RepeatTg + 1

 LineForRepeatTg.Ø = RepeatTg

 If i = _nrows

 Then LineForRepeatTg.RepeatTg = STRIP(TEXT.i) || "#"

 Else LineForRepeatTg.RepeatTg = STRIP(TEXT.i)

 End

Return

/* SYSVIEWDEP */

process_view: PROCEDURE EXPOSE RepeatV LineForRepeatV. DB2V

 parse arg Tbc Tbn Lvl

 SQLQUERY = "SELECT COUNT(*) ",

 "FROM SYSIBM.SYSVIEWDEP ",

 "WHERE BCREATOR = '" || Tbc || "' AND ",

 "BNAME = '" || Tbn || "'"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 NUMROW = _vn1.1

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

 If NUMROW = Ø Then Return;

 SQLQUERY = "SELECT DCREATOR, DNAME ",

 "FROM SYSIBM.SYSVIEWDEP ",

 "WHERE BCREATOR = '" || Tbc || "' AND ",

 "BNAME = '" || Tbn || "'"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To NUMROW

 found = Ø

 Do j = 1 To RepeatV

 If LineForRepeatV.j = DCREATOR.i || " " || DNAME.i

 Then found = 1

 End

 If found = Ø Then Do

 RepeatV = RepeatV + 1

 LineForRepeatV.Ø = RepeatV

 LineForRepeatV.RepeatV = DCREATOR.i || " " || DNAME.i

 Call process_view DCREATOR.i DNAME.i Lvl + 1

 End

 End

Return

/* SYSVIEWS */

process_view1: PROCEDURE EXPOSE RepeatV1 LineForRepeatV1. DB2V

 parse arg Tbc Tbn

 SQLQUERY = "SELECT CREATOR, NAME, SEQNO, TEXT ",

 "FROM SYSIBM.SYSVIEWS ",

 "WHERE CREATOR = '" || Tbc || "' AND ",

 "NAME = '" || Tbn || "' ",

 "ORDER BY 1, 2, 3"

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 RepeatV1 = RepeatV1 + 1

 LineForRepeatV1.Ø = RepeatV1

 If i = _nrows

 Then LineForRepeatV1.RepeatV1 = STRIP(TEXT.i) || ";"

 Else LineForRepeatV1.RepeatV1 = STRIP(TEXT.i)

 End

Return

/* SYSTABAUTH */

process_auth: PROCEDURE EXPOSE RepeatAu LineForRepeatAu. DB2V

 parse arg Tbc Tbn

 SQLQUERY = "SELECT GRANTEE, DELETEAUTH, ",

 "INSERTAUTH, SELECTAUTH, UPDATEAUTH ",

 "FROM SYSIBM.SYSTABAUTH ",

 "WHERE TCREATOR = '" || Tbc || "' AND ",

 "TTNAME = '" || Tbn|| "' AND ",

 "GRANTEETYPE = ' ' AND ",

 "GRANTEE <> USER AND ",

 "GRANTOR <> GRANTEE"

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 Do i = 1 To _nrows

 If DELETEAUTH.i = "G" | INSERTAUTH.i = "G" &,

 SELECTAUTH.i = "G" | UPDATEAUTH.i = "G"

 Then pom2 = "WITH GRANT OPTION"

 Else pom2 = ""

 If DELETEAUTH.i <> " " & INSERTAUTH.i <> " " &,

 SELECTAUTH.i <> " " & UPDATEAUTH.i <> " "

 Then pom1 = "ALL"

 Else Do

 k = Ø

 pom1 = ""

 If DELETEAUTH.i <> " " Then Do

 pom1 = pom1 || "DELETE"

 k = k + 1

 End

 If INSERTAUTH.i <> " " Then Do

 If k > Ø Then pom1 = pom1 || ", INSERT"

 Else pom1 = pom1 || "INSERT"

 k = k + 1

 End

 If SELECTAUTH.i <> " " Then Do

 If k > Ø Then pom1 = pom1 || ", SELECT"

 Else pom1 = pom1 || "SELECT"

 k = k + 1

 End

 If UPDATEAUTH.i <> " " Then Do

 If k > Ø Then pom1 = pom1 || ", UPDATE"

 Else pom1 = pom1 || "UPDATE"

 k = k + 1

 End

 End

 pom3 = ""

 gr = STRIP(GRANTEE.i)

 If STRIP(GRANTEE.i) = "PUBLIC*" Then Do

 pom3 = "AT ALL LOCATIONS"

 gr = "PUBLIC"

 End

 RepeatAu = RepeatAu + 1

 LineForRepeatAu.Ø = RepeatAu

 LineForRepeatAu.RepeatAu = "GRANT " || pom1 ||,

 " ON TABLE " || Tbc || "." || Tbn ||,

 " TO " || gr ||,

 " " || pom3 || " " || pom2

 LineForRepeatAu.RepeatAu = STRIP(LineForRepeatAu.RepeatAu) || ";"

 End

Return

/* SYSPLAN/SYSPACKAGE */

process_plpkg: PROCEDURE EXPOSE RepeatPP LineForRepeatPP. DB2V

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

 parse arg Tbc Tbn

 SQLQUERY = "SELECT 'REBIND PACKAGE (' || STRIP(COLLID) || '.' || ",

 "STRIP(NAME) || ')' ",

 "FROM SYSIBM.SYSPACKAGE A ",

 "WHERE EXISTS(SELECT * ",

 "FROM SYSIBM.SYSPACKDEP ",

 "WHERE DNAME = A.NAME AND ",

 "BQUALIFIER = '" || Tbc || "' AND ",

 "BNAME = '" || Tbn || "') ",

 "UNION ",

 "SELECT 'REBIND PACKAGE (' || STRIP(COLLID) || '.' || ",

 "STRIP(NAME) || ')' ",

 "FROM SYSIBM.SYSPACKSTMT A ",

 "WHERE STMT LIKE '%"||Tbc||"%"||Tbn||"%' AND ",

 "NOT EXISTS(SELECT * ",

 "FROM SYSIBM.SYSPACKDEP ",

 "WHERE DCOLLID = A.COLLID AND ",

 "DNAME = A.NAME) ",

 "ORDER BY 1 ",

 "OPTIMIZE FOR 1 ROW";

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows > Ø Then Do

 Do i = 1 To _nrows

 found = Ø

 Do j = 1 To RepeatPP

 If LineForRepeatPP.j = value(_vn1"."strip(i,l,'Ø'))

 Then found = 1;

 End

 If found = Ø Then Do

 RepeatPP = RepeatPP + 1

 LineForRepeatPP.Ø = RepeatPP

 LineForRepeatPP.RepeatPP = value(_vn1"."strip(i,l,'Ø'))

 End

 End

 End

 SQLQUERY = ,

 "SELECT STRIP(A.NAME) AS NAME, ",

 "VALUE(STRIP(B.COLLID), ' ') AS COLLID, ",

 "VALUE(STRIP(B.NAME), ' ') AS NAME1 ",

 "FROM SYSIBM.SYSPLAN A LEFT OUTER JOIN SYSIBM.SYSPACKLIST B ",

 "ON A.NAME = B.PLANNAME ",

 "WHERE EXISTS(SELECT * ",

 "FROM SYSIBM.SYSPLANDEP ",

 "WHERE DNAME = A.NAME AND ",

 "BCREATOR = '" || Tbc || "' AND ",

 "BNAME = '" || Tbn || "') ",

 "UNION ",

 "SELECT STRIP(A.PLNAME), ' ', ' ' ",

 "FROM SYSIBM.SYSSTMT A ",

 "WHERE TEXT LIKE '%"||Tbc||"%"||Tbn||"%' AND ",

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 "NOT EXISTS(SELECT * ",

 "FROM SYSIBM.SYSPLANDEP ",

 "WHERE DNAME = A.PLNAME) ",

 "ORDER BY 1 ",

 "OPTIMIZE FOR 1 ROW";

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows > Ø Then Do

 MNAME = ""

 Do i = 1 To _nrows

 If MNAME <> NAME.i Then Do

 If i > 1 Then Do

 j = i - 1

 If COLLID.j <> ' ' Then stmt = stmt || ')'

 found = Ø

 Do jj = 1 To RepeatPP

 If LineForRepeatPP.jj = stmt

 Then found = 1;

 End

 If found = Ø Then Do

 RepeatPP = RepeatPP + 1

 LineForRepeatPP.Ø = RepeatPP

 LineForRepeatPP.RepeatPP = stmt

 End

 End

 stmt = 'REBIND PLAN (' || NAME.i || ')'

 If COLLID.i <> ' '

 Then stmt = stmt || ' PKLIST(' || COLLID.i || '.' || NAME1.i

 MNAME = NAME.i

 End

 Else Do

 If LENGTH(stmt) + LENGTH(COLLID.i) + LENGTH(NAME1.i) > 72

 Then Do

 RepeatPP = RepeatPP + 1

 LineForRepeatPP.Ø = RepeatPP

 LineForRepeatPP.RepeatPP = stmt

 stmt = ' '

 End

 Else stmt = stmt || ',' || COLLID.i || '.' || NAME1.i

 End

 End

 j = i - 1

 If COLLID.j <> ' ' Then stmt = stmt || ')'

 found = Ø

 Do jj = 1 To RepeatPP

 If LineForRepeatPP.jj = stmt

 Then found = 1;

 End

 If found = Ø Then Do

 RepeatPP = RepeatPP + 1

 LineForRepeatPP.Ø = RepeatPP

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

 LineForRepeatPP.RepeatPP = stmt

 End

 End

Return

/* TRANSLATE COLUMN NAME */

process_trans: PROCEDURE EXPOSE RepeatI LineForRepeatI. DB2V

 parse arg Tbc Tbn ColNew ColOld

 SQLQUERY = "SELECT NAME ",

 "FROM SYSIBM.SYSCOLUMNS ",

 "WHERE TBCREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "' AND ",

 "COLNO = " || ColOld

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 Do i = 1 To RepeatI

 s1 = TRANSLATE(LineForRepeatI.i)

 s2 = TRANSLATE(STRIP(NAME.1))

 Ind = INDEX(s1, s2)

 Do While (Ind > Ø)

 l = LENGTH(STRIP(NAME.1))

 s1 = DELSTR(s1, Ind, l)

 s1 = INSERT(ColNew, s1, Ind - 1, LENGTH(ColNew))

 LineForRepeatI.i = DELSTR(LineForRepeatI.i, Ind, l)

 LineForRepeatI.i = ,

 INSERT(ColNew, LineForRepeatI.i, Ind - 1, LENGTH(ColNew))

 Ind = INDEX(s1, s2)

 End

 End

 End

Return

process_transt: PROCEDURE EXPOSE RepeatTg LineForRepeatTg. DB2V

 parse arg Tbc Tbn ColNew ColOld

 SQLQUERY = "SELECT NAME ",

 "FROM SYSIBM.SYSCOLUMNS ",

 "WHERE TBCREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "' AND ",

 "COLNO = " || ColOld

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 Do i = 1 To RepeatTg

 s1 = TRANSLATE(LineForRepeatTg.i)

 s2 = TRANSLATE(STRIP(NAME.1))

 Ind = INDEX(s1, s2)

 Do While (Ind > Ø)

 l = LENGTH(STRIP(NAME.1))

 s1 = DELSTR(s1, Ind, l)

 s1 = INSERT(ColNew, s1, Ind - 1, LENGTH(ColNew))

 LineForRepeatTg.i = DELSTR(LineForRepeatTg.i, Ind, l)

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 LineForRepeatTg.i = ,

 INSERT(ColNew, LineForRepeatTg.i, Ind - 1, LENGTH(ColNew))

 Ind = INDEX(s1, s2)

 End

 End

 End

Return

process_transv: PROCEDURE EXPOSE RepeatV1 LineForRepeatV1. DB2V

 parse arg Tbc Tbn ColNew ColOld

 SQLQUERY = "SELECT NAME ",

 "FROM SYSIBM.SYSCOLUMNS ",

 "WHERE TBCREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "' AND ",

 "COLNO = " || ColOld

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 Do i = 1 To RepeatV1

 s1 = TRANSLATE(LineForRepeatV1.i)

 s2 = TRANSLATE(STRIP(NAME.1))

 Ind = INDEX(s1, s2)

 Do While (Ind > Ø)

 l = LENGTH(STRIP(NAME.1))

 s1 = DELSTR(s1, Ind, l)

 s1 = INSERT(ColNew, s1, Ind - 1, LENGTH(ColNew))

 LineForRepeatV1.i = DELSTR(LineForRepeatV1.i, Ind, l)

 LineForRepeatV1.i = ,

 INSERT(ColNew, LineForRepeatV1.i, Ind - 1, LENGTH(ColNew))

 Ind = INDEX(s1, s2)

 End

 End

 End

Return

process_tranrel: PROCEDURE EXPOSE RepeatAR LineForRepeatAR. DB2V

 parse arg Tbc Tbn ColNew ColOld

 SQLQUERY = "SELECT NAME ",

 "FROM SYSIBM.SYSCOLUMNS ",

 "WHERE TBCREATOR = '" || Tbc || "' AND ",

 "TBNAME = '" || Tbn || "' AND ",

 "COLNO = " || ColOld

 ADDRESS ISPEXEC "SELECT PGM(SQLISPF)";

 If _nrows = 1 Then Do

 Do i = 1 To RepeatAR

 s1 = TRANSLATE(LineForRepeatAR.i)

 s2 = TRANSLATE(STRIP(NAME.1))

 Ind = INDEX(s1, s2)

 Do While (Ind > Ø)

 l = LENGTH(STRIP(NAME.1))

 s1 = DELSTR(s1, Ind, l)

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

 s1 = INSERT(ColNew, s1, Ind - 1, LENGTH(ColNew))

 LineForRepeatAR.i = DELSTR(LineForRepeatAR.i, Ind, l)

 LineForRepeatAR.i = ,

 INSERT(ColNew, LineForRepeatAR.i, Ind - 1, LENGTH(ColNew))

 Ind = INDEX(s1, s2)

 End

 End

 End

Return

/* CREATE JOB FOR DDL/DML */

process_crejob: PROCEDURE EXPOSE RepeatDR LineForRepeatDR. ,

 RepeatT LineForRepeatT. ,

 RepeatR LineForRepeatR. ,

 RepeatA LineForRepeatA. ,

 RepeatI LineForRepeatI. ,

 RepeatTg LineForRepeatTg. ,

 RepeatV1 LineForRepeatV1. ,

 RepeatAu LineForRepeatAu. ,

 RepeatPP LineForRepeatPP. ,

 RepeatAR LineForRepeatAR. DB2V

 userid = userid()

 tick = ''''

 outdsn = tick||userid||".MODCOL.CNTL"||tick

 ADDRESS TSO

 If sysdsn(outdsn) = "OK" Then

 "alloc fi(dfile) da("outdsn") shr "

 Else Do

 "alloc fi(dfile) da("outdsn") new ",

 " dsorg(ps) space(1,1) tracks",

 " recfm(F B) lrecl(132) blksize(27984)"

 End

 queue "//"||userid||"X JOB MSGCLASS=X,CLASS=A,NOTIFY="||,

 userid||",REGION=4M"

 queue "//***"

 queue "//* MODIFY COLUMN(s) "

 queue "//***"

 queue "//STEPØØØ1 EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø"

 queue "//SYSTSPRT DD SYSOUT=*"

 queue "//SYSTSIN DD *"

 queue " DSN SYSTEM("||DB2V||")"

 "execio 8 diskw dfile"

 Do j = 1 To RepeatPP

 Call crejob1 LineForRepeatPP.j

 End

 queue " RUN PROGRAM(DSNTEP2) PLAN(DSNTEP71) -"

 queue " LIB('"||DB2V||"71Ø.RUNLIB.LOAD')"

 queue "//SYSPRINT DD SYSOUT=*"

 queue "//SYSUDUMP DD SYSOUT=*"

 queue "//SYSIN DD *"

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 "execio 5 diskw dfile"

 Do j = 1 To RepeatDR

 Call crejob1 LineForRepeatDR.j

 End

 Do j = 1 To RepeatT

 Call crejob1 LineForRepeatT.j

 End

 Do j = 1 To RepeatR

 Call crejob1 LineForRepeatR.j

 End

 Do j = 1 To RepeatA

 Call crejob1 LineForRepeatA.j

 End

 Do j = 1 To RepeatI

 Call crejob1 LineForRepeatI.j

 End

 Do j = 1 To RepeatV1

 Call crejob1 LineForRepeatV1.j

 End

 Do j = 1 To RepeatAu

 Call crejob1 LineForRepeatAu.j

 End

 If RepeatTg > Ø Then Do

 queue "--#SET TERMINATOR #"

 "execio 1 diskw dfile"

 End

 Do j = 1 To RepeatTg

 Call crejob1 LineForRepeatTg.j

 End

 If RepeatTg > Ø Then Do

 queue "--#SET TERMINATOR ;"

 "execio 1 diskw dfile"

 End

 Do j = 1 To RepeatAR

 Call crejob1 LineForRepeatAR.j

 End

 queue "/*"

 "execio 1 diskw dfile"

 queue "//"

 "execio 1 diskw dfile"

 "execio Ø diskw dfile(finis"

 "free fi(dfile)"

 "ispexec edit dataset("outdsn")"

 "ispexec lmerase dataset("outdsn")"

Return

crejob1:

 parse arg Text

 If LENGTH(Text) > 66 Then Do

 s = ""

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

 wN = WORDS(Text)

 Do jw = 1 To wN

 If LENGTH(s) + LENGTH(WORD(Text, jw)) > 66 Then Do

 queue s

 "execio 1 diskw dfile"

 If SUBSTR(Text, 1, 2) = "--"

 Then s = "-- " || WORD(Text, jw) || " "

 Else s = WORD(Text, jw) || " "

 End

 Else Do

 s = s || WORD(Text, jw) || " "

 End

 End

 queue s

 "execio 1 diskw dfile"

 End

 Else Do

 queue Text

 "execio 1 diskw dfile"

 End

Return

Nikola Lazovic
DB2 System Administrator
Postal Savings Bank (Serbia and Montenegro) © Xephon 2004

Business rules as code objects

We are all aware of this trend: traditionally, DBAs were
administering data objects, and now increasingly they are
being asked to administer and manage code objects (COs)
such as stored procedures, triggers, and User-Defined
Functions (UDFs). This very important code implements the
business rules of an organization. These COs are stored in an
RDBMS.

As we all know, the main purpose of a DBMS is to store,
manage, and access data. Now we are seeing the inclusion of
programming code in the form of triggers, stored procedures,
and UDFs.

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

We can think of COs in the same way as other database objects
such as tables, views, and indexes. Why? They are controlled
and managed by a DBMS such as DB2. These objects are
referred to as code objects, or COs, because they are truly
program code, which is managed by a database as a database
object. They are administered by a new generation of DBAs
called procedural DBAs who usually come from the application
programming ranks.

THE BENEFITS OF CODE OBJECTS

The best reason for using COs is to spread and promote code
reusability within an organization. No organization wants to
replicate code (cut and paste) on various servers or within
various application programs. By using COs, they could let the
code reside on a DBMS server. In this way, depending on
context or activity, COs can be automatically executed or can
be called from many different client programs. This reduces or
eliminates the necessity to cut and paste chunks of business
logic program code (reusable code) for each new application
project.

Also, the use of COs has increased consistency. For obvious
reasons, an organization would like to be sure that everyone is
executing the same consistent code instead of various replicated
code segments. There could be no assurance that the same
business logic was being used if users within the organization
execute their own and separate code. The organization would
be assured of this consistency if all the users and database
activity (with the same requirements) are using the same COs.

The more code an organization generates, the more it must
maintain. But the use of COs reduces the total code maintenance
effort and increases code reuse. This is achieved by moving
the business logic to the database tier as COs. This results in
a smaller code base to maintain and avoids various client-side
copies. Since COs exist in an RDBMS, changes are made
quickly in one place without replicating the changes to various
workstations. This facilitates code reuse between the client

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

applications and the database tier. In order to be successful
and agile, every IT organization must adopt this methodology
for development.

RDBMSs SUCH AS DB2 ON WINDOWS CAN HANDLE BUSINESS
LOGIC

Traditional DBAs are quite concerned about the way their data
objects are manipulated by applications. They are frightened by
the fact that the application programmers may be unaware of
core business rules within the organization that should never be
broken. Why? The programmers are usually absent-minded.
Now DBAs can be reassured by moving the enforcement of
business rules as COs into the database tier. This move puts
DBAs in charge of administering and controlling the code
implementing core business rules. And the developers are
required to reuse them in order to ensure that the business logic
is enforced throughout the organization.

For quite a while now, many organizations have been using
triggers to enforce business logic and maintain data integrity at
the database tier. Let us go further by combining triggers with
another powerful DB2 facility, Java UDFs. This combination
enables the database to perform functions that it couldn’t
otherwise perform.

I will create a Java UDF that will be fired by a database trigger.
One should be able to use similar techniques to utilize these
DB2 features in your own environment and business settings.
By now, we know very well why asking the database to enforce
business rule/logic makes sense.

ABC AUTOPARTS CO

My company wanted to make sure that it had enough auto parts
available at all times. This is a business rule. The company must
be able to take action as soon as the quantity of an auto part
falls below a certain inventory level.

The detailed business rule states that the company must

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

maintain a minimum of 15 of any auto part at all times. If the
inventory level goes below the minimum quantity, an e-mail is to
be sent to the auto part supplier to supply an additional 15 parts.

LET’S GET DOWN TO IT

I will be using a DB2 command line processor to create the
required data objects and environment. The following steps are
performed:

First, create a new database called partsdb. Also connect to the
database:

db2 => CREATE DATABASE partdb alias partdb using codeset utf-8 territory

us collate using system

db2 => connect to partdb user di_owner using password

Next, create a table called carparts. Also populate the table with
some data:

db2 => create table carparts (part integer not null primary key, stock

smallint not null, description varchar(75) not null, supplier

varchar(75) not null)

Please note that column ‘part’ is the primary key.

db2 => insert into carparts values (1ØØØØØØØØ, 65,'Radiator

Figure 1: First screen capture

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

Figure 2: Second screen capture

Figure 3: Third screen capture

Belt','supplier_one@one.com')

db2 => insert into carparts values (1ØØØØØØØ1, 35,'Wiper

Blades','supplier_two@two.com')

Do not forget to update the supplier e-mails with valid e-mail
addresses.

Figures 1 to 3 show the screen captures of above-mentioned
steps.

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Thirdly, write the trigger-fired Java UDF.

Let me re-state the business rule of my company, which states
that the company must maintain a minimum of 15 of any auto
part at all times. If the inventory level goes below the minimum
quantity, an e-mail is to be sent to the auto part supplier to
supply an additional 15 parts. The key idea in this business rule
is the sending of an e-mail to the right supplier of the auto parts
when the inventory level of a given auto part goes below 15. We
can use the Java Mail API to send an e-mail.

The J2EE platform has a Java Mail API as a standard feature.
In order to utilize this API from J2SE, I have downloaded
activation.jar and mail.jar from http://java.sun.com/products/
javamail/. The Java UDF, which we are about to write, uses
these JAR files at run-time. I also had to register them as shown
below:

db2 => call sqlj.install_jar ('file:\jars\mail.jar','MAILJAR')

db2 => call sqlj.install_jar

('file:\jars\activation.jar','ACTIVATIONJAR')

Note: the jar files are found in a directory called c:\jars\. A
screen capture of the above events is shown in Figure 4.

Figure 4: Registering the Java files

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

Our Java UDF code using the Java MAIL API would send an e-
mail to a supplier. You must make a note of the following to be
used in the Java UDF code:

• Your SMTP host

• Your sender e-mail address

• The recipient or send to e-mail address.

The UDF keeps configuration information in a Properties object
in order to establish a mail session. Please note that the
PARTSupply method is using parameters such as part,
description, and supplier (e-mail). The trigger provides these
parameters at the firing time when it invokes our Java UDF. The
code follows:

import java.util.*;

import java.math.BigDecimal;

import javax.mail.*;

import javax.mail.internet.*;

public class PARTSupplyUDF

{

 public static String PARTSupply(int part, String description, String

supplier)

 {

 try

 {

 // The host url (smtp.abcautoparts.com), sender/from email,

 // and send to (supplier email)

 String host = "smtp.bravespace.com";

 InternetAddress from = new InternetAddress("ishaikh@bravespace.com");

 InternetAddress sendto = new InternetAddress(supplier);

 // Retrieve the system properties

 Properties props = new Properties ();

 // Set the values for the protocol, the host, and port

 props.put("mail.smtp.protocol","smtp");

 props.put("mail.smtp.host",host); props.put("mail.smtp.port","25");

 // Create session (triggered fired (tf))

 Session tfSession = Session.getInstance(props);

 // Create the message

 MimeMessage tfMessage = new MimeMessage(tfSession);

 tfMessage.setFrom(from);

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 tfMessage.setSubject("This is a system generated order from ABC

Auto Parts Company");

 String msgText = "Our Stock is low. Please send us 15 more parts of ";

 msgText += " the part: " + description + "\n";

 msgText += " the part no. is " + part + "\n";

 tfMessage.setText(msgText);

 tfMessage.addRecipient(Message.RecipientType.TO,sendto);

 // Send the message

 javax.mail.Transport.send(tfMessage);

 }

 catch (Exception e)

 {

 System.out.println("UDF have caught an error: " + e);

 return "UDF have caught an error: " + e;

 }

 return "An Email has been sent to:" + supplier;

 } // End PARTSupply

} // End PARTSupplyUDF

Let us discuss the code. This Java UDF implements an e-mail
system by using the Java MAIL API. The code consists of the
following sections:

1 Please modify the code in this section to update the host
URL, sender/from e-mail, and send to (supplier e-mail)
according to the set-up of your mail server.

2 Get the system properties. The configuration information is
kept in a Properties object. This object is used to create a
mail session.

3 Set the values for the protocol, the host, and port. These
are default parameters.

4 Create session. This session is trigger fired (tf).

5 Create the message.

6 Send the message.

Let us compile our Java UDF code. Before compiling Java UDF,
set the class path to c:\jars\mail.jar;c:\jars\activation.jar in
order to use the Java MAIL API.

Place the class file on the server in the DB2 SQLLIB\FUNCTION
folder. As shown below, I have placed the class file on DB2/

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

Windows server \\corner in default location c:\Program
Files\IBM\SQLLIB\FUNCTION – see Figure 5.

Let us now register the UDF with DB2 (see Figure 6):

db2 => create function PARTSupply (part integer, description

varchar(75),

supplier varchar(75)) returns varchar(7Ø) fenced variant no sql external

Figure 5: Class file on the server

Figure 6: Register the UDF with DB2

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

action

language java parameter style java external name

'PARTSupplyUDF!PARTSupply'

Figure 7: Creating the trigger

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

LET US NOW CREATE THE TRIGGER

DB2 Control Center is the right tool for this step. After connecting
to PARTDB database, expand the database folder and you will
see a folder called ‘Triggers’. Right-click and select Create
from the context menu to start the wizard as shown in Figure 7.

Here we have two tabs as follows:

• Trigger tab – as you can see, I have provided a schema, the
trigger name, and a table name. For time to trigger, I have
selected ‘After’. An update of the column STOCK will result
in the firing of the trigger.

• Triggered action tab – here I have provided correlation
names and the triggered action that calls our Java UDF to
send an e-mail to the part supplier when the stock level
goes below 15. When the trigger is fired, it passes the
required parameter values for part, description, and supplier
e-mail to our Java UDF.

Figure 8: The trigger works

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

THE MOMENT OF TRUTH

Now we are ready to test our Java UDF and the associated
trigger – see Figure 8.

As you can see, the test is successful and it simply simulated
the condition of stock going below 15 (the trigger firing condition)
by issuing an SQL update to change the STOCK value to below
15.

WHAT HAVE WE LEARNED?

We have looked for a powerful and robust solution to implement
business rules as COs. And we were successful in finding it. Let
me explain.

Triggers allowed our parts database to react to the condition of
stock going below an agreed level (defined condition or business
rule) resulting from an update to the STOCK field (a registered
event). Clearly another powerful DB2 feature, our UDF written
using the rich features of Java has provided us with a mechanism
to extend part database capabilities. When we combine triggers
with this extensibility, we have in our hands a powerful and
robust methodology to implement business rules as COs.

RESOURCES

1 Introduction to the Java Mail API – http://www.javaworld.com/
javaworld/jw-06-1999/jw-06-javamail.html.

2 Application Development Guide – http://www-306.ibm.com/
software/data/db2/udb/ad/v7/adg/db2a0/frame3.htm.

3 Java Mail API – http://java.sun.com/products/javamail.

Ilyas Shaikh
Senior DB2 DBA
BraveSpace (Canada) © Xephon 2004

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

Using dynamic SQL for maximum flexibility

Most application programmers are comfortable coding
embedded SQL in their programs to access DB2 data. But
usually this SQL is written as static SQL. Static SQL is hard-
coded, and only the values of the host variables in predicates
can change.

But there is another type of SQL programming that is much more
flexible than static SQL – it is known as dynamic SQL. Dynamic
SQL is characterized by its capability to change the columns,
tables, and predicates it references during the program’s
execution. This flexibility requires different techniques for
embedding dynamic SQL in application programs.

You should understand what dynamic SQL is and what it can do
for you for many reasons. Dynamic SQL makes optimal use of
the distribution statistics accumulated by RUNSTATS. Because
the values are available when the optimizer determines the
access path, it can arrive at a better solution for accessing the
data. Static SQL, on the other hand, cannot use these statistics
unless all predicate values are hard-coded or REOPT(VARS) is
specified.

Additionally, dynamic SQL is becoming more popular as
distributed queries are being executed from non-mainframe
platforms or at remote sites using distributed DB2 capabilities.
Indeed, the JDBC and ODBC call-level interfaces deploy
dynamic SQL, not static.

Using dynamic SQL is the only way to change SQL criteria such
as complete predicates, columns in the SELECT list, and table
names during the execution of a program. As long as application
systems require these capabilities, dynamic SQL will be needed.

There are four classes of dynamic SQL – EXECUTE IMMEDIATE,
non-SELECT dynamic SQL, fixed-list SELECT, and varying-list
SELECT.

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE implicitly prepares and executes
complete SQL statements coded in host variables. Only a
subset of SQL statements are available when you use the
EXECUTE IMMEDIATE class of dynamic SQL. The most
important SQL statement that is missing is the SELECT
statement. Therefore, EXECUTE IMMEDIATE dynamic SQL
cannot retrieve data from tables.

If you do not need to issue queries, you can write the SQL
portion of your program in two steps. First, move the complete
text for the statement to be executed into a host variable.
Second, issue the EXECUTE IMMEDIATE statement specifying
the host variable as an argument. The statement is prepared
and executed automatically.

The following pseudo-code shows a simple use of EXECUTE
IMMEDIATE that DELETEs rows from a table; the SQL statement
is moved to a string variable and then executed:

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL

 INCLUDE SQLCA

 END-EXEC.

 .

 .

 .

 Ø1 STRING-VARIABLE.

 49 STRING-VAR-LEN PIC S9(4) USAGE COMP.

 49 STRING-VAR-TXT PIC X(1ØØ).

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MOVE +45 TO STRING-VAR-LEN.

 MOVE "DELETE FROM DSN881Ø.PROJ WHERE DEPTNO = 'AØØ'"

 TO STRING-VARIABLE.

 EXEC SQL

 EXECUTE IMMEDIATE :STRING-VARIABLE

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

 END-EXEC.

 .

 .

 .

You can replace the DELETE statement in this listing with any
of the following supported statements:

• ALTER

• COMMENT ON

• COMMIT

• CREATE

• DELETE

• DROP

• EXPLAIN

• GRANT

• INSERT

• LABEL ON

• LOCK TABLE

• REVOKE

• ROLLBACK

• SET

• UPDATE.

Despite the simplicity of the EXECUTE IMMEDIATE statement,
it usually is not the best choice for application programs that
issue dynamic SQL for two reasons:

1 EXECUTE IMMEDIATE does not support the SELECT
statement.

2 Performance can suffer when you use EXECUTE
IMMEDIATE in a program that executes the same SQL
statement many times.

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

After an EXECUTE IMMEDIATE is performed, the executable
form of the SQL statement is destroyed. Thus, each time an
EXECUTE IMMEDIATE statement is issued, it must be prepared
again. This preparation is automatic and can involve a significant
amount of overhead. A better choice is to code non-SELECT
dynamic SQL using PREPARE and EXECUTE statements.

In general, you should consider using EXECUTE IMMEDIATE
for quick, one-time tasks. For example, the following types of
program are potential candidates:

• A DBA utility program that issues changeable GRANT and
REVOKE statements.

• A program that periodically generates DDL based on input
parameters.

• A parameter-driven modification program that corrects
common data errors.

NON-SELECT DYNAMIC SQL

The second type of dynamic SQL is known as non-SELECT
dynamic SQL. This class of dynamic SQL uses PREPARE and
EXECUTE to issue SQL statements. As its name implies, non-
SELECT dynamic SQL cannot issue the SELECT statement.
The following pseudo-code listing shows a simple use of non-
SELECT dynamic SQL that DELETEs rows from a table:

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL

 INCLUDE SQLCA

 END-EXEC.

 .

 .

 .

 Ø1 STRING-VARIABLE.

 49 STRING-VAR-LEN PIC S9(4) USAGE COMP.

 49 STRING-VAR-TXT PIC X(1ØØ).

 .

 .

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

 .

PROCEDURE DIVISION.

 .

 .

 .

 MOVE +45 TO STRING-VAR-LEN.

 MOVE "DELETE FROM DSN881Ø.PROJ WHERE DEPTNO = 'AØØ'"

 TO STRING-VARIABLE.

 EXEC SQL

 PREPARE STMT1 FROM :STRING-VARIABLE;

 END-EXEC.

 EXEC SQL

 EXECUTE STMT1;

 END-EXEC.

 .

 .

 .

You can replace the DELETE statement in this listing with any
of the following supported statements:

• ALTER

• COMMENT ON

• COMMIT

• CREATE

• DELETE

• DROP

• EXPLAIN

• GRANT

• INSERT

• LABEL ON

• LOCK TABLE

• REVOKE

• ROLLBACK

• SET

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• UPDATE

Non-SELECT dynamic SQL can use a powerful feature of
dynamic SQL called a parameter marker, which is a placeholder
for host variables in a dynamic SQL statement. This feature is
demonstrated in the following pseudo-code:

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL INCLUDE SQLCA END-EXEC.

 .

 .

 .

 Ø1 STRING-VARIABLE.

 49 STRING-VAR-LEN PIC S9(4) USAGE COMP.

 49 STRING-VAR-TXT PIC X(1ØØ).

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MOVE +4Ø TO STRING-VAR-LEN.

 MOVE "DELETE FROM DSN881Ø.PROJ WHERE DEPTNO = ?"

 TO STRING-VARIABLE.

 EXEC SQL

 PREPARE STMT1 FROM :STRING-VARIABLE;

 END-EXEC.

 MOVE 'AØØ' TO TVAL.

 EXEC SQL

 EXECUTE STMT1 USING :TVAL;

 END-EXEC.

The question mark is used as a parameter marker, replacing the
‘A00’ in the predicate. When the statement is executed, a value
is moved to the host variable (:TVAL) and is coded as a
parameter to the CURSOR with the USING clause. When this
example is executed, the host variable value replaces the
parameter marker.

Non-SELECT dynamic SQL can provide huge performance
benefits over EXECUTE IMMEDIATE. Consider a program that
executes SQL statements based on an input file. A loop in the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

program reads a key value from the input file and issues a
DELETE, INSERT, or UPDATE for the specified key. The
EXECUTE IMMEDIATE class would incur the overhead of a
PREPARE for each execution of each SQL statement inside
the loop.

Using non-SELECT dynamic SQL, however, you can separate
PREPARE and EXECUTE, isolating PREPARE outside the
loop. The key value that provides the condition for the execution
of the SQL statements can be substituted using a host variable
and a parameter marker. If thousands of SQL statements must
be executed, you can avoid having thousands of PREPAREs by
using this technique. This method greatly reduces overhead at
run-time and increases the efficient use of system resources.

A prepared statement can contain more than one parameter
marker. Use as many as necessary to ease development.

FIXED-LIST SELECT

Until now, we have been unable to retrieve rows from DB2
tables using dynamic SQL. The next two classes of dynamic
SQL provide this capability. The first and simplest is fixed-list
SELECT.

You can use a fixed-list SELECT statement to explicitly prepare
and execute SQL SELECT statements when the columns to be
retrieved by the application program are known and unchanging.
You need to do so to create the proper working-storage
declaration for host variables in your program. If you do not
know in advance the columns that will be accessed, you must
use a varying-list SELECT statement.

The following pseudo-code listing shows a fixed-list SELECT
statement:

SQL to execute:

 SELECT PROJNO, PROJNAME, RESPEMP

 FROM DSN881Ø.PROJ

 WHERE PROJNO = ?

 AND PRSTDATE = ?

 Move the "SQL to execute" to STRING-VARIABLE

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 EXEC SQL DECLARE CSR2 CURSOR FOR FLSQL;

 EXEC SQL PREPARE FLSQL FROM :STRING-VARIABLE;

 EXEC SQL OPEN CSR2 USING :TVAL1, :TVAL2;

 Loop until no more rows to FETCH

 EXEC SQL

 FETCH CSR2 INTO :PROJNO, :PROJNAME, :RESPEMP;

 EXEC SQL CLOSE CSR2;

This example formulates a SELECT statement in the application
program and moves it to a host variable. Next, a cursor is
declared and the SELECT statement is prepared. The cursor is
then opened and a loop to FETCH rows is invoked. When the
program has finished, the cursor is closed. This example is
simple because the SQL statement does not change. The
benefit of dynamic SQL is its ability to modify the SQL statement.
For example, you could move the SQL statement:

 SELECT PROJNO, PROJNAME, RESPEMP

 FROM DSN881Ø.PROJ

 WHERE RESPEMP = ?

 AND PRENDATE = ?

to the STRING-VARIABLE without modifying the OPEN or
FETCH logic. Note that the second column of the predicate is
different from the SQL statement as presented in the listing
(PRENDATE instead of PRSTDATE). Because both are the
same data type (DATE), however, you can use TVAL2 for both
if necessary. The host variables passed as parameters in the
OPEN statement must have the same data type and length as
the columns in the WHERE clause. If the data type and length
of the columns in the WHERE clause change, the OPEN
statement must be recoded with new USING parameters.

If parameter markers are not used in the SELECT statements,
the markers could be eliminated and values could be substituted
in the SQL statement to be executed. No parameters would be
passed in the OPEN statement.

You can recode the OPEN statement also to pass parameters
using an SQLDA (SQL Descriptor Area). The SQLDA would
contain value descriptors and pointers to these values. You can
recode the OPEN statement as follows:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

 EXEC-SQL

 OPEN CSR2 USING DESCRIPTOR :TVAL3;

 END_EXEC.

DB2 uses the SQLDA to communicate information about dynamic
SQL to an application program. The SQLDA sends information
such as the type of the SQL statement being executed and the
number and data type of columns being returned by a SELECT
statement. It can be used by fixed-list SELECT and varying-list
SELECT dynamic SQL. The following code illustrates the fields
of the SQLDA:

*** SQLDA: SQL DESCRIPTOR AREA FOR LE COBOL ***

Ø1 SQLDA.

 Ø5 SQLDAID PIC X(8) VALUE 'SQLDA'.

 Ø5 SQLDABC COMP PIC S9(8) VALUE 13216.

 Ø5 SQLN COMP PIC S9(4) VALUE 75Ø.

 Ø5 SQLD COMP PIC S9(4) VALUE Ø.

 Ø5 SQLVAR OCCURS 1 TO 75Ø TIMES DEPENDING ON SQLN.

 1Ø SQLTYPE COMP PIC S9(4).

 88 SQLTYPE-BLOB VALUE 4Ø4 4Ø5.

 88 SQLTYPE-CLOB VALUE 4Ø8 4Ø9.

 88 SQLTYPE-DBCLOB VALUE 412 413.

 88 SQLTYPE-FLOAT VALUE 48Ø 481.

 88 SQLTYPE-DECIMAL VALUE 484 485.

 88 SQLTYPE-SMALLINT VALUE 5ØØ 5Ø1.

 88 SQLTYPE-INTEGER VALUE 496 497.

 88 SQLTYPE-DATE VALUE 384 385.

 88 SQLTYPE-TIME VALUE 388 389.

 88 SQLTYPE-TIMESTAMP VALUE 392 393.

 88 SQLTYPE-CHAR VALUE 452 453.

 88 SQLTYPE-VARCHAR VALUE 448 449.

 88 SQLTYPE-LONG-VARCHAR VALUE 456 457.

 88 SQLTYPE-VAR-ONUL-CHAR VALUE 46Ø 461.

 88 SQLTYPE-GRAPHIC VALUE 468 469.

 88 SQLTYPE-VARGRAPH VALUE 464 465.

 88 SQLTYPE-LONG-VARGRAPH VALUE 472 473.

 88 SQLTYPE-ROWID VALUE 9Ø4 9Ø5.

 88 SQLTYPE-BLOB-LOC VALUE 961 962.

 88 SQLTYPE-CLOB-LOC VALUE 964 965.

 88 SQLTYPE-DBCLOB-LOC VALUE 968 969.

 1Ø SQLLEN COMP PIC S9(4).

 1Ø SQLDATA POINTER.

 1Ø SQLIND POINTER.

 1Ø SQLNAME.

 15 SQLNAMEL COMP PIC S9(4).

 15 SQLNAMEC COMP PIC X(3Ø).

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

A description of the contents of the SQLDA fields is in the
discussion of the next class of dynamic SQL, which relies
heavily on the SQLDA.

Quite a bit of flexibility is offered by fixed-list SELECT dynamic
SQL. Fixed-list dynamic SQL provides many of the same
benefits for the SELECT statement as non-SELECT dynamic
SQL provides for other SQL verbs. An SQL SELECT statement
can be prepared once and then fetched from a loop. The
columns to be retrieved must be static, however. If you need the
additional flexibility of changing the columns to be accessed
while executing, use a varying-list SELECT.

For fixed-list SELECT dynamic SQL, you cannot code the
SQLDA in a VS/COBOL program. You will need to use LE
COBOL.

VARYING-LIST SELECT

The fourth and final class of dynamic SQL is varying-list
SELECT. This class of dynamic SQL can be used to explicitly
prepare and execute SQL SELECT statements when you do
not know in advance which columns will be retrieved by an
application program.

Varying-list SELECT provides the most flexibility for dynamic
SELECT statements. You can change tables, columns, and
predicates on-the-fly. Keep in mind, though, that because
everything about the query can change during one invocation
of the program, the number and types of host variable needed
to store the retrieved rows cannot be known beforehand. The
lack of knowledge regarding what is being retrieved adds
considerable complexity to your application programs.

The SQLDA is the vehicle for communicating information about
dynamic SQL between DB2 and the application program. It
contains information about the type of SQL statement to be
executed, the data type of each column accessed, and the
address of each host variable needed to retrieve the columns.
The SQLDA must be hard-coded into the LE COBOL program’s
WORKING-STORAGE area, as shown here:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

 EXEC-SQL

 INCLUDE SQLDA

 END_EXEC.

The list below shows each item in the SQLDA when it is used
with varying-list SELECT. The SQLDA data element definitions
have their SQLDA field name followed by its use in DESCRIBE
or PREPARE statements:

NULL allowed NULL not allowed Data type
384 385 DATE
388 389 TIME
392 393 TIMESTAMP
400 401 null-terminated graphic string
404 405 BLOB
408 409 CLOB
412 413 DBCLOB
448 449 Small VARCHAR
452 453 Fixed CHAR
456 457 Long VARCHAR
460 461 VARCHAR optionally null-terminated
464 465 Small VARGRAPHIC
468 469 Fixed GRAPHIC
472 473 Long VARGRAPHIC
480 481 FLOAT
484 485 DECIMAL
496 497 INTEGER
500 501 SMALLINT
904 905 ROWID
961 962 BLOB locator
964 965 CLOB locator
968 969 DBCLOB locator
972 973 result set locator
976 977 table locator

Figure 1: Valid values for SQLTYPE

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• SQLDAID – descriptive only; usually set to the literal
‘SQLDA’ to aid in program debugging.

• SQLDABC – length of the SQLDA.

• SQLN – number of occurrences of SQLVAR available.

• SQLD – number of occurrences of SQLVAR used.

• SQLTYPE – data type and indicator of whether NULLs are
allowed for the column; for UDTs, SQLTYPE is set based on
the base data type.

• SQLLEN – external length of the column value; 0 for LOBs.

• SQLDATA – address of a host variable for a specific
column.

• SQLIND – address of NULL indicator variable for the
preceding host variable.

• SQLNAME – name or label of the column.

The steps needed to code varying-list SELECT dynamic SQL
for your application program vary according to the amount of
information known about the SQL beforehand. Let’s walk through
another pseudo-code listing showing the steps necessary
when you know that the statement to be executed is a SELECT
statement:

SQL to execute: SELECT PROJNO, PROJNAME, RESPEMP

 FROM DSN881Ø.PROJ

 WHERE PROJNO = 'AØØ'

 AND PRSTDATE = '1988-1Ø-1Ø';

Move the "SQL to execute" to STRING-VARIABLE

EXEC SQL DECLARE CSR3 CURSOR FOR VLSQL;

EXEC SQL

 PREPARE VLSQL INTO SQLDA FROM :STRING-VARIABLE;

EXEC SQL OPEN CSR3;

Load storage addresses into the SQLDA

Loop until no more rows to FETCH

 EXEC SQL FETCH CSR3 USING DESCRIPTOR SQLDA;

EXEC SQL CLOSE CSR3;

The code differs from fixed-list SELECT in three ways:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

• The PREPARE statement uses the SQLDA.

• The FETCH statement uses the SQLDA.

• A step is added to store host variable addresses in the
SQLDA.

When PREPARE is executed, DB2 returns information about
the columns being returned by the SELECT statement. This
information is in the SQLVAR group item of the SQLDA. Of
particular interest is the SQLTYPE field. For each column to be
returned, this field indicates the data type and whether NULLs
are permitted. Note that in the SQLDA layout presented
previously, all possible values for SQLTYPE are coded as 88-
level COBOL structures. They can be used in the logic of your
application program to test for specific data types. The valid
values for SQLTYPE are shown in Figure 1.

The first value listed is returned when NULLs are not permitted;
the second is returned when NULLs are permitted. These two
codes aid in the detection of the data type for each column. The
application program issuing the dynamic SQL must interrogate
the SQLDA, analysing each occurrence of SQLVAR. This
information is used to determine the address of a storage area
of the proper size to accommodate each column returned. The
address is stored in the SQLDATA field of the SQLDA. If the
column can be NULL, the address of the NULL indicator is
stored in the SQLIND field of the SQLDA. When this analysis
is complete, data can be fetched using varying-list SELECT
and the SQLDA information.

Note that the group item, SQLVAR, occurs 750 times. This
number is the limit for the number of columns that can be
returned by one SQL SELECT. You can modify the column limit
number by changing the value of the SQLN field to a smaller
number but not to a larger one. Coding a smaller number
reduces the amount of storage required. If a greater number of
columns is returned by the dynamic SELECT, the SQLVAR
fields are not populated.

You can also code dynamic SQL without knowing anything

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

about the statement to be executed. An example is a program
that must read SQL statements from a terminal and execute
them regardless of statement type. You can create this type of
program by coding two SQLDAs: one full SQLDA and one
minimal SQLDA (containing only the first 16 bytes of the full
SQLDA) that PREPAREs the statement and determines whether
it is a SELECT. If the statement is not a SELECT, you can simply
EXECUTE the non-SELECT statement. If it is a SELECT,
PREPARE it a second time with a full SQLDA and follow the
steps in the following pseudo-code listing:

EXEC SQL INCLUDE SQLDA

EXEC SQL INCLUDE MINSQLDA

Read "SQL to execute" from external source

Move the "SQL to execute" to STRING-VARIABLE

EXEC SQL DECLARE CSR3 CURSOR FOR VLSQL;

EXEC SQL

 PREPARE VLSQL INTO MINSQLDA FROM :STRING-VARIABLE;

IF SQLD IN MINSQLDA = Ø

 EXECUTE IMMEDIATE (SQL statement was not a SELECT)

 FINISHED.

EXEC SQL

 PREPARE VLSQL INTO SQLDA FROM :STRING-VARIABLE;

EXEC SQL OPEN CSR3;

Load storage addresses into the SQLDA

Loop until no more rows to FETCH

 EXEC SQL FETCH CSR3 USING DESCRIPTOR SQLDA;

EXEC SQL CLOSE CSR3;

In this section, I’ve provided a quick introduction to varying-list
SELECT dynamic SQL. If you want to code parameter markers
or need further information on acquiring storage or pointer
variables, consult the appropriate compiler manuals and the
following DB2 manuals:

• DB2 Application Programming and SQL Guide.

• DB2 SQL Reference.

SUMMARY

Without proper knowledge of dynamic SQL you are going into
battle without a full set of ammunition. Seriously consider using
dynamic SQL under the following conditions:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

• When the nature of the application program is truly
changeable, not just a series of static SQL statements.

• When the columns to be retrieved can vary from execution
to execution.

• When the predicates can vary from execution to execution.

• When benefit can be accrued from interacting with other
dynamic SQL applications – for example, using the QMF
callable interface.

Craig S Mullins
Director, Technology Planning
BMC Software (USA) © Craig S Mullins 2004

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

November 2001 – October 2004 index

Items below are references to articles that have appeared in DB2 Update since
Issue 109, November 2001. References show the issue number followed by the
page number(s). Subscribers can download copies of all issues in Acrobat PDF
format from Xephon’s Web site.
710 utilities 112.3-19
Access path 122.7-21
Access programs 129.8-13
Authorizations 119.39-47, 120.21-35
Automation 134.7-23
Back-up 116.3-7,

128.3-6, 130.18-20
Business rules 144.18-28
CAF interface 129.20-47, 130.20-23
Catalog 130.23-47
CBPDO 131.3-7, 134.40-45
Changing attributes 139.29-47
Check constraints 110.18-25
Checking data 111.51
CICS transactions 141.7-15
Code objects 144.18-28
Column attributes 143.22-38, 144.6-17
COMMIT 126.25-30
Consistency tokens 128.6-26
Control statements 118.37-47
Copy data 131.25-38
COPYTOCOPY 109.3-8
Data warehouse 112.40-51, 115.9-15
Database management 112.19-30,

113.19-47, 116.15-40
DataPropagator 114.8-16,

120.35-50, 121.32-47,
126.8-25, 127.21-27

Dataset placement 122.30-47, 123.39-51
Datasharing 140.30-47, 141.15-28
DB2 Everyplace 110.4-12, 122.22-29
DB2 level display 115.5-9, 118.36
DB2 OLAP Server 119.6-10
DB2 OLAP Server Analyzer 119.6-10
DB2 OLAP Server Miner 119.6-10
DB2 UDB V8.1 123.7-24
DB2AUDIT 133.13-20
DB2BATCH 134.46-47
db2relocatedb command 131.38-47
DbVisualizer 114.35-41
DDL 121.8-18

Deadlock 117.12-32
Delete 135.45-47
Dictionary pages 108.32-34
Directory 130.23-47
DISPLAY DATABASE 133.3-13
Distributed processing 124.3-9
DISTSERV 136.15-21
Drop table 135.23-44
DSN1COPY 109.8-12, 111.26-50
DSNACCOR 131.7-24
DSNTIAUL 110.41-47, 111.20-26
DSNUTILS 138.19-28
DSNWZP 129.14-19
DSNZPARM 129.14-19
Dynamic cursors 109.39-45,110.13-18
Dynamic SQL 136.15-21,

137.42-47, 144.28-41
Entity-relationship diagrams 126.44-51,

127.34-47
Erwin 135.6-14
EXEC SQL 113.15-19
EXPLAIN 113.4-14, 137.42-47
Federated database 121.3-7, 138.11-19
Federated systems 118.15-36
Force 143.3-8
FREEPGE 125.26-42
Governor 112.31-40
Health Center 130.3-9
Health Monitor 130.3-9
High Performance Unload 143.38-43
Identity column 124.30-47,

126.30-44, 136.7-15
Image copy 143.12-22
IMWEBSRV 134.23-40
Indexes 121.8-18
Indexspace 127.14-21
Infinite logging 135.3-5
Insert 122.3-7, 128.46-47
ISPF-SQL interface 140.5-16
Joins 111.8-20
Language interface 125.43-51

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 46

LIST TABLESPACE 125.3-8
Load times 132.29-31
Log inventory 125.8-25
Log messages 130.9-17
Materialized Query Tables 144.3-5
Memo Extension 131.3-7
MERGE 140.3-5
Messages 110.3
Monitor 115.42-47
Monitoring 121.32-47,

127.14-21, 139.7-17
Multi-dimensional clustering 129.3-7
NODYNAM 116.8-14
Non-index data retrieval 139.3-5
Object manager 141.29-47, 142.20-47
ODS 120.13-21
Package 128.27-45
PC Utilities 115.42-47
PCTFREE 125.26-42
Performance 109.8-12,

122.30-47, 123.29-38,
123.39-51, 127.27-34

Perl 143.3-8
PLAN 128.27-45
Primary key constraints 109.31-38
QUIESCE 134.3-6
Real-Time Statistics (RTS) 131.7-24,

140.17-29, 143.12-22-38
Recover 109.17-30
Recovery Log 119.10-39
Referential Integrity 123.3-7
Refresh 136.21-33
Renaming 123.24-28,

140.30-47, 141.15-28
Replication 136.3-6
Restore 116.3-7
RESTRICT 136.34-47, 137.25-42
RIMLIB 131.3-7
Sampling 141.3-7
Scalar functions 142.6-19, 143.8-11
SELECT 125.26
Sequences 126.30-44
Sequential numbers 136.7-15
SET operators 133.46-47
SET 137.22-24

Sign-on exit 113.3-4
Soundex 118.3-8
Space calculation 119.3-6
SPUFI 132.18-29,

138.29-47, 139.17-29
SQL 138.3-11, 139.6-7,

142.6-19, 143.8-11
Statistics 122.7-21
Stored procedures 109.39-45,

110.13-18, 110.26-40,
138.19-28, 141.7-15

Subsystems 124.22-29
Summary tables 114.42-47,

127.27-34, 144.3-5
SYSIBM.SYSLGRNX 124.10-21
Table access 142.3-6
Table functions 127.3-13
Tables 123.24-28
Tablespaces 119.3-6, 127.14-21
Temporary tables 118.8-14
Test 136.21-33
Time dimension table 111.3-7
Timeout 117.12-32
Top-ten problem 115.37-42
Triggers 135.6-14
Tuning 123.29-38
UDB Extender 117.3-6
UDB Version 7.2 114.3-7
UDB Version 8 120.3-13
UDB Version 8.1.2 132.9-17
UDB 115.16-36
UDF 121.18-31
User-defined functions 109.12-16
Utilities 116.40-51, 117.32-47
Utility lists 114.17-35
Verify 130.18-20
Version 8 132.3-9
View 128.46-47
Virtual storage 139.7-17
Web services 133.21-24
Web 134.23-40, 135.14-23
XCOM 137.3-22
XML Extender 115.3-5
XPERANTO 117.6-11
ZPARM 126.3-7, 133.24-46

Send your article for inclusion in DB2 Update to the
editor, Trevor Eddolls, at trevore@xephon.com.

DB2 news

Compuware has announced Version 3.1 of
STROBE and Version 2.0 of iSTROBE, which
are enterprise application performance
management products. STROBE products are
aimed at locating and eliminating sources of
application inefficiencies in complex application
environments.

STROBE 3.1 includes support for DB2 V8 in
both new function and compatibility modes.
STROBE helps users find and fix performance
problems in applications using DB2. It also
provides support for WebSphere Application
Server, which, along with its existing support for
Java, enables users to manage and improve the
performance of Java and WebSphere
applications. STROBE 3.1 also provides
information on how Java and WebSphere
applications interact with DB2, CICS, and other
z/OS facilities.

iSTROBE 2.0 provides Web server
architecture so users can run iSTROBE on both
mainframe and distributed Web servers to
improve centralized access and reduce
requirements for user workstations. It also
allows users to document and share their own
performance hints, provides enhanced Java
support, and improves report sorting.

For further information contact:
Compuware, One Campus Martius, Detroit,
MI 48226, USA.
Tel: (313) 227 7300.
URL: http://www.compuware.com/products/
strobe/default.htm.

* * *

Embarcadero has announced that it is
strengthening its complete DB2 product line to
support the latest versions of DB2 Universal
Database (UDB) for z/OS and multi-platforms.
It now provides support for DB2 UDB for z/OS
Version 8.0 and DB2 Stinger.

Job Scheduler 3.1 and Change Manager 2.5
can be leveraged for the scheduling of DB2
database management tasks, or with change
control in a DB2 database environment,
respectively. Other products, including
DBArtisan have also been enhanced, the
company says.

For further information contact:
Embarcadero Technologies, 100 California
Street, 12th Floor, San Francisco, CA 94111,
USA.
Tel: (415) 834 3131.
URL: http://www.embarcadero.com/news/
press_releases/db2_embarcadero.html.

* * *

StorageTek has announced the introduction of
its Lifecycle Director software for DB2. With
the product, DB2 managers in z/OS
environments can automate the transparent
movement of data through its life-cycle to lower-
cost storage media while delivering rapid access
to archived data.

Additionally, Lifecycle Director reduces the
management costs associated with archiving
large DB2 databases by eliminating the need to
manually update the underlying application code
and minimizing data retrieval times.

By facilitating the transparent archiving and
recall of data at the individual row level,
Lifecycle Director can reduce active table sizes
by an average of 85 percent, they claim,
eliminating the over allocation of disk space.

For further information contact:
StorageTek, One StorageTek Drive, Louisville,
CO 80028-0001, USA.
Tel: (303) 673 5151.
URL: http://storagetek.shareholder.com/
releaseDetail.cfm?ReleaseID=141638.

x xephon

	Materialized query tables and how to use them
	Modify column attributes - part 2
	Business rules as code objects
	Using dynamic SQL for maximum flexibility
	November 2001 - October 2004 index
	DB2 news

