
© Xephon Inc 2004

December 2004

146

In this issue

3 DB2 Version 8 – partitioning
index

11 Trimming the installation image
for simplified mass deployment
of DB2 UDB Version 8.2 for
Windows

18 DB2 attachment primer: part 2 –
using DB2 attachments

24 Implementing image extender to
retrieve a signature database

44 Project Cinnamon
46 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Bob Thomas
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50 elsewhere.
In all cases the price includes postage. Individual
issues, starting with the January 2000 issue, are
available separately to subscribers for $33.75
(£22.50) each including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon. com/
db2; you will need to supply a word from the
printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, and other contents of this journal before
making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 Version 8 – partitioning index

In DB2 Version 8, various improvements related to partitioning
– especially related to indexes – have been made. This article
looks at these enhancements and how they can be used for
better application design.

TABLE-CONTROLLED PARTITIONING

In DB2 V8, the partitioning index can be of two types:

1 Index-controlled partitioning (the same as was available in
DB2 V7).

2 Table-controlled partitioning (a new style of partitioning
introduced in DB2 V8).

Table-controlled partitioning implies that the table definition
itself controls the method of partitioning. This is done by using
the PARTITION BY clause in the CREATE TABLE statement, as
shown below:

CREATE TABLE CUSTOMER(ACCOUNT_NUM, Integer)……

 PARTITION BY (ACCOUNT_NUM, ASC)

PARTITION MANAGEMENT

DB2 V8 provides the ability to immediately add partitions,
rotate partitions, and change the partitioning key values for
table-controlled partitioned tables via the ALTER TABLE
statement. It also allows the rebalancing of partitions.

Add partition

In previous versions of DB2, to add a partition necessitated
dropping the entire tablespace, redefining it with additional
partitions, and reloading the data. To avoid this situation, the
maximum number of partitions was allocated at the start (most
of them having the minimum of space).

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

With DB2 V8, partitions can be added immediately, simply by
using the ADD PARTITION keyword in the ALTER TABLE
command. None of the objects needs to be stopped before
issuing the ALTER command.

The partition number is not supplied on the ALTER TABLE ADD
PARTITION statement; it is selected by DB2, based on the
current number of partitions of the table.

The table is quiesced and all related plans, packages, and
cached statements are invalidated, necessitating a rebind.
This is required because the access path can be optimized for
reading certain partitions only.

This allows users to start with a limited number of partitions, as
dictated by the current need, and add more on a periodical
basis – resulting in fewer objects to be managed.

Rotate partition

Most customers use the partitioning scheme to store data by
time range. DB2 V8 now provides the ability to rotate and reuse
partitions over time. This provides the option of using rolling
partitions, when it is required, to store the data for only a certain
period of time.

If it is required to store data pertaining to a year with each
partition having data corresponding to a month, you can create
a table with 13 partitions. By using the ALTER TABLE ROTATE
PARTITION FIRST TO LAST statement, you can specify that
the data corresponding to the first (oldest in this case) partition
should be deleted and the partition reused for the new set of
data.

This is an easy way of using the table space to continuously
hold the last 12 months’ data – without having to unload, delete,
create, load cycle or retain the older data that is not required.

Note that recovery to a previous point-in-time is blocked after
running the rotate statement. Because the data in the partition
being rolled off is deleted, it may be advisable to do an unload
before rotating the partition.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

To speed up the delete process, consider doing a LOAD
REPLACE with an empty data set before running the ALTER
TABLE … ROTATE PARTITION statement.

INDEXES IN V8

In V7, a partitioning index controlled how a table was partitioned.
Any index other than the partitioning index was referred to as
a secondary index (on a partitioned table), non-partitioned
index (NPI), non-partitioning index, or non-clustering index.

In V8, the improvements made to partitioning and indexes have
given rise to a different index classification, which predominantly
falls into the following three categories:

1 Partitioning and secondary index – based on whether or not
the columns in the index correlate to the ‘partitioning’
columns of the table.

2 Partitioned and non-partitioned – based on whether or not
an index is physically ‘partitioned’.

3 Clustered and non-clustered – based on whether or not the
index determines the clustering of the data.

Partitioning and secondary indexes

Any index that has the same left-most key column(s), in the
same order, and using the same collating sequence as the
columns that control partitioning on the table is referred to as
the partitioning index.

Any index other than the partitioning index can be referred to as
a secondary index.

Consider the following three index definitions on the CUSTOMER
table:

CREATE . . . INDEX PARTIX1

ON CUSTOMER (ACCOUNT_NUM ASC)

PARTITIONED

CREATE . . . INDEX PARTIX2

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

ON CUSTOMER (ACCOUNT_NUM ASC, STATE_CD ASC)

CREATE . . . INDEX SECIX1

ON CUSTOMER (CUST_NUM ASC)

PARTITIONED

CLUSTERED

Both PARTIX1 and PARTIX2 are partitioning indexes because
both have ACCOUNT_NUM ASC (based on which the table is
partitioned) as the left-most key. A partitioning index can
contain all the partitioning columns plus additional columns – as
shown in the case of PARTIX2.

SECIX1 is a secondary or non-partitioning index.

In effect an index that correlates to the partitioning columns of
a table is a partitioning index and one that doesn’t is a
secondary index.

Partitioned and non-partitioned indexes

A partitioned index has the keyword PARTITIONED specified in
the CREATE INDEX statement that defines it. A partitioned
index is made up of multiple physical partitions – as many as the
number of data partitions. The index keys in each index partition
correspond to the rows in the same data partition number –
index partition 1 contains only keys for rows in data partition 1,
index partition 2 contains only keys for those rows found in data
partition 2, and so on.

An index in which the keyword PARTITIONED is not specified
in the CREATE INDEX statement is a non-partitioned index.

Note that the partitioning index of an index-controlled partitioning
is always partitioned (because the partitioning range is given in
the index definition only).

In effect, an index that is physically partitioned is a partitioned
index and one that is not physically partitioned is a non-
partitioned index.

In the above examples, PARTIX1 and SECIX1 are partitioned
indexes, whereas PARTIX2 is non-partitioned.

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Partitioned and non-partitioned partitioning indexes

A partitioning index can be either partitioned or non-partitioned.
In the above example, PARTIX1 is referred to as a partitioned
partitioning index. PARTIX2 is referred to as a non-partitioned
partitioning index because the keyword PARTITIONED is not
specified. This implies that although the index correlates to the
table partitioning, it is not physically partitioned.

Clustering and non-clustering indexes

The index that determines the order in which the rows are
stored in a table is a clustering index, and the index that does
not do this is a non-clustering index.

With index controlled partitioning, the partitioning index must be
the clustering index. But in the case of table controlled
partitioning, any index (including a secondary index) may be the
clustering index. The clustering index may be unique or non-
unique.

While the partitioning columns determine the placement of rows
in the proper partition, the clustering index controls the location
of the row within the partition.

In the above example, SECIX1 is a clustering index. While the
table is partitioned based on the ACCOUNT_NUM range, the
order of rows within each partition is based on the CUST_NUM
value.

Only one index can be explicitly defined as a clustering index,
and if no explicit clustering index is specified for a table, the first
index created on the table acts as the implicit clustering index
when ordering data rows.

DATA PARTITIONED SECONDARY INDEX

As mentioned earlier, a partitioned secondary index, also
referred to as a Data Partitioned Secondary Index (DPSI), is
new in V8. DPSI is an index that is partitioned with the same
partitioning scheme as the table. In other words, partition n of
the index refers only to data in partition n of the table.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

DPSI is created by specifying the keyword PARTITIONED while
defining the secondary index. DB2 doesn’t allow you to create
the DPSI as UNIQUE, mainly to avoid searching all the partitions
to ensure that the key is unique.

A DPSI can be either clustering or non-clustering.

The use of DPSIs promotes partition independence, reduces
lock contention, and improves index availability. DPSI also
provides efficiency for utility processing, partition-level
operations (such as dropping or rotating partitions), and recovery
of indexes.

DPSI and availability

DPSI allows the breaking up of the index into small sections,
just like the earlier feature of breaking up the data. If there is an
issue on some part of the index (say a disk failure), the impact
or damage is limited to a small subset of the rows pertaining to
a specific partition. DPSI also promotes high data availability
by facilitating efficient utility processing.

DPSI and efficient utility processing

With DPSI, partition-level operations can take place at the
physical rather than the logical level. While deleting the data in
a partition, the keys for the rows of that partition must also be
deleted from the indexes. Each Non-Partitioning Index (NPI)
must be scanned to delete these keys and each NPI is processed
serially. DPSI provides an extremely efficient way to take the
oldest index partition and throw out the data from that one
partition, and then make that the new partition and reload it with
the new results.

During REORG, BUILD2 phase processing is not required for
DPSIs. Because the keys for a given data partition reside in a
single DPSI partition, a simple substitution of the index partition
newly built by REORG for the old partition is all that is needed.

With DPSI, there is no contention between LOAD PART jobs
because there are no shared pages between partitions. If all

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

indexes on a table are partitioned, index page contention is
eliminated.

DPSI also improves the efficiency of parallel LOAD PART jobs
because each LOAD job inserts DPSI keys into a separate
index structure, in key order.

DPSI also allows partition parallelism in utilities like REORG,
CHECK INDEX, and REBUILD INDEX.

DPSIs also improve the recovery characteristics because they
can be copied and recovered at the partition level.

DPSI and data sharing overhead reduction

Data sharing overhead-reducing strategies, such as affinity
routing, benefit from the use of DPSIs. Because P-locking
occurs at the physical partition level, affinity routing is effective
for DPSIs. While designing batch suites, this advantage of data
affinities can be better exploited.

DPSI and query performance

DPSI can have both a positive and a negative impact on Query
performance – based on the data access pattern.

DPSIs allow for query parallelism and are likely to be picked by
the optimizer for queries with predicates on partitioning columns
plus predicates on the secondary index columns. The DB2
access path selection can now make use of all leading
partitioning key columns when determining the qualified
partitions, reducing the range of qualified partitions.

Performance of a query with predicates that reference only the
columns of a data-partitioned secondary index is likely to
degrade because DB2 must examine each partition of the index
for values that satisfy the predicate, if index access is chosen
as the access path.

With DPSI, performance of queries with predicates that also
restrict the query to a single partition (by also referencing
columns of the partitioning index) is likely to improve. If the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

query also has predicates on the leading columns of the
partitioning key, DB2 does not need to examine all partitions.
Thus the query performance can be improved if the predicates
are included that allow for pruning of unqualified partitions.

The removal from consideration of inapplicable partitions is
known as page range screening, or limited partition scan, or
partition pruning. A limited partition scan can be determined at
bind time (if the column is compared with a constant) or at run
time (if the column is compared with a host variable, parameter
marker, or special register).

Applications can take advantage of a limited partition scan
when a correlation exists between columns in the partitioning
index and in the DPSI. For example, let us assume that your
table is partitioned based on DATE, the DPSI is on column
ORDERNO and you want to process all the records based on
the range of ORDERNO. Assuming also that the ORDERNO
and DATE are correlated and you would be able to identify the
DATE range corresponding to this ORDERNO range (for example
the ORDERNO has the first four digits as the year), then limiting
the number of partitions that are to be scanned by also including
the DATE column in your predicate will improve the performance
of your query.

CONCLUSION

The partitioning and the index improvements, especially DPSI,
allow for improved availability and parallelism. Also, now, the
application designer has more options in terms of choosing
secondary and clustering indexes for partitioned tables. DPSI
provides benefits like simpler data and index maintenance,
improved availability, and parallelism. Factors like potential
negative impact on query performance, increased space
requirement in catalogs, etc have to be taken into account
when deciding on the appropriateness of DPSI’s use for a
specific application.

C Sasirekha
Tata Consultancy Services (India) © Xephon 2004

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Trimming the installation image for simplified mass
deployment of DB2 UDB Version 8.2 for Windows

DB2 Universal Database (DB2 UDB) installation has always
been a customizable operation. However, before DB2 UDB
V8.2, the installation image had to be a complete one to
accommodate the selection of any valid subset of components.
In other words, the image had to be a superset of all the possible
components that you could select. This requirement made the
distribution of some DB2 UDB products cumbersome and
ineffective in some deployment environments. You might have
considered it to be less than ideal if you were sure that you
didn’t want to install certain components, but these components
were nevertheless inflating an already large image. Suppose,
moreover, that you were responsible for a mass deployment of
DB2 UDB; wouldn’t it be great if you could actually reduce the
size of the installation image by removing those components
that you didn’t want? What if your scenario includes a large
number of remote users who connect over slower (perhaps
even dial-up) connections? A smaller installation image means
a lightweight deployment that can reduce network traffic, save
on storage, and significantly reduce installation time.

THE DB2IPRUNE UTILITY

Well, as of DB2 UDB Version 8.2 for Windows, you can, in fact,
trim an installation image. The db2iprune utility is now available.
This nifty tool can be used to remove specific components from
a DB2 Windows product installation image. The utility removes
the cabinet (.cab) files that are associated with certain
components (various features, languages, and so on). The
result is a new smaller image that can be installed using the
regular DB2 installation methods.

You can find the executable (db2iprune.exe) on the installation
CD or mounted installation image (but not in the installed
product), in the following directory:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

\db2\Windows\utilities\db2iprune

This directory also contains a sample pruning response (.prn)
file that you can modify and then use, along with the utility, to
prune the installation image.

Let’s consider an actual example. We will prune the installation
image for DB2 UDB Workgroup Server Edition (WSE) V8.2 for
Windows. Although we are pruning a Version 8.2 image, the
utility can be used to prune any Version 8 DB2 UDB for
Windows image. The first step is to modify the db2wse.prn file,
which, as we have stated, can be found in the db2iprune
subdirectory on the installation CD. The file contains an
informational header, followed by a list of removable languages
and product components or features. The sample .prn file that
we are going to use for our example is shown below:

* Input file for use with the db2iprune utility

* --

*

* Comments are made by placing either a * or a # at the start of a line,

* or by placing ** or ## after the start of a line to comment out the

* rest of that line.

*

* To remove the cabinet (.cab) files for a language, as well as the

* documentation files in the image for this language, uncomment the

* equivalent LANG keyword. To remove the .cab files for a feature,

* uncomment the equivalent COMP keyword. The PROD keyword is required to

* identify the product and need not change.

* For descriptions of DB2 features, refer to the db2_features file in

* the db2windowssamples directory on the DB2 installation CD.

*==

PROD = WORKGROUP_SERVER_EDITION

LANG = BR ** Brazilian Portuguese

LANG = CN ** Chinese, Simplified

LANG = CZ ** Czech

LANG = DE ** German

LANG = DK ** Danish

LANG = FI ** Finnish

LANG = FR ** French

LANG = ES ** Spanish

LANG = IT ** Italian

LANG = JP ** Japanese

LANG = KR ** Korean

LANG = NO ** Norwegian

LANG = PL ** Polish

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LANG = RU ** Russian

LANG = SE ** Swedish

LANG = TW ** Chinese, Traditional

*COMP = SYSTEM_BIND_FILES

*COMP = MDAC

*COMP = ODBC_SUPPORT

*COMP = OLE_DB_SUPPORT

*COMP = JDBC_SUPPORT

*COMP = SQLJ_SUPPORT

*COMP = APPLICATION_DEVELOPMENT_TOOLS

*COMP = IBM_JRE

*COMP = IBM_JDK

*COMP = LDAP_EXPLOITATION

*COMP = CLIENT_TOOLS

COMP = DB2_WEB_TOOLS

COMP = DATA_WAREHOUSE_CENTER

COMP = INFORMATION_CATALOG_CENTER

COMP = INFORMATION_CATALOG_CENTER_WEB

COMP = SPATIAL_EXTENDER_CLIENT_SUPPORT

COMP = XML_EXTENDER

COMP = SATELLITE_SYNCHRONIZATION

COMP = REPLICATION_APPLY

COMP = REPLICATION_CAPTURE

COMP = INFORMIX_DATA_SOURCE_SUPPORT

*COMP = DATABASE_TOOLS

COMP = DATA_WAREHOUSE_SERVER

*COMP = TCPIP_DB2_CLIENT_SUPPORT

*COMP = TCPIP_DB2_LISTENER_SUPPORT

COMP = NETBIOS_DB2_CLIENT_SUPPORT

COMP = NETBIOS_DB2_LISTENER_SUPPORT

COMP = NPIPE_DB2_CLIENT_SUPPORT

COMP = NPIPE_DB2_LISTENER_SUPPORT

COMP = APPC_DB2_CLIENT_SUPPORT

COMP = APPC_DB2_LISTENER_SUPPORT

COMP = FIRST_STEPS

*COMP = CONFIGURATION_ASSISTANT

*COMP = COMMAND_CENTER

*COMP = CONTROL_CENTER

*COMP = ACTIVITY_MONITOR

*COMP = EVENT_ANALYZER

*COMP = DEVELOPMENT_CENTER

*COMP = DB2_SAMPLE_DATABASE

COMP = WAREHOUSE_SAMPLE_DATABASE

COMP = DB2_SAMPLE_APPLICATIONS

COMP = SQLJ_SAMPLES

COMP = WAREHOUSE_SAMPLES

COMP = INFORMATION_CATALOG_SAMPLES

COMP = SPATIAL_EXTENDER_SAMPLES

COMP = XML_EXTENDER_SAMPLES

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

The file contains three types of keyword:

• PROD identifies the product that is associated with this
image. Do not comment out or otherwise modify this line.

• LANG identifies a specific language. The .prn file lists the
full set of supported languages (other than English), and
you can uncomment any language that you want the
db2iprune utility to remove from the installation image. We
are going to remove them all.

• COMP identifies a specific component. The .prn file lists the
full set of components, and you can uncomment (remove
the asterisk in front of) any component that you want the
db2iprune utility to remove from the installation image. As
you can see, we are going to remove a substantial number
of components.

AN EXAMPLE

We are now ready to create a pruned installation image. For
example, to prune the DB2 UDB WSE V8.2 for Windows
installation image located on the E: drive using the modified
copy of the db2wse.prn file (located in D:\WorkDir), and create
the pruned image in the D:\compact_wse directory, issue the
following command:

E:\db2\Windows\utilities\db2iprune>db2iprune -r D:\WorkDir\db2wse.prn

-p E:\ -o D:\compact_wse

The required parameters for this command are:

• -r input-file – the full path to the .prn file that specifies the
languages and components that are to be removed from the
installation image.

• -p source-image – the full path to the root directory of the
source image (the directory that contains the setup.exe
file).

• -o new-image – the full path to the directory in which the
pruned image is to be created; if this directory does not
already exist, the utility will create it.

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Of course, we could have created an installation image on
another drive first, and then pruned that image instead of the
image on the CD. To do that, we could have used the cpysetup
batch file, located in \db2\Windows\utilities, to create a source
installation image in, for example, D:\wse:

E:\db2\Windows\utilities>cpysetup D:\wse

Copying files...

1 File(s) copied

18ØØ File(s) copied

Successful completion.

If the target directory (D:\wse) did not already exist, cpysetup
would have created it.

While the db2iprune utility is running, it writes status information
to standard output. For example:

Please wait... The product image is being copied to the destination

specified:

D:\compact_wse.

Deleting .cab files for the feature whose token is DB2_WEB_TOOLS...

Deleting .cab files for the feature whose token is

DATA_WAREHOUSE_CENTER...

...

Deleting .cab files for all features of language: RU...

Deleting .cab files for all features of language: SE...

Deleting .cab files for all features of language: TW...

The pruning operation takes a few minutes to complete, and
longer if more components are being removed. The end result
is an installation image whose structure mirrors the structure of
the source image. The operation also generates a log file,
db2iprune.log, which is written to the target directory. For
example:

Directory of D:\compact_wse

Ø9/22/2ØØ4 Ø1:13p <DIR> .

Ø9/22/2ØØ4 Ø1:13p <DIR> ..

Ø8/Ø6/2ØØ4 Ø2:16p 27 autorun.inf

Ø9/22/2ØØ4 Ø1:12p <DIR> DB2

Ø9/22/2ØØ4 Ø1:25p 65,129 db2iprune.log

Ø9/22/2ØØ4 Ø1:24p <DIR> DOC

Ø8/13/2ØØ4 11:17a 32,831 setup.exe

The log file contains a detailed list of all the deletion actions that

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

were performed. Below is a partial example of db2iprune.log to
give you some idea of its structure:

Processing: FEAT_WEBDB2TOOLS.WSE

Deleting: D:\compact_wse\db2\windows\WEBDB2~1.cab

Processing: FEAT_DATA_WH_CENTER.WSE

Deleting: D:\compact_wse\db2\windows\DWC_IC~1.cab

Deleting: D:\compact_wse\db2\windows\DWC_IC~2.cab

Deleting: D:\compact_wse\db2\windows\DWC_IC~3.cab

...

Processing: LANG_INFOPOPS_CC39Ø_zh_TW.WSE

Deleting: D:\compact_wse\db2\windows\IN4DA5~1.cab

INSTALLING A PRUNED IMAGE

The end result of using the db2iprune utility to remove any
unwanted components (and their prerequisites, which are
automatically removed as well) is the same as if you had
deselected the specified components at installation time. In this
case, however, these components didn’t contribute to the size
of the image.

Figure 1: Size comparison

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Interactive installation

During an interactive installation (using the DB2 setup wizard),
only those components that remain in the pruned image are
shown. For example, if you removed the DB2 Data Warehouse
Center from the installation image, this feature would not be
presented as an optional or pre-selected component in the
setup wizard. (Note, however, that compact installations
represent the minimum file set required by a DB2 UDB product
on Windows, and these components cannot be further reduced
by the db2iprune utility.)

Figure 1 can be used to compare the size of a full installation
image with our pruned image. As you can see, the size reduction
is substantial.

Unattended (silent) installation

During a silent installation (using a response file), any
components that are specified in the response file but are not
in the pruned installation image are ignored.

Applying maintenance

The maintenance application process for a DB2 UDB product
is the same regardless of whether or not the installation image
was a full image or a pruned image. Maintenance to a DB2 UDB
product that was installed from a pruned image is seamless.

In Windows environments, both FixPaks and Updates are fully
installable images. This means that you can install a DB2 UDB
product at any level, and it will default to ‘try-and-buy’ mode if
a licence key isn’t found. Because DB2 UDB for Windows
FixPaks and Updates are always fully installable images, the
db2iprune utility can be used for maintenance vehicles as well.
However, you must ensure that the pruned FixPak or Update
image that you create contains all the components that were
initially installed. If a component is missing from these pruned
images, an error message detailing the missing cabinet (.cab)
files will be returned when maintenance is performed.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

CONCLUSION

We have shown how you can use the db2iprune utility, available
in DB2 UDB V8.2, to delete unneeded components from a DB2
UDB for Windows installation image. The resulting smaller
image (associated with significantly reduced network traffic,
storage requirements, and installation time) has the potential to
greatly simplify your mass deployment scenarios.

Roman B Melnyk (roman_b_melnyk@hotmail.com)
DB2 Information Development team
Paul C Zikopoulos (paulz_ibm@msn.com)
IBM Database Competitive Technology team
IBM (Canada) © IBM 2004

DB2 attachment primer: part 2 – using DB2
attachments

DETAILS OF THE DB2 PRECOMPILER PROCESS

The process to prepare a mainframe application program with
embedded SQL is shown in Figure 1. Inputs to the DB2
precompiler process include:

• The source code containing the embedded SQL statements.

• Existing high-level language copybooks.

• Previously-defined DB2 DCLGEN copybooks.

• Parameters for the precompiler program.

One of the parameters for the DB2 precompiler program is
ATTACH, which is used to specify the type of attachment facility
that will be used by the program at execution time. The options
for the ATTACH parameter are TSO, CAF, and RRSAF. When
not specified, the default parameter is ATTACH(TSO).

Two outputs are generated by the pre-compile process, a

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1: Preparing an application with embedded SQL

S
ou

rc
e

pr
og

ra
m

w
ith

 S
Q

L

A
pp

lic
at

io
n

co
py

bo
ok

s

D
B

2
D

C
LG

E
N

s

Lo
ad

m
od

ul
e

O
S

Li
nk

ag
e

E
di

to
r

O
bj

ec
t

co
de

H
L

la
ng

ua
ge

co
m

pi
le

r
M

od
ifi

ed
 s

ou
rc

e.
C

IC
S

 s
ta

te
m

en
ts

re
pl

ac
ed

 w
ith

 H
L

la
ng

ua
ge

st
at

em
en

ts

P
ar

am
et

er
s

to
lin

ka
ge

 e
di

to
r

P
ar

am
et

er
s

to
H

LL
 c

om
pi

le
r

H
L

la
ng

ua
ge

ob
je

ct
 li

br
ar

ie
s

Is
 it

 a
C

IC
S

pr
og

ra
m

?

M
od

ifi
ed

 s
ou

rc
e.

S
Q

L
re

pl
ac

ed
w

ith
 H

L
la

ng
ua

ge
st

at
em

en
ts

P
ar

am
et

er
s

to
D

B
2

pr
ec

om
pi

le
r

D
B

2
pr

ec
om

pi
le

r
pr

og
ra

m

D
at

ab
as

e
R

eq
ue

st
M

od
ul

e
(D

B
R

M
)

B
in

d
D

B
R

M
 in

to
 a

pa
ck

ag
e

or
 p

la
n

D
B

2
pa

ck
ag

e
or

 p
la

n

C
IC

S
 tr

an
sl

at
or

E
m

be
dd

ed
 ti

m
es

ta
m

p
is

 th
e

sa
m

e

N

Y

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

Database Request Module (also known as the DBRM) and an
updated version of the source code, where all of the SQL
statements have been converted into high-level language
statements. It is during the pre-compile process that the DB2
program timestamp value is embedded in the source code and
the DBRM. This value is used at run-time to ensure that the
DBRM and the load module are in sync.

An excerpt from a COBOL program after being pre-compiled
with ATTACH(TSO) looks like this:

122200*****EXEC SQL COMMIT END-EXEC 12220015

 PERFORM SQL-INITIAL UNTIL SQL-INIT-DONE

 CALL "DSNHLI" USING SQL-PLIST10

 IF SQLCODE < 0 GO TO 2000-COMMIT-ERROR ELSE

 IF SQLCODE > 0 AND SQLCODE NOT = 100

 OR SQLWARN0 = "W" GO TO 2000-COMMIT-ERROR ELSE

 IF SQLCODE = 100 GO TO 2000-COMMIT-ERROR ELSE

 MOVE 1 TO SQL-INIT-FLAG

 END-IF

 END-IF

 END-IF

122300 GO TO 2000-COMMIT-DB2-WORK-EXIT. 12230015

Notice how the SQL statements are commented out and
replaced by COBOL statements. Pay attention to the COBOL
statement CALL "DSNHLI". DSNHLI is the actual name of the
DB2 load module that will be called whenever the application
program starts executing an SQL statement.

If the very same program had been pre-compiled with the
ATTACH(CAF) parameter, the above COBOL statements would
look like this:

122200*****EXEC SQL COMMIT END-EXEC 12220015

 PERFORM SQL-INITIAL UNTIL SQL-INIT-DONE

 CALL "DSNHLI2" USING SQL-PLIST10

 IF SQLCODE < 0 GO TO 2000-COMMIT-ERROR ELSE

 IF SQLCODE > 0 AND SQLCODE NOT = 100

 OR SQLWARN0 = "W" GO TO 2000-COMMIT-ERROR ELSE

 IF SQLCODE = 100 GO TO 2000-COMMIT-ERROR ELSE

 MOVE 1 TO SQL-INIT-FLAG

 END-IF

 END-IF

 END-IF

122300 GO TO 2000-COMMIT-DB2-WORK-EXIT. 12230015

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In this case, the name of the DB2 load module that will be called
is DSNHLI2.

For ATTACH(RRSAF), the precompiler output would look like
this:

122200*****EXEC SQL COMMIT END-EXEC 12220015

 PERFORM SQL-INITIAL UNTIL SQL-INIT-DONE

 CALL "DSNHLIR" USING SQL-PLIST10

 IF SQLCODE < 0 GO TO 2000-COMMIT-ERROR ELSE

 IF SQLCODE > 0 AND SQLCODE NOT = 100

 OR SQLWARN0 = "W" GO TO 2000-COMMIT-ERROR ELSE

 IF SQLCODE = 100 GO TO 2000-COMMIT-ERROR ELSE

 MOVE 1 TO SQL-INIT-FLAG

 END-IF

 END-IF

 END-IF

122300 GO TO 2000-COMMIT-DB2-WORK-EXIT. 12230015

In this case, the name of the DB2 load module that will be called
is DSNHLIR.

If you were to examine all the statements in the precompiler
output, you would find no other differences between the three
listings.

DETAILS OF THE HIGH-LEVEL PROGRAMMING COMPILER
PROCESS

The purpose of the compiler process is to convert the high-level
language statements into a set of formatted machine-
independent statements that can be post-processed by the
operating system linkage editor and transformed into an
executable module.

This program’s intermediate state after the compilation process
is referred to as object code or object code module, and it is not
executable.

There is really not much to be said about the compiler process
in itself, other than to suggest that the compiler default
parameters be reviewed to ensure that they are the appropriate
ones for your environment.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

Remember that there are two ways of performing program
preparation – one in which the DB2 precompiler is used, and
another in which the high-level language compiler itself does
the precompilation of the SQL statements. This second approach
is not discussed in this article, but it does have several
advantages over the traditional program preparation approach,
so it is recommended that you review it at your leisure.

DETAILS OF THE OS LINKAGE EDITOR PROCESS

After the object code module is created, the next step is to
generate the load module.

OS/390 and z/OS provide multiple utilities, including one called
the linkage editor (also know as LKED) and another one called
the BINDER. The newer releases of the operating system have
replaced LKED with the BINDER, which is a program that
processes the output of language translators and compilers
into an executable load module. During the remainder of this
article, we will continue to refer to the LKED utility, although the
information presented would apply to either of them.

The manual MVS Program Management: User’s Guide and
Reference for z/OS V1.4 can be downloaded from http://
publibz.boulder.ibm.com/epubs/pdf/iea2b121.pdf, and it
describes both the LKED and BINDER utilities in detail.

The LKED utility helps resolve references to external load
modules found in the object code created by the high-level
language compiler, including the earlier-mentioned references
to the DB2 attachment modules DSNHLI, DSNHLI2, and
DSNHLIR.

Parameters to LKED tell it how to combine all these load
modules with the object code, what type of addressability to
use, and what the final name is for the load module, etc.

The important information on the LKED utility is that it helps to
resolve the references to the DB2 attachment names embedded
in the object code. The time to resolve the references to

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

external load modules is dictated by the CALL/NOCALL
parameter specified at LKED time.

The CALL parameter tells the LKED utility to search in the list
of datasets specified by SYSLIB DDNAME looking for a match
to an external load module reference. If a match is found (and
no overriding commands are specified), then LKED will combine
into a single load module the executable version of the application
program object code plus all the reference-matching load
modules found in the SYSLIB search. Because of this SYSLIB
search at LKED time, it is very important to know the order of
datasets listed in the SYSLIB DDNAME concatenation. In
particular, when linking a CICS program, the CICS libraries
should be the first in the SYSLIB DDNAME concatenation. It is
the same for IMS programs.

The NOCALL parameter tells the LKED utility not to resolve the
external references at this time, but to convert the application
program object code into a load module capable of looking for
the external load modules at program execution time. So the
order of the datasets specified in the STEPLIB DDNAME at
execution time then becomes important. In particular, for a
CICS program, the CICS load library should be ahead of the
DB2 or IMS load libraries in the STEPLIB DDNAME
concatenation. The same applies for IMS programs.

Lots of information on how to link edit programs can be found
in IBM’s DB2 Application Programming and SQL Guide
manuals.

WHAT ABOUT A DB2 UNIVERSAL ATTACHMENT?

Why didn’t IBM, many years ago, come up with a single DB2
universal attachment? It certainly would have simplified the life
of everyone working with DB2 on the mainframe. My guess is
that until recently, the technology wasn’t mature enough to allow
it, particularly when trying to maintain the integrity of a unit of
work across multiple subsystems.

Now that RRS is in place, why can’t it be used as the basis for

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

a DB2 universal attachment? Is it because it has too much
overhead? Or is it because not enough customers have
requested it? I leave you with the last question to ponder.

Antonio Salcedo
DB2 Systems Programmer (USA) © Xephon 2004

Implementing image extender to retrieve a
signature database

This article shows an example of implementing the concept of
DB2 image extenders. The application that uses DB2 extender’s
Query by Image Content (QBIC) capability was developed with
the intention of aiding in signature counterfeit detection. Minimal
prerequisites are IAV extenders 7.1 and JDK 1.1.6.

By using QBIC technology, traditional SQL queries are enhanced
with additional types of searches where criteria are similar
colours and texture patterns related to the source image. The
visual features of an image that queries can reference include
average colour, histogram colour, positional colour, and texture.
In the application described below, texture, which represents
the measure of the coarseness, contrast, and directionality of
an image, is used for pattern recognition. Images stored in the
database are actually signatures scanned from some documents
using the same resolution, set into frames of equal dimensions,
and with colours converted to black and white in order to use
only visual feature texture for searching. Colour conversion
was applied with the intention of eliminating the consequences
of bad quality prints on the query results.

For the purpose of testing and statistical analysis, the special
naming convention is applied. Data includes signatures made
by groups of people that signed as themselves and some who
tried to falsify the signatures of other people from the group.
Each signature is repeated several times by the same person

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

regardless of whether it is original or fake. A unique sequence
number is assigned to each person in the group and all signatures
are stored in the files of type UxxUyyz.jpg, where xx represents
the identifier of the person whose signature is falsified, yy the
identifier of the ‘counterfeiter’ and z the ordinal number of an
attempt made by person yy to sign on as person xx. The files of
type UxxUxxz.jpg represent not counterfeits but the zth authentic
signature made by person xx.

The file AdminExt.bat consists of the steps necessary to
prepare the environment for the actual Query by Image Content.
Extender services are started by dmbstart in the previously-
initialized command line environment with the db2cmd command.
In general the procedure to implement the DB2 image extender
application consists of some administrative tasks, like enabling
the database, table, and column(s) for image extender and
creating the QBIC catalog. When images are stored in the
database, image extender computes their visual features and
records their corresponding values in a QBIC catalog. In this
actual case, the insertion of signatures from files UxxUyyz.jpg
into table MMDBSYS.POTPISI is done by program
Populate.java, while program QbicQry.java does the search for
an image by content. The source image is chosen from among
the available image files UxxUyyz.jpg through an Open file
dialog, and the texture value for the source is compared with the
corresponding values for already-catalogued images. The
resulting scores represent a measure of similarity between the
source and target images, which, along with identification and
current timestamp, are stored in the table
MMDBSYS.POTPISISTAT.

The file Query.bat can be used to run queries after the first
execution of AdminExt.bat. Environmental variables in both
batch files should be customized according to your internal
standards. The name of the folder C:\db2extenders\MySamples
referenced in programs Populate.java and QbicQry.java can be
changed as well.

Similarity scores in the report resulting from the query are

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

shown in ascending order and with different colours (see Figure
1).

The red colour indicates a signature equal to the source image
(UxxUyyz.jpg) and repetitions of that signature (only value z
changes), blue indicates other signatures made by the same
person yy, and black all other cases where the person in
question (yy) is neither a signer nor a counterfeiter.

From analysis of the resulting statistical table, it is obvious that
the signatures with scores close to a zero value are the most
similar to the source signature. Deviations from zero in some
cases of authentic signatures (UxxUxxz) can be explained by
the intensity and quality of prints. The ideal situation for scores
of similarity (when in an ordered array) is red first, then blue,
and lastly black. Our interest is focused on people whose
signatures, no matter whether authentic or fake, belong to the
ascending array of signatures up to and including the last blue-
coloured signature. In order to analyse the validity of results
obtained by this method, ordinal numbers are assigned to each
score (in ascending order) for each image UxxUyyz.

The pie chart and column chart shown in Figure 3 and Figure 4
result from the query based on the table shown in Figure 2,
which includes ordinal numbers of scores for each pattern
grouped by colour, and criteria that satisfy our needs.

The conclusion is that in 75% of cases the results obtained by
this application can be considered reliable.

When no software for pattern recognition is available, this
application can help reduce the size of the population to which
the possible counterfeiter may belong. The main effect
accomplished by the implementation of this method is that
further investigation can be speeded up by checking a
significantly smaller group of ‘suspects’.

POPULATE.JAVA

/**/

/** Source File Name = Populate.java **/

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/** FUNCTIONS USED: DB2Image import udf **/

/** CONFIGURATION: Database already created and enabled **/

/** USAGE: Populate **/

/** the program will prompt for the database name, **/

/** userid, and password. Use the userid and **/

/** password that created the database. **/

/** Note: if specifying to store as a blob, the target_file must **/

/** be null **/

/** To specify a null value in the DB2IMAGE UDF, you must pass in **/

/** "CAST(NULL AS LONG VARCHAR)" **/

/** If the source_file is a JPG, the format must be 'JPG'. **/

/** it cannot be 'ASIS' **/

/** DB2IMAGEIMPORTC1 Store content from buffer or client file in **/

/** either a blob or pointer to the target_file on the server **/

/** DB2IMAGE(dbname (varchar), content (blob), source_format **/

/** (varchar), stortype (integer 1=blob,2=filepointer), **/

/** target_file (long varchar), comment (long varchar)) **/

/**/

import COM.ibm.db2.app.*;

import COM.ibm.db2.jdbc.app.*;

Figure 1: QbicQry Report Screenshot

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

Figure 2: Table from external program for statistical analysis

Figure 3: Pie chart

Figure 4: Column chart

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

import java.sql.*;

import java.io.*;

import javax.swing.*;

import java.awt.event.*;

public class Populate extends JPanel implements ActionListener {

 static JFrame frame;

 JButton selectFiles;

 JButton cancelButton;

 JFileChooser chooser;

 static String dbName = null;

 static String uid = null;

 static String pwd = null;

 public Populate() {

 selectFiles = new JButton("Open Files");

 selectFiles.addActionListener(this);

 selectFiles.setMnemonic('O');

 cancelButton = new JButton(" Cancel ");

 cancelButton.addActionListener(this);

 cancelButton.setMnemonic('C');

 JPanel panel = new JPanel();

 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));

 panel.add(selectFiles);

 panel.add(cancelButton);

 add(panel);

 }

 public static void main(String argv[]) {

 try {

 if (argv.length > 3 || (argv.length >= 1 && argv[Ø] == "?")) {

 System.out.print("Syntax for populating data on DB2 UDB

 for OS/39Ø server:\n"+

 " java Populate location_name userid password\n\n"+

 "Syntax for populating data on DB2 UDB server:\n"+

 " java Populate database_name userid password\n");

 System.exit(Ø);

 } else if (argv.length == Ø) {

 BufferedReader cl = new BufferedReader (new

InputStreamReader(System.in));

 System.out.print("Enter database name or DB2 location name:\n");

 dbName = cl.readLine();

 System.out.print("Enter userid:\n");

 uid = cl.readLine();

 System.out.print("Enter password:\n");

 pwd = cl.readLine();

 } else if (argv.length == 1) {

 dbName = argv[Ø];

 } else if (argv.length == 3) {

 dbName = argv[Ø];

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

 uid = argv[1];

 pwd = argv[2];

 }

 } catch (IOException e) {

 System.out.println("\n-- IOException caught --\n");

 }

 Populate panel = new Populate();

 frame = new JFrame("Open Files for Insert in Database");

 frame.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {System.exit(Ø);}

 });

 frame.getContentPane().add("Center", panel);

 frame.pack();

 frame.setSize(4ØØ, 1ØØ);

 frame.setVisible(true);

 }

 public void actionPerformed(ActionEvent ev) {

 if (ev.getActionCommand().equals("Open Files")) {

 String dir = "c:\\db2extenders\\MySamples\\";

 chooser = new JFileChooser(dir);

 MyFileFilter filter = new MyFileFilter("jpg", "JPEG Images");

 chooser.addChoosableFileFilter(filter);

 chooser.setDialogTitle("Select an image file(s)");

 chooser.setMultiSelectionEnabled(true);

 int retval = chooser.showDialog(frame, null);

 if (retval == JFileChooser.APPROVE_OPTION) {

 File[] files = chooser.getSelectedFiles();

 Connection con = null;

 String url = null;

 java.sql.Statement stmt = null;

 java.sql.PreparedStatement ps = null;

 String source_format = "\'JPG\'";

 int stortype = 1;

 String target_file = "CAST(NULL AS LONG VARCHAR)";

 try {

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 try {

 url = "jdbc:db2:" + dbName;

 con = DriverManager.getConnection(url, uid, pwd);

 stmt = con.createStatement();

 stmt.executeUpdate("SET CURRENT FUNCTION PATH = mmdbsys,

CURRENT FUNCTION PATH");

 stmt.close();

 String kljuc = null;

 byte[] content = null;

 String comment = null;

 String sql = null;

 for (int i = Ø; i < files.length; ++i) {

 kljuc = files[i].getName();

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 content = getContent(files[i].getPath());

 comment = files[i].getName();

 sql = "INSERT INTO POTPISI VALUES ("

 + "\'" + kljuc + "\', "

 + "DB2Image(CURRENT SERVER, "

 + "CAST(? AS BLOB(" + content.length + ")), "

 + source_format + ", "

 + stortype + ", "

 + target_file + ", "

 + "\'" + comment + "\'"

 + "))";

 System.out.println(sql);

 ps = con.prepareStatement(sql);

 ps.setBytes(1, content);

 ps.execute();

 ps.close();

 }

 con.close();

 } catch (SQLException ex) {

 while (ex != null) {

 System.out.println("\n-- SQLException caught --\n");

 System.out.println("Message: " + ex.getMessage ());

 System.out.println("SQLState: " + ex.getSQLState ());

 System.out.println("ErrorCode: " + ex.getErrorCode ());

 ex = ex.getNextException();

 }

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 } else if (retval == JFileChooser.CANCEL_OPTION) {

 JOptionPane.showMessageDialog(frame, "User cancelled

operation. No file was chosen.");

 } else if (retval == JFileChooser.ERROR_OPTION) {

 JOptionPane.showMessageDialog(frame, "An error

occurred. No file was chosen.");

 } else {

 JOptionPane.showMessageDialog(frame, "Unknown operation occurred.");

 }

 }

 if (ev.getActionCommand().equals(" Cancel ")) {

 System.exit(Ø);

 }

 }

 static private byte[] getContent(String filename) {

 byte[] content = null;

 try {

 java.io.FileInputStream file = new

java.io.FileInputStream(filename);

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

 int available = file.available();

 content = new byte[available];

 file.read(content);

 file.close();

 } catch (java.io.FileNotFoundException e) {

 System.out.println("getContent: " + e);

 } catch (java.io.IOException e) {

 System.out.println("getContent: " + e);

 }

 return content;

 }

}

MYFILEFILTER.JAVA
/**/

/** Source File Name = MyFileFilter.java **/

/** USAGE: Open file dialog **/

/**/

import java.io.File;

import java.util.Hashtable;

import java.util.Enumeration;

import javax.swing.*;

import javax.swing.filechooser.*;

public class MyFileFilter extends FileFilter {

 private static String TYPE_UNKNOWN = "Type Unknown";

 private static String HIDDEN_FILE = "Hidden File";

 private Hashtable filters = null;

 private String description = null;

 private String fullDescription = null;

 private boolean useExtensionsInDescription = true;

 public MyFileFilter() {

 this.filters = new Hashtable();

 }

 public MyFileFilter(String extension) {

 this(extension,null);

 }

 public MyFileFilter(String extension, String description) {

 this();

 if(extension!=null) addExtension(extension);

 if(description!=null) setDescription(description);

 }

 public MyFileFilter(String[] filters) {

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 this(filters, null);

 }

 public MyFileFilter(String[] filters, String description) {

 this();

 for (int i = Ø; i < filters.length; i++) {

 addExtension(filters[i]);

 }

 if(description!=null) setDescription(description);

 }

 public boolean accept(File f) {

 if(f != null) {

 if(f.isDirectory()) {

 return true;

 }

 String extension = getExtension(f);

 if(extension != null && filters.get(getExtension(f)) != null)

{

 return true;

 };

 }

 return false;

 }

 public String getExtension(File f) {

 if(f != null) {

 String filename = f.getName();

 int i = filename.lastIndexOf('.');

 if(i>Ø && i<filename.length()-1) {

 return filename.substring(i+1).toLowerCase();

 };

 }

 return null;

 }

 public void addExtension(String extension) {

 if(filters == null) {

 filters = new Hashtable(5);

 }

 filters.put(extension.toLowerCase(), this);

 fullDescription = null;

 }

 public String getDescription() {

 if(fullDescription == null) {

 if(description == null || isExtensionListInDescription()) {

 fullDescription = description==null ? "(" : description + " (";

 Enumeration extensions = filters.keys();

 if(extensions != null) {

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

 fullDescription += "." + (String) extensions.nextElement();

 while (extensions.hasMoreElements()) {

 fullDescription += ", ." + (String) extensions.nextElement();

 }

 }

 fullDescription += ")";

 } else {

 fullDescription = description;

 }

 }

 return fullDescription;

 }

 public void setDescription(String description) {

 this.description = description;

 fullDescription = null;

 }

 public void setExtensionListInDescription(boolean b) {

 useExtensionsInDescription = b;

 fullDescription = null;

 }

 public boolean isExtensionListInDescription() {

 return useExtensionsInDescription;

 }

}

QBICQRY.JAVA

/**/

/** Source File Name = QbicQry.java **/

/** FUNCTIONS USED: **/

/** MMDBSYS.QbScoreFromStr(query_spec, qbic_colum_name) **/

/** MMDBSYS.Thumbnail(qbic_colum_name) **/

/** MMDBSYS.Comment(qbic_colum_name) **/

/** MMDBSYS.Filename(qbic_colum_name) **/

/** CONFIGURATION: Database already created and enabled **/

/** USAGE: QbicQry **/

/** the program will prompt for the database name, **/

/** userid, and password. Use the userid and password **/

/** that created the database. **/

/**/

import java.awt.*;

import java.io.*;

import java.sql.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

public class QbicQry extends JFrame implements ActionListener {

 static String dbName = null;

 static String uid = null;

 static String pwd = null;

 int error = Ø;

 private String tableName = "POTPISI";

 private String imageColumn = "POTPIS";

 JLabel icon_label = new JLabel(new ImageIcon());

 JLabel score_label = new JLabel();

 Container contentPane = getContentPane();

 GridBagLayout layout = new GridBagLayout();

 GridBagConstraints constraints = new GridBagConstraints();

 JPanel container = new JPanel();

 JScrollPane scrollPane = new JScrollPane(container);

 JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);

 JPanel containerx = new JPanel();

 JScrollPane iconPane = new JScrollPane(containerx);

 JLabel compareToImage;

 JTextField fileName = new JTextField();

 JTextField dbNameF = new JTextField();

 JTextField uidF = new JTextField();

 JPasswordField pwdF = new JPasswordField();

 private String[] retrievedFiles;

 private String retrievedDir = "\\db2extenders\\mysamples\\";

 public QbicQry() {

 setTitle("Query by Image Content Sample");

 containerx.add(icon_label);

 containerx.add(score_label);

 splitPane.setTopComponent(scrollPane);

 splitPane.setBottomComponent(iconPane);

 contentPane.add(splitPane);

 setSize(9ØØ, 7ØØ);

 scrollPane.createHorizontalScrollBar();

 scrollPane.createVerticalScrollBar();

 iconPane.createHorizontalScrollBar();

 iconPane.createVerticalScrollBar();

 JLabel dbNameLabel = new JLabel("DB Name(Loc Name):");

 dbNameF.setText(dbName);

 JLabel uidLabel = new JLabel("User Id:");

 uidF.setText(uid);

 JLabel pwdLabel = new JLabel("Password:");

 pwdF.setText(pwd);

 JLabel fileNameLabel = new JLabel("File to compare to:");

 JButton fileChooser_button = new JButton("Choose file");

 fileChooser_button.addActionListener(this);

 fileChooser_button.setActionCommand("FILE");

 JButton query_button = new JButton("Query");

 query_button.addActionListener(this);

 query_button.setActionCommand("QUERY");

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

 JButton clear_button = new JButton("Clear");

 clear_button.addActionListener(this);

 clear_button.setActionCommand("CLEAR");

 constraints.weightx = Ø.3;

 constraints.weighty = Ø.6;

 constraints.insets = new Insets(2, 7, 2, 7);

 constraints.gridwidth = 1;

 constraints.fill = GridBagConstraints.HORIZONTAL;

 layout.setConstraints(dbNameLabel, constraints);

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 layout.setConstraints(dbNameF, constraints);

 constraints.gridwidth = 1;

 constraints.fill = GridBagConstraints.HORIZONTAL;

 layout.setConstraints(uidLabel, constraints);

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 layout.setConstraints(uidF, constraints);

 constraints.gridwidth = 1;

 constraints.fill = GridBagConstraints.HORIZONTAL;

 layout.setConstraints(pwdLabel, constraints);

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 layout.setConstraints(pwdF, constraints);

 constraints.gridwidth = 1;

 constraints.fill = GridBagConstraints.HORIZONTAL;

 layout.setConstraints(fileNameLabel, constraints);

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 layout.setConstraints(fileName, constraints);

 constraints.gridwidth = 1;

 ImageIcon icon = new ImageIcon();

 compareToImage = new JLabel(icon);

 constraints.gridwidth = GridBagConstraints.HORIZONTAL;

 layout.setConstraints(compareToImage, constraints);

 constraints.gridwidth = 1;

 constraints.fill = GridBagConstraints.HORIZONTAL;

 layout.setConstraints(fileChooser_button, constraints);

 constraints.gridwidth = GridBagConstraints.HORIZONTAL;

 layout.setConstraints(clear_button, constraints);

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 layout.setConstraints(query_button, constraints);

 container.setLayout(layout);

 container.add(dbNameLabel);

 container.add(dbNameF);

 container.add(uidLabel);

 container.add(uidF);

 container.add(pwdLabel);

 container.add(pwdF);

 container.add(fileNameLabel);

 container.add(fileName);

 container.add(fileChooser_button);

 container.add(compareToImage);

 container.add(clear_button);

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 container.add(query_button);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent ev) {

 System.exit(Ø);

 }

 });

 }

 public static void main(String[] argv) {

 try {

 if (argv.length > 3 || (argv.length >= 1 && argv[Ø] == "?")) {

 System.out.print("Syntax on DB2 UDB for OS/39Ø server:\n"+

 " java QbicQry location_name userid password\n\n"+

 "Syntax on DB2 UDB server:\n"+

 " java QbicQry database_name userid password\n");

 System.exit(Ø);

 } else if (argv.length == Ø) {

 BufferedReader cl = new BufferedReader (new

InputStreamReader(System.in));

 System.out.print("Enter database name or DB2 location name:\n");

 dbName = cl.readLine();

 System.out.print("Enter userid:\n");

 uid = cl.readLine();

 System.out.print("Enter password:\n");

 pwd = cl.readLine();

 } else if (argv.length == 1) {

 dbName = argv[Ø];

 } else if (argv.length == 3) {

 dbName = argv[Ø];

 uid = argv[1];

 pwd = argv[2];

 }

 } catch (IOException e) {

 System.out.println("\n-- IOException caught --\n");

 }

 QbicQry q = new QbicQry();

 q.setLocation(6Ø, 1Ø);

 q.setVisible(true);

 }

 public void actionPerformed(ActionEvent ev) {

 if (ev.getActionCommand().equals("FILE")) {

 processSelectFileAction();

 }

 if (ev.getActionCommand().equals("CLEAR")) {

 processClearAction();

 }

 if (ev.getActionCommand().equals("QUERY")) {

 processQueryAction();

 }

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

 }

 private void processSelectFileAction() {

 JFileChooser chooser = new JFileChooser(retrievedDir);

 MyFileFilter filter = new MyFileFilter("jpg", "JPEG Images");

 chooser.addChoosableFileFilter(filter);

 chooser.setDialogTitle("Select an image file");

 int returnVal = chooser.showOpenDialog(this);

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 String fileSelected = chooser.getCurrentDirectory() + "\\" +

chooser.getSelectedFile().getName();

 fileName.setText(fileSelected);

 ImageIcon icon = new ImageIcon(fileSelected);

 compareToImage.setIcon(icon);

 splitPane.setDividerLocation(Ø.3);

 }

 }

 private void processClearAction() {

 containerx.removeAll();

 containerx.invalidate();

 containerx.repaint();

 containerx.doLayout();

 if (retrievedFiles != null) {

 for (int i = Ø; i < retrievedFiles.length; ++i) {

 File file = new File(retrievedFiles[i]);

 file.delete();

 }

 }

 }

 private void processQueryAction() {

 String url = "jdbc:db2:" + dbNameF.getText().trim();

 error = Ø;

 String file = fileName.getText().trim();

 String qbicQuery = "\'texture file=<server," + file + ">\'";

 try {

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 try {

 conn = DriverManager.getConnection(url, uidF.getText().trim(),

pwdF.getText().trim());

 } catch (java.sql.SQLException e) {

 throw e;

 } catch (Exception e) {

 throw new java.sql.SQLException(e.toString());

 }

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 String sql = null;

 try {

 stmt = conn.createStatement();

 sql = "SET CURRENT FUNCTION PATH = MMDBSYS, CURRENT FUNCTION PATH";

 stmt.executeUpdate(sql);

 } catch (java.sql.SQLException se) {

 } catch (java.lang.UnknownError ue) {

 }

 sql = "SELECT Thumbnail(" + imageColumn +")"

 + ",Comment(" + imageColumn +")"

 + ",Filename(" + imageColumn +")"

 + ",QBScoreFromStr(" + qbicQuery + "," + imageColumn + ") AS SCORE" +

 " FROM " + tableName +

 " ORDER BY SCORE";

 rs = stmt.executeQuery(sql);

 int li = file.lastIndexOf("\\") + 1;

 displayScoredImages(conn, rs, file.substring(li));

 } catch (java.sql.SQLException e) {

 throw e;

 } catch (Throwable e) {

 throw new java.sql.SQLException(e.toString());

 } finally {

 try {

 if (rs != null) {

 rs.close();

 }

 if (stmt != null) {

 stmt.close();

 }

 if (conn != null) {

 conn.close();

 }

 } catch (java.sql.SQLException e) {

 throw e;

 }

 }

 } catch (SQLException ex) {

 error = 1;

 showError(this, ex.getMessage());

 }

 }

 private void displayScoredImages(Connection conn, ResultSet rs, String

file) throws java.sql.SQLException {

 java.util.Vector filesV = new java.util.Vector();

 String[] files = null;

 java.util.Vector scoreV = new java.util.Vector();

 String[] scores = null;

 int li;

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

 try {

 int row = Ø;

 while (rs.next()) {

 System.out.println("row[" + (++row) + "]");

 if (row == 1) {

 processClearAction();

 }

 int column = Ø;

 byte[] thumbnail = rs.getBytes(++column);

 String comment = rs.getString(++column);

 String fileName = rs.getString(++column);

 double score = rs.getDouble(++column);

/* Statistics begin */

 String sqlstat = "INSERT INTO POTPISISTAT VALUES ("

 + "\'" + file + "\', "

 + "\'" + comment + "\', "

 + score + ", "

 + "current timestamp"

 + ")";

 java.sql.PreparedStatement ps = conn.prepareStatement(sqlstat);

 ps.execute();

 ps.close();

/* Statistics end */

 System.out.println("\t thumbnail: "

 + ((thumbnail == null) ? "null" : "byte array")

 + "\t comment: "

 + comment

 + "\t fileName: "

 + fileName

 + "\t score: "

 + score);

 if (fileName != null) fileName = parseFileName(fileName);

 if (thumbnail != null) {

 String thumbnail_format = "GIF";

String useFileName = retrievedDir + row + "thumb_" + ((fileName != null)

 ? (fileName + "." + thumbnail_format)

 : (comment + "." + thumbnail_format));

 writeImageToFile(thumbnail, useFileName);

 filesV.add(useFileName);

 scoreV.add(String.valueOf(score));

 }

 }

 } catch (SQLException e) {

 throw e;

 }

 if (filesV.size() > Ø) {

 files = new String[filesV.size()];

 filesV.copyInto(files);

 scores = new String[scoreV.size()];

 scoreV.copyInto(scores);

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 }

 if (files != null) {

 retrievedFiles = files;

 for (int i = Ø; i < files.length; ++i) {

 icon_label = new JLabel(new ImageIcon(files[i]));

 containerx.add(icon_label);

 score_label = new JLabel(scores[i]);

 li = files[i].lastIndexOf("_") + 1;

 if (files[i].substring(li,li+6).equals(file.substring(Ø,6)))

score_label.setForeground(Color.red);

 else if

(files[i].substring(li+3,li+6).equals(file.substring(3,6)))

score_label.setForeground(Color.blue);

 else score_label.setForeground(Color.black);

 containerx.add(score_label);

 }

 containerx.add(icon_label);

 containerx.add(score_label);

 containerx.setLayout(new GridLayout(Ø,6));

 containerx.repaint();

 containerx.invalidate();

 containerx.doLayout();

 iconPane.updateUI();

 }

 }

 private String parseFileName(String fileName) {

 java.util.StringTokenizer tok = new

java.util.StringTokenizer(fileName, "\\");

 int count = tok.countTokens();

 String token = null;

 for (int i = Ø; i < (count-1); ++i) token = tok.nextToken();

 fileName = tok.nextToken();

 return fileName;

 }

 private void writeImageToFile(byte[] image, String filename) {

 try {

 System.out.println("writing image to file: " + filename);

 java.io.FileOutputStream file = new FileOutputStream(filename);

 file.write(image);

 file.close();

 System.out.println("image written to file: " + filename);

 } catch (java.io.FileNotFoundException e) {

 System.out.println("writeImageToFile: " + e);

 } catch (java.io.IOException e) {

 System.out.println("writeImageToFile: " + e);

 }

 }

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

 public void showError(JFrame f, String msg) {

 final JDialog d = new JDialog(f, "Exception Caught", true);

 d.setSize(4ØØ,15Ø);

 JLabel l = new JLabel();

 JTextArea ta = new JTextArea();

 ta.setLineWrap(true);

 ta.setWrapStyleWord(true);

 ta.setEditable(false);

 ta.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));

 ta.getBorder();

 ta.append(msg);

 d.getContentPane().setLayout(new BorderLayout());

 d.getContentPane().add(ta, BorderLayout.CENTER);

 JButton b = new JButton("OK");

 b.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent ev) {

 d.setVisible(false);

 d.dispose();

 }

 });

 JPanel p = new JPanel();

 p.add (b);

 d.getContentPane().add(p, BorderLayout.SOUTH);

 d.setLocationRelativeTo (f);

 d.setVisible(true);

 }

}

ADMINEXT.BAT

rem a. Start a DB2 command line, by executing "db2cmd".

rem b. Change directory to \db2extenders\MySamples

call dmbstart

@rem increase heap - needed for retrieving image data

db2 update db cfg for SAMPLE using app_ctl_heap_sz 4Ø96

db2ext connect to SAMPLE user db2admin using db2admin

db2ext enable database for db2image

db2ext connect reset

db2 connect to SAMPLE user db2admin using db2admin

db2 set current function path = MMDBSYS, CURRENT FUNCTION PATH

db2 DROP TABLE POTPISI

db2 CREATE TABLE POTPISI (IME CHAR(12) NOT NULL, POTPIS DB2IMAGE NOT

NULL)

db2 DROP TABLE POTPISISTAT

db2 CREATE TABLE POTPISISTAT (PATTERN CHARACTER (15) NOT NULL, POTPIS

CHARACTER (15) NOT NULL, SCORE DOUBLE NOT NULL, DATUM TIMESTAMP NOT

NULL)

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

db2 connect reset

db2ext connect to SAMPLE user db2admin using db2admin

@rem db2ext enable database for db2image

db2ext enable table POTPISI for db2image

db2ext enable column POTPISI POTPIS for db2image

db2ext create qbic catalog POTPISI POTPIS on

db2ext open qbic catalog POTPISI POTPIS

db2ext add qbic feature QbDrawFeatureClass

db2ext add qbic feature QbColorFeatureClass

db2ext add qbic feature QbColorHistogramFeatureClass

db2ext add qbic feature QbTextureFeatureClass

db2ext set qbic autocatalog on

db2ext get qbic catalog info

@rem db2ext catalog qbic column for new

db2ext close qbic catalog

db2ext quit

@echo off

setlocal

set DB2_JDBC=C:\Program Files\SQLLIB\java\db2java.zip

set JAVA_HOME=C:\j2sdk1.4.2\bin

rem set JAVA_HOME=C:\Program Files\SQLLIB\java\jdk\bin

set PATH=.;%JAVA_HOME%;%PATH%;

set CLASSPATH=%DB2_JDBC%;%CLASSPATH%

javac Populate.java

java Populate SAMPLE db2admin db2admin

javac MyFileFilter.java

javac QbicQry.java

java QbicQry SAMPLE db2admin db2admin

endlocal

call dmbstop

QUERY.BAT
db2cmd

call dmbstart

@echo off

setlocal

set DB2_JDBC=C:\Program Files\SQLLIB\java\db2java.zip

set JAVA_HOME=C:\j2sdk1.4.2\bin

rem set JAVA_HOME=C:\Program Files\SQLLIB\java\jdk\bin

set PATH=.;%JAVA_HOME%;%PATH%;

set CLASSPATH=%DB2_JDBC%;%CLASSPATH%

java QbicQry SAMPLE db2admin db2admin

endlocal

call dmbstop

Nikola Lazovic and Vladan Pantovic
DB2 System Administrators
Postal Savings Bank (Serbia and Montenegro) © Xephon 2004

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

Project Cinnamon

IBM has recently revealed more details about its previously
introduced Project Cinnamon, a set of features designed to
provide graphical XML schema mapping at the administration
level, ie customers will be able to automatically create the data
model of a database based on the document type definitions or
XML schemas they choose.

Cinnamon technology is now in beta and will ship with the next
version of DB2 Content Manager. The technology is designed
to help users define attributes based on XML schemas and
import XML documents into the Content Manager.

In addition, Cinnamon can automate data modelling and provides
a graphical XML schema mapping tool, which is designed to
simplify the exporting of items from one content management
system to another.

The thinking behind this is that while XML is an established
standard, the schemas are still evolving. What Cinnamon
offers is schema reporting and graphical modelling for users to
see the schemas and establish mapping. No programming is
now required.

IBM has also introduced a new graphical builder for delivering
workflow based on the BPEL (Business Process Execution
Language) standard. This tool is used by an administrator to
describe flows of business tasks and how that information is to
flow through the CM system.

Please note that the correct contact address for Xephon
Inc is PO Box 550547, Dallas, TX 75355, USA. The
phone number is (214) 340 5690, the fax number is (214)
341 7081, and the e-mail address to use is
info@xephon.com.

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Enhanced Web services support in Content Manager mean
that it can now receive transaction requests in SOAP and other
Web services standards.

The addition of Web services support, combined with enhanced
XML capabilities, helps simplify development whether the APIs
are written in .Net, Java, or use SOAP directly.

IBM also announced plans to support the emerging JSR (Java
Specification Request) 170, which seeks to define a standard
interface for content management systems, and increased
Web services support. Support for JSR 170, which is still in
draft form with the Java Community Process, is designed to
simplify the process of adding content and connecting business
applications to content management systems. The standard
will define an element of J2EE for a content repository API.

Nick Nourse
Independent Consultant (UK) © Xephon 2004

Why not share your expertise and earn money at the
same time? DB2 Update is looking for program code,
JavaScript, REXX EXECs, JavaScript, etc, that
experienced users of DB2 have written to make their
life, or the lives of their users, easier. We are also
looking for explanatory articles, and hints and tips,
from experienced users. We would also like
suggestions on how to improve DB2 performance.

We will publish your article (after vetting by our expert
panel) and send you a cheque, as payment, and two
copies of the issue containing the article once it has
been published. Articles can be of any length and
should be e-mailed to the editor, Trevor Eddolls, at
trevore@xephon.com.

A free copy of our Notes for Contributors is available
from our Web site at www.xephon.com/nfc.

Embarcadero Technologies has announced
Version 3 of Embarcadero Change Manager, its
cross-platform change management solution.
The latest version integrates Embarcadero
Change Manager with popular source code
control systems.

This automation gives DBAs the control they
need to ensure that their schemas are consistent
with the database application code.
Additionally, the product has enhancements in
support of the DB2 UDB platform.

The source code control integration enables
customers to store schema archives and
associated DDL into Microsoft Visual
SourceSafe, Serena PVCS, and IBM Rational
ClearCase repositories. This integration
streamlines development and deployment
activities by linking the database schema to the
application code accessing that same database.

Version 3.0 also offers a ‘compare’ facility to
validate, audit, and report on database schema
differences; a command-line utility that allows
capture and compare jobs to be embedded in
regular maintenance scripts; and job notification
capabilities so DBAs can regularly receive
information about their changes.

For further information contact:
Embarcadero Technologies, 100 California
Street, 12th Floor, San Francisco, CA 94111,
USA.
Tel: (415) 834 3131.
URL: www.embarcadero.com/products/
changemanager/index.html.

* * *

Quest Software has announced new versions of
Quest Spotlight on DB2 UDB and Quest
Spotlight on DB2 OS/390, which help to
pinpoint the source of DB2 performance

DB2 news

problems so they can be resolved before end
user service levels are affected.

The products display real-time graphical
illustrations of all DB2 activity. With
architecturally accurate visual representations of
the DB2 environment, Spotlight enables DBAs
to view all activity across the entire DB2 instance
or subsystem analysing connections, wait
events, locking, memory, and disk I/O to
identify and alleviate problem areas as they
occur. Metrics can be viewed in either real-time
or historically.

For further information contact:
Quest Software, 8001 Irvine Center Drive,
Irvine, CA 92618, USA.
Tel: (949) 754 8000.
URL: www.quest.com/db2/spotlight/
index.asp.

* * *

Version 8.6 of the shareware product DB2CPI
has recently been announced. DB2CPI is an
ISPF-based DB2 Command processor
interface with integrated catalog management
facilities and many automated functions and
utilities designed to make DBA’s daily tasks
easier.

DB2CPI was developed by DBAs to provide
simple solutions to time-consuming tasks and
provide rapid information required for problem
determination in, what they describe as, an easy
to interpret format.

Version 8.6 includes full DB2 Version 8
support. All utilities and screens have been
changed to support the new features and limit
increases in DB2 Version 8.

The product is available for download from
www.db2cpi.com/default.asp.

x xephon

	DB2 Version 8 - partitioning index
	Trimming the installation image for simplified mass deployment of DB2 UDB Version 8.2 for Windows
	DB2 attachment primer: part 2 - using DB2 attachments
	Implementing image extender to retrieve a signature database
	Project Cinnamon
	DB2 news

